WO2017057616A1 - Dry film resist, manufacturing method for circuit wiring, circuit wiring, input device, and display device - Google Patents

Dry film resist, manufacturing method for circuit wiring, circuit wiring, input device, and display device Download PDF

Info

Publication number
WO2017057616A1
WO2017057616A1 PCT/JP2016/078890 JP2016078890W WO2017057616A1 WO 2017057616 A1 WO2017057616 A1 WO 2017057616A1 JP 2016078890 W JP2016078890 W JP 2016078890W WO 2017057616 A1 WO2017057616 A1 WO 2017057616A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pattern
dry film
resist
layer
Prior art date
Application number
PCT/JP2016/078890
Other languages
French (fr)
Japanese (ja)
Inventor
晃男 片山
崇一郎 長田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2017543584A priority Critical patent/JP6574846B2/en
Publication of WO2017057616A1 publication Critical patent/WO2017057616A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • a display device such as an organic EL display device or a liquid crystal display device
  • a touch panel such as a capacitance-type input device
  • an electrode pattern corresponding to a sensor in a visual recognition part or a conductive pattern such as a wiring in a peripheral wiring part or a lead-out wiring part Is provided inside the touch panel.
  • a patterned conductive layer is formed by using a dry film resist as a photosensitive transfer material and a resist provided on an arbitrary circuit formation substrate because the number of steps for obtaining a required pattern shape is small.
  • a layer (photosensitive resin composition layer) is exposed through a mask having a desired pattern, the resist layer is partially cured or dissolved, and developed to obtain a circuit pattern, and then etched to form a conductive layer
  • a method of forming a circuit pattern by transfer is widely used.
  • the resist layer is roughly classified into a negative type and a positive type from the reaction method with light or electron beam.
  • the solubility in the developer decreases, leaving an exposed portion after development.
  • the solubility in the developer increases, and the exposed portion is removed after development. Since there is an advantage that a high-resolution pattern can be easily formed as compared with a negative resist, a positive dry film resist is required.
  • positive dry film resists described in Patent Documents 1 and 2 are known as positive dry film resists.
  • Patent Document 1 describes a multilayer resist in which an intermediate layer having photobleaching properties and / or light absorption properties is provided between a lower photoresist layer and an upper photoresist layer. Patent Document 1 also describes providing a multilayer resist with improved multi-contrast exposure controllability and improved multi-contrast exposure effect.
  • Patent Document 2 describes a film-type photodegradable transfer material including a support film; a photodegradable photoresist layer; and a reflection suppressing layer formed on a surface to be laminated on a circuit forming substrate.
  • the transfer material described in Patent Document 2 uses a mechanism that prevents halation of exposure light reflected by the metal substrate by the reflection suppression layer, the transfer surface in contact with the target substrate in the case of transfer is It is necessary to laminate the temporary support, the resist layer, and the reflection suppressing layer in this order from the opposite side.
  • the present invention which is a specific means for solving the above problems, and preferred ranges of the present invention are as follows.
  • the total light haze of the temporary support is preferably 3.0% or less.
  • the resist layer preferably contains a naphthoquinonediazide compound and a resin having a phenolic hydroxyl group.
  • the resist layer includes (A) a component and (B) a photoacid generator, The component (A) is preferably a polymer having a group in which an acid group is protected with an acid-decomposable group.
  • the component (A) is preferably a polymer having a structural unit represented by the following general formula A1 or general formula A1 ′;
  • General formula A1 In general formula A1, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents a hydrogen atom or a methyl group;
  • the resist layer contains two or more types of component (A), and As the component (A), it is preferable to contain a polymer having a structural unit represented by the following general formula A2 ′; General formula A2 '
  • R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group Or an aryl group, R 31 or R 32 and R 33 may be linked to form a cyclic ether
  • R 34 represents a hydrogen atom or a methyl group
  • X 0 represents a single bond or an arylene group.
  • the resist layer further includes (C) a heterocyclic compound.
  • the resist layer preferably further contains a basic compound.
  • the resist layer preferably further contains a radiation absorber.
  • a circuit wiring manufacturing method including the following steps (a), (b), (c) and (d); (A) a laminating step of laminating the dry film resist according to any one of [1] to [11] on a circuit forming substrate having a base material and a conductive layer; (B) a pattern exposure step of exposing a contact pattern with a pattern for pattern exposure without peeling off the temporary support of the dry film resist; (C) a development step in which the temporary support is peeled and then developed to form a pattern exposure pattern on the resist layer; (D) An etching step of forming a pattern exposure pattern on the circuit forming substrate by etching.
  • the step (b) is the following step (b1), (C) The process is the following (c1) process, (D) The process is the following (d1) process, Further, it preferably includes the following steps (e1), (f1) and (g); (B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist; (C1) A development step of peeling the temporary support and developing to form a first pattern on the resist layer; (D1) an etching step of forming a first pattern on the circuit forming substrate by etching; (E1) A pattern exposure step of exposing the contact pattern with the second pattern without removing the resist layer to which the first pattern is transferred in the step (c1); (F1) A development step of developing and forming a second pattern different from the first pattern on the resist layer; (G) An etching step of forming the second pattern on the circuit formation substrate by etching.
  • the step (b) is the following step (b1), (C) The process is the following (c1) process, (D) The process is the following (d2) process, Furthermore, it is preferable to include a step (e2), a step (f2) and a step (g); (B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist; (C1) A development step of peeling the temporary support and developing to form a first pattern on the resist layer; (D2) After forming the first pattern on the circuit formation substrate by etching, a cover film is pasted on the remaining resist layer without peeling off the resist layer on which the first pattern was formed in the step (c1).
  • the dry film resist which can manufacture the circuit wiring which is a positive type which is easy to form a high resolution pattern, and has high pattern linearity can be provided.
  • FIG. 4 is a schematic diagram showing a pattern A.
  • FIG. 4 is a schematic diagram showing a pattern B.
  • FIG. 6 is a schematic diagram showing a pattern C.
  • FIG. It is a cross-sectional schematic diagram which shows an example of arrangement
  • a dry film resist a method for manufacturing circuit wiring, circuit wiring, an input device, in particular, an input device that is a touch panel, and a display device using the input device will be described.
  • the description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to the embodiments and specific examples.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the dry film resist of the present invention is a positive dry film resist having at least a resist layer on a temporary support,
  • the dry film resist satisfies at least one of the following conditions (1) and (2).
  • the pattern linearity is lowered by the light diffusion of the exposure light caused by the temporary support.
  • the problem that the pattern linearity decreases is presumably caused mainly by light diffusion of exposure light caused by fillers and other temporary supports in the temporary support and / or the surface. Is done.
  • the energy of the exposure light after being diffused by the temporary support exceeds the resist sensitivity (activation energy of the photosensitizer of the resist layer, that is, the required exposure amount)
  • the portion that should be the unexposed portion in the desired pattern is diffused
  • the pattern is exposed to light and the pattern linearity is lowered.
  • the exposure light energy after diffusion does not exceed the resist sensitivity (necessary exposure amount)
  • the portion that should be an unexposed part in the desired pattern is not actually exposed with the diffused light, and the pattern linearity decreases. Can be suppressed.
  • suppression of light diffusion on the temporary support due to, for example, suppressing haze of the temporary support
  • Techniques such as absorption of diffused light that has passed through the temporary support in the temporary support or other members disposed until reaching the resist layer, and (iii) low sensitivity of the resist layer are conceivable.
  • it can also be used as a preferable means to suppress the linearity degradation by combining a plurality of aspects (i) to (iii).
  • the dry film resist of the present invention has at least a resist layer on a temporary support.
  • fills conditions (2) it has further the light absorption layer which has the transmittance
  • the dry film resist of the present invention preferably has a temporary support, a thermoplastic resin layer, and a resist layer in this order, and may further have other layers such as a protective film.
  • thermoplastic resin layer [0189] to [0193] of JP-A-2014-85643, and for preferable modes of other layers, refer to [0194] to [0196] of JP-A-2014-85643, respectively.
  • the contents of this publication are incorporated herein.
  • the dry film resist of the present invention is a positive dry film resist in which exposed portions are dissolved in a developer.
  • a positive dry film resist has an advantage that a high-resolution pattern can be easily formed as compared with a negative resist.
  • actinic light for example, a photosensitive agent that generates acid upon irradiation with actinic light is used to increase the solubility of the exposed part. None of them are cured, and when the obtained pattern shape is defective, the circuit-formed substrate can be reused (reworked) by full exposure or the like. Therefore, the positive type is preferably used from the viewpoint of excellent so-called reworkability. Further, the technique of reexposing the remaining resist to produce different patterns can only be realized with a positive type.
  • the dry film resist of the present invention satisfies at least one of the following conditions (1) and (2) and satisfies the condition (1).
  • Condition (1) The temporary support has a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer;
  • Condition (2) A light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
  • condition (1A) the temporary support has a transmittance of more than 10% and 80% or less with respect to the exposure main wavelength of the resist layer.
  • the condition (2) is satisfied, it is preferable that the following condition (2A) is satisfied.
  • a light absorption layer having a transmittance of more than 10% and 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
  • the temporary support, the light absorbing layer, and the light-receiving layer are formed from the side opposite to the laminate surface in contact with the target substrate when the dry film resist is laminated (for example, transferred) to the target substrate.
  • a resist layer can be provided in this order.
  • Japanese Patent Application Laid-Open No. 2009-282522 describes that the reflection suppressing layer preferably has an absorptance of 90% or more for light having a wavelength in the range of 200 nm to 700 nm.
  • the temporary support or the light absorption layer if the light absorption of the exposure dominant wavelength of the resist layer is excessive, it requires pressure on the resist design due to containing a large amount of the photosensitive agent in the resist layer or a large amount of exposure. In practice, it is preferable to use a temporary support or a light absorption layer having a transmittance of more than 10% and 80% or less with respect to the exposure main wavelength of the resist layer.
  • the dry film resist of the present invention has a temporary support.
  • the temporary support preferably has a transmittance of 80% or less and a transmittance of 60% or less with respect to the exposure main wavelength of the resist layer. More preferably, the transmittance is 50% or less.
  • the dry film resist of the present invention preferably has a temporary support having a haze (total light haze) of 3.0% or less, more preferably 2.0% or less, and 1.5% or less. Is particularly preferred. The lower limit of the haze is not particularly limited.
  • a filler added to the film or coated on the surface of the film is a main haze source.
  • the practical minimum haze can take different values, and is not limited to the above value of 0.05% or more in any sense.
  • limiting in particular as a temporary support body. Preferred embodiments of the temporary support are described in JP-A-2014-85643, [0017] to [0018], and the contents of this publication are incorporated herein.
  • the dry film resist of the present invention has a resist layer.
  • the resist layer preferably contains a photosensitizer, and the extinction coefficient of the photosensitizer with respect to the main exposure wavelength of the resist layer is preferably less than 12,000 cm ⁇ 1 M ⁇ 1 . Note that 1 cm ⁇ 1 M ⁇ 1 is converted to 1 ⁇ 10 2 L ⁇ m ⁇ 1 mol ⁇ 1 . More preferably extinction coefficient with respect to the exposure main wavelength of the resist layer of photosensitive agent is less than 10,000 cm -1 M -1, and particularly preferably less than 5,000 cm -1 M -1.
  • the lower limit of the extinction coefficient is not particularly limited, but if the absorbance is too small, a large amount of exposure is required, resulting in a decrease in throughput, and a dry film resist can be added by adding a large amount of photosensitizer to correct the sensitivity decrease. Therefore, it is practical to be 30 cm ⁇ 1 M ⁇ 1 or more.
  • the photosensitizer include a naphthoquinone diazide compound described below and a photoacid generator described below.
  • the first preferred embodiment containing a naphthoquinone diazide compound and a resin having a phenolic hydroxyl group
  • the resist layer contains (A) component and (B) a photoacid generator, and (A) component
  • the 2nd preferable aspect which is a polymer in which an acid group has the group protected by the acid-decomposable group is mentioned.
  • the second preferred embodiment is more preferable than the first preferred embodiment from the viewpoint of improving the linearity of the pattern by improving the solubility of the resist layer resulting from the chemical amplification type.
  • the material of the resist layer used in each preferred embodiment will be described.
  • the 1st preferable aspect of a resist layer is demonstrated.
  • the resist layer preferably contains a naphthoquinonediazide compound and a resin having a phenolic hydroxyl group.
  • a resist layer contains two types, a cresol novolak resin and a naphthoquinone diazide derivative, from a viewpoint with wide development latitude.
  • Resin having phenolic hydroxyl group-- examples include a phenol novolac resin and a cresol novolac resin.
  • the phenol novolak resin those having a molar ratio of formaldehyde to phenol of about 0.5 to 1.0 are preferred, and those of about 0.8 to 1.0 are more preferred from the viewpoint of developability and image sticking.
  • the weight average molecular weight of the phenol novolac resin is preferably 300 to 4000, and particularly preferably 400 to 800.
  • the phenol novolac resin may be a derivative thereof.
  • the phenol novolac resin may be used alone or in combination of two or more different weight average molecular weights, and other cresol novolac resins may be used as long as the object of the present invention is not impaired. You may mix and use resin.
  • the content of the phenol novolac resin is preferably 40 to 90% by mass, and more preferably 60 to 80% by mass with respect to the total solid content in the positive photosensitive layer.
  • the cresol novolak resin preferably has a molar ratio of formaldehyde to cresol of about 0.7 to 1.0, more preferably about 0.8 to 1.0.
  • the weight average molecular weight of the cresol novolak resin is preferably 800 to 8,000, more preferably 1000 to 6000.
  • the isomer ratio (ortho / meta / para molar ratio) of the cresol novolak resin is not particularly limited and can be appropriately selected according to the purpose. Is preferably 10 mol% or more, more preferably 20 mol% or more.
  • the said cresol novolak resin may be used individually by 1 type, and can be used as a 2 or more types of mixture. In this case, it may be used by mixing with other resins such as phenol novolac.
  • a derivative of a cresol novolak resin such as a reaction product with naphthoquinone diazide sulfonate may be used as the cresol novolak resin.
  • the amount of the cresol novolac resin is preferably 0.1 ⁇ 10g / m 2, more preferably 0.5 ⁇ 5g / m 2.
  • the naphthoquinonediazide compound is not particularly limited and may be appropriately selected depending on the intended purpose, but it is particularly preferable to use in combination with a cresol novolac resin.
  • the naphthoquinonediazide compound may be a monofunctional compound, a bifunctional or higher functional compound, and a mixture thereof.
  • Examples of the monofunctional naphthoquinonediazide compound include naphthoquinone-4-sulfonic acid chloride or an ester compound obtained by reacting naphthoquinone-5-sulfonic acid chloride with a substituted phenol.
  • an ester compound obtained by reacting naphthoquinone-4-sulfonic acid chloride or naphthoquinone-5-sulfonic acid chloride with a compound having a plurality of phenolic hydroxyl groups is preferable.
  • the compound having a plurality of phenolic hydroxyl groups include polyphenols such as bisphenols, trisphenols and tetraquinosphenols; polyfunctional phenols such as dihydroxybenzene and trihydroxybenzene; bis-type or tris-type dihydroxybenzene or Examples thereof include trihydroxybenzene, asymmetric polynuclear phenol, and a mixture thereof.
  • Examples of the compound having a plurality of phenolic hydroxyl groups include 4-t-butylphenol, 4-isoamylphenol, 4-t-octylphenol, 2-isopropyl-5-methylphenol, 2-acetylphenol, 4-hydroxybenzophenone, 3 -Chlorophenol, 4-benzyloxycarbonylphenol, 4-dodecylphenol, resorcinol, 4- (1-methyl-1-phenylethyl) -1,3-benzenediol, phloroglucinol, 4,4'-dihydroxybenzophenone, Bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-methyl-4-hydroxyphenyl) methane, 2,3,4,4′-tetrahydroxy Benzophenone, 4,4 '-[ 4-hydroxyphenyl) methylene] bis [2-cyclohexyl-5-methylphenol], and the like.
  • naphthoquinonediazide compound examples include 4′-t-octylphenylnaphthoquinonediazide-4-sulfonate, 4′-t-octylphenylnaphthoquinonediazide-5-sulfonate, 4′-benzoylphenylnaphthoquinonediazide-5-sulfonate, , 3,4,4′-tetrahydroxybenzophenone and a reaction product of 1,2-naphthoquinonediazide-5-sulfonic acid chloride. These may be used alone or in combination of two or more.
  • a naphthoquinone diazide compound described in JP-A-4-22955 may be used, and the contents of this publication are incorporated herein.
  • the addition amount of the naphthoquinone diazide compound in the resist layer is preferably 1 to 200 parts by mass, more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the cresol novolac resin.
  • materials described in [0072] to [0083] of Japanese Patent Application Laid-Open No. 2007-24969 may be used as an additive. Incorporated into. Moreover, you may use the material as described in the 2nd preferable aspect of the below-mentioned resist layer for the 1st preferable aspect of a resist layer.
  • the resist layer preferably contains (A) component and (B) a photoacid generator, and (A) component is a polymer having a group in which an acid group is protected by an acid-decomposable group. .
  • the component (A) is preferably a polymer having a group in which an acid group is protected with an acid-decomposable group.
  • the component (A) is more preferably a polymer component including a polymer having an acid structural unit a1 in which a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal.
  • the resist layer may further contain a polymer other than these.
  • the component (A) has an acid constituent unit a1 in which an acid group is protected with an acid-decomposable group, preferably a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal. It can be.
  • an acid group and the acid-decomposable group in the “group in which the acid group is protected with an acid-decomposable group” in the present invention those known as an acid group and an acid-decomposable group can be used, and are not particularly limited.
  • Specific examples of the acid group preferably include a carboxy group and a phenolic hydroxyl group.
  • Examples of the acid-decomposable group include groups that are relatively easily decomposed by an acid (for example, an ester structure of a group represented by the formula (A1) or the formula (A1 ′) described later, a tetrahydropyranyl ester group, or a tetrahydrofuranyl group.
  • An acetal functional group such as an ester group) or a group that is relatively difficult to be decomposed by an acid (for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group). be able to.
  • the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group is a structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group, or a protected carboxy protected with an acid-decomposable group.
  • a structural unit having a group is preferred.
  • the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group is a structural unit having a group in which a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal. preferable.
  • the structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group and the structural unit having a protected carboxy group protected with an acid-decomposable group will be described in order.
  • the structural unit having a protected phenolic hydroxyl group protected by an acid-decomposable group is a structural unit having a protected phenolic hydroxyl group in which the structural unit having a phenolic hydroxyl group is protected by an acid-decomposable group described in detail below. It is.
  • the structural unit having a phenolic hydroxyl group a structural unit in which the hydroxyl group of a structural unit derived from hydroxystyrene or ⁇ -methylhydroxystyrene (for example, a structural unit in a novolak resin) is protected by an acid-decomposable group is used. From the viewpoint of improving the resolution, a polymer having a structural unit represented by the following general formula A1 or general formula A1 ′ is more preferable.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, and R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents a hydrogen atom or a methyl group.
  • R 1 and R 2 when R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferable.
  • R 1 and R 2 are aryl groups, a phenyl group is preferred.
  • R 1 and R 2 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably at least one is a hydrogen atom.
  • R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 1 or R 2 and R 3 are preferably linked to form a cyclic ether.
  • the number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
  • R 4 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group Or an aryl group, and R 11 or R 12 and R 13 may be linked to form a cyclic ether, and each R 14 independently represents a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group, An alkenyl group, an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group or a cycloalkyl group is represented.
  • R 11 and R 12 are alkyl groups, an alkyl group having 1 to 10 carbon atoms is preferable.
  • R 11 and R 12 are aryl groups, a phenyl group is preferred.
  • R 11 and R 12 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably at least one is a hydrogen atom.
  • R 13 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
  • R 11 or R 12 and R 13 may be linked to form a cyclic ether.
  • R 14 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the acid-decomposable group that can be used for the structural unit having a protected phenolic hydroxyl group protected with the acid-decomposable group a known one can be used, and is not particularly limited.
  • a structural unit having a protected phenolic hydroxyl group protected with acetal is preferable from the viewpoint of basic physical properties of the resist layer, particularly sensitivity, pattern shape, and storage stability of the resist layer.
  • the phenolic hydroxyl group is more preferably a protected phenolic hydroxyl group protected in the form of an acetal represented by the following general formula (a1-10) from the viewpoint of sensitivity.
  • the phenolic hydroxyl group is a protected phenolic hydroxyl group protected in the form of an acetal represented by the following general formula (a1-10)
  • the entire protected phenolic hydroxyl group is —Ar—O—CR 101 R 102 (OR 103 ).
  • Ar represents an arylene group.
  • R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, except that R 101 and R 102 are both hydrogen atoms, and R 103 represents an alkyl group.
  • R 101 or R 102 and R 103 may be linked to form a cyclic ether.
  • R 101 and R 102 each independently represent a hydrogen atom or an alkyl group, and R 103 represents an alkyl group.
  • the alkyl group may be linear, branched or cyclic.
  • both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
  • R 101 , R 102 and R 103 represent an alkyl group
  • the alkyl group may be linear, branched or cyclic.
  • the linear or branched alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms.
  • methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
  • the alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group.
  • R 101 , R 102 and R 103 are haloalkyl groups
  • R 101 , R 102 and R 103 are aralkyl groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an ⁇ -methylphenyl group, and a naphthyl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and more preferably a methoxy group or an ethoxy group.
  • the alkyl group when the alkyl group is a cycloalkyl group, the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is linear Alternatively, when it is a branched alkyl group, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent. These substituents may be further substituted with the above substituents.
  • R 101 , R 102 and R 103 can be bonded together to form a ring together with the carbon atoms to which they are bonded.
  • Examples of the ring structure when R 101 and R 102 , R 101 and R 103 or R 102 and R 103 are bonded include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like.
  • any one of R 101 and R 102 is preferably a hydrogen atom or a methyl group.
  • R 103 benzyl
  • Examples of the polymerizable monomer used to form a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected in the form of an acetal include, for example, paragraph No. 0042 of JP2011-215590A. And the like.
  • a 1-alkoxyalkyl protector of 4-hydroxyphenyl methacrylate and a tetrahydropyranyl protector of 4-hydroxyphenyl methacrylate are preferable from the viewpoint of transparency.
  • acetal protecting group for the phenolic hydroxyl group examples include a 1-alkoxyalkyl group, such as a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-n-butoxyethyl group, and a 1-isobutoxyethyl group.
  • 1-alkoxyalkyl group such as a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-n-butoxyethyl group, and a 1-isobutoxyethyl group.
  • the polymerizable monomer used to form the structural unit having a protected phenolic hydroxyl group protected by the acid-decomposable group a commercially available monomer may be used, or a monomer synthesized by a known method may be used. You can also. For example, it can be synthesized by reacting a compound having a phenolic hydroxyl group with vinyl ether in the presence of an acid catalyst. In the above synthesis, a monomer having a phenolic hydroxyl group may be previously copolymerized with another monomer, and then reacted with vinyl ether in the presence of an acid catalyst.
  • the structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group As preferred specific examples of the structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group, the following structural units can be exemplified, but the present invention is not limited thereto.
  • the copolymerization ratio of the structural unit having a protected phenol group protected with an acid-decomposable group in the polymer having the structural unit (a1) having a group protected with an acid-decomposable group is the acid-decomposable group. It is preferably 10 to 50 mol%, more preferably 20 to 40 mol%, and more preferably 25 to 40 mol% based on the polymer containing a structural unit having a protected phenol group protected with. Particularly preferred.
  • all the polymer components are decomposed into structural units (monomer units) and then all the components
  • the ratio of the structural unit (a1) having a protected phenol group in which the acid group is protected with an acid-decomposable group to the number of moles of the unit is preferably 0 to 40 mol%, and preferably 10 to 35 mol%. Is more preferable, and 15 to 30 mol% is particularly preferable.
  • the structural unit having a protected carboxy group protected with an acid-decomposable group is a structural unit in which the carboxy group of the structural unit having a carboxy group has a protected carboxy group protected by an acid-decomposable group described in detail below. It is. There is no restriction
  • a structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule such as an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid, or an unsaturated tricarboxylic acid
  • a structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride a structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule, an ethylenically unsaturated group, and an acid, which are used as the structural unit having a carboxy group.
  • the structural unit (a1-1-2) having both an anhydride-derived structure will be described in turn.
  • ⁇ constituent unit (a1-1-1) derived from unsaturated carboxylic acid having at least one carboxy group in the molecule >>>
  • the unsaturated carboxylic acid used in the present invention as the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule include those listed below. That is, examples of the unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, ⁇ -chloroacrylic acid, cinnamic acid, 2- (meth) acryloyloxyethyl-succinic acid, and 2- (meth) acryloyloxy.
  • Examples thereof include ethyl hexahydrophthalic acid and 2- (meth) acryloyloxyethyl-phthalic acid.
  • Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid.
  • the acid anhydride may be sufficient as unsaturated polyhydric carboxylic acid used in order to obtain the structural unit which has a carboxy group. Specific examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (2- (meth) acryloyloxyalkyl) ester of a polyvalent carboxylic acid, such as succinic acid mono (2-acryloyloxyethyl), succinic acid mono (2-methacryloyloxyethyl), mono (2-acryloyloxyethyl) phthalate, mono (2-methacryloyloxyethyl) phthalate and the like.
  • the unsaturated polyvalent carboxylic acid may be a mono (meth) acrylate of a dicarboxy polymer at both ends, and examples thereof include ⁇ -carboxypolycaprolactone monoacrylate and ⁇ -carboxypolycaprolactone monomethacrylate.
  • unsaturated carboxylic acid acrylic acid 2-carboxyethyl ester, methacrylic acid 2-carboxyethyl ester, maleic acid monoalkyl ester, fumaric acid monoalkyl ester, 4-carboxystyrene and the like can also be used.
  • the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, or an anhydride of an unsaturated polycarboxylic acid may be used.
  • Acrylic acid, methacrylic acid, and 2- (meth) acryloyloxyethyl hexahydrophthalic acid are more preferable.
  • the structural unit (a1-1-1) derived from an unsaturated carboxylic acid or the like having at least one carboxy group in the molecule may be composed of one kind alone or two or more kinds. It may be.
  • the structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride is obtained by reacting a hydroxyl group present in the structural unit having an ethylenically unsaturated group with an acid anhydride.
  • a unit derived from the obtained monomer is preferred.
  • the acid anhydride known ones can be used, and specifically, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, etc.
  • phthalic anhydride, tetrahydrophthalic anhydride and succinic anhydride are preferable from the viewpoint of developability.
  • the reaction rate of the acid anhydride with respect to the hydroxyl group is preferably 10 to 100 mol%, more preferably 30 to 100 mol% from the viewpoint of developability.
  • the acid-decomposable group that can be used for the structural unit having a protected carboxy group protected by the acid-decomposable group is used for a structural unit having a protected phenol group protected by the acid-decomposable group.
  • Possible acid-decomposable groups can be used.
  • a protected carboxy group in which the carboxy group is protected in the form of an acetal is preferable from the viewpoint of basic physical properties of the resist layer, particularly sensitivity and pattern shape, and storage stability of the resist layer.
  • the carboxy group is more preferably a protected carboxy group protected in the form of an acetal represented by the general formula (a1-10) from the viewpoint of sensitivity.
  • the carboxy group is a protected carboxy group protected in the form of an acetal represented by the general formula (a1-10)
  • the entire protected carboxy group is — (C ⁇ O) —O—CR 101
  • the structure is R 102 (OR 103 ).
  • the polymerizable monomer used to form the structural unit having a protected carboxy group represented by the above general formula (a1-10) a commercially available monomer may be used, or one synthesized by a known method Can also be used. For example, it can be synthesized by the synthesis method described in paragraph numbers 0037 to 0040 of JP2011-212494A.
  • the resist layer contains two or more types of the component (A), and a polymer having a structural unit represented by the following general formula A2 ′ as the component (A). Is preferred.
  • R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group.
  • R 31 or R 32 and R 33 may be linked to form a cyclic ether
  • R 34 represents a hydrogen atom or a methyl group
  • X 0 represents a single bond or an arylene group.
  • R 31 and R 32 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferable.
  • R 31 and R 32 are aryl groups, a phenyl group is preferred.
  • R 31 and R 32 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 33 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • R 31 or R 32 and R 33 may be linked to form a cyclic ether, or R 31 or R 32 and R 33 may be linked to form a cyclic ether. Is preferred.
  • the number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
  • R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • X 0 represents a single bond or an arylene group, and a single bond is preferable.
  • a structural unit represented by the following general formula A2 ′′ is more preferable from the viewpoint of further increasing sensitivity.
  • R 121 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 122 to R 128 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 121 is preferably a hydrogen atom or a methyl group.
  • R 122 to R 128 are preferably hydrogen atoms.
  • R represents a hydrogen atom or a methyl group.
  • the copolymerization ratio of the structural unit having a protected carboxy group protected by an acid-decomposable group in the polymer having the structural unit (a1) having a group protected by an acid-decomposable group is the acid-decomposable group. It is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, particularly preferably 30 to 50 mol%, based on the polymer containing a structural unit having a protected carboxy group protected with. Moreover, after decomposing all the polymer components into structural units (monomer units), the structural unit (a1) having a protected carboxy group in which the acid group is protected with an acid-decomposable group with respect to the number of moles of all the structural units. Is preferably 0 to 60 mol%, more preferably 10 to 50 mol%, and particularly preferably 15 to 25 mol%.
  • the component (A) of the resist layer has a structural unit (a3) other than these in addition to the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group. Also good.
  • These other structural units (a3) are a copolymer of the polymer used for the component (A), that is, a polymer having a structural unit (a1) having a group in which an acid group is protected by an acid-decomposable group. It may be included as a component.
  • the acid group is substantially protected with an acid-decomposable group.
  • the polymer having other structural units without including the structural unit (a1) having the group formed may have other structural units (a3).
  • a monomer used as another structural unit (a3) For example, styrenes, (meth) acrylic acid alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated Dicarboxylic acid diesters, bicyclounsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, and other unsaturated compounds be able to.
  • the monomer which becomes another structural unit (a3) can be used individually or in combination of 2 or more types.
  • the structural unit (a3) specifically includes styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, vinylbenzoic acid.
  • styrenes and groups having an aliphatic cyclic skeleton are preferable from the viewpoint of electrical characteristics. Specifically, styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, ⁇ -methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, etc. Can be mentioned.
  • (meth) acrylic acid alkyl ester is preferable as another structural unit (a3) from the viewpoint of adhesion.
  • Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferable.
  • the content of the structural unit (a3) is preferably 60 mol% or less, 50 mol% or less is more preferable, and 40 mol% or less is still more preferable.
  • 0 mol% may be sufficient, it can be set as 1 mol% or more, for example, Furthermore, it can be set as 5 mol% or more. If the numerical value is within the above range, various characteristics of the resist layer are improved.
  • the acid group in the present invention means a proton dissociable group having a pKa (power of Ka; Ka is an acid dissociation constant) of 10 or less.
  • the acid group is usually incorporated into the polymer as a structural unit containing an acid group using a monomer capable of forming an acid group. By including the structural unit containing an acid group in the polymer, the component (A) tends to be easily dissolved in an alkaline developer.
  • the acid group of the structural unit containing an acid group used for the above other structural units those derived from a carboxylic acid group, those derived from a sulfonamide group, those derived from a phosphonic acid group, those derived from a sulfonic acid group
  • examples thereof include those derived from phenolic hydroxyl groups, sulfonamide groups, sulfonylimide groups and the like, and those derived from carboxylic acid groups and / or those derived from phenolic hydroxyl groups are preferred.
  • the structural unit containing an acid group used for the above other structural units is a structural unit obtained by substituting an acid group for a structural unit derived from styrene or a structural unit derived from a vinyl compound, or (meth) acrylic acid. More preferably, it is a structural unit derived from.
  • the other structural unit (a3) contains a structural unit having a carboxy group or a structural unit having a phenolic hydroxyl group.
  • the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group the polymer having a structural unit having a protected phenol group protected with the acid-decomposable group includes the above other structural units ( Among a3), it is preferable to contain a structural unit derived from a phenolic hydroxyl group as a copolymerization component.
  • a polymer having a structural unit having a protected phenol group protected with the acid-decomposable group is hydroxystyrene or ⁇ -methyl. It is more preferable to include a structural unit derived from hydroxystyrene as a copolymerization component, and it is particularly preferable to include a structural unit derived from hydroxystyrene as a copolymerization component.
  • the copolymerization ratio of the structural unit containing an acid group is protected by this acid-decomposable group when the acid group is a phenolic hydroxyl group.
  • the amount of the polymer having a structural unit having a protected phenol group is preferably 50 to 90 mol%, more preferably 60 to 75 mol%.
  • the acid group is a carboxy group, it is preferably 0 to 30 mol%, more preferably 5 to 10 mol%, based on the polymer having a structural unit having a protected phenol group protected with this acid-decomposable group. .
  • the copolymerization ratio of the structural unit containing an ester of an acid group in the polymer having a structural unit having a protected phenol group protected with an acid-decomposable group is a structure having a protected phenol group protected with this acid-decomposable group.
  • the amount is preferably 0 to 30 mol%, more preferably 0 to 10 mol%, particularly preferably 0 mol%, based on the polymer having units.
  • a polymer having a structural unit having a protected carboxy group protected with the acid-decomposable group includes the above other structural units ( Among a3), it is preferable to contain a structural unit derived from a carboxylic acid group and / or an ester thereof as a copolymerization component.
  • a polymer having a structural unit having a protected carboxy group protected by the acid-decomposable group is (meth) acrylic acid, More preferably, a structural unit derived from benzyl (meth) acrylate or 2-hydroxyethyl (meth) acrylate is included as a copolymerization component.
  • the copolymerization ratio of the structural unit containing an acid group is protected by this acid-decomposable group when the acid group is a phenolic hydroxyl group.
  • the amount of the polymer having a constitutional unit having a carboxy group is preferably 50 to 90 mol%, more preferably 60 to 75 mol%. Further, when the acid group is a carboxy group, it is preferably 0 to 30 mol%, more preferably 5 to 10 mol%, based on the polymer having a structural unit having a carboxy group protected by this acid-decomposable group.
  • the copolymerization ratio of the structural unit containing an ester of an acid group in the polymer having a structural unit having a protected carboxy group protected with an acid-decomposable group is a structure having a protected carboxy group protected with this acid-decomposable group.
  • the amount is preferably 10 to 80 mol%, more preferably 30 to 70 mol%, particularly preferably 40 to 60 mol%, based on the polymer having units.
  • the structural unit having a protected carboxy group protected with an acid-decomposable group develops faster (development speed) than the structural unit having a protected phenolic hydroxyl group protected with the acid-decomposable group. Therefore, when it is desired to develop the resist layer rapidly after exposure, a structural unit having a protected carboxy group protected with an acid-decomposable group is preferred. Conversely, when it is desired to slow development, it is preferable to use a structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group.
  • the polymer having the structural unit (a1) having a group in which an acid group is protected by an acid-decomposable group may be one type or two or more types.
  • the resist layer preferably contains two or more types of polymers having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group as the polymer component.
  • the polymer component contains a polymer having a structural unit having a protected phenolic hydroxyl group protected by the acid-decomposable group and a structural unit having a protected carboxy group protected by the acid-decomposable group. It is more preferable to contain a polymer.
  • the resist layer contains two or more kinds of polymers having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group as the polymer component, and the acid group is an acid-decomposable group.
  • the polymer having the structural unit (a1) having a group protected with a it is particularly preferable to contain a polymer having the structural unit represented by the general formula A2 ′ from the viewpoint of increasing sensitivity. That is, in the dry film resist of the present invention, the resist layer contains two or more types of the component (A) and a polymer having a structural unit represented by the general formula A2 ′ as the component (A). It is preferable.
  • the resist layer contains two or more kinds of polymers having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group as the polymer component, and the acid group is an acid-decomposable group.
  • the polymer having the structural unit (a1) having a group protected with at least one of the polymers having the structural unit represented by the general formula A1 or the general formula A1 ′, and the general formula A2 ′ It is particularly preferable to contain a polymer having a structural unit represented from the viewpoint of increasing both sensitivity and resolution.
  • the polymer component contains two or more kinds of the polymer having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group, a protected phenolic hydroxyl group protected with the acid-decomposable group
  • the ratio of the polymer having a structural unit having a structural unit having a structural unit having a protected carboxy group protected by the acid-decomposable group is preferably 10:90 to 100: 0 by mass, It is more preferably 30:70 to 60:40, and particularly preferably 1: 1.
  • the weight average molecular weight of the polymer containing the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group is a polystyrene-equivalent weight average molecular weight, preferably 1,000 to 200,000.
  • the range is preferably 2,000 to 50,000.
  • the ratio (dispersity) between the number average molecular weight and the weight average molecular weight is preferably 1.0 to 5.0, more preferably 1.05 to 3.5.
  • ⁇ (A) Component Production Method >> Various methods for synthesizing the component (A) are also known.
  • a polymerizable monomer mixture containing a polymerizable monomer used to form at least the structural units represented by the above (a1) and (a3) is added to a polymerization initiator in an organic solvent. It can synthesize
  • the resist layer preferably contains the component (A) in a proportion of 50 to 99.9 parts by mass, more preferably 70 to 98 parts by mass with respect to 100 parts by mass of the total solid content.
  • the acid group is substantially protected with an acid-decomposable group.
  • a polymer having other structural unit is included without substantially including the structural unit (a1) having a group in which an acid group is protected by an acid-decomposable group.
  • the blending amount of the polymer is preferably 60% by mass or less, more preferably 40% by mass or less, and still more preferably 20% by mass or less in all polymer components.
  • the polymer having the other structural unit (a3) without substantially including the structural unit (a1) in the resist layer may be included in only one kind or in two or more kinds. .
  • polyhydroxystyrene As a polymer which does not contain these structural units (a1) but has other structural units (a3), for example, polyhydroxystyrene can be used and is commercially available, SMA 1000P, SMA 2000P, SMA 3000P. , SMA 1440F, SMA 17352P, SMA 2625P, SMA 3840F (Sartomer) As described above, manufactured by Toagosei Co., Ltd.), Joncryl 690, Joncryl 678, Joncryl 67, Joncryl 586 (above, manufactured by BASF) and the like can also be used.
  • the resist layer preferably contains (B) a photoacid generator.
  • a photoacid generator also referred to as “component (B)”
  • an acid can be generated by irradiation with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
  • the photoacid generator (B) used in the present invention is preferably a compound that generates an acid in response to an actinic ray having a wavelength of 300 nm or more, preferably 300 to 450 nm.
  • the chemical structure of the photoacid generator is not limited.
  • a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination.
  • the pKa value of the acid generated upon irradiation with radiation is preferably 4.0 or less, more preferably 3.0 or less.
  • the lower limit value is not particularly defined, but can be set to -10.0 or more, for example.
  • Examples of the (B) photoacid generator include ionic photoacid generators and nonionic photoacid generators.
  • nonionic photoacid generators examples include trichloromethyl-s-triazines, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds.
  • the (B) photoacid generator in the resist layer is an oxime sulfonate compound.
  • These photoacid generators can be used alone or in combination of two or more.
  • Specific examples of trichloromethyl-s-triazines and diazomethane derivatives include the compounds described in JP-A 2011-212494, paragraphs 0083 to 0088, the contents of which are incorporated herein.
  • Preferred examples of the oxime sulfonate compound that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following general formula (B1).
  • R 21 represents an alkyl group or an aryl group.
  • the wavy line represents a bond with another group.
  • the alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group or the like). It may be substituted with a cyclic group, preferably a bicycloalkyl group or the like.
  • the aryl group for R 21 is preferably an aryl group having 6 to 11 carbon atoms, and more preferably a phenyl group or a naphthyl group.
  • the aryl group of R 21 may be substituted with a lower alkyl group, an alkoxy group, or a halogen atom.
  • the above compound containing an oxime sulfonate structure represented by the above general formula (B1) is also preferably an oxime sulfonate compound represented by the following general formula (B2).
  • R 42 represents an alkyl group or an aryl group
  • X 10 represents an alkyl group, an alkoxy group, or a halogen atom
  • m4 represents an integer of 0 to 3
  • m4 represents When it is 2 or 3, the plurality of X 10 may be the same or different.
  • the alkyl group as X 10 is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the alkoxy group as X 10 is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • the halogen atom as X 10 is preferably a chlorine atom or a fluorine atom.
  • m4 is preferably 0 or 1.
  • m4 is 1, X 10 is a methyl group, the substitution position of X 10 is the ortho position, R 42 is a linear alkyl group having 1 to 10 carbon atoms, 7, A compound that is a 7-dimethyl-2-oxonorbornylmethyl group or a p-toluyl group is particularly preferable.
  • the compound containing an oxime sulfonate structure represented by the above general formula (B1) is also preferably an oxime sulfonate compound represented by the following general formula (B3).
  • R 43 has the same meaning as R 42 in the general formula (B2), and X 11 represents a halogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents a cyano group or a nitro group, and n4 represents an integer of 0 to 5.
  • R 43 in the general formula (B3) is a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-octyl group, a trifluoromethyl group, a pentafluoroethyl group, or a perfluoro-n-propyl group.
  • Perfluoro-n-butyl group, p-tolyl group, 4-chlorophenyl group or pentafluorophenyl group is preferable, and n-octyl group is particularly preferable.
  • X 1 is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group.
  • n4 is preferably from 0 to 2, particularly preferably from 0 to 1.
  • Specific examples of the compound represented by the general formula (B3) include ⁇ - (methylsulfonyloxyimino) benzyl cyanide, ⁇ - (ethylsulfonyloxyimino) benzyl cyanide, ⁇ - (n-propylsulfonyloxyimino).
  • Benzyl cyanide ⁇ - (n-butylsulfonyloxyimino) benzyl cyanide, ⁇ - (4-toluenesulfonyloxyimino) benzyl cyanide, ⁇ -[(methylsulfonyloxyimino) -4-methoxyphenyl] acetonitrile, ⁇ -[(ethylsulfonyloxyimino) -4-methoxyphenyl] acetonitrile, ⁇ -[(n-propylsulfonyloxyimino) -4-methoxyphenyl] acetonitrile, ⁇ -[(n-butylsulfonyloxyimino) -4- Methoxyphenyl] acetonitrile, ⁇ -[(4 It can be given toluenesulfonyl) -4-methoxyphenyl] acetonitrile.
  • preferred oxime sulfonate compounds include the following compounds (i) to (viii) and the like, and one kind can be used alone, or two or more kinds can be used in combination.
  • Compounds (i) to (viii) can be obtained as commercial products. Moreover, it can also be used in combination with another kind of (B) photo-acid generator.
  • the compound containing an oxime sulfonate structure represented by the above general formula (B1) is also preferably a compound represented by the following general formula (OS-1).
  • R 411 is a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or Represents a heteroaryl group.
  • R 412 represents an alkyl group or an aryl group.
  • X 401 represents —O—, —S—, —NH—, —NR 415 —, —CH 2 —, —CR 416 H—, or —CR 415 R 417 —, wherein R 415 to R 417 are alkyl groups.
  • R 421 to R 424 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an amide group, a sulfo group, a cyano group, Or an aryl group is represented.
  • Two of R 421 to R 424 may be bonded to each other to form a ring.
  • R 421 to R 424 are preferably a hydrogen atom, a halogen atom and an alkyl group, and an embodiment in which at least two of R 421 to R 424 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which all of R 421 to R 424 are hydrogen atoms is more preferable from the viewpoint of sensitivity. Any of the aforementioned functional groups may further have a substituent.
  • the compound represented by the general formula (OS-1) is more preferably a compound represented by the following general formula (OS-2).
  • R 401 , R 402 , R 421 to R 424 are respectively synonymous with those in the formula (OS-1), and preferred examples are also the same.
  • R 401 in the general formula (OS-1) and the general formula (OS-2) is a cyano group or an aryl group is more preferable, and is represented by the general formula (OS-2).
  • R 401 is most preferably a cyano group, a phenyl group, or a naphthyl group.
  • the steric structure (E, Z, etc.) of the oxime or benzothiazole ring may be either one or a mixture.
  • the compound containing the oxime sulfonate structure represented by the above general formula (B1) includes the following general formula (OS-3), the following general formula (OS-4), or the following general formula (OS-5). It is preferable that it is an oxime sulfonate compound represented by these.
  • R 22 , R 25 and R 28 each independently represents an alkyl group, an aryl group or a heteroaryl group
  • R 23 , R 26 and R 29 Each independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom
  • R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group.
  • X 1 to X 3 each independently represents an oxygen atom or a sulfur atom
  • n 1 to n 3 each independently represents 1 or 2
  • m 1 to m 3 each independently represents an integer of 0 to 6 Represents.
  • the alkyl group, aryl group or heteroaryl group in R 22 , R 25 and R 28 may have a substituent.
  • the alkyl group in R 22 , R 25 and R 28 is an alkyl group having 1 to 30 carbon atoms which may have a substituent. Is preferred.
  • the aryl group in R 22 , R 25 and R 28 is an aryl group having 6 to 30 carbon atoms which may have a substituent. preferable.
  • the heteroaryl group in R 1 is preferably a heteroaryl group having 4 to 30 carbon atoms in total which may have a substituent.
  • At least one ring of the heteroaryl group in R 22 , R 25 and R 28 may be a heteroaromatic ring.
  • a heteroaromatic ring and benzene The ring may be condensed.
  • R 23 , R 26 and R 29 are preferably a hydrogen atom, an alkyl group or an aryl group, and more preferably a hydrogen atom or an alkyl group. preferable.
  • one or two of R 23 , R 26 and R 29 present in the compound are an alkyl group, an aryl group or a halogen atom. It is more preferable that one is an alkyl group, an aryl group or a halogen atom, and it is particularly preferable that one is an alkyl group and the rest is a hydrogen atom.
  • the alkyl group for R 23 , R 26 and R 29 is preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent, and 1 to 1 carbon atoms which may have a substituent. More preferred is an alkyl group of 6.
  • the aryl group for R 23 , R 26 and R 29 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • X 1 to X 3 each independently represents O or S, and is preferably O.
  • the ring containing X 1 to X 3 as a ring member is a 5-membered ring or a 6-membered ring.
  • n 1 to n 3 each independently represents 1 or 2, and when X 1 to X 3 are O, n 1 to n 3 are each independently In addition, when X 1 to X 3 are S, it is preferable that n 1 to n 3 are each independently 2.
  • R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group.
  • R 24 , R 27 and R 30 are preferably each independently an alkyl group or an alkyloxy group.
  • the alkyl group, alkyloxy group, sulfonic acid group, aminosulfonyl group and alkoxysulfonyl group in R 24 , R 27 and R 30 may have a substituent.
  • the alkyl group in R 24 , R 27 and R 30 is an alkyl group having 1 to 30 carbon atoms which may have a substituent. It is preferable.
  • the alkyloxy group in R 24 , R 27 and R 30 is an alkyloxy group having 1 to 30 carbon atoms which may have a substituent. Preferably there is.
  • m 1 to m 3 each independently represents an integer of 0 to 6, preferably an integer of 0 to 2, More preferably, it is particularly preferably 0.
  • the substitution of (OS-3) to (OS-5) described in paragraph numbers 0092 to 0109 of JP2011-221494A The preferred range of groups is likewise preferred.
