WO2017057711A1 - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
WO2017057711A1
WO2017057711A1 PCT/JP2016/079090 JP2016079090W WO2017057711A1 WO 2017057711 A1 WO2017057711 A1 WO 2017057711A1 JP 2016079090 W JP2016079090 W JP 2016079090W WO 2017057711 A1 WO2017057711 A1 WO 2017057711A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion mechanism
refrigerant
compressor
low pressure
determination condition
Prior art date
Application number
PCT/JP2016/079090
Other languages
French (fr)
Japanese (ja)
Inventor
東 近藤
貴仁 中山
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2017057711A1 publication Critical patent/WO2017057711A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration apparatus, in particular, a compressor circuit, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and a refrigerant circuit configured by being connected to the refrigerant circuit. And a control unit that performs a refrigeration cycle operation in which a compressor, a radiator, an expansion mechanism, and an evaporator are circulated in this order.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-252623
  • a compressor an external heat exchanger (radiator)
  • an internal expansion valve expansion mechanism including an electric expansion valve
  • a refrigeration apparatus including a refrigerant circuit configured by connecting an internal heat exchanger (evaporator).
  • the compressor and the external heat exchanger are provided in the external unit (heat source unit), and the internal expansion valve and the internal heat exchanger are provided in the internal unit (usage unit).
  • the refrigeration apparatus is configured by connecting the internal unit to the external unit.
  • the refrigeration apparatus may be updated by exchanging the heat source unit while diverting the existing use unit.
  • the refrigerant may be changed to a different one from that used in the refrigerant circuit of the existing refrigeration apparatus.
  • the existing expansion mechanism cannot be diverted as it is depending on the difference in physical properties of the refrigerant before and after renewal, It is necessary to select and replace an expansion mechanism suitable for the renewed refrigerant.
  • An object of the present invention is to provide a refrigerant circuit configured by connecting a compressor, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and a refrigerant filled in the refrigerant circuit. And a control unit that performs a refrigeration cycle operation in which a radiator, an expansion mechanism, and an evaporator are circulated in this order, and to determine whether an appropriate expansion mechanism is provided in the refrigerant circuit. .
  • a refrigeration apparatus is filled with a refrigerant circuit configured by connecting a compressor, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and the refrigerant circuit.
  • a control unit that performs a refrigeration cycle operation in which the refrigerant is circulated in the order of a compressor, a radiator, an expansion mechanism, and an evaporator.
  • the control unit is configured to control the opening degree of the expansion mechanism during the refrigeration cycle operation, and the refrigerant, the compressor, and / or the expansion mechanism when the opening degree of the expansion mechanism varies.
  • the compressor and / or the expansion mechanism when the opening degree of the expansion mechanism is not fluctuating it is appropriate for the refrigerant circuit. Whether or not the expansion mechanism is provided is determined.
  • the operation state is in an unstable state quantity despite the fact that the opening degree of the expansion mechanism that is controlling the opening degree fluctuates according to the first determination condition. Further, it is determined whether or not the second determination condition is in an operating state indicating an abnormal state quantity even though the opening degree of the expansion mechanism performing the opening degree control is not fluctuating. In this case, it is assumed that an operation state that satisfies the first determination condition and the second determination condition occurs due to the fact that an appropriate expansion mechanism is not provided in the refrigerant circuit.
  • the first determination condition or the second determination condition based on the state quantity that appears in accordance with the operation state of the expansion mechanism performing the opening degree control (the presence or absence of opening degree fluctuation) is appropriate for the refrigerant circuit. Whether or not the expansion mechanism is provided can be determined.
  • the control unit determines whether the valve diameter of the expansion mechanism is larger than the valve diameter appropriate for the refrigerant circuit based on the first determination condition. Based on the second determination condition, it is determined whether the valve diameter of the expansion mechanism is smaller than the valve diameter appropriate for the refrigerant circuit.
  • the expansion mechanism is often controlled in a smaller opening range. Regardless, the state quantity may be difficult to stabilize.
  • the opening degree of the expansion mechanism is often controlled in a larger opening range. In spite of doing, it may show an abnormal amount of state.
  • the control unit is based on an evaporator outlet superheat degree that is a superheat degree of the refrigerant at the evaporator outlet during the refrigeration cycle operation.
  • the opening degree of the expansion mechanism is controlled.
  • the control unit determines whether or not the first determination condition is satisfied based on whether or not the fluctuation range of the evaporator outlet superheat degree exceeds the superheat degree fluctuation determination value.
  • the opening degree of the expansion mechanism In the case of controlling the opening degree of the expansion mechanism based on the degree of superheat of the evaporator outlet, if the appropriate expansion mechanism is provided in the refrigerant circuit, the degree of superheat of the evaporator outlet is stabilized by the degree of opening control of the expansion mechanism. The fluctuation range of the degree of superheat at the outlet is kept small.
  • an appropriate expansion mechanism is not provided in the refrigerant circuit as in the case where an expansion mechanism having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit, the opening degree of the expansion mechanism is controlled. The evaporator outlet superheat degree is not stable, and the fluctuation range of the evaporator outlet superheat degree becomes large.
  • the fluctuation of the evaporator superheat degree is large with respect to the opening degree fluctuation of the expansion mechanism. It is determined that the opening control of the expansion mechanism is being performed, that is, it is determined that the first determination condition is satisfied.
  • the evaporator outlet superheat degree is used as a state quantity serving as an index as to whether or not the first determination condition is satisfied, and is based on the degree of stability of the evaporator outlet superheat degree by the opening degree control of the expansion mechanism. Thus, it can be determined whether or not an appropriate expansion mechanism is provided in the refrigerant circuit.
  • the controller controls the capacity of the compressor based on the low pressure in the refrigeration cycle operation during the refrigeration cycle operation. Is going. In this case, the control unit determines whether or not the first determination condition is satisfied based on whether or not the fluctuation range of the low pressure exceeds the low pressure fluctuation determination value.
  • the opening degree control of the expansion mechanism is performed in a state where the fluctuation of the low pressure pressure is larger than the fluctuation of the opening degree of the expansion mechanism. It is determined that it is performed, that is, it is determined that the first determination condition is satisfied.
  • the low-pressure pressure is used as the state quantity serving as an index as to whether or not the first determination condition is satisfied, and the refrigerant circuit is based on the degree of stability of the low-pressure pressure accompanying the opening degree control of the expansion mechanism. It can be determined whether an appropriate inflation mechanism is provided.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to fourth aspects, wherein the control unit is configured so that the low-pressure pressure in the refrigeration cycle operation becomes a target low pressure during the refrigeration cycle operation.
  • the capacity is controlled. And here, the control unit is based on whether the expansion mechanism reaches the maximum opening and the low pressure is lower than the target low pressure, or the expansion mechanism reaches the maximum opening, and the compressor It is determined whether the second determination condition is satisfied based on whether the capacity has reached the minimum capacity.
  • the expansion mechanism When the capacity control of the compressor is performed so that the low pressure in the refrigeration cycle operation becomes the target low pressure, if the appropriate expansion mechanism is provided in the refrigerant circuit, the expansion mechanism reaches the maximum opening and the refrigerant circulation Despite the situation where the flow rate is likely to increase, the low-pressure pressure does not become so low that it does not reach the target low-pressure, and the compressor capacity does not decrease to the minimum capacity. It can be said that the range of control is wide. On the other hand, if an appropriate expansion mechanism is not provided in the refrigerant circuit as in the case where an expansion mechanism having a valve diameter smaller than the appropriate valve diameter is provided in the refrigerant circuit, the expansion mechanism reaches the maximum opening. Despite the situation where the circulating flow rate of the refrigerant is likely to increase, the low-pressure pressure may become lower than the target low-pressure, and the compressor capacity may become the minimum capacity. It can be said that the range of opening control of the mechanism is narrow.
  • the low pressure or the capacity of the compressor is used as a state quantity that serves as an index as to whether or not the second determination condition is satisfied, and the low pressure or the compression when the expansion mechanism reaches the maximum opening degree. Based on the capacity of the machine, it can be determined whether an appropriate expansion mechanism is provided in the refrigerant circuit.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to fifth aspects, wherein the refrigerant circuit further includes a second expansion mechanism between the radiator and the expansion mechanism.
  • the control unit performs an operation of circulating the refrigerant filled in the refrigerant circuit in the order of the compressor, the radiator, the second expansion mechanism, the expansion mechanism, and the evaporator.
  • a control part performs control which makes the opening degree of a 2nd expansion mechanism small, when it determines with satisfy
  • control is performed to reduce the opening degree of the second expansion mechanism provided between the radiator and the expansion mechanism. I am doing so.
  • FIG. 1 is a schematic configuration diagram of a refrigeration device 1 according to an embodiment of the present invention.
  • the refrigeration apparatus 1 is an apparatus that cools a use-side space such as in a refrigerated warehouse or a showcase of a store by a vapor compression refrigeration cycle.
  • the refrigeration apparatus 1 mainly includes a heat source unit 2, a utilization unit 5, and a liquid refrigerant communication tube 6 and a gas refrigerant communication tube 7 that connect the heat source unit 2 and the utilization unit 5.
  • the vapor compression refrigerant circuit 10 of the refrigeration apparatus 1 is configured by connecting the heat source unit 2 and the utilization unit 5 via a liquid refrigerant communication tube 6 and a gas refrigerant communication tube 7.
  • the refrigeration apparatus 1 is updated by replacing the existing heat source unit with the new heat source unit 2 while diverting the existing use unit 5.
  • the refrigerant is also changed to a different one (for example, R410A or R32) from that used in the refrigerant circuit of the existing refrigerating apparatus (for example, R22 or R407C).
  • the utilization unit 5 is connected to the heat source unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
  • the utilization unit 5 mainly includes a utilization side expansion valve 51 (expansion mechanism) and a utilization side heat exchanger 52 (evaporator).
  • the usage unit 5 includes a usage-side liquid refrigerant tube 53 that connects the liquid-side end of the usage-side heat exchanger 52 and the liquid refrigerant communication tube 6, and a gas-side end of the usage-side heat exchanger 52 and a gas refrigerant communication tube. And a use-side gas refrigerant pipe 54 connected to the terminal 7.
  • the use side expansion valve 51 is an electric expansion valve capable of opening degree control, and is provided in the use side liquid refrigerant pipe 53.
  • the use side heat exchanger 52 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle and cools the internal air (use side air).
  • the usage unit 5 has a usage-side fan 55 for sucking usage-side air into the usage unit 5 and exchanging heat with the refrigerant in the usage-side heat exchanger 52 and then supplying it to the usage-side space. is doing. That is, the usage unit 5 includes the usage-side fan 55 as a fan that supplies usage-side air as a heating source of the refrigerant flowing through the usage-side heat exchanger 52 to the usage-side heat exchanger 52.
  • the use side fan 55 is rotationally driven by a use side fan motor 56.
  • the use unit 5 is provided with various sensors. Specifically, an evaporator outlet temperature sensor 57 that detects an evaporator outlet temperature Tg that is a refrigerant temperature at the gas side end (evaporator outlet) of the usage side heat exchanger 52 is provided in the usage side gas refrigerant pipe 54. Is provided. Further, a usage-side air temperature sensor 58 that detects a temperature Tr of usage-side air sucked into the usage unit 5 is provided around the usage-side heat exchanger 52 or the usage-side fan 55.
  • the usage unit 5 includes a usage-side control unit 50 that controls the operation of each unit constituting the usage unit 5.
  • the use-side control unit 50 includes a microcomputer, a memory, and the like provided to control the use unit 5 so that control signals and the like can be exchanged with the heat source unit 2. It has become.
  • the heat source unit 2 is connected to the utilization unit 5 via the liquid refrigerant communication tube 6 and the gas refrigerant communication tube 7 and constitutes a part of the refrigerant circuit 10.
  • the heat source unit 2 mainly includes a compressor 21, a heat source side heat exchanger 23 (heat radiator), a receiver 24, a supercooler 25, an injection pipe 26, a heat source side expansion valve 28, and a liquid side closing valve. 29 and a gas side closing valve 30.
  • the heat source unit 2 includes a first heat source side gas refrigerant pipe 31 that connects the discharge side of the compressor 21 and the gas side end of the heat source side heat exchanger 23, and the liquid side end and liquid of the heat source side heat exchanger 23.
  • a heat source side liquid refrigerant pipe 32 connecting the refrigerant communication pipe 6 and a second heat source side gas refrigerant pipe 33 connecting the suction side of the compressor 21 and the gas refrigerant communication pipe 7 are provided.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • a compressor having a hermetic structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor 22 is used as the compressor 21 .
  • the compressor motor 22 can control the operating frequency Fc by an inverter, whereby the capacity control of the compressor 21 can be performed.
  • the heat source side heat exchanger 23 is a heat exchanger that functions as a high-pressure refrigerant radiator in the refrigeration cycle.
  • the heat source unit 2 sucks outside air (heat source side air) into the heat source unit 2, exchanges heat with the refrigerant in the heat source side heat exchanger 23, and then discharges the heat source side fan to the outside. 34. That is, the heat source unit 2 has a heat source side fan 34 as a fan that supplies heat source side air as a cooling source of the refrigerant flowing through the heat source side heat exchanger 23 to the heat source side heat exchanger 23.
  • the heat source side fan 34 is rotationally driven by a heat source side fan motor 35.
  • the receiver 24 is a container that temporarily accumulates the refrigerant condensed in the heat source side heat exchanger 23 as a radiator, and is provided in the heat source side liquid refrigerant pipe 32.
  • the subcooler 25 is a heat exchanger that further cools the refrigerant temporarily stored in the receiver 24, and is provided in the downstream portion of the receiver 24 of the heat source side liquid refrigerant pipe 32.
  • the injection pipe 26 is a refrigerant pipe that branches a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 and returns it to the compressor 21.
  • the injection pipe 26 is provided so as to pass through the subcooler 25 while being branched from the heat source side liquid refrigerant pipe 32 and returning to the compressor 21.
  • An injection valve 27 is provided in a portion of the injection pipe 26 up to the inlet of the supercooler 25.
  • the injection valve 27 is an electric expansion valve whose opening degree can be controlled, and the pressure is reduced before the refrigerant flowing through the injection pipe 26 flows into the subcooler 25.
  • the subcooler 25 cools the refrigerant temporarily stored in the receiver 24 using the refrigerant branched from the heat source side liquid refrigerant pipe 32 through the injection pipe 26 as a cooling source.
  • the heat source side expansion valve 28 is an electric expansion valve whose opening degree can be controlled, and is provided in a portion of the heat source side liquid refrigerant pipe 32 on the downstream side of the subcooler 25.
  • the liquid side closing valve 29 is a manual valve provided at a connection portion of the heat source side liquid refrigerant pipe 32 with the liquid refrigerant communication pipe 6.
  • the gas side shut-off valve 30 is a manual valve provided at a connection portion of the second heat source side liquid refrigerant pipe 33 with the gas refrigerant communication pipe 7.
  • the heat source unit 2 is provided with various sensors. Specifically, in the vicinity of the compressor 21 of the heat source unit 2, a suction pressure sensor 36 that detects a suction pressure LP that is a refrigerant pressure on the suction side of the compressor 21, and a refrigerant pressure on the discharge side of the compressor 21. And a discharge pressure sensor 37 for detecting the discharge pressure HP.
  • the heat source unit 2 has a heat source side control unit 20 that controls the operation of each unit constituting the heat source unit 2.
  • the heat source side control unit 20 includes a microcomputer and a memory provided for controlling the heat source unit 2, and exchanges control signals and the like with the use side control unit 50 of the use unit 5. Can be done. That is, the control part 8 which performs operation control of the whole refrigerating apparatus 1 is comprised by connecting the utilization side control part 50 and the heat source side control part 20 so that communication is possible.
  • FIG. 2 is a control block diagram of the refrigeration apparatus 1.
  • the refrigerant circuit 10 of the refrigeration apparatus 1 mainly includes the compressor 21, the heat source side heat exchanger 23 (heat radiator), the use side expansion valve 51 (expansion mechanism) including an electric expansion valve, and the use side. It is comprised by connecting with the heat exchanger 52 (evaporator). And the control part 8 of the freezing apparatus 1 uses the refrigerant
  • the refrigerant filled in the refrigerant circuit 10 is mainly composed of a compressor 21, a heat source side heat exchanger 23 (radiator), a receiver 24, a subcooler 25, a heat source side expansion valve 28,
  • a cooling operation (refrigeration cycle operation) is circulated in the order of the use side expansion valve 51 (expansion mechanism) and the use side heat exchanger 52 (evaporator).