  • the compound containing the oxime sulfonate structure represented by the general formula (B1) is particularly an oxime sulfonate compound represented by any of the following general formulas (OS-6) to (OS-11). preferable.
  • R 301 to R 306 represent an alkyl group, an aryl group, or a heteroaryl group
  • R 307 represents a hydrogen atom or a bromine atom
  • R 308 to R 310 , R 313 , R 316 and R 318 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group
  • R 311 and R 314 each independently represent a hydrogen atom, a halogen atom, a methyl group or a methoxy group
  • R 312 , R 315 , R 317 and R 319 each independently represent a hydrogen atom or a methyl group.
  • oxime sulfonate compounds represented by the general formula (OS-3) to the general formula (OS-5) include compounds described in paragraph numbers 0114 to 0120 of JP2011-221494A. However, the present invention is not limited to these.
  • the nonionic photoacid generator is used in an amount of 0.1 to 100 parts by weight with respect to 100 parts by weight of the total resin components (preferably the total solid content, more preferably the total polymer) in the resist layer. It is preferable to use 10 parts by mass, and it is more preferable to use 0.5 to 10 parts by mass. Two or more types can be used in combination.
  • Examples of the ionic photoacid generator include diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts and the like. Of these, triarylsulfonium salts and diaryliodonium salts are preferred.
  • Triarylsulfonium salts used as an ionic photoacid generator are represented by the following general formula (1).
  • General formula (1) (In the general formula (1), R 505 , R 506 and R 507 each represents an alkyl group or an aromatic group which may have a substituent, and in the case of an alkyl group, they are linked to each other to form a ring.
  • X ⁇ represents a conjugate base.
  • an alkyl group having 1 to 10 carbon atoms is preferable and may have a substituent.
  • the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, tertiary butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, heptyl group and octyl group.
  • a methyl group, an ethyl group, and a tertiary butyl group are preferable.
  • R 505 , R 506 and R 507 are alkyl groups
  • a 5-membered ring (thiacyclopentane) and a 6-membered ring (thiacyclohexane) are preferable.
  • the aromatic group in R 505 , R 506 and R 507 is preferably an aromatic group having 6 to 30 carbon atoms and may have a substituent.
  • Examples of the aromatic group having 6 to 30 carbon atoms include phenyl group, naphthyl group, 4-methoxyphenyl group, 4-chlorophenyl group, 4-methylphenyl group, 4-tertiarybutylphenyl group, 4-phenylthiophenyl group, Examples include 2,4,6-trimethylphenyl group, 4-methoxy-1-naphthyl group, and 4- (4′-diphenylsulfoniophenylthio) phenyl group.
  • the ionic photoacid generator represented by the general formula (1) may be bound by any of R 505 to R 507 to form a multimer such as a dimer.
  • the 4- (4′-diphenylsulfoniophenylthio) phenyl group is an example of a dimer
  • the counter anion in the 4- (4′-diphenylsulfoniophenylthio) phenyl group is the same as X ⁇ . It is.
  • the substituent which the alkyl group and aromatic group in R 505 , R 506 and R 507 may have is preferably an aromatic group, specifically a phenyl group, 4-methoxyphenyl group, 4-chlorophenyl group. 4- (4′-diphenylsulfoniophenylthio) phenyl group is particularly preferred. These substituents may be further substituted with the above substituents.
  • conjugate base in X ⁇ a conjugate base of alkylsulfonic acid, a conjugate base of arylsulfonic acid, BY 4 ⁇ (Y represents a halogen atom, the same applies to the following), PY 6 ⁇ , AsY 6 ⁇ , SbY 6 ⁇ , or a monovalent anion represented by the following general formula (3) or general formula (4) is preferable, and a conjugate base of alkylsulfonic acid, a conjugate base of arylsulfonic acid, PY 6 ⁇ , or A monovalent anion represented by the formula (3) is particularly preferable.
  • conjugate base of alkylsulfonic acid and arylsulfonic acid a conjugate base of alkylsulfonic acid having 1 to 7 carbon atoms is preferable, and a conjugate base of alkylsulfonic acid having 1 to 4 carbon atoms is more preferable.
  • methanesulfonic acid, trifluoromethanesulfonic acid, n-propanesulfonic acid, and heptanesulfonic acid are particularly preferable.
  • conjugate base of aryl sulfonic acid include benzene sulfonic acid, chlorobenzene sulfonic acid, and paratoluene sulfonic acid when expressed in the form of an acid.
  • Y in BY 4 ⁇ , PY 6 ⁇ , AsY 6 ⁇ and SbY 6 — in X ⁇ is preferably a fluorine atom or a chlorine atom, particularly preferably a fluorine atom.
  • R 521 , R 522 and R 523 are each independently an alkyl group having 1 to 10 carbon atoms or an alkyl group having a fluorine atom having 1 to 10 carbon atoms.
  • R 521 and R 522 represent a ring in which the alkylene group having 2 to 6 carbon atoms or the alkylene group having 2 to 6 carbon atoms is bonded to each other.
  • examples of the alkyl group having 1 to 10 carbon atoms in R 521 , R 522 and R 523 include a methyl group, an ethyl group, a butyl group, a tertiary butyl group, A cyclohexyl group, an octyl group, etc. can be mentioned.
  • alkyl group having a fluorine atom having 1 to 10 carbon atoms examples include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a dodecafluoropentyl group, and a perfluorooctyl group.
  • R 521 , R 522 and R 523 are preferably alkyl groups having 1 to 10 carbon atoms and particularly preferably alkyl groups having 1 to 6 carbon atoms.
  • the alkylene group having 2 to 6 carbon atoms includes an ethylene group, a propylene group, and a butylene group. , Pentylene group, hexylene group and the like.
  • Examples of the alkylene group having 2 to 6 carbon atoms include a tetrafluoroethylene group, a hexafluoropropylene group, an octafluorobutylene group, a decafluoropentylene group, and an undecafluorohexylene group. it can.
  • R 521 and R 522 are bonded to each other to form a ring, they are preferably bonded by an alkylene group having a fluorine atom having 2 to 6 carbon atoms, particularly having 2 to 4 carbon atoms. Bonding with an alkylene group having a fluorine atom is preferred.
  • the ionic photoacid generator represented by the general formula (1) is preferably a photoacid generator represented by the following general formula (5).
  • R 510 , R 511 , R 512 and R 513 each independently represents an alkyl group or an aromatic group which may have a substituent, and Ar 3 and Ar 4 are each independently substituted.
  • Alkyl groups and the aromatic groups in R 510, R 511, R 512 and R 513 has the same meaning as the alkyl group and the aromatic group represented by R 505, R 506 and R 507 in formula (1), preferred embodiments are also It is the same. Moreover, the substituent which may have is the same.
  • X 1- and X 2-in the conjugate bases of general formula (1) X - has the same meaning as conjugate bases represented, preferable embodiments thereof are also the same.
  • the divalent aromatic group in Ar 3 and Ar 4 is preferably a phenylene group or a naphthylene group, and particularly preferably a phenylene group.
  • triarylsulfonium salts used as ionic photoacid generators include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoroacetate, 4-methoxyphenyldiphenylsulfonium trifluoromethanesulfonate, 4-methoxyphenyl. Examples thereof include diphenylsulfonium trifluoroacetate, 4-phenylthiophenyldiphenylsulfonium trifluoromethanesulfonate, and 4-phenylthiophenyldiphenylsulfonium trifluoroacetate.
  • TPS-102 TPS-102, 103, 105, 106, 109, 300, 1000, MDS-103, 105, 109, 205, 209, BDS-109, DTS-103, 105, MNPS-109, HDS-109 (above, manufactured by Midori Chemical Co., Ltd.), GSID-26-1, Cyracure UVI-6976 (above, manufactured by BASF).
  • the diaryl iodonium salts used as the ionic photoacid generator are represented by the following general formula (2).
  • General formula (2) (In General Formula (2), R 508 and R 509 each independently represents an aromatic group which may have a substituent, and X ⁇ represents a conjugate base.)
  • the aromatic groups in R 508 and R 509 are synonymous with the aromatic groups represented by R 505 , R 506 and R 507 in General Formula (1), and the preferred embodiments are also the same.
  • X - in the conjugate base of the general formula of (1) X - has the same meaning as conjugate bases represented, preferable embodiments thereof are also the same.
  • the photoacid generator represented by the general formula (2) may be bound by R 508 to R 509 to form a multimer such as a dimer.
  • the 4- (4′-diphenylsulfoniophenylthio) phenyl group is an example of a dimer
  • the counter anion in the 4- (4′-diphenylsulfoniophenylthio) phenyl group is the above-mentioned X ⁇ and It is the same thing.
  • diaryliodonium salts used as ionic photoacid generators include diphenyliodonium trifluoroacetate, diphenyliodonium trifluoromethanesulfonate, 4-methoxyphenylphenyliodonium trifluoromethanesulfonate, 4-methoxyphenylphenyliodonium trioxide.
  • quaternary ammonium salts used as ionic photoacid generators include tetramethylammonium butyltris (2,6-difluorophenyl) borate, tetramethylammonium hexyltris (parachlorophenyl) borate, tetramethylammonium Hexyltris (3-trifluoromethylphenyl) borate, benzyldimethylphenylammonium butyltris (2,6-difluorophenyl) borate, benzyldimethylphenylammonium hexyltris (parachlorophenyl) borate, benzyldimethylphenylammonium hexyltris (3-tri Fluoromethylphenyl) borate and the like.
  • component (B) include the following compounds, but the present invention is not limited thereto.
  • the content of component B in the resist layer is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • desired sensitivity higher sensitivity
  • the transparency of the coating film is easily secured.
  • the addition amount of a nonionic photoacid generator is 1 mass% or less, and the aspect which does not contain a nonionic photoacid generator substantially is preferable.
  • the photosensitive resin composition for forming the resist layer is preferably prepared as a solution in which a predetermined component is dissolved in a solvent (component (D)).
  • a solvent component (D)
  • known solvents can be used, ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, Propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol dialkyl ethers
  • Benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, propylene carbonate and the like can also be added. These solvents can be used alone or in combination of two or more.
  • the solvent that can be used in the present invention is more preferably a combination of two types, propylene glycol monoalkyl ether acetates or dialkyl ethers, diacetates and diethylene glycol dialkyl ethers, or esters and butylene glycol alkyl ethers. It is more preferable to use together with acetates.
  • Component D is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof.
  • Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol An example is methyl-n-propyl ether (boiling point 131 ° C.).
  • Solvents having a boiling point of 160 ° C or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), dipropylene glycol methyl ether acetate.
  • the content of the solvent in the resist layer for forming the resist layer is preferably 50 to 95 parts by weight, and preferably 60 to 90 parts by weight, per 100 parts by weight of the total resin components in the photosensitive resin composition. Is more preferable.
  • the resist layer preferably further contains a sensitizer.
  • the resist layer can contain a sensitizer in order to promote its decomposition in combination with the (B) photoacid generator, and in particular when using a nonionic photoacid generator, It is preferable to contain.
  • the sensitizer absorbs actinic rays or radiation and enters an electronically excited state.
  • the sensitizer in an electronically excited state comes into contact with the photoacid generator, and effects such as electron transfer, energy transfer, and heat generation occur. Thereby, a photo-acid generator raise
  • Inclusion of a sensitizer further improves exposure sensitivity, and uses a nonionic photoacid generator with low visible light absorptivity, or exposure light source is a mixed line of g-line and h-line Is particularly effective.
  • anthracene derivatives As the sensitizer, anthracene derivatives, acridone derivatives, thioxanthone derivatives, coumarin derivatives, base styryl derivatives, and distyrylbenzene derivatives are preferable, and anthracene derivatives are more preferable.
  • Anthracene derivatives include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-dibromoanthracene, 2-ethylanthracene and 9,10-dimethoxyanthracene are preferred.
  • acridone derivative acridone, N-butyl-2-chloroacridone, N-methylacridone, 2-methoxyacridone and N-ethyl-2-methoxyacridone are preferable.
  • thioxanthone derivative thioxanthone, diethylthioxanthone, 1-chloro-4-propoxythioxanthone, and 2-chlorothioxanthone are preferable.
  • coumarin derivatives coumarin-1, coumarin-6H, coumarin-110 and coumarin-102 are preferable.
  • Examples of the base styryl derivative include 2- (4-dimethylaminostyryl) benzoxazole, 2- (4-dimethylaminostyryl) benzothiazole, and 2- (4-dimethylaminostyryl) naphthothiazole.
  • Examples of the distyrylbenzene derivative include distyrylbenzene, di (4-methoxystyryl) benzene, and di (3,4,5-trimethoxystyryl) benzene.
  • sensitizer examples include the following, but the present invention is not limited thereto.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group.
  • the content of the sensitizer in the resist layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymerizable component. Desirable sensitivity can be easily obtained by setting the content of the sensitizer to 0.1 parts by mass or more, and transparency of the coating film can be easily ensured by setting the content to 10 parts by mass or less.
  • the resist layer preferably further contains a basic compound.
  • the basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, quaternary ammonium salts of carboxylic acids, and the like. Specific examples thereof include compounds described in JP-A 2011-212494, paragraphs 0204 to 0207, the contents of which are incorporated herein.
  • aliphatic amine examples include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and the like.
  • ethanolamine dicyclohexylamine, dicyclohexylmethylamine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea (abbreviation CHMETU), and the like.
  • aromatic amine examples include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • heterocyclic amine examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene (abbreviation DBN), 1,8-diazabicyclo [5.3.
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
  • Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
  • the basic compounds that can be used in the present invention may be used alone or in combination of two or more.
  • the content of the basic compound in the resist layer is preferably 0.001 to 3 parts by mass and more preferably 0.005 to 1 part by mass with respect to 100 parts by mass of the total solid content in the resist layer. preferable.
  • the resist layer preferably contains (C) a heterocyclic compound.
  • the heterocyclic compound By adding the heterocyclic compound, the cured film obtained from the resist layer can be made stronger.
  • a heterocyclic compound except a polymer component.
  • Nitrogen-containing monomers and heterocyclic monomers having d electrons such as silicon, sulfur and phosphorus can be added.
  • the addition amount of the heterocyclic compound in the resist layer is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the resist layer. More preferably, it is 1 to 5 parts by mass. By adding in this range, a cured film having excellent mechanical strength can be obtained, and a cured film having excellent chemical resistance can be obtained.
  • a plurality of heterocyclic compounds can be used in combination, and in that case, the heterocyclic compounds are added together to calculate the content.
  • Specific examples of the compound having an epoxy group in the molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin and the like.
  • JP2011-212494 examples thereof include commercially available products described in paragraph No. 0189 of JP2011-212494, such as JER828, JER1007, JER157S70 (manufactured by Mitsubishi Chemical Corporation), JER157S65 (manufactured by Mitsubishi Chemical Holdings Corporation), and the like.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321, EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX- 832, EX-841, EX-911, EX-941, EX-920, EX-931, EX-212L, EX- 14L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-201,
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, aliphatic epoxy, and aliphatic epoxy resin are more preferable, and aliphatic epoxy resin is particularly preferable.
  • the compound containing an oxetanyl group is preferably used alone or mixed with a compound containing an epoxy group.
  • the (C) heterocyclic compound is preferably a compound having an epoxy group from the viewpoint of etching resistance and line width stability.
  • a compound having both an alkoxysilane structure and a heterocyclic structure in the molecule can also be suitably used for the resist layer.
  • Examples thereof include ⁇ -glycidoxypropyltrialkoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrialkoxysilane.
  • ⁇ -glycidoxypropyltrialkoxysilane is more preferred. These can be used alone or in combination of two or more.
  • the resist layer may contain a surfactant.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants. .
  • KP manufactured by Shin-Etsu Chemical Co., Ltd.
  • Polyflow manufactured by Kyoeisha Chemical Co., Ltd.
  • F-Top manufactured by JEMCO
  • MegaFac manufactured by DIC Corporation
  • Florard Suditomo 3M
  • Surflon manufactured by Asahi Glass Co., Ltd.
  • PolyFox manufactured by OMNOVA
  • SH-8400 Toray Dow Corning Silicone
  • the surfactant contains the structural unit A and the structural unit B represented by the following general formula (I-1), and is converted to polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent.
  • THF tetrahydrofuran
  • a copolymer having a weight average molecular weight of 1,000 or more and 10,000 or less can be mentioned as a preferred example.
  • R 401 and R 403 each independently represent a hydrogen atom or a methyl group
  • R 402 represents a linear alkylene group having 1 to 4 carbon atoms
  • R 404 represents a hydrogen atom or C represents an alkyl group having 1 to 4 carbon atoms
  • L represents an alkylene group having 3 to 6 carbon atoms
  • p and q are mass percentages representing a polymerization ratio
  • p is 10 mass% to 80 mass%.
  • a numerical value is represented, q represents a numerical value of 20% by mass or more and 90% by mass or less, r represents an integer of 1 to 18 and s represents an integer of 1 to 10)
  • L is preferably a branched alkylene group represented by the following general formula (I-2).
  • R 405 in the general formula (I-2) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability to the coated surface. A number 2 or 3 alkyl group is more preferred.
  • the weight average molecular weight of the copolymer is more preferably from 1,500 to 5,000.
  • the addition amount of the surfactant in the resist layer is preferably 10 parts by mass or less, more preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the total solid content in the resist layer. More preferably, it is 0.01 to 3 parts by mass.
  • the positive photosensitive material used in the present invention preferably contains a radiation absorber.
  • a radiation absorber an ultraviolet absorber is preferable.
  • An ultraviolet absorber exhibiting a so-called photobleaching property in which the absorbance is decreased by ultraviolet absorption is more preferably used.
  • photobleachable materials such as naphthoquinonediazide derivatives, nitrones and diazonium salts (for example, Japanese Patent Publication No. 62-40697, M. Sasano et al., SPIE Symp. Proc., 631, 321 (1986)). Described compounds).
  • the radiation absorber is used for the purpose of averaging the light intensity distribution in the resist layer, and brings about the so-called internal enhancement type CEL (Contrast Enhancement Lithography) effect, thereby making the pattern rectangular and pattern linearity (line edge). Roughness can be improved (see Semiconductor Process Materials and Chemicals, supervised by Masanori Sakamoto, CM Publishing (2006)).
  • CEL Contrast Enhancement Lithography
  • the resist layer further includes metal oxide particles, cross-linking agents other than heterocyclic compounds, alkoxysilane compounds, antioxidants, dispersants, acid proliferators, development accelerators, conductive fibers, and colorants.
  • metal oxide particles such as plasticizers, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, and organic or inorganic precipitation inhibitors can be added.
  • Preferred embodiments of the other components are described in [0165] to [0184] of JP-A-2014-85643, the contents of which are incorporated herein.
  • the amount of the compound having an ethylenically unsaturated bond in the resist layer is preferably 0% by mass from the viewpoint of resolution. Note that 0 mass% may include an aspect that is contained in a minute amount (for example, 1 mass% or less in the resist layer) to the extent that the resolution effect is not impaired.
  • the thickness of the resist layer is preferably 0.5 to 10 ⁇ m.
  • the thickness of the resist layer is more preferably 0.8 to 5 ⁇ m, and particularly preferably 1.0 to 3.0 ⁇ m.
  • a photosensitive resin composition for forming a resist layer can be prepared by mixing each component at a predetermined ratio and by any method, stirring and dissolving.
  • a resin composition can be prepared by mixing each component with a predetermined ratio after preparing each solution in advance in a solvent.
  • the composition solution prepared as described above can be used after being filtered using a filter having a pore size of 0.2 ⁇ m or the like.
  • the dry film resist of the present invention has a light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer between the temporary support and the resist layer.
  • the light absorption layer preferably has a transmittance of 60% or less, and more preferably has a transmittance of 55% or less.
  • the light absorption layer will be described.
  • the light absorption layer is provided between the resist layer and the temporary support in order to absorb unnecessary light out of the exposure light diffused by the temporary support and suppress resist exposure.
  • the light absorption layer preferably contains a light absorber and a resin.
  • the light absorber is selected from ultraviolet absorbers, dyes, and the like, and may or may not have a so-called photobleaching property that absorbs exposure light and decreases the absorbance.
  • Photobleaching materials include photobleachable materials such as naphthoquinone diazide derivatives, nitrones and diazonium salts (for example, Japanese Patent Publication No. 62-40697, M. Sasano et al., SPIE Symp. Proc., 631, 321 (1986). ), Stilbazolium salts, aryl nitroso salts, formazan dyes, oxonol dyes, and the like.
  • formazan dyes such as nitro blue tetrazolium, MTT formazan, 1,3,5-triphenyl formazan and INT formazan
  • oxonol dyes such as oxonol yellow K and oxonol 805 blue.
  • a known ultraviolet absorber or the like can be used as a light absorber that is not photobleached.
  • Representative structures include benzotriazole, benzophenone, triazine, cyanoacrylate, oxanilide, formamidine, and the like.
  • More specific examples include benzotriazoles such as TINUVIN 384, 900, and 928 (all manufactured by BASF), ADK STAB LA-29 and LA-36 (all manufactured by ADEKA), and TINUVIN 400 and 460 (all manufactured by BASF). And benzophenone compounds such as Adeka Stub 1413 (manufactured by ADEKA) and the like.
  • the resin constituting the light absorption layer is preferably an alkali-soluble resin because both the resist and the resist must be lost by alkali development.
  • the alkali-soluble resin is preferably a linear organic polymer and is soluble in an organic solvent and can be developed with a weak alkaline aqueous solution.
  • linear organic high molecular polymer examples include polymers having a carboxylic acid in the side chain, such as JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, The methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer described in JP-A-59-53836 and JP-A-59-71048 Examples thereof include polymers and partially esterified maleic acid copolymers. Similarly, acidic cellulose derivatives having a carboxylic acid in the side chain are useful.
  • alkali-soluble resins include those obtained by adding an acid anhydride to a polymer having a hydroxyl group, polyhydroxystyrene resins, polysiloxane resins, poly (2-hydroxyethyl (meth) acrylate), Polyvinyl pyrrolidone, polyethylene oxide, polyvinyl alcohol and the like are also useful.
  • the linear organic high molecular polymer may be a copolymer of hydrophilic monomers.
  • Examples include alkoxyalkyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerol (meth) acrylate, (meth) acrylamide, N-methylol acrylamide, secondary or tertiary alkyl acrylamide, dialkylaminoalkyl (meth) Acrylate, morpholine (meth) acrylate, N-vinylpyrrolidone, N-vinylcaprolactam, vinylimidazole, vinyltriazole, methyl (meth) acrylate, ethyl (meth) acrylate, branched or linear propyl (meth) acrylate, branched or straight Examples include chain butyl (meth) acrylate or phenoxyhydroxypropyl (meth) acrylate.
  • substances such as surfactants, antioxidants, antifoaming agents, development accelerators, and plasticizers may be added to the light absorption layer to improve the properties.
  • the dry film resist can be produced according to the method for producing a photosensitive transfer material described in paragraphs [0094] to [0098] of JP-A-2006-259138.
  • the resist layer is preferably formed using a positive photosensitive resin composition.
  • a solution addition liquid for thermoplastic resin layer
  • a prepared solution prepared by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto this thermoplastic resin layer and dried.
  • an intermediate layer is laminated, and a resist layer coating solution prepared using a solvent that does not dissolve the intermediate layer is further applied onto the intermediate layer, dried, and then the resist layer is laminated. be able to.
  • the circuit wiring manufacturing method of the present invention is a circuit wiring manufacturing method including the following steps (a), (b), (c) and (d).
  • pattern exposure pattern means “pattern exposure pattern shape” unless otherwise specified.
  • the pattern exposure pattern is developed on the resist layer after pattern exposure, it means that a resist pattern having the same shape as the “pattern exposure pattern shape” used for pattern exposure is formed.
  • a pattern exposure pattern is formed on a circuit forming substrate by etching, this means that a conductive layer pattern having the same shape as the “pattern exposure pattern shape” used for pattern exposure is formed.
  • the circuit wiring of the present invention is suitable for an input device, particularly for a touch panel.
  • the circuit wiring is preferably a circuit wiring of the input device.
  • the input device is preferably a touch panel.
  • the step (b) is the following step (b1), (C) The process is the following (c1) process, (D) The process is the following (d1) process, Further, the following steps (e1), (f1) and (g) are preferably included from the viewpoint of forming a circuit wiring including a conductive layer having two types of patterns;
  • B1 A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
  • C1 A development step of peeling the temporary support and developing to form a first pattern on the resist layer;
  • E1 A pattern exposure step of exposing the contact pattern with the second pattern without removing the resist layer to which the first pattern is transferred in the step (c1);
  • F1 A development step of developing and forming a second pattern different from the first pattern on the resist layer;
  • G A pattern exposure step of exposing the
  • the step (b) is the following step (b1), (C) The process is the following (c1) process, (D) The process is the following (d2) process, Furthermore, it is preferable to include the step (e2), the step (f2), and the step (g) from the viewpoint of forming a circuit wiring including a conductive layer having two types of patterns and more easily suppressing process contamination;
  • (B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
  • C1 A development step of peeling the temporary support and developing to form a first pattern on the resist layer;
  • D2) After transferring the first pattern to the circuit formation substrate (substantially the conductive layer of the circuit formation substrate) by etching, without removing the resist layer on which the first pattern was formed in the step (c1) An etching step of attaching a cover film on the remaining resist layer;
  • (E2) A pattern exposure step of exposing the contact pattern with the second pattern without peeling off the
  • the base material has conductive layers on both surfaces, and the base material is sequentially or simultaneously formed on the conductive layers formed on both surfaces.
  • the capacitance type input device has a base material (also referred to as a front plate) and at least the following elements (2) to (5) on the non-contact surface side of the base material: (2), (3) It is preferable that at least one of (5) is formed by the circuit wiring manufacturing method of the present invention.
  • the first electrode patterns are electrically insulated from the first electrode patterns, and the first A plurality of second electrode patterns including a plurality of pad portions and connection portions formed extending in a direction crossing one direction; and (4) electrically connecting the first electrode pattern and the second electrode pattern.
  • Electrically insulating layer (5) electrically connected to at least one of the first electrode pattern and the second electrode pattern, and having a different conductivity from the first electrode pattern and the second electrode pattern
  • (A) A laminating process for laminating the dry film resist of the present invention on a circuit forming substrate having a base material and a conductive layer will be described.
  • Lamination (transfer, bonding) of the dry film resist onto the circuit forming substrate is carried out by applying the resist layer on the circuit forming substrate (preferably on the conductive layer, and when there are two or more conductive layers, the first layer of the conductive layer is formed. It is preferably carried out using a method of layering, pressing and heating on the layer).
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
  • the substrate is preferably a glass substrate or a film substrate, and more preferably a film substrate.
  • the substrate is particularly preferably a sheet-shaped resin composition.
  • a base material is transparent.
  • transparent means that the average transmittance of visible light having a wavelength of 400 nm to 700 nm is 80% or more. Therefore, the transparent layer refers to a layer having an average transmittance of visible light having a wavelength of 400 nm to 700 nm of 80% or more.
  • the average transmittance of visible light having a wavelength of 400 nm to 700 nm of the transparent layer is preferably 90% or more.
  • the refractive index of the substrate is particularly preferably from 1.50 to 1.52.
  • the substrate may be composed of a transparent substrate such as a glass substrate.
  • tempered glass represented by Corning gorilla glass can be used.
  • materials used in JP 2010-86684 A, JP 2010-152809 A, and JP 2010-257492 A can be preferably used.
  • a film substrate is used as the substrate, it is more preferable to use a material that is not optically distorted or highly transparent. Specific examples of the material include polyethylene terephthalate (PET) and polyethylene naphthalate. , Polycarbonate, triacetyl cellulose, and cycloolefin polymer.
  • Conductive layer As a conductive layer, the arbitrary conductive layers used for general circuit wiring and touch-panel wiring can be mentioned. Examples of the material for the conductive layer include metals and metal oxides.
  • the multilayer conductive layers may be made of the same material or different materials, but preferably contain different materials.
  • the multilayer conductive layers contains a metal oxide.
  • the metal oxide used in this case include metal oxide films such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
  • the metal oxide will be described later.
  • the conductive layer is preferably a material for a first electrode pattern, a second electrode pattern, and another conductive element described below, which are used in a capacitive input device described later. Other preferred modes of the conductive layer will be described later in the description of the capacitive input device.
  • step (b) A pattern exposure process for exposing a contact pattern with a pattern for pattern exposure without peeling off the temporary support of the dry film resist will be described.
  • the step (b) is preferably a pattern exposure step in which the contact pattern is exposed with the first pattern without peeling the temporary support of (b1) dry film resist.
  • the exposure step As examples of the exposure step, the development step (c) described later, and other steps, the method described in paragraphs [0035] to [0051] of JP-A-2006-23696 is preferably used in the present invention. Can be used.
  • the resist layer formed on the circuit forming substrate preferably on the conductive layer, or on the first layer of the conductive layer if there are two or more conductive layers
  • temporarily support examples include a method in which a predetermined mask is arranged at a position in direct contact with the body, and then a contact pattern is exposed from a light source above the mask through the mask and a temporary support.
  • the detailed arrangement and specific size of the pattern are not particularly limited.
  • a display device for example, a touch panel
  • the input device of the present invention at least a part of the pattern (particularly the electrode pattern of the touch panel and the extraction wiring portion).
  • the light source for the exposure a light source capable of irradiating light in a wavelength region (for example, 365 nm, 405 nm, etc.) that allows the exposed portion of the resist layer to be dissolved in the developer is appropriately selected and used. it can. Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned.
  • the exposure amount is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
  • PEB Post Exposure Bake
  • Pattern exposure is performed before the temporary support is peeled off. Thereafter, the support may be peeled off. Exposure through a mask or digital exposure using a laser or the like may be used. The pattern exposure is preferably exposure through a mask. When exposure is performed through a mask, the pattern exposure pattern is also referred to as a mask pattern.
  • step (c) A development process for forming a pattern exposure pattern on the resist layer after peeling off the temporary support will be described.
  • the step (c) is preferably a development step (c1) in which the temporary support is peeled and then developed to form a first pattern on the resist layer.
  • the development step is a step of developing the pattern-exposed resist layer.
  • the development can be performed using a developer.
  • the developer is not particularly limited, and known developers such as those described in JP-A-5-72724 can be used.
  • the developer preferably has a development behavior in which the resist layer has a dissolution type.
  • a developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable, but is further miscible with water.
  • a small amount of an organic solvent having Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ⁇ -caprolactone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ⁇ -caprolactam, N-methylpyrrolidone and the like.
  • the concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
  • a known surfactant can be further added to the developer.
  • the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
  • the development method may be any of paddle development, shower development, shower & spin development, dip development, and the like.
  • the shower development will be described.
  • the exposed portion can be removed by spraying a developing solution onto the resist layer after exposure.
  • a cleaning solution having a low solubility of the resist layer may be sprayed by a shower or the like before development to remove the thermoplastic resin layer or the intermediate layer.
  • the temperature of the developer is preferably 20 ° C. to 40 ° C.
  • the pH of the developer is preferably 8 to 13.
  • it may have a post-baking step of heat-treating the pattern including the resist layer obtained by the development, and obtained by the development after the step of removing the thermoplastic resin layer and the intermediate layer.
  • a step of performing post-baking for heat-treating the pattern made of the resist layer may be included.
  • elimination of the protecting group using an acid in the resist layer can be promoted.
  • protecting the carboxy group with an acetal reduces the activation energy for protecting group elimination, and This is preferable from the viewpoint of avoiding heat treatment.
  • Step (d) includes (d1) etching to form a first pattern on the circuit formation substrate, or (d2) etching to form the first pattern on the circuit formation substrate and then the remaining resist. It is preferable that it is an etching process which affixes a cover film on a layer.
  • D2 After the first pattern is formed on the circuit forming substrate by etching, the cover film is formed on the remaining resist layer without peeling off the resist layer on which the first pattern is formed in the above-described step (c1). In the etching step of attaching the film, it is preferable to use again the temporary support once peeled off in the step (c) as the cover film.
  • etching For the etching, a known etching method such as the method described in paragraphs [0048] to [0054] of JP 2010-152155 A can be applied.
  • an etching method there is a commonly performed wet etching method of dipping in an etching solution.
  • an acid type or an alkaline type may be appropriately selected according to an object to be etched.
  • acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid; mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, etc. Is done.
  • the acidic component a combination of a plurality of acidic components may be used.
  • alkaline type etching solutions include aqueous solutions containing only alkali components such as salts of organic amines such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, tetramethylammonium hydroxide; alkaline components and potassium permanganate, etc.
  • alkali components such as salts of organic amines such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, tetramethylammonium hydroxide; alkaline components and potassium permanganate, etc.
  • a mixed aqueous solution of a salt of A combination of a plurality of alkali components may be used as the alkali component.
  • the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower.
  • the resist layer used as an etching mask (etching pattern) in the present invention preferably exhibits particularly excellent resistance to acidic and alkaline etching solutions in the above temperature range. Therefore, the resist layer is prevented from being peeled off during the etching process, and the portion where the resist layer does not exist is selectively etched.
  • a cleaning process and / or a drying process may be performed as necessary to prevent line contamination.
  • the cleaning process is performed by cleaning the substrate with pure water at room temperature for 10 to 300 seconds.
  • an air blow is used and an air blow pressure (about 0.1 to 5 kg / cm 2 ) is appropriately set. Adjust and do.
  • step (f1) a development step of developing and forming a second pattern different from the first pattern on the resist layer; and (f2) the cover film attached in the step (d2) is peeled off and then developed.
  • a developing process for forming a second pattern different from the first pattern on the resist layer will be described.
  • the development in step (f1) and (f2) can use the same method as the development in step (c).
  • step (G) An etching process for forming the second pattern on the circuit formation substrate by etching will be described.
  • the same method as the etching in the step (d) can be used.
  • step (g) it is preferable to selectively etch fewer conductive layers than in step (d), depending on the desired pattern.
  • FIG. 1 shows an example of a method for manufacturing a circuit wiring for a touch panel when forming a circuit wiring including a conductive layer having at least two types of patterns.
  • Step (Xf) is described in the example of the method for manufacturing the circuit wiring for touch panel shown in FIG. 1, in addition to the (Xa) process, the (Xb) process, the (Xc) process, the (Xd) process, the (Xe) process, and the (Xz) process.
  • Step (Xf) is described in addition to the (Xa) process, the (Xb) process, the (Xc) process, the (Xd) process, the (Xe) process, and the (Xz) process.
  • step (Xb) All the resist layers to be removed are removed to form a circuit wiring including at least two types of conductive layers. That is, a circuit wiring including a plurality of types of conductive layers can be formed by a single resist formation.
  • step (Xb) pattern exposure and development are performed to make the resist layer the first pattern.
  • step (Xc) the first layer to the i-th layer of the conductive layer in the region where the resist layer having the first pattern in the step (Xb) is not formed are etched.
  • step (Xf) forms another pattern. In the configuration shown in FIG.
  • the pattern from the first layer to the i-th layer of the conductive layer obtained in the step (Xc) is described as seven columns, but the third, fourth, and fifth columns from the right Is a different pattern in the etching in the (Xe) process, and the first, second and sixth pillars from the right also have a different pattern in the etching in the (Xf) process, and the final (Xz)
  • the seventh column from the right is a pattern from the first layer to the i-th layer of the conductive layer.
  • step (Xd) the resist layer remaining in the step (Xb) is subjected to pattern exposure and development in a pattern different from that of the remaining resist layer, so that the resist layer becomes a second pattern.
  • step (Xe) the first to jth layers of the conductive layer in the region where the resist layer having the second pattern formed in the (Xd) process is not formed are etched.
  • the conductive layers from the first layer to the x ⁇ 1th layer (jth layer) are removed by etching, Only the x layer is left.
  • the (Xf) process can be repeated as many times as necessary.
  • step (Xz) all remaining resist layers are removed to form circuit wiring including conductive layers having at least two types of patterns.
  • FIG. 1 shows that the entire resist layer was finally removed after the (Xz) step.
  • Step (Xa) (Xa) Step: The first conductive layer is formed on a circuit-formed substrate having a base material and conductive layers from the x-th layer to the first layer in order from one surface of the base material, where x is an integer of 2 or more. A laminating process for laminating a resist layer in which a portion exposed on the layer is dissolved in a developer will be described.
  • the step is preferably a step of laminating the resist layer of the dry film resist from which the protective film has been removed on the first layer of the conductive layer.
  • FIG. 2 shows a schematic cross-sectional view of an example of circuit wiring for a touch panel, which is one of the embodiments of the present invention obtained when x is 2.
  • the first electrode pattern 3 is formed on the substrate 1
  • another conductive element 6 is formed on the first electrode pattern.
  • the circuit wiring for the touch panel shown in FIG. 2 has two types of patterns: a conductive layer laminate in which another conductive element is formed with the first electrode pattern 3 and a conductive layer having only the first electrode pattern 3.
  • the circuit wiring includes a conductive layer.
  • FIG. 3 shows the circuit wiring for the touch panel in FIG. In the example of the circuit wiring for the touch panel shown in FIG. 3, the dotted line portion in FIG.
  • the conductive layer having at least one type of pattern includes a conductive layer stack of two or more layers sharing the same circuit pattern. Is preferred.
  • Step (Xb) Process (Xb): A pattern exposure and development process in which a resist layer is formed into a first pattern by pattern exposure and development on a circuit-formed substrate on which a resist layer is formed will be described.
  • the pattern exposure and development in the step (Xd) can use the same methods as the pattern exposure and development in the steps (b) and (c).
  • Step (Xc) (Xc) Process: Etching is performed from the first layer to the i-th layer of the conductive layer in the region where the resist layer having the first pattern in the (Xb) process is not formed, where i is an integer of 1 to x.
  • the etching process will be described.
  • the same method as the etching process in the process (d) can be used.
  • Step (Xd) Process (Xd): The pattern exposure and development process in which the resist layer remaining in the process (Xb) is subjected to pattern exposure and development in a pattern different from the remaining resist layer to make the resist layer a second pattern will be described.
  • the pattern exposure and development in the step (Xd) can use the same methods as the pattern exposure and development in the step (Xb).
  • Step (Xe) (Xe) Process: Etching is performed from the first layer to the jth layer of the conductive layer in the region where the resist layer having the second pattern in the (Xd) process is not formed, where j is an integer of 1 or more and less than i.
  • the etching process will be described. The same method as the etching in the (Xc) process can be used for the etching in the (Xe) process.
  • step (Xe) it is preferable to selectively etch fewer conductive layers than in step (Xc), depending on the desired pattern.
  • Step (Xf) It is preferable that the method for manufacturing circuit wiring further includes the following step (Xf). Step (Xf): pattern exposure and development of the remaining resist layer in a pattern different from the remaining resist layer, and any less than j from the first layer of the conductive layer in the region where the resist layer is not formed after development Pattern exposure and development process in which the conductive layer is patterned by etching up to the layer.
  • the step (Xf) will be described.
  • the number of repetitions of the step (Xf) is not particularly limited, and can be repeated according to the desired pattern shape. Among these, it is preferable that the number of repetitions of the (Xf) step is one.
  • the (Xf) step includes the following (Xf1) step and (Xf2) step, and includes a conductive layer having at least three types of patterns.
  • (Xf1) A pattern exposure and development process in which the resist layer remaining in the (Xe) process is subjected to pattern exposure and development in a pattern different from the remaining resist layer, and the resist layer is used as a third pattern;
  • (Xf2) Pattern exposure in which k is an integer of 1 or more and less than j, and etching is performed from the first layer to the k-th layer of the conductive layer in the region where the resist layer formed as the third pattern in the step (f1) is not formed And development process.
  • Other preferred embodiments of the step (Xf) are the same as those in the steps (Xd) and (Xe).
  • the method of removing by a chemical process can be mentioned.
  • Examples of the method for removing the resist layer include a method of immersing a substrate having a resist layer or the like in a stripping solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes.
  • the resin pattern used as an etching mask may exhibit excellent chemical resistance at 45 ° C.
  • the stripping solution examples include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. What was melt
  • dissolved in this mixed solution is mentioned. You may peel by the spray method, the shower method, the paddle method etc. using said peeling liquid.
  • the circuit wiring of the present invention is a circuit wiring manufactured by the circuit wiring manufacturing method of the present invention.
  • the circuit wiring of the present invention is preferably a touch panel circuit wiring. A preferable aspect of the circuit wiring for the touch panel will be described later in the description of the capacitive input device.
  • the input device of the present invention is an input device using the circuit wiring of the present invention.
  • the input device is preferably a capacitive touch panel.
  • the display device of the present invention includes the input device of the present invention.
  • the display device of the present invention is preferably an image display device.
  • a capacitive input device which is a preferred embodiment of the input device and display device of the present invention, and an image display device including this capacitive input device as a constituent element are “latest touch panel technology” (July 6, 2009). (Published by Techno Times Co., Ltd.), Yuji Mitani, Yoshio Itakura, "Technology and Development of Touch Panel” (CMC Publishing, 2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292 The configuration disclosed in the above can be applied.
  • FIG. 9 is a cross-sectional view showing the configuration of the capacitive input device.
  • the capacitive input device 10 includes a base material 1, a mask layer 2, a first electrode pattern 3, a second electrode pattern 4, an insulating layer 5, and another conductive element 6. , And a transparent protective layer 7.
  • the side on which each element of the base material 1 is provided is referred to as a non-contact surface.
  • input is performed by bringing a finger or the like into contact with the contact surface of the substrate 1 (the surface opposite to the non-contact surface).
  • the base material may be referred to as a “front plate”.
  • a mask layer 2 is provided on the non-contact surface of the substrate 1.
  • the mask layer 2 is a frame-like pattern around the display area formed on the non-contact surface side of the base material 1 (for example, the touch panel front plate), and is formed so as to hide the lead wiring and the like.
  • the capacitive input device 10 may be provided with a mask layer 2 that covers a partial region of the substrate 1.
  • the base material 1 can be provided with an opening in part. A mechanical switch that operates by pressing can be installed in the opening.
  • a plurality of first electrode patterns 3 formed by extending a plurality of pad portions in the first direction via connection portions, and the first electrode pattern 3 and the electric
  • a plurality of second electrode patterns 4 including a plurality of pad portions and connection portions formed so as to extend in a direction intersecting the first direction, and the first electrode pattern 3 and the second electrode pattern
  • An insulating layer 5 that electrically insulates the electrode pattern 4 is formed.
  • the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 to be described later can be made of a transparent conductive metal oxide film such as ITO or IZO, for example.
  • the conductive film examples include metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as ITO, IZO, and SiO 2 .
  • the film thickness of each element can be 10 to 200 nm.
  • the amorphous ITO film can be changed to a polycrystalline ITO film, and the electrical resistance can be reduced.
  • the first electrode pattern 3 and the second electrode pattern 4 are preferably formed using a resist layer as an etching resist (etching pattern).
  • etching pattern a known method can be used in addition to photolithography using a resist including the resist layer used in the present invention.
  • At least one of the first electrode pattern 3 and the second electrode pattern 4 is disposed across both the non-contact surface of the base material 1 and the surface of the mask layer 2 opposite to the base material 1. be able to.
  • FIG. 9 shows an aspect in which the second electrode pattern 4 is disposed across both the non-contact surface of the substrate 1 and the surface of the mask layer 2 opposite to the substrate 1. Yes.
  • the first electrode pattern and the second electrode pattern 4 will be described. 7 and 8 are also explanatory diagrams showing examples of the first electrode pattern and the second electrode pattern.
  • the first electrode pattern is formed such that the pad portion 3a extends in the first direction via the connection portion 3b.
  • the second electrode pattern 4 is electrically insulated by the first electrode pattern and the insulating layer 5 and is formed to extend in a direction intersecting the first direction (second direction). It is composed of a plurality of pad portions.
  • the pad portion 3a and the connection portion 3b may be manufactured integrally, or only the connection portion 3b is manufactured, and the pad portion 3a and the second electrode are formed.
  • the pattern 4 may be integrally formed (patterned).
  • each layer is formed such that the first electrode pattern 3 and the second electrode pattern 4 are electrically insulated by the insulating layer 5.
  • another conductive element 6 is provided on the surface of the mask layer 2 opposite to the base 1. Another conductive element 6 is electrically connected to at least one of the first electrode pattern 3 and the second electrode pattern 4 and is different from the first electrode pattern 3 and the second electrode pattern 4. Is an element.
  • FIG. 9 shows a diagram in which another conductive element 6 is connected to the second electrode pattern 4.
  • the transparent protective layer 7 which covers all of each component is installed.
  • the transparent protective layer 7 may be configured to cover only a part of each component.
  • the insulating layer 5 and the transparent protective layer 7 may be made of the same material or different materials.
  • a method for patterning the insulating layer a known method such as ink jet or screen can be used in addition to the photolithography method.
  • At least one of the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 is formed by etching a resist layer (etching pattern). It is preferable to form by etching using.
  • at least one element of the black mask layer 2, the insulating layer 5, and, if necessary, the transparent protective layer 7 also has a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. It is also preferable to form using a film.
  • At least one of the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 is preferably formed by etching using a resist layer as an etching resist (etching pattern). .
  • etching pattern an etching resist
  • an etching pattern is formed by exposure and development using a resist layer having an etching photocurable resin layer as the photocurable resin layer on the transparent electrode layer. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first electrode pattern 3 and the like can be formed.
  • the surface of the substrate 1 On the portion where the black mask layer 2 is provided, at least an inorganic insulating layer is provided, and the photocurable resin layer containing the conductive material is transferred onto the non-contact surface of the substrate 1 or onto the inorganic insulating layer. It can be formed using a method such as (laminate).
  • the mask layer 2, the insulating layer 5, and the transparent protective layer 7 can be formed by transferring a photocurable resin layer to the substrate 1 using a photosensitive film.
  • the black photocurable resin layer is transferred onto the surface of the substrate 1 using a photosensitive film having a black photocurable resin layer as the photocurable resin layer.
  • the insulating layer 5 is formed, the surface of the substrate 1 on which the first or second electrode pattern is formed using a photosensitive film having an insulating photocurable resin layer as the photocurable resin layer. It can be formed by transferring a photocurable resin layer to the film.
  • the transparent protective layer 7 is formed, a photocurable resin layer is used on the surface of the substrate 1 on which each element is formed using a photosensitive film having a transparent photocurable resin layer as the photocurable resin layer. It can be formed by transferring.
  • MATHF 2-tetrahydrofuranyl methacrylate
  • MAEVE 1-ethoxyethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • PHS parahydroxystyrene
  • PHS-EVE 1-ethoxyethyl protector of parahydroxystyrene
  • PHS-THF 2-tetrahydrofuranyl protector of parahydroxystyrene
  • PGMEA propylene glycol monomethyl ether acetate
  • ⁇ Transmittance of temporary support or light absorption layer> A transmission spectrum of a light absorption layer sample prepared by peeling the temporary support from a small piece of the temporary support or a laminate in which the light absorption layer is formed on the temporary support, is converted into an 8453 ultraviolet-visible spectrophotometer (Agilent The transmittance at a wavelength of 365 nm which is the same as the exposure main wavelength of the resist layer was determined.
  • a positive photosensitive resin composition was prepared according to the following formulation.
  • Photosensitizer naphthoquinonediazide compound (1) described on page 4 of JP-A-4-22955
  • Part / surfactant surfactant 1 below
  • 0.1 part / PGMEA 900 parts
  • surfactant 1 F-554, perfluoroalkyl group-containing nonionic surfactant represented by the following structural formula (manufactured by DIC) )
  • the absorption coefficient (365 nm) in acetonitrile of the used photosensitizer was 12,100 cm ⁇ 1 M ⁇ 1 .