  • a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 is branched through the injection pipe 26, passes through the subcooler 25, and then returned to the compressor 21.
  • the cooling operation and control as the basic operation of the refrigeration apparatus 1 described below are performed by the control unit 8 that controls the components of the refrigeration apparatus 1.
  • the refrigerant filled in the refrigerant circuit 10 is first sucked into the compressor 21 and compressed from the low pressure to the high pressure in the refrigeration cycle and then discharged.
  • the low pressure in the refrigeration cycle is the suction pressure LP detected by the suction pressure sensor 36.
  • the target value LPt of the low pressure LP in the refrigeration cycle is set according to the cooling load required by the use unit 5, and the operating frequency of the compressor 21 is set so that the low pressure LP in the refrigeration cycle becomes the target low pressure LPt. Fc is controlled.
  • the gas refrigerant discharged from the compressor 21 flows into the gas side end of the heat source side heat exchanger 23 through the first heat source side gas refrigerant pipe 31.
  • the gas refrigerant that has flowed into the gas side end of the heat source side heat exchanger 23 performs heat exchange with the heat source side air supplied by the heat source side fan 34 in the heat source side heat exchanger 23 to dissipate and condense, and is supercooled. It becomes a liquid refrigerant in a state and flows out from the liquid side end of the heat source side heat exchanger 23.
  • the liquid refrigerant flowing out from the liquid side end of the heat source side heat exchanger 23 flows into the inlet of the receiver 24 through a portion between the heat source side heat exchanger 23 and the receiver 24 of the heat source side liquid refrigerant pipe 32.
  • the liquid refrigerant that has flowed into the receiver 24 is temporarily stored as a saturated liquid refrigerant in the receiver 24, and then flows out from the outlet of the receiver 24.
  • the liquid refrigerant flowing out from the outlet of the receiver 24 flows into the inlet of the subcooler 25 on the heat source side liquid refrigerant tube 32 side through the portion between the receiver 24 and the subcooler 25 of the heat source side liquid refrigerant tube 32.
  • the liquid refrigerant flowing into the subcooler 25 exchanges heat with the refrigerant flowing through the injection pipe 26 in the subcooler 25 and is further cooled to become a supercooled liquid refrigerant. It flows out from the outlet on the refrigerant pipe 32 side. At this time, a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 is branched to the injection pipe 26 and is reduced by the injection valve 27 until it reaches an intermediate pressure in the refrigeration cycle. The refrigerant flowing through the injection pipe 26 after being decompressed by the injection valve 27 flows into the inlet of the subcooler 25 on the injection pipe 26 side.
  • the refrigerant flowing into the inlet of the subcooler 25 on the injection pipe 26 side is heated in the supercooler 25 by exchanging heat with the refrigerant flowing through the heat source side liquid refrigerant pipe 32 to become a gas refrigerant. Then, the refrigerant heated in the subcooler 25 flows out from the outlet of the subcooler 25 on the injection pipe 26 side, and is returned to the middle of the compression stroke of the compressor 21.
  • the liquid refrigerant flowing out from the outlet on the heat source side liquid refrigerant tube 32 side of the subcooler 25 passes through the portion between the subcooler 25 and the heat source side expansion valve 28 of the heat source side liquid refrigerant tube 32, and then the heat source side expansion valve 28. Flow into. At this time, a part of the liquid refrigerant flowing out from the outlet of the subcooler 25 on the heat source side liquid refrigerant pipe 32 side is from a portion between the subcooler 25 of the heat source side liquid refrigerant pipe 32 and the heat source side expansion valve 28.
  • the injection pipe 26 is branched.
  • the liquid refrigerant that has flowed into the heat source side expansion valve 28 is decompressed by the heat source side expansion valve 28, and then passes through the liquid side closing valve 29, the liquid refrigerant communication pipe 6, and a part of the use side liquid refrigerant pipe 53. 51 flows in.
  • the refrigerant that has flowed into the use-side expansion valve 51 is decompressed by the use-side expansion valve 51 until it reaches a low pressure in the refrigeration cycle, and between the use-side expansion valve 51 and the use-side heat exchanger 52 in the use-side liquid refrigerant pipe 53. It flows into the liquid side end of the use side heat exchanger 52 through this part.
  • the refrigerant flowing into the liquid side end of the usage-side heat exchanger 52 evaporates by exchanging heat with the usage-side air supplied by the usage-side fan 55 in the usage-side heat exchanger 52 to become a gas refrigerant. It flows out from the gas side end (evaporator outlet) of the side heat exchanger 52.
  • the superheat degree of the refrigerant at the outlet of the use side heat exchanger 52 is the evaporator outlet superheat degree SH
  • the opening degree control of the use side expansion valve 51 is performed based on the evaporator outlet superheat degree SH. It is like that.
  • the gas refrigerant flowing out from the gas side end of the use side heat exchanger 52 passes through the use side gas refrigerant pipe 54, the gas refrigerant communication pipe 7, the gas side shut-off valve 30, and the second heat source side gas refrigerant pipe 33, again to the compressor. 21 is inhaled.
  • the refrigeration apparatus 1 is updated by replacing the existing heat source unit with the new heat source unit 2 while diverting the existing use unit 5. Moreover, in the update, the refrigerant is changed to a different one from the existing one. In this case, since a refrigerant different from the refrigerant before renewal flows through the existing use unit 5, the existing use-side expansion valve 51 (expansion mechanism) is considered in consideration of the difference in physical properties of the refrigerant before and after renewal. ) Cannot be used as it is, and it is necessary to select and replace the use side expansion valve 51 suitable for the renewed refrigerant.
  • the refrigeration apparatus 1 performs an expansion mechanism suitability determination process for determining whether or not the appropriate use-side expansion valve 51 is provided in the refrigerant circuit 10 during the first cooling operation after renewal (refrigeration cycle operation). .
  • the expansion mechanism suitability determination process will be described with reference to FIGS.
  • FIG. 3 is a flowchart showing the expansion mechanism suitability determination process
  • FIG. 4 is a diagram showing a change with time of the low pressure LP or the evaporator outlet superheat degree SH during the cooling operation.
  • the expansion mechanism suitability determination process described below is also performed by the control unit 8 that controls the components of the refrigeration apparatus 1.
  • step ST ⁇ b> 1 the control unit 8 satisfies the first determination condition regarding the refrigerant, the compressor 21 and / or the state quantity of the use side expansion valve 51 when the opening degree of the use side expansion valve 51 is fluctuating. Determine if.
  • the first determination condition is the cooling operation with the opening degree control of the use side expansion valve 51 based on the evaporator outlet superheat degree SH and the capacity control of the compressor 21 based on the low pressure LP in the refrigeration cycle.
  • This is a condition for determining whether or not the operation amount is in an unstable state despite the fact that the opening degree of the use side expansion valve 51 performing the opening degree control is fluctuating.
  • the operating state that satisfies the first determination condition is that the refrigerant circuit 10 is not provided with an appropriate use side expansion valve 51, and in particular, the valve diameter of the use side expansion valve 51 is in the refrigerant circuit 10. This is due to the fact that it is larger than the appropriate valve diameter.
  • the opening degree control of the use side expansion valve 51 is performed based on the evaporator outlet superheat degree SH, the opening degree control of the use side expansion valve 51 is performed when an appropriate use side expansion valve 51 is provided in the refrigerant circuit 10. As a result, the evaporator outlet superheat degree SH is stabilized, and the fluctuation range of the evaporator outlet superheat degree SH can be kept small.
  • a predetermined time for example, 10 minutes
  • the absolute value ⁇ SH of the difference from the value SHa does not exceed the superheat degree fluctuation determination value ⁇ SHs.
  • the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10 as in the case where the use side expansion valve 51 having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit 10, the use side expansion is performed.
  • the evaporator outlet superheat degree SH is not stabilized, and the fluctuation range of the evaporator outlet superheat degree SH becomes large.
  • the fluctuation range ⁇ SH of the evaporator outlet superheat degree SH within a predetermined time (for example, 10 minutes) like the change with time of the evaporator outlet superheat degree SH illustrated by the solid line in FIG. This is the case when ⁇ SHs is exceeded.
  • the fluctuation range ⁇ SH of the evaporator outlet superheat degree SH exceeds the superheat degree fluctuation determination value ⁇ SHs, the fluctuation of the evaporator outlet superheat degree SH with respect to the opening degree fluctuation of the use side expansion valve 51. That is, it is determined that the opening degree control of the use side expansion valve 51 is being performed in a state where the pressure is large.
  • step ST2 uses the expansion on the use side having a valve diameter larger than the appropriate valve diameter.
  • another first determination condition is whether or not the fluctuation range ⁇ LP of the low-pressure pressure LP exceeds the low-pressure fluctuation determination value ⁇ LPs.
  • the capacity control of the compressor 21 is performed based on the low pressure LP in the refrigeration cycle
  • the opening degree control of the use side expansion valve 51 is performed. Even if the low-pressure pressure LP fluctuates, the fluctuation range ⁇ LP is small.
  • the determination value ⁇ LPs is not exceeded.
  • the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10 as in the case where the use side expansion valve 51 having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit 10, the use side When the low pressure LP varies with the opening degree control of the expansion valve 51, the variation width ⁇ LP becomes large.
  • the variation range ⁇ LP of the low-pressure pressure LP within a predetermined time for example, 10 minutes
  • the use-side expansion is performed in a state where the fluctuation of the low-pressure pressure LP is large with respect to the opening degree fluctuation of the use-side expansion valve 51. It is determined that the opening degree control of the valve 51 is being performed.
  • control part 8 fills the 1st determination conditions based on such low pressure LP, it transfers to the process of step ST2 and the utilization side expansion valve 51 of a larger valve diameter than an appropriate valve diameter is used.
  • the process proceeds to step ST3.
  • the first determination condition the first determination condition based on the evaporator outlet superheat degree SH and the first determination condition based on the low pressure LP are adopted, but either one of the first determination conditions is adopted. Only conditions may be employed.
  • step ST3 the control unit 8 satisfies the second determination condition regarding the refrigerant, the compressor 21 and / or the state quantity of the use side expansion valve 51 when the opening degree of the use side expansion valve 51 is not changed. Determine whether or not.
  • the second determination condition is that during the cooling operation involving the opening degree control of the use side expansion valve 51 based on the evaporator outlet superheat degree SH and the capacity control of the compressor 21 based on the low pressure LP in the refrigeration cycle, This is a condition for determining whether or not the operation state indicating an abnormal state quantity is in spite of the fact that the opening degree of the use side expansion valve 51 performing the opening degree control does not fluctuate.
  • the operating state that satisfies the second determination condition is that the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10, in particular, the valve diameter of the use side expansion valve 51 is in the refrigerant circuit 10. It is assumed that it is caused by being smaller than the appropriate valve diameter.
  • the opening degree of the use side expansion valve 51 is often controlled in a larger opening range. This is because an abnormal state quantity may be shown even though the opening degree control of the use side expansion valve 51 is performed.
  • the use side expansion valve 51 reaches the maximum opening degree (for example, the fully open opening degree) and the low pressure LP is lower than the target low pressure LPt, or the use side expansion valve 51 is set. Has reached the maximum opening (for example, full opening), and the capacity of the compressor 21 has reached the minimum capacity (for example, the minimum frequency Fcm).
  • the capacity control of the compressor 21 is performed so that the low pressure LP in the refrigeration cycle becomes the target low pressure LPt, if the appropriate use side expansion valve 51 is provided in the refrigerant circuit 10, the use side expansion valve 51 is maximum.
  • the low pressure LP does not become so low that it does not reach the target low pressure LPt, and the capacity of the compressor 21 reaches the minimum capacity. Since it does not decrease, it can be said that the range of opening degree control of the use side expansion valve 51 is wide.
  • the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10 as in the case where the use side expansion valve 51 having a valve diameter smaller than the appropriate valve diameter is provided in the refrigerant circuit 10, the use side expansion is performed.
  • the range of opening degree control of the use side expansion valve 51 is narrow.
  • the use side expansion valve 51 reaches the maximum opening and the low pressure LP is lower than the target low pressure LPt, or the use side expansion valve 51 reaches the maximum opening and the compression is performed.
  • the capacity of the compressor 21 reaches the minimum capacity
  • the range of the opening degree control of the use side expansion valve 51 is narrow in performing the capacity control of the compressor 21 so that the low pressure LP becomes the target low pressure Lpt. It is judged that it is too much.
  • the state of the low pressure LP and the capacity of the compressor 21 satisfying the above condition continues for a predetermined time (for example, 10 minutes). You may limit to.
  • step ST4 the control unit 8 proceeds to the process of step ST4, and the use side expansion valve 51 having a valve diameter smaller than an appropriate valve diameter is provided in the refrigerant circuit 10.
  • the expansion mechanism is notified. The suitability determination process is terminated.
  • the refrigerant circuit is set according to the first determination condition and the second determination condition based on the state quantity appearing in accordance with the operating state (the presence or absence of opening degree variation) of the use side expansion valve 51 performing the opening degree control. 10, whether or not an appropriate use-side expansion valve 51 is provided can be determined.
  • Steps ST1 and ST2 if an abnormality that the first determination condition is satisfied and the valve diameter is large is notified, the use-side expansion valve 51 has been replaced with one having a large valve diameter due to a selection error. In other words, it is possible to find out that there is a problem such as the use-side expansion valve 51 having been left forgotten to replace the use-side expansion valve 51 or being left with a large use-side expansion valve.
  • the evaporator outlet superheat degree SH or the low pressure LP is used as an indicator of whether or not the first determination condition is satisfied, and the evaporator outlet superheat degree by the opening degree control of the use side expansion valve 51 is used. It is possible to determine whether or not an appropriate use-side expansion valve 51 is provided in the refrigerant circuit 10 based on the degree of stability of SH and the degree of stability of the low pressure LP associated with the opening degree control of the use-side expansion valve 51. it can.
  • the low pressure LP or the capacity of the compressor 21 is used as a state quantity serving as an index as to whether or not the second determination condition is satisfied, and the low pressure when the use side expansion valve 51 has reached the maximum opening degree. Based on the pressure LP and the capacity of the compressor 21, it can be determined whether or not the appropriate use side expansion valve 51 is provided in the refrigerant circuit 10.
  • the control unit 8 determines that the fluctuation range ⁇ SH of the evaporator outlet superheat degree SH exceeds the superheat degree fluctuation determination value ⁇ SHs or the low pressure LP in step ST1 of the expansion mechanism suitability determination process.
  • the use side expansion valve 51 expansion mechanism having a valve diameter larger than an appropriate valve diameter in step ST2. Is informed that an abnormality has occurred in the refrigerant circuit 10.
  • step ST5 when the control unit 8 determines that the first determination condition is satisfied in step ST1 of the expansion mechanism suitability determination process, in step ST5 together with the notification process of step ST2. In addition, control is performed to reduce the opening degree of the heat source side expansion valve 28 as the second expansion mechanism.
  • the opening degree control of the heat source side expansion valve 28 (second expansion mechanism)
  • the pressure of the refrigerant sent to the use side expansion valve 51 (expansion mechanism) on the downstream side can be reduced.
  • the opening of the use side expansion valve 51 can be controlled within a larger opening range. As a result, it is possible to improve the operation state in which the state quantity is not stabilized only by the opening degree control of the use side expansion valve 51, that is, to reduce the fluctuation range of the evaporator outlet superheat degree SH and the fluctuation range ⁇ LP of the low pressure LP. And cooling operation can be stabilized.
  • control unit 8 determines that the fluctuation range ⁇ SH of the evaporator outlet superheat degree SH is equal to or less than the superheat degree fluctuation determination value ⁇ SHs, or the fluctuation width ⁇ LP of the low pressure LP is equal to or less than the low pressure fluctuation determination value ⁇ LPs.
  • control is performed to reduce the opening of the heat source side expansion valve 28 (second expansion mechanism). For this reason, the fluctuation range ⁇ SH of the evaporator outlet superheat degree SH and the fluctuation range ⁇ LP of the low pressure LP can be reliably reduced.
  • the low pressure LP and the capacity of the compressor 21 are used as state quantities serving as an index as to whether or not the second determination condition is satisfied in step ST3 of the expansion mechanism suitability determination process.
  • the present invention is not limited to this.
  • the second determination condition whether or not the second determination condition is satisfied may be used depending on whether or not the temperature difference ⁇ Tr between the use-side air temperature Tr and the target value Trt exceeds the temperature difference determination value ⁇ Trs.
  • the expansion mechanism suitability determination process is performed during the first cooling operation after renewal (refrigeration cycle operation), so that the use side expansion valve 51 (expansion mechanism) may be selected incorrectly or forgotten to be replaced. I try to find out if it has occurred.
  • the use of the expansion mechanism suitability determination process is not limited to the discovery of selection mistake or forgetting to replace the use side expansion valve 51 at the initial stage of installation, and can be used for other purposes.
  • the expansion mechanism suitability determination process during the cooling operation may be performed even after the expansion mechanism suitability determination process during the first cooling operation after the update.
  • a state satisfying the second determination condition that is, a state similar to the state when the valve diameter becomes small
  • a state satisfying the first determination condition that is, a state similar to that when the valve diameter becomes large
  • the cooling operation is continued while covering the abnormality of the use side expansion valve 51 by performing control to reduce the opening degree of the heat source side expansion valve 28. can do.
  • the refrigeration apparatus 1 that performs the cooling operation as the refrigeration cycle operation has been described as an example, but the present invention is not limited to this.
  • the use side heat exchanger 52 functions as a refrigerant radiator and the heat source side heat exchanger 23 functions as a refrigerant evaporator
  • Two heat source side gas refrigerant pipes 31 and 32 are provided with a four-way switching valve so that the reverse cycle defrosting operation of the use side heat exchanger 52 can be performed or used for air conditioning applications (cooling operation and heating operation).
  • the above-described expansion mechanism suitability determination process can also be applied to the refrigeration apparatus.
  • the low pressure LP is converted into the evaporation temperature Te when the evaporator outlet superheat degree SH is obtained.
  • the use side heat exchanger 52 evaporator
  • a temperature sensor may be provided to detect the evaporation temperature Te.
  • the present invention relates to a refrigerant circuit configured by connecting a compressor, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and a refrigerant filled in the refrigerant circuit.
  • the present invention can be widely applied to a refrigeration apparatus that includes a control unit that performs a refrigeration cycle operation that circulates in the order of a condenser, an expansion mechanism, and an evaporator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In the present invention, a control unit (8) is configured to control the degree of opening of an expansion mechanism (51) during a refrigeration-cycle operation, and performs expansion mechanism suitability determination as to whether the suitable expansion mechanism (51) is provided in a refrigerant circuit (10) on the basis of a first determination condition concerning the state quantity of a refrigerant, a compressor (21) and/or the expansion mechanism (51) when the degree of opening of the expansion mechanism (51) varies, and/or a second determination condition concerning the state quantity of the refrigerant, the compressor (21) and/or the expansion mechanism (51) when the degree of opening of the expansion mechanism (51) does not vary.

Description

冷凍装置Refrigeration equipment
 本発明は、冷凍装置、特に、圧縮機と、放熱器と、電動膨張弁からなる膨張機構と、蒸発器と、が接続されることによって構成される冷媒回路と、冷媒回路に充填された冷媒を圧縮機、放熱器、膨張機構、蒸発器の順に循環させる冷凍サイクル運転を行う制御部と、を備える冷凍装置に関する。 The present invention relates to a refrigeration apparatus, in particular, a compressor circuit, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and a refrigerant circuit configured by being connected to the refrigerant circuit. And a control unit that performs a refrigeration cycle operation in which a compressor, a radiator, an expansion mechanism, and an evaporator are circulated in this order.
 従来より、特許文献1(特開2011-252623号公報)に示すように、圧縮機と、庫外熱交換器(放熱器)と、電動膨張弁からなる庫内膨張弁(膨張機構)と、庫内熱交換器(蒸発器)が接続されることによって構成される冷媒回路を備える冷凍装置がある。圧縮機や庫外熱交換器は、庫外ユニット(熱源ユニット)に設けられ、庫内膨張弁や庫内熱交換器は、庫内ユニット(利用ユニット)に設けられている。そして、冷凍装置は、庫外ユニットに庫内ユニットを接続することによって構成されている。 Conventionally, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2011-252623), a compressor, an external heat exchanger (radiator), an internal expansion valve (expansion mechanism) including an electric expansion valve, There is a refrigeration apparatus including a refrigerant circuit configured by connecting an internal heat exchanger (evaporator). The compressor and the external heat exchanger are provided in the external unit (heat source unit), and the internal expansion valve and the internal heat exchanger are provided in the internal unit (usage unit). The refrigeration apparatus is configured by connecting the internal unit to the external unit.
 上記の冷凍装置においては、既設の利用ユニットを流用しつつ熱源ユニットを交換することによって、冷凍装置の更新を行う場合がある。そして、冷凍装置の更新時においては、冷媒についても、既設の冷凍装置の冷媒回路において使用していたものとは異なるものに変更する場合がある。この場合には、既設の利用ユニットに更新前の冷媒とは異なる冷媒が流れることになるため、更新前後の冷媒の物性等の違いによっては、既設の膨張機構をそのまま流用することができず、更新後の冷媒に適した膨張機構を選定して交換する必要がある。 In the above refrigeration apparatus, the refrigeration apparatus may be updated by exchanging the heat source unit while diverting the existing use unit. When the refrigeration apparatus is updated, the refrigerant may be changed to a different one from that used in the refrigerant circuit of the existing refrigeration apparatus. In this case, since a refrigerant different from the refrigerant before renewal flows to the existing use unit, the existing expansion mechanism cannot be diverted as it is depending on the difference in physical properties of the refrigerant before and after renewal, It is necessary to select and replace an expansion mechanism suitable for the renewed refrigerant.
 しかし、このような膨張機構の交換を含めた冷凍装置の更新にあたっては、膨張機構の選定ミスや交換忘れが発生するおそれがあるため、更新後の冷凍装置において、冷媒回路に適切な膨張機構が設けられているかどうかを判定できるようにすることが望ましい。 However, when renewing the refrigeration system including such replacement of the expansion mechanism, there is a possibility that an expansion mechanism selection error or forgetting replacement may occur. Therefore, in the updated refrigeration system, there is an appropriate expansion mechanism in the refrigerant circuit. It is desirable to be able to determine whether it is provided.
 本発明の課題は、圧縮機と、放熱器と、電動膨張弁からなる膨張機構と、蒸発器と、が接続されることによって構成される冷媒回路と、冷媒回路に充填された冷媒を圧縮機、放熱器、膨張機構、蒸発器の順に循環させる冷凍サイクル運転を行う制御部と、を備える冷凍装置において、冷媒回路に適切な膨張機構が設けられているかどうかを判定できるようにすることにある。 An object of the present invention is to provide a refrigerant circuit configured by connecting a compressor, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and a refrigerant filled in the refrigerant circuit. And a control unit that performs a refrigeration cycle operation in which a radiator, an expansion mechanism, and an evaporator are circulated in this order, and to determine whether an appropriate expansion mechanism is provided in the refrigerant circuit. .
 第1の観点にかかる冷凍装置は、圧縮機と、放熱器と、電動膨張弁からなる膨張機構と、蒸発器と、が接続されることによって構成される冷媒回路と、冷媒回路に充填された冷媒を圧縮機、放熱器、膨張機構、蒸発器の順に循環させる冷凍サイクル運転を行う制御部と、を備えている。そして、ここでは、制御部が、冷凍サイクル運転時に、膨張機構の開度制御を行うようになっており、膨張機構の開度が変動している時の冷媒、圧縮機及び/又は膨張機構の状態量に関する第1判定条件、及び/又は、膨張機構の開度が変動していない時の冷媒、圧縮機及び/又は膨張機構の状態量に関する第2判定条件に基づいて、冷媒回路に適切な膨張機構が設けられているどうかの膨張機構適否判定を行う。 A refrigeration apparatus according to a first aspect is filled with a refrigerant circuit configured by connecting a compressor, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and the refrigerant circuit. A control unit that performs a refrigeration cycle operation in which the refrigerant is circulated in the order of a compressor, a radiator, an expansion mechanism, and an evaporator. Here, the control unit is configured to control the opening degree of the expansion mechanism during the refrigeration cycle operation, and the refrigerant, the compressor, and / or the expansion mechanism when the opening degree of the expansion mechanism varies. Based on the first determination condition regarding the state quantity and / or the second determination condition regarding the state quantity of the refrigerant, the compressor and / or the expansion mechanism when the opening degree of the expansion mechanism is not fluctuating, it is appropriate for the refrigerant circuit. Whether or not the expansion mechanism is provided is determined.
 ここでは、第1判定条件によって、開度制御を行っている膨張機構の開度が変動している状況であるにもかかわらず、状態量が安定しない運転状態になっているどうかを判定する。また、第2判定条件によって、開度制御を行っている膨張機構の開度が変動していないにもかかわらず、異常な状態量を示す運転状態になっているかどうかを判定する。そして、ここでは、第1判定条件や第2判定条件を満たすような運転状態が、冷媒回路に適切な膨張機構が設けられていないことに起因して発生しているものとするのである。 Here, it is determined whether or not the operation state is in an unstable state quantity despite the fact that the opening degree of the expansion mechanism that is controlling the opening degree fluctuates according to the first determination condition. Further, it is determined whether or not the second determination condition is in an operating state indicating an abnormal state quantity even though the opening degree of the expansion mechanism performing the opening degree control is not fluctuating. In this case, it is assumed that an operation state that satisfies the first determination condition and the second determination condition occurs due to the fact that an appropriate expansion mechanism is not provided in the refrigerant circuit.
 このように、ここでは、開度制御を行っている膨張機構の動作状況(開度変動の有無)に応じて現れる状態量に基づく第1判定条件や第2判定条件によって、冷媒回路に適切な膨張機構が設けられているどうかの膨張機構適否判定を行うことができる。 As described above, the first determination condition or the second determination condition based on the state quantity that appears in accordance with the operation state of the expansion mechanism performing the opening degree control (the presence or absence of opening degree fluctuation) is appropriate for the refrigerant circuit. Whether or not the expansion mechanism is provided can be determined.
 第2の観点にかかる冷凍装置は、第1の観点にかかる冷凍装置において、制御部が、第1判定条件に基づいて膨張機構の弁口径が冷媒回路に適切な弁口径に比べて大きいかどうかを判定し、第2判定条件に基づいて膨張機構の弁口径が冷媒回路に適切な弁口径に比べて小さいかどうかを判定する。 In the refrigeration apparatus according to the second aspect, in the refrigeration apparatus according to the first aspect, the control unit determines whether the valve diameter of the expansion mechanism is larger than the valve diameter appropriate for the refrigerant circuit based on the first determination condition. Based on the second determination condition, it is determined whether the valve diameter of the expansion mechanism is smaller than the valve diameter appropriate for the refrigerant circuit.
 適切な弁口径よりも大きい弁口径の膨張機構が冷媒回路に設けられると、膨張機構が小さめの開度範囲で制御されることが多くなるため、膨張機構の開度制御を行っているにもかかわらず、状態量が安定しにくい場合がある。また、適切な弁口径よりも小さい弁口径の膨張機構が冷媒回路に設けられると、膨張機構の開度が大きめの開度範囲で制御されることが多くなるため、膨張機構の開度制御を行っているにもかかわらず、異常な状態量を示す場合がある。 If an expansion mechanism with a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit, the expansion mechanism is often controlled in a smaller opening range. Regardless, the state quantity may be difficult to stabilize. In addition, if an expansion mechanism having a valve diameter smaller than the appropriate valve diameter is provided in the refrigerant circuit, the opening degree of the expansion mechanism is often controlled in a larger opening range. In spite of doing, it may show an abnormal amount of state.
 そこで、ここでは、上記のように、第1判定条件を満たす場合には、膨張機構の弁口径が冷媒回路に適切な弁口径に比べて大きいものと判定し、第2判定条件を満たす場合には、膨張機構の弁口径が冷媒回路に適切な弁口径に比べて小さいものと判定するようにしている。 Therefore, here, as described above, when the first determination condition is satisfied, it is determined that the valve diameter of the expansion mechanism is larger than the valve diameter appropriate for the refrigerant circuit, and when the second determination condition is satisfied. Determines that the valve diameter of the expansion mechanism is smaller than the valve diameter appropriate for the refrigerant circuit.
 これにより、ここでは、膨張機構の交換を含めた冷凍装置の更新後の冷凍サイクル運転において、第1判定条件や第2判定条件を満たすかどうかを判定することで、膨張機構の選定ミスや交換忘れが発生していないかどうかを発見することができる。 Thereby, here, in the refrigeration cycle operation after the renewal of the refrigeration apparatus including replacement of the expansion mechanism, it is determined whether the first determination condition or the second determination condition is satisfied. You can discover whether forgetfulness has occurred.
 第3の観点にかかる冷凍装置は、第1又は第2の観点にかかる冷凍装置において、制御部が、冷凍サイクル運転時に、蒸発器の出口における冷媒の過熱度である蒸発器出口過熱度に基づいて膨張機構の開度制御を行っている。そして、ここでは、制御部が、蒸発器出口過熱度の変動幅が過熱度変動判定値を超えるかどうかに基づいて、第1判定条件を満たすかどうかを判定する。 In the refrigeration apparatus according to the third aspect, in the refrigeration apparatus according to the first or second aspect, the control unit is based on an evaporator outlet superheat degree that is a superheat degree of the refrigerant at the evaporator outlet during the refrigeration cycle operation. The opening degree of the expansion mechanism is controlled. Here, the control unit determines whether or not the first determination condition is satisfied based on whether or not the fluctuation range of the evaporator outlet superheat degree exceeds the superheat degree fluctuation determination value.
 蒸発器出口過熱度に基づいて膨張機構の開度制御を行う場合において、適切な膨張機構が冷媒回路に設けられていると、膨張機構の開度制御によって蒸発器出口過熱度が安定し、蒸発器出口過熱度の変動幅は小さく抑えられる。一方、適切な弁口径よりも大きい弁口径の膨張機構が冷媒回路に設けられている場合のように適切な膨張機構が冷媒回路に設けられていないと、膨張機構の開度制御にもかかわらず蒸発器出口過熱度が安定せず、蒸発器出口過熱度の変動幅は大きくなる。 In the case of controlling the opening degree of the expansion mechanism based on the degree of superheat of the evaporator outlet, if the appropriate expansion mechanism is provided in the refrigerant circuit, the degree of superheat of the evaporator outlet is stabilized by the degree of opening control of the expansion mechanism. The fluctuation range of the degree of superheat at the outlet is kept small. On the other hand, if an appropriate expansion mechanism is not provided in the refrigerant circuit as in the case where an expansion mechanism having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit, the opening degree of the expansion mechanism is controlled. The evaporator outlet superheat degree is not stable, and the fluctuation range of the evaporator outlet superheat degree becomes large.
 そこで、ここでは、上記のように、蒸発器出口過熱度の変動幅が過熱度変動判定値を超える場合には、膨張機構の開度変動に対して蒸発器出口過熱度の変動が大きい状態で膨張機構の開度制御が行われているものと判定する、すなわち、第1判定条件を満たすものと判定するようにしている。 Therefore, here, as described above, when the fluctuation range of the evaporator superheat degree exceeds the superheat degree fluctuation determination value, the fluctuation of the evaporator superheat degree is large with respect to the opening degree fluctuation of the expansion mechanism. It is determined that the opening control of the expansion mechanism is being performed, that is, it is determined that the first determination condition is satisfied.
 このように、ここでは、第1判定条件を満たすかどうかの指標となる状態量として、蒸発器出口過熱度を使用し、膨張機構の開度制御による蒸発器出口過熱度の安定の程度に基づいて、冷媒回路に適切な膨張機構が設けられているどうかを判定することができる。 Thus, here, the evaporator outlet superheat degree is used as a state quantity serving as an index as to whether or not the first determination condition is satisfied, and is based on the degree of stability of the evaporator outlet superheat degree by the opening degree control of the expansion mechanism. Thus, it can be determined whether or not an appropriate expansion mechanism is provided in the refrigerant circuit.
 第4の観点にかかる冷凍装置は、第1~第3の観点のいずれかにかかる冷凍装置において、制御部が、冷凍サイクル運転時に、冷凍サイクル運転における低圧圧力に基づいて圧縮機の容量制御を行っている。そして、ここでは、制御部が、低圧圧力の変動幅が低圧変動判定値を超えるかどうかに基づいて、第1判定条件を満たすかどうかを判定する。 In the refrigeration apparatus according to the fourth aspect, in the refrigeration apparatus according to any one of the first to third aspects, the controller controls the capacity of the compressor based on the low pressure in the refrigeration cycle operation during the refrigeration cycle operation. Is going. In this case, the control unit determines whether or not the first determination condition is satisfied based on whether or not the fluctuation range of the low pressure exceeds the low pressure fluctuation determination value.