  • the prepared positive type photosensitive resin composition is dried on a colored polyethylene terephthalate film (hereinafter referred to as colored PET (A)) having a film thickness of 75 ⁇ m to be a temporary support, using a slit-like nozzle. It apply
  • the colored PET (A) was prepared by the method described in [0060] of JP-A-6-306192.
  • Dialresin Blue G (manufactured by Mitsubishi Chemical Corporation) was used as the coloring dye, and the dye amount was adjusted so as to have a transmittance of 60% for light having a wavelength of 365 nm.
  • the total light haze of the colored PET (A) was 2.6%.
  • Example 1 copper was formed as a conductive layer with a thickness of 200 nm on a PET substrate having a thickness of 100 ⁇ m by a vacuum deposition method to obtain a circuit formation substrate.
  • the protective film was peeled off from the dry film resist of Example 1, and then the (a) laminating step described later was performed.
  • the dry film resist of Example 1 was laminated and transferred onto the copper layer to produce a positive resist layer (a) A lamination process was performed.
  • a photomask provided with a mask pattern of line-and-space wiring with a line width of 5 ⁇ m (opening portion: light-shielding portion has a 1: 1 pattern exposure pattern) without peeling off the temporary support from the resist layer is used.
  • a photomask was brought into contact with the temporary support and contact pattern exposure was performed (b)
  • a pattern exposure step was performed.
  • a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
  • development using 2.38% by mass of TMAH aqueous solution and washing with water were performed to obtain a resist layer on which a wiring pattern was formed (c)
  • a development step was performed.
  • an etching (d) process for forming a pattern for pattern exposure on the circuit forming substrate by etching the copper layer using a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.) was obtained, thereby obtaining a copper wiring substrate. .
  • the obtained circuit wiring was used as the circuit wiring of Example 1.
  • Example 2 A dry film resist of Example 2 was prepared in the same manner as in Example 1 except that the temporary support used was colored PET (B) having a transmittance of 40% for light having a wavelength of 365 nm. Further, a copper wiring board as a circuit wiring of Example 2 was produced in the same manner as in Example 1 except that the dry film resist of Example 2 was used as the dry film resist. The colored PET (B) was adjusted to have the above transmittance by using the same material as the colored PET (A) and adjusting the amount of dye. The total light haze of the colored PET (B) was 3.2%.
  • PHS-EVE is an alkali-soluble resin protected with an acid-decomposable group. It was.
  • the weight average molecular weight of the obtained resin was 12,000.
  • the polydispersity was 1.21.
  • the structure of PHS-EVE is as shown below, and is a 1-ethoxyethyl protected paraparastyrene / parahydroxystyrene copolymer (30 mol% / 70 mol%) of parahydroxystyrene.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -PHS-EVE 97.9 parts-Photoacid generator (PAG-1 below): 2 parts-Surfactant (surfactant 1 above): 0.1 part-PGMEA: 900 parts PAG-1: WO2014 / Compound B-9 according to 020984.
  • the absorption coefficient (365 nm) in acetonitrile of PAG-1 was 15,500 cm ⁇ 1 M ⁇ 1 .
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 3.
  • a copper wiring board as a circuit wiring of Example 3 was produced in the same manner as in Example 1 except that the dry film resist of Example 3 was used as the dry film resist.
  • Example 4 A dry film resist of Example 4 was produced in the same manner as Example 3 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 4 was produced in the same manner as in Example 1 except that the dry film resist of Example 4 was used as the dry film resist.
  • Example 5 A dry film resist of Example 5 was prepared in the same manner as Example 3 except that PAG-2 (Compound A-1 described in [0227] of JP2013-047765 A) was used instead of PAG-1. did. Further, a copper wiring board as a circuit wiring of Example 5 was produced in the same manner as in Example 1 except that the dry film resist of Example 5 was used as the dry film resist.
  • the absorption coefficient (365 nm) in acetonitrile of PAG-2 was 7,800 cm ⁇ 1 M ⁇ 1 .
  • Example 6 A dry film resist of Example 6 was produced in the same manner as Example 5 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 6 was produced in the same manner as in Example 1 except that the dry film resist of Example 6 was used as the dry film resist.
  • Example 7 A dry film resist of Example 7 was prepared in the same manner as in Example 3 except that CPI-210S manufactured by San Apro Co., Ltd. was used instead of PAG-1. Further, a copper wiring board as a circuit wiring of Example 7 was produced in the same manner as in Example 1 except that the dry film resist of Example 7 was used as the dry film resist.
  • the extinction coefficient (365 nm) of CPI-210S in acetonitrile was 85 cm ⁇ 1 M ⁇ 1 .
  • Example 8 In place of PAG-1, compound No. described in [0079] of WO201408269 A dry film resist of Example 8 was produced in the same manner as Example 3 except that 10 was used. Further, a copper wiring board as a circuit wiring of Example 8 was produced in the same manner as in Example 1 except that the dry film resist of Example 8 was used as the dry film resist.
  • the absorption coefficient (365 nm) of this compound in acetonitrile was 11,700 cm ⁇ 1 M ⁇ 1 .
  • Example 9 A dry film resist of Example 9 was produced in the same manner as Example 3 except that the film described in [0057] and [0058] of Japanese Patent No. 4036068 was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 9 was produced in the same manner as in Example 1 except that the dry film resist of Example 9 was used as the dry film resist.
  • PHS-THF a soluble resin having a protection rate of 25 mol%.
  • the weight average molecular weight of the obtained resin was 12,000.
  • the polydispersity was 1.13.
  • the structure of PHS-THF is shown below, and is a 2-tetrahydrofuranyl protected form of parahydroxystyrene / parahydroxystyrene copolymer (30 mol% / 70 mol%).
  • a positive photosensitive composition was prepared according to the following formulation.
  • -PHS-THF 97.9 parts
  • Photoacid generator (PAG-2) 2 parts
  • surfactant 1 0.1 parts
  • PEGMEA 900 parts
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 10.
  • a copper wiring board as the circuit wiring of Example 10 was produced in the same manner as in Example 1 except that the dry film resist of Example 10 was used as the dry film resist.
  • Example 11 A dry film resist of Example 11 was produced in the same manner as Example 10 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 11 was produced in the same manner as in Example 1 except that the dry film resist of Example 11 was used as the dry film resist.
  • Example 12 Synthesis of polymer novolak-EVE (1-ethoxyethyl protected product)> A polymer novolak-EVE (1-ethoxyethyl protector. The ratio of constituent units is a molar ratio) was synthesized in the same manner as in Example 1 of JP-A-2003-98671. The weight average molecular weight of the obtained resin was 5,000. The polydispersity was 7.0. The structure of the polymer novolak-EVE (1-ethoxyethyl protector) is shown below.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -Polymer novolak-EVE 97.9 parts
  • Photoacid generator (PAG-2) 2 parts
  • surfactant 1 0.1 part
  • PEGMEA 900 parts
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 12.
  • a copper wiring board as the circuit wiring of Example 12 was produced in the same manner as in Example 1 except that the dry film resist of Example 12 was used as the dry film resist.
  • Example 13 A dry film resist of Example 13 was produced in the same manner as Example 12 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 13 was produced in the same manner as in Example 1 except that the dry film resist of Example 13 was used as the dry film resist.
  • MATHF tetrahydro-2H-furan-2-yl methacrylate
  • a MATHF copolymer was prepared in the same manner as in Example 1 of JP-A-2003-98671 except that tetrahydro-2H-furan-2-yl methacrylate was used instead of 1-ethoxyethyl methacrylate. Synthesized.
  • the weight average molecular weight measured by gel permeation chromatography (GPC) of the obtained MATH copolymer was 14,000.
  • the structure of the MATHH copolymer (ratio of constituent units is molar ratio) is shown below.
  • a positive photosensitive composition was prepared according to the following formulation.
  • MATH copolymer 97.9 parts
  • Photoacid generator (PAG-2) 2 parts
  • Surfactant (surfactant 1) 0.1 parts
  • PGMEA 900 parts
  • Positive photosensitivity The composition is slit coated on the colored PET (A), which is a temporary support, so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a polyethylene film (Tredeger as a protective film).
  • a dry film resist was prepared by pressure bonding OSM-N). The obtained dry film resist was used as the dry film resist of Example 14.
  • a copper wiring board as the circuit wiring of Example 14 was produced in the same manner as in Example 1 except that the dry film resist of Example 14 was used as the dry film resist.
  • Example 15 A dry film resist of Example 15 was produced in the same manner as Example 14 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 15 was produced in the same manner as in Example 1 except that the dry film resist of Example 15 was used as the dry film resist.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -MATHH copolymer 69.1 parts-PHS-THF: 28.8 parts-Photoacid generator (PAG-2): 2 parts-Surfactant (surfactant 1): 0.1 Parts / PGMEA: 900 parts
  • the positive photosensitive composition is slit-coated on a colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m and dried in a convection oven at 100 ° C. for 2 minutes.
  • a polyethylene film manufactured by Tredegar, OSM-N
  • the obtained dry film resist was used as the dry film resist of Example 16.
  • a copper wiring board as the circuit wiring of Example 16 was produced in the same manner as in Example 1 except that the dry film resist of Example 16 was used as the dry film resist.
  • Example 17 A dry film resist of Example 17 was produced in the same manner as Example 16 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 17 was produced in the same manner as in Example 1 except that the dry film resist of Example 17 was used as the dry film resist.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -MATH copolymer 97.7 parts
  • Photoacid generator (PAG-2) 2 parts-Basic compound (N-cyclohexyl-N '-[2- (4-morpholinyl) ethyl] thiourea, Abbreviation CHMETU): 0.2 part ⁇
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 18.
  • a copper wiring board as the circuit wiring of Example 18 was produced in the same manner as in Example 1 except that the dry film resist of Example 18 was used as the dry film resist.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -MATH copolymer 97.8 parts-Photoacid generator (PAG-2): 2 parts-Basic compound (1,5-diazabicyclo [4.3.0] -5-nonene, abbreviated as DBN) : 0.1 part-Surfactant (Surfactant 1): 0.1 part-PGMEA: 900 parts
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 19.
  • a copper wiring board as the circuit wiring of Example 19 was produced in the same manner as in Example 1 except that the dry film resist of Example 19 was used as the dry film resist.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -MATH copolymer 93.1 parts-Photoacid generator (PAG-2): 2 parts-Surfactant (surfactant 1): 0.1 part-Heterocyclic compound (Denacol EX-321L) (Nagase ChemteX Co., Ltd.)): 4.8 parts / PGMEA: 900 parts
  • PAG-2 Photoacid generator
  • surfactant 1 Surfactant 1
  • 0.1 part-Heterocyclic compound Disacol EX-321L
  • PGMEA 900 parts
  • the above positive photosensitive composition is dried to a thickness of 2.0 ⁇ m on colored PET (A) as a temporary support.
  • the film was slit-coated, dried in a convection oven at 100 ° C.
  • Example 20 A copper wiring board as a circuit wiring of Example 20 was produced in the same manner as in Example 1 except that the dry film resist of Example 20 was used as the dry film resist.
  • a positive photosensitive composition was prepared according to the following formulation.
  • MATH copolymer 93.0 parts
  • Photoacid generator (PAG-2) 2 parts
  • Surfactant (surfactant 1) 0.1 part
  • Heterocyclic compound (3-glycid Xylpropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)): 4.8 parts
  • PGMEA 900 parts
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 21.
  • a copper wiring board as the circuit wiring of Example 21 was produced in the same manner as in Example 1 except that the dry film resist of Example 21 was used as the dry film resist.
  • a positive photosensitive composition was prepared according to the following formulation.
  • -MATH copolymer 97.8 parts-Photoacid generator (PAG-2): 2 parts-Radiation absorber (UV absorber 1 having the following structure): 0.1 part-Surfactant (the interface) Activator 1): 0.1 part PGMEA: 900 parts UV absorber 1
  • the positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 ⁇ m, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film.
  • a dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 22.
  • a copper wiring board as the circuit wiring of Example 22 was produced in the same manner as in Example 1 except that the dry film resist of Example 22 was used as the dry film resist.
  • Example 23 A positive photosensitive composition having the same composition as in Example 1 was prepared.
  • composition for light absorption layers was prepared with the following compositions. ⁇ 1,3,5-triphenylformazan: 20 parts ⁇ Copolymer polymer of polyvinyl pyrrolidone 60 mass% and polyacrylic acid 40 mass%: 80 parts ⁇ Pure water: 900 parts
  • the PET composition having a film thickness of 75 ⁇ m was slit coated with the above composition for a light absorbing layer so as to have a dry film thickness of 1.0 ⁇ m, and dried in a convection oven at 100 ° C. for 5 minutes. Note that the transmittance of the manufactured light absorption layer with respect to light having a wavelength of 365 nm was 55%.
  • the positive photosensitive resin composition was slit coated on the light absorbing layer so as to have a dry film thickness of 2.0 ⁇ m, and dried in a convection oven at 100 ° C. for 5 minutes.
  • a polyethylene film (Tradegar, OSM-N) was pressure bonded as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Example 23.
  • a copper wiring substrate as a circuit wiring of Example 23 was obtained in the same manner as in Example 1 except that the dry film resist of Example 23 was used as the dry film resist.
  • Example 24 A dry film resist was produced in the same manner as in Example 23 except that the light absorption layer had the following composition. The obtained dry film resist was used as the dry film resist of Example 24. A copper wiring board as the circuit wiring of Example 24 was obtained in the same manner as in Example 1 except that the dry film resist of Example 24 was used as the dry film resist. The manufactured light absorption layer had a transmittance of 63% with respect to light having a wavelength of 365 nm.
  • Example 25 A dry film resist of Example 25 was produced in the same manner as in Example 23, except that the positive photosensitive composition was the same as that used in Example 10. Further, a copper wiring substrate as a circuit wiring of Example 25 was obtained in the same manner as in Example 1 except that the dry film resist of Example 25 was used as the dry film resist.
  • Example 26 A dry film resist of Example 26 was prepared in the same manner as in Example 23 except that the positive photosensitive composition was the same as that used in Example 12. Further, a copper wiring board as a circuit wiring of Example 26 was obtained in the same manner as in Example 1 except that the dry film resist of Example 26 was used as the dry film resist.
  • Example 27 A dry film resist of Example 27 was produced in the same manner as in Example 23, except that the positive photosensitive composition was the same as that used in Example 14. Further, a copper wiring board as a circuit wiring of Example 27 was obtained in the same manner as in Example 1 except that the dry film resist of Example 27 was used as the dry film resist.
  • Example 28 A dry film resist of Example 28 was prepared in the same manner as in Example 23 except that the positive photosensitive composition was the same as that used in Example 16. Further, a copper wiring board as a circuit wiring of Example 28 was obtained in the same manner as in Example 1 except that the dry film resist of Example 28 was used as the dry film resist.
  • Example 29 On a PET substrate having a thickness of 100 ⁇ m, ITO was deposited as a second conductive layer by sputtering to a thickness of 150 nm, and copper was deposited thereon as a first conductive layer by vacuum evaporation to a thickness of 200 nm. A film was formed with a film thickness to obtain a circuit forming substrate. After the protective film was peeled off from the dry film resist of Example 14, the dry film resist of Example 14 was laminated and transferred onto the copper layer to produce a positive resist layer (a) A lamination process was performed. The resist layer is temporarily supported using a photomask provided with the pattern A (first pattern) shown in FIG.
  • a pattern exposure step was performed in which a photomask was contacted to expose the contact pattern.
  • the solid line portion and the gray portion are light shielding portions, the other portions are openings, and the dotted line portion virtually shows an alignment alignment frame.
  • a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
  • the temporary support was peeled off, and development using 1.0% sodium carbonate aqueous solution and washing with water were performed to obtain a resist layer on which pattern A was formed (c1).
  • a circuit-formed substrate was obtained in which both the first layer (copper layer) and the second layer (ITO layer) were drawn with a first pattern (a pattern having a shape of a region (negative) in which no pattern A was present).
  • a pattern exposure step (e1) was performed in which pattern exposure was performed using a photomask provided with openings of the pattern B (second pattern) shown in FIG.
  • the gray portion is a light shielding portion
  • the other portion is an opening portion
  • the dotted line portion virtually shows an alignment alignment frame.
  • a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
  • the obtained conductive layer has a pattern A (existence of the first pattern) in which both the first layer (copper layer) and the second layer (ITO layer) in the region where the resist layer having the second pattern is formed.
  • the second layer (ITO layer) in the region where the resist layer which is the second pattern is not formed and the second pattern is not present is drawn. It was drawn with a pattern having the shape of (negative).
  • the remaining resist layer was removed by peeling using a peeling solution (KP-301 manufactured by Kanto Chemical Co., Ltd.), and a circuit wiring including a conductive layer of two types of patterns was formed on the substrate. 29 circuit wirings were obtained.
  • the circuit wiring of Example 29 has the circuit wiring of the pattern C shown in FIG. The wiring portion included in the gray region in FIG.
  • FIG. 6 is in a state where the second layer (ITO wiring) is exposed.
  • a dotted line portion in FIG. 6 virtually shows an alignment alignment frame.
  • the other part is a peripheral wiring part and has a structure including two or more conductive layer laminates in which the first layer (copper wiring) is laminated on the second layer (ITO wiring) and shares the same circuit pattern.
  • FIGS. 2 and 3 are schematic diagrams showing a structure including two or more conductive layer stacks sharing the same circuit pattern. In the circuit wiring of Example 29, the first layer (copper wiring) overlapped the second layer (ITO wiring) in the dotted line portion of FIG.
  • Example 30 On a PET substrate having a thickness of 100 ⁇ m, ITO was deposited as a second conductive layer by sputtering to a thickness of 150 nm, and copper was deposited thereon as a first conductive layer by vacuum evaporation to a thickness of 200 nm. A film was formed with a film thickness to obtain a circuit forming substrate. After the protective film was peeled off from the dry film resist of Example 14, the dry film resist of Example 14 was laminated and transferred onto the copper layer to produce a positive resist layer (a) A lamination process was performed.
  • the resist layer is contacted with the temporary support using a photomask provided with a pattern A (first pattern) having a configuration in which conductive pads are connected in one direction without peeling off the temporary support.
  • a pattern exposure step was performed to expose the contact pattern.
  • a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
  • the temporary support was peeled off, and development using 1.0% sodium carbonate aqueous solution and washing with water were performed to obtain a resist layer on which pattern A was formed (c1).
  • the second layer using an ITO etchant (ITO-02 manufactured by Kanto Chemical Co., Inc.).
  • the pattern exposure pattern was transferred to the circuit forming substrate by etching the (ITO layer). By etching in this way, the first to second layers of the conductive layer in the region where the resist layer is not formed are etched, and the first pattern in the region where the resist layer having the first pattern is not formed.
  • a circuit-formed substrate was obtained in which both the first layer (copper layer) and the second layer (ITO layer) were drawn with a first pattern (a pattern having a shape of a region (negative) in which no pattern A was present).
  • a first pattern a pattern having a shape of a region (negative) in which no pattern A was present.
  • an etching process was performed (d2) in which colored PET (A) used as a temporary support was again laminated as a cover film on the remaining resist layer.
  • D2) Contact the photomask with the cover film using the photomask provided with the opening of the pattern B (second pattern) in a state where the alignment is aligned in a state where the cover film attached in the step is not peeled off (E2)
  • a pattern exposure step was performed to expose the contact pattern.
  • a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
  • D2 After the cover film attached in the etching step is peeled off, development using 1.0% aqueous sodium carbonate solution and washing with water are performed, and a second pattern different from the first pattern (light shielding portion of pattern A) And a pattern in which the light-shielding portion of pattern B overlaps) (f2)
  • a development step was performed to obtain a resist layer to which the pattern layer was transferred.
  • the copper wiring is etched using Cu-02. Only the wiring of the first layer (copper layer) is etched, whereby the first layer of the conductive layer in the region where the resist layer having the second pattern is not formed.
  • substrate by etching up to was performed.
  • the remaining resist layer was removed by peeling using a peeling solution (KP-301 manufactured by Kanto Chemical Co., Ltd.), and a circuit wiring including a conductive layer of two types of patterns was formed on the substrate. 30 circuit wirings were obtained.
  • the circuit wiring of Example 30 has the circuit wiring of the pattern C shown in FIG.
  • Example 1 A positive photosensitive resin composition prepared in the same manner as in Example 1 was applied on a 75 ⁇ m-thick PET film serving as a temporary support using a slit nozzle so that the dry film thickness was 2.0 ⁇ m. did. Thereafter, the film was dried in a convection oven at 100 ° C. for 2 minutes, and finally a polyethylene film (manufactured by Tredegar, OSM-N) was pressed as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Comparative Example 1.
  • the 75 ⁇ m-thick PET has a transmittance of 85% for light having a wavelength of 365 nm and a total light haze of 2.0%.
  • a copper wiring board as a circuit wiring of Comparative Example 1 was obtained in the same manner as in Example 1 except that the dry film resist of Comparative Example 1 was used as the dry film resist.
  • a dry film resist was prepared in the same manner as in Comparative Example 1 except that the positive photosensitive composition was the same as that used in Example 14. The obtained dry film resist was used as the dry film resist of Comparative Example 2.
  • a copper wiring substrate was produced as the circuit wiring of Comparative Example 2 in the same manner as in Example 1 except that the dry film resist of Comparative Example 2 was used as the dry film resist.
  • Comparative Example 3 A copper wiring substrate which is a circuit wiring of Comparative Example 3 was obtained in the same manner as Comparative Example 2, except that the temporary support was peeled off during contact pattern exposure and the photomask was brought into contact with the resist layer to expose the contact pattern. .
  • Comparative Example 4 is the same as Comparative Example 2 except that a proxy mask is exposed with a gap of 75 ⁇ m between the temporary support and the photomask at the time of exposure instead of contacting the photomask with the temporary support and exposing the contact pattern.
  • the copper wiring board which is the circuit wiring of was obtained.
  • circuit wiring having high pattern linearity is suitable as the circuit wiring for the input device and the display device.
  • circuit wiring manufacturing method of the present invention it has been found that circuit wiring with high pattern linearity can be manufactured without process contamination. As shown in Comparative Examples 1 and 2, when pattern exposure is performed through a temporary support having a high transmittance with respect to the exposure main wavelength, the pattern linearity is very low, and it is not suitable as a circuit wiring for an input device or a display device. I understood that.
  • the reason why the effect of improving pattern linearity is higher in Example 6 than in Example 5 is that the temporary support is caused by the fact that the transmittance of the temporary support is lower in Example 6 than in Example 5.
  • the effect of improving the linearity of the pattern due to the absorption of the diffused light passing through the temporary support within the temporary support is due to the fact that the temporary support has a lower haze in Example 5 than in Example 6. It can be read that this is because the effect of improving the linearity of the pattern due to the suppression of light diffusion in the temporary support due to the suppression of the above was exceeded.
  • the reason why the effect of improving pattern linearity is higher in Example 9 than in Example 5 is that the temporary support is caused by the fact that the haze of the temporary support is lower in Example 9 than in Example 5.
  • the effect of improving the linearity of the pattern due to suppression of light diffusion in the temporary support due to suppression of haze and the like is due to the fact that the transmittance of the temporary support is lower in Example 5 than in Example 9. It can be read that this is because the effect of improving the pattern linearity due to the absorption of the diffused light passing through the temporary support within the temporary support was exceeded.
  • Base material 2 Mask layer 3: First electrode pattern 3a: Pad portion 3b: Connection portion 4: Second electrode pattern 5: Insulating layer 6: Another conductive element (peripheral wiring portion and lead-out wiring portion) 7: Transparent protective layer 10: Capacitance type input device

Abstract

This positive dry film resist having a resist layer on a temporary supporting body and satisfying condition (1) and/or condition (2) enables manufacturing of circuit wiring having high pattern linearity. Condition (1): the temporary supporting body has a transmittance of not higher than 80% with respect to an exposure main wavelength for the resist layer. Condition (2): a light absorption layer having a transmittance of not higher than 80% with respect to the exposure main wavelength for the resist layer is included between the temporary supporting body and the resist layer. Also provided are a manufacturing method for circuit wiring, circuit wiring, an input device, and a display device.

Description

ドライフィルムレジスト、回路配線の製造方法、回路配線、入力装置および表示装置Dry film resist, circuit wiring manufacturing method, circuit wiring, input device and display device
 本発明はドライフィルムレジスト、回路配線の製造方法、回路配線、入力装置および表示装置に関する。 The present invention relates to a dry film resist, a circuit wiring manufacturing method, circuit wiring, an input device, and a display device.
 静電容量型入力装置などのタッチパネルを備えた表示装置(有機EL表示装置や液晶表示装置など)では、視認部のセンサーに相当する電極パターンや周辺配線部分や取り出し配線部分の配線などの導電パターンがタッチパネル内部に設けられている。
 一般にパターン化した導電層の形成には、必要とするパターン形状を得るための工程数が少ないといった理由から、ドライフィルムレジストを感光性転写材料として用いて、任意の回路形成基板上に設けたレジスト層(感光性樹脂組成物の層)に対して、所望のパターンを有するマスクを介して露光し、レジスト層を部分的に硬化または溶解した後に現像して回路パターンを得、その後エッチングによって導電層に回路パターンを転写により形成する方法が広く使用されている。
In a display device (such as an organic EL display device or a liquid crystal display device) equipped with a touch panel such as a capacitance-type input device, an electrode pattern corresponding to a sensor in a visual recognition part, or a conductive pattern such as a wiring in a peripheral wiring part or a lead-out wiring part Is provided inside the touch panel.
In general, a patterned conductive layer is formed by using a dry film resist as a photosensitive transfer material and a resist provided on an arbitrary circuit formation substrate because the number of steps for obtaining a required pattern shape is small. A layer (photosensitive resin composition layer) is exposed through a mask having a desired pattern, the resist layer is partially cured or dissolved, and developed to obtain a circuit pattern, and then etched to form a conductive layer In addition, a method of forming a circuit pattern by transfer is widely used.
 ここでレジスト層は、光または電子線との反応方法から大きく分けてネガ型とポジ型に分けられる。ネガ型のレジスト層は露光されると現像液に対して溶解性が低下し、現像後に露光部が残る。ポジ型のレジスト層は露光されると現像液に対して溶解性が増大し、現像後に露光部が除去される。ネガ型レジストに比べて高解像度のパターンを形成しやすい利点があることから、ポジ型ドライフィルムレジストが求められている。 Here, the resist layer is roughly classified into a negative type and a positive type from the reaction method with light or electron beam. When exposed to a negative resist layer, the solubility in the developer decreases, leaving an exposed portion after development. When the positive resist layer is exposed, the solubility in the developer increases, and the exposed portion is removed after development. Since there is an advantage that a high-resolution pattern can be easily formed as compared with a negative resist, a positive dry film resist is required.
 ポジ型ドライフィルムレジストとして、例えば、特許文献1や2に記載のポジ型ドライフィルムレジストが知られている。 For example, positive dry film resists described in Patent Documents 1 and 2 are known as positive dry film resists.
 特許文献1には、下層フォトレジスト層と上層フォトレジスト層との間に、フォトブリーチ性及び/又は光吸収性を有する中間層を設けた多層レジストが記載されている。特許文献1には、多重コントラスト露光の制御性を向上し、多重コントラスト露光効果を向上した多層レジストを提供することも記載されている。 Patent Document 1 describes a multilayer resist in which an intermediate layer having photobleaching properties and / or light absorption properties is provided between a lower photoresist layer and an upper photoresist layer. Patent Document 1 also describes providing a multilayer resist with improved multi-contrast exposure controllability and improved multi-contrast exposure effect.
 特許文献2には、支持体フィルム;光分解性フォトレジスト層;及び回路形成基板にラミネーションされる面に形成された反射抑制層;を含むフィルム型光分解性転写材料が記載されている。 Patent Document 2 describes a film-type photodegradable transfer material including a support film; a photodegradable photoresist layer; and a reflection suppressing layer formed on a surface to be laminated on a circuit forming substrate.
特開平5-66568号公報Japanese Patent Laid-Open No. 5-66568 特開2009-282522号公報JP 2009-282522 A
 本発明者らが特許文献1および2に記載のポジ型ドライフィルムレジストを用いて回路形成を検討したところ、仮支持体を剥離せずにパターン露光すると、仮支持体に起因する光拡散によって露光光が拡散し、得られたパターンのパターン直線性が低下する問題が起きることがわかった。ポジ型レジストは露光部が溶解してマスク像を形成するため、残存パターン部は硬化しておらず、パターン直線性が低下した状態では特に細線パターンにおいて剥離が起こりやすい。そのため、回路品質低下、回路断線および短絡が起こり得る。そのため、ネガ型レジストで高解像度パターンを形成する場合に比べ、ポジ型ドライフィルムレジストを用いて高解像度パターンを形成する場合により顕著な課題であることがわかった。 When the present inventors examined circuit formation using the positive-type dry film resists described in Patent Documents 1 and 2, when pattern exposure was performed without peeling off the temporary support, exposure was caused by light diffusion caused by the temporary support. It was found that light diffuses and the pattern linearity of the resulting pattern is degraded. In the positive resist, the exposed portion dissolves to form a mask image, so that the remaining pattern portion is not cured, and peeling is likely to occur particularly in a thin line pattern when the pattern linearity is lowered. Therefore, circuit quality degradation, circuit disconnection, and short circuit may occur. Therefore, it has been found that this is a more prominent problem when a high resolution pattern is formed using a positive dry film resist than when a high resolution pattern is formed using a negative resist.
 本発明が解決しようとする課題は、高解像度のパターンを形成しやすいポジ型であり、パターン直線性が高い回路配線を製造できるドライフィルムレジストを提供することである。
 また、本発明が解決しようとする課題は、高解像度のパターンを形成しやすいポジ型であり、パターン直線性が高い回路配線および回路配線の製造方法を提供することである。
 また、本発明が解決しようとする課題は、この回路配線を用いた入力装置およびこの入力装置を備える表示装置を提供することである。
The problem to be solved by the present invention is to provide a dry film resist that is capable of producing a circuit wiring having a high pattern linearity that is easy to form a high resolution pattern.
Further, the problem to be solved by the present invention is to provide a positive-type circuit wiring that can easily form a high-resolution pattern and a high pattern linearity, and a method for manufacturing the circuit wiring.
Another problem to be solved by the present invention is to provide an input device using the circuit wiring and a display device including the input device.
 本発明者らが鋭意検討した結果、仮支持体が、レジスト層の露光主波長に対して80%以下の透過率であるドライフィルムレジストを用いると、上記課題を解決できることを見出した。
 また、仮支持体とレジスト層との間にレジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有するドライフィルムレジストを用いると同様に、上記課題を解決できることを見出した。なお、特許文献2に記載の転写材料は、反射抑制層によって金属基板により反射される露光光のハレーション防止をするメカニズムを利用しているため、転写する場合の対象基材に接する転写面とは反対側から仮支持体、レジスト層、反射抑制層の順に積層される必要がある。
 上記課題を解決するための具体的な手段である本発明および本発明の好ましい範囲は、以下のとおりである。
As a result of intensive studies by the present inventors, it has been found that the above problem can be solved when a temporary support is a dry film resist having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer.
Further, the present inventors have found that the above problem can be solved in the same manner as when a dry film resist having a light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer is used between the temporary support and the resist layer. It was. In addition, since the transfer material described in Patent Document 2 uses a mechanism that prevents halation of exposure light reflected by the metal substrate by the reflection suppression layer, the transfer surface in contact with the target substrate in the case of transfer is It is necessary to laminate the temporary support, the resist layer, and the reflection suppressing layer in this order from the opposite side.
The present invention, which is a specific means for solving the above problems, and preferred ranges of the present invention are as follows.
[1] 仮支持体の上にレジスト層を有するポジ型ドライフィルムレジストであり、
 以下の条件(1)および条件(2)の少なくとも一つを満たすドライフィルムレジスト;
条件(1):仮支持体が、レジスト層の露光主波長に対して80%以下の透過率を有する;
条件(2):仮支持体およびレジスト層の間にレジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有する。
[2] [1]に記載のドライフィルムレジストは、レジスト層が感光剤を含み、
 感光剤のレジスト層の露光主波長に対する吸光係数が12,000cm-1-1未満であることが好ましい。
[3] [1]または[2]のいずれか一つに記載のドライフィルムレジストは、仮支持体の全光線ヘイズが3.0%以下であることが好ましい。
[4] [1]~[3]のいずれか一つに記載のドライフィルムレジストは、レジスト層がナフトキノンジアジド化合物およびフェノール性水酸基を有する樹脂を含むことが好ましい。
[5] [1]~[3]のいずれか一つに記載のドライフィルムレジストは、レジスト層が、(A)成分および(B)光酸発生剤を含み、
 (A)成分が、酸基が酸分解性基で保護された基を有する重合体であることが好ましい。
[6] [5]に記載のドライフィルムレジストは、(A)成分が、カルボキシ基またはフェノール性水酸基がアセタールの形で保護された酸構成単位a1を有する重合体を含む重合体成分であることが好ましい。
[7] [5]または[6]に記載のドライフィルムレジストは、(A)成分が、下記一般式A1または一般式A1’で表される構成単位を有する重合体であることが好ましい;
一般式A1
Figure JPOXMLDOC01-appb-C000004
一般式A1中、RおよびRはそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともRおよびRのいずれか一方がアルキル基またはアリール基であり、Rはアルキル基またはアリール基を表し、RまたはRと、Rとが連結して環状エーテルを形成してもよく、Rは水素原子またはメチル基を表す;
一般式A1’
Figure JPOXMLDOC01-appb-C000005
一般式A1’中、R11およびR12はそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともR11およびR12のいずれか一方がアルキル基またはアリール基であり、R13はアルキル基またはアリール基を表し、R11またはR12と、R13とが連結して環状エーテルを形成してもよく、R14はそれぞれ独立に、水素原子、水酸基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基またはシクロアルキル基を表す。
[8] [5]~[7]のいずれか一つに記載のドライフィルムレジストは、レジスト層が、(A)成分を2種類以上含有し、かつ、
 (A)成分として、下記一般式A2’で表される構成単位を有する重合体を含有することが好ましい;
一般式A2’
Figure JPOXMLDOC01-appb-C000006
一般式A2’中、R31およびR32はそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともR31およびR32のいずれか一方がアルキル基またはアリール基であり、R33はアルキル基またはアリール基を表し、R31またはR32と、R33とが連結して環状エーテルを形成してもよく、R34は水素原子またはメチル基を表し、Xは単結合またはアリーレン基を表す。
[9] [1]~[8]のいずれか一つに記載のドライフィルムレジストは、レジスト層が、さらに(C)ヘテロ環状化合物を含むことが好ましい。
[10] [1]~[9]のいずれか一つに記載のドライフィルムレジストは、レジスト層が、さらに塩基性化合物を含むことが好ましい。
[11] [1]~[10]のいずれか一つに記載のドライフィルムレジストは、レジスト層が、さらに放射線吸収剤を含むことが好ましい。
[12] 下記(a)工程、(b)工程、(c)工程および(d)工程、を含む回路配線の製造方法;
(a) 基材と導電層とを有する回路形成基板の上へ[1]~[11]のいずれか一つに記載のドライフィルムレジストをラミネートするラミネート工程;
(b) ドライフィルムレジストの仮支持体を剥離せずに、パターン露光用パターンでコンタクトパターン露光するパターン露光工程;
(c) 仮支持体を剥離後、現像してレジスト層にパターン露光用パターンを形成する現像工程;
(d) エッチングにより、回路形成基板にパターン露光用パターンを形成するエッチング工程。
[13] [12]に記載の回路配線の製造方法は、(b)工程が下記(b1)工程であり、
 (c)工程が下記(c1)工程であり、
 (d)工程が下記(d1)工程であり、
 さらに下記(e1)工程、(f1)工程および(g)工程を含むことが好ましい;
(b1) ドライフィルムレジストの仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程;
(c1) 仮支持体を剥離後、現像してレジスト層に第1のパターンを形成する現像工程;
(d1) エッチングにより、回路形成基板に第1のパターンを形成するエッチング工程;
(e1) (c1)工程で第1のパターンを転写したレジスト層を剥離することなく、第2のパターンでコンタクトパターン露光するパターン露光工程;
(f1) 現像してレジスト層に第1のパターンとは異なる第2のパターンを形成する現像工程;
(g) エッチングにより、回路形成基板に第2のパターンを形成するエッチング工程。
[14] [12]に記載の回路配線の製造方法は、(b)工程が下記(b1)工程であり、
 (c)工程が下記(c1)工程であり、
 (d)工程が下記(d2)工程であり、
 さらに(e2)工程、(f2)工程および(g)工程を含むことが好ましい;
(b1) ドライフィルムレジストの仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程;
(c1) 仮支持体を剥離後、現像してレジスト層に第1のパターンを形成する現像工程;
(d2) エッチングにより、回路形成基板に第1のパターンを形成したのち、(c1)工程で第1のパターンを形成したレジスト層を剥離することなく、残りのレジスト層の上にカバーフィルムを貼り付けるエッチング工程;
(e2) (d2)工程で貼り付けたカバーフィルムを剥離せずに、第2のパターンでコンタクトパターン露光するパターン露光工程;
(f2) (d2)工程で貼り付けたカバーフィルムを剥離した後、現像してレジスト層に第1のパターンとは異なる第2のパターンを形成する現像工程;
(g) エッチングにより、回路形成基板に第2のパターンを形成するエッチング工程。
[15] [12]~[14]のいずれか一つに記載の回路配線の製造方法で製造された回路配線。
[16] [15]に記載の回路配線を用いた入力装置。
[17] [16]に記載の入力装置は、入力装置が静電容量型タッチパネルであることが好ましい。
[18] [16]または[17]に記載の入力装置を備える、表示装置。
[1] A positive dry film resist having a resist layer on a temporary support,
A dry film resist satisfying at least one of the following conditions (1) and (2);
Condition (1): The temporary support has a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer;
Condition (2): A light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
[2] In the dry film resist according to [1], the resist layer includes a photosensitizer,
It is preferable that the extinction coefficient of the resist layer of the photosensitive agent with respect to the main exposure wavelength is less than 12,000 cm −1 M −1 .
[3] In the dry film resist according to any one of [1] and [2], the total light haze of the temporary support is preferably 3.0% or less.
[4] In the dry film resist according to any one of [1] to [3], the resist layer preferably contains a naphthoquinonediazide compound and a resin having a phenolic hydroxyl group.
[5] In the dry film resist according to any one of [1] to [3], the resist layer includes (A) a component and (B) a photoacid generator,
The component (A) is preferably a polymer having a group in which an acid group is protected with an acid-decomposable group.
[6] In the dry film resist according to [5], the component (A) is a polymer component including a polymer having an acid structural unit a1 in which a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal. Is preferred.
[7] In the dry film resist according to [5] or [6], the component (A) is preferably a polymer having a structural unit represented by the following general formula A1 or general formula A1 ′;
General formula A1
Figure JPOXMLDOC01-appb-C000004
In general formula A1, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents a hydrogen atom or a methyl group;
General formula A1 '
Figure JPOXMLDOC01-appb-C000005
In General Formula A1 ′, R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group Or an aryl group, and R 11 or R 12 and R 13 may be linked to form a cyclic ether, and each R 14 independently represents a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group, An alkenyl group, an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group or a cycloalkyl group is represented.
[8] In the dry film resist according to any one of [5] to [7], the resist layer contains two or more types of component (A), and
As the component (A), it is preferable to contain a polymer having a structural unit represented by the following general formula A2 ′;
General formula A2 '
Figure JPOXMLDOC01-appb-C000006
In general formula A2 ′, R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group Or an aryl group, R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, and X 0 represents a single bond or an arylene group. .
[9] In the dry film resist according to any one of [1] to [8], it is preferable that the resist layer further includes (C) a heterocyclic compound.
[10] In the dry film resist according to any one of [1] to [9], the resist layer preferably further contains a basic compound.
[11] In the dry film resist according to any one of [1] to [10], the resist layer preferably further contains a radiation absorber.
[12] A circuit wiring manufacturing method including the following steps (a), (b), (c) and (d);
(A) a laminating step of laminating the dry film resist according to any one of [1] to [11] on a circuit forming substrate having a base material and a conductive layer;
(B) a pattern exposure step of exposing a contact pattern with a pattern for pattern exposure without peeling off the temporary support of the dry film resist;
(C) a development step in which the temporary support is peeled and then developed to form a pattern exposure pattern on the resist layer;
(D) An etching step of forming a pattern exposure pattern on the circuit forming substrate by etching.
[13] In the circuit wiring manufacturing method according to [12], the step (b) is the following step (b1),
(C) The process is the following (c1) process,
(D) The process is the following (d1) process,
Further, it preferably includes the following steps (e1), (f1) and (g);
(B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
(C1) A development step of peeling the temporary support and developing to form a first pattern on the resist layer;
(D1) an etching step of forming a first pattern on the circuit forming substrate by etching;
(E1) A pattern exposure step of exposing the contact pattern with the second pattern without removing the resist layer to which the first pattern is transferred in the step (c1);
(F1) A development step of developing and forming a second pattern different from the first pattern on the resist layer;
(G) An etching step of forming the second pattern on the circuit formation substrate by etching.
[14] In the circuit wiring manufacturing method according to [12], the step (b) is the following step (b1),
(C) The process is the following (c1) process,
(D) The process is the following (d2) process,
Furthermore, it is preferable to include a step (e2), a step (f2) and a step (g);
(B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
(C1) A development step of peeling the temporary support and developing to form a first pattern on the resist layer;
(D2) After forming the first pattern on the circuit formation substrate by etching, a cover film is pasted on the remaining resist layer without peeling off the resist layer on which the first pattern was formed in the step (c1). Attaching etching process;
(E2) A pattern exposure step of exposing the contact pattern with the second pattern without peeling off the cover film attached in the step (d2);
(F2) A development step in which the cover film attached in step (d2) is peeled and then developed to form a second pattern different from the first pattern on the resist layer;
(G) An etching step of forming the second pattern on the circuit formation substrate by etching.
[15] A circuit wiring manufactured by the circuit wiring manufacturing method according to any one of [12] to [14].
[16] An input device using the circuit wiring according to [15].
[17] In the input device according to [16], the input device is preferably a capacitive touch panel.
[18] A display device comprising the input device according to [16] or [17].
 本発明によれば、高解像度のパターンを形成しやすいポジ型であり、パターン直線性が高い回路配線を製造できるドライフィルムレジストを提供することができる。
 また、本発明によれば、高解像度のパターンを形成しやすいポジ型であり、パターン直線性が高い回路配線および回路配線の製造方法を提供することができる。
 また、本発明によれば、この回路配線を用いた入力装置およびこの入力装置を備える表示装置を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the dry film resist which can manufacture the circuit wiring which is a positive type which is easy to form a high resolution pattern, and has high pattern linearity can be provided.
In addition, according to the present invention, it is possible to provide a positive-type circuit wiring that can easily form a high-resolution pattern and a high pattern linearity and a method for manufacturing the circuit wiring.
Further, according to the present invention, it is possible to provide an input device using the circuit wiring and a display device including the input device.
回路配線の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of circuit wiring. xが2である場合に得られる本発明の実施態様の一つである、回路配線の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of circuit wiring which is one of the embodiments of the present invention obtained when x is 2. xが2である場合に得られる本発明の実施態様の一つである、回路配線の一例の模式図である。It is a schematic diagram of an example of circuit wiring which is one of the embodiments of the present invention obtained when x is 2. パターンAを示す模式図である。4 is a schematic diagram showing a pattern A. FIG. パターンBを示す模式図である。4 is a schematic diagram showing a pattern B. FIG. パターンCを示す模式図である。6 is a schematic diagram showing a pattern C. FIG. 第一の電極パターンの接続部分および第二の電極パターンの配置の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of arrangement | positioning of the connection part of a 1st electrode pattern, and a 2nd electrode pattern. 第一の電極パターンのパッド部分および接続部分ならびに第二の電極パターンの配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning of the pad part and connection part of a 1st electrode pattern, and a 2nd electrode pattern. 本発明の入力装置の一例の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows a structure of an example of the input device of this invention.
 以下、本発明のドライフィルムレジスト、回路配線の製造方法、回路配線、入力装置、特にタッチパネルである入力装置、およびこの入力装置を用いた表示装置について説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明は実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, a dry film resist, a method for manufacturing circuit wiring, circuit wiring, an input device, in particular, an input device that is a touch panel, and a display device using the input device will be described.
The description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to the embodiments and specific examples. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[ドライフィルムレジスト]
 本発明のドライフィルムレジストは、仮支持体の上に少なくともレジスト層を有するポジ型ドライフィルムレジストであり、
 以下の条件(1)および条件(2)の少なくとも一つを満たすドライフィルムレジストである。
条件(1):仮支持体が、レジスト層の露光主波長に対して80%以下の透過率を有する;
条件(2):仮支持体およびレジスト層の間にレジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有する。
 上記の構成であるため、本発明のドライフィルムレジストは、高解像度のパターンを形成しやすいポジ型であり、パターン直線性が高い回路配線を製造できる。ここで、ドライフィルムレジストは仮支持体越しに露光を行った場合に仮支持体に起因する露光光の光拡散でパターン直線性が低下する。いかなる理論に拘泥するものでもないが、パターン直線性が低下する問題は、主として、仮支持体内および/または表面に存在するフィラーやその他の仮支持体に起因する露光光の光拡散が原因と推定される。仮支持体によって拡散された後の露光光のエネルギーが、レジスト感度(レジスト層の感光剤の活性化エネルギー、すなわち必要露光量)を超える場合、所望のパターンでは未露光部となるべき部分が拡散光で露光されてしまい、パターン直線性が低下する。それに対し、拡散後の露光光エネルギーが、レジスト感度(必要露光量)を超えない場合、所望のパターンでは未露光部となるべき部分は事実上、拡散光で露光されず、パターン直線性の低下を抑制できる。
 仮支持体での露光光の光拡散に起因するパターン直線性低下を回避するには、(i)例えば仮支持体のヘイズを抑制すること等に起因する仮支持体での光拡散抑制、(ii)仮支持体を通過した拡散光の仮支持体内またはレジスト層に到達するまでに配置された他の部材での吸収、(iii)レジスト層の低感度化などの手法が考えられる。
 本発明では、上記(ii)仮支持体を通過した拡散光の仮支持体内またはレジスト層に到達するまでに配置された他の部材での吸収に着目し、条件(1)および/または条件(2)を満たす構成としている。
 なお、上記(i)から(iii)の複数の観点を組み合わせることにより直線性低下を抑制することも、好ましい手段として用いられ得る。
[Dry film resist]
The dry film resist of the present invention is a positive dry film resist having at least a resist layer on a temporary support,
The dry film resist satisfies at least one of the following conditions (1) and (2).