 冷凍サイクル運転における低圧圧力に基づいて圧縮機の容量制御を行う場合において、適切な膨張機構が冷媒回路に設けられていると、膨張機構の開度制御に伴って低圧圧力が変動しても、その変動幅は小さいものである。一方、適切な弁口径よりも大きい弁口径の膨張機構が冷媒回路に設けられている場合のように適切な膨張機構が冷媒回路に設けられていないと、膨張機構の開度制御に伴って低圧圧力が変動すると、その変動幅は大きなものになる。 In the case of controlling the capacity of the compressor based on the low pressure in the refrigeration cycle operation, if an appropriate expansion mechanism is provided in the refrigerant circuit, even if the low pressure changes due to the opening control of the expansion mechanism, The fluctuation range is small. On the other hand, if an appropriate expansion mechanism is not provided in the refrigerant circuit as in the case where an expansion mechanism having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit, the pressure is reduced along with the opening degree control of the expansion mechanism. When the pressure fluctuates, the fluctuation range becomes large.
 そこで、ここでは、上記のように、低圧圧力の変動幅が低圧変動判定値を超える場合には、膨張機構の開度変動に対して低圧圧力の変動が大きい状態で膨張機構の開度制御が行われているものと判定する、すなわち、第1判定条件を満たすものと判定するようにしている。 Thus, here, as described above, when the fluctuation range of the low pressure exceeds the low pressure fluctuation determination value, the opening degree control of the expansion mechanism is performed in a state where the fluctuation of the low pressure pressure is larger than the fluctuation of the opening degree of the expansion mechanism. It is determined that it is performed, that is, it is determined that the first determination condition is satisfied.
 このように、ここでは、第1判定条件を満たすかどうかの指標となる状態量として、低圧圧力を使用し、膨張機構の開度制御に伴う低圧圧力の安定の程度に基づいて、冷媒回路に適切な膨張機構が設けられているどうかを判定することができる。 Thus, in this case, the low-pressure pressure is used as the state quantity serving as an index as to whether or not the first determination condition is satisfied, and the refrigerant circuit is based on the degree of stability of the low-pressure pressure accompanying the opening degree control of the expansion mechanism. It can be determined whether an appropriate inflation mechanism is provided.
 第5の観点にかかる冷凍装置は、第1~第4の観点のいずれかにかかる冷凍装置において、制御部が、冷凍サイクル運転時に、冷凍サイクル運転における低圧圧力が目標低圧になるように圧縮機の容量制御を行っている。そして、ここでは、制御部が、膨張機構が最大開度に達し、かつ、低圧圧力が目標低圧よりも低いかどうかに基づいて、又は、膨張機構が最大開度に達し、かつ、圧縮機の容量が最小容量に達しているかどうかに基づいて、第2判定条件を満たすかどうかを判定する。 A refrigeration apparatus according to a fifth aspect is the refrigeration apparatus according to any one of the first to fourth aspects, wherein the control unit is configured so that the low-pressure pressure in the refrigeration cycle operation becomes a target low pressure during the refrigeration cycle operation. The capacity is controlled. And here, the control unit is based on whether the expansion mechanism reaches the maximum opening and the low pressure is lower than the target low pressure, or the expansion mechanism reaches the maximum opening, and the compressor It is determined whether the second determination condition is satisfied based on whether the capacity has reached the minimum capacity.
 冷凍サイクル運転における低圧圧力が目標低圧になるように圧縮機の容量制御を行う場合において、適切な膨張機構が冷媒回路に設けられていると、膨張機構が最大開度に達しており冷媒の循環流量を多くしやすい状況であるにもかかわらず、低圧圧力が目標低圧まで達しないほど低くなることはなく、また、圧縮機の容量が最小容量まで低下することもないため、膨張機構の開度制御の範囲が広いものといえる。一方、適切な弁口径よりも小さい弁口径の膨張機構が冷媒回路に設けられている場合のように適切な膨張機構が冷媒回路に設けられていないと、膨張機構が最大開度に達しており冷媒の循環流量を多くしやすい状況であるにもかかわらず、低圧圧力が目標低圧まで達しないほどよりも低い状態になったり、また、圧縮機の容量が最小容量になることがあるため、膨張機構の開度制御の範囲が狭いものといえる。 When the capacity control of the compressor is performed so that the low pressure in the refrigeration cycle operation becomes the target low pressure, if the appropriate expansion mechanism is provided in the refrigerant circuit, the expansion mechanism reaches the maximum opening and the refrigerant circulation Despite the situation where the flow rate is likely to increase, the low-pressure pressure does not become so low that it does not reach the target low-pressure, and the compressor capacity does not decrease to the minimum capacity. It can be said that the range of control is wide. On the other hand, if an appropriate expansion mechanism is not provided in the refrigerant circuit as in the case where an expansion mechanism having a valve diameter smaller than the appropriate valve diameter is provided in the refrigerant circuit, the expansion mechanism reaches the maximum opening. Despite the situation where the circulating flow rate of the refrigerant is likely to increase, the low-pressure pressure may become lower than the target low-pressure, and the compressor capacity may become the minimum capacity. It can be said that the range of opening control of the mechanism is narrow.
 そこで、ここでは、上記のように、膨張機構が最大開度に達し、かつ、低圧圧力が目標低圧よりも低い場合、又は、膨張機構が最大開度に達し、かつ、圧縮機の容量が最小容量に達している場合には、低圧圧力が目標低圧になるように圧縮機の容量制御を行うのにあたり、膨張機構の開度制御の範囲が狭すぎる、すなわち、第2判定条件を満たすものと判定するようにしている。 Therefore, here, as described above, when the expansion mechanism reaches the maximum opening and the low pressure is lower than the target low pressure, or the expansion mechanism reaches the maximum opening and the capacity of the compressor is minimum. When the capacity has been reached, the range of the opening control of the expansion mechanism is too narrow in performing the capacity control of the compressor so that the low pressure becomes the target low pressure, that is, the second determination condition is satisfied. Judgment is made.
 このように、ここでは、第2判定条件を満たすかどうかの指標となる状態量として、低圧圧力や圧縮機の容量を使用し、膨張機構が最大開度に達している場合における低圧圧力や圧縮機の容量の程度に基づいて、冷媒回路に適切な膨張機構が設けられているどうかを判定することができる。 Thus, here, the low pressure or the capacity of the compressor is used as a state quantity that serves as an index as to whether or not the second determination condition is satisfied, and the low pressure or the compression when the expansion mechanism reaches the maximum opening degree. Based on the capacity of the machine, it can be determined whether an appropriate expansion mechanism is provided in the refrigerant circuit.
 第6の観点にかかる冷凍装置は、第1~第5の観点のいずれかにかかる冷凍装置において、冷媒回路が、放熱器と膨張機構との間に第2の膨張機構をさらに有しており、制御部が、冷凍サイクル運転として、冷媒回路に充填された冷媒を圧縮機、放熱器、第2の膨張機構、膨張機構、蒸発器の順に循環させる運転を行っている。そして、制御部は、第1判定条件を満たすものと判定した場合に、第2の膨張機構の開度を小さくする制御を行う。 A refrigeration apparatus according to a sixth aspect is the refrigeration apparatus according to any one of the first to fifth aspects, wherein the refrigerant circuit further includes a second expansion mechanism between the radiator and the expansion mechanism. As the refrigeration cycle operation, the control unit performs an operation of circulating the refrigerant filled in the refrigerant circuit in the order of the compressor, the radiator, the second expansion mechanism, the expansion mechanism, and the evaporator. And a control part performs control which makes the opening degree of a 2nd expansion mechanism small, when it determines with satisfy | filling 1st determination conditions.
 第1判定条件によって、開度制御を行っている膨張機構の開度が変動している状況であるにもかかわらず、状態量が安定しない運転状態になっているものと判定された場合には、このような運転状態を改善して、冷凍サイクル運転を安定させることが好ましい。 When it is determined that the state quantity is in an unstable operating state despite the fact that the opening degree of the expansion mechanism performing opening degree control is fluctuating according to the first determination condition It is preferable to improve the operation state and stabilize the refrigeration cycle operation.
 そこで、ここでは、上記のように、第1判定条件を満たすものと判定した場合には、放熱器と膨張機構との間に設けられた第2の膨張機構の開度を小さくする制御を行うようにしている。 Therefore, here, as described above, when it is determined that the first determination condition is satisfied, control is performed to reduce the opening degree of the second expansion mechanism provided between the radiator and the expansion mechanism. I am doing so.
 これにより、膨張機構を大きめの開度範囲で制御させることができるようになり、膨張機構の開度制御だけでは状態量が安定しない運転状態を改善することができる。 This makes it possible to control the expansion mechanism in a larger opening range, and to improve the operation state in which the state quantity is not stabilized only by controlling the opening of the expansion mechanism.
本発明の一実施形態にかかる冷凍装置の概略構成図である。It is a schematic block diagram of the freezing apparatus concerning one Embodiment of this invention. 冷凍装置の制御ブロック図である。It is a control block diagram of a freezing apparatus. 膨張機構適否判定処理を示すフローチャートである。It is a flowchart which shows an expansion mechanism suitability determination process. 冷却運転時における低圧圧力又は蒸発器出口過熱度の経時変化を示す図である。It is a figure which shows the time-dependent change of the low pressure or the evaporator outlet superheat degree at the time of cooling operation. 変形例における膨張機構適否判定処理を示すフローチャートである。It is a flowchart which shows the expansion mechanism suitability determination process in a modification.
 以下、本発明にかかる冷凍装置の実施形態について、図面に基づいて説明する。尚、本発明にかかる冷凍装置の実施形態の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。 Hereinafter, an embodiment of a refrigeration apparatus according to the present invention will be described with reference to the drawings. In addition, the specific structure of embodiment of the freezing apparatus concerning this invention is not restricted to the following embodiment and its modification, It can change in the range which does not deviate from the summary of invention.
 (1)冷凍装置の構成
 図1は、本発明の一実施形態にかかる冷凍装置1の概略構成図である。冷凍装置1は、蒸気圧縮式の冷凍サイクルによって、冷蔵倉庫や店舗のショーケースの庫内等の利用側空間の冷却を行う装置である。冷凍装置1は、主として、熱源ユニット2と、利用ユニット5と、熱源ユニット2と利用ユニット5とを接続する液冷媒連絡管6及びガス冷媒連絡管7と、を有している。そして、冷凍装置1の蒸気圧縮式の冷媒回路10は、熱源ユニット2と利用ユニット5とを、液冷媒連絡管6及びガス冷媒連絡管7を介して接続することによって構成されている。尚、ここでは、冷凍装置1が、既設の利用ユニット5を流用しつつ、既設の熱源ユニットを新設の熱源ユニット2に交換することによって更新されたものである。また、冷凍装置1の更新にあたって、冷媒についても、既設の冷凍装置の冷媒回路において使用していたもの(例えば、R22やR407C)とは異なるもの(例えば、R410AやR32)に変更されている。
(1) Configuration of Refrigeration Device FIG. 1 is a schematic configuration diagram of a refrigeration device 1 according to an embodiment of the present invention. The refrigeration apparatus 1 is an apparatus that cools a use-side space such as in a refrigerated warehouse or a showcase of a store by a vapor compression refrigeration cycle. The refrigeration apparatus 1 mainly includes a heat source unit 2, a utilization unit 5, and a liquid refrigerant communication tube 6 and a gas refrigerant communication tube 7 that connect the heat source unit 2 and the utilization unit 5. The vapor compression refrigerant circuit 10 of the refrigeration apparatus 1 is configured by connecting the heat source unit 2 and the utilization unit 5 via a liquid refrigerant communication tube 6 and a gas refrigerant communication tube 7. Here, the refrigeration apparatus 1 is updated by replacing the existing heat source unit with the new heat source unit 2 while diverting the existing use unit 5. In addition, when the refrigerating apparatus 1 is updated, the refrigerant is also changed to a different one (for example, R410A or R32) from that used in the refrigerant circuit of the existing refrigerating apparatus (for example, R22 or R407C).
 <利用ユニット>
 利用ユニット5は、上記のように、液冷媒連絡管6及びガス冷媒連絡管7を介して熱源ユニット2に接続されており、冷媒回路10の一部を構成している。
<Usage unit>
As described above, the utilization unit 5 is connected to the heat source unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 and constitutes a part of the refrigerant circuit 10.
 次に、利用ユニット5の構成について説明する。 Next, the configuration of the usage unit 5 will be described.
 利用ユニット5は、主として、利用側膨張弁51(膨張機構)と、利用側熱交換器52(蒸発器)と、を有している。また、利用ユニット5は、利用側熱交換器52の液側端と液冷媒連絡管6とを接続する利用側液冷媒管53と、利用側熱交換器52のガス側端とガス冷媒連絡管7とを接続する利用側ガス冷媒管54と、を有している。 The utilization unit 5 mainly includes a utilization side expansion valve 51 (expansion mechanism) and a utilization side heat exchanger 52 (evaporator). The usage unit 5 includes a usage-side liquid refrigerant tube 53 that connects the liquid-side end of the usage-side heat exchanger 52 and the liquid refrigerant communication tube 6, and a gas-side end of the usage-side heat exchanger 52 and a gas refrigerant communication tube. And a use-side gas refrigerant pipe 54 connected to the terminal 7.
 利用側膨張弁51は、開度制御が可能な電動膨張弁であり、利用側液冷媒管53に設けられている。 The use side expansion valve 51 is an electric expansion valve capable of opening degree control, and is provided in the use side liquid refrigerant pipe 53.
 利用側熱交換器52は、冷凍サイクルにおける低圧の冷媒の蒸発器として機能して庫内空気(利用側空気)を冷却する熱交換器である。ここで、利用ユニット5は、利用ユニット5内に利用側空気を吸入して、利用側熱交換器52において冷媒と熱交換させた後に、利用側空間に供給するための利用側ファン55を有している。すなわち、利用ユニット5は、利用側熱交換器52を流れる冷媒の加熱源としての利用側空気を利用側熱交換器52に供給するファンとして、利用側ファン55を有している。利用側ファン55は、利用側ファン用モータ56によって回転駆動されるようになっている。 The use side heat exchanger 52 is a heat exchanger that functions as a low-pressure refrigerant evaporator in the refrigeration cycle and cools the internal air (use side air). Here, the usage unit 5 has a usage-side fan 55 for sucking usage-side air into the usage unit 5 and exchanging heat with the refrigerant in the usage-side heat exchanger 52 and then supplying it to the usage-side space. is doing. That is, the usage unit 5 includes the usage-side fan 55 as a fan that supplies usage-side air as a heating source of the refrigerant flowing through the usage-side heat exchanger 52 to the usage-side heat exchanger 52. The use side fan 55 is rotationally driven by a use side fan motor 56.
 利用ユニット5には、各種のセンサが設けられている。具体的には、利用側ガス冷媒管54に、利用側熱交換器52のガス側端(蒸発器の出口)における冷媒の温度である蒸発器出口温度Tgを検出する蒸発器出口温度センサ57が設けられている。さらに、利用側熱交換器52又は利用側ファン55の周辺には、利用ユニット5内に吸入される利用側空気の温度Trを検出する利用側空気温度センサ58が設けられている。 The use unit 5 is provided with various sensors. Specifically, an evaporator outlet temperature sensor 57 that detects an evaporator outlet temperature Tg that is a refrigerant temperature at the gas side end (evaporator outlet) of the usage side heat exchanger 52 is provided in the usage side gas refrigerant pipe 54. Is provided. Further, a usage-side air temperature sensor 58 that detects a temperature Tr of usage-side air sucked into the usage unit 5 is provided around the usage-side heat exchanger 52 or the usage-side fan 55.
 利用ユニット5は、利用ユニット5を構成する各部の動作を制御する利用側制御部50を有している。そして、利用側制御部50は、利用ユニット5の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、熱源ユニット2との間で制御信号等のやりとりを行うことができるようになっている。 The usage unit 5 includes a usage-side control unit 50 that controls the operation of each unit constituting the usage unit 5. The use-side control unit 50 includes a microcomputer, a memory, and the like provided to control the use unit 5 so that control signals and the like can be exchanged with the heat source unit 2. It has become.
 <熱源ユニット>
 熱源ユニット2は、上記のように、液冷媒連絡管6及びガス冷媒連絡管7を介して利用ユニット5に接続されており、冷媒回路10の一部を構成している。
<Heat source unit>
As described above, the heat source unit 2 is connected to the utilization unit 5 via the liquid refrigerant communication tube 6 and the gas refrigerant communication tube 7 and constitutes a part of the refrigerant circuit 10.
 次に、熱源ユニット2の構成について説明する。 Next, the configuration of the heat source unit 2 will be described.
 熱源ユニット2は、主として、圧縮機21と、熱源側熱交換器23(放熱器)と、レシーバ24と、過冷却器25と、インジェクション管26と、熱源側膨張弁28と、液側閉鎖弁29と、ガス側閉鎖弁30と、を有している。また、熱源ユニット2は、圧縮機21の吐出側と熱源側熱交換器23のガス側端とを接続する第1熱源側ガス冷媒管31と、熱源側熱交換器23の液側端と液冷媒連絡管6とを接続する熱源側液冷媒管32と、圧縮機21の吸入側とガス冷媒連絡管7とを接続する第2熱源側ガス冷媒管33と、を有している。 The heat source unit 2 mainly includes a compressor 21, a heat source side heat exchanger 23 (heat radiator), a receiver 24, a supercooler 25, an injection pipe 26, a heat source side expansion valve 28, and a liquid side closing valve. 29 and a gas side closing valve 30. The heat source unit 2 includes a first heat source side gas refrigerant pipe 31 that connects the discharge side of the compressor 21 and the gas side end of the heat source side heat exchanger 23, and the liquid side end and liquid of the heat source side heat exchanger 23. A heat source side liquid refrigerant pipe 32 connecting the refrigerant communication pipe 6 and a second heat source side gas refrigerant pipe 33 connecting the suction side of the compressor 21 and the gas refrigerant communication pipe 7 are provided.
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。ここでは、圧縮機21として、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が圧縮機用モータ22によって回転駆動される密閉式構造の圧縮機が使用されている。また、ここでは、圧縮機用モータ22は、インバータにより運転周波数Fcの制御が可能であり、これにより、圧縮機21の容量制御が可能になっている。 The compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure. Here, as the compressor 21, a compressor having a hermetic structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor 22 is used. Further, here, the compressor motor 22 can control the operating frequency Fc by an inverter, whereby the capacity control of the compressor 21 can be performed.
 熱源側熱交換器23は、冷凍サイクルにおける高圧の冷媒の放熱器として機能する熱交換器である。ここで、熱源ユニット2は、熱源ユニット2内に庫外空気(熱源側空気)を吸入して、熱源側熱交換器23において冷媒と熱交換させた後に、外部に排出するための熱源側ファン34を有している。すなわち、熱源ユニット2は、熱源側熱交換器23を流れる冷媒の冷却源としての熱源側空気を熱源側熱交換器23に供給するファンとして、熱源側ファン34を有している。熱源側ファン34は、熱源側ファン用モータ35によって回転駆動されるようになっている。 The heat source side heat exchanger 23 is a heat exchanger that functions as a high-pressure refrigerant radiator in the refrigeration cycle. Here, the heat source unit 2 sucks outside air (heat source side air) into the heat source unit 2, exchanges heat with the refrigerant in the heat source side heat exchanger 23, and then discharges the heat source side fan to the outside. 34. That is, the heat source unit 2 has a heat source side fan 34 as a fan that supplies heat source side air as a cooling source of the refrigerant flowing through the heat source side heat exchanger 23 to the heat source side heat exchanger 23. The heat source side fan 34 is rotationally driven by a heat source side fan motor 35.
 レシーバ24は、放熱器としての熱源側熱交換器23において凝縮した冷媒を一時的に溜める容器であり、熱源側液冷媒管32に設けられている。 The receiver 24 is a container that temporarily accumulates the refrigerant condensed in the heat source side heat exchanger 23 as a radiator, and is provided in the heat source side liquid refrigerant pipe 32.
 過冷却器25は、レシーバ24において一時的に溜められた冷媒をさらに冷却する熱交換器であり、熱源側液冷媒管32のレシーバ24の下流側の部分に設けられている。 The subcooler 25 is a heat exchanger that further cools the refrigerant temporarily stored in the receiver 24, and is provided in the downstream portion of the receiver 24 of the heat source side liquid refrigerant pipe 32.
 インジェクション管26は、熱源側液冷媒管32を流れる冷媒の一部を分岐して圧縮機21に戻す冷媒管であり、ここでは、熱源側液冷媒管32の過冷却器25の下流側の部分から分岐して、圧縮機21の圧縮行程の途中に戻すように設けられている。インジェクション管26は、熱源側液冷媒管32から分岐されて圧縮機21に戻す途中で過冷却器25を通過するように設けられている。インジェクション管26のうち過冷却器25の入口に至るまでの部分には、インジェクション弁27が設けられている。インジェクション弁27は、開度制御が可能な電動膨張弁であり、インジェクション管26を流れる冷媒を過冷却器25に流入させる前に減圧するようになっている。このように、過冷却器25は、インジェクション管26を通じて熱源側液冷媒管32から分岐した冷媒を冷却源として、レシーバ24において一時的に溜められた冷媒を冷却するようになっている。 The injection pipe 26 is a refrigerant pipe that branches a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 and returns it to the compressor 21. Here, a part of the heat source side liquid refrigerant pipe 32 on the downstream side of the subcooler 25. It is provided so that it may branch from and may be returned in the middle of the compression stroke of the compressor 21. The injection pipe 26 is provided so as to pass through the subcooler 25 while being branched from the heat source side liquid refrigerant pipe 32 and returning to the compressor 21. An injection valve 27 is provided in a portion of the injection pipe 26 up to the inlet of the supercooler 25. The injection valve 27 is an electric expansion valve whose opening degree can be controlled, and the pressure is reduced before the refrigerant flowing through the injection pipe 26 flows into the subcooler 25. As described above, the subcooler 25 cools the refrigerant temporarily stored in the receiver 24 using the refrigerant branched from the heat source side liquid refrigerant pipe 32 through the injection pipe 26 as a cooling source.
 熱源側膨張弁28は、開度制御が可能な電動膨張弁であり、熱源側液冷媒管32の過冷却器25の下流側の部分に設けられている。 The heat source side expansion valve 28 is an electric expansion valve whose opening degree can be controlled, and is provided in a portion of the heat source side liquid refrigerant pipe 32 on the downstream side of the subcooler 25.
 液側閉鎖弁29は、熱源側液冷媒管32の液冷媒連絡管6との接続部分に設けられた手動弁である。 The liquid side closing valve 29 is a manual valve provided at a connection portion of the heat source side liquid refrigerant pipe 32 with the liquid refrigerant communication pipe 6.
 ガス側閉鎖弁30は、第2熱源側液冷媒管33のガス冷媒連絡管7との接続部分に設けられた手動弁である。 The gas side shut-off valve 30 is a manual valve provided at a connection portion of the second heat source side liquid refrigerant pipe 33 with the gas refrigerant communication pipe 7.
 熱源ユニット2には、各種のセンサが設けられている。具体的には、熱源ユニット2の圧縮機21周辺には、圧縮機21の吸入側における冷媒の圧力である吸入圧力LPを検出する吸入圧力センサ36と、圧縮機21の吐出側における冷媒の圧力である吐出圧力HPを検出する吐出圧力センサ37と、が設けられている。 The heat source unit 2 is provided with various sensors. Specifically, in the vicinity of the compressor 21 of the heat source unit 2, a suction pressure sensor 36 that detects a suction pressure LP that is a refrigerant pressure on the suction side of the compressor 21, and a refrigerant pressure on the discharge side of the compressor 21. And a discharge pressure sensor 37 for detecting the discharge pressure HP.
 熱源ユニット2は、熱源ユニット2を構成する各部の動作を制御する熱源側制御部20を有している。そして、熱源側制御部20は、熱源ユニット2の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、利用ユニット5の利用側制御部50との間で制御信号等のやりとりを行うことができるようになっている。すなわち、利用側制御部50と熱源側制御部20とが通信可能に接続されることによって、冷凍装置1全体の運転制御を行う制御部8が構成されている。 The heat source unit 2 has a heat source side control unit 20 that controls the operation of each unit constituting the heat source unit 2. The heat source side control unit 20 includes a microcomputer and a memory provided for controlling the heat source unit 2, and exchanges control signals and the like with the use side control unit 50 of the use unit 5. Can be done. That is, the control part 8 which performs operation control of the whole refrigerating apparatus 1 is comprised by connecting the utilization side control part 50 and the heat source side control part 20 so that communication is possible.
 制御部8は、図2に示されるように、各種センサ36、37、57、58の検出信号を受けることができるように接続されるとともに、これらの検出信号等に基づいて各種機器21、27、34、51等を制御することができるように接続されている。ここで、図2は、冷凍装置1の制御ブロック図である。 As shown in FIG. 2, the control unit 8 is connected so as to receive detection signals from various sensors 36, 37, 57, and 58, and various devices 21 and 27 based on these detection signals and the like. , 34, 51, etc. are connected so that they can be controlled. Here, FIG. 2 is a control block diagram of the refrigeration apparatus 1.
 このように、冷凍装置1の冷媒回路10は、主として、圧縮機21と、熱源側熱交換器23(放熱器)と、電動膨張弁からなる利用側膨張弁51(膨張機構)と、利用側熱交換器52(蒸発器)と、が接続されることによって構成されている。そして、冷凍装置1の制御部8は、冷媒回路10に充填された冷媒を圧縮機21、熱源側熱交換器23(放熱器)、利用側膨張弁51(膨張機構)、利用側熱交換器52(蒸発器)の順に循環させる冷却運転(冷凍サイクル運転)を行うようになっている。 Thus, the refrigerant circuit 10 of the refrigeration apparatus 1 mainly includes the compressor 21, the heat source side heat exchanger 23 (heat radiator), the use side expansion valve 51 (expansion mechanism) including an electric expansion valve, and the use side. It is comprised by connecting with the heat exchanger 52 (evaporator). And the control part 8 of the freezing apparatus 1 uses the refrigerant | coolant with which the refrigerant circuit 10 was filled for the compressor 21, the heat-source side heat exchanger 23 (radiator), the utilization side expansion valve 51 (expansion mechanism), and a utilization side heat exchanger. The cooling operation (refrigeration cycle operation) is performed in the order of 52 (evaporator).
 (2)冷凍装置の基本動作
 次に、冷凍装置1の基本動作及び制御について、図1及び図2を用いて説明する。
(2) Basic operation of the refrigeration apparatus Next, the basic operation and control of the refrigeration apparatus 1 will be described with reference to FIGS. 1 and 2.
 冷凍装置1は、基本動作として、冷媒回路10に充填された冷媒が、主として、圧縮機21、熱源側熱交換器23(放熱器)、レシーバ24、過冷却器25、熱源側膨張弁28、利用側膨張弁51(膨張機構)、利用側熱交換器52(蒸発器)の順に循環する冷却運転(冷凍サイクル運転)を行うようになっている。この冷却運転においては、インジェクション管26を通じて熱源側液冷媒管32を流れる冷媒の一部が分岐されて、過冷却器25を通過した後に、圧縮機21に戻されるようになっている。尚、以下に説明する冷凍装置1の基本動作としての冷却運転及び制御は、冷凍装置1の構成機器を制御する制御部8によって行われる。 As a basic operation of the refrigeration apparatus 1, the refrigerant filled in the refrigerant circuit 10 is mainly composed of a compressor 21, a heat source side heat exchanger 23 (radiator), a receiver 24, a subcooler 25, a heat source side expansion valve 28, A cooling operation (refrigeration cycle operation) is circulated in the order of the use side expansion valve 51 (expansion mechanism) and the use side heat exchanger 52 (evaporator). In this cooling operation, a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 is branched through the injection pipe 26, passes through the subcooler 25, and then returned to the compressor 21. Note that the cooling operation and control as the basic operation of the refrigeration apparatus 1 described below are performed by the control unit 8 that controls the components of the refrigeration apparatus 1.
 冷媒回路10に充填された冷媒は、まず、圧縮機21に吸入されて冷凍サイクルにおける低圧から高圧になるまで圧縮された後に吐出される。ここで、冷凍サイクルにおける低圧圧力は、吸入圧力センサ36によって検出される吸入圧力LPである。また、圧縮機21は、利用ユニット5で要求される冷却負荷に応じて容量制御が行われるようになっている。具体的には、利用側空気の温度Trとその目標値Trtとの温度差ΔTr(=Tr-Trt)に基づいて利用ユニット5で要求される冷却負荷を得る。そして、この利用ユニット5で要求される冷却負荷に応じて、冷凍サイクルにおける低圧LPの目標値LPtを設定し、冷凍サイクルにおける低圧圧力LPが目標低圧LPtになるように、圧縮機21の運転周波数Fcを制御するようにしている。圧縮機21から吐出されたガス冷媒は、第1熱源側ガス冷媒管31を通じて、熱源側熱交換器23のガス側端に流入する。 The refrigerant filled in the refrigerant circuit 10 is first sucked into the compressor 21 and compressed from the low pressure to the high pressure in the refrigeration cycle and then discharged. Here, the low pressure in the refrigeration cycle is the suction pressure LP detected by the suction pressure sensor 36. Further, the compressor 21 is controlled in capacity according to the cooling load required by the utilization unit 5. Specifically, the cooling load required by the utilization unit 5 is obtained based on the temperature difference ΔTr (= Tr−Trt) between the temperature Tr of the utilization side air and the target value Trt. Then, the target value LPt of the low pressure LP in the refrigeration cycle is set according to the cooling load required by the use unit 5, and the operating frequency of the compressor 21 is set so that the low pressure LP in the refrigeration cycle becomes the target low pressure LPt. Fc is controlled. The gas refrigerant discharged from the compressor 21 flows into the gas side end of the heat source side heat exchanger 23 through the first heat source side gas refrigerant pipe 31.
 熱源側熱交換器23のガス側端に流入したガス冷媒は、熱源側熱交換器23において、熱源側ファン34によって供給される熱源側空気と熱交換を行って放熱して凝縮し、過冷却状態の液冷媒になり、熱源側熱交換器23の液側端から流出する。 The gas refrigerant that has flowed into the gas side end of the heat source side heat exchanger 23 performs heat exchange with the heat source side air supplied by the heat source side fan 34 in the heat source side heat exchanger 23 to dissipate and condense, and is supercooled. It becomes a liquid refrigerant in a state and flows out from the liquid side end of the heat source side heat exchanger 23.
 熱源側熱交換器23の液側端から流出した液冷媒は、熱源側液冷媒管32の熱源側熱交換器23からレシーバ24までの間の部分を通じて、レシーバ24の入口に流入する。 The liquid refrigerant flowing out from the liquid side end of the heat source side heat exchanger 23 flows into the inlet of the receiver 24 through a portion between the heat source side heat exchanger 23 and the receiver 24 of the heat source side liquid refrigerant pipe 32.
 レシーバ24に流入した液冷媒は、レシーバ24において飽和状態の液冷媒として一時的に溜められた後に、レシーバ24の出口から流出する。 The liquid refrigerant that has flowed into the receiver 24 is temporarily stored as a saturated liquid refrigerant in the receiver 24, and then flows out from the outlet of the receiver 24.
 レシーバ24の出口から流出した液冷媒は、熱源側液冷媒管32のレシーバ24から過冷却器25までの間の部分を通じて、過冷却器25の熱源側液冷媒管32側の入口に流入する。 The liquid refrigerant flowing out from the outlet of the receiver 24 flows into the inlet of the subcooler 25 on the heat source side liquid refrigerant tube 32 side through the portion between the receiver 24 and the subcooler 25 of the heat source side liquid refrigerant tube 32.
 過冷却器25に流入した液冷媒は、過冷却器25において、インジェクション管26を流れる冷媒と熱交換を行ってさらに冷却されて過冷却状態の液冷媒になり、過冷却器25の熱源側液冷媒管32側の出口から流出する。このとき、熱源側液冷媒管32を流れる冷媒の一部は、インジェクション管26に分岐され、インジェクション弁27によって冷凍サイクルにおける中間圧になるまで減圧される。インジェクション弁27によって減圧された後のインジェクション管26を流れる冷媒は、過冷却器25のインジェクション管26側の入口に流入する。過冷却器25のインジェクション管26側の入口に流入した冷媒は、過冷却器25において、熱源側液冷媒管32を流れる冷媒と熱交換を行って加熱されてガス冷媒になる。そして、過冷却器25において加熱された冷媒は、過冷却器25のインジェクション管26側の出口から流出して、圧縮機21の圧縮行程の途中に戻される。 The liquid refrigerant flowing into the subcooler 25 exchanges heat with the refrigerant flowing through the injection pipe 26 in the subcooler 25 and is further cooled to become a supercooled liquid refrigerant. It flows out from the outlet on the refrigerant pipe 32 side. At this time, a part of the refrigerant flowing through the heat source side liquid refrigerant pipe 32 is branched to the injection pipe 26 and is reduced by the injection valve 27 until it reaches an intermediate pressure in the refrigeration cycle. The refrigerant flowing through the injection pipe 26 after being decompressed by the injection valve 27 flows into the inlet of the subcooler 25 on the injection pipe 26 side. The refrigerant flowing into the inlet of the subcooler 25 on the injection pipe 26 side is heated in the supercooler 25 by exchanging heat with the refrigerant flowing through the heat source side liquid refrigerant pipe 32 to become a gas refrigerant. Then, the refrigerant heated in the subcooler 25 flows out from the outlet of the subcooler 25 on the injection pipe 26 side, and is returned to the middle of the compression stroke of the compressor 21.