Condition (1): The temporary support has a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer;
Condition (2): A light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
Since it is said structure, the dry film resist of this invention is a positive type which is easy to form a high resolution pattern, and can manufacture circuit wiring with high pattern linearity. Here, when the dry film resist is exposed through the temporary support, the pattern linearity is lowered by the light diffusion of the exposure light caused by the temporary support. Although not bound by any theory, the problem that the pattern linearity decreases is presumably caused mainly by light diffusion of exposure light caused by fillers and other temporary supports in the temporary support and / or the surface. Is done. When the energy of the exposure light after being diffused by the temporary support exceeds the resist sensitivity (activation energy of the photosensitizer of the resist layer, that is, the required exposure amount), the portion that should be the unexposed portion in the desired pattern is diffused The pattern is exposed to light and the pattern linearity is lowered. On the other hand, if the exposure light energy after diffusion does not exceed the resist sensitivity (necessary exposure amount), the portion that should be an unexposed part in the desired pattern is not actually exposed with the diffused light, and the pattern linearity decreases. Can be suppressed.
In order to avoid a decrease in pattern linearity due to light diffusion of exposure light on the temporary support, (i) suppression of light diffusion on the temporary support due to, for example, suppressing haze of the temporary support, ii) Techniques such as absorption of diffused light that has passed through the temporary support in the temporary support or other members disposed until reaching the resist layer, and (iii) low sensitivity of the resist layer are conceivable.
In the present invention, paying attention to the absorption of the diffused light that has passed through the temporary support in the temporary support or other members disposed until reaching the resist layer, the condition (1) and / or the condition ( The configuration satisfies 2).
In addition, it can also be used as a preferable means to suppress the linearity degradation by combining a plurality of aspects (i) to (iii).
<構成>
 本発明のドライフィルムレジストは、仮支持体の上に少なくともレジスト層を有する。本発明のドライフィルムレジストが条件(2)を満たす場合、さらに仮支持体およびレジスト層の間にレジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有する。
 本発明のドライフィルムレジストは、仮支持体と、熱可塑性樹脂層と、レジスト層とをこの順で有することも好ましく、さらに保護フィルムなどの他の層を有していてもよい。熱可塑性樹脂層の好ましい態様については特開2014-85643号公報の[0189]~[0193]、他の層の好ましい態様については特開2014-85643号公報の[0194]~[0196]にそれぞれ記載があり、この公報の内容は本明細書に組み込まれる。
<Configuration>
The dry film resist of the present invention has at least a resist layer on a temporary support. When the dry film resist of this invention satisfy | fills conditions (2), it has further the light absorption layer which has the transmittance | permeability of 80% or less with respect to the exposure dominant wavelength of a resist layer between a temporary support body and a resist layer.
The dry film resist of the present invention preferably has a temporary support, a thermoplastic resin layer, and a resist layer in this order, and may further have other layers such as a protective film. Regarding preferred modes of the thermoplastic resin layer, [0189] to [0193] of JP-A-2014-85643, and for preferable modes of other layers, refer to [0194] to [0196] of JP-A-2014-85643, respectively. The contents of this publication are incorporated herein.
 本発明のドライフィルムレジストは、露光された箇所が現像液に溶解するポジ型ドライフィルムレジストである。ポジ型ドライフィルムレジストは、ネガ型レジストに比べて高解像度のパターンを形成しやすい利点がある。
 また、ポジ型では活性光線を照射することにより、例えば活性光線を照射されて酸を発生する感光剤などを用いて露光部の溶解性を高めるため、パターン露光時点では露光部および未露光部がいずれも硬化せず、得られたパターン形状が不良であった場合には全面露光などによって回路形成基板を再度利用(リワーク)できる。そのため、いわゆるリワーク性に優れる観点から、ポジ型が好ましく用いられている。
 また、残存したレジストを再度露光して異なるパターンを作製する、という技術はポジ型でなければ実現できないものである。
The dry film resist of the present invention is a positive dry film resist in which exposed portions are dissolved in a developer. A positive dry film resist has an advantage that a high-resolution pattern can be easily formed as compared with a negative resist.
Further, in the positive type, by irradiating actinic light, for example, a photosensitive agent that generates acid upon irradiation with actinic light is used to increase the solubility of the exposed part. None of them are cured, and when the obtained pattern shape is defective, the circuit-formed substrate can be reused (reworked) by full exposure or the like. Therefore, the positive type is preferably used from the viewpoint of excellent so-called reworkability.
Further, the technique of reexposing the remaining resist to produce different patterns can only be realized with a positive type.
 本発明のドライフィルムレジストは、以下の条件(1)および条件(2)の少なくとも一つを満たし、条件(1)を満たすことがより好ましい。
条件(1):仮支持体が、レジスト層の露光主波長に対して80%以下の透過率を有する;
条件(2):仮支持体およびレジスト層の間にレジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有する。
 条件(1)を満たす場合は、下記条件(1A)を満たすことが好ましい。
条件(1A):仮支持体が、レジスト層の露光主波長に対して10%を超え80%以下の透過率を有する。
 条件(2)を満たす場合は、下記条件(2A)を満たすことが好ましい。
条件(2A):仮支持体およびレジスト層の間にレジスト層の露光主波長に対して10%を超え80%以下の透過率を有する光吸収層を有する。
 条件(2)または条件(2A)を満たす場合は、ドライフィルムレジストを対象基材にラミネート(例えば転写)する場合の対象基材に接するラミネート面とは反対側から仮支持体、光吸収層およびレジスト層をこの順で有することができる。
 ここで、特開2009-282522号公報には、反射抑制層は、200nm~700nmの範囲の波長の光に対する吸収率が90%以上であることが好ましい態様として記載されている。仮支持体または光吸収層において、レジスト層の露光主波長の光吸収が過剰であると、レジスト層に感光剤を大量に含有させることに起因するレジスト設計の圧迫、ないしは多量の露光を要するためのスループット悪化があるため、実用上はレジスト層の露光主波長に対して10%を超え80%以下の透過率を有する仮支持体または光吸収層を用いることが好ましい。
More preferably, the dry film resist of the present invention satisfies at least one of the following conditions (1) and (2) and satisfies the condition (1).
Condition (1): The temporary support has a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer;
Condition (2): A light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
When the condition (1) is satisfied, it is preferable that the following condition (1A) is satisfied.
Condition (1A): The temporary support has a transmittance of more than 10% and 80% or less with respect to the exposure main wavelength of the resist layer.
When the condition (2) is satisfied, it is preferable that the following condition (2A) is satisfied.
Condition (2A): A light absorption layer having a transmittance of more than 10% and 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
When the condition (2) or the condition (2A) is satisfied, the temporary support, the light absorbing layer, and the light-receiving layer are formed from the side opposite to the laminate surface in contact with the target substrate when the dry film resist is laminated (for example, transferred) to the target substrate. A resist layer can be provided in this order.
Here, Japanese Patent Application Laid-Open No. 2009-282522 describes that the reflection suppressing layer preferably has an absorptance of 90% or more for light having a wavelength in the range of 200 nm to 700 nm. In the temporary support or the light absorption layer, if the light absorption of the exposure dominant wavelength of the resist layer is excessive, it requires pressure on the resist design due to containing a large amount of the photosensitive agent in the resist layer or a large amount of exposure. In practice, it is preferable to use a temporary support or a light absorption layer having a transmittance of more than 10% and 80% or less with respect to the exposure main wavelength of the resist layer.
(仮支持体)
 本発明のドライフィルムレジストは、仮支持体を有する。
 本発明のドライフィルムレジストが条件(1)を満たす場合、仮支持体は、レジスト層の露光主波長に対して80%以下の透過率を有し、60%以下の透過率を有することが好ましく、50%以下の透過率を有することがより好ましい。
 本発明のドライフィルムレジストは、仮支持体のヘイズ(全光線ヘイズ)が3.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.5%以下であることが特に好ましい。ヘイズの下限には特に制限はないが、例えばPETフィルムの場合にはフィルム中に添加ないしフィルム表面に塗布されているフィラーが主要なヘイズ源となっており、このフィラー量があまり少ないと、ハンドリング性悪化や保管時のブロッキング等の問題を引き起こす。そのため、最低限のフィラーは必要であることを考慮すると、0.05%以上であることが実用的である。言うまでもなく、PET以外のフィルムにおいては、実用上での最低ヘイズは異なる値をとり得るため、いかなる意味でも上記0.05%以上の値に拘泥するものではない。
 仮支持体としては特に制限はない。仮支持体の好ましい態様については特開2014-85643号公報の[0017]~[0018]に記載があり、この公報の内容は本明細書に組み込まれる。
(Temporary support)
The dry film resist of the present invention has a temporary support.
When the dry film resist of the present invention satisfies the condition (1), the temporary support preferably has a transmittance of 80% or less and a transmittance of 60% or less with respect to the exposure main wavelength of the resist layer. More preferably, the transmittance is 50% or less.
The dry film resist of the present invention preferably has a temporary support having a haze (total light haze) of 3.0% or less, more preferably 2.0% or less, and 1.5% or less. Is particularly preferred. The lower limit of the haze is not particularly limited. For example, in the case of a PET film, a filler added to the film or coated on the surface of the film is a main haze source. This causes problems such as deterioration of properties and blocking during storage. Therefore, considering that the minimum filler is necessary, it is practical to be 0.05% or more. Needless to say, in a film other than PET, the practical minimum haze can take different values, and is not limited to the above value of 0.05% or more in any sense.
There is no restriction | limiting in particular as a temporary support body. Preferred embodiments of the temporary support are described in JP-A-2014-85643, [0017] to [0018], and the contents of this publication are incorporated herein.
(レジスト層)
 本発明のドライフィルムレジストは、レジスト層を有する。
 本発明のドライフィルムレジストは、レジスト層が感光剤を含み、感光剤のレジスト層の露光主波長に対する吸光係数が12,000cm-1-1未満であることが好ましい。なお、1cm-1-1は、1×10L・m-1mol-1に換算される。
 感光剤のレジスト層の露光主波長に対する吸光係数が10,000cm-1-1未満であることがより好ましく、5,000cm-1-1未満であることが特に好ましい。吸光係数の下限は特に制限されるものではないが、あまりに吸光度が小さいと多量の露光が必要となりスループット低下をもたらすほか、感度低下を補正するために多量の感光剤を配合することでドライフィルムレジストの処方設計に制限が加わるため、30cm-1-1以上であることが実用的である。
 感光剤としては、後述のナフトキノンジアジド化合物や後述の光酸発生剤などを挙げることができる。
(Resist layer)
The dry film resist of the present invention has a resist layer.
In the dry film resist of the present invention, the resist layer preferably contains a photosensitizer, and the extinction coefficient of the photosensitizer with respect to the main exposure wavelength of the resist layer is preferably less than 12,000 cm −1 M −1 . Note that 1 cm −1 M −1 is converted to 1 × 10 2 L · m −1 mol −1 .
More preferably extinction coefficient with respect to the exposure main wavelength of the resist layer of photosensitive agent is less than 10,000 cm -1 M -1, and particularly preferably less than 5,000 cm -1 M -1. The lower limit of the extinction coefficient is not particularly limited, but if the absorbance is too small, a large amount of exposure is required, resulting in a decrease in throughput, and a dry film resist can be added by adding a large amount of photosensitizer to correct the sensitivity decrease. Therefore, it is practical to be 30 cm −1 M −1 or more.
Examples of the photosensitizer include a naphthoquinone diazide compound described below and a photoacid generator described below.
 レジスト層の好ましい態様としては、ナフトキノンジアジド化合物およびフェノール性水酸基を有する樹脂を含む第1の好ましい態様と、レジスト層が、(A)成分および(B)光酸発生剤を含み、(A)成分が、酸基が酸分解性基で保護された基を有する重合体である第2の好ましい態様が挙げられる。第1の好ましい態様よりも第2の好ましい態様の方が、化学増幅型であることに起因するレジスト層の溶解性向上により、パターン直線性を高められる観点から、好ましい。
 以下、それぞれの好ましい態様に用いられるレジスト層の材料について説明する。
As a preferred embodiment of the resist layer, the first preferred embodiment containing a naphthoquinone diazide compound and a resin having a phenolic hydroxyl group, the resist layer contains (A) component and (B) a photoacid generator, and (A) component However, the 2nd preferable aspect which is a polymer in which an acid group has the group protected by the acid-decomposable group is mentioned. The second preferred embodiment is more preferable than the first preferred embodiment from the viewpoint of improving the linearity of the pattern by improving the solubility of the resist layer resulting from the chemical amplification type.
Hereinafter, the material of the resist layer used in each preferred embodiment will be described.
-レジスト層の第1の好ましい態様-
 まず、レジスト層の第1の好ましい態様について説明する。
 本発明のドライフィルムレジストは、レジスト層が、ナフトキノンジアジド化合物およびフェノール性水酸基を有する樹脂を含むことが好ましい。中でも、現像ラチチュードが広い観点から、レジスト層がクレゾールノボラック樹脂及びナフトキノンジアジド誘導体の2種類を含有することが特に好ましい。
-First preferred embodiment of resist layer-
First, the 1st preferable aspect of a resist layer is demonstrated.
In the dry film resist of the present invention, the resist layer preferably contains a naphthoquinonediazide compound and a resin having a phenolic hydroxyl group. Especially, it is especially preferable that a resist layer contains two types, a cresol novolak resin and a naphthoquinone diazide derivative, from a viewpoint with wide development latitude.
--フェノール性水酸基を有する樹脂--
 フェノール性水酸基を有する樹脂としては、例えば、フェノールノボラック樹脂、及びクレゾールノボラック樹脂などが挙げられる。
--Resin having phenolic hydroxyl group--
Examples of the resin having a phenolic hydroxyl group include a phenol novolac resin and a cresol novolac resin.
 フェノールノボラック樹脂としては、フェノールに対するホルムアルデヒドのモル比が0.5~1.0程度のものが好ましく、現像性及び焼き付きの観点から0.8~1.0程度のものが更に好ましい。また、上記フェノールノボラック樹脂の重量平均分子量としては、300~4000が好ましく、400~800が特に好ましい。
 上記フェノールノボラック樹脂はこれらの誘導体であってもかまわない。
 上記フェノールノボラック樹脂は、1種類を単独で用いてもよいし、重量平均分子量が異なる2種類以上を混合して用いることもでき、本発明の目的を損なわない範囲でクレゾールノボラック樹脂等の他の樹脂と混合して用いてもよい。
 上記フェノールノボラック樹脂の含有量としては、ポジ型感光層中の全固形分に対して、40~90質量%であることが好ましく、60~80質量%であることがより好ましい。
As the phenol novolak resin, those having a molar ratio of formaldehyde to phenol of about 0.5 to 1.0 are preferred, and those of about 0.8 to 1.0 are more preferred from the viewpoint of developability and image sticking. The weight average molecular weight of the phenol novolac resin is preferably 300 to 4000, and particularly preferably 400 to 800.
The phenol novolac resin may be a derivative thereof.
The phenol novolac resin may be used alone or in combination of two or more different weight average molecular weights, and other cresol novolac resins may be used as long as the object of the present invention is not impaired. You may mix and use resin.
The content of the phenol novolac resin is preferably 40 to 90% by mass, and more preferably 60 to 80% by mass with respect to the total solid content in the positive photosensitive layer.
 上記クレゾールノボラック樹脂としては、クレゾールに対するホルムアルデヒドのモル比が0.7~1.0程度のものが好ましく、0.8~1.0程度のものが更に好ましい。また、上記クレゾールノボラック樹脂の重量平均分子量としては、800~8,000が好ましく、1000~6000がより好ましい。
 上記クレゾールノボラック樹脂の異性体比(オルト体/メタ体/パラ体のモル比率)は特に制限はなく、目的に応じて適宜選択することができ、現像性を高める観点から全異性体に対するパラ体の比率が10モル%以上であることが好ましく、20モル%以上であることが更に好ましい。
The cresol novolak resin preferably has a molar ratio of formaldehyde to cresol of about 0.7 to 1.0, more preferably about 0.8 to 1.0. The weight average molecular weight of the cresol novolak resin is preferably 800 to 8,000, more preferably 1000 to 6000.
The isomer ratio (ortho / meta / para molar ratio) of the cresol novolak resin is not particularly limited and can be appropriately selected according to the purpose. Is preferably 10 mol% or more, more preferably 20 mol% or more.
 上記クレゾールノボラック樹脂は、1種類を単独で用いてもよいし、2種類以上の混合物として用いることができる。この場合、フェノールノボラック等の他の樹脂と混合して用いてもよい。
 また、本発明においては、上記クレゾールノボラック樹脂として、ナフトキノンジアジドスルホン酸エステルとの反応生成物等のクレゾールノボラック樹脂の誘導体を用いてもよい。
 上記クレゾールノボラック樹脂の使用量としては、0.1~10g/mが好ましく、0.5~5g/mがより好ましい。
The said cresol novolak resin may be used individually by 1 type, and can be used as a 2 or more types of mixture. In this case, it may be used by mixing with other resins such as phenol novolac.
In the present invention, as the cresol novolak resin, a derivative of a cresol novolak resin such as a reaction product with naphthoquinone diazide sulfonate may be used.
The amount of the cresol novolac resin is preferably 0.1 ~ 10g / m 2, more preferably 0.5 ~ 5g / m 2.
--ナフトキノンジアジド化合物--
 上記ナフトキノンジアジド化合物は、特に制限はなく、目的に応じて適宜選択することができるが、クレゾールノボラック樹脂と併用することが特に好ましい。ナフトキノンジアジド化合物は、1官能の化合物であってもよいし2官能以上の化合物であってもよく、更にこれらの混合物であってもよい。
 上記1官能のナフトキノンジアジド化合物としては、例えば、ナフトキノン-4-スルホン酸クロリド又はナフトキノン-5-スルホン酸クロリドと置換フェノールとを反応させたエステル化合物などが挙げられる。
--Naphthoquinonediazide compound--
The naphthoquinonediazide compound is not particularly limited and may be appropriately selected depending on the intended purpose, but it is particularly preferable to use in combination with a cresol novolac resin. The naphthoquinonediazide compound may be a monofunctional compound, a bifunctional or higher functional compound, and a mixture thereof.
Examples of the monofunctional naphthoquinonediazide compound include naphthoquinone-4-sulfonic acid chloride or an ester compound obtained by reacting naphthoquinone-5-sulfonic acid chloride with a substituted phenol.
 上記2官能以上のナフトキノンジアジド化合物としては、例えば、ナフトキノン-4-スルホン酸クロリド又はナフトキノン-5-スルホン酸クロリドと、フェノール性水酸基を複数有する化合物とを反応させたエステル化合物が好適である。上記フェノール性水酸基を複数有する化合物としては、例えば、ビスフェノール類、トリスフェノール類、テトラキノスフェノール類等のポリフェノール類;ジヒドロキシベンゼン、トリヒドロキシベンゼン等の多官能フェノール;ビス型又はトリス型のジヒドロキシベンゼン若しくはトリヒドロキシベンゼン、非対称の多核フェノール、或いはこれらの混合物などが挙げられる。
 上記フェノール性水酸基を複数有する化合物としては、例えば、4-t-ブチルフェノール、4-イソアミルフェノール、4-t-オクチルフェノール、2-イソプロピル-5-メチルフェノール、2-アセチルフェノール、4-ヒドロキシベンゾフェノン、3-クロロフェノール、4-ベンジルオキシカルボニルフェノール、4-ドデシルフェノール、レゾルシノール、4-(1-メチル-1-フェニルエチル)-1,3-ベンゼンジオール、フロログルシノール、4,4’-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)メタン、2,3,4,4’-テトラヒドロキシベンゾフェノン、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]等が挙げられる。
As the bifunctional or higher naphthoquinone diazide compound, for example, an ester compound obtained by reacting naphthoquinone-4-sulfonic acid chloride or naphthoquinone-5-sulfonic acid chloride with a compound having a plurality of phenolic hydroxyl groups is preferable. Examples of the compound having a plurality of phenolic hydroxyl groups include polyphenols such as bisphenols, trisphenols and tetraquinosphenols; polyfunctional phenols such as dihydroxybenzene and trihydroxybenzene; bis-type or tris-type dihydroxybenzene or Examples thereof include trihydroxybenzene, asymmetric polynuclear phenol, and a mixture thereof.
Examples of the compound having a plurality of phenolic hydroxyl groups include 4-t-butylphenol, 4-isoamylphenol, 4-t-octylphenol, 2-isopropyl-5-methylphenol, 2-acetylphenol, 4-hydroxybenzophenone, 3 -Chlorophenol, 4-benzyloxycarbonylphenol, 4-dodecylphenol, resorcinol, 4- (1-methyl-1-phenylethyl) -1,3-benzenediol, phloroglucinol, 4,4'-dihydroxybenzophenone, Bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-methyl-4-hydroxyphenyl) methane, 2,3,4,4′-tetrahydroxy Benzophenone, 4,4 '-[ 4-hydroxyphenyl) methylene] bis [2-cyclohexyl-5-methylphenol], and the like.
 上記ナフトキノンジアジド化合物としては、例えば、4’-t-オクチルフェニルナフトキノンジアジド-4-スルホネート、4’-t-オクチルフェニルナフトキノンジアジド-5-スルホネート、4’-ベンゾイルフェニルナフトキノンジアジド-5-スルホネート、2,3,4,4’-テトラヒドロキシベンゾフェノンと1,2-ナフトキノンジアジド-5-スルホン酸クロリドとの反応物などが挙げられる。これらは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。特開平4-22955号公報に記載のナフトキノンジアジド化合物を用いてもよく、この公報の内容は本明細書に組み込まれる。 Examples of the naphthoquinonediazide compound include 4′-t-octylphenylnaphthoquinonediazide-4-sulfonate, 4′-t-octylphenylnaphthoquinonediazide-5-sulfonate, 4′-benzoylphenylnaphthoquinonediazide-5-sulfonate, , 3,4,4′-tetrahydroxybenzophenone and a reaction product of 1,2-naphthoquinonediazide-5-sulfonic acid chloride. These may be used alone or in combination of two or more. A naphthoquinone diazide compound described in JP-A-4-22955 may be used, and the contents of this publication are incorporated herein.
 レジスト層中のナフトキノンジアジド化合物の添加量は、上記クレゾールノボラック樹脂100質量部に対し1~200質量部が好ましく、5~50質量部がより好ましい。 The addition amount of the naphthoquinone diazide compound in the resist layer is preferably 1 to 200 parts by mass, more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the cresol novolac resin.
 その他のレジスト層の第1の好ましい態様には、添加剤として、特開2007-24969号公報の[0072]~[0083]に記載の材料を用いてもよく、この公報の内容は本明細書に組み込まれる。
 また、レジスト層の第1の好ましい態様には、後述のレジスト層の第2の好ましい態様に記載の材料を用いてもよい。
In the first preferred embodiment of the other resist layer, materials described in [0072] to [0083] of Japanese Patent Application Laid-Open No. 2007-24969 may be used as an additive. Incorporated into.
Moreover, you may use the material as described in the 2nd preferable aspect of the below-mentioned resist layer for the 1st preferable aspect of a resist layer.
-レジスト層の第2の好ましい態様-
 レジスト層の第2の好ましい態様について説明する。
 本発明では、レジスト層が、(A)成分および(B)光酸発生剤を含み、(A)成分が、酸基が酸分解性基で保護された基を有する重合体であることが好ましい。
-Second Preferred Embodiment of Resist Layer-
A second preferred embodiment of the resist layer will be described.
In the present invention, the resist layer preferably contains (A) component and (B) a photoacid generator, and (A) component is a polymer having a group in which an acid group is protected by an acid-decomposable group. .
<(A)成分:酸基が酸分解性基で保護された基を有する重合体>
 (A)成分が、酸基が酸分解性基で保護された基を有する重合体であることが好ましい。
 さらに本発明のドライフィルムレジストは、(A)成分が、カルボキシ基またはフェノール性水酸基がアセタールの形で保護された酸構成単位a1を有する重合体を含む重合体成分であることがより好ましい。
 レジスト層は、さらに、これら以外の重合体を含んでいてもよい。
<(A) component: a polymer having an acid group protected by an acid-decomposable group>
The component (A) is preferably a polymer having a group in which an acid group is protected with an acid-decomposable group.
In the dry film resist of the present invention, the component (A) is more preferably a polymer component including a polymer having an acid structural unit a1 in which a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal.
The resist layer may further contain a polymer other than these.
<<構成単位(a1)>>
 上記(A)成分が酸基が酸分解性基で保護された基、好ましくはカルボキシ基またはフェノール性水酸基がアセタールの形で保護された酸構成単位a1を有することにより、極めて高感度なレジスト層とすることができる。
 本発明における「酸基が酸分解性基で保護された基」における酸基や酸分解性基としては、酸基および酸分解性基として公知のものを使用でき、特に限定されない。具体的な酸基としては、カルボキシ基、および、フェノール性水酸基が好ましく挙げられる。また、酸分解性基としては、酸により比較的分解し易い基(例えば、後述する式(A1)または式(A1’)で表される基のエステル構造、テトラヒドロピラニルエステル基、または、テトラヒドロフラニルエステル基等のアセタール系官能基)や酸により比較的分解し難い基(例えば、tert-ブチルエステル基等の第三級アルキル基、tert-ブチルカーボネート基等の第三級アルキルカーボネート基)を用いることができる。
<< Structural Unit (a1) >>
The component (A) has an acid constituent unit a1 in which an acid group is protected with an acid-decomposable group, preferably a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal. It can be.
As the acid group and the acid-decomposable group in the “group in which the acid group is protected with an acid-decomposable group” in the present invention, those known as an acid group and an acid-decomposable group can be used, and are not particularly limited. Specific examples of the acid group preferably include a carboxy group and a phenolic hydroxyl group. Examples of the acid-decomposable group include groups that are relatively easily decomposed by an acid (for example, an ester structure of a group represented by the formula (A1) or the formula (A1 ′) described later, a tetrahydropyranyl ester group, or a tetrahydrofuranyl group. An acetal functional group such as an ester group) or a group that is relatively difficult to be decomposed by an acid (for example, a tertiary alkyl group such as a tert-butyl ester group or a tertiary alkyl carbonate group such as a tert-butyl carbonate group). be able to.
 酸基が酸分解性基で保護された基を有する構成単位(a1)は、酸分解性基で保護された保護フェノール性水酸基を有する構成単位、または、酸分解性基で保護された保護カルボキシ基を有する構成単位であることが好ましい。
 レジスト層は、上記酸基が酸分解性基で保護された基を有する構成単位(a1)が、カルボキシ基またはフェノール性水酸基がアセタールの形で保護された基を有する構成単位であることがより好ましい。
 以下、酸分解性基で保護された保護フェノール性水酸基を有する構成単位と、酸分解性基で保護された保護カルボキシ基を有する構成単位について、順にそれぞれ説明する。
The structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group is a structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group, or a protected carboxy protected with an acid-decomposable group. A structural unit having a group is preferred.
In the resist layer, the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group is a structural unit having a group in which a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal. preferable.
Hereinafter, the structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group and the structural unit having a protected carboxy group protected with an acid-decomposable group will be described in order.
<<<酸分解性基で保護された保護フェノール性水酸基を有する構成単位>>>
 酸分解性基で保護された保護フェノール性水酸基を有する構成単位とは、フェノール性水酸基を有する構成単位が、以下で詳細に説明する酸分解性基によって保護された保護フェノール性水酸基を有する構成単位である。
 上記フェノール性水酸基を有する構成単位としては、ヒドロキシスチレンまたはα-メチルヒドロキシスチレンに由来する構成単位(例えばノボラック系の樹脂における構成単位)の水酸基が酸分解性基によって保護された構成単位が、感度の観点から好ましく、下記一般式A1または一般式A1’で表される構成単位を有する重合体であることがさらに解像度も高める観点からより好ましい。
<<< Structural Unit Having Protected Phenolic Hydroxyl Group Protected with Acid-Decomposable Group >>>
The structural unit having a protected phenolic hydroxyl group protected by an acid-decomposable group is a structural unit having a protected phenolic hydroxyl group in which the structural unit having a phenolic hydroxyl group is protected by an acid-decomposable group described in detail below. It is.
As the structural unit having a phenolic hydroxyl group, a structural unit in which the hydroxyl group of a structural unit derived from hydroxystyrene or α-methylhydroxystyrene (for example, a structural unit in a novolak resin) is protected by an acid-decomposable group is used. From the viewpoint of improving the resolution, a polymer having a structural unit represented by the following general formula A1 or general formula A1 ′ is more preferable.
一般式A1
Figure JPOXMLDOC01-appb-C000007
 一般式A1中、RおよびRはそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともRおよびRのいずれか一方がアルキル基またはアリール基であり、Rはアルキル基またはアリール基を表し、RまたはRと、Rとが連結して環状エーテルを形成してもよく、Rは水素原子またはメチル基を表す。
 上記一般式A1中、RおよびRがアルキル基の場合、炭素数1~10のアルキル基が好ましい。RおよびRがアリール基の場合、フェニル基が好ましい。RおよびRは、それぞれ、水素原子または炭素数1~4のアルキル基が好ましく、少なくとも一方が水素原子であることがより好ましい。
 上記一般式A1中、Rはアルキル基またはアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
 RまたはRと、Rとが連結して環状エーテルを形成してもよく、RまたはRと、Rとが連結して環状エーテルを形成することが好ましい。上記環状エーテルの環員数は特に制限はないが、5または6であることが好ましく、5であることがより好ましい。
 上記一般式A1中、Rは水素原子またはメチル基を表し、水素原子であることが好ましい。
General formula A1
Figure JPOXMLDOC01-appb-C000007
In general formula A1, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, and R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents a hydrogen atom or a methyl group.
In the general formula A1, when R 1 and R 2 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferable. When R 1 and R 2 are aryl groups, a phenyl group is preferred. R 1 and R 2 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably at least one is a hydrogen atom.
In the general formula A1, R 3 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 1 or R 2 and R 3 are preferably linked to form a cyclic ether. The number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
In the general formula A1, R 4 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
一般式A1’
Figure JPOXMLDOC01-appb-C000008
 一般式A1’中、R11およびR12はそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともR11およびR12のいずれか一方がアルキル基またはアリール基であり、R13はアルキル基またはアリール基を表し、R11またはR12と、R13とが連結して環状エーテルを形成してもよく、R14はそれぞれ独立に、水素原子、水酸基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基またはシクロアルキル基を表す。
 上記一般式A1’中、R11およびR12がアルキル基の場合、炭素数は1~10のアルキル基が好ましい。R11およびR12がアリール基の場合、フェニル基が好ましい。R11およびR12は、それぞれ、水素原子または炭素数1~4のアルキル基が好ましく、少なくとも一方が水素原子であることがより好ましい。
 上記一般式A1’中、R13はアルキル基またはアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
 R11またはR12と、R13とが連結して環状エーテルを形成してもよい。
 上記一般式A1’中、R14は水素原子またはメチル基を表し、水素原子であることが好ましい。
General formula A1 '
Figure JPOXMLDOC01-appb-C000008
In General Formula A1 ′, R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group Or an aryl group, and R 11 or R 12 and R 13 may be linked to form a cyclic ether, and each R 14 independently represents a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group, An alkenyl group, an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group or a cycloalkyl group is represented.
In the general formula A1 ′, when R 11 and R 12 are alkyl groups, an alkyl group having 1 to 10 carbon atoms is preferable. When R 11 and R 12 are aryl groups, a phenyl group is preferred. R 11 and R 12 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably at least one is a hydrogen atom.
In the general formula A1 ′, R 13 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
R 11 or R 12 and R 13 may be linked to form a cyclic ether.
In the general formula A1 ′, R 14 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位に用いることができる上記酸分解性基としては、公知のものを使用でき、特に限定されない。酸分解性基の中でもアセタールで保護された保護フェノール性水酸基を有する構成単位であることが、レジスト層の基本物性、特に感度やパターン形状、レジスト層の保存安定性の観点から好ましい。さらに、酸分解性基の中でもフェノール性水酸基が下記一般式(a1-10)で表されるアセタールの形で保護された保護フェノール性水酸基であることが、感度の観点からより好ましい。なお、フェノール性水酸基が下記一般式(a1-10)で表されるアセタールの形で保護された保護フェノール性水酸基である場合、保護フェノール性水酸基の全体としては、-Ar-O-CR101102(OR103)の構造となっている。なお、Arはアリーレン基を表す。 As the acid-decomposable group that can be used for the structural unit having a protected phenolic hydroxyl group protected with the acid-decomposable group, a known one can be used, and is not particularly limited. Among the acid-decomposable groups, a structural unit having a protected phenolic hydroxyl group protected with acetal is preferable from the viewpoint of basic physical properties of the resist layer, particularly sensitivity, pattern shape, and storage stability of the resist layer. Furthermore, among the acid-decomposable groups, the phenolic hydroxyl group is more preferably a protected phenolic hydroxyl group protected in the form of an acetal represented by the following general formula (a1-10) from the viewpoint of sensitivity. When the phenolic hydroxyl group is a protected phenolic hydroxyl group protected in the form of an acetal represented by the following general formula (a1-10), the entire protected phenolic hydroxyl group is —Ar—O—CR 101 R 102 (OR 103 ). Ar represents an arylene group.
一般式(a1-10)
Figure JPOXMLDOC01-appb-C000009
 (式(a1-10)中、R101およびR102は、それぞれ独立に水素原子またはアルキル基を表し、但し、R101とR102とが共に水素原子の場合を除く。R103は、アルキル基を表す。R101またはR102と、R103とが連結して環状エーテルを形成してもよい。)
Formula (a1-10)
Figure JPOXMLDOC01-appb-C000009
(In formula (a1-10), R 101 and R 102 each independently represents a hydrogen atom or an alkyl group, except that R 101 and R 102 are both hydrogen atoms, and R 103 represents an alkyl group. R 101 or R 102 and R 103 may be linked to form a cyclic ether.
 上記一般式(a1-10)中、R101およびR102は、それぞれ独立に水素原子またはアルキル基を表し、R103は、アルキル基を表す。上記アルキル基は直鎖状、分岐状、環状のいずれでもよい。ここで、R101およびR102の双方が水素原子を表すことはなく、R101およびR102の少なくとも一方はアルキル基を表す。 In the general formula (a1-10), R 101 and R 102 each independently represent a hydrogen atom or an alkyl group, and R 103 represents an alkyl group. The alkyl group may be linear, branched or cyclic. Here, both R 101 and R 102 do not represent a hydrogen atom, and at least one of R 101 and R 102 represents an alkyl group.
 上記一般式(a1-10)において、R101、R102およびR103がアルキル基を表す場合、上記アルキル基は直鎖状、分岐状または環状のいずれであってもよい。
 上記直鎖状または分岐状のアルキル基としては、炭素数1~12であることが好ましく、炭素数1~6であることがより好ましく、炭素数1~4であることがさらに好ましい。具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基(2,3-ジメチル-2-ブチル基)、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基等を挙げることができる。
In the general formula (a1-10), when R 101 , R 102 and R 103 represent an alkyl group, the alkyl group may be linear, branched or cyclic.
The linear or branched alkyl group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n Examples include -hexyl group, texyl group (2,3-dimethyl-2-butyl group), n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group and the like.
 上記環状アルキル基としては、炭素数3~12であることが好ましく、炭素数4~8であることがより好ましく、炭素数4~6であることがさらに好ましい。上記環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、イソボルニル基等を挙げることができる。 The cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and still more preferably 4 to 6 carbon atoms. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a norbornyl group, and an isobornyl group.
 上記アルキル基は、置換基を有していてもよく、置換基としては、ハロゲン原子、アリール基、アルコキシ基が例示できる。置換基としてハロゲン原子を有する場合、R101、R102、R103はハロアルキル基となり、置換基としてアリール基を有する場合、R101、R102、R103はアラルキル基となる。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、これらの中でもフッ素原子または塩素原子が好ましい。
 また、上記アリール基としては、炭素数6~20のアリール基が好ましく、より好ましくは炭素数6~12であり、具体的には、フェニル基、α-メチルフェニル基、ナフチル基等が例示でき、アリール基で置換されたアルキル基全体、すなわち、アラルキル基としては、ベンジル基、α-メチルベンジル基、フェネチル基、ナフチルメチル基等が例示できる。
 上記アルコキシ基としては、炭素数1~6のアルコキシ基が好ましく、より好ましくは炭素数1~4であり、メトキシ基またはエトキシ基がより好ましい。
 また、上記アルキル基がシクロアルキル基である場合、上記シクロアルキル基は置換基として炭素数1~10の直鎖状または分岐状のアルキル基を有していてもよく、アルキル基が直鎖状または分岐状のアルキル基である場合には、置換基として炭素数3~12のシクロアルキル基を有していてもよい。
 これらの置換基は、上記置換基でさらに置換されていてもよい。
The alkyl group may have a substituent, and examples of the substituent include a halogen atom, an aryl group, and an alkoxy group. When it has a halogen atom as a substituent, R 101 , R 102 and R 103 are haloalkyl groups, and when it has an aryl group as a substituent, R 101 , R 102 and R 103 are aralkyl groups.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a fluorine atom or a chlorine atom is preferable.
The aryl group is preferably an aryl group having 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, an α-methylphenyl group, and a naphthyl group. Examples of the entire alkyl group substituted with an aryl group, ie, an aralkyl group, include a benzyl group, an α-methylbenzyl group, a phenethyl group, and a naphthylmethyl group.
The alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, and more preferably a methoxy group or an ethoxy group.
In addition, when the alkyl group is a cycloalkyl group, the cycloalkyl group may have a linear or branched alkyl group having 1 to 10 carbon atoms as a substituent, and the alkyl group is linear Alternatively, when it is a branched alkyl group, it may have a cycloalkyl group having 3 to 12 carbon atoms as a substituent.
These substituents may be further substituted with the above substituents.
 また、R101、R102およびR103は互いに結合して、それらが結合している炭素原子と一緒になって環を形成することができる。R101とR102、R101とR103またはR102とR103が結合した場合の環構造としては、例えばシクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、テトラヒドロフラニル基、アダマンチル基およびテトラヒドロピラニル基等を挙げることができる。 R 101 , R 102 and R 103 can be bonded together to form a ring together with the carbon atoms to which they are bonded. Examples of the ring structure when R 101 and R 102 , R 101 and R 103 or R 102 and R 103 are bonded include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a tetrahydrofuranyl group, an adamantyl group, and a tetrahydropyrani group. And the like.
 なお、上記一般式(a1-10)において、R101およびR102のいずれか一方が、水素原子またはメチル基であることが好ましい。 Note that in the general formula (a1-10), any one of R 101 and R 102 is preferably a hydrogen atom or a methyl group.
 フェノール性水酸基のアセタールエステル構造の好ましい例は、R101=メチル基、R102=水素原子、R103=エチル基の場合や、R101=メチル基、R102=水素原子、R103=エチル基であってR101およびR103が互いに結合して5員環を形成した場合や、R101=R102=R103=メチル基の場合や、R101=R102=メチル基でR103=ベンジル基の場合が例示できる。 Preferred examples of the acetal ester structure of a phenolic hydroxyl group include the case where R 101 = methyl group, R 102 = hydrogen atom, R 103 = ethyl group, or R 101 = methyl group, R 102 = hydrogen atom, R 103 = ethyl group. And when R 101 and R 103 are bonded to each other to form a 5-membered ring, R 101 = R 102 = R 103 = methyl group, or R 101 = R 102 = methyl group and R 103 = benzyl The case of a group can be illustrated.
 また、フェノール性水酸基がアセタールの形で保護された保護フェノール性水酸基を有する構成単位を形成するために用いられる重合性単量体としては、例えば、特開2011-215590号公報の段落番号0042に記載のものなどが挙げられる。
 これらの中で、4-ヒドロキシフェニルメタクリレートの1-アルコキシアルキル保護体および4-ヒドロキシフェニルメタクリレートのテトラヒドロピラニル保護体が透明性の観点から好ましい。
Examples of the polymerizable monomer used to form a structural unit having a protected phenolic hydroxyl group in which the phenolic hydroxyl group is protected in the form of an acetal include, for example, paragraph No. 0042 of JP2011-215590A. And the like.
Among these, a 1-alkoxyalkyl protector of 4-hydroxyphenyl methacrylate and a tetrahydropyranyl protector of 4-hydroxyphenyl methacrylate are preferable from the viewpoint of transparency.
 フェノール性水酸基のアセタール保護基の具体例としては、1-アルコキシアルキル基が挙げられ、例えば、1-エトキシエチル基、1-メトキシエチル基、1-n-ブトキシエチル基、1-イソブトキシエチル基、1-(2-クロロエトキシ)エチル基、1-(2-エチルヘキシルオキシ)エチル基、1-n-プロポキシエチル基、1-シクロヘキシルオキシエチル基、1-(2-シクロヘキシルエトキシ)エチル基、1-ベンジルオキシエチル基などを挙げることができる。これらは単独で使用してもよく、2種類以上を組み合わせて使用してもよい。 Specific examples of the acetal protecting group for the phenolic hydroxyl group include a 1-alkoxyalkyl group, such as a 1-ethoxyethyl group, a 1-methoxyethyl group, a 1-n-butoxyethyl group, and a 1-isobutoxyethyl group. 1- (2-chloroethoxy) ethyl group, 1- (2-ethylhexyloxy) ethyl group, 1-n-propoxyethyl group, 1-cyclohexyloxyethyl group, 1- (2-cyclohexylethoxy) ethyl group, 1 And -benzyloxyethyl group. These may be used alone or in combination of two or more.
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位を形成するために用いられる重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、フェノール性水酸基を有する化合物を酸触媒の存在下でビニルエーテルと反応させることにより合成することができる。上記の合成はフェノール性水酸基を有するモノマーをその他のモノマーと予め共重合させておき、その後に酸触媒の存在下でビニルエーテルと反応させてもよい。 As the polymerizable monomer used to form the structural unit having a protected phenolic hydroxyl group protected by the acid-decomposable group, a commercially available monomer may be used, or a monomer synthesized by a known method may be used. You can also. For example, it can be synthesized by reacting a compound having a phenolic hydroxyl group with vinyl ether in the presence of an acid catalyst. In the above synthesis, a monomer having a phenolic hydroxyl group may be previously copolymerized with another monomer, and then reacted with vinyl ether in the presence of an acid catalyst.
 上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位の好ましい具体例としては、下記の構成単位が例示できるが、本発明はこれらに限定されるものではない。 As preferred specific examples of the structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group, the following structural units can be exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体における酸分解性基で保護された保護フェノール基を有する構成単位の共重合割合は、この酸分解性基で保護された保護フェノール基を有する構成単位を含む重合体に対して10~50モル%であることが好ましく、20~40モル%であることがより好ましく、25~40モル%であることが特に好ましい。
 また、すべての重合体成分(上記重合体成分が2以上の重合体の混合物である場合は、含まれる重合体すべてを意味する)を構成単位(モノマーユニット)に分解したうえで、すべての構成単位のmol数に対する、酸基が酸分解性基で保護された保護フェノール基を有する構成単位(a1)の割合は、0~40モル%であることが好ましく、10~35モル%であることがより好ましく、15~30モル%であることが特に好ましい。
The copolymerization ratio of the structural unit having a protected phenol group protected with an acid-decomposable group in the polymer having the structural unit (a1) having a group protected with an acid-decomposable group is the acid-decomposable group. It is preferably 10 to 50 mol%, more preferably 20 to 40 mol%, and more preferably 25 to 40 mol% based on the polymer containing a structural unit having a protected phenol group protected with. Particularly preferred.
In addition, all the polymer components (when the polymer component is a mixture of two or more polymers, all polymers included) are decomposed into structural units (monomer units) and then all the components The ratio of the structural unit (a1) having a protected phenol group in which the acid group is protected with an acid-decomposable group to the number of moles of the unit is preferably 0 to 40 mol%, and preferably 10 to 35 mol%. Is more preferable, and 15 to 30 mol% is particularly preferable.
<<<酸分解性基で保護された保護カルボキシ基を有する構成単位>>>
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位は、カルボキシ基を有する構成単位のカルボキシ基が、以下で詳細に説明する酸分解性基によって保護された保護カルボキシ基を有する構成単位である。
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位に用いることができる上記カルボキシ基を有する構成単位としては、特に制限はなく公知の構成単位を用いることができる。例えば、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和トリカルボン酸などの、分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)や、エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位(a1-1-2)が挙げられる。
 以下、上記カルボキシ基を有する構成単位として用いられる、分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)と、エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位(a1-1-2)について、それぞれ順に説明する。
<<< Structural Unit Having Protected Carboxy Group Protected with Acid-Decomposable Group >>>
The structural unit having a protected carboxy group protected with an acid-decomposable group is a structural unit in which the carboxy group of the structural unit having a carboxy group has a protected carboxy group protected by an acid-decomposable group described in detail below. It is.
There is no restriction | limiting in particular as a structural unit which has the said carboxy group which can be used for the structural unit which has the protected carboxy group protected by the said acid-decomposable group, A well-known structural unit can be used. For example, a structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule, such as an unsaturated monocarboxylic acid, an unsaturated dicarboxylic acid, or an unsaturated tricarboxylic acid, And a structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride.
Hereinafter, a structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule, an ethylenically unsaturated group, and an acid, which are used as the structural unit having a carboxy group. The structural unit (a1-1-2) having both an anhydride-derived structure will be described in turn.
<<<<分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)>>>>
 上記分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)として本発明で用いられる不飽和カルボン酸としては以下に挙げるものが用いられる。すなわち、不飽和モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、α-クロロアクリル酸、ケイ皮酸、2-(メタ)アクリロイルオキシエチル-コハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチル-フタル酸などが挙げられる。また、不飽和ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸などが挙げられる。また、カルボキシ基を有する構成単位を得るために用いられる不飽和多価カルボン酸は、その酸無水物であってもよい。具体的には、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。また、不飽和多価カルボン酸は、多価カルボン酸のモノ(2-(メタ)アクリロイロキシアルキル)エステルであってもよく、例えば、コハク酸モノ(2-アクリロイルオキシエチル)、コハク酸モノ(2-メタクリロイロキシエチル)、フタル酸モノ(2-アクリロイルオキシエチル)、フタル酸モノ(2-メタクリロイロキシエチル)などが挙げられる。さらに、不飽和多価カルボン酸は、その両末端ジカルボキシポリマーのモノ(メタ)アクリレートであってもよく、例えば、ω-カルボキシポリカプロラクトンモノアクリレート、ω-カルボキシポリカプロラクトンモノメタクリレートなどが挙げられる。また、不飽和カルボン酸としては、アクリル酸2-カルボキシエチルエステル、メタクリル酸2-カルボキシエチルエステル、マレイン酸モノアルキルエステル、フマル酸モノアルキルエステル、4-カルボキシスチレン等も用いることができる。
 中でも、現像性の観点から、上記分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)を形成するためには、アクリル酸、メタクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、または不飽和多価カルボン酸の無水物等を用いることが好ましく、アクリル酸、メタクリル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸を用いることがより好ましい。
 上記分子中に少なくとも1個のカルボキシ基を有する不飽和カルボン酸等に由来する構成単位(a1-1-1)は、1種類の単独で構成されていてもよいし、2種類以上で構成されていてもよい。
<<< constituent unit (a1-1-1) derived from unsaturated carboxylic acid having at least one carboxy group in the molecule >>>
Examples of the unsaturated carboxylic acid used in the present invention as the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule include those listed below. That is, examples of the unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, α-chloroacrylic acid, cinnamic acid, 2- (meth) acryloyloxyethyl-succinic acid, and 2- (meth) acryloyloxy. Examples thereof include ethyl hexahydrophthalic acid and 2- (meth) acryloyloxyethyl-phthalic acid. Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid. Moreover, the acid anhydride may be sufficient as unsaturated polyhydric carboxylic acid used in order to obtain the structural unit which has a carboxy group. Specific examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. The unsaturated polyvalent carboxylic acid may be a mono (2- (meth) acryloyloxyalkyl) ester of a polyvalent carboxylic acid, such as succinic acid mono (2-acryloyloxyethyl), succinic acid mono (2-methacryloyloxyethyl), mono (2-acryloyloxyethyl) phthalate, mono (2-methacryloyloxyethyl) phthalate and the like. Further, the unsaturated polyvalent carboxylic acid may be a mono (meth) acrylate of a dicarboxy polymer at both ends, and examples thereof include ω-carboxypolycaprolactone monoacrylate and ω-carboxypolycaprolactone monomethacrylate. As the unsaturated carboxylic acid, acrylic acid 2-carboxyethyl ester, methacrylic acid 2-carboxyethyl ester, maleic acid monoalkyl ester, fumaric acid monoalkyl ester, 4-carboxystyrene and the like can also be used.
Among them, from the viewpoint of developability, in order to form the structural unit (a1-1-1) derived from an unsaturated carboxylic acid having at least one carboxy group in the molecule, acrylic acid, methacrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, or an anhydride of an unsaturated polycarboxylic acid may be used. Acrylic acid, methacrylic acid, and 2- (meth) acryloyloxyethyl hexahydrophthalic acid are more preferable.
The structural unit (a1-1-1) derived from an unsaturated carboxylic acid or the like having at least one carboxy group in the molecule may be composed of one kind alone or two or more kinds. It may be.
 <<<<エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位(a1-1-2)>>>>
 エチレン性不飽和基と酸無水物由来の構造とを共に有する構成単位(a1-1-2)は、エチレン性不飽和基を有する構成単位中に存在する水酸基と酸無水物とを反応させて得られたモノマーに由来する単位であることが好ましい。
 上記酸無水物としては、公知のものが使用でき、具体的には、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水クロレンド酸等の二塩基酸無水物;無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物などの酸無水物が挙げられる。これらの中では、現像性の観点から、無水フタル酸、テトラヒドロ無水フタル酸および無水コハク酸が好ましい。
 上記酸無水物の水酸基に対する反応率は、現像性の観点から、好ましくは10~100モル%、より好ましくは30~100モル%である。
<<<< Structural Unit (a1-1-2) Having Both Ethylenically Unsaturated Group and Acid Anhydride Structure >>>>>
The structural unit (a1-1-2) having both an ethylenically unsaturated group and a structure derived from an acid anhydride is obtained by reacting a hydroxyl group present in the structural unit having an ethylenically unsaturated group with an acid anhydride. A unit derived from the obtained monomer is preferred.
As the acid anhydride, known ones can be used, and specifically, maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, chlorendic anhydride, etc. Dibasic acid anhydrides; acid anhydrides such as trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, biphenyltetracarboxylic anhydride, and the like. Among these, phthalic anhydride, tetrahydrophthalic anhydride and succinic anhydride are preferable from the viewpoint of developability.
The reaction rate of the acid anhydride with respect to the hydroxyl group is preferably 10 to 100 mol%, more preferably 30 to 100 mol% from the viewpoint of developability.
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位に用いることができる上記酸分解性基としては、上述の酸分解性基で保護された保護フェノール基を有する構成単位に用いることができる酸分解性基を用いることができる。
 これらの酸分解性基の中でもカルボキシ基がアセタールの形で保護された保護カルボキシ基であることが、レジスト層の基本物性、特に感度やパターン形状、レジスト層の保存安定性の観点から好ましい。さらに酸分解性基の中でもカルボキシ基が上記一般式(a1-10)で表されるアセタールの形で保護された保護カルボキシ基であることが、感度の観点からより好ましい。なお、カルボキシ基が上記一般式(a1-10)で表されるアセタールの形で保護された保護カルボキシ基である場合、保護カルボキシ基の全体としては、-(C=O)-O-CR101102(OR103)の構造となっている。
The acid-decomposable group that can be used for the structural unit having a protected carboxy group protected by the acid-decomposable group is used for a structural unit having a protected phenol group protected by the acid-decomposable group. Possible acid-decomposable groups can be used.
Among these acid-decomposable groups, a protected carboxy group in which the carboxy group is protected in the form of an acetal is preferable from the viewpoint of basic physical properties of the resist layer, particularly sensitivity and pattern shape, and storage stability of the resist layer. Furthermore, among the acid-decomposable groups, the carboxy group is more preferably a protected carboxy group protected in the form of an acetal represented by the general formula (a1-10) from the viewpoint of sensitivity. When the carboxy group is a protected carboxy group protected in the form of an acetal represented by the general formula (a1-10), the entire protected carboxy group is — (C═O) —O—CR 101 The structure is R 102 (OR 103 ).
 上記一般式(a1-10)で表される保護カルボキシ基を有する構成単位を形成するために用いられる重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、特開2011-221494号公報の段落番号0037~0040に記載の合成方法などで合成することができる。 As the polymerizable monomer used to form the structural unit having a protected carboxy group represented by the above general formula (a1-10), a commercially available monomer may be used, or one synthesized by a known method Can also be used. For example, it can be synthesized by the synthesis method described in paragraph numbers 0037 to 0040 of JP2011-212494A.
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位の中でも、下記一般式A2’で表される構成単位が、感度を高める観点から好ましい。本発明のドライフィルムレジストは、レジスト層が、(A)成分を2種類以上含有し、かつ、(A)成分として、下記一般式A2’で表される構成単位を有する重合体を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
(一般式A2’中、R31およびR32はそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともR31およびR32のいずれか一方がアルキル基またはアリール基であり、R33はアルキル基またはアリール基を表し、R31またはR32と、R33とが連結して環状エーテルを形成してもよく、R34は水素原子またはメチル基を表し、Xは単結合またはアリーレン基を表す。)
 上記一般式A2’中、R31およびR32がアルキル基の場合、炭素数は1~10のアルキル基が好ましい。R31およびR32がアリール基の場合、フェニル基が好ましい。R31およびR32は、それぞれ、水素原子または炭素数1~4のアルキル基が好ましい。
 上記一般式A2’中、R33は、アルキル基またはアリール基を表し、炭素数1~10のアルキル基が好ましく、1~6のアルキル基がより好ましい。
 上記一般式A2’中、R31またはR32と、R33とが連結して環状エーテルを形成してもよく、R31またはR32と、R33とが連結して環状エーテルを形成することが好ましい。上記環状エーテルの環員数は特に制限はないが、5または6であることが好ましく、5であることがより好ましい。
 上記一般式A2’中、R34は水素原子またはメチル基を表し、水素原子であることが好ましい。
 上記一般式A2’中、Xは単結合またはアリーレン基を表し、単結合が好ましい。
Among the structural units having a protected carboxy group protected by the acid-decomposable group, a structural unit represented by the following general formula A2 ′ is preferable from the viewpoint of increasing sensitivity. In the dry film resist of the present invention, the resist layer contains two or more types of the component (A), and a polymer having a structural unit represented by the following general formula A2 ′ as the component (A). Is preferred.
Figure JPOXMLDOC01-appb-C000013
(In General Formula A2 ′, R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group. R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, and X 0 represents a single bond or an arylene group. To express.)
In the general formula A2 ′, when R 31 and R 32 are alkyl groups, alkyl groups having 1 to 10 carbon atoms are preferable. When R 31 and R 32 are aryl groups, a phenyl group is preferred. R 31 and R 32 are each preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In the general formula A2 ′, R 33 represents an alkyl group or an aryl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
In the above general formula A2 ′, R 31 or R 32 and R 33 may be linked to form a cyclic ether, or R 31 or R 32 and R 33 may be linked to form a cyclic ether. Is preferred. The number of ring members of the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
In the general formula A2 ′, R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
In the general formula A2 ′, X 0 represents a single bond or an arylene group, and a single bond is preferable.
 上記一般式A2’で表される構成単位の中でも、下記一般式A2’’で表される構成単位が、さらに感度を高める観点からより好ましい。
Figure JPOXMLDOC01-appb-C000014
 (式中、R121は水素原子または炭素数1~4のアルキル基を表し、R122~R128はそれぞれ独立に、水素原子または炭素数1~4のアルキル基を表す。)
 上記一般式A2’’中、R121は水素原子またはメチル基が好ましい。
 上記一般式A2’’中、R122~R128は、水素原子が好ましい。
Among the structural units represented by the general formula A2 ′, a structural unit represented by the following general formula A2 ″ is more preferable from the viewpoint of further increasing sensitivity.
Figure JPOXMLDOC01-appb-C000014
(Wherein R 121 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 122 to R 128 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
In the general formula A2 ″, R 121 is preferably a hydrogen atom or a methyl group.
In the general formula A2 ″, R 122 to R 128 are preferably hydrogen atoms.
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位の好ましい具体例としては、下記の構成単位が例示できる。なお、Rは水素原子またはメチル基を表す。 As preferred specific examples of the structural unit having a protected carboxy group protected with an acid-decomposable group, the following structural units can be exemplified. R represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体における酸分解性基で保護された保護カルボキシ基を有する構成単位の共重合割合は、この酸分解性基で保護された保護カルボキシ基を有する構成単位を含む重合体に対して5~60モル%が好ましく、10~50モル%がより好ましく、30~50モル%が特に好ましい。
 また、すべての重合体成分を構成単位(モノマーユニット)に分解したうえで、すべての構成単位のmol数に対する、酸基が酸分解性基で保護された保護カルボキシ基を有する構成単位(a1)の割合は、0~60モル%であることが好ましく、10~50モル%であることがより好ましく、15~25モル%であることが特に好ましい。
The copolymerization ratio of the structural unit having a protected carboxy group protected by an acid-decomposable group in the polymer having the structural unit (a1) having a group protected by an acid-decomposable group is the acid-decomposable group. It is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, particularly preferably 30 to 50 mol%, based on the polymer containing a structural unit having a protected carboxy group protected with.
Moreover, after decomposing all the polymer components into structural units (monomer units), the structural unit (a1) having a protected carboxy group in which the acid group is protected with an acid-decomposable group with respect to the number of moles of all the structural units. Is preferably 0 to 60 mol%, more preferably 10 to 50 mol%, and particularly preferably 15 to 25 mol%.
<<その他の構成単位(a3)>>
 上記レジスト層の上記(A)成分は、上記酸基が酸分解性基で保護された基を有する構成単位(a1)に加えて、これら以外のその他の構成単位(a3)を有していてもよい。これらのその他の構成単位(a3)は、上記(A)成分に用いられる重合体、すなわち、酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体が共重合成分として含んでいてもよい。また、上記(A)成分に用いられる酸基が酸分解性基で保護された基を有する構成単位(a1)を含有する重合体とは別に、実質的に酸基が酸分解性基で保護された基を有する構成単位(a1)を含まずに他の構成単位を有する重合体がその他の構成単位(a3)を有していてもよい。
<< Other structural units (a3) >>
The component (A) of the resist layer has a structural unit (a3) other than these in addition to the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group. Also good. These other structural units (a3) are a copolymer of the polymer used for the component (A), that is, a polymer having a structural unit (a1) having a group in which an acid group is protected by an acid-decomposable group. It may be included as a component. In addition to the polymer containing the structural unit (a1) having a group in which the acid group used in the component (A) is protected with an acid-decomposable group, the acid group is substantially protected with an acid-decomposable group. The polymer having other structural units without including the structural unit (a1) having the group formed may have other structural units (a3).
 その他の構成単位(a3)となるモノマーとしては、特に制限はなく、例えば、スチレン類、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物類、マレイミド化合物類、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、その他の不飽和化合物を挙げることができる。また、後述するとおり、酸基を有する構成単位を有していてもよい。その他の構成単位(a3)となるモノマーは、単独または2種類以上を組み合わせて使用することができる。 There is no restriction | limiting in particular as a monomer used as another structural unit (a3), For example, styrenes, (meth) acrylic acid alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated Dicarboxylic acid diesters, bicyclounsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, and other unsaturated compounds be able to. Moreover, you may have the structural unit which has an acid group so that it may mention later. The monomer which becomes another structural unit (a3) can be used individually or in combination of 2 or more types.
 構成単位(a3)は、具体的には、スチレン、tert-ブトキシスチレン、メチルスチレン、ヒドロキシスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、4-ヒドロキシ安息香酸(3-メタクリロイルオキシプロピル)エステル、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、エチレングリコールモノアセトアセテートモノ(メタ)アクリレートなどに由来する構成単位を挙げることができる。この他、特開2004-264623号公報の段落番号0021~0024に記載の化合物を挙げることができる。 The structural unit (a3) specifically includes styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, α-methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, vinylbenzoic acid. Ethyl, 4-hydroxybenzoic acid (3-methacryloyloxypropyl) ester, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, (meth) acrylic acid Isopropyl, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono (meth) acrylate Mention may be made of a constituent unit derived from, such as the door. In addition, compounds described in paragraph numbers 0021 to 0024 of JP-A No. 2004-264623 can be exemplified.
 また、その他の構成単位(a3)としてスチレン類、脂肪族環式骨格を有する基が、電気特性の観点で好ましい。具体的にはスチレン、tert-ブトキシスチレン、メチルスチレン、ヒドロキシスチレン、α-メチルスチレン、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。 Further, as other structural unit (a3), styrenes and groups having an aliphatic cyclic skeleton are preferable from the viewpoint of electrical characteristics. Specifically, styrene, tert-butoxystyrene, methylstyrene, hydroxystyrene, α-methylstyrene, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, etc. Can be mentioned.
 さらにまた、その他の構成単位(a3)として(メタ)アクリル酸アルキルエステルが、密着性の観点で好ましい。具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル等が挙げられ、(メタ)アクリル酸メチルがより好ましい。
 酸基が酸分解性基で保護された基を有する構成単位(a1)を含有する重合体を構成する構成単位中、上記の構成単位(a3)の含有率は、60モル%以下が好ましく、50モル%以下がより好ましく、40モル%以下がさらに好ましい。下限値としては、0モル%でもよいが、例えば、1モル%以上とすることができ、さらには、5モル%以上とすることができる。上記の数値の範囲内であると、レジスト層の諸特性が良好となる。
Furthermore, (meth) acrylic acid alkyl ester is preferable as another structural unit (a3) from the viewpoint of adhesion. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl (meth) acrylate, and methyl (meth) acrylate is more preferable.
In the structural unit constituting the polymer containing the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group, the content of the structural unit (a3) is preferably 60 mol% or less, 50 mol% or less is more preferable, and 40 mol% or less is still more preferable. As a lower limit, although 0 mol% may be sufficient, it can be set as 1 mol% or more, for example, Furthermore, it can be set as 5 mol% or more. If the numerical value is within the above range, various characteristics of the resist layer are improved.
 その他の構成単位(a3)として、酸基を含む構成単位を有することが好ましい。(A)成分が酸基を含む構成単位を有することにより、(A)成分がアルカリ性の現像液に溶けやすくなり、本発明の効果がより効果的に発揮される。本発明における酸基とは、pKa(power of Ka;Kaは酸解離定数)が10以下のプロトン解離性基を意味する。酸基は、通常、酸基を形成し得るモノマーを用いて、酸基を含む構成単位として、重合体に組み込まれる。酸基を含む構成単位を重合体中に含めることにより、(A)成分がアルカリ性の現像液に対して溶けやすくなる傾向にある。
 上記その他の構成単位に用いられる酸基を含む構成単位の酸基としては、カルボン酸基由来のもの、スルホンアミド基に由来のもの、ホスホン酸基に由来のもの、スルホン酸基に由来のもの、フェノール性水酸基に由来するもの、スルホンアミド基、スルホニルイミド基等が例示され、カルボン酸基由来のものおよび/またはフェノール性水酸基に由来のものが好ましい。
 上記その他の構成単位に用いられる酸基を含む構成単位は、スチレンに由来する構成単位やビニル化合物に由来する構成単位に対して酸基が置換した構成単位であることや、(メタ)アクリル酸に由来する構成単位であることがより好ましい。
It is preferable to have a structural unit containing an acid group as the other structural unit (a3). When the component (A) has a structural unit containing an acid group, the component (A) is easily dissolved in an alkaline developer, and the effects of the present invention are more effectively exhibited. The acid group in the present invention means a proton dissociable group having a pKa (power of Ka; Ka is an acid dissociation constant) of 10 or less. The acid group is usually incorporated into the polymer as a structural unit containing an acid group using a monomer capable of forming an acid group. By including the structural unit containing an acid group in the polymer, the component (A) tends to be easily dissolved in an alkaline developer.
As the acid group of the structural unit containing an acid group used for the above other structural units, those derived from a carboxylic acid group, those derived from a sulfonamide group, those derived from a phosphonic acid group, those derived from a sulfonic acid group Examples thereof include those derived from phenolic hydroxyl groups, sulfonamide groups, sulfonylimide groups and the like, and those derived from carboxylic acid groups and / or those derived from phenolic hydroxyl groups are preferred.
The structural unit containing an acid group used for the above other structural units is a structural unit obtained by substituting an acid group for a structural unit derived from styrene or a structural unit derived from a vinyl compound, or (meth) acrylic acid. More preferably, it is a structural unit derived from.
 さらに、酸基のエステルを含む構成単位を有することも、現像液に対する溶解性や、膜の物理物性を最適化する観点から好ましい。 Furthermore, it is preferable to have a structural unit containing an ester of an acid group from the viewpoint of optimizing the solubility in a developer and the physical properties of the film.
 本発明では、特に、上記その他の構成単位(a3)として、カルボキシ基を有する構成単位、または、フェノール性水酸基を有する構成単位を含有することが、感度の観点で好ましい。
 上記酸基が酸分解性基で保護された基を有する構成単位(a1)として、上記酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体は、上記その他の構成単位(a3)の中でもフェノール性水酸基に由来する構成単位を共重合成分として含むことが好ましい。上記酸基が酸分解性基で保護された基を有する構成単位(a1)として、上記酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体は、ヒドロキシスチレンまたはα-メチルヒドロキシスチレンに由来する構成単位を共重合成分として含むことがより好ましく、ヒドロキシスチレンに由来する構成単位を共重合成分として含むことが特に好ましい。
 上記酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体における酸基を含む構成単位の共重合割合は、酸基がフェノール性水酸基である場合、この酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体に対して50~90モル%が好ましく、60~75モル%がより好ましい。
 また、酸基がカルボキシ基である場合、この酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体に対して0~30モル%が好ましく、5~10モル%がより好ましい。
 上記酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体における酸基のエステルを含む構成単位の共重合割合は、この酸分解性基で保護された保護フェノール基を有する構成単位を有する重合体に対して0~30モル%が好ましく、0~10モル%がより好ましく、0モル%が特に好ましい。
In the present invention, it is particularly preferable from the viewpoint of sensitivity that the other structural unit (a3) contains a structural unit having a carboxy group or a structural unit having a phenolic hydroxyl group.
As the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group, the polymer having a structural unit having a protected phenol group protected with the acid-decomposable group includes the above other structural units ( Among a3), it is preferable to contain a structural unit derived from a phenolic hydroxyl group as a copolymerization component. As the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group, a polymer having a structural unit having a protected phenol group protected with the acid-decomposable group is hydroxystyrene or α-methyl. It is more preferable to include a structural unit derived from hydroxystyrene as a copolymerization component, and it is particularly preferable to include a structural unit derived from hydroxystyrene as a copolymerization component.
In the polymer having a structural unit having a protected phenol group protected with an acid-decomposable group, the copolymerization ratio of the structural unit containing an acid group is protected by this acid-decomposable group when the acid group is a phenolic hydroxyl group. The amount of the polymer having a structural unit having a protected phenol group is preferably 50 to 90 mol%, more preferably 60 to 75 mol%.
Further, when the acid group is a carboxy group, it is preferably 0 to 30 mol%, more preferably 5 to 10 mol%, based on the polymer having a structural unit having a protected phenol group protected with this acid-decomposable group. .
The copolymerization ratio of the structural unit containing an ester of an acid group in the polymer having a structural unit having a protected phenol group protected with an acid-decomposable group is a structure having a protected phenol group protected with this acid-decomposable group. The amount is preferably 0 to 30 mol%, more preferably 0 to 10 mol%, particularly preferably 0 mol%, based on the polymer having units.
 上記酸基が酸分解性基で保護された基を有する構成単位(a1)として、上記酸分解性基で保護された保護カルボキシ基を有する構成単位を有する重合体は、上記その他の構成単位(a3)の中でもカルボン酸基由来の構成単位および/またはそのエステルを共重合成分として含むことが好ましい。上記酸基が酸分解性基で保護された基を有する構成単位(a1)として、上記酸分解性基で保護された保護カルボキシ基を有する構成単位を有する重合体は、(メタ)アクリル酸、(メタ)アクリル酸ベンジルまたは(メタ)アクリル酸2-ヒドロキシエチル由来の構成単位を共重合成分として含むことがより好ましい。
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位を有する重合体における酸基を含む構成単位の共重合割合は、酸基がフェノール性水酸基である場合、この酸分解性基で保護されたカルボキシ基を有する構成単位を有する重合体に対して50~90モル%が好ましく、60~75モル%がより好ましい。
 また、酸基がカルボキシ基である場合、この酸分解性基で保護されたカルボキシ基を有する構成単位を有する重合体に対して0~30モル%が好ましく、5~10モル%がより好ましい。
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位を有する重合体における酸基のエステルを含む構成単位の共重合割合は、この酸分解性基で保護された保護カルボキシ基を有する構成単位を有する重合体に対して10~80モル%が好ましく、30~70モル%がより好ましく、40~60モル%が特に好ましい。
As the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group, a polymer having a structural unit having a protected carboxy group protected with the acid-decomposable group includes the above other structural units ( Among a3), it is preferable to contain a structural unit derived from a carboxylic acid group and / or an ester thereof as a copolymerization component. As the structural unit (a1) having a group in which the acid group is protected by an acid-decomposable group, a polymer having a structural unit having a protected carboxy group protected by the acid-decomposable group is (meth) acrylic acid, More preferably, a structural unit derived from benzyl (meth) acrylate or 2-hydroxyethyl (meth) acrylate is included as a copolymerization component.
In the polymer having a structural unit having a protected carboxy group protected with an acid-decomposable group, the copolymerization ratio of the structural unit containing an acid group is protected by this acid-decomposable group when the acid group is a phenolic hydroxyl group. The amount of the polymer having a constitutional unit having a carboxy group is preferably 50 to 90 mol%, more preferably 60 to 75 mol%.
Further, when the acid group is a carboxy group, it is preferably 0 to 30 mol%, more preferably 5 to 10 mol%, based on the polymer having a structural unit having a carboxy group protected by this acid-decomposable group.
The copolymerization ratio of the structural unit containing an ester of an acid group in the polymer having a structural unit having a protected carboxy group protected with an acid-decomposable group is a structure having a protected carboxy group protected with this acid-decomposable group. The amount is preferably 10 to 80 mol%, more preferably 30 to 70 mol%, particularly preferably 40 to 60 mol%, based on the polymer having units.
<重合体成分の好ましい態様>
 上記酸分解性基で保護された保護カルボキシ基を有する構成単位は、上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位に比べると、現像(現像される速度)が速い。よって、上記レジスト層を露光後に速く現像したい場合には酸分解性基で保護された保護カルボキシ基を有する構成単位が好ましい。逆に現像を遅くしたい場合には酸分解性基で保護された保護フェノール性水酸基を有する構成単位を用いることが好ましい。
<Preferred embodiment of polymer component>
The structural unit having a protected carboxy group protected with an acid-decomposable group develops faster (development speed) than the structural unit having a protected phenolic hydroxyl group protected with the acid-decomposable group. Therefore, when it is desired to develop the resist layer rapidly after exposure, a structural unit having a protected carboxy group protected with an acid-decomposable group is preferred. Conversely, when it is desired to slow development, it is preferable to use a structural unit having a protected phenolic hydroxyl group protected with an acid-decomposable group.
 レジスト層では、上記(A)成分中、酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体は1種類であっても2種類以上であってもよい。レジスト層は、上記重合体成分として上記酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体を2種類以上含有することが好ましい。その中でも、上記重合体成分として上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位を有する重合体と、上記酸分解性基で保護された保護カルボキシ基を有する構成単位を含有する重合体とを含有することがより好ましい。
 レジスト層は、上記重合体成分として上記酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体を2種類以上含有し、かつ、上記酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体として、上記一般式A2’で表される構成単位を有する重合体を含有することが感度を高める観点から特に好ましい。すなわち、本発明のドライフィルムレジストは、レジスト層が、(A)成分を2種類以上含有し、かつ、(A)成分として、一般式A2’で表される構成単位を有する重合体を含有することが好ましい。
 レジスト層が、上記重合体成分として上記酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体を2種類以上含有し、かつ、上記酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体として、上記一般式A1または上記一般式A1’で表される構成単位を有する重合体のうち少なくとも一方と、上記一般式A2’で表される構成単位を有する重合体とを含有することが感度および解像度をともに高める観点からより特に好ましい。
In the resist layer, in the component (A), the polymer having the structural unit (a1) having a group in which an acid group is protected by an acid-decomposable group may be one type or two or more types. The resist layer preferably contains two or more types of polymers having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group as the polymer component. Among them, the polymer component contains a polymer having a structural unit having a protected phenolic hydroxyl group protected by the acid-decomposable group and a structural unit having a protected carboxy group protected by the acid-decomposable group. It is more preferable to contain a polymer.
The resist layer contains two or more kinds of polymers having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group as the polymer component, and the acid group is an acid-decomposable group. As the polymer having the structural unit (a1) having a group protected with a, it is particularly preferable to contain a polymer having the structural unit represented by the general formula A2 ′ from the viewpoint of increasing sensitivity. That is, in the dry film resist of the present invention, the resist layer contains two or more types of the component (A) and a polymer having a structural unit represented by the general formula A2 ′ as the component (A). It is preferable.
The resist layer contains two or more kinds of polymers having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group as the polymer component, and the acid group is an acid-decomposable group. As the polymer having the structural unit (a1) having a group protected with, at least one of the polymers having the structural unit represented by the general formula A1 or the general formula A1 ′, and the general formula A2 ′ It is particularly preferable to contain a polymer having a structural unit represented from the viewpoint of increasing both sensitivity and resolution.
 上記重合体成分として上記酸基が酸分解性基で保護された基を有する構成単位(a1)を有する重合体を2種類以上含有する場合、上記酸分解性基で保護された保護フェノール性水酸基を有する構成単位を有する重合体と上記酸分解性基で保護された保護カルボキシ基を有する構成単位を含有する重合体の割合は、質量比で10:90~100:0であることが好ましく、30:70~60:40であることがより好ましく、1:1であることが特に好ましい。 When the polymer component contains two or more kinds of the polymer having the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group, a protected phenolic hydroxyl group protected with the acid-decomposable group The ratio of the polymer having a structural unit having a structural unit having a structural unit having a protected carboxy group protected by the acid-decomposable group is preferably 10:90 to 100: 0 by mass, It is more preferably 30:70 to 60:40, and particularly preferably 1: 1.
<<酸基が酸分解性基で保護された基を有する構成単位(a1)を含有する重合体の分子量>>
 上記酸基が酸分解性基で保護された基を有する構成単位(a1)を含有する重合体の重量平均分子量は、ポリスチレン換算の重量平均分子量で、好ましくは1,000~200,000、より好ましくは2,000~50,000の範囲である。上記の数値の範囲内であると、諸特性が良好である。
 数平均分子量と重量平均分子量の比(分散度)は1.0~5.0が好ましく1.05~3.5がより好ましい。
<< Molecular Weight of Polymer Containing Constituent Unit (a1) having a Group Protected with Acid-Decomposable Group >>
The weight average molecular weight of the polymer containing the structural unit (a1) having a group in which the acid group is protected with an acid-decomposable group is a polystyrene-equivalent weight average molecular weight, preferably 1,000 to 200,000. The range is preferably 2,000 to 50,000. Various characteristics are favorable in the range of said numerical value.
The ratio (dispersity) between the number average molecular weight and the weight average molecular weight is preferably 1.0 to 5.0, more preferably 1.05 to 3.5.
<<(A)成分の製造方法>>
 また、(A)成分の合成方法についても、様々な方法が知られている。一例を挙げると、少なくとも上記(a1)および上記(a3)で表される構成単位を形成するために用いられる重合性単量体を含む重合性単量体混合物を有機溶剤中、重合開始剤を用いて重合することにより合成することができる。また、いわゆる高分子反応で合成することもできる。
<< (A) Component Production Method >>
Various methods for synthesizing the component (A) are also known. As an example, a polymerizable monomer mixture containing a polymerizable monomer used to form at least the structural units represented by the above (a1) and (a3) is added to a polymerization initiator in an organic solvent. It can synthesize | combine by superposing | polymerizing using. It can also be synthesized by a so-called polymer reaction.
 上記レジスト層は、全固形分100質量部に対し、(A)成分を50~99.9質量部の割合で含むことが好ましく、70~98質量部の割合で含むことがより好ましい。 The resist layer preferably contains the component (A) in a proportion of 50 to 99.9 parts by mass, more preferably 70 to 98 parts by mass with respect to 100 parts by mass of the total solid content.
<<他の重合体成分>>
 また、上記(A)成分に用いられる酸基が酸分解性基で保護された基を有する構成単位(a1)を含有する重合体とは別に、実質的に酸基が酸分解性基で保護された基を有する構成単位(a1)を含まずに他の構成単位を有する重合体を有していてもよい。上記(A)成分に用いられる重合体とは別に、実質的に酸基が酸分解性基で保護された基を有する構成単位(a1)を含まずに他の構成単位を有する重合体を含む場合、この重合体の配合量は、全重合体成分中、60質量%以下であることが好ましく、40質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
<< Other polymer components >>
In addition to the polymer containing the structural unit (a1) having a group in which the acid group used in the component (A) is protected with an acid-decomposable group, the acid group is substantially protected with an acid-decomposable group. You may have the polymer which does not contain the structural unit (a1) which has the group formed, and has another structural unit. In addition to the polymer used for the component (A), a polymer having other structural unit is included without substantially including the structural unit (a1) having a group in which an acid group is protected by an acid-decomposable group. In this case, the blending amount of the polymer is preferably 60% by mass or less, more preferably 40% by mass or less, and still more preferably 20% by mass or less in all polymer components.
 上記レジスト層中にこれらの実質的に構成単位(a1)を含まずに他の構成単位(a3)を有する重合体は、1種類のみ含まれてもよいし、2種類以上含まれてもよい。 The polymer having the other structural unit (a3) without substantially including the structural unit (a1) in the resist layer may be included in only one kind or in two or more kinds. .
 これらの実質的に構成単位(a1)を含まずに他の構成単位(a3)を有する重合体として、例えばポリヒドロキシスチレンを用いることができ、市販されている、SMA 1000P、SMA 2000P、SMA 3000P、SMA 1440F、SMA 17352P、SMA 2625P、SMA 3840F(以上、サートマー社製)、ARUFON UC-3000、ARUFON UC-3510、ARUFON UC-3900、ARUFON UC-3910、ARUFON UC-3920、ARUFON UC-3080(以上、東亞合成(株)製)、Joncryl 690、Joncryl 678、Joncryl 67、Joncryl 586(以上、BASF製)等を用いることもできる。 As a polymer which does not contain these structural units (a1) but has other structural units (a3), for example, polyhydroxystyrene can be used and is commercially available, SMA 1000P, SMA 2000P, SMA 3000P. , SMA 1440F, SMA 17352P, SMA 2625P, SMA 3840F (Sartomer) As described above, manufactured by Toagosei Co., Ltd.), Joncryl 690, Joncryl 678, Joncryl 67, Joncryl 586 (above, manufactured by BASF) and the like can also be used.
<(B)成分:光酸発生剤>
 上記レジスト層は、(B)光酸発生剤を含有することが好ましい。本発明で使用される光酸発生剤(「(B)成分」ともいう。)としては、紫外線、遠紫外線、X線、荷電粒子線等の放射線を照射することにより酸を発生することができる化合物である。本発明で使用される(B)光酸発生剤としては、波長300nm以上、好ましくは波長300~450nmの活性光線に感応し、酸を発生する化合物が好ましい。(B)光酸発生剤の化学構造は制限されるものではない。また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。放射線の照射により発生される酸のpKaの値は好ましくは、4.0以下であり、さらに好ましくは3.0以下である。下限値は特に定めるものではないが、例えば、-10.0以上とすることができる。
<(B) component: Photoacid generator>
The resist layer preferably contains (B) a photoacid generator. As the photoacid generator (also referred to as “component (B)”) used in the present invention, an acid can be generated by irradiation with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams. A compound. The photoacid generator (B) used in the present invention is preferably a compound that generates an acid in response to an actinic ray having a wavelength of 300 nm or more, preferably 300 to 450 nm. (B) The chemical structure of the photoacid generator is not limited. Further, a photoacid generator that is not directly sensitive to an actinic ray having a wavelength of 300 nm or more can also be used as a sensitizer if it is a compound that reacts with an actinic ray having a wavelength of 300 nm or more and generates an acid when used in combination with a sensitizer. It can be preferably used in combination. The pKa value of the acid generated upon irradiation with radiation is preferably 4.0 or less, more preferably 3.0 or less. The lower limit value is not particularly defined, but can be set to -10.0 or more, for example.
 上記(B)光酸発生剤としては、イオン性光酸発生剤と、非イオン性光酸発生剤を挙げることができる。 Examples of the (B) photoacid generator include ionic photoacid generators and nonionic photoacid generators.
 非イオン性光酸発生剤の例として、トリクロロメチル-s-トリアジン類、ジアゾメタン化合物、イミドスルホネート化合物、および、オキシムスルホネート化合物などを挙げることができる。これらの中でも、絶縁性の観点から、レジスト層は、上記(B)光酸発生剤がオキシムスルホネート化合物であることが好ましい。これら光酸発生剤は、1種類単独または2種類以上を組み合わせて使用することができる。トリクロロメチル-s-トリアジン類、およびジアゾメタン誘導体の具体例としては、特開2011-221494号公報の段落番号0083~0088に記載の化合物が例示でき、これらの内容は本明細書に組み込まれる。 Examples of nonionic photoacid generators include trichloromethyl-s-triazines, diazomethane compounds, imide sulfonate compounds, and oxime sulfonate compounds. Among these, from the viewpoint of insulating properties, it is preferable that the (B) photoacid generator in the resist layer is an oxime sulfonate compound. These photoacid generators can be used alone or in combination of two or more. Specific examples of trichloromethyl-s-triazines and diazomethane derivatives include the compounds described in JP-A 2011-212494, paragraphs 0083 to 0088, the contents of which are incorporated herein.
 オキシムスルホネート化合物、すなわち、オキシムスルホネート構造を有する化合物としては、下記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物が好ましく例示できる。 Preferred examples of the oxime sulfonate compound, that is, a compound having an oxime sulfonate structure include compounds having an oxime sulfonate structure represented by the following general formula (B1).
一般式(B1)
Figure JPOXMLDOC01-appb-C000016
(一般式(B1)中、R21は、アルキル基またはアリール基を表す。波線は他の基との結合を表す。)
General formula (B1)
Figure JPOXMLDOC01-appb-C000016
(In the general formula (B1), R 21 represents an alkyl group or an aryl group. The wavy line represents a bond with another group.)
 いずれの基も置換されてもよく、R21におけるアルキル基は直鎖状でも分岐状でも環状でもよい。許容される置換基は以下に説明する。
 R21のアルキル基としては、炭素数1~10の、直鎖状または分岐状アルキル基が好ましい。R21のアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、または、シクロアルキル基(7,7-ジメチル-2-オキソノルボルニル基などの有橋式脂環基を含む、好ましくはビシクロアルキル基等)で置換されてもよい。
 R21のアリール基としては、炭素数6~11のアリール基が好ましく、フェニル基またはナフチル基がより好ましい。R21のアリール基は、低級アルキル基、アルコキシ基あるいはハロゲン原子で置換されてもよい。
Any group may be substituted, and the alkyl group in R 21 may be linear, branched or cyclic. Acceptable substituents are described below.
The alkyl group for R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms. The alkyl group represented by R 21 is an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl group (7,7-dimethyl-2-oxonorbornyl group or the like). It may be substituted with a cyclic group, preferably a bicycloalkyl group or the like.
The aryl group for R 21 is preferably an aryl group having 6 to 11 carbon atoms, and more preferably a phenyl group or a naphthyl group. The aryl group of R 21 may be substituted with a lower alkyl group, an alkoxy group, or a halogen atom.
 上記一般式(B1)で表されるオキシムスルホネート構造を含有する上記化合物は、下記一般式(B2)で表されるオキシムスルホネート化合物であることも好ましい。 The above compound containing an oxime sulfonate structure represented by the above general formula (B1) is also preferably an oxime sulfonate compound represented by the following general formula (B2).
Figure JPOXMLDOC01-appb-C000017
(一般式(B2)中、R42は、アルキル基またはアリール基を表し、X10は、アルキル基、アルコキシ基、または、ハロゲン原子を表し、m4は、0~3の整数を表し、m4が2または3であるとき、複数のX10は同一でも異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000017
(In the general formula (B2), R 42 represents an alkyl group or an aryl group, X 10 represents an alkyl group, an alkoxy group, or a halogen atom, m4 represents an integer of 0 to 3, and m4 represents When it is 2 or 3, the plurality of X 10 may be the same or different.)
 X10としてのアルキル基は、炭素数1~4の直鎖状または分岐状アルキル基が好ましい。
 X10としてのアルコキシ基は、炭素数1~4の直鎖状または分岐状アルコキシ基が好ましい。
 X10としてのハロゲン原子は、塩素原子またはフッ素原子が好ましい。m4は、0または1が好ましい。上記一般式(B2)中、m4が1であり、X10がメチル基であり、X10の置換位置がオルト位であり、R42が炭素数1~10の直鎖状アルキル基、7,7-ジメチル-2-オキソノルボルニルメチル基、またはパラトルイル基である化合物が特に好ましい。
The alkyl group as X 10 is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
The alkoxy group as X 10 is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
The halogen atom as X 10 is preferably a chlorine atom or a fluorine atom. m4 is preferably 0 or 1. In the above general formula (B2), m4 is 1, X 10 is a methyl group, the substitution position of X 10 is the ortho position, R 42 is a linear alkyl group having 1 to 10 carbon atoms, 7, A compound that is a 7-dimethyl-2-oxonorbornylmethyl group or a p-toluyl group is particularly preferable.
 上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物は、下記一般式(B3)で表されるオキシムスルホネート化合物であることも好ましい。 The compound containing an oxime sulfonate structure represented by the above general formula (B1) is also preferably an oxime sulfonate compound represented by the following general formula (B3).
Figure JPOXMLDOC01-appb-C000018
(一般式(B3)中、R43は一般式(B2)におけるR42と同義であり、X11は、ハロゲン原子、水酸基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基を表し、n4は0~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000018
(In the general formula (B3), R 43 has the same meaning as R 42 in the general formula (B2), and X 11 represents a halogen atom, a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Represents a cyano group or a nitro group, and n4 represents an integer of 0 to 5.)
 上記一般式(B3)におけるR43としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-オクチル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロ-n-ブチル基、パラトリル基、4-クロロフェニル基またはペンタフルオロフェニル基が好ましく、n-オクチル基が特に好ましい。
 Xとしては、炭素数1~5のアルコキシ基が好ましく、メトキシ基がより好ましい。
 n4としては、0~2が好ましく、0~1が特に好ましい。
R 43 in the general formula (B3) is a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-octyl group, a trifluoromethyl group, a pentafluoroethyl group, or a perfluoro-n-propyl group. Perfluoro-n-butyl group, p-tolyl group, 4-chlorophenyl group or pentafluorophenyl group is preferable, and n-octyl group is particularly preferable.
X 1 is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group.
n4 is preferably from 0 to 2, particularly preferably from 0 to 1.
 上記一般式(B3)で表される化合物の具体例としては、α-(メチルスルホニルオキシイミノ)ベンジルシアニド、α-(エチルスルホニルオキシイミノ)ベンジルシアニド、α-(n-プロピルスルホニルオキシイミノ)ベンジルシアニド、α-(n-ブチルスルホニルオキシイミノ)ベンジルシアニド、α-(4-トルエンスルホニルオキシイミノ)ベンジルシアニド、α-〔(メチルスルホニルオキシイミノ)-4-メトキシフェニル〕アセトニトリル、α-〔(エチルスルホニルオキシイミノ)-4-メトキシフェニル〕アセトニトリル、α-〔(n-プロピルスルホニルオキシイミノ)-4-メトキシフェニル〕アセトニトリル、α-〔(n-ブチルスルホニルオキシイミノ)-4-メトキシフェニル〕アセトニトリル、α-〔(4-トルエンスルホニルオキシイミノ)-4-メトキシフェニル〕アセトニトリルを挙げることができる。 Specific examples of the compound represented by the general formula (B3) include α- (methylsulfonyloxyimino) benzyl cyanide, α- (ethylsulfonyloxyimino) benzyl cyanide, α- (n-propylsulfonyloxyimino). ) Benzyl cyanide, α- (n-butylsulfonyloxyimino) benzyl cyanide, α- (4-toluenesulfonyloxyimino) benzyl cyanide, α-[(methylsulfonyloxyimino) -4-methoxyphenyl] acetonitrile, α-[(ethylsulfonyloxyimino) -4-methoxyphenyl] acetonitrile, α-[(n-propylsulfonyloxyimino) -4-methoxyphenyl] acetonitrile, α-[(n-butylsulfonyloxyimino) -4- Methoxyphenyl] acetonitrile, α-[(4 It can be given toluenesulfonyl) -4-methoxyphenyl] acetonitrile.
 好ましいオキシムスルホネート化合物の具体例としては、下記化合物(i)~(viii)等が挙げられ、1種類を単独で使用するか、または、2種類以上を併用することができる。化合物(i)~(viii)は、市販品として、入手することができる。また、他の種類の(B)光酸発生剤と組み合わせて使用することもできる。 Specific examples of preferred oxime sulfonate compounds include the following compounds (i) to (viii) and the like, and one kind can be used alone, or two or more kinds can be used in combination. Compounds (i) to (viii) can be obtained as commercial products. Moreover, it can also be used in combination with another kind of (B) photo-acid generator.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物としては、下記一般式(OS-1)で表される化合物であることも好ましい。 The compound containing an oxime sulfonate structure represented by the above general formula (B1) is also preferably a compound represented by the following general formula (OS-1).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記一般式(OS-1)中、R411は、水素原子、アルキル基、アルケニル基、アルコキシ基、アルコキシカルボニル基、アシル基、カルバモイル基、スルファモイル基、スルホ基、シアノ基、アリール基、または、ヘテロアリール基を表す。R412は、アルキル基、または、アリール基を表す。
 X401は-O-、-S-、-NH-、-NR415-、-CH-、-CR416H-、または、-CR415417-を表し、R415~R417はアルキル基、または、アリール基を表す。
 R421~R424は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、アミノ基、アルコキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アミド基、スルホ基、シアノ基、または、アリール基を表す。R421~R424のうち2つは、それぞれ互いに結合して環を形成してもよい。
 R421~R424としては、水素原子、ハロゲン原子、および、アルキル基が好ましく、また、R421~R424のうち少なくとも2つが互いに結合してアリール基を形成する態様も好ましい。中でも、R421~R424がいずれも水素原子である態様が感度の観点からより好ましい。
 既述の官能基は、いずれも、さらに置換基を有していてもよい。
In the general formula (OS-1), R 411 is a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group, or Represents a heteroaryl group. R 412 represents an alkyl group or an aryl group.
X 401 represents —O—, —S—, —NH—, —NR 415 —, —CH 2 —, —CR 416 H—, or —CR 415 R 417 —, wherein R 415 to R 417 are alkyl groups. Or an aryl group.
R 421 to R 424 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an alkylcarbonyl group, an arylcarbonyl group, an amide group, a sulfo group, a cyano group, Or an aryl group is represented. Two of R 421 to R 424 may be bonded to each other to form a ring.
R 421 to R 424 are preferably a hydrogen atom, a halogen atom and an alkyl group, and an embodiment in which at least two of R 421 to R 424 are bonded to each other to form an aryl group is also preferred. Among these, an embodiment in which all of R 421 to R 424 are hydrogen atoms is more preferable from the viewpoint of sensitivity.
Any of the aforementioned functional groups may further have a substituent.
 上記一般式(OS-1)で表される化合物は、下記一般式(OS-2)で表される化合物であることがより好ましい。 The compound represented by the general formula (OS-1) is more preferably a compound represented by the following general formula (OS-2).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記一般式(OS-2)中、R401、R402、R421~R424は、それぞれ式(OS-1)におけるものと同義であり、好ましい例もまた同様である。
 これらの中でも、上記一般式(OS-1)および上記一般式(OS-2)におけるR401がシアノ基、または、アリール基である態様がより好ましく、上記一般式(OS-2)で表され、R401がシアノ基、フェニル基またはナフチル基である態様が最も好ましい。
In the general formula (OS-2), R 401 , R 402 , R 421 to R 424 are respectively synonymous with those in the formula (OS-1), and preferred examples are also the same.
Among these, an embodiment in which R 401 in the general formula (OS-1) and the general formula (OS-2) is a cyano group or an aryl group is more preferable, and is represented by the general formula (OS-2). , R 401 is most preferably a cyano group, a phenyl group, or a naphthyl group.
 また、上記オキシムスルホネート化合物においてオキシムやベンゾチアゾール環の立体構造(E、Z等)についてはそれぞれ、どちらか一方であっても、混合物であってもよい。 In the oxime sulfonate compound, the steric structure (E, Z, etc.) of the oxime or benzothiazole ring may be either one or a mixture.
 本発明に好適に用い得る上記一般式(OS-1)で表される化合物の具体例としては、特開2011-221494号公報の段落番号0128~0132に記載の化合物(例示化合物b-1~b-34)が挙げられるが、本発明はこれに限定されない。 Specific examples of the compound represented by the general formula (OS-1) that can be suitably used in the present invention include compounds described in paragraph numbers 0128 to 0132 of JP2011-221494A (exemplified compounds b-1 to b-34), but the present invention is not limited thereto.
 本発明では、上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物としては、下記一般式(OS-3)、下記一般式(OS-4)または下記一般式(OS-5)で表されるオキシムスルホネート化合物であることが好ましい。 In the present invention, the compound containing the oxime sulfonate structure represented by the above general formula (B1) includes the following general formula (OS-3), the following general formula (OS-4), or the following general formula (OS-5). It is preferable that it is an oxime sulfonate compound represented by these.
Figure JPOXMLDOC01-appb-C000022
(一般式(OS-3)~一般式(OS-5)中、R22、R25およびR28はそれぞれ独立にアルキル基、アリール基またはヘテロアリール基を表し、R23、R26およびR29はそれぞれ独立に水素原子、アルキル基、アリール基またはハロゲン原子を表し、R24、R27およびR30はそれぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基またはアルコキシスルホニル基を表し、X~Xはそれぞれ独立に酸素原子または硫黄原子を表し、n~nはそれぞれ独立に1または2を表し、m~mはそれぞれ独立に0~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000022
(In General Formula (OS-3) to General Formula (OS-5), R 22 , R 25 and R 28 each independently represents an alkyl group, an aryl group or a heteroaryl group, and R 23 , R 26 and R 29 Each independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom, and R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group. X 1 to X 3 each independently represents an oxygen atom or a sulfur atom, n 1 to n 3 each independently represents 1 or 2, and m 1 to m 3 each independently represents an integer of 0 to 6 Represents.)