 過冷却器25の熱源側液冷媒管32側の出口から流出した液冷媒は、熱源側液冷媒管32の過冷却器25と熱源側膨張弁28との間の部分を通じて、熱源側膨張弁28に流入する。このとき、過冷却器25の熱源側液冷媒管32側の出口から流出した液冷媒の一部は、熱源側液冷媒管32の過冷却器25と熱源側膨張弁28との間の部分からインジェクション管26に分岐されるようになっている。 The liquid refrigerant flowing out from the outlet on the heat source side liquid refrigerant tube 32 side of the subcooler 25 passes through the portion between the subcooler 25 and the heat source side expansion valve 28 of the heat source side liquid refrigerant tube 32, and then the heat source side expansion valve 28. Flow into. At this time, a part of the liquid refrigerant flowing out from the outlet of the subcooler 25 on the heat source side liquid refrigerant pipe 32 side is from a portion between the subcooler 25 of the heat source side liquid refrigerant pipe 32 and the heat source side expansion valve 28. The injection pipe 26 is branched.
 熱源側膨張弁28に流入した液冷媒は、熱源側膨張弁28によって減圧された後に、液側閉鎖弁29、液冷媒連絡管6及び利用側液冷媒管53の一部を通じて、利用側膨張弁51に流入する。 The liquid refrigerant that has flowed into the heat source side expansion valve 28 is decompressed by the heat source side expansion valve 28, and then passes through the liquid side closing valve 29, the liquid refrigerant communication pipe 6, and a part of the use side liquid refrigerant pipe 53. 51 flows in.
 利用側膨張弁51に流入した冷媒は、利用側膨張弁51によって冷凍サイクルにおける低圧になるまで減圧されて、利用側液冷媒管53の利用側膨張弁51から利用側熱交換器52までの間の部分を通じて、利用側熱交換器52の液側端に流入する。 The refrigerant that has flowed into the use-side expansion valve 51 is decompressed by the use-side expansion valve 51 until it reaches a low pressure in the refrigeration cycle, and between the use-side expansion valve 51 and the use-side heat exchanger 52 in the use-side liquid refrigerant pipe 53. It flows into the liquid side end of the use side heat exchanger 52 through this part.
 利用側熱交換器52の液側端に流入した冷媒は、利用側熱交換器52において、利用側ファン55によって供給される利用側空気と熱交換を行って蒸発し、ガス冷媒になり、利用側熱交換器52のガス側端(蒸発器の出口)から流出する。ここで、利用側熱交換器52の出口における冷媒の過熱度が蒸発器出口過熱度SHであり、そして、この蒸発器出口過熱度SHに基づいて利用側膨張弁51の開度制御が行われるようになっている。具体的には、低圧圧力LPをその相当飽和温度Te(=蒸発温度)に換算し、蒸発器出口温度Tgからこの相当飽和温度Teを差し引くことによって得る。そして、この蒸発器出口過熱度SHが目標過熱度SHtになるように、利用側膨張弁51の開度を制御するようにしている。 The refrigerant flowing into the liquid side end of the usage-side heat exchanger 52 evaporates by exchanging heat with the usage-side air supplied by the usage-side fan 55 in the usage-side heat exchanger 52 to become a gas refrigerant. It flows out from the gas side end (evaporator outlet) of the side heat exchanger 52. Here, the superheat degree of the refrigerant at the outlet of the use side heat exchanger 52 is the evaporator outlet superheat degree SH, and the opening degree control of the use side expansion valve 51 is performed based on the evaporator outlet superheat degree SH. It is like that. Specifically, it is obtained by converting the low pressure LP to its equivalent saturation temperature Te (= evaporation temperature) and subtracting this equivalent saturation temperature Te from the evaporator outlet temperature Tg. And the opening degree of the use side expansion valve 51 is controlled so that the evaporator outlet superheat degree SH becomes the target superheat degree SHt.
 利用側熱交換器52のガス側端から流出したガス冷媒は、利用側ガス冷媒管54、ガス冷媒連絡管7、ガス側閉鎖弁30及び第2熱源側ガス冷媒管33を通じて、再び、圧縮機21に吸入される。 The gas refrigerant flowing out from the gas side end of the use side heat exchanger 52 passes through the use side gas refrigerant pipe 54, the gas refrigerant communication pipe 7, the gas side shut-off valve 30, and the second heat source side gas refrigerant pipe 33, again to the compressor. 21 is inhaled.
 このようにして、冷凍装置1における冷却運転(冷凍サイクル運転)が行われる。 In this way, the cooling operation (refrigeration cycle operation) in the refrigeration apparatus 1 is performed.
 (3)膨張機構適否判定処理
 上記のように、冷凍装置1は、既設の利用ユニット5を流用しつつ、既設の熱源ユニットを新設の熱源ユニット2に交換することによって更新されたものであり、また、更新にあたっては、冷媒も既設のものとは異なるものに変更されている。この場合には、既設の利用ユニット5に更新前の冷媒とは異なる冷媒が流れることになるため、更新前後の冷媒の物性等の違いを考慮して、既設の利用側膨張弁51(膨張機構)をそのまま流用することができず、更新後の冷媒に適した利用側膨張弁51を選定して交換する必要がある。
(3) Expansion mechanism suitability determination process As described above, the refrigeration apparatus 1 is updated by replacing the existing heat source unit with the new heat source unit 2 while diverting the existing use unit 5. Moreover, in the update, the refrigerant is changed to a different one from the existing one. In this case, since a refrigerant different from the refrigerant before renewal flows through the existing use unit 5, the existing use-side expansion valve 51 (expansion mechanism) is considered in consideration of the difference in physical properties of the refrigerant before and after renewal. ) Cannot be used as it is, and it is necessary to select and replace the use side expansion valve 51 suitable for the renewed refrigerant.
 しかし、このような利用側膨張弁51の交換を含めた冷凍装置の更新にあたっては、利用側膨張弁51の選定ミスや交換忘れが発生するおそれがあるため、更新後の冷凍装置1において、冷媒回路10に適切な利用側膨張弁51が設けられているかどうかを判定できるようにすることが望ましい。 However, when the refrigerating apparatus is updated including the replacement of the use side expansion valve 51, there is a possibility that selection mistakes or forgetting to replace the use side expansion valve 51 may occur. It is desirable to be able to determine whether or not an appropriate use side expansion valve 51 is provided in the circuit 10.
 そこで、冷凍装置1では、更新後の最初の冷却運転(冷凍サイクル運転)時に、冷媒回路10に適切な利用側膨張弁51が設けられているかどうかの膨張機構適否判定処理を行うようにしている。次に、この膨張機構適否判定処理について、図1~図4を用いて説明する。ここで、図3は、膨張機構適否判定処理を示すフローチャートであり、図4は、冷却運転時における低圧圧力LP又は蒸発器出口過熱度SHの経時変化を示す図である。また、尚、以下に説明する膨張機構適否判定処理も、冷凍装置1の構成機器を制御する制御部8によって行われる。 Therefore, the refrigeration apparatus 1 performs an expansion mechanism suitability determination process for determining whether or not the appropriate use-side expansion valve 51 is provided in the refrigerant circuit 10 during the first cooling operation after renewal (refrigeration cycle operation). . Next, the expansion mechanism suitability determination process will be described with reference to FIGS. Here, FIG. 3 is a flowchart showing the expansion mechanism suitability determination process, and FIG. 4 is a diagram showing a change with time of the low pressure LP or the evaporator outlet superheat degree SH during the cooling operation. In addition, the expansion mechanism suitability determination process described below is also performed by the control unit 8 that controls the components of the refrigeration apparatus 1.
 まず、制御部8は、ステップST1において、利用側膨張弁51の開度が変動している時の冷媒、圧縮機21及び/又は利用側膨張弁51の状態量に関する第1判定条件を満たすかどうかを判定する。 First, in step ST <b> 1, the control unit 8 satisfies the first determination condition regarding the refrigerant, the compressor 21 and / or the state quantity of the use side expansion valve 51 when the opening degree of the use side expansion valve 51 is fluctuating. Determine if.
 ここで、第1判定条件は、蒸発器出口過熱度SHに基づく利用側膨張弁51の開度制御、及び、冷凍サイクルにおける低圧圧力LPに基づく圧縮機21の容量制御を伴う冷却運転時において、開度制御を行っている利用側膨張弁51の開度が変動している状況であるにもかかわらず、状態量が安定しない運転状態になっているどうかを判定するための条件である。そして、ここでは、第1判定条件を満たすような運転状態が、冷媒回路10に適切な利用側膨張弁51が設けられていないこと、特に、利用側膨張弁51の弁口径が冷媒回路10に適切な弁口径に比べて大きいこと、に起因して発生しているものとしている。なぜなら、適切な弁口径よりも大きい弁口径の利用側膨張弁51が冷媒回路10に設けられると、利用側膨張弁51が小さめの開度範囲で制御されることが多くなるため、利用側膨張弁の開度制御を行っているにもかかわらず、状態量が安定しにくい場合があるからである。 Here, the first determination condition is the cooling operation with the opening degree control of the use side expansion valve 51 based on the evaporator outlet superheat degree SH and the capacity control of the compressor 21 based on the low pressure LP in the refrigeration cycle. This is a condition for determining whether or not the operation amount is in an unstable state despite the fact that the opening degree of the use side expansion valve 51 performing the opening degree control is fluctuating. In this case, the operating state that satisfies the first determination condition is that the refrigerant circuit 10 is not provided with an appropriate use side expansion valve 51, and in particular, the valve diameter of the use side expansion valve 51 is in the refrigerant circuit 10. This is due to the fact that it is larger than the appropriate valve diameter. This is because if the use side expansion valve 51 having a valve diameter larger than an appropriate valve diameter is provided in the refrigerant circuit 10, the use side expansion valve 51 is often controlled in a small opening range, and therefore the use side expansion is performed. This is because the state quantity may be difficult to stabilize despite the valve opening control.
 そして、第1判定条件の1つとしては、蒸発器出口過熱度SHの変動幅が過熱度変動判定値ΔSHsを超えるかどうかがある。蒸発器出口過熱度SHに基づいて利用側膨張弁51の開度制御を行う場合において、適切な利用側膨張弁51が冷媒回路10に設けられていると、利用側膨張弁51の開度制御によって蒸発器出口過熱度SHが安定し、蒸発器出口過熱度SHの変動幅は小さく抑えられる。例えば、図4の二点鎖線で図示された蒸発器出口過熱度SHの経時変化のように、蒸発器出口過熱度SHと所定時間(例えば、10分間)内における蒸発器出口過熱度SHの平均値SHaとの差の絶対値ΔSHが、過熱度変動判定値ΔSHsを超えない場合である。一方、適切な弁口径よりも大きい弁口径の利用側膨張弁51が冷媒回路10に設けられている場合のように適切な利用側膨張弁51が冷媒回路に設けられていないと、利用側膨張弁51の開度制御にもかかわらず蒸発器出口過熱度SHが安定せず、蒸発器出口過熱度SHの変動幅は大きくなる。例えば、図4の実線で図示された蒸発器出口過熱度SHの経時変化のように、所定時間(例えば、10分間)内における蒸発器出口過熱度SHの変動幅ΔSHが、過熱度変動判定値ΔSHsを超える場合である。このように、ここでは、蒸発器出口過熱度SHの変動幅ΔSHが過熱度変動判定値ΔSHsを超える場合には、利用側膨張弁51の開度変動に対して蒸発器出口過熱度SHの変動が大きい状態で利用側膨張弁51の開度制御が行われているものと判定するのである。 And as one of the first determination conditions, there is whether or not the fluctuation range of the evaporator outlet superheat degree SH exceeds the superheat degree fluctuation determination value ΔSHs. When the opening degree control of the use side expansion valve 51 is performed based on the evaporator outlet superheat degree SH, the opening degree control of the use side expansion valve 51 is performed when an appropriate use side expansion valve 51 is provided in the refrigerant circuit 10. As a result, the evaporator outlet superheat degree SH is stabilized, and the fluctuation range of the evaporator outlet superheat degree SH can be kept small. For example, the evaporator outlet superheat degree SH and the average of the evaporator outlet superheat degree SH within a predetermined time (for example, 10 minutes) like the change with time of the evaporator outlet superheat degree SH illustrated by the two-dot chain line in FIG. This is a case where the absolute value ΔSH of the difference from the value SHa does not exceed the superheat degree fluctuation determination value ΔSHs. On the other hand, if the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10 as in the case where the use side expansion valve 51 having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit 10, the use side expansion is performed. Despite the opening degree control of the valve 51, the evaporator outlet superheat degree SH is not stabilized, and the fluctuation range of the evaporator outlet superheat degree SH becomes large. For example, the fluctuation range ΔSH of the evaporator outlet superheat degree SH within a predetermined time (for example, 10 minutes) like the change with time of the evaporator outlet superheat degree SH illustrated by the solid line in FIG. This is the case when ΔSHs is exceeded. Thus, here, when the fluctuation range ΔSH of the evaporator outlet superheat degree SH exceeds the superheat degree fluctuation determination value ΔSHs, the fluctuation of the evaporator outlet superheat degree SH with respect to the opening degree fluctuation of the use side expansion valve 51. That is, it is determined that the opening degree control of the use side expansion valve 51 is being performed in a state where the pressure is large.
 そして、制御部8は、このような蒸発器出口過熱度SHに基づく第1判定条件を満たす場合には、ステップST2の処理に移行して、適切な弁口径よりも大きい弁口径の利用側膨張弁51が冷媒回路10に設けられている旨の異常が発生していることを報知し、第1判定条件を満たさない場合には、ステップST3の処理に移行する。 When the first determination condition based on the evaporator outlet superheat degree SH is satisfied, the control unit 8 proceeds to the process of step ST2 and uses the expansion on the use side having a valve diameter larger than the appropriate valve diameter. When the abnormality that the valve 51 is provided in the refrigerant circuit 10 is informed, and the first determination condition is not satisfied, the process proceeds to step ST3.
 また、別の第1判定条件として、低圧圧力LPの変動幅ΔLPが低圧変動判定値ΔLPsを超えるかどうかがある。冷凍サイクルにおける低圧圧力LPに基づいて圧縮機21の容量制御を行う場合において、適切な利用側膨張弁51が冷媒回路10に設けられていると、利用側膨張弁51の開度制御に伴って低圧圧力LPが変動しても、その変動幅ΔLPは小さいものである。例えば、図4の二点鎖線で図示された低圧圧力LPの経時変化のように、低圧圧力LPと所定時間(例えば、10分間)内における目標低圧LPtとの差の絶対値ΔLPが、低圧変動判定値ΔLPsを超えない場合である。一方、適切な弁口径よりも大きい弁口径の利用側膨張弁51が冷媒回路10に設けられている場合のように適切な利用側膨張弁51が冷媒回路10に設けられていないと、利用側膨張弁51の開度制御に伴って低圧圧力LPが変動すると、その変動幅ΔLPは大きなものになる。例えば、図4の実線で図示された低圧圧力LPの経時変化のように、所定時間(例えば、10分間)内における低圧圧力LPの変動幅ΔLPが、低圧変動判定値ΔLPsを超える場合である。このように、ここでは、低圧圧力Lの変動幅ΔLPが低圧変動判定値ΔLPsを超える場合には、利用側膨張弁51の開度変動に対して低圧圧力LPの変動が大きい状態で利用側膨張弁51の開度制御が行われているものと判定するのである。 Further, another first determination condition is whether or not the fluctuation range ΔLP of the low-pressure pressure LP exceeds the low-pressure fluctuation determination value ΔLPs. In the case where the capacity control of the compressor 21 is performed based on the low pressure LP in the refrigeration cycle, if an appropriate use side expansion valve 51 is provided in the refrigerant circuit 10, the opening degree control of the use side expansion valve 51 is performed. Even if the low-pressure pressure LP fluctuates, the fluctuation range ΔLP is small. For example, the absolute value ΔLP of the difference between the low pressure LP and the target low pressure LPt within a predetermined time (for example, 10 minutes), such as the time-dependent change of the low pressure LP illustrated by the two-dot chain line in FIG. This is a case where the determination value ΔLPs is not exceeded. On the other hand, if the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10 as in the case where the use side expansion valve 51 having a valve diameter larger than the appropriate valve diameter is provided in the refrigerant circuit 10, the use side When the low pressure LP varies with the opening degree control of the expansion valve 51, the variation width ΔLP becomes large. For example, the variation range ΔLP of the low-pressure pressure LP within a predetermined time (for example, 10 minutes) exceeds the low-pressure variation determination value ΔLPs as in the time-dependent change of the low-pressure pressure LP illustrated by the solid line in FIG. Thus, here, when the fluctuation range ΔLP of the low-pressure pressure L exceeds the low-pressure fluctuation determination value ΔLPs, the use-side expansion is performed in a state where the fluctuation of the low-pressure pressure LP is large with respect to the opening degree fluctuation of the use-side expansion valve 51. It is determined that the opening degree control of the valve 51 is being performed.
 そして、制御部8は、このような低圧圧力LPに基づく第1判定条件を満たす場合にも、ステップST2の処理に移行して、適切な弁口径よりも大きい弁口径の利用側膨張弁51が冷媒回路10に設けられている旨の異常が発生していることを報知し、第1判定条件を満たさない場合には、ステップST3の処理に移行する。 And also when the control part 8 satisfy | fills the 1st determination conditions based on such low pressure LP, it transfers to the process of step ST2 and the utilization side expansion valve 51 of a larger valve diameter than an appropriate valve diameter is used. When the abnormality that the refrigerant circuit 10 is provided is notified and the first determination condition is not satisfied, the process proceeds to step ST3.
 尚、ここでは、第1判定条件として、蒸発器出口過熱度SHに基づく第1判定条件及び低圧圧力LPに基づく第1判定条件の2つを採用しているが、いずれか一方の第1判定条件だけを採用してもよい。 Here, as the first determination condition, the first determination condition based on the evaporator outlet superheat degree SH and the first determination condition based on the low pressure LP are adopted, but either one of the first determination conditions is adopted. Only conditions may be employed.
 次に、制御部8は、ステップST3において、利用側膨張弁51の開度が変動していない時の冷媒、圧縮機21及び/又は利用側膨張弁51の状態量に関する第2判定条件を満たすかどうかを判定する。 Next, in step ST3, the control unit 8 satisfies the second determination condition regarding the refrigerant, the compressor 21 and / or the state quantity of the use side expansion valve 51 when the opening degree of the use side expansion valve 51 is not changed. Determine whether or not.
 ここで、第2判定条件は、蒸発器出口過熱度SHに基づく利用側膨張弁51の開度制御、及び、冷凍サイクルにおける低圧圧力LPに基づく圧縮機21の容量制御を伴う冷却運転時において、開度制御を行っている利用側膨張弁51の開度が変動していないにもかかわらず、異常な状態量を示す運転状態になっているかどうかを判定するための条件である。そして、ここでは、第2判定条件を満たすような運転状態が、冷媒回路10に適切な利用側膨張弁51が設けられていないこと、特に、利用側膨張弁51の弁口径が冷媒回路10に適切な弁口径に比べて小さいこと、に起因して発生しているものとしている。なぜなら、適切な弁口径よりも小さい弁口径の利用側膨張弁51が冷媒回路10に設けられると、利用側膨張弁51の開度が大きめの開度範囲で制御されることが多くなるため、利用側膨張弁51の開度制御を行っているにもかかわらず、異常な状態量を示す場合があるからである。 Here, the second determination condition is that during the cooling operation involving the opening degree control of the use side expansion valve 51 based on the evaporator outlet superheat degree SH and the capacity control of the compressor 21 based on the low pressure LP in the refrigeration cycle, This is a condition for determining whether or not the operation state indicating an abnormal state quantity is in spite of the fact that the opening degree of the use side expansion valve 51 performing the opening degree control does not fluctuate. Here, the operating state that satisfies the second determination condition is that the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10, in particular, the valve diameter of the use side expansion valve 51 is in the refrigerant circuit 10. It is assumed that it is caused by being smaller than the appropriate valve diameter. Because, when the use side expansion valve 51 having a valve diameter smaller than an appropriate valve diameter is provided in the refrigerant circuit 10, the opening degree of the use side expansion valve 51 is often controlled in a larger opening range. This is because an abnormal state quantity may be shown even though the opening degree control of the use side expansion valve 51 is performed.
 そして、第2判定条件としては、利用側膨張弁51が最大開度(例えば、全開開度)に達し、かつ、低圧圧力LPが目標低圧LPtよりも低いかどうか、又は、利用側膨張弁51が最大開度(例えば、全開開度)に達し、かつ、圧縮機21の容量が最小容量(例えば、最低周波数Fcm)に達しているかどうか、がある。冷凍サイクルにおける低圧圧力LPが目標低圧LPtになるように圧縮機21の容量制御を行う場合において、適切な利用側膨張弁51が冷媒回路10に設けられていると、利用側膨張弁51が最大開度に達しており冷媒の循環流量を多くしやすい状況であるにもかかわらず、低圧圧力LPが目標低圧LPtまで達しないほど低くなることはなく、また、圧縮機21の容量が最小容量まで低下することもないため、利用側膨張弁51の開度制御の範囲が広いものといえる。一方、適切な弁口径よりも小さい弁口径の利用側膨張弁51が冷媒回路10に設けられている場合のように適切な利用側膨張弁51が冷媒回路に設けられていないと、利用側膨張弁51が最大開度に達しており冷媒の循環流量を多くしやすい状況であるにもかかわらず、低圧圧力LPが目標低圧LPtまで達しないほどよりも低い状態になったり、また、圧縮機21の容量が最小容量になることがあるため、利用側膨張弁51の開度制御の範囲が狭いものといえる。このように、ここでは、利用側膨張弁51が最大開度に達し、かつ、低圧圧力LPが目標低圧LPtよりも低い場合、又は、利用側膨張弁51が最大開度に達し、かつ、圧縮機21の容量が最小容量に達している場合には、低圧圧力LPが目標低圧Lptになるように圧縮機21の容量制御を行うのにあたり、利用側膨張弁51の開度制御の範囲が狭すぎるものと判定するのである。尚、第2判定条件を満たすかどうかの判断にあたっては、誤判定を抑制するために、上記の条件を満たす低圧圧力LPや圧縮機21の容量の状態が所定時間(例えば、10分間)継続している場合に限定してもよい。 Then, as the second determination condition, whether or not the use side expansion valve 51 reaches the maximum opening degree (for example, the fully open opening degree) and the low pressure LP is lower than the target low pressure LPt, or the use side expansion valve 51 is set. Has reached the maximum opening (for example, full opening), and the capacity of the compressor 21 has reached the minimum capacity (for example, the minimum frequency Fcm). When the capacity control of the compressor 21 is performed so that the low pressure LP in the refrigeration cycle becomes the target low pressure LPt, if the appropriate use side expansion valve 51 is provided in the refrigerant circuit 10, the use side expansion valve 51 is maximum. In spite of the situation where the opening degree has been reached and the circulation flow rate of the refrigerant is likely to be increased, the low pressure LP does not become so low that it does not reach the target low pressure LPt, and the capacity of the compressor 21 reaches the minimum capacity. Since it does not decrease, it can be said that the range of opening degree control of the use side expansion valve 51 is wide. On the other hand, if the appropriate use side expansion valve 51 is not provided in the refrigerant circuit 10 as in the case where the use side expansion valve 51 having a valve diameter smaller than the appropriate valve diameter is provided in the refrigerant circuit 10, the use side expansion is performed. In spite of the situation where the valve 51 has reached the maximum opening and it is easy to increase the circulation flow rate of the refrigerant, the low pressure LP becomes lower than the target low pressure LPt, or the compressor 21 Therefore, it can be said that the range of opening degree control of the use side expansion valve 51 is narrow. Thus, here, when the use side expansion valve 51 reaches the maximum opening and the low pressure LP is lower than the target low pressure LPt, or the use side expansion valve 51 reaches the maximum opening and the compression is performed. When the capacity of the compressor 21 reaches the minimum capacity, the range of the opening degree control of the use side expansion valve 51 is narrow in performing the capacity control of the compressor 21 so that the low pressure LP becomes the target low pressure Lpt. It is judged that it is too much. In determining whether the second determination condition is satisfied, in order to suppress erroneous determination, the state of the low pressure LP and the capacity of the compressor 21 satisfying the above condition continues for a predetermined time (for example, 10 minutes). You may limit to.
 そして、制御部8は、このような第2判定条件を満たす場合には、ステップST4の処理に移行して、適切な弁口径よりも小さい弁口径の利用側膨張弁51が冷媒回路10に設けられている旨の異常が発生していることを報知し、第2判定条件を満たさない場合には、適切な弁口径の利用側膨張弁51が冷媒回路10に設けられているとして、膨張機構適否判定処理を終了する。 When the second determination condition is satisfied, the control unit 8 proceeds to the process of step ST4, and the use side expansion valve 51 having a valve diameter smaller than an appropriate valve diameter is provided in the refrigerant circuit 10. When the second determination condition is not satisfied and the use side expansion valve 51 having an appropriate valve diameter is provided in the refrigerant circuit 10, the expansion mechanism is notified. The suitability determination process is terminated.
 このように、ここでは、開度制御を行っている利用側膨張弁51の動作状況(開度変動の有無)に応じて現れる状態量に基づく第1判定条件や第2判定条件によって、冷媒回路10に適切な利用側膨張弁51が設けられているどうかの膨張機構適否判定を行うことができる。 Thus, here, the refrigerant circuit is set according to the first determination condition and the second determination condition based on the state quantity appearing in accordance with the operating state (the presence or absence of opening degree variation) of the use side expansion valve 51 performing the opening degree control. 10, whether or not an appropriate use-side expansion valve 51 is provided can be determined.
 特に、ここでは、利用側膨張弁51の交換を含めた冷凍装置の更新後の冷却運転において、第1判定条件や第2判定条件を満たすかどうかを判定することで、利用側膨張弁51の選定ミスや交換忘れが発生していないかどうかを発見することができる。すなわち、ステップST1、ST2において、第1判定条件を満たして弁口径が大きい旨の異常が報知された場合には、利用側膨張弁51の選定ミスで弁口径が大きいものに交換されてしまっている、又は、利用側膨張弁51の交換忘れで既設の弁口径が大きい利用側膨張弁のままになっている等の不具合が発生していることを発見することができるのである。 In particular, here, in the cooling operation after renewal of the refrigeration apparatus including replacement of the use side expansion valve 51, it is determined whether or not the use side expansion valve 51 satisfies the first determination condition and the second determination condition. It is possible to discover whether or not a selection error or forgetting replacement has occurred. That is, in Steps ST1 and ST2, if an abnormality that the first determination condition is satisfied and the valve diameter is large is notified, the use-side expansion valve 51 has been replaced with one having a large valve diameter due to a selection error. In other words, it is possible to find out that there is a problem such as the use-side expansion valve 51 having been left forgotten to replace the use-side expansion valve 51 or being left with a large use-side expansion valve.
 また、ここでは、第1判定条件を満たすかどうかの指標となる状態量として、蒸発器出口過熱度SHや低圧圧力LPを使用し、利用側膨張弁51の開度制御による蒸発器出口過熱度SHの安定の程度や利用側膨張弁51の開度制御に伴う低圧圧力LPの安定の程度に基づいて、冷媒回路10に適切な利用側膨張弁51が設けられているどうかを判定することができる。 In addition, here, the evaporator outlet superheat degree SH or the low pressure LP is used as an indicator of whether or not the first determination condition is satisfied, and the evaporator outlet superheat degree by the opening degree control of the use side expansion valve 51 is used. It is possible to determine whether or not an appropriate use-side expansion valve 51 is provided in the refrigerant circuit 10 based on the degree of stability of SH and the degree of stability of the low pressure LP associated with the opening degree control of the use-side expansion valve 51. it can.
 また、ここでは、第2判定条件を満たすかどうかの指標となる状態量として、低圧圧力LPや圧縮機21の容量を使用し、利用側膨張弁51が最大開度に達している場合における低圧圧力LPや圧縮機21の容量の程度に基づいて、冷媒回路10に適切な利用側膨張弁51が設けられているどうかを判定することができる。 Further, here, the low pressure LP or the capacity of the compressor 21 is used as a state quantity serving as an index as to whether or not the second determination condition is satisfied, and the low pressure when the use side expansion valve 51 has reached the maximum opening degree. Based on the pressure LP and the capacity of the compressor 21, it can be determined whether or not the appropriate use side expansion valve 51 is provided in the refrigerant circuit 10.
 (4)変形例
 <A>
 上記実施形態(図3参照)では、制御部8が、膨張機構適否判定処理のステップST1において、蒸発器出口過熱度SHの変動幅ΔSHが過熱度変動判定値ΔSHsを超えたり、低圧圧力LPの変動幅ΔLPが低圧変動判定値ΔLPsを超えることによって、第1判定条件を満たすと判定した場合には、ステップST2において、適切な弁口径よりも大きい弁口径の利用側膨張弁51(膨張機構)が冷媒回路10に設けられている旨の異常が発生していることを報知するようにしている。
(4) Modification <A>
In the above embodiment (see FIG. 3), the control unit 8 determines that the fluctuation range ΔSH of the evaporator outlet superheat degree SH exceeds the superheat degree fluctuation determination value ΔSHs or the low pressure LP in step ST1 of the expansion mechanism suitability determination process. When it is determined that the first determination condition is satisfied by the fluctuation width ΔLP exceeding the low pressure fluctuation determination value ΔLPs, the use side expansion valve 51 (expansion mechanism) having a valve diameter larger than an appropriate valve diameter in step ST2. Is informed that an abnormality has occurred in the refrigerant circuit 10.
 しかし、このような利用側膨張弁51の異常が発生していたとしても、このような運転状態を改善して、冷却運転を安定させて、利用側空間の冷却を継続できるようにすることが好ましい。 However, even if such an abnormality of the use side expansion valve 51 occurs, it is possible to improve such an operating state, stabilize the cooling operation, and continue cooling the use side space. preferable.
 そこで、ここでは、図5に示すように、制御部8が、膨張機構適否判定処理のステップST1において、第1判定条件を満たすと判定した場合には、ステップST2の報知処理とともに、ステップST5において、第2の膨張機構としての熱源側膨張弁28の開度を小さくする制御を行うようにしている。 Therefore, here, as shown in FIG. 5, when the control unit 8 determines that the first determination condition is satisfied in step ST1 of the expansion mechanism suitability determination process, in step ST5 together with the notification process of step ST2. In addition, control is performed to reduce the opening degree of the heat source side expansion valve 28 as the second expansion mechanism.
 このような熱源側膨張弁28(第2の膨張機構)の開度制御を行うと、下流側にある利用側膨張弁51(膨張機構)に送られる冷媒の圧力を低下させることができるため、利用側膨張弁51の開度を大きめの開度範囲で制御させることができる。これにより、利用側膨張弁51の開度制御だけでは状態量が安定しない運転状態を改善すること、すなわち、蒸発器出口過熱度SHの変動幅や低圧圧力LPの変動幅ΔLPを小さくすることができ、冷却運転を安定させることができる。 When the opening degree control of the heat source side expansion valve 28 (second expansion mechanism) is performed, the pressure of the refrigerant sent to the use side expansion valve 51 (expansion mechanism) on the downstream side can be reduced. The opening of the use side expansion valve 51 can be controlled within a larger opening range. As a result, it is possible to improve the operation state in which the state quantity is not stabilized only by the opening degree control of the use side expansion valve 51, that is, to reduce the fluctuation range of the evaporator outlet superheat degree SH and the fluctuation range ΔLP of the low pressure LP. And cooling operation can be stabilized.