 上記一般式(OS-3)~(OS-5)中、R22、R25およびR28におけるアルキル基、アリール基またはヘテロアリール基は、置換基を有していてもよい。
 上記式(OS-3)~(OS-5)中、R22、R25およびR28におけるアルキル基としては、置換基を有していてもよい総炭素数1~30のアルキル基であることが好ましい。
In the general formulas (OS-3) to (OS-5), the alkyl group, aryl group or heteroaryl group in R 22 , R 25 and R 28 may have a substituent.
In the above formulas (OS-3) to (OS-5), the alkyl group in R 22 , R 25 and R 28 is an alkyl group having 1 to 30 carbon atoms which may have a substituent. Is preferred.
 また、上記一般式(OS-3)~(OS-5)中、R22、R25およびR28におけるアリール基としては、置換基を有してもよい総炭素数6~30のアリール基が好ましい。 In the general formulas (OS-3) to (OS-5), the aryl group in R 22 , R 25 and R 28 is an aryl group having 6 to 30 carbon atoms which may have a substituent. preferable.
 また、上記一般式(OS-3)~(OS-5)中、Rにおけるヘテロアリール基としては、置換基を有してもよい総炭素数4~30のヘテロアリール基が好ましい。 In the general formulas (OS-3) to (OS-5), the heteroaryl group in R 1 is preferably a heteroaryl group having 4 to 30 carbon atoms in total which may have a substituent.
 上記一般式(OS-3)~(OS-5)中、R22、R25およびR28におけるヘテロアリール基は、少なくとも1つの環が複素芳香環であればよく、例えば、複素芳香環とベンゼン環とが縮環していてもよい。 In the general formulas (OS-3) to (OS-5), at least one ring of the heteroaryl group in R 22 , R 25 and R 28 may be a heteroaromatic ring. For example, a heteroaromatic ring and benzene The ring may be condensed.
 上記一般式(OS-3)~(OS-5)中、R23、R26およびR29は、水素原子、アルキル基またはアリール基であることが好ましく、水素原子またはアルキル基であることがより好ましい。
 上記一般式(OS-3)~(OS-5)中、化合物中に2以上存在するR23、R26およびR29のうち、1つまたは2つがアルキル基、アリール基またはハロゲン原子であることが好ましく、1つがアルキル基、アリール基またはハロゲン原子であることがより好ましく、1つがアルキル基であり、かつ残りが水素原子であることが特に好ましい。
In the general formulas (OS-3) to (OS-5), R 23 , R 26 and R 29 are preferably a hydrogen atom, an alkyl group or an aryl group, and more preferably a hydrogen atom or an alkyl group. preferable.
In the general formulas (OS-3) to (OS-5), one or two of R 23 , R 26 and R 29 present in the compound are an alkyl group, an aryl group or a halogen atom. It is more preferable that one is an alkyl group, an aryl group or a halogen atom, and it is particularly preferable that one is an alkyl group and the rest is a hydrogen atom.
 R23、R26およびR29におけるアルキル基としては、置換基を有してもよい総炭素数1~12のアルキル基であることが好ましく、置換基を有してもよい総炭素数1~6のアルキル基であることがより好ましい。 The alkyl group for R 23 , R 26 and R 29 is preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent, and 1 to 1 carbon atoms which may have a substituent. More preferred is an alkyl group of 6.
 R23、R26およびR29におけるアリール基としては、置換基を有してもよい総炭素数6~30のアリール基であることが好ましい。 The aryl group for R 23 , R 26 and R 29 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
 上記一般式(OS-3)~(OS-5)中、X~Xはそれぞれ独立にOまたはSを表し、Oであることが好ましい。
 上記一般式(OS-3)~(OS-5)において、X~Xを環員として含む環は、5員環または6員環である。
 上記一般式(OS-3)~(OS-5)中、n~nはそれぞれ独立に1または2を表し、X~XがOである場合、n~nはそれぞれ独立に1であることが好ましく、また、X~XがSである場合、n~nはそれぞれ独立に2であることが好ましい。
In the general formulas (OS-3) to (OS-5), X 1 to X 3 each independently represents O or S, and is preferably O.
In the general formulas (OS-3) to (OS-5), the ring containing X 1 to X 3 as a ring member is a 5-membered ring or a 6-membered ring.
In the general formulas (OS-3) to (OS-5), n 1 to n 3 each independently represents 1 or 2, and when X 1 to X 3 are O, n 1 to n 3 are each independently In addition, when X 1 to X 3 are S, it is preferable that n 1 to n 3 are each independently 2.
 上記一般式(OS-3)~(OS-5)中、R24、R27およびR30はそれぞれ独立にハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基またはアルコキシスルホニル基を表す。その中でも、R24、R27およびR30はそれぞれ独立にアルキル基またはアルキルオキシ基であることが好ましい。
 R24、R27およびR30におけるアルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基およびアルコキシスルホニル基は、置換基を有していてもよい。
 上記一般式(OS-3)~(OS-5)中、R24、R27およびR30におけるアルキル基としては、置換基を有していてもよい総炭素数1~30のアルキル基であることが好ましい。
In the general formulas (OS-3) to (OS-5), R 24 , R 27 and R 30 each independently represent a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group. To express. Among them, R 24 , R 27 and R 30 are preferably each independently an alkyl group or an alkyloxy group.
The alkyl group, alkyloxy group, sulfonic acid group, aminosulfonyl group and alkoxysulfonyl group in R 24 , R 27 and R 30 may have a substituent.
In the general formulas (OS-3) to (OS-5), the alkyl group in R 24 , R 27 and R 30 is an alkyl group having 1 to 30 carbon atoms which may have a substituent. It is preferable.
 上記一般式(OS-3)~(OS-5)中、R24、R27およびR30におけるアルキルオキシ基としては、置換基を有してもよい総炭素数1~30のアルキルオキシ基であることが好ましい。 In the general formulas (OS-3) to (OS-5), the alkyloxy group in R 24 , R 27 and R 30 is an alkyloxy group having 1 to 30 carbon atoms which may have a substituent. Preferably there is.
 また、上記一般式(OS-3)~(OS-5)中、m~mはそれぞれ独立に0~6の整数を表し、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることが特に好ましい。
 また、上記(OS-3)~(OS-5)のそれぞれの置換基について、特開2011-221494号公報の段落番号0092~0109に記載の(OS-3)~(OS-5)の置換基の好ましい範囲も同様に好ましい。
In the general formulas (OS-3) to (OS-5), m 1 to m 3 each independently represents an integer of 0 to 6, preferably an integer of 0 to 2, More preferably, it is particularly preferably 0.
In addition, with respect to each of the substituents of (OS-3) to (OS-5) described above, the substitution of (OS-3) to (OS-5) described in paragraph numbers 0092 to 0109 of JP2011-221494A The preferred range of groups is likewise preferred.
 また、上記一般式(B1)で表されるオキシムスルホネート構造を含有する化合物は、下記一般式(OS-6)~(OS-11)のいずれかで表されるオキシムスルホネート化合物であることが特に好ましい。 The compound containing the oxime sulfonate structure represented by the general formula (B1) is particularly an oxime sulfonate compound represented by any of the following general formulas (OS-6) to (OS-11). preferable.
Figure JPOXMLDOC01-appb-C000023
(式(OS-6)~(OS-11)中、R301~R306はアルキル基、アリール基またはヘテロアリール基を表し、R307は、水素原子または臭素原子を表し、R308~R310、R313、R316およびR318はそれぞれ独立に水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基またはクロロフェニル基を表し、R311およびR314はそれぞれ独立に水素原子、ハロゲン原子、メチル基またはメトキシ基を表し、R312、R315、R317およびR319はそれぞれ独立に水素原子またはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000023
(In the formulas (OS-6) to (OS-11), R 301 to R 306 represent an alkyl group, an aryl group, or a heteroaryl group, R 307 represents a hydrogen atom or a bromine atom, and R 308 to R 310 , R 313 , R 316 and R 318 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group; R 311 and R 314 each independently represent a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and R 312 , R 315 , R 317 and R 319 each independently represent a hydrogen atom or a methyl group.)
 上記一般式(OS-6)~(OS-11)における好ましい範囲は、特開2011-221494号公報の段落番号0110~0112に記載される(OS-6)~(OS-11)の好ましい範囲と同様である。 Preferred ranges in the above general formulas (OS-6) to (OS-11) are preferred ranges of (OS-6) to (OS-11) described in paragraph numbers 0110 to 0112 of JP2011-221494A. It is the same.
 上記一般式(OS-3)~上記一般式(OS-5)で表されるオキシムスルホネート化合物の具体例としては、特開2011-221494号公報の段落番号0114~0120に記載の化合物が挙げられるが、本発明は、これらに限定されるものではない。 Specific examples of the oxime sulfonate compounds represented by the general formula (OS-3) to the general formula (OS-5) include compounds described in paragraph numbers 0114 to 0120 of JP2011-221494A. However, the present invention is not limited to these.
 上記レジスト層において、(B)非イオン性光酸発生剤は、レジスト層中の全樹脂成分(好ましくは全固形分、より好ましくは重合体の合計)100質量部に対して、0.1~10質量部使用することが好ましく、0.5~10質量部使用することがより好ましい。2種類以上を併用することもできる。 In the resist layer, (B) the nonionic photoacid generator is used in an amount of 0.1 to 100 parts by weight with respect to 100 parts by weight of the total resin components (preferably the total solid content, more preferably the total polymer) in the resist layer. It is preferable to use 10 parts by mass, and it is more preferable to use 0.5 to 10 parts by mass. Two or more types can be used in combination.
 イオン性光酸発生剤の例として、ジアリールヨードニウム塩類、トリアリールスルホニウム塩類、第四級アンモニウム塩類等を挙げることができる。これらのうち、トリアリールスルホニウム塩類およびジアリールヨードニウム塩類が好ましい。 Examples of the ionic photoacid generator include diaryliodonium salts, triarylsulfonium salts, quaternary ammonium salts and the like. Of these, triarylsulfonium salts and diaryliodonium salts are preferred.
 イオン性光酸発生剤として使用されるトリアリールスルホニウム塩類は下記一般式(1)で表される。
一般式(1)
Figure JPOXMLDOC01-appb-C000024
(一般式(1)中、R505、R506及びR507は、それぞれ、置換基を有していてもよい、アルキル基又は芳香族基を表し、アルキル基の場合、互いに連結し環を形成してもよい;Xは共役塩基を表す。)
Triarylsulfonium salts used as an ionic photoacid generator are represented by the following general formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000024
(In the general formula (1), R 505 , R 506 and R 507 each represents an alkyl group or an aromatic group which may have a substituent, and in the case of an alkyl group, they are linked to each other to form a ring. X represents a conjugate base.
 R505、R506及びR507におけるアルキル基としては、炭素数1~10のアルキル基が好ましく、置換基を有していてもよい。炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ターシャリーブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などが挙げられる。中でも、メチル基、エチル基、ターシャリーブチル基が好ましい。また、R505、R506及びR507のうち、2つ以上がアルキル基の場合、その2つ以上のアルキル基が互いに連結し環を形成していることが好ましく、環の形態としては硫黄原子を含んだ形で5員環(チアシクロペンタン)、及び、6員環(チアシクロヘキサン)が好ましい。
 R505、R506及びR507における芳香族基としては、炭素数6~30の芳香族基が好ましく、置換基を有していてもよい。炭素数6~30の芳香族基としては、フェニル基、ナフチル基、4-メトキシフェニル基、4-クロロフェニル基、4-メチルフェニル基、4-ターシャリーブチルフェニル基、4-フェニルチオフェニル基、2,4,6-トリメチルフェニル基、4-メトキシ-1-ナフチル基、4-(4’-ジフェニルスルホニオフェニルチオ)フェニル基が挙げられる。
 また、一般式(1)で表されるイオン性光酸発生剤は、R505~R507のいずれかで結合し、2量体等の多量体を形成してもよい。例えば、上記4-(4’-ジフェニルスルホニオフェニルチオ)フェニル基は2量体の一例であり、上記4-(4’-ジフェニルスルホニオフェニルチオ)フェニル基における対アニオンは、Xと同様である。
As the alkyl group for R 505 , R 506 and R 507, an alkyl group having 1 to 10 carbon atoms is preferable and may have a substituent. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, tertiary butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, heptyl group and octyl group. Can be mentioned. Of these, a methyl group, an ethyl group, and a tertiary butyl group are preferable. In addition, when two or more of R 505 , R 506 and R 507 are alkyl groups, it is preferable that the two or more alkyl groups are connected to each other to form a ring. A 5-membered ring (thiacyclopentane) and a 6-membered ring (thiacyclohexane) are preferable.
The aromatic group in R 505 , R 506 and R 507 is preferably an aromatic group having 6 to 30 carbon atoms and may have a substituent. Examples of the aromatic group having 6 to 30 carbon atoms include phenyl group, naphthyl group, 4-methoxyphenyl group, 4-chlorophenyl group, 4-methylphenyl group, 4-tertiarybutylphenyl group, 4-phenylthiophenyl group, Examples include 2,4,6-trimethylphenyl group, 4-methoxy-1-naphthyl group, and 4- (4′-diphenylsulfoniophenylthio) phenyl group.
Further, the ionic photoacid generator represented by the general formula (1) may be bound by any of R 505 to R 507 to form a multimer such as a dimer. For example, the 4- (4′-diphenylsulfoniophenylthio) phenyl group is an example of a dimer, and the counter anion in the 4- (4′-diphenylsulfoniophenylthio) phenyl group is the same as X −. It is.
 R505、R506及びR507におけるアルキル基及び芳香族基が有していてもよい置換基としては、芳香族基が好ましく、具体的にはフェニル基、4-メトキシフェニル基、4-クロロフェニル基、4-(4’-ジフェニルスルホニオフェニルチオ)フェニル基が特に好ましい。これらの置換基は、上記置換基でさらに置換されていてもよい。 The substituent which the alkyl group and aromatic group in R 505 , R 506 and R 507 may have is preferably an aromatic group, specifically a phenyl group, 4-methoxyphenyl group, 4-chlorophenyl group. 4- (4′-diphenylsulfoniophenylthio) phenyl group is particularly preferred. These substituents may be further substituted with the above substituents.
 Xにおける共役塩基としては、アルキルスルホン酸の共役塩基、アリールスルホン酸の共役塩基、BY (Yはハロゲン原子を表す。以下についても同様である。)、PY 、AsY 、SbY 、又は、下記一般式(3)若しくは一般式(4)で表される一価のアニオンが好ましく、アルキルスルホン酸の共役塩基、アリールスルホン酸の共役塩基、PY 、又は、一般式(3)で表される1価のアニオンが特に好ましい。 As the conjugate base in X −, a conjugate base of alkylsulfonic acid, a conjugate base of arylsulfonic acid, BY 4 (Y represents a halogen atom, the same applies to the following), PY 6 , AsY 6 , SbY 6 , or a monovalent anion represented by the following general formula (3) or general formula (4) is preferable, and a conjugate base of alkylsulfonic acid, a conjugate base of arylsulfonic acid, PY 6 , or A monovalent anion represented by the formula (3) is particularly preferable.
 アルキルスルホン酸及びアリールスルホン酸の共役塩基としては、炭素数1~7のアルキルスルホン酸の共役塩基が好ましく、更に炭素数1~4のアルキルスルホン酸の共役塩基がより好ましく、酸の形で表記すると例えば、メタンスルホン酸、トリフルオロメタンスルホン酸、n-プロパンスルホン酸、ヘプタンスルホン酸が特に好ましい。
 アリールスルホン酸の共役塩基としては、酸の形で表記すると例えば、ベンゼンスルホン酸、クロロベンゼンスルホン酸、パラトルエンスルホン酸が挙げられる。
As the conjugate base of alkylsulfonic acid and arylsulfonic acid, a conjugate base of alkylsulfonic acid having 1 to 7 carbon atoms is preferable, and a conjugate base of alkylsulfonic acid having 1 to 4 carbon atoms is more preferable. For example, methanesulfonic acid, trifluoromethanesulfonic acid, n-propanesulfonic acid, and heptanesulfonic acid are particularly preferable.
Examples of the conjugate base of aryl sulfonic acid include benzene sulfonic acid, chlorobenzene sulfonic acid, and paratoluene sulfonic acid when expressed in the form of an acid.
 XにおけるBY 、PY 、AsY 、SbY 中のYは、フッ素原子、塩素原子が好ましく、フッ素原子が特に好ましい。 Y in BY 4 , PY 6 , AsY 6 and SbY 6 in X is preferably a fluorine atom or a chlorine atom, particularly preferably a fluorine atom.
Figure JPOXMLDOC01-appb-C000025
(一般式(3)及び一般式(4)中、R521、R522及びR523はそれぞれ独立に、炭素原子数1~10のアルキル基、炭素原子数1~10のフッ素原子を有するアルキル基、又は、R521とR522とが互いに炭素原子数2~6のアルキレン基若しくは炭素原子数2~6のフッ素原子を有するアルキレン基で結合した環を表す。)
Figure JPOXMLDOC01-appb-C000025
(In General Formula (3) and General Formula (4), R 521 , R 522 and R 523 are each independently an alkyl group having 1 to 10 carbon atoms or an alkyl group having a fluorine atom having 1 to 10 carbon atoms. Alternatively, R 521 and R 522 represent a ring in which the alkylene group having 2 to 6 carbon atoms or the alkylene group having 2 to 6 carbon atoms is bonded to each other.
 一般式(3)及び一般式(4)中、R521、R522及びR523における炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、ブチル基、ターシャリーブチル基、シクロヘキシル基、オクチル基等を挙げることができる。また、炭素原子数1~10のフッ素原子を有するアルキル基としては、例えばトリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ドデカフルオロペンチル基、パーフルオロオクチル基等を挙げることができる。これらのうち、R521、R522及びR523は、炭素原子数1~10のフッ素原子を有するアルキル基が好ましく、炭素原子数1~6のフッ素原子を有するアルキル基が特に好ましい。
 一般式(3)及び一般式(4)中、R521とR522とが互いに結合して環を形成する場合の炭素原子数2~6のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等を挙げることができる。また、炭素原子数2~6のフッ素原子を有するアルキレン基としては、テトラフルオロエチレン基、ヘキサフルオロプロピレン基、オクタフルオロブチレン基、デカフルオロペンチレン基、ウンデカフルオロヘキシレン基等を挙げることができる。これらのうち、R521とR522とが互いに結合して環を形成する場合は、炭素原子数2~6のフッ素原子を有するアルキレン基で結合することが好ましく、特に炭素原子数2~4のフッ素原子を有するアルキレン基で結合することが好ましい。
In general formula (3) and general formula (4), examples of the alkyl group having 1 to 10 carbon atoms in R 521 , R 522 and R 523 include a methyl group, an ethyl group, a butyl group, a tertiary butyl group, A cyclohexyl group, an octyl group, etc. can be mentioned. Examples of the alkyl group having a fluorine atom having 1 to 10 carbon atoms include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a dodecafluoropentyl group, and a perfluorooctyl group. Can be mentioned. Of these, R 521 , R 522 and R 523 are preferably alkyl groups having 1 to 10 carbon atoms and particularly preferably alkyl groups having 1 to 6 carbon atoms.
In general formula (3) and general formula (4), when R 521 and R 522 are bonded to each other to form a ring, the alkylene group having 2 to 6 carbon atoms includes an ethylene group, a propylene group, and a butylene group. , Pentylene group, hexylene group and the like. Examples of the alkylene group having 2 to 6 carbon atoms include a tetrafluoroethylene group, a hexafluoropropylene group, an octafluorobutylene group, a decafluoropentylene group, and an undecafluorohexylene group. it can. Among these, when R 521 and R 522 are bonded to each other to form a ring, they are preferably bonded by an alkylene group having a fluorine atom having 2 to 6 carbon atoms, particularly having 2 to 4 carbon atoms. Bonding with an alkylene group having a fluorine atom is preferred.
 また、一般式(1)で表されるイオン性光酸発生剤としては、下記一般式(5)で表される光酸発生剤であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
(式中、R510、R511、R512及びR513はそれぞれ独立に、置換基を有していてもよい、アルキル基又は芳香族基を表し、Ar及びArはそれぞれ独立に、置換基を有していてもよい二価の芳香族基を表し、X1-及びX2-はそれぞれ独立に、共役塩基を表す。)
The ionic photoacid generator represented by the general formula (1) is preferably a photoacid generator represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000026
(In the formula, R 510 , R 511 , R 512 and R 513 each independently represents an alkyl group or an aromatic group which may have a substituent, and Ar 3 and Ar 4 are each independently substituted. Represents a divalent aromatic group which may have a group, and X 1− and X 2− each independently represents a conjugate base.)
 R510、R511、R512及びR513におけるアルキル基及び芳香族基は、一般式(1)のR505、R506及びR507が表すアルキル基及び芳香族基と同義であり、好ましい態様も同様である。また、有していてもよい置換基も同様である。 Alkyl groups and the aromatic groups in R 510, R 511, R 512 and R 513 has the same meaning as the alkyl group and the aromatic group represented by R 505, R 506 and R 507 in formula (1), preferred embodiments are also It is the same. Moreover, the substituent which may have is the same.
 X1-及びX2-における共役塩基は、一般式(1)のXが表す共役塩基と同義であり、好ましい態様も同様である。 X 1- and X 2-in the conjugate bases of general formula (1) X - has the same meaning as conjugate bases represented, preferable embodiments thereof are also the same.
 Ar及びArにおける二価の芳香族基としては、フェニレン基又はナフチレン基であることが好ましく、フェニレン基が特に好ましい。 The divalent aromatic group in Ar 3 and Ar 4 is preferably a phenylene group or a naphthylene group, and particularly preferably a phenylene group.
 イオン性光酸発生剤として使用されるトリアリールスルホニウム塩類の具体例としては、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウムトリフルオロメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-フェニルチオフェニルジフェニルスルホニウムトリフルオロメタンスルホナートまたは4-フェニルチオフェニルジフェニルスルホニウムトリフルオロアセテート等が挙げられる。
 市販されている化合物としては、TPS-102,103,105,106,109,300,1000、MDS-103,105,109,205、209、BDS-109、DTS-103,105、MNPS-109、HDS-109,(以上、みどり化学社製)、GSID-26-1、Cyracure UVI-6976(以上、BASF社製)が挙げられる。
Specific examples of triarylsulfonium salts used as ionic photoacid generators include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoroacetate, 4-methoxyphenyldiphenylsulfonium trifluoromethanesulfonate, 4-methoxyphenyl. Examples thereof include diphenylsulfonium trifluoroacetate, 4-phenylthiophenyldiphenylsulfonium trifluoromethanesulfonate, and 4-phenylthiophenyldiphenylsulfonium trifluoroacetate.
Commercially available compounds include TPS-102, 103, 105, 106, 109, 300, 1000, MDS-103, 105, 109, 205, 209, BDS-109, DTS-103, 105, MNPS-109, HDS-109 (above, manufactured by Midori Chemical Co., Ltd.), GSID-26-1, Cyracure UVI-6976 (above, manufactured by BASF).
 イオン性光酸発生剤として使用されるジアリールヨードニウム塩類は下記一般式(2)で表される。
一般式(2)
Figure JPOXMLDOC01-appb-C000027
(一般式(2)中、R508及びR509はそれぞれ独立に、置換基を有していてもよい芳香族基を表し、Xは共役塩基を表す。)
The diaryl iodonium salts used as the ionic photoacid generator are represented by the following general formula (2).
General formula (2)
Figure JPOXMLDOC01-appb-C000027
(In General Formula (2), R 508 and R 509 each independently represents an aromatic group which may have a substituent, and X represents a conjugate base.)
 一般式(2)中、R508及びR509における芳香族基は、一般式(1)のR505、R506及びR507が表す芳香族基と同義であり、好ましい態様も同様である。
 一般式(2)中、Xにおける共役塩基は、一般式(1)のXが表す共役塩基と同義であり、好ましい態様も同様である。
 また、一般式(2)で表される光酸発生剤は、R508~R509で結合し、2量体等の多量体を形成してもよい。例えば、上記4-(4’-ジフェニルスルホニオフェニルチオ)フェニル基は2量体の一例であり、上記4-(4’-ジフェニルスルホニオフェニルチオ)フェニル基における対アニオンは、上記Xと同様のものである。
In General Formula (2), the aromatic groups in R 508 and R 509 are synonymous with the aromatic groups represented by R 505 , R 506 and R 507 in General Formula (1), and the preferred embodiments are also the same.
In the general formula (2), X - in the conjugate base of the general formula of (1) X - has the same meaning as conjugate bases represented, preferable embodiments thereof are also the same.
In addition, the photoacid generator represented by the general formula (2) may be bound by R 508 to R 509 to form a multimer such as a dimer. For example, the 4- (4′-diphenylsulfoniophenylthio) phenyl group is an example of a dimer, and the counter anion in the 4- (4′-diphenylsulfoniophenylthio) phenyl group is the above-mentioned X and It is the same thing.
 イオン性光酸発生剤として使用されるジアリールヨードニウム塩類の具体例としては、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート、フェニル,4-(2’-ヒドロキシ-1’-テトラデカオキシ)フェニルヨードニウムトリフルオロメタンスルホナート、4-(2’-ヒドロキシ-1’-テトラデカオキシ)フェニルヨードニウムヘキサフルオロアンチモナート、フェニル,4-(2’-ヒドロキシ-1’-テトラデカオキシ)フェニルヨードニウム-パラトルエンスルホナート等が挙げられる。
 市販されている化合物としては、DPI-105,106,109,201、BI-105,MPI-105,106,109、BBI-102,103,105,106,109,110,201,300、301(以上、みどり化学社製)が挙げられる。
Specific examples of diaryliodonium salts used as ionic photoacid generators include diphenyliodonium trifluoroacetate, diphenyliodonium trifluoromethanesulfonate, 4-methoxyphenylphenyliodonium trifluoromethanesulfonate, 4-methoxyphenylphenyliodonium trioxide. Fluoroacetate, phenyl, 4- (2′-hydroxy-1′-tetradecaoxy) phenyliodonium trifluoromethanesulfonate, 4- (2′-hydroxy-1′-tetradecaoxy) phenyliodonium hexafluoroantimonate, phenyl , 4- (2′-hydroxy-1′-tetradecaoxy) phenyliodonium-paratoluenesulfonate, and the like.
Commercially available compounds include DPI-105, 106, 109, 201, BI-105, MPI-105, 106, 109, BBI-102, 103, 105, 106, 109, 110, 201, 300, 301 ( As mentioned above, Midori Chemical Co., Ltd.) can be mentioned.
 イオン性光酸発生剤として使用される第四級アンモニウム塩類の具体例としては、テトラメチルアンモニウムブチルトリス(2,6-ジフルオロフェニル)ボレート、テトラメチルアンモニウムヘキシルトリス(パラクロロフェニル)ボレート、テトラメチルアンモニウムヘキシルトリス(3-トリフルオロメチルフェニル)ボレート、ベンジルジメチルフェニルアンモニウムブチルトリス(2,6-ジフルオロフェニル)ボレート、ベンジルジメチルフェニルアンモニウムヘキシルトリス(パラクロロフェニル)ボレート、ベンジルジメチルフェニルアンモニウムヘキシルトリス(3-トリフルオロメチルフェニル)ボレート等が挙げられる。 Specific examples of quaternary ammonium salts used as ionic photoacid generators include tetramethylammonium butyltris (2,6-difluorophenyl) borate, tetramethylammonium hexyltris (parachlorophenyl) borate, tetramethylammonium Hexyltris (3-trifluoromethylphenyl) borate, benzyldimethylphenylammonium butyltris (2,6-difluorophenyl) borate, benzyldimethylphenylammonium hexyltris (parachlorophenyl) borate, benzyldimethylphenylammonium hexyltris (3-tri Fluoromethylphenyl) borate and the like.
 上記具体例の他、(B)成分の具体例としては、以下の化合物が挙げられるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000028
In addition to the above specific examples, specific examples of the component (B) include the following compounds, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記レジスト層における成分Bの含有量は、重合体成分100質量部に対して、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。成分Bの含有量が0.1質量部以上であると、所望の感度(高感度化)が得やすく、また、10質量部以下であると、塗膜の透明性を確保しやすい。
 また、非イオン性光酸発生剤の添加量は、1質量%以下であることが好ましく、実質的に非イオン性光酸発生剤を含まない態様が好ましい。
The content of component B in the resist layer is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component. When the content of component B is 0.1 parts by mass or more, desired sensitivity (higher sensitivity) is easily obtained, and when it is 10 parts by mass or less, the transparency of the coating film is easily secured.
Moreover, it is preferable that the addition amount of a nonionic photoacid generator is 1 mass% or less, and the aspect which does not contain a nonionic photoacid generator substantially is preferable.
<溶剤>
 レジスト層を形成するための感光性樹脂組成物は、所定の成分を溶剤(成分(D))に溶解した溶液として調製されることが好ましい。
 レジスト層を形成するための感光性樹脂組成物に使用される溶剤としては、公知の溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。また、レジスト層を形成するための感光性樹脂組成物に使用される溶剤の具体例としては特開2011-221494号公報の段落番号0174~0178に記載の溶剤も挙げられ、これらの内容は本明細書に組み込まれる。
<Solvent>
The photosensitive resin composition for forming the resist layer is preferably prepared as a solution in which a predetermined component is dissolved in a solvent (component (D)).
As the solvent used in the photosensitive resin composition for forming the resist layer, known solvents can be used, ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, Propylene glycol monoalkyl ethers, propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene Examples include glycol monoalkyl ether acetates, esters, ketones, amides, lactones, etc. That. Specific examples of the solvent used in the photosensitive resin composition for forming the resist layer include the solvents described in paragraph numbers 0174 to 0178 of JP2011-221494A, and the contents thereof are as follows. Incorporated in the description.
 また、これらの溶剤にさらに必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の溶剤を添加することもできる。これら溶剤は、1種類単独でまたは2種類以上を混合して使用することができる。本発明に用いることができる溶剤は、2種類を併用することがより好ましく、プロピレングリコールモノアルキルエーテルアセテート類またはジアルキルエーテル類、ジアセテート類とジエチレングリコールジアルキルエーテル類、あるいは、エステル類とブチレングリコールアルキルエーテルアセテート類とを併用することがさらに好ましい。 In addition, benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol as required for these solvents. , Benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, propylene carbonate and the like can also be added. These solvents can be used alone or in combination of two or more. The solvent that can be used in the present invention is more preferably a combination of two types, propylene glycol monoalkyl ether acetates or dialkyl ethers, diacetates and diethylene glycol dialkyl ethers, or esters and butylene glycol alkyl ethers. It is more preferable to use together with acetates.
 また、成分Dとしては、沸点130℃以上160℃未満の溶剤、沸点160℃以上の溶剤、または、これらの混合物であることが好ましい。
 沸点130℃以上160℃未満の溶剤としては、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、プロピレングリコールモノエチルエーテルアセテート(沸点158℃)、プロピレングリコールメチル-n-ブチルエーテル(沸点155℃)、プロピレングリコールメチル-n-プロピルエーテル(沸点131℃)が例示できる。
 沸点160℃以上の溶剤としては、3-エトキシプロピオン酸エチル(沸点170℃)、ジエチレングリコールメチルエチルエーテル(沸点176℃)、プロピレングリコールモノメチルエーテルプロピオネート(沸点160℃)、ジプロピレングリコールメチルエーテルアセテート(沸点213℃)、3-メトキシブチルエーテルアセテート(沸点171℃)、ジエチレングリコールジエチエルエーテル(沸点189℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、プロピレングリコールジアセテート(沸点190℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点220℃)、ジプロピレングリコールジメチルエーテル(沸点175℃)、1,3-ブチレングリコールジアセテート(沸点232℃)が例示できる。
Component D is preferably a solvent having a boiling point of 130 ° C. or higher and lower than 160 ° C., a solvent having a boiling point of 160 ° C. or higher, or a mixture thereof.
Solvents having a boiling point of 130 ° C. or higher and lower than 160 ° C. include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), propylene glycol monoethyl ether acetate (boiling point 158 ° C.), propylene glycol methyl-n-butyl ether (boiling point 155 ° C.), propylene glycol An example is methyl-n-propyl ether (boiling point 131 ° C.).
Solvents having a boiling point of 160 ° C or higher include ethyl 3-ethoxypropionate (boiling point 170 ° C), diethylene glycol methyl ethyl ether (boiling point 176 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), dipropylene glycol methyl ether acetate. (Boiling point 213 ° C), 3-methoxybutyl ether acetate (boiling point 171 ° C), diethylene glycol diethyl ether (boiling point 189 ° C), diethylene glycol dimethyl ether (boiling point 162 ° C), propylene glycol diacetate (boiling point 190 ° C), diethylene glycol monoethyl ether acetate (Boiling point 220 ° C), dipropylene glycol dimethyl ether (boiling point 175 ° C), 1,3-butylene glycol diacetate (boiling point 232 ° C) It can be.
 レジスト層を形成するためのレジスト層における溶剤の含有量は、感光性樹脂組成物中の全樹脂成分100質量部当たり、50~95質量部であることが好ましく、60~90質量部であることがさらに好ましい。 The content of the solvent in the resist layer for forming the resist layer is preferably 50 to 95 parts by weight, and preferably 60 to 90 parts by weight, per 100 parts by weight of the total resin components in the photosensitive resin composition. Is more preferable.
<増感剤>
 ドライフィルムレジストは、レジスト層が、さらに増感剤を含むことも好ましい。レジスト層は、(B)光酸発生剤との組み合わせにおいて、その分解を促進させるために、増感剤を含有することができ、特に非イオン性光酸発生剤を用いるときは増感剤を含有することが好ましい。増感剤は、活性光線または放射線を吸収して電子励起状態となる。電子励起状態となった増感剤は、光酸発生剤と接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより光酸発生剤は化学変化を起こして分解し、酸を生成する。
 増感剤を含有させることで、露光感度が一段と向上し、また、可視光の吸収率が低い非イオン性光酸発生剤を用いる場合や、露光光源がg線およびh線の混合線の場合に特に有効である。
<Sensitizer>
In the dry film resist, the resist layer preferably further contains a sensitizer. The resist layer can contain a sensitizer in order to promote its decomposition in combination with the (B) photoacid generator, and in particular when using a nonionic photoacid generator, It is preferable to contain. The sensitizer absorbs actinic rays or radiation and enters an electronically excited state. The sensitizer in an electronically excited state comes into contact with the photoacid generator, and effects such as electron transfer, energy transfer, and heat generation occur. Thereby, a photo-acid generator raise | generates a chemical change and decomposes | disassembles and produces | generates an acid.
Inclusion of a sensitizer further improves exposure sensitivity, and uses a nonionic photoacid generator with low visible light absorptivity, or exposure light source is a mixed line of g-line and h-line Is particularly effective.
 増感剤としては、アントラセン誘導体、アクリドン誘導体、チオキサントン誘導体、クマリン誘導体、ベーススチリル誘導体、ジスチリルベンゼン誘導体が好ましく、アントラセン誘導体がより好ましい。
 アントラセン誘導体としては、アントラセン、9,10-ジブトキシアントラセン、9,10-ジクロロアントラセン、2-エチル-9,10-ジメトキシアントラセン、9-ヒドロキシメチルアントラセン、9-ブロモアントラセン、9-クロロアントラセン、9,10-ジブロモアントラセン、2-エチルアントラセン、9,10-ジメトキシアントラセンが好ましい。
 アクリドン誘導体としては、アクリドン、N-ブチル-2-クロロアクリドン、N-メチルアクリドン、2-メトキシアクリドン、N-エチル-2-メトキシアクリドンが好ましい。
 チオキサントン誘導体としては、チオキサントン、ジエチルチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-クロロチオキサントンが好ましい。
 クマリン誘導体としては、クマリン-1、クマリン-6H、クマリン-110、クマリン-102が好ましい。
 ベーススチリル誘導体としては、2-(4-ジメチルアミノスチリル)ベンゾオキサゾール、2-(4-ジメチルアミノスチリル)ベンゾチアゾール、2-(4-ジメチルアミノスチリル)ナフトチアゾールが挙げられる。
 ジスチリルベンゼン誘導体としては、ジスチリルベンゼン、ジ(4-メトキシスチリル)ベンゼン、ジ(3,4,5-トリメトキシスチリル)ベンゼンが挙げられる。
As the sensitizer, anthracene derivatives, acridone derivatives, thioxanthone derivatives, coumarin derivatives, base styryl derivatives, and distyrylbenzene derivatives are preferable, and anthracene derivatives are more preferable.
Anthracene derivatives include anthracene, 9,10-dibutoxyanthracene, 9,10-dichloroanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9-hydroxymethylanthracene, 9-bromoanthracene, 9-chloroanthracene, 9 , 10-dibromoanthracene, 2-ethylanthracene and 9,10-dimethoxyanthracene are preferred.
As the acridone derivative, acridone, N-butyl-2-chloroacridone, N-methylacridone, 2-methoxyacridone and N-ethyl-2-methoxyacridone are preferable.
As the thioxanthone derivative, thioxanthone, diethylthioxanthone, 1-chloro-4-propoxythioxanthone, and 2-chlorothioxanthone are preferable.
As the coumarin derivatives, coumarin-1, coumarin-6H, coumarin-110 and coumarin-102 are preferable.
Examples of the base styryl derivative include 2- (4-dimethylaminostyryl) benzoxazole, 2- (4-dimethylaminostyryl) benzothiazole, and 2- (4-dimethylaminostyryl) naphthothiazole.
Examples of the distyrylbenzene derivative include distyrylbenzene, di (4-methoxystyryl) benzene, and di (3,4,5-trimethoxystyryl) benzene.
 増感剤の具体例としては、下記が挙げられるが本発明はこれらに限定されるものではない。なお、下記において、Meはメチル基、Etはエチル基、Buはブチル基を表す。 Specific examples of the sensitizer include the following, but the present invention is not limited thereto. In the following, Me represents a methyl group, Et represents an ethyl group, and Bu represents a butyl group.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 レジスト層における増感剤の含有量は、重合性成分100質量部に対して、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。増感剤の含有量を0.1質量部以上とすることにより所望の感度が得やすく、また10質量部以下とすることにより塗膜の透明性を確保しやすい。 The content of the sensitizer in the resist layer is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymerizable component. Desirable sensitivity can be easily obtained by setting the content of the sensitizer to 0.1 parts by mass or more, and transparency of the coating film can be easily ensured by setting the content to 10 parts by mass or less.
<塩基性化合物>
 本発明のドライフィルムレジストは、レジスト層が、さらに塩基性化合物を含むことが好ましい。塩基性化合物としては、化学増幅レジストで用いられるものの中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、カルボン酸の第四級アンモニウム塩等が挙げられる。これらの具体例としては、特開2011-221494号公報の段落番号0204~0207に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。
<Basic compound>
In the dry film resist of the present invention, the resist layer preferably further contains a basic compound. The basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, quaternary ammonium salts of carboxylic acids, and the like. Specific examples thereof include compounds described in JP-A 2011-212494, paragraphs 0204 to 0207, the contents of which are incorporated herein.
 具体的には、脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミン、N-シクロヘキシル-N’-[2-(4-モルホリニル)エチル]チオ尿素(略称CHMETU)などが挙げられる。
 芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、ジフェニルアミンなどが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、ピペラジン、モルホリン、4-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]-5-ノネン(略称DBN)、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、テトラ-n-ヘキシルアンモニウムヒドロキシドなどが挙げられる。
 カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムベンゾエートなどが挙げられる。
Specific examples of the aliphatic amine include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and the like. And ethanolamine, dicyclohexylamine, dicyclohexylmethylamine, N-cyclohexyl-N ′-[2- (4-morpholinyl) ethyl] thiourea (abbreviation CHMETU), and the like.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene (abbreviation DBN), 1,8-diazabicyclo [5.3. 0] -7-undecene That.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
 本発明に用いることができる塩基性化合物は、1種類単独で使用しても、2種類以上を併用してもよい。 The basic compounds that can be used in the present invention may be used alone or in combination of two or more.
 レジスト層における塩基性化合物の含有量は、レジスト層中の全固形分100質量部に対して、0.001~3質量部であることが好ましく、0.005~1質量部であることがより好ましい。 The content of the basic compound in the resist layer is preferably 0.001 to 3 parts by mass and more preferably 0.005 to 1 part by mass with respect to 100 parts by mass of the total solid content in the resist layer. preferable.
<(C):ヘテロ環状化合物>
 本発明のドライフィルムレジストは、レジスト層が、(C)ヘテロ環状化合物を含むことが好ましい。ヘテロ環状化合物を添加することにより、レジスト層により得られる硬化膜をより強固な膜とすることができる。
 ヘテロ環状化合物としては、重合体成分を除けば特に制限はない。例えば、以下に述べる分子内にエポキシ基またはオキセタニル基を有する化合物、アルコキシメチル基含有ヘテロ環状化合物、そのほか、各種類の環状エーテルおよび環状エステル(ラクトン)などの含酸素モノマーや、環状アミンおよびオキサゾリンといった含窒素モノマー、さらには珪素、硫黄およびリンなどのd電子をもつヘテロ環モノマー等を添加することができる。
<(C): Heterocyclic compound>
In the dry film resist of the present invention, the resist layer preferably contains (C) a heterocyclic compound. By adding the heterocyclic compound, the cured film obtained from the resist layer can be made stronger.
There is no restriction | limiting in particular as a heterocyclic compound except a polymer component. For example, compounds having an epoxy group or oxetanyl group in the molecule described below, alkoxymethyl group-containing heterocyclic compounds, other oxygen-containing monomers such as various types of cyclic ethers and cyclic esters (lactones), cyclic amines and oxazolines Nitrogen-containing monomers and heterocyclic monomers having d electrons such as silicon, sulfur and phosphorus can be added.
 レジスト層中におけるヘテロ環状化合物の添加量は、レジスト層の全固形分100質量部に対し、0.01~50質量部であることが好ましく、0.1~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。この範囲で添加することにより、機械的強度に優れた硬化膜が得られ、耐薬品性に優れた硬化膜が得られる。ヘテロ環状化合物は複数を併用することもでき、その場合はヘテロ環状化合物を全て合算して含有量を計算する。 The addition amount of the heterocyclic compound in the resist layer is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the resist layer. More preferably, it is 1 to 5 parts by mass. By adding in this range, a cured film having excellent mechanical strength can be obtained, and a cured film having excellent chemical resistance can be obtained. A plurality of heterocyclic compounds can be used in combination, and in that case, the heterocyclic compounds are added together to calculate the content.
 分子内にエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂肪族エポキシ樹脂等を挙げることができる。 Specific examples of the compound having an epoxy group in the molecule include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, aliphatic epoxy resin and the like.
 これらは市販品として入手できる。例えば、JER828、JER1007、JER157S70(三菱化学社製)、JER157S65((株)三菱ケミカルホールディングス製)など、特開2011-221494号公報の段落番号0189に記載の市販品などが挙げられる。
 その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、デナコールEX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-211、EX-212、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-911、EX-941、EX-920、EX-931、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、DLC-201、DLC-203、DLC-204、DLC-205、DLC-206、DLC-301、DLC-402、EX-111,EX-121、EX-141、EX-145、EX-146、EX-147、EX-171、EX-192(以上、ナガセケムテックス(株)製)、YH-300、YH-301、YH-302、YH-315、YH-324、YH-325(以上、新日鐵化学製)、セロキサイド2021P、2081、2000、3000、EHPE3150、エポリードGT400、セルビナースB0134、B0177(以上、(株)ダイセル製)などが挙げられる。
 これらは1種類単独または2種類以上を組み合わせて使用することができる。
These are available as commercial products. Examples thereof include commercially available products described in paragraph No. 0189 of JP2011-212494, such as JER828, JER1007, JER157S70 (manufactured by Mitsubishi Chemical Corporation), JER157S65 (manufactured by Mitsubishi Chemical Holdings Corporation), and the like.
In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), Denacol EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, EX-421, EX-313, EX-314, EX-321, EX-211, EX-212, EX-810, EX-811, EX-850, EX-851, EX-821, EX-830, EX- 832, EX-841, EX-911, EX-941, EX-920, EX-931, EX-212L, EX- 14L, EX-216L, EX-321L, EX-850L, DLC-201, DLC-203, DLC-204, DLC-205, DLC-206, DLC-301, DLC-402, EX-111, EX-121, EX-141, EX-145, EX-146, EX-147, EX-171, EX-192 (manufactured by Nagase ChemteX Corporation), YH-300, YH-301, YH-302, YH-315 YH-324, YH-325 (manufactured by Nippon Steel Chemical Co., Ltd.), Celoxide 2021P, 2081, 2000, 3000, EHPE3150, Epolide GT400, Cellbiners B0134, B0177 (manufactured by Daicel Corporation).
These can be used alone or in combination of two or more.
 これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂および脂肪族エポキシ、脂肪族エポキシ樹脂がより好ましく挙げられ、脂肪族エポキシ樹脂が特に好ましく挙げられる。 Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, aliphatic epoxy, and aliphatic epoxy resin are more preferable, and aliphatic epoxy resin is particularly preferable.
 分子内にオキセタニル基を有する化合物の具体例としては、アロンオキセタンOXT-201、OXT-211、OXT-212、OXT-213、OXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成(株)製)を用いることができる。 Specific examples of compounds having an oxetanyl group in the molecule include Aron Oxetane OXT-201, OXT-211, OXT-212, OXT-213, OXT-121, OXT-221, OX-SQ, PNOX (above, Toagosei) Can be used.
 また、オキセタニル基を含む化合物は、単独でまたはエポキシ基を含む化合物と混合して使用することが好ましい。 In addition, the compound containing an oxetanyl group is preferably used alone or mixed with a compound containing an epoxy group.
 これらの中でも、上記(C)ヘテロ環状化合物がエポキシ基を有する化合物であることが、エッチング耐性や線幅安定性の観点から好ましい。 Among these, the (C) heterocyclic compound is preferably a compound having an epoxy group from the viewpoint of etching resistance and line width stability.
 また、分子内にアルコキシシラン構造とヘテロ環状構造の両方を有する化合物もレジスト層に好適に用いることができる。たとえば、γ-グリシドキシプロピルトリアルコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシランが挙げられる。これらのうち、γ-グリシドキシプロピルトリアルコキシシランがより好ましい。これらは1種類単独または2種類以上を組み合わせて使用することができる。 A compound having both an alkoxysilane structure and a heterocyclic structure in the molecule can also be suitably used for the resist layer. Examples thereof include γ-glycidoxypropyltrialkoxysilane, γ-glycidoxypropylalkyldialkoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrialkoxysilane. Of these, γ-glycidoxypropyltrialkoxysilane is more preferred. These can be used alone or in combination of two or more.
<界面活性剤>
 上記レジスト層は、界面活性剤を含有してもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系、または、両性のいずれでも使用することができるが、好ましい界面活性剤はノニオン系界面活性剤である。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、シリコーン系、フッ素系界面活性剤を挙げることができる。また、以下商品名で、KP(信越化学工業(株)製)、ポリフロー(共栄社化学(株)製)、エフトップ(JEMCO社製)、メガファック(DIC(株)製)、フロラード(住友スリーエム(株)製)、アサヒガード、サーフロン(旭硝子(株)製)、PolyFox(OMNOVA社製)、SH-8400(東レ・ダウコーニングシリコーン)等の各シリーズを挙げることができる。
 また、界面活性剤として、下記一般式(I-1)で表される構成単位Aおよび構成単位Bを含み、テトラヒドロフラン(THF)を溶剤とした場合のゲルパーミエーションクロマトグラフィーで測定されるポリスチレン換算の重量平均分子量が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。
<Surfactant>
The resist layer may contain a surfactant. As the surfactant, any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, silicone-based and fluorine-based surfactants. . In addition, the following trade names are KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.), F-Top (manufactured by JEMCO), MegaFac (manufactured by DIC Corporation), Florard (Sumitomo 3M) Asahi Guard, Surflon (manufactured by Asahi Glass Co., Ltd.), PolyFox (manufactured by OMNOVA), SH-8400 (Toray Dow Corning Silicone), and the like.
In addition, the surfactant contains the structural unit A and the structural unit B represented by the following general formula (I-1), and is converted to polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent. A copolymer having a weight average molecular weight of 1,000 or more and 10,000 or less can be mentioned as a preferred example.
 一般式(I-1)
Figure JPOXMLDOC01-appb-C000032
(式(I-1)中、R401およびR403はそれぞれ独立に、水素原子またはメチル基を表し、R402は炭素数1以上4以下の直鎖アルキレン基を表し、R404は水素原子または炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、pおよびqは重合比を表す質量百分率であり、pは10質量%以上80質量%以下の数値を表し、qは20質量%以上90質量%以下の数値を表し、rは1以上18以下の整数を表し、sは1以上10以下の整数を表す。)
Formula (I-1)
Figure JPOXMLDOC01-appb-C000032
(In Formula (I-1), R 401 and R 403 each independently represent a hydrogen atom or a methyl group, R 402 represents a linear alkylene group having 1 to 4 carbon atoms, and R 404 represents a hydrogen atom or C represents an alkyl group having 1 to 4 carbon atoms, L represents an alkylene group having 3 to 6 carbon atoms, p and q are mass percentages representing a polymerization ratio, and p is 10 mass% to 80 mass%. A numerical value is represented, q represents a numerical value of 20% by mass or more and 90% by mass or less, r represents an integer of 1 to 18 and s represents an integer of 1 to 10)
 上記Lは、下記一般式(I-2)で表される分岐アルキレン基であることが好ましい。一般式(I-2)におけるR405は、炭素数1以上4以下のアルキル基を表し、相溶性と被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2または3のアルキル基がより好ましい。pとqとの和(p+q)は、p+q=100、すなわち、100質量%であることが好ましい。 L is preferably a branched alkylene group represented by the following general formula (I-2). R 405 in the general formula (I-2) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of compatibility and wettability to the coated surface. A number 2 or 3 alkyl group is more preferred. The sum (p + q) of p and q is preferably p + q = 100, that is, 100% by mass.
 一般式(I-2)
Figure JPOXMLDOC01-appb-C000033
Formula (I-2)
Figure JPOXMLDOC01-appb-C000033
 上記共重合体の重量平均分子量は、1,500以上5,000以下がより好ましい。 The weight average molecular weight of the copolymer is more preferably from 1,500 to 5,000.
 その他、特許第4502784号公報の段落[0017]、特開2009-237362号公報の段落[0060]~[0071]に記載の界面活性剤も用いることができる。 In addition, surfactants described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of JP-A-2009-237362 can also be used.
 これらの界面活性剤は、1種類単独でまたは2種類以上を混合して使用することができる。
 上記レジスト層における界面活性剤の添加量は、レジスト層中の全固形分100質量部に対して、10質量部以下であることが好ましく、0.001~10質量部であることがより好ましく、0.01~3質量部であることがさらに好ましい。
These surfactants can be used individually by 1 type or in mixture of 2 or more types.
The addition amount of the surfactant in the resist layer is preferably 10 parts by mass or less, more preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the total solid content in the resist layer. More preferably, it is 0.01 to 3 parts by mass.
<放射線吸収剤>
 本発明に用いられるポジ感光性材料は、放射線吸収剤を含むことも好ましい。放射線吸収剤としては、紫外線吸収剤が好ましい。紫外線吸収により吸光度が減少する、いわゆるフォトブリーチ性を示す紫外線吸収剤がより好ましく用いられる。具体的には、ナフトキノンジアジド誘導体、ニトロンやジアゾニウム塩等のフォトブリーチ性材料(例えば、特公昭62-40697号公報、M.Sasano et al.,SPIE Symp. Proc.,631,321(1986)に記載の化合物)が挙げられる。
 放射線吸収剤は、レジスト層内の光強度分布を平均化させる目的で用いられるものであり、いわゆる内添型CEL(Contrast Enhancement Lithography)効果をもたらすことでパターンの矩形化、パターン直線性(ラインエッジラフネス)の改善効果が得られる(半導体プロセス材料とケミカルス、坂本正典監修、シーエムシー出版(2006)参照)。
<Radiation absorber>
The positive photosensitive material used in the present invention preferably contains a radiation absorber. As the radiation absorber, an ultraviolet absorber is preferable. An ultraviolet absorber exhibiting a so-called photobleaching property in which the absorbance is decreased by ultraviolet absorption is more preferably used. Specifically, photobleachable materials such as naphthoquinonediazide derivatives, nitrones and diazonium salts (for example, Japanese Patent Publication No. 62-40697, M. Sasano et al., SPIE Symp. Proc., 631, 321 (1986)). Described compounds).
The radiation absorber is used for the purpose of averaging the light intensity distribution in the resist layer, and brings about the so-called internal enhancement type CEL (Contrast Enhancement Lithography) effect, thereby making the pattern rectangular and pattern linearity (line edge). Roughness can be improved (see Semiconductor Process Materials and Chemicals, supervised by Masanori Sakamoto, CM Publishing (2006)).
<その他の成分>
 レジスト層には、上記成分に加えて、さらに金属酸化物粒子、ヘテロ環状化合物以外の架橋剤、アルコキシシラン化合物、酸化防止剤、分散剤、酸増殖剤、現像促進剤、導電性繊維、着色剤、可塑剤、熱ラジカル発生剤、熱酸発生剤、紫外線吸収剤、増粘剤、および、有機または無機の沈殿防止剤などの公知の添加剤を加えることができる。
 その他の成分の好ましい態様については特開2014-85643号公報の[0165]~[0184]にそれぞれ記載があり、この公報の内容は本明細書に組み込まれる。
<Other ingredients>
In addition to the above components, the resist layer further includes metal oxide particles, cross-linking agents other than heterocyclic compounds, alkoxysilane compounds, antioxidants, dispersants, acid proliferators, development accelerators, conductive fibers, and colorants. Well-known additives such as plasticizers, thermal radical generators, thermal acid generators, ultraviolet absorbers, thickeners, and organic or inorganic precipitation inhibitors can be added.
Preferred embodiments of the other components are described in [0165] to [0184] of JP-A-2014-85643, the contents of which are incorporated herein.
<エチレン性不飽和結合を有する化合物>
 ドライフィルムレジストは、レジスト層中、エチレン性不飽和結合を有する化合物の量が0質量%であることが解像度の観点から好ましい。なお、0質量%には、解像度の効果を阻害しない程度に微量(例えばレジスト層に1質量%以下)に含まれている態様も含まれてもよい。
<Compound having an ethylenically unsaturated bond>
In the dry film resist, the amount of the compound having an ethylenically unsaturated bond in the resist layer is preferably 0% by mass from the viewpoint of resolution. Note that 0 mass% may include an aspect that is contained in a minute amount (for example, 1 mass% or less in the resist layer) to the extent that the resolution effect is not impaired.
<レジスト層の膜厚>
 レジスト層の膜厚は、0.5~10μmが好ましい。レジスト層の膜厚が10μm以下であるとパターンの解像度が良好であり、0.5μm以上であるとパターン直線性の観点から好ましい。
 レジスト層の膜厚としては、0.8~5μmが更に好ましく、1.0~3.0μmが特に好ましい。
<Resist layer thickness>
The thickness of the resist layer is preferably 0.5 to 10 μm. When the film thickness of the resist layer is 10 μm or less, the resolution of the pattern is good, and when it is 0.5 μm or more, it is preferable from the viewpoint of pattern linearity.
The thickness of the resist layer is more preferably 0.8 to 5 μm, and particularly preferably 1.0 to 3.0 μm.
<レジスト層の形成方法>
 各成分を所定の割合でかつ任意の方法で混合し、撹拌溶解してレジスト層を形成するための感光性樹脂組成物を調製することができる。例えば、各成分を、それぞれ予め溶剤に溶解させた溶液とした後、これらを所定の割合で混合して樹脂組成物を調製することもできる。以上のように調製した組成物溶液は、孔径0.2μmのフィルター等を用いてろ過した後に、使用に供することもできる。
<Method for forming resist layer>
A photosensitive resin composition for forming a resist layer can be prepared by mixing each component at a predetermined ratio and by any method, stirring and dissolving. For example, a resin composition can be prepared by mixing each component with a predetermined ratio after preparing each solution in advance in a solvent. The composition solution prepared as described above can be used after being filtered using a filter having a pore size of 0.2 μm or the like.
(光吸収層)
 本発明のドライフィルムレジストは、条件(2)を満たす場合、仮支持体およびレジスト層の間にレジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有する。
 本発明のドライフィルムレジストが条件(2)を満たす場合、光吸収層は、60%以下の透過率を有することが好ましく、55%以下の透過率を有することがより好ましい。
(Light absorption layer)
When satisfying the condition (2), the dry film resist of the present invention has a light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer between the temporary support and the resist layer.
When the dry film resist of the present invention satisfies the condition (2), the light absorption layer preferably has a transmittance of 60% or less, and more preferably has a transmittance of 55% or less.
 光吸収層に関して説明する。光吸収層は仮支持体によって拡散された露光光のうち、不要な光を吸収してレジストの感光を抑制するため、レジスト層と仮支持体との間に設けられる。
 光吸収層は、光吸収剤と樹脂を含むことが好ましい。
The light absorption layer will be described. The light absorption layer is provided between the resist layer and the temporary support in order to absorb unnecessary light out of the exposure light diffused by the temporary support and suppress resist exposure.
The light absorption layer preferably contains a light absorber and a resin.
 光吸収剤は紫外線吸収剤、染料などから選択され、露光光を吸収して吸光度が減少する、いわゆるフォトブリーチ性を有するものであってもなくてもよい。
 フォトブリーチする物質としては、ナフトキノンジアジド誘導体、ニトロンやジアゾニウム塩等のフォトブリーチ性材料(例えば、特公昭62-40697号公報、M.Sasano et al.,SPIE Symp. Proc.,631,321(1986)に記載の化合物)、スチルバゾリウム塩、アリールニトロソ塩類、ホルマザン色素、オキソノール色素などを挙げることができる。更に具体的な例としては、ニトロブルーテトラゾリウム、MTTホルマザン、1,3,5-トリフェニルホルマザン、INTホルマザン等のホルマザン色素、オキソノールイエローK、オキソノール805ブルー等のオキソノール色素を挙げることが出来る。
 フォトブリーチしない光吸収剤としては、公知の紫外線吸収剤等を用いることが出来る。代表的な構造としては、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、シアノアクリレート系、オキザニリド、ホルムアミジン系等を挙げることが出来る。更に具体的な例としては、TINUVIN384、900、928(いずれもBASF社製)やアデカスタブLA-29、LA-36(いずれも株式会社ADEKA製)などのベンゾトリアゾール系、TINUVIN400、460(いずれもBASF社製)やアデカスタブLA-46(株式会社ADEKA製)などのトリアジン系、アデカスタブ1413(株式会社ADEKA製)などのベンゾフェノン系化合物を挙げることが出来る。
The light absorber is selected from ultraviolet absorbers, dyes, and the like, and may or may not have a so-called photobleaching property that absorbs exposure light and decreases the absorbance.
Photobleaching materials include photobleachable materials such as naphthoquinone diazide derivatives, nitrones and diazonium salts (for example, Japanese Patent Publication No. 62-40697, M. Sasano et al., SPIE Symp. Proc., 631, 321 (1986). ), Stilbazolium salts, aryl nitroso salts, formazan dyes, oxonol dyes, and the like. More specific examples include formazan dyes such as nitro blue tetrazolium, MTT formazan, 1,3,5-triphenyl formazan and INT formazan, and oxonol dyes such as oxonol yellow K and oxonol 805 blue.
As a light absorber that is not photobleached, a known ultraviolet absorber or the like can be used. Representative structures include benzotriazole, benzophenone, triazine, cyanoacrylate, oxanilide, formamidine, and the like. More specific examples include benzotriazoles such as TINUVIN 384, 900, and 928 (all manufactured by BASF), ADK STAB LA-29 and LA-36 (all manufactured by ADEKA), and TINUVIN 400 and 460 (all manufactured by BASF). And benzophenone compounds such as Adeka Stub 1413 (manufactured by ADEKA) and the like.
 光吸収層を構成する樹脂は、レジストともにアルカリ現像により消失する必要があるため、アルカリ可溶性樹脂が好ましい。アルカリ可溶性樹脂としては、線状有機高分子重合体であり、且つ、有機溶剤に可溶で、弱アルカリ水溶液で現像できるものが好ましい。線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマー、例えば、特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているメタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等が挙げられ、同様に側鎖にカルボン酸を有する酸性セルロース誘導体が有用である。
 上述したものの他、アルカリ可溶性樹脂としては、水酸基を有するポリマーに酸無水物を付加させたもの等や、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、ポリ(2-ヒドロキシエチル(メタ)アクリレート)、ポリビニルピロリドンやポリエチレンオキサイド、ポリビニルアルコール等も有用である。また、線状有機高分子重合体は、親水性を有するモノマーを共重合したものであってもよい。この例としては、アルコキシアルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、グリセロール(メタ)アクリレート、(メタ)アクリルアミド、N-メチロールアクリルアミド、2級若しくは3級のアルキルアクリルアミド、ジアルキルアミノアルキル(メタ)アクリレート、モルホリン(メタ)アクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム、ビニルイミダゾール、ビニルトリアゾール、メチル(メタ)アクリレート、エチル(メタ)アクリレート、分岐若しくは直鎖のプロピル(メタ)アクリレート、分岐若しくは直鎖のブチル(メタ)アクリレート、または、フェノキシヒドロキシプロピル(メタ)アクリレート等が挙げられる。
The resin constituting the light absorption layer is preferably an alkali-soluble resin because both the resist and the resist must be lost by alkali development. The alkali-soluble resin is preferably a linear organic polymer and is soluble in an organic solvent and can be developed with a weak alkaline aqueous solution. Examples of the linear organic high molecular polymer include polymers having a carboxylic acid in the side chain, such as JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, The methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer described in JP-A-59-53836 and JP-A-59-71048 Examples thereof include polymers and partially esterified maleic acid copolymers. Similarly, acidic cellulose derivatives having a carboxylic acid in the side chain are useful.
In addition to those described above, alkali-soluble resins include those obtained by adding an acid anhydride to a polymer having a hydroxyl group, polyhydroxystyrene resins, polysiloxane resins, poly (2-hydroxyethyl (meth) acrylate), Polyvinyl pyrrolidone, polyethylene oxide, polyvinyl alcohol and the like are also useful. Further, the linear organic high molecular polymer may be a copolymer of hydrophilic monomers. Examples include alkoxyalkyl (meth) acrylate, hydroxyalkyl (meth) acrylate, glycerol (meth) acrylate, (meth) acrylamide, N-methylol acrylamide, secondary or tertiary alkyl acrylamide, dialkylaminoalkyl (meth) Acrylate, morpholine (meth) acrylate, N-vinylpyrrolidone, N-vinylcaprolactam, vinylimidazole, vinyltriazole, methyl (meth) acrylate, ethyl (meth) acrylate, branched or linear propyl (meth) acrylate, branched or straight Examples include chain butyl (meth) acrylate or phenoxyhydroxypropyl (meth) acrylate.
 上記の物質のほかに、光吸収層には界面活性剤、酸化防止剤、消泡剤、現像促進剤、可塑剤などの物質を特性改善のために加えてもよい。 In addition to the above substances, substances such as surfactants, antioxidants, antifoaming agents, development accelerators, and plasticizers may be added to the light absorption layer to improve the properties.
<ドライフィルムレジストの作製方法>
 ドライフィルムレジストは、特開2006-259138号公報の段落[0094]~[0098]に記載の感光性転写材料の作製方法に準じて作製することができる。レジスト層は、ポジ型感光性樹脂組成物を用いて、形成することが好ましい。
 具体的に中間層を有するドライフィルムレジストを形成する場合には、支持体上に、熱可塑性の有機高分子と共に添加剤を溶解した溶解液(熱可塑性樹脂層用塗布液)を塗布し、乾燥させて熱可塑性樹脂層を設けた後、この熱可塑性樹脂層上に熱可塑性樹脂層を溶解しない溶剤に樹脂や添加剤を加えて調製した調製液(中間層用塗布液)を塗布し、乾燥させて中間層を積層し、この中間層上に更に、中間層を溶解しない溶剤を用いて調製したレジスト層用塗布液を塗布し、乾燥させてレジスト層を積層することによって、好適に作製することができる。
<Preparation method of dry film resist>
The dry film resist can be produced according to the method for producing a photosensitive transfer material described in paragraphs [0094] to [0098] of JP-A-2006-259138. The resist layer is preferably formed using a positive photosensitive resin composition.
Specifically, when forming a dry film resist having an intermediate layer, a solution (addition liquid for thermoplastic resin layer) in which an additive is dissolved together with a thermoplastic organic polymer is applied on a support and dried. After providing a thermoplastic resin layer, a prepared solution (intermediate layer coating solution) prepared by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto this thermoplastic resin layer and dried. Then, an intermediate layer is laminated, and a resist layer coating solution prepared using a solvent that does not dissolve the intermediate layer is further applied onto the intermediate layer, dried, and then the resist layer is laminated. be able to.
[回路配線の製造方法]
 本発明の回路配線の製造方法は、下記(a)工程、(b)工程、(c)工程および(d)工程、を含む回路配線の製造方法である。
(a) 基材と導電層とを有する回路形成基板の上へ本発明のドライフィルムレジストをラミネートするラミネート工程;
(b) ドライフィルムレジストの仮支持体を剥離せずに、パターン露光用パターン(好ましくはパターン露光用パターンの形状を有するフォトマスク)でコンタクトパターン露光するパターン露光工程;
(c) 仮支持体を剥離後、現像してレジスト層にパターン露光用パターン(好ましくはパターン露光用パターンの形状を有するレジストパターン)を形成する現像工程;
(d) エッチングにより、回路形成基板にパターン露光用パターン(好ましくはパターン露光用パターンの形状を有する導電層パターン(回路配線))を形成するエッチング工程。
 本明細書中、特に断り無く「パターン露光用パターン」と記載する場合は、「パターン露光用パターンの形状」を意味する。パターン露光後に、現像してレジスト層にパターン露光用パターンを形成する場合、パターン露光に用いた「パターン露光用パターンの形状」と同じ形状のレジストパターンを形成することを意味する。エッチングにより、回路形成基板にパターン露光用パターンを形成する場合、パターン露光に用いた「パターン露光用パターンの形状」と同じ形状の導電層パターンを形成することを意味する。
 本発明の回路配線は、入力装置用、特にタッチパネル用として好適である。本発明の回路配線の製造方法は、回路配線が、入力装置の回路配線であることが好ましい。さらに本発明の入力装置の回路配線の製造方法は、入力装置が、タッチパネルであることが好ましい。
 以下、本発明の回路配線の製造方法の好ましい態様について説明する。
[Method of manufacturing circuit wiring]
The circuit wiring manufacturing method of the present invention is a circuit wiring manufacturing method including the following steps (a), (b), (c) and (d).
(A) a laminating step of laminating the dry film resist of the present invention on a circuit-forming substrate having a base material and a conductive layer;
(B) a pattern exposure step of exposing a contact pattern with a pattern exposure pattern (preferably a photomask having a pattern exposure pattern shape) without peeling off the temporary support of the dry film resist;
(C) A development step of forming a pattern exposure pattern (preferably a resist pattern having a pattern exposure pattern shape) on the resist layer by developing after peeling the temporary support;
(D) An etching step of forming a pattern exposure pattern (preferably a conductive layer pattern (circuit wiring) having a pattern exposure pattern shape) on the circuit forming substrate by etching.
In the present specification, “pattern exposure pattern” means “pattern exposure pattern shape” unless otherwise specified. When the pattern exposure pattern is developed on the resist layer after pattern exposure, it means that a resist pattern having the same shape as the “pattern exposure pattern shape” used for pattern exposure is formed. When a pattern exposure pattern is formed on a circuit forming substrate by etching, this means that a conductive layer pattern having the same shape as the “pattern exposure pattern shape” used for pattern exposure is formed.
The circuit wiring of the present invention is suitable for an input device, particularly for a touch panel. In the circuit wiring manufacturing method of the present invention, the circuit wiring is preferably a circuit wiring of the input device. Furthermore, in the method for manufacturing circuit wiring of an input device according to the present invention, the input device is preferably a touch panel.
Hereinafter, preferred embodiments of the method for producing circuit wiring of the present invention will be described.
 本発明の回路配線の製造方法は、(b)工程が下記(b1)工程であり、
 (c)工程が下記(c1)工程であり、
 (d)工程が下記(d1)工程であり、
 さらに下記(e1)工程、(f1)工程および(g)工程を含むことが、2種類のパターンの導電層を含む回路配線を形成する観点から、好ましい;
(b1) ドライフィルムレジストの仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程;
(c1) 仮支持体を剥離後、現像してレジスト層に第1のパターンを形成する現像工程;
(d1) エッチングにより、回路形成基板(実質的には回路形成基板の導電層)に第1のパターンを形成するエッチング工程;
(e1) (c1)工程で第1のパターンを転写したレジスト層を剥離することなく、第2のパターンでコンタクトパターン露光するパターン露光工程;
(f1) 現像してレジスト層に第1のパターンとは異なる第2のパターンを形成する現像工程;
(g) エッチングにより、回路形成基板(実質的には回路形成基板の導電層)に第2のパターンを形成するエッチング工程。
In the method for manufacturing a circuit wiring of the present invention, the step (b) is the following step (b1),
(C) The process is the following (c1) process,
(D) The process is the following (d1) process,
Further, the following steps (e1), (f1) and (g) are preferably included from the viewpoint of forming a circuit wiring including a conductive layer having two types of patterns;
(B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
(C1) A development step of peeling the temporary support and developing to form a first pattern on the resist layer;
(D1) an etching step of forming a first pattern on the circuit formation substrate (substantially a conductive layer of the circuit formation substrate) by etching;
(E1) A pattern exposure step of exposing the contact pattern with the second pattern without removing the resist layer to which the first pattern is transferred in the step (c1);
(F1) A development step of developing and forming a second pattern different from the first pattern on the resist layer;
(G) An etching step of forming a second pattern on the circuit formation substrate (substantially a conductive layer of the circuit formation substrate) by etching.
 本発明の回路配線の製造方法は、(b)工程が下記(b1)工程であり、
 (c)工程が下記(c1)工程であり、
 (d)工程が下記(d2)工程であり、
 さらに(e2)工程、(f2)工程および(g)工程を含むことが、2種類のパターンの導電層を含む回路配線を形成し、かつ、より工程汚染を抑制しやすい観点から、好ましい;
(b1) ドライフィルムレジストの仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程;
(c1) 仮支持体を剥離後、現像してレジスト層に第1のパターンを形成する現像工程;
(d2) エッチングにより、回路形成基板(実質的には回路形成基板の導電層)に第1のパターンを転写したのち、(c1)工程で第1のパターンを形成したレジスト層を剥離することなく、残りのレジスト層の上にカバーフィルムを貼り付けるエッチング工程;
(e2) (d2)工程で貼り付けたカバーフィルムを剥離せずに、第2のパターンでコンタクトパターン露光するパターン露光工程;
(f2) (d2)工程で貼り付けたカバーフィルムを剥離した後、現像してレジスト層に第1のパターンとは異なる第2のパターンを形成する現像工程;
(g) エッチングにより、回路形成基板(実質的には回路形成基板の導電層)に第2のパターンを形成するエッチング工程。
In the method for manufacturing a circuit wiring of the present invention, the step (b) is the following step (b1),
(C) The process is the following (c1) process,
(D) The process is the following (d2) process,
Furthermore, it is preferable to include the step (e2), the step (f2), and the step (g) from the viewpoint of forming a circuit wiring including a conductive layer having two types of patterns and more easily suppressing process contamination;
(B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
(C1) A development step of peeling the temporary support and developing to form a first pattern on the resist layer;
(D2) After transferring the first pattern to the circuit formation substrate (substantially the conductive layer of the circuit formation substrate) by etching, without removing the resist layer on which the first pattern was formed in the step (c1) An etching step of attaching a cover film on the remaining resist layer;
(E2) A pattern exposure step of exposing the contact pattern with the second pattern without peeling off the cover film attached in the step (d2);
(F2) A development step in which the cover film attached in step (d2) is peeled and then developed to form a second pattern different from the first pattern on the resist layer;
(G) An etching step of forming a second pattern on the circuit formation substrate (substantially a conductive layer of the circuit formation substrate) by etching.
 回路配線の製造方法は、基材が両方の表面にそれぞれ導電層を有し、基材が両方の表面に形成された導電層に対して逐次または同時に回路形成することも好ましい。この構成により、基材の一方の表面に第一の導電パターン、もう一方の表面に第二の導電パターンを形成したタッチパネル用回路配線を形成することができる。また、この構成のタッチパネル用回路配線を、ロールツーロールで基材の両面から形成することも好ましい。 In the method of manufacturing circuit wiring, it is also preferable that the base material has conductive layers on both surfaces, and the base material is sequentially or simultaneously formed on the conductive layers formed on both surfaces. With this configuration, it is possible to form a touch panel circuit wiring in which the first conductive pattern is formed on one surface of the substrate and the second conductive pattern is formed on the other surface. Moreover, it is also preferable to form the circuit wiring for touch panels of this structure from both surfaces of a base material by roll-to-roll.
 レジスト層をエッチングレジスト(エッチングパターン)として用いて静電容量型入力装置の導電パターンを得る場合について説明する。
 静電容量型入力装置は、基材(前面板とも言われる)と、基材の非接触面側に、少なくとも下記(2)~(5)の要素を有し、(2)、(3)および(5)のうち少なくとも1つを本発明の回路配線の製造方法で形成されることが好ましい。
(2)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の電極パターン
(3)上記第一の電極パターンと電気的に絶縁され、上記第一の方向に交差する方向に延在して形成された複数のパッド部分および接続部分を含む複数の第二の電極パターン
(4)上記第一の電極パターンと上記第二の電極パターンとを電気的に絶縁する絶縁層
(5)上記第一の電極パターンおよび上記第二の電極パターンの少なくとも一方に電気的に接続され、上記第一の電極パターンおよび上記第二の電極パターンとは別の導電性要素
 以下、各工程の詳細について説明する。
A case where a conductive pattern of a capacitive input device is obtained using a resist layer as an etching resist (etching pattern) will be described.
The capacitance type input device has a base material (also referred to as a front plate) and at least the following elements (2) to (5) on the non-contact surface side of the base material: (2), (3) It is preferable that at least one of (5) is formed by the circuit wiring manufacturing method of the present invention.
(2) A plurality of first electrode patterns formed by extending a plurality of pad portions in a first direction via connecting portions. (3) The first electrode patterns are electrically insulated from the first electrode patterns, and the first A plurality of second electrode patterns including a plurality of pad portions and connection portions formed extending in a direction crossing one direction; and (4) electrically connecting the first electrode pattern and the second electrode pattern. Electrically insulating layer (5) electrically connected to at least one of the first electrode pattern and the second electrode pattern, and having a different conductivity from the first electrode pattern and the second electrode pattern Hereinafter, details of each step will be described.
<(a)工程>
 (a)基材と導電層とを有する回路形成基板の上へ本発明のドライフィルムレジストをラミネートするラミネート工程について説明する。
 ドライフィルムレジストの回路形成基板の上へのラミネート(転写、貼り合わせ)は、レジスト層を回路形成基板の上(好ましくは導電層の上、導電層が2層以上の場合は導電層の第1層の上)に重ね、加圧、加熱する方法を用いて行われることが好ましい。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。
<(A) Process>
(A) A laminating process for laminating the dry film resist of the present invention on a circuit forming substrate having a base material and a conductive layer will be described.
Lamination (transfer, bonding) of the dry film resist onto the circuit forming substrate is carried out by applying the resist layer on the circuit forming substrate (preferably on the conductive layer, and when there are two or more conductive layers, the first layer of the conductive layer is formed. It is preferably carried out using a method of layering, pressing and heating on the layer). For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
(基材)
 基材がガラス基材またはフィルム基材であることが好ましく、フィルム基材であることがより好ましい。本発明の回路配線の製造方法は、タッチパネル用の回路配線である場合、基材がシート状樹脂組成物であることが特に好ましい。
 また、基材は透明であることが好ましい。
 なお、本明細書において透明とは、波長400nm~700nmの可視光の平均透過率が、80%以上であることを意味する。したがって、透明な層とは、波長400nm~700nmの可視光の平均透過率が80%以上である層を指す。透明な層の波長400nm~700nmの可視光の平均透過率は、90%以上であることが好ましい。
 基材の屈折率は、1.50~1.52であることが特に好ましい。
 基材は、ガラス基材等の透明基材で構成されていてもよい。基材として、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。また、前述の透明基材としては、特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報に用いられている材料を好ましく用いることができる。
 基材としてフィルム基材を用いる場合は、光学的に歪みがないものや、透明度が高いものを用いることがより好ましく、具体的な素材には、ポリエチレンテレフタレート(polyethylene terephthalate;PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、シクロオレフィンポリマーを挙げることができる。
(Base material)
The substrate is preferably a glass substrate or a film substrate, and more preferably a film substrate. When the circuit wiring manufacturing method of the present invention is a circuit wiring for a touch panel, the substrate is particularly preferably a sheet-shaped resin composition.
Moreover, it is preferable that a base material is transparent.
In this specification, the term “transparent” means that the average transmittance of visible light having a wavelength of 400 nm to 700 nm is 80% or more. Therefore, the transparent layer refers to a layer having an average transmittance of visible light having a wavelength of 400 nm to 700 nm of 80% or more. The average transmittance of visible light having a wavelength of 400 nm to 700 nm of the transparent layer is preferably 90% or more.
The refractive index of the substrate is particularly preferably from 1.50 to 1.52.
The substrate may be composed of a transparent substrate such as a glass substrate. As the base material, tempered glass represented by Corning gorilla glass can be used. Further, as the above-mentioned transparent substrate, materials used in JP 2010-86684 A, JP 2010-152809 A, and JP 2010-257492 A can be preferably used.
When a film substrate is used as the substrate, it is more preferable to use a material that is not optically distorted or highly transparent. Specific examples of the material include polyethylene terephthalate (PET) and polyethylene naphthalate. , Polycarbonate, triacetyl cellulose, and cycloolefin polymer.
(導電層)
 導電層としては、一般的な回路配線や、タッチパネル配線に用いられる任意の導電層を挙げることができる。
 導電層の材料としては、金属や金属酸化物などを挙げることができる。
 多層の導電層が同じ材料であっても互いに異なる材料であってもよいが、互いに異なる材料を含むことが好ましい。
(Conductive layer)
As a conductive layer, the arbitrary conductive layers used for general circuit wiring and touch-panel wiring can be mentioned.
Examples of the material for the conductive layer include metals and metal oxides.
The multilayer conductive layers may be made of the same material or different materials, but preferably contain different materials.
 多層の導電層のうち少なくとも一つが金属酸化物を含むことが好ましい。
 この場合に用いられる金属酸化物としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SiO等の金属酸化膜などを挙げることができる。金属酸化物については後述する。
 導電層は、後述の静電容量型入力装置に用いられる第一の電極パターン、第二の電極パターンおよび後述の別の導電性要素の材料であることが好ましい。
 その他の導電層の好ましい態様については、静電容量型入力装置の説明において後述する。
It is preferable that at least one of the multilayer conductive layers contains a metal oxide.
Examples of the metal oxide used in this case include metal oxide films such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 . The metal oxide will be described later.
The conductive layer is preferably a material for a first electrode pattern, a second electrode pattern, and another conductive element described below, which are used in a capacitive input device described later.
Other preferred modes of the conductive layer will be described later in the description of the capacitive input device.
<(b)工程>
 (b)ドライフィルムレジストの仮支持体を剥離せずに、パターン露光用パターンでコンタクトパターン露光するパターン露光工程について説明する。
 (b)工程は、(b1)ドライフィルムレジストの仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程であることが好ましい。
<(B) Process>
(B) A pattern exposure process for exposing a contact pattern with a pattern for pattern exposure without peeling off the temporary support of the dry film resist will be described.
The step (b) is preferably a pattern exposure step in which the contact pattern is exposed with the first pattern without peeling the temporary support of (b1) dry film resist.
 上記露光工程、後述の(c)工程の現像工程およびその他の工程の例としては、特開2006-23696号公報の段落番号[0035]~[0051]に記載の方法を本発明においても好適に用いることができる。 As examples of the exposure step, the development step (c) described later, and other steps, the method described in paragraphs [0035] to [0051] of JP-A-2006-23696 is preferably used in the present invention. Can be used.
 具体的には、回路形成基板の上(好ましくは導電層の上、導電層が2層以上の場合は上記導電層の第1層の上)に形成されたレジスト層の上方、かつ、仮支持体に直接接触する位置に所定のマスクを配置し、その後マスク上方の光源からマスクおよび仮支持体を介してコンタクトパターン露光する方法などが挙げられる。
 本発明においてパターンの詳細な配置や具体的サイズは特に限定されるものではない。本発明の入力装置を備えた表示装置(例えばタッチパネル)の表示品質を高め、また、取り出し配線の占める面積をできるだけ小さくしたいことから、パターンの少なくとも一部(特にタッチパネルの電極パターンや取り出し配線の部分)は100μm以下の細線であることが好ましく、70μm以下であることがより好ましく、10μm以下であることが特に好ましい。
 ここで、上記露光の光源としては、レジスト層の露光された箇所が現像液に溶解するようにし得る波長域の光(例えば、365nm、405nmなど)を照射できるものを適宜選択して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5~200mJ/cm程度であり、好ましくは10~100mJ/cm程度である。
 また、露光後にパターンの矩形性、パターン直線性を向上させる目的で、現像前に熱処理を行うことも好ましい。いわゆるPEB(Post Exposure Bake)と呼ばれるこの工程により、露光時にレジスト層の中で生じた定在波に起因するレジストパターンエッジの荒れを低減することが可能である。
Specifically, above the resist layer formed on the circuit forming substrate (preferably on the conductive layer, or on the first layer of the conductive layer if there are two or more conductive layers), and temporarily support Examples include a method in which a predetermined mask is arranged at a position in direct contact with the body, and then a contact pattern is exposed from a light source above the mask through the mask and a temporary support.
In the present invention, the detailed arrangement and specific size of the pattern are not particularly limited. In order to improve the display quality of a display device (for example, a touch panel) including the input device of the present invention and to reduce the area occupied by the extraction wiring as much as possible, at least a part of the pattern (particularly the electrode pattern of the touch panel and the extraction wiring portion). ) Is preferably a fine wire of 100 μm or less, more preferably 70 μm or less, and particularly preferably 10 μm or less.
Here, as the light source for the exposure, a light source capable of irradiating light in a wavelength region (for example, 365 nm, 405 nm, etc.) that allows the exposed portion of the resist layer to be dissolved in the developer is appropriately selected and used. it can. Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned. The exposure amount is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
It is also preferable to perform heat treatment before development for the purpose of improving the rectangularity and pattern linearity of the pattern after exposure. By this process called so-called PEB (Post Exposure Bake), it is possible to reduce the roughness of the resist pattern edge due to standing waves generated in the resist layer during exposure.
 パターン露光は、仮支持体を剥離する前に露光する。その後、支持体を剥離してもよい。マスクを介した露光でもよいし、レーザー等を用いたデジタル露光でもよい。パターン露光は、マスクを介した露光であることが好ましい。マスクを介した露光をする場合、パターン露光用パターンのことをマスクパターンとも言う。 Pattern exposure is performed before the temporary support is peeled off. Thereafter, the support may be peeled off. Exposure through a mask or digital exposure using a laser or the like may be used. The pattern exposure is preferably exposure through a mask. When exposure is performed through a mask, the pattern exposure pattern is also referred to as a mask pattern.
<(c)工程>
 仮支持体を剥離後、現像してレジスト層にパターン露光用パターンを形成する現像工程について説明する。
 (c)工程は、(c1)仮支持体を剥離後、現像してレジスト層に第1のパターンを形成する現像工程であることが好ましい。
<(C) Process>
A development process for forming a pattern exposure pattern on the resist layer after peeling off the temporary support will be described.
The step (c) is preferably a development step (c1) in which the temporary support is peeled and then developed to form a first pattern on the resist layer.
 上記現像工程は、パターン露光されたレジスト層を現像する工程である。
 上記現像は、現像液を用いて行うことができる。上記現像液としては、特に制約はなく、特開平5-72724号公報に記載のものなど、公知の現像液を使用することができる。尚、現像液はレジスト層が溶解型の現像挙動をするものが好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含むものが好ましいが、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、N-メチルピロリドン等を挙げることができる。この有機溶剤の濃度は0.1質量%~30質量%が好ましい。
 また、上記現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。
The development step is a step of developing the pattern-exposed resist layer.
The development can be performed using a developer. The developer is not particularly limited, and known developers such as those described in JP-A-5-72724 can be used. The developer preferably has a development behavior in which the resist layer has a dissolution type. For example, a developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable, but is further miscible with water. A small amount of an organic solvent having Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ε-caprolactone, γ-butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ε-caprolactam, N-methylpyrrolidone and the like. The concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
Further, a known surfactant can be further added to the developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
 上記現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディップ現像等のいずれでもよい。ここで、上記シャワー現像について説明すると、露光後のレジスト層に現像液をシャワーにより吹き付けることにより、露光部を除去することができる。尚、熱可塑性樹脂層や中間層などを設けた場合には、現像の前にレジスト層の溶解性が低い洗浄液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことも好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の温度は20℃~40℃が好ましく、また、現像液のpHは8~13が好ましい。 The development method may be any of paddle development, shower development, shower & spin development, dip development, and the like. Here, the shower development will be described. The exposed portion can be removed by spraying a developing solution onto the resist layer after exposure. When a thermoplastic resin layer or an intermediate layer is provided, a cleaning solution having a low solubility of the resist layer may be sprayed by a shower or the like before development to remove the thermoplastic resin layer or the intermediate layer. preferable. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like. The temperature of the developer is preferably 20 ° C. to 40 ° C., and the pH of the developer is preferably 8 to 13.
 さらに、上記現像して得られたレジスト層を含むパターンを加熱処理するポストベーク工程を有していてもよく、上記熱可塑性樹脂層と上記中間層を除去する工程後に上記現像して得られたレジスト層からなるパターンを加熱処理するポストベークを行う工程を含んでいてもよい。
 上記ポストベーク工程により、レジスト層において酸を用いる保護基の脱離を促進することができる。レジスト層における上記酸基が酸分解性基で保護された基を有する構成単位(a1)は、カルボキシ基をアセタールで保護することが、保護基脱離の活性化エネルギーを低下させ、露光後の加熱処理を回避する観点から好ましい。
Further, it may have a post-baking step of heat-treating the pattern including the resist layer obtained by the development, and obtained by the development after the step of removing the thermoplastic resin layer and the intermediate layer. A step of performing post-baking for heat-treating the pattern made of the resist layer may be included.
By the post-baking step, elimination of the protecting group using an acid in the resist layer can be promoted. In the structural unit (a1) having a group in which the acid group in the resist layer is protected with an acid-decomposable group, protecting the carboxy group with an acetal reduces the activation energy for protecting group elimination, and This is preferable from the viewpoint of avoiding heat treatment.
 (c)工程の前または後に、ポスト露光工程等、その他の工程を有していてもよい。 (C) You may have other processes, such as a post exposure process, before or after a process.
<(d)工程>
 (d)エッチングにより、回路形成基板にパターン露光用パターンを形成するエッチング工程について説明する。
 (d)工程は、(d1)エッチングにより、回路形成基板に第1のパターンを形成するエッチング工程、あるいは、(d2)エッチングにより、回路形成基板に第1のパターンを形成したのち、残りのレジスト層の上にカバーフィルムを貼り付けるエッチング工程であることが好ましい。
 (d2)エッチングにより、回路形成基板に第1のパターンを形成したのち、前述の(c1)工程で第1のパターンを形成したレジスト層を剥離することなく、残りのレジスト層の上にカバーフィルムを貼り付けるエッチング工程では、カバーフィルムとして(c)工程で一度剥離した仮支持体を再度用いることが好ましい。
<(D) Process>
(D) An etching process for forming a pattern exposure pattern on the circuit forming substrate by etching will be described.
Step (d) includes (d1) etching to form a first pattern on the circuit formation substrate, or (d2) etching to form the first pattern on the circuit formation substrate and then the remaining resist. It is preferable that it is an etching process which affixes a cover film on a layer.
(D2) After the first pattern is formed on the circuit forming substrate by etching, the cover film is formed on the remaining resist layer without peeling off the resist layer on which the first pattern is formed in the above-described step (c1). In the etching step of attaching the film, it is preferable to use again the temporary support once peeled off in the step (c) as the cover film.
 上記エッチングは、特開2010-152155号公報の段落[0048]~[0054]等に記載の方法など、公知のエッチング方法を適用することができる。 For the etching, a known etching method such as the method described in paragraphs [0048] to [0054] of JP 2010-152155 A can be applied.
 例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのものを適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液;酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせたものを使用してもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイド等の有機アミンの塩等のアルカリ成分単独の水溶液;アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせたものを使用してもよい。 For example, as an etching method, there is a commonly performed wet etching method of dipping in an etching solution. As an etching solution used for wet etching, an acid type or an alkaline type may be appropriately selected according to an object to be etched. Examples of acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid; mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, etc. Is done. As the acidic component, a combination of a plurality of acidic components may be used. In addition, alkaline type etching solutions include aqueous solutions containing only alkali components such as salts of organic amines such as sodium hydroxide, potassium hydroxide, ammonia, organic amines, tetramethylammonium hydroxide; alkaline components and potassium permanganate, etc. A mixed aqueous solution of a salt of A combination of a plurality of alkali components may be used as the alkali component.
 エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用されるレジスト層は、上記の温度域における酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮することが好ましい。したがって、エッチング工程中にレジスト層が剥離することが防止され、レジスト層の存在しない部分が選択的にエッチングされることになる。
 上記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程および/または乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間、基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm程度)を適宜調整し、行えばよい。
The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. The resist layer used as an etching mask (etching pattern) in the present invention preferably exhibits particularly excellent resistance to acidic and alkaline etching solutions in the above temperature range. Therefore, the resist layer is prevented from being peeled off during the etching process, and the portion where the resist layer does not exist is selectively etched.
After the etching, a cleaning process and / or a drying process may be performed as necessary to prevent line contamination. For example, the cleaning process is performed by cleaning the substrate with pure water at room temperature for 10 to 300 seconds. For the drying process, an air blow is used and an air blow pressure (about 0.1 to 5 kg / cm 2 ) is appropriately set. Adjust and do.
<(e1)工程および(e2)工程>
 (e1)前述の(c1)工程で第1のパターンを形成したレジスト層を剥離することなく、第2のパターンでコンタクトパターン露光するパターン露光工程、および、(e2)前述の(d2)工程で貼り付けたカバーフィルムを剥離せずに、第2のパターンでコンタクトパターン露光するパターン露光工程について説明する。
 (e1)工程および(e2)工程におけるコンタクトパターン露光は、(b)工程におけるコンタクトパターン露光と同じ方法を用いることができる。
<(E1) step and (e2) step>
(E1) a pattern exposure step of exposing the contact pattern with the second pattern without peeling off the resist layer on which the first pattern has been formed in the step (c1), and (e2) in the step (d2). A pattern exposure process for exposing the contact pattern with the second pattern without peeling off the attached cover film will be described.
For the contact pattern exposure in the steps (e1) and (e2), the same method as the contact pattern exposure in the step (b) can be used.
<(f1)工程および(f2)工程>
 (f1)現像してレジスト層に第1のパターンとは異なる第2のパターンを形成する現像工程、および、(f2)前述の(d2)工程で貼り付けたカバーフィルムを剥離した後、現像してレジスト層に第1のパターンとは異なる第2のパターンを形成する現像工程について説明する。
 (f1)工程および(f2)における現像は、(c)工程における現像と同じ方法を用いることができる。
<(F1) process and (f2) process>
(F1) a development step of developing and forming a second pattern different from the first pattern on the resist layer; and (f2) the cover film attached in the step (d2) is peeled off and then developed. A developing process for forming a second pattern different from the first pattern on the resist layer will be described.
The development in step (f1) and (f2) can use the same method as the development in step (c).
<(g)工程>
 (g)エッチングにより、回路形成基板に第2のパターンを形成するエッチング工程について説明する。
 (g)工程におけるエッチングは、(d)工程におけるエッチングと同じ方法を用いることができる。
 (g)工程では、所望のパターンに応じて、(d)工程よりも少ない導電層を選択的にエッチングすることが好ましい。
<(G) Process>
(G) An etching process for forming the second pattern on the circuit formation substrate by etching will be described.
For the etching in the step (g), the same method as the etching in the step (d) can be used.
In step (g), it is preferable to selectively etch fewer conductive layers than in step (d), depending on the desired pattern.
<2種類のパターンの導電層を含む回路配線を形成する方法>
 少なくとも2種類のパターンの導電層を含む回路配線を形成する場合、下記(Xa)工程、(Xb)工程、(Xc)工程、(Xd)工程、(Xe)工程および(Xz)工程を、本発明の回路配線の製造方法の各工程と組み合わせて実施することも好ましい。
(Xa) xを2以上の整数として、基材と、基材の一方の表面から順に第x層から第1層までの導電層とを有する回路形成基板に対し、導電層の第1層の上に露光された箇所が現像液に溶解するレジスト層を形成するラミネート工程;
(Xb) レジスト層が形成された回路形成基板に対し、パターン露光および現像して、レジスト層を第1のパターンとするパターン露光および現像工程;
(Xc) iを1以上x以下の整数として、(Xb)工程で第1のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第i層までをエッチング処理するエッチング工程;
(Xd) (Xb)工程で残存したレジスト層を、残存するレジスト層とは異なるパターンでパターン露光および現像して、レジスト層を第2のパターンとするパターン露光および現像工程;
(Xe) jを1以上i未満の整数として、(Xd)工程で第2のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第j層までをエッチング処理するエッチング工程;
(Xz) 残存するすべてのレジスト層を除去して、少なくとも2種類のパターンの導電層を含む回路配線を形成する残存するレジスト層除去工程。
<Method for Forming Circuit Wiring Containing Two Types of Conductive Layers>
When forming a circuit wiring including a conductive layer having at least two types of patterns, the following (Xa) process, (Xb) process, (Xc) process, (Xd) process, (Xe) process, and (Xz) process are performed as follows. It is also preferable to implement in combination with each step of the method for manufacturing a circuit wiring of the invention.