 しかも、ここでは、制御部8は、蒸発器出口過熱度SHの変動幅ΔSHが過熱度変動判定値ΔSHs以下になるまで、又は、低圧圧力LPの変動幅ΔLPが低圧変動判定値ΔLPs以下になるまで、熱源側膨張弁28(第2の膨張機構)の開度を小さくする制御を行うようにしている。このため、蒸発器出口過熱度SHの変動幅ΔSHや低圧圧力LPの変動幅ΔLPを確実に小さくすることができるようになっている。 In addition, here, the control unit 8 determines that the fluctuation range ΔSH of the evaporator outlet superheat degree SH is equal to or less than the superheat degree fluctuation determination value ΔSHs, or the fluctuation width ΔLP of the low pressure LP is equal to or less than the low pressure fluctuation determination value ΔLPs. Until now, control is performed to reduce the opening of the heat source side expansion valve 28 (second expansion mechanism). For this reason, the fluctuation range ΔSH of the evaporator outlet superheat degree SH and the fluctuation range ΔLP of the low pressure LP can be reliably reduced.
 <B>
 上記実施形態及び変形例Aでは、膨張機構適否判定処理のステップST3において、第2判定条件を満たすかどうかの指標となる状態量として、低圧圧力LPや圧縮機21の容量を使用しているが、これに限定されるものではない。例えば、第2判定条件として、利用側空気温度Trとその目標値Trtとの温度差ΔTrが温度差判定値ΔTrsを超えるかどうかによって、第2判定条件を満たすかどうかを使用してもよい。
<B>
In the above-described embodiment and Modification A, the low pressure LP and the capacity of the compressor 21 are used as state quantities serving as an index as to whether or not the second determination condition is satisfied in step ST3 of the expansion mechanism suitability determination process. However, the present invention is not limited to this. For example, as the second determination condition, whether or not the second determination condition is satisfied may be used depending on whether or not the temperature difference ΔTr between the use-side air temperature Tr and the target value Trt exceeds the temperature difference determination value ΔTrs.
 <C>
 上記実施形態及び変形例A、Bでは、更新後の最初の冷却運転(冷凍サイクル運転)時に膨張機構適否判定処理を行うことで、利用側膨張弁51(膨張機構)の選定ミスや交換忘れが発生していないかどうかを発見するようにしている。しかし、膨張機構適否判定処理の用途は、設置初期の利用側膨張弁51の選定ミスや交換忘れの発見に限定されるものではなく、他の用途にも使用可能である。
<C>
In the above embodiment and modifications A and B, the expansion mechanism suitability determination process is performed during the first cooling operation after renewal (refrigeration cycle operation), so that the use side expansion valve 51 (expansion mechanism) may be selected incorrectly or forgotten to be replaced. I try to find out if it has occurred. However, the use of the expansion mechanism suitability determination process is not limited to the discovery of selection mistake or forgetting to replace the use side expansion valve 51 at the initial stage of installation, and can be used for other purposes.
 例えば、更新後の最初の冷却運転時の膨張機構適否判定処理後においても、冷却運転時の膨張機構適否判定処理を行うようにしてもよい。この場合には、利用側膨張弁51内部の弁孔の詰まりが発生した時に、第2判定条件を満たす状態、すなわち、弁口径が小さくなったときと同様の状態を示すため、これにより、冷媒回路10に適切な利用側膨張弁51が設けられているどうかを判定することができる。また、利用側膨張弁51の弁体や弁孔の異常摩耗が発生した時に、第1判定条件を満たす状態、すなわち、弁口径が大きくなったときと同様の状態を示すため、これにより、冷媒回路10に適切な利用側膨張弁51が設けられているどうかを判定することができる。そして、このような場合にも、上記変形例Aと同様に、熱源側膨張弁28の開度を小さくする制御を行うことで、利用側膨張弁51の異常をカバーしながら、冷却運転を継続することができる。 For example, the expansion mechanism suitability determination process during the cooling operation may be performed even after the expansion mechanism suitability determination process during the first cooling operation after the update. In this case, when the clogging of the valve hole inside the use side expansion valve 51 occurs, a state satisfying the second determination condition, that is, a state similar to the state when the valve diameter becomes small is shown. It can be determined whether or not an appropriate use-side expansion valve 51 is provided in the circuit 10. In addition, when abnormal wear of the valve body and the valve hole of the use side expansion valve 51 occurs, a state satisfying the first determination condition, that is, a state similar to that when the valve diameter becomes large is shown. It can be determined whether or not an appropriate use-side expansion valve 51 is provided in the circuit 10. Even in such a case, similarly to Modification A, the cooling operation is continued while covering the abnormality of the use side expansion valve 51 by performing control to reduce the opening degree of the heat source side expansion valve 28. can do.
 <D>
 上記実施形態及び変形例A~C(図1参照)では、冷凍サイクル運転として冷却運転を行う冷凍装置1を例に挙げて説明したが、これに限定されるものではない。例えば、利用側熱交換器52を冷媒の放熱器として機能させ、かつ、熱源側熱交換器23を冷媒の蒸発器として機能させる冷凍サイクル運転も行うことができるようにするため、第1及び第2熱源側ガス冷媒管31、32に四路切換弁を設けて、利用側熱交換器52の逆サイクル除霜運転を行えるようにしたり、空調用途(冷房運転と暖房運転)に使用できるようにした冷凍装置においても、上記の膨張機構適否判定処理を適用することができる。
<D>
In the above embodiment and modifications A to C (see FIG. 1), the refrigeration apparatus 1 that performs the cooling operation as the refrigeration cycle operation has been described as an example, but the present invention is not limited to this. For example, in order to perform the refrigeration cycle operation in which the use side heat exchanger 52 functions as a refrigerant radiator and the heat source side heat exchanger 23 functions as a refrigerant evaporator, Two heat source side gas refrigerant pipes 31 and 32 are provided with a four-way switching valve so that the reverse cycle defrosting operation of the use side heat exchanger 52 can be performed or used for air conditioning applications (cooling operation and heating operation). The above-described expansion mechanism suitability determination process can also be applied to the refrigeration apparatus.
 <E>
 また、上記実施形態及び変形例A~Dでは、利用ユニット5が1台だけであるが、複数台であってもよい。
<E>
In the embodiment and the modifications A to D, only one usage unit 5 is used, but a plurality of usage units 5 may be used.
 また、上記実施形態及び変形例A~Dでは、蒸発器出口過熱度SHを得る際に、低圧圧力LPを蒸発温度Teに換算するようにしているが、利用側熱交換器52(蒸発器)に温度センサを設けて蒸発温度Teを検出するようにしてもよい。 In the embodiment and the modifications A to D, the low pressure LP is converted into the evaporation temperature Te when the evaporator outlet superheat degree SH is obtained. However, the use side heat exchanger 52 (evaporator) is used. A temperature sensor may be provided to detect the evaporation temperature Te.
 本発明は、圧縮機と、放熱器と、電動膨張弁からなる膨張機構と、蒸発器と、が接続されることによって構成される冷媒回路と、冷媒回路に充填された冷媒を圧縮機、放熱器、膨張機構、蒸発器の順に循環させる冷凍サイクル運転を行う制御部と、を備える冷凍装置に対して、広く適用可能である。 The present invention relates to a refrigerant circuit configured by connecting a compressor, a radiator, an expansion mechanism including an electric expansion valve, and an evaporator, and a refrigerant filled in the refrigerant circuit. The present invention can be widely applied to a refrigeration apparatus that includes a control unit that performs a refrigeration cycle operation that circulates in the order of a condenser, an expansion mechanism, and an evaporator.
 1  冷凍装置
 8  制御部
 10 冷媒回路
 21 圧縮機
 23 熱源側熱交換器(放熱器)
 28 熱源側膨張弁(第2の膨張機構)
 51 利用側膨張弁(膨張機構)
 52 利用側熱交換器(蒸発器)
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 8 Control part 10 Refrigerant circuit 21 Compressor 23 Heat source side heat exchanger (heat radiator)
28 Heat source side expansion valve (second expansion mechanism)
51 User-side expansion valve (expansion mechanism)
52 User-side heat exchanger (evaporator)
特開2011-252623号公報JP 2011-252623 A

Claims (6)

  1.  圧縮機(21)と、放熱器(23)と、電動膨張弁からなる膨張機構(51)と、蒸発器(52)と、が接続されることによって構成される冷媒回路(10)と、前記冷媒回路に充填された冷媒を前記圧縮機、前記放熱器、前記膨張機構、前記蒸発器の順に循環させる冷凍サイクル運転を行う制御部(8)と、を備える冷凍装置において、
     前記制御部は、前記冷凍サイクル運転時に、前記膨張機構の開度制御を行うようになっており、前記膨張機構の開度が変動している時の前記冷媒、前記圧縮機及び/又は前記膨張機構の状態量に関する第1判定条件、及び/又は、前記膨張機構の開度が変動していない時の前記冷媒、前記圧縮機及び/又は前記膨張機構の状態量に関する第2判定条件に基づいて、前記冷媒回路に適切な前記膨張機構が設けられているどうかの膨張機構適否判定を行う、
    冷凍装置(1)。
    A refrigerant circuit (10) configured by connecting a compressor (21), a radiator (23), an expansion mechanism (51) including an electric expansion valve, and an evaporator (52); In a refrigeration apparatus comprising a control unit (8) for performing a refrigeration cycle operation for circulating the refrigerant charged in a refrigerant circuit in the order of the compressor, the radiator, the expansion mechanism, and the evaporator,
    The control unit is configured to control the opening degree of the expansion mechanism during the refrigeration cycle operation, and the refrigerant, the compressor, and / or the expansion when the opening degree of the expansion mechanism varies. Based on the first determination condition regarding the state quantity of the mechanism and / or the second determination condition regarding the state quantity of the refrigerant, the compressor and / or the expansion mechanism when the opening degree of the expansion mechanism is not changed. Determining whether or not the expansion mechanism is suitable for the refrigerant circuit.
    Refrigeration equipment (1).
  2.  前記制御部は、前記第1判定条件に基づいて前記膨張機構の弁口径が前記冷媒回路に適切な弁口径に比べて大きいかどうかを判定し、前記第2判定条件に基づいて前記膨張機構の弁口径が前記冷媒回路に適切な弁口径に比べて小さいかどうかを判定する、
    請求項1に記載の冷凍装置。
    The control unit determines whether the valve diameter of the expansion mechanism is larger than a valve diameter appropriate for the refrigerant circuit based on the first determination condition, and determines whether the expansion mechanism is based on the second determination condition. Determining whether the valve diameter is smaller than the appropriate valve diameter for the refrigerant circuit;
    The refrigeration apparatus according to claim 1.
  3.  前記制御部は、前記冷凍サイクル運転時に、前記蒸発器の出口における前記冷媒の過熱度である蒸発器出口過熱度に基づいて前記膨張機構の開度制御を行っており、
     前記制御部は、前記蒸発器出口過熱度の変動幅が過熱度変動判定値を超えるかどうかに基づいて、前記第1判定条件を満たすかどうかを判定する、
    請求項1又は2に記載の冷凍装置。
    The control unit performs opening degree control of the expansion mechanism based on an evaporator outlet superheat degree that is a superheat degree of the refrigerant at an outlet of the evaporator during the refrigeration cycle operation,
    The control unit determines whether or not the first determination condition is satisfied based on whether or not a fluctuation range of the evaporator outlet superheat degree exceeds a superheat degree fluctuation determination value.
    The refrigeration apparatus according to claim 1 or 2.
  4.  前記制御部は、前記冷凍サイクル運転時に、前記冷凍サイクル運転における低圧圧力に基づいて前記圧縮機の容量制御を行っており、
     前記制御部は、前記低圧圧力の変動幅が低圧変動判定値を超えるかどうかに基づいて、前記第1判定条件を満たすかどうかを判定する、
    請求項1~3のいずれか1項に記載の冷凍装置。
    The control unit, during the refrigeration cycle operation, performs capacity control of the compressor based on the low pressure in the refrigeration cycle operation,
    The controller determines whether or not the first determination condition is satisfied based on whether or not a fluctuation range of the low pressure exceeds a low pressure fluctuation determination value;
    The refrigeration apparatus according to any one of claims 1 to 3.
  5.  前記制御部は、前記冷凍サイクル運転時に、前記冷凍サイクル運転における低圧圧力が目標低圧になるように前記圧縮機の容量制御を行っており、
     前記制御部は、前記膨張機構が最大開度に達し、かつ、前記低圧圧力が前記目標低圧よりも低いかどうかに基づいて、又は、前記膨張機構が最大開度に達し、かつ、前記圧縮機の容量が最小容量に達しているかどうかに基づいて、前記第2判定条件を満たすかどうかを判定する、
    請求項1~4のいずれか1項に記載の冷凍装置。
    The control unit performs capacity control of the compressor so that a low pressure in the refrigeration cycle operation becomes a target low pressure during the refrigeration cycle operation,
    The control unit determines whether the expansion mechanism reaches a maximum opening and whether the low pressure is lower than the target low pressure, or the expansion mechanism reaches a maximum opening, and the compressor Determining whether the second determination condition is satisfied based on whether or not the capacity of
    The refrigeration apparatus according to any one of claims 1 to 4.
  6.  前記冷媒回路は、前記放熱器と前記膨張機構との間に第2の膨張機構(28)をさらに有しており、
     前記制御部は、前記冷凍サイクル運転として、前記冷媒回路に充填された冷媒を前記圧縮機、前記放熱器、前記第2の膨張機構、前記膨張機構、前記蒸発器の順に循環させる運転を行っており、
     前記制御部は、前記第1判定条件を満たすものと判定した場合に、前記第2の膨張機構の開度を小さくする制御を行う、
    請求項1~5のいずれか1項に記載の冷凍装置。
    The refrigerant circuit further includes a second expansion mechanism (28) between the radiator and the expansion mechanism,
    The controller performs an operation of circulating the refrigerant charged in the refrigerant circuit in the order of the compressor, the radiator, the second expansion mechanism, the expansion mechanism, and the evaporator as the refrigeration cycle operation. And
    The control unit performs control to reduce the opening of the second expansion mechanism when it is determined that the first determination condition is satisfied.
    The refrigeration apparatus according to any one of claims 1 to 5.
PCT/JP2016/079090 2015-09-30 2016-09-30 Refrigeration apparatus WO2017057711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195329 2015-09-30
JP2015-195329 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057711A1 true WO2017057711A1 (en) 2017-04-06

Family

ID=57981476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079090 WO2017057711A1 (en) 2015-09-30 2016-09-30 Refrigeration apparatus

Country Status (2)

Country Link
JP (1) JP6075500B1 (en)
WO (1) WO2017057711A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355855U (en) * 1976-10-14 1978-05-12
JPS58104465A (en) * 1981-12-17 1983-06-21 松下電器産業株式会社 Controller for refrigeration cycle
JP2004263948A (en) * 2003-03-03 2004-09-24 Mitsubishi Electric Corp Air conditioner
JP2006132807A (en) * 2004-11-02 2006-05-25 Toshiba Kyaria Kk Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355855U (en) * 1976-10-14 1978-05-12
JPS58104465A (en) * 1981-12-17 1983-06-21 松下電器産業株式会社 Controller for refrigeration cycle
JP2004263948A (en) * 2003-03-03 2004-09-24 Mitsubishi Electric Corp Air conditioner
JP2006132807A (en) * 2004-11-02 2006-05-25 Toshiba Kyaria Kk Refrigerator

Also Published As

Publication number Publication date
JP2017067435A (en) 2017-04-06
JP6075500B1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
US10415861B2 (en) Refrigeration cycle apparatus
KR101488390B1 (en) Method for calculating the mass of a refrigerant in air conditioning apparatus
JP3852472B2 (en) Air conditioner
KR100960539B1 (en) Air conditioner
KR101074322B1 (en) Air conditioner
WO2009157191A1 (en) Air conditioner and method for determining the amount of refrigerant therein
WO2016117128A1 (en) Air conditioning device
CN111094877B (en) Refrigeration cycle device and refrigeration device
CN104566823A (en) Refrigerant control method of parallel multi-split air-conditioner
CN114364925B (en) Refrigerant leakage determination system
CN111247377B (en) Refrigeration cycle device
CN113614463B (en) Air conditioner
WO2019053880A1 (en) Refrigeration air conditioner
JP2014009869A5 (en)
JP5078817B2 (en) Refrigeration cycle equipment
JP4418936B2 (en) Air conditioner
JP5320280B2 (en) Air conditioner
WO2014068819A1 (en) Air conditioner
JP2009250554A (en) Refrigerating device
WO2010023894A1 (en) Air-conditioning device
US20210063042A1 (en) Air conditioner and control method thereof
JP4539769B2 (en) Air conditioner
JP6075500B1 (en) Refrigeration equipment
JP2017227356A (en) Freezer and actuation determination method of pressure switch
JP6537629B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851880

Country of ref document: EP

Kind code of ref document: A1