(Xa) where x is an integer of 2 or more, the first layer of the conductive layer with respect to the circuit forming substrate having the base material and the conductive layers from the x-th layer to the first layer in order from one surface of the base material A laminating step for forming a resist layer in which the exposed portion is dissolved in a developer;
(Xb) A pattern exposure and development process in which a resist layer is formed into a first pattern by pattern exposure and development on the circuit-formed substrate on which the resist layer is formed;
(Xc) An etching process for etching from the first layer to the i-th layer of the conductive layer in the region where the resist layer having the first pattern in the (Xb) process is not formed, where i is an integer of 1 to x ;
(Xd) A pattern exposure and development step in which the resist layer remaining in the step (Xb) is subjected to pattern exposure and development in a pattern different from that of the remaining resist layer, and the resist layer is used as a second pattern;
(Xe) An etching process in which j is an integer of 1 or more and less than i, and etching is performed from the first layer to the jth layer of the conductive layer in the region where the resist layer formed as the second pattern in the (Xd) process is not formed. ;
(Xz) A remaining resist layer removing step of removing all the remaining resist layers to form circuit wiring including conductive layers having at least two types of patterns.
 少なくとも2種類のパターンの導電層を含む回路配線を形成する場合のタッチパネル用回路配線の製造方法の一例を、図1に示した。
 図1に示したタッチパネル用回路配線の製造方法の一例では、(Xa)工程、(Xb)工程、(Xc)工程、(Xd)工程、(Xe)工程および(Xz)工程に加え、任意の(Xf)工程が記載されている。
 (Xa)工程では導電層の第1層の上にレジスト層を形成する。このレジスト層は、以降の(Xa)工程、(Xb)、(Xc)、(Xd)、(Xe)および(Xf)で少なくとも一部が残存しており、最終的に(Xz)工程で残存するすべてのレジスト層を除去して、少なくとも2種類のパターンの導電層を含む回路配線を形成する。すなわち、1回のレジスト形成で複数種類のパターンの導電層を含む回路配線を形成できる。
 (Xb)工程ではパターン露光および現像して、レジスト層を第1のパターンとする。
 (Xc)工程では(Xb)工程で第1のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第i層までをエッチング処理する。図1では、(Xc)工程でi=xとし、第1層から第x層までのすべての導電層をエッチングして、除去している。
 (Xc)工程で得られる導電層の第1層から第i層までのパターンは、最終的に(Xz)工程まで行ってすべてのレジスト層を除去したときに残存せず、(Xe)工程でのエッチングおよび必要に応じて行うことができる(Xf)工程でのエッチングにより別のパターンとなる。図1に示した構成では、(Xc)工程で得られる導電層の第1層から第i層までのパターンが7本の柱として記載されているが、右から3、4および5番目の柱は(Xe)工程でのエッチングで別のパターンとなっており、右から1、2および6番目の柱も(Xf)工程でのエッチングで別のパターンとなっており、最終的な(Xz)工程まで行ってすべてのレジスト層を除去したときには右から7本目のみの柱のみが導電層の第1層から第i層までのパターンとなっている。
 (Xd)工程では(Xb)工程で残存したレジスト層を、残存するレジスト層とは異なるパターンでパターン露光および現像して、レジスト層を第2のパターンとする。
 (Xe)工程では(Xd)工程で第2のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第j層までをエッチング処理する。図1では、(Xe)工程でj=x-1、かつ、j=i-1とし、第1層から第x-1層(第j層)までの導電層をエッチングして除去し、第x層のみを残している。
 図1では(Xf)工程の詳細は省略したが、(Xf)工程を必要回数繰り返すことができる。
 (Xz)工程では、残存するすべてのレジスト層を除去して、少なくとも2種類のパターンの導電層を含む回路配線を形成する。図1では、最終的に(Xz)工程後にレジスト層がすべて取り除かれたことが示されている。
FIG. 1 shows an example of a method for manufacturing a circuit wiring for a touch panel when forming a circuit wiring including a conductive layer having at least two types of patterns.
In the example of the method for manufacturing the circuit wiring for touch panel shown in FIG. 1, in addition to the (Xa) process, the (Xb) process, the (Xc) process, the (Xd) process, the (Xe) process, and the (Xz) process, Step (Xf) is described.
In the step (Xa), a resist layer is formed on the first layer of the conductive layer. This resist layer remains at least partially in the subsequent (Xa) step, (Xb), (Xc), (Xd), (Xe), and (Xf), and finally remains in the (Xz) step. All the resist layers to be removed are removed to form a circuit wiring including at least two types of conductive layers. That is, a circuit wiring including a plurality of types of conductive layers can be formed by a single resist formation.
In step (Xb), pattern exposure and development are performed to make the resist layer the first pattern.
In the step (Xc), the first layer to the i-th layer of the conductive layer in the region where the resist layer having the first pattern in the step (Xb) is not formed are etched. In FIG. 1, i = x is set in step (Xc), and all the conductive layers from the first layer to the x-th layer are etched and removed.
The pattern from the first layer to the i-th layer of the conductive layer obtained in the (Xc) process does not remain when all the resist layers are removed by going to the (Xz) process, and in the (Xe) process. Etching in step (Xf), which can be performed as needed, forms another pattern. In the configuration shown in FIG. 1, the pattern from the first layer to the i-th layer of the conductive layer obtained in the step (Xc) is described as seven columns, but the third, fourth, and fifth columns from the right Is a different pattern in the etching in the (Xe) process, and the first, second and sixth pillars from the right also have a different pattern in the etching in the (Xf) process, and the final (Xz) When all the resist layers are removed through the process, only the seventh column from the right is a pattern from the first layer to the i-th layer of the conductive layer.
In the step (Xd), the resist layer remaining in the step (Xb) is subjected to pattern exposure and development in a pattern different from that of the remaining resist layer, so that the resist layer becomes a second pattern.
In the (Xe) process, the first to jth layers of the conductive layer in the region where the resist layer having the second pattern formed in the (Xd) process is not formed are etched. In FIG. 1, in step (Xe), j = x−1 and j = i−1, the conductive layers from the first layer to the x−1th layer (jth layer) are removed by etching, Only the x layer is left.
Although details of the (Xf) process are omitted in FIG. 1, the (Xf) process can be repeated as many times as necessary.
In the step (Xz), all remaining resist layers are removed to form circuit wiring including conductive layers having at least two types of patterns. FIG. 1 shows that the entire resist layer was finally removed after the (Xz) step.
((Xa)工程)
 (Xa)工程:xを2以上の整数として、基材と、基材の一方の表面から順に第x層から第1層までの導電層とを有する回路形成基板に対し、導電層の第1層の上に露光された箇所が現像液に溶解するレジスト層をラミネートするラミネート工程について説明する。
(Step (Xa))
(Xa) Step: The first conductive layer is formed on a circuit-formed substrate having a base material and conductive layers from the x-th layer to the first layer in order from one surface of the base material, where x is an integer of 2 or more. A laminating process for laminating a resist layer in which a portion exposed on the layer is dissolved in a developer will be described.
 (Xa)工程は、保護フィルムが除去されたドライフィルムレジストのレジスト層を導電層の第1層の上にラミネートする工程であることが好ましい。 (Xa) The step is preferably a step of laminating the resist layer of the dry film resist from which the protective film has been removed on the first layer of the conductive layer.
 xは2以上の整数であり、2または3であることが好ましく、2であることがより好ましい。
 図2に、xが2である場合に得られる本発明の実施態様の一つである、タッチパネル用回路配線の一例の断面模式図を示した。図2では、基材1の上に、第一の電極パターン3が形成され、第一の電極パターンの上に別の導電性要素6が形成されている。図2に示したタッチパネル用回路配線は、第一の電極パターン3と別の導電性要素が形成された導電層積層体と、第一の電極パターン3のみを有する導電層の2種類のパターンの導電層を含む回路配線となっている。
 図2のタッチパネル用回路配線をななめ上方向から見ると、図3のようになる。図3に示したタッチパネル用回路配線の一例では、図3の点線部は第一の電極パターン3と別の導電性要素が形成された導電層積層体であり、図3の四角形が連なった部分は第一の電極パターン3のみを有する導電層である。図3のように、回路配線に含まれる異なる種類のパターンを有する導電層のうち、少なくとも1種類のパターンを有する導電層が同一の回路パターンを共有する2層以上の導電層積層体を含むことが好ましい。
x is an integer of 2 or more, preferably 2 or 3, and more preferably 2.
FIG. 2 shows a schematic cross-sectional view of an example of circuit wiring for a touch panel, which is one of the embodiments of the present invention obtained when x is 2. In FIG. 2, the first electrode pattern 3 is formed on the substrate 1, and another conductive element 6 is formed on the first electrode pattern. The circuit wiring for the touch panel shown in FIG. 2 has two types of patterns: a conductive layer laminate in which another conductive element is formed with the first electrode pattern 3 and a conductive layer having only the first electrode pattern 3. The circuit wiring includes a conductive layer.
FIG. 3 shows the circuit wiring for the touch panel in FIG. In the example of the circuit wiring for the touch panel shown in FIG. 3, the dotted line portion in FIG. 3 is a conductive layer laminated body in which another conductive element is formed with the first electrode pattern 3, and the portion where the squares in FIG. Is a conductive layer having only the first electrode pattern 3. As shown in FIG. 3, among the conductive layers having different types of patterns included in the circuit wiring, the conductive layer having at least one type of pattern includes a conductive layer stack of two or more layers sharing the same circuit pattern. Is preferred.
((Xb)工程)
 (Xb)工程:レジスト層が形成された回路形成基板に対し、パターン露光および現像して、レジスト層を第1のパターンとするパターン露光および現像工程について説明する。
 (Xd)工程におけるパターン露光および現像は、(b)工程および(c)工程におけるパターン露光および現像と同じ方法を用いることができる。
(Step (Xb))
Process (Xb): A pattern exposure and development process in which a resist layer is formed into a first pattern by pattern exposure and development on a circuit-formed substrate on which a resist layer is formed will be described.
The pattern exposure and development in the step (Xd) can use the same methods as the pattern exposure and development in the steps (b) and (c).
((Xc)工程)
 (Xc)工程:iを1以上x以下の整数として、(Xb)工程で第1のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第i層までをエッチング処理するエッチング工程について説明する。
 (Xc)工程におけるエッチング処理は、(d)工程におけるエッチング処理と同じ方法を用いることができる。
(Step (Xc))
(Xc) Process: Etching is performed from the first layer to the i-th layer of the conductive layer in the region where the resist layer having the first pattern in the (Xb) process is not formed, where i is an integer of 1 to x. The etching process will be described.
For the etching process in the step (Xc), the same method as the etching process in the process (d) can be used.
((Xd)工程)
(Xd)工程:(Xb)工程で残存したレジスト層を、残存するレジスト層とは異なるパターンでパターン露光および現像して、レジスト層を第2のパターンとするパターン露光および現像工程について説明する。
 (Xd)工程におけるパターン露光および現像は、(Xb)工程におけるパターン露光および現像と同じ方法を用いることができる。
(Step (Xd))
Process (Xd): The pattern exposure and development process in which the resist layer remaining in the process (Xb) is subjected to pattern exposure and development in a pattern different from the remaining resist layer to make the resist layer a second pattern will be described.
The pattern exposure and development in the step (Xd) can use the same methods as the pattern exposure and development in the step (Xb).
((Xe)工程)
(Xe)工程:jを1以上i未満の整数として、(Xd)工程で第2のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第j層までをエッチング処理するエッチング工程について説明する。
 (Xe)工程におけるエッチングは、(Xc)工程におけるエッチングと同じ方法を用いることができる。
 (Xe)工程では、所望のパターンに応じて、(Xc)工程よりも少ない導電層を選択的にエッチングすることが好ましい。
(Step (Xe))
(Xe) Process: Etching is performed from the first layer to the jth layer of the conductive layer in the region where the resist layer having the second pattern in the (Xd) process is not formed, where j is an integer of 1 or more and less than i. The etching process will be described.
The same method as the etching in the (Xc) process can be used for the etching in the (Xe) process.
In step (Xe), it is preferable to selectively etch fewer conductive layers than in step (Xc), depending on the desired pattern.
((Xf)工程)
 回路配線の製造方法は、さらに、下記(Xf)工程を含むことが好ましい。
(Xf)工程:残存するレジスト層を、残存するレジスト層とは異なるパターンでパターン露光および現像して、現像後にレジスト層が形成されていない領域の導電層の第1層からj未満の任意の層までをエッチング処理して導電層をパターンとするパターン露光および現像工程。
 以下、(Xf)工程について説明する。
 本発明の回路配線の製造方法は、(Xf)工程を行わないことも好ましい。すなわち、本発明の回路配線の製造方法は、回路配線が、2種類のパターンのみの導電層を含むことが好ましい。
 (Xf)工程の繰り返し回数は特に制限はなく、所望のパターンの形状に応じて繰り返して行うことができる。その中でも、(Xf)工程の繰り返し回数は1回であることが好ましい。
 本発明の回路配線の製造方法は、(Xf)工程が、下記(Xf1)工程および(Xf2)工程を含み、少なくとも3種類のパターンの導電層を含むことが好ましい。
(Xf1) (Xe)工程で残存したレジスト層を、残存するレジスト層とは異なるパターンでパターン露光および現像して、レジスト層を第3のパターンとするパターン露光および現像工程;
(Xf2) kを1以上j未満の整数として、(f1)工程で第3のパターンとしたレジスト層が形成されていない領域の導電層の第1層から第k層までをエッチング処理するパターン露光および現像工程。
 その他の(Xf)工程の好ましい態様は、(Xd)工程および(Xe)工程と同様である。
(Step (Xf))
It is preferable that the method for manufacturing circuit wiring further includes the following step (Xf).
Step (Xf): pattern exposure and development of the remaining resist layer in a pattern different from the remaining resist layer, and any less than j from the first layer of the conductive layer in the region where the resist layer is not formed after development Pattern exposure and development process in which the conductive layer is patterned by etching up to the layer.
Hereinafter, the step (Xf) will be described.
In the method for manufacturing a circuit wiring of the present invention, it is also preferable not to perform the step (Xf). That is, in the method for manufacturing a circuit wiring of the present invention, it is preferable that the circuit wiring includes a conductive layer having only two types of patterns.
The number of repetitions of the step (Xf) is not particularly limited, and can be repeated according to the desired pattern shape. Among these, it is preferable that the number of repetitions of the (Xf) step is one.
In the method for manufacturing a circuit wiring of the present invention, it is preferable that the (Xf) step includes the following (Xf1) step and (Xf2) step, and includes a conductive layer having at least three types of patterns.
(Xf1) A pattern exposure and development process in which the resist layer remaining in the (Xe) process is subjected to pattern exposure and development in a pattern different from the remaining resist layer, and the resist layer is used as a third pattern;
(Xf2) Pattern exposure in which k is an integer of 1 or more and less than j, and etching is performed from the first layer to the k-th layer of the conductive layer in the region where the resist layer formed as the third pattern in the step (f1) is not formed And development process.
Other preferred embodiments of the step (Xf) are the same as those in the steps (Xd) and (Xe).
((Xz)工程)
 (Xz)工程:残存するすべてのレジスト層を除去して、少なくとも2種類のパターンの導電層を含む回路配線を形成する残存するレジスト層除去工程について説明する。
 上記エッチング処理後に残存するすべてのレジスト層を除去する方法としては特に制限はないが、薬品処理により除去する方法を挙げることができる。
 レジスト層の除去方法としては、例えば、30~80℃、好ましくは50~80℃にて攪拌中の剥離液にレジスト層などを有する基材を5~30分間浸漬する方法が挙げられる。エッチングマスクとして使用される樹脂パターンは、45℃以下において優れた薬液耐性を示すものであってもよいが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示すことが好ましい。上記の性質により、50~80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、レジスト層の剥離残渣が少なくなるという利点がある。すなわち、上記エッチング工程とレジスト層を除去する工程との間で薬液温度に差を設けることにより、エッチングマスクとして使用されるレジスト層は、エッチング工程において良好な薬液耐性を発揮する一方で、除去工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。
((Xz) process)
Step (Xz): The remaining resist layer removing step for removing all the remaining resist layers to form circuit wiring including conductive layers having at least two types of patterns will be described.
Although there is no restriction | limiting in particular as a method of removing all the resist layers which remain | survive after the said etching process, The method of removing by a chemical process can be mentioned.
Examples of the method for removing the resist layer include a method of immersing a substrate having a resist layer or the like in a stripping solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes. The resin pattern used as an etching mask may exhibit excellent chemical resistance at 45 ° C. or lower, but preferably exhibits a property of swelling with an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. Due to the above properties, when the stripping process is performed using a stripping solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resist layer stripping residue is reduced. That is, by providing a difference in chemical temperature between the etching step and the step of removing the resist layer, the resist layer used as an etching mask exhibits good chemical resistance in the etching step, while the removal step In this case, good releasability is exhibited, and both contradictory properties of chemical resistance and releasability can be satisfied.
 剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N-メチルピロリドン、またはこれらの混合溶液に溶解させたものが挙げられる。上記の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。 Examples of the stripping solution include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. What was melt | dissolved in this mixed solution is mentioned. You may peel by the spray method, the shower method, the paddle method etc. using said peeling liquid.
[回路配線]
 本発明の回路配線は、本発明の回路配線の製造方法で製造された回路配線である。本発明の回路配線はタッチパネル用回路配線であることが好ましい。タッチパネル用回路配線の好ましい態様については、静電容量型入力装置の説明で後述する。
[Circuit wiring]
The circuit wiring of the present invention is a circuit wiring manufactured by the circuit wiring manufacturing method of the present invention. The circuit wiring of the present invention is preferably a touch panel circuit wiring. A preferable aspect of the circuit wiring for the touch panel will be described later in the description of the capacitive input device.
[入力装置および表示装置]
 本発明の入力装置は、本発明の回路配線を用いた入力装置である。本発明では、入力装置が静電容量型タッチパネルであることが好ましい。
 本発明の表示装置は、本発明の入力装置を備える。本発明の表示装置は画像表示装置であることが好ましい。
[Input device and display device]
The input device of the present invention is an input device using the circuit wiring of the present invention. In the present invention, the input device is preferably a capacitive touch panel.
The display device of the present invention includes the input device of the present invention. The display device of the present invention is preferably an image display device.
<静電容量型入力装置、および静電容量型入力装置を備える画像表示装置>
 本発明の入力装置および表示装置の好ましい態様である静電容量型入力装置、およびこの静電容量型入力装置を構成要素として備えた画像表示装置は、「最新タッチパネル技術」(2009年7月6日発行(株)テクノタイムズ)、三谷雄二、板倉義雄監修、「タッチパネルの技術と開発」(シーエムシー出版、2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
<Capacitive Input Device and Image Display Device Comprising Capacitive Input Device>
A capacitive input device which is a preferred embodiment of the input device and display device of the present invention, and an image display device including this capacitive input device as a constituent element are “latest touch panel technology” (July 6, 2009). (Published by Techno Times Co., Ltd.), Yuji Mitani, Yoshio Itakura, "Technology and Development of Touch Panel" (CMC Publishing, 2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292 The configuration disclosed in the above can be applied.
 まず、静電容量型入力装置の構成について説明する。図9は、静電容量型入力装置の構成を示す断面図である。図9において静電容量型入力装置10は、基材1と、マスク層2と、第一の電極パターン3と、第二の電極パターン4と、絶縁層5と、別の導電性要素6と、透明保護層7と、から構成されている。 First, the configuration of the capacitive input device will be described. FIG. 9 is a cross-sectional view showing the configuration of the capacitive input device. In FIG. 9, the capacitive input device 10 includes a base material 1, a mask layer 2, a first electrode pattern 3, a second electrode pattern 4, an insulating layer 5, and another conductive element 6. , And a transparent protective layer 7.
 図9において、基材1の各要素が設けられている側を非接触面と称する。上記静電容量型入力装置10においては、基材1の接触面(非接触面の反対の面)に指などを接触させて入力が行われる。以下、基材を、「前面板」と称する場合がある。 In FIG. 9, the side on which each element of the base material 1 is provided is referred to as a non-contact surface. In the capacitance-type input device 10, input is performed by bringing a finger or the like into contact with the contact surface of the substrate 1 (the surface opposite to the non-contact surface). Hereinafter, the base material may be referred to as a “front plate”.
 また、基材1の非接触面上にはマスク層2が設けられている。マスク層2は、基材1(例えば、タッチパネル前面板)の非接触面側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えなくするために形成される。
 上記静電容量型入力装置10には、基材1の一部の領域を覆うマスク層2が設けられていてもよい。更に、基材1には、一部に開口部を設けることができる。開口部には、押圧によって作動するメカニカルなスイッチを設置することができる。
A mask layer 2 is provided on the non-contact surface of the substrate 1. The mask layer 2 is a frame-like pattern around the display area formed on the non-contact surface side of the base material 1 (for example, the touch panel front plate), and is formed so as to hide the lead wiring and the like.
The capacitive input device 10 may be provided with a mask layer 2 that covers a partial region of the substrate 1. Furthermore, the base material 1 can be provided with an opening in part. A mechanical switch that operates by pressing can be installed in the opening.
 基材1の非接触面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の電極パターン3と、第一の電極パターン3と電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分および接続部分を含む複数の第二の電極パターン4と、第一の電極パターン3と第二の電極パターン4を電気的に絶縁する絶縁層5とが形成されている。上記第一の電極パターン3と、第二の電極パターン4と、後述する別の導電性要素6とは、例えば、ITOやIZOなどの透明の導電性金属酸化膜で作製することができる。導電性膜としては、Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;ITO、IZO、SiO等の金属酸化物膜などが挙げられる。この際、各要素の膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜として、電気的抵抗を低減することもできる。
 また、上記第一の電極パターン3と、第二の電極パターン4とは、レジスト層をエッチングレジスト(エッチングパターン)として用いて形成されることが好ましい。第二の電極パターンを形成するための第二の電極層の形成には、本発明で用いられるレジスト層をはじめとしたレジストを用いるフォトリソグラフィのほか、公知の方法を用いることができる。その他、導電性繊維を用いた感光性樹脂組成物を有する感光性転写材料を用いて製造することもできる。ITO等によって第一の電極パターン等を形成する場合には、特許第4506785号公報の段落[0014]~[0016]等を参考にすることができる。
On the non-contact surface of the substrate 1, a plurality of first electrode patterns 3 formed by extending a plurality of pad portions in the first direction via connection portions, and the first electrode pattern 3 and the electric A plurality of second electrode patterns 4 including a plurality of pad portions and connection portions formed so as to extend in a direction intersecting the first direction, and the first electrode pattern 3 and the second electrode pattern An insulating layer 5 that electrically insulates the electrode pattern 4 is formed. The first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 to be described later can be made of a transparent conductive metal oxide film such as ITO or IZO, for example. Examples of the conductive film include metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as ITO, IZO, and SiO 2 . At this time, the film thickness of each element can be 10 to 200 nm. Further, by baking, the amorphous ITO film can be changed to a polycrystalline ITO film, and the electrical resistance can be reduced.
The first electrode pattern 3 and the second electrode pattern 4 are preferably formed using a resist layer as an etching resist (etching pattern). For the formation of the second electrode layer for forming the second electrode pattern, a known method can be used in addition to photolithography using a resist including the resist layer used in the present invention. In addition, it can also manufacture using the photosensitive transfer material which has the photosensitive resin composition using an electroconductive fiber. When the first electrode pattern or the like is formed of ITO or the like, paragraphs [0014] to [0016] of Japanese Patent No. 4506785 can be referred to.
 また、第一の電極パターン3および第二の電極パターン4の少なくとも一方は、基材1の非接触面およびマスク層2の基材1とは逆側の面の両方の領域にまたがって設置することができる。図9においては、第二の電極パターン4が、基材1の非接触面およびマスク層2の基材1とは逆側の面の両方の領域にまたがって設置されている態様が示されている。 In addition, at least one of the first electrode pattern 3 and the second electrode pattern 4 is disposed across both the non-contact surface of the base material 1 and the surface of the mask layer 2 opposite to the base material 1. be able to. FIG. 9 shows an aspect in which the second electrode pattern 4 is disposed across both the non-contact surface of the substrate 1 and the surface of the mask layer 2 opposite to the substrate 1. Yes.
 図7および図8を用いて第一の電極パターンおよび第二の電極パターン4について説明する。図7および図8は、第一の電極パターンおよび第二の電極パターンの一例を示す説明図でもある。図8に示すように、第一の電極パターンは、パッド部分3aが接続部分3bを介して第一の方向に延在して形成されている。また、第二の電極パターン4は、第一の電極パターンと絶縁層5によって電気的に絶縁されており、第一の方向に交差する方向(第二の方向)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の電極パターン3を形成する場合、上記パッド部分3aと接続部分3bとを一体として作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の電極パターン4とを一体として作製(パターニング)してもよい。パッド部分3aと第二の電極パターン4とを一体として作製(パターニング)する場合、図7および図8に示すように接続部分3bの一部とパッド部分3a(図7には不図示)の一部とが連結され、且つ、絶縁層5によって第一の電極パターン3と第二の電極パターン4とが電気的に絶縁されるように各層が形成される。 7 and 8, the first electrode pattern and the second electrode pattern 4 will be described. 7 and 8 are also explanatory diagrams showing examples of the first electrode pattern and the second electrode pattern. As shown in FIG. 8, the first electrode pattern is formed such that the pad portion 3a extends in the first direction via the connection portion 3b. The second electrode pattern 4 is electrically insulated by the first electrode pattern and the insulating layer 5 and is formed to extend in a direction intersecting the first direction (second direction). It is composed of a plurality of pad portions. Here, when the first electrode pattern 3 is formed, the pad portion 3a and the connection portion 3b may be manufactured integrally, or only the connection portion 3b is manufactured, and the pad portion 3a and the second electrode are formed. The pattern 4 may be integrally formed (patterned). When the pad portion 3a and the second electrode pattern 4 are integrally formed (patterned), as shown in FIGS. 7 and 8, a part of the connection portion 3b and one of the pad portions 3a (not shown in FIG. 7). Each layer is formed such that the first electrode pattern 3 and the second electrode pattern 4 are electrically insulated by the insulating layer 5.
 図9において、マスク層2の基材1とは逆側の面側には別の導電性要素6が設置されている。別の導電性要素6は、第一の電極パターン3および第二の電極パターン4の少なくとも一方に電気的に接続され、且つ、第一の電極パターン3および第二の電極パターン4とは別の要素である。図9においては、別の導電性要素6が第二の電極パターン4に接続されている図が示されている。 In FIG. 9, another conductive element 6 is provided on the surface of the mask layer 2 opposite to the base 1. Another conductive element 6 is electrically connected to at least one of the first electrode pattern 3 and the second electrode pattern 4 and is different from the first electrode pattern 3 and the second electrode pattern 4. Is an element. FIG. 9 shows a diagram in which another conductive element 6 is connected to the second electrode pattern 4.
 また、図9においては、各構成要素の全てを覆う透明保護層7が設置されている。透明保護層7は、各構成要素の一部のみを覆うように構成されていてもよい。絶縁層5と透明保護層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5と透明保護層7とを構成する材料としては、表面硬度、耐熱性が高いものが好ましく、公知の感光性シロキサン樹脂材料、アクリル樹脂材料などが用いられ、これらは同業者に公知である。
 絶縁層のパターニング方法も、フォトリソグラフィ方式のほか、インクジェット、スクリーンなど公知の方法を用いることが可能である。
Moreover, in FIG. 9, the transparent protective layer 7 which covers all of each component is installed. The transparent protective layer 7 may be configured to cover only a part of each component. The insulating layer 5 and the transparent protective layer 7 may be made of the same material or different materials. As the material constituting the insulating layer 5 and the transparent protective layer 7, those having high surface hardness and high heat resistance are preferable, and known photosensitive siloxane resin materials, acrylic resin materials, and the like are used, and these are known to those skilled in the art. is there.
As a method for patterning the insulating layer, a known method such as ink jet or screen can be used in addition to the photolithography method.
 上記静電容量型入力装置の製造方法においては、上記第一の電極パターン3、第二の電極パターン4および別の導電性要素6のうち少なくとも1つは、レジスト層をエッチングレジスト(エッチングパターン)として用いてエッチング処理して形成されることが好ましい。また、黒色のマスク層2と絶縁層5と、必要に応じて透明保護層7との少なくとも一要素も、仮支持体と熱可塑性樹脂層と光硬化性樹脂層とをこの順で有する感光性フィルムを用いて形成されることも好ましい。 In the method of manufacturing the capacitance-type input device, at least one of the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 is formed by etching a resist layer (etching pattern). It is preferable to form by etching using. In addition, at least one element of the black mask layer 2, the insulating layer 5, and, if necessary, the transparent protective layer 7 also has a temporary support, a thermoplastic resin layer, and a photocurable resin layer in this order. It is also preferable to form using a film.
 上記第一の電極パターン3、第二の電極パターン4および別の導電性要素6のうち少なくとも1つは、レジスト層をエッチングレジスト(エッチングパターン)として用いてエッチング処理して形成されることが好ましい。
 エッチング処理によって、上記第一の電極パターン3、第二の電極パターン4および別の導電性要素6を形成する場合、まず黒色のマスク層2が形成された基材1の非接触面上に、黒色のマスク層2が設けられた部分について少なくとも無機絶縁層を設け、基材1の非接触面上または無機絶縁層上にITO等の透明電極層をスパッタリングによって形成する。次いで、上記透明電極層上に上記光硬化性樹脂層としてエッチング用光硬化性樹脂層を有するレジスト層を用いて露光および現像によってエッチングパターンを形成する。その後、透明電極層をエッチングして透明電極をパターニングし、エッチングパターンを除去することで、第一の電極パターン3等を形成することができる。
At least one of the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 is preferably formed by etching using a resist layer as an etching resist (etching pattern). .
When forming the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 by etching, first, on the non-contact surface of the substrate 1 on which the black mask layer 2 is formed, An inorganic insulating layer is provided at least on the portion where the black mask layer 2 is provided, and a transparent electrode layer such as ITO is formed on the non-contact surface of the substrate 1 or on the inorganic insulating layer by sputtering. Next, an etching pattern is formed by exposure and development using a resist layer having an etching photocurable resin layer as the photocurable resin layer on the transparent electrode layer. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first electrode pattern 3 and the like can be formed.
 導電性材料を含む光硬化性樹脂層を有する感光性フィルムを用いて、上記第一の電極パターン3、第二の電極パターン4および別の導電性要素6を形成する場合、基材1の表面上に、黒色のマスク層2が設けられた部分について少なくとも無機絶縁層を設け、基材1の非接触面上または無機絶縁層上に上記導電性材料を含む光硬化性樹脂層を転写すること(ラミネート)等の方法を用いて形成することができる。 When forming the first electrode pattern 3, the second electrode pattern 4, and another conductive element 6 using a photosensitive film having a photocurable resin layer containing a conductive material, the surface of the substrate 1 On the portion where the black mask layer 2 is provided, at least an inorganic insulating layer is provided, and the photocurable resin layer containing the conductive material is transferred onto the non-contact surface of the substrate 1 or onto the inorganic insulating layer. It can be formed using a method such as (laminate).
 上記マスク層2、絶縁層5および透明保護層7は、感光性フィルムを用いて光硬化性樹脂層を基材1に転写することで形成することができる。例えば、黒色のマスク層2を形成する場合には、光硬化性樹脂層として黒色光硬化性樹脂層を有する感光性フィルムを用いて、基材1の表面に黒色光硬化性樹脂層を転写することで形成することができる。絶縁層5を形成する場合には、光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する感光性フィルムを用いて、第一または第二の電極パターンが形成された基材1の表面に光硬化性樹脂層を転写することで形成することができる。透明保護層7を形成する場合には、光硬化性樹脂層として透明の光硬化性樹脂層を有する感光性フィルムを用いて、各要素が形成された基材1の表面に光硬化性樹脂層を転写することで形成することができる。 The mask layer 2, the insulating layer 5, and the transparent protective layer 7 can be formed by transferring a photocurable resin layer to the substrate 1 using a photosensitive film. For example, when the black mask layer 2 is formed, the black photocurable resin layer is transferred onto the surface of the substrate 1 using a photosensitive film having a black photocurable resin layer as the photocurable resin layer. Can be formed. When the insulating layer 5 is formed, the surface of the substrate 1 on which the first or second electrode pattern is formed using a photosensitive film having an insulating photocurable resin layer as the photocurable resin layer. It can be formed by transferring a photocurable resin layer to the film. When the transparent protective layer 7 is formed, a photocurable resin layer is used on the surface of the substrate 1 on which each element is formed using a photosensitive film having a transparent photocurable resin layer as the photocurable resin layer. It can be formed by transferring.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
 以下の符号はそれぞれ以下の化合物を表す。
MATHF:2-テトラヒドロフラニルメタクリレート
MAEVE:1-エトキシエチルメタクリレート(和光純薬工業社製)
PHS:パラヒドロキシスチレン
PHS-EVE:パラヒドロキシスチレンの1-エトキシエチル保護体
PHS-THF:パラヒドロキシスチレンの2-テトラヒドロフラニル保護体
PGMEA:プロピレングリコールモノメチルエーテルアセテート
The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
The following symbols represent the following compounds, respectively.
MATHF: 2-tetrahydrofuranyl methacrylate MAEVE: 1-ethoxyethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
PHS: parahydroxystyrene PHS-EVE: 1-ethoxyethyl protector of parahydroxystyrene PHS-THF: 2-tetrahydrofuranyl protector of parahydroxystyrene PGMEA: propylene glycol monomethyl ether acetate
[材料特性の評価方法]
 以下に、材料特性の評価方法を記載する。
[Evaluation method of material properties]
Below, the evaluation method of a material characteristic is described.
<仮支持体の全光線ヘイズ>
 スガ試験機(株)製ヘイズメーターHZ-2を用い、JIS(Japanese Industrial Standards) K 7136に準拠して仮支持体の小片の全光線ヘイズ(%)を測定した。
<Total light haze of temporary support>
Using a haze meter HZ-2 manufactured by Suga Test Instruments Co., Ltd., the total light haze (%) of the small piece of the temporary support was measured in accordance with JIS (Japan Industrial Standards) K7136.
<仮支持体又は光吸収層の透過率>
 仮支持体の小片、または、仮支持体の上に光吸収層を形成した積層体から仮支持体を剥離して調製した光吸収層サンプルの透過スペクトルを、8453紫外可視分光光度計(アジレント・テクノロジーズ株式会社製)を用いて測定し、レジスト層の露光主波長と同じ波長365nmにおける透過率を求めた。
<Transmittance of temporary support or light absorption layer>
A transmission spectrum of a light absorption layer sample prepared by peeling the temporary support from a small piece of the temporary support or a laminate in which the light absorption layer is formed on the temporary support, is converted into an 8453 ultraviolet-visible spectrophotometer (Agilent The transmittance at a wavelength of 365 nm which is the same as the exposure main wavelength of the resist layer was determined.
<感光剤の吸光係数>
 各感光剤の0.01mol/Lアセトニトリル溶液を作製し、0.1mm石英セルを使用して前述の8453紫外可視分光光度計により、レジスト層の露光主波長と同じ365nmの吸光度を測定した。得られた値から光路長1cmあたりの吸光係数を求めた。
<Absorption coefficient of photosensitizer>
A 0.01 mol / L acetonitrile solution of each photosensitizer was prepared, and the absorbance at 365 nm, which is the same as the exposure main wavelength of the resist layer, was measured with the above-mentioned 8453 ultraviolet-visible spectrophotometer using a 0.1 mm quartz cell. The extinction coefficient per 1 cm of optical path length was calculated | required from the obtained value.
[実施例1]
 以下の処方でポジ型感光性樹脂組成物を調製した。
・ノボラック樹脂(メタクレゾール:パラクレゾール=30:70、分子量5,500):79.9部
・感光剤:特開平4-22955号公報の第4頁に記載のナフトキノンジアジド化合物(1):20部
・界面活性剤(下記界面活性剤1):0.1部
・PGMEA:900部
界面活性剤1:F-554、下記構造式で示されるパーフルオロアルキル基含有ノニオン系界面活性剤(DIC製)
Figure JPOXMLDOC01-appb-C000034
[Example 1]
A positive photosensitive resin composition was prepared according to the following formulation.
Novolac resin (metacresol: paracresol = 30: 70, molecular weight 5,500): 79.9 parts Photosensitizer: naphthoquinonediazide compound (1) described on page 4 of JP-A-4-22955 Part / surfactant (surfactant 1 below): 0.1 part / PGMEA: 900 parts surfactant 1: F-554, perfluoroalkyl group-containing nonionic surfactant represented by the following structural formula (manufactured by DIC) )
Figure JPOXMLDOC01-appb-C000034
 なお、使用した感光剤のアセトニトリル中の吸光係数(365nm)は12,100cm-1-1であった。 The absorption coefficient (365 nm) in acetonitrile of the used photosensitizer was 12,100 cm −1 M −1 .
 調製したポジ型感光性樹脂組成物を、仮支持体となる膜厚75μmの着色ポリエチレンテレフタレートフィルム(以下着色PET(A)とする)の上に、スリット状ノズルを用いて乾燥膜厚が2.0μmとなるように塗布した。その後、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例1のドライフィルムレジストとした。
 なお、着色PET(A)は特開平6-306192号公報の[0060]に記載の手法で作製した。着色染料としてダイアレジンブルーG(三菱化学社製)を用い、染料量を調節することで波長365nmの光に60%の透過率を持つように作製した。着色PET(A)の全光線ヘイズは2.6%であった。
The prepared positive type photosensitive resin composition is dried on a colored polyethylene terephthalate film (hereinafter referred to as colored PET (A)) having a film thickness of 75 μm to be a temporary support, using a slit-like nozzle. It apply | coated so that it might be set to 0 micrometer. Thereafter, the film was dried in a convection oven at 100 ° C. for 2 minutes, and finally a polyethylene film (manufactured by Tredegar, OSM-N) was pressed as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Example 1.
The colored PET (A) was prepared by the method described in [0060] of JP-A-6-306192. Dialresin Blue G (manufactured by Mitsubishi Chemical Corporation) was used as the coloring dye, and the dye amount was adjusted so as to have a transmittance of 60% for light having a wavelength of 365 nm. The total light haze of the colored PET (A) was 2.6%.
 次いで、100μmの膜厚のPET基材上に、導電層として銅を真空蒸着法で200nmの膜厚にて成膜して、回路形成基板とした。
 各実施例および比較例において、実施例1のドライフィルムレジストから保護フィルムを剥離してから後述の(a)ラミネート工程を行った。銅層上に上記実施例1のドライフィルムレジストをラミネートして転写し、ポジ型レジスト層を作製する(a)ラミネート工程を行った。
 このレジスト層を仮支持体を剥離せずに、線幅5μmのラインアンドスペース配線のマスクパターン(開口部:遮光部の幅比は1:1のパターン露光用パターン)を設けたフォトマスクを用いて仮支持体にフォトマスクを接触させてコンタクトパターン露光する(b)パターン露光工程を行った。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
 露光後の回路形成基板から仮支持体を剥離後、TMAH水溶液2.38質量%を用いた現像、水洗を行って配線パターンが形成されたレジスト層を得る(c)現像工程を行った。
 次いで銅エッチング液(関東化学(株)製Cu-02)を用いて銅層をエッチングすることで回路形成基板にパターン露光用パターンを形成するエッチング(d)工程を行い、銅配線基板を得た。得られた回路配線を、実施例1の回路配線とした。
Next, copper was formed as a conductive layer with a thickness of 200 nm on a PET substrate having a thickness of 100 μm by a vacuum deposition method to obtain a circuit formation substrate.
In each Example and Comparative Example, the protective film was peeled off from the dry film resist of Example 1, and then the (a) laminating step described later was performed. The dry film resist of Example 1 was laminated and transferred onto the copper layer to produce a positive resist layer (a) A lamination process was performed.
A photomask provided with a mask pattern of line-and-space wiring with a line width of 5 μm (opening portion: light-shielding portion has a 1: 1 pattern exposure pattern) without peeling off the temporary support from the resist layer is used. Then, a photomask was brought into contact with the temporary support and contact pattern exposure was performed (b) A pattern exposure step was performed. For the exposure, a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
After removing the temporary support from the exposed circuit-formed substrate, development using 2.38% by mass of TMAH aqueous solution and washing with water were performed to obtain a resist layer on which a wiring pattern was formed (c) A development step was performed.
Next, an etching (d) process for forming a pattern for pattern exposure on the circuit forming substrate by etching the copper layer using a copper etching solution (Cu-02 manufactured by Kanto Chemical Co., Ltd.) was obtained, thereby obtaining a copper wiring substrate. . The obtained circuit wiring was used as the circuit wiring of Example 1.
[実施例2]
 使用する仮支持体を、波長365nmの光に40%の透過率を持つ着色PET(B)とした以外は実施例1と同様にして実施例2のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例2のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例2の回路配線である銅配線基板を作製した。なお、着色PET(B)は上記着色PET(A)と同一の材料を用い、染料量を調整することで上記透過率を持つように調整した。着色PET(B)の全光線ヘイズは3.2%であった。
[Example 2]
A dry film resist of Example 2 was prepared in the same manner as in Example 1 except that the temporary support used was colored PET (B) having a transmittance of 40% for light having a wavelength of 365 nm. Further, a copper wiring board as a circuit wiring of Example 2 was produced in the same manner as in Example 1 except that the dry film resist of Example 2 was used as the dry film resist. The colored PET (B) was adjusted to have the above transmittance by using the same material as the colored PET (A) and adjusting the amount of dye. The total light haze of the colored PET (B) was 3.2%.
[実施例3]
<合成例1:PHS-EVEの合成>
 アルカリ可溶性樹脂(VP-8000 日本曹達(株)製)20gおよびプロピレングリコールモノメチルエーテルアセテート(PGMEA)320gをフラスコ中で溶解し、減圧蒸留を行い、水とPGMEAを共沸留去した。含水量が十分低くなったことを確認した後、エチルビニルエーテル24gおよびパラトルエンスルホン酸0.35gを加え、室温にて1時間撹拌した。そこへトリエチルアミンを0.28g加えて反応を止めた。反応液に酢酸エチルを添加、さらに水洗した後、減圧留去によって酢酸エチル、水、共沸分のPGMEAを留去し、酸分解性基で保護されたアルカリ可溶性樹脂であるPHS-EVEを得た。得られた樹脂の重量平均分子量は12,000であった。また、多分散度は、1.21であった。
 PHS-EVEの構造は以下に示すとおりであり、パラヒドロキシスチレンの1-エトキシエチル保護体/パラヒドロキシスチレン共重合体(30モル%/70モル%)である。
Figure JPOXMLDOC01-appb-C000035
[Example 3]
<Synthesis Example 1: Synthesis of PHS-EVE>
20 g of alkali-soluble resin (VP-8000 manufactured by Nippon Soda Co., Ltd.) and 320 g of propylene glycol monomethyl ether acetate (PGMEA) were dissolved in a flask and distilled under reduced pressure, and water and PGMEA were distilled off azeotropically. After confirming that the water content was sufficiently low, 24 g of ethyl vinyl ether and 0.35 g of paratoluenesulfonic acid were added and stirred at room temperature for 1 hour. Thereto, 0.28 g of triethylamine was added to stop the reaction. After adding ethyl acetate to the reaction solution and further washing with water, ethyl acetate, water and azeotropic PGMEA were distilled off under reduced pressure to obtain PHS-EVE which is an alkali-soluble resin protected with an acid-decomposable group. It was. The weight average molecular weight of the obtained resin was 12,000. The polydispersity was 1.21.
The structure of PHS-EVE is as shown below, and is a 1-ethoxyethyl protected paraparastyrene / parahydroxystyrene copolymer (30 mol% / 70 mol%) of parahydroxystyrene.
Figure JPOXMLDOC01-appb-C000035
 合成されたPHS-EVEを用い、以下の処方でポジ型感光性組成物を調製した。
・PHS-EVE:97.9部
・光酸発生剤(下記PAG-1):2部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
PAG-1:WO2014/020984に記載の化合物B-9。
 なお、PAG-1のアセトニトリル中の吸光係数(365nm)は15,500cm-1-1であった。
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例3のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例3のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例3の回路配線である銅配線基板を作製した。
Using the synthesized PHS-EVE, a positive photosensitive composition was prepared according to the following formulation.
-PHS-EVE: 97.9 parts-Photoacid generator (PAG-1 below): 2 parts-Surfactant (surfactant 1 above): 0.1 part-PGMEA: 900 parts PAG-1: WO2014 / Compound B-9 according to 020984.
The absorption coefficient (365 nm) in acetonitrile of PAG-1 was 15,500 cm −1 M −1 .
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 3.
A copper wiring board as a circuit wiring of Example 3 was produced in the same manner as in Example 1 except that the dry film resist of Example 3 was used as the dry film resist.
[実施例4]
 仮支持体として着色PET(B)を用いたほかは、実施例3と同様にして実施例4のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例4のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例4の回路配線である銅配線基板を作製した。
[Example 4]
A dry film resist of Example 4 was produced in the same manner as Example 3 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 4 was produced in the same manner as in Example 1 except that the dry film resist of Example 4 was used as the dry film resist.
[実施例5]
 PAG-1に代えてPAG-2(特開2013-047765号公報の[0227]記載の化合物A-1)を用いたほかは、実施例3と同様にして実施例5のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例5のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例5の回路配線である銅配線基板を作製した。なお、PAG-2のアセトニトリル中の吸光係数(365nm)は7,800cm-1-1であった。
[Example 5]
A dry film resist of Example 5 was prepared in the same manner as Example 3 except that PAG-2 (Compound A-1 described in [0227] of JP2013-047765 A) was used instead of PAG-1. did. Further, a copper wiring board as a circuit wiring of Example 5 was produced in the same manner as in Example 1 except that the dry film resist of Example 5 was used as the dry film resist. The absorption coefficient (365 nm) in acetonitrile of PAG-2 was 7,800 cm −1 M −1 .
[実施例6]
 仮支持体として着色PET(B)を用いたほかは、実施例5と同様にして実施例6のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例6のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例6の回路配線である銅配線基板を作製した。
[Example 6]
A dry film resist of Example 6 was produced in the same manner as Example 5 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 6 was produced in the same manner as in Example 1 except that the dry film resist of Example 6 was used as the dry film resist.
[実施例7]
 PAG-1に代えてサンアプロ株式会社製CPI-210Sを用いたほかは、実施例3と同様にして実施例7のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例7のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例7の回路配線である銅配線基板を作製した。なお、CPI-210Sのアセトニトリル中の吸光係数(365nm)は85cm-1-1であった。
[Example 7]
A dry film resist of Example 7 was prepared in the same manner as in Example 3 except that CPI-210S manufactured by San Apro Co., Ltd. was used instead of PAG-1. Further, a copper wiring board as a circuit wiring of Example 7 was produced in the same manner as in Example 1 except that the dry film resist of Example 7 was used as the dry film resist. The extinction coefficient (365 nm) of CPI-210S in acetonitrile was 85 cm −1 M −1 .
[実施例8]
 PAG-1に代えてWO2014084269号の[0079]記載の化合物No.10を用いたほかは、実施例3と同様にして実施例8のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例8のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例8の回路配線である銅配線基板を作製した。なお、この化合物のアセトニトリル中の吸光係数(365nm)は11,700cm-1-1であった。
[Example 8]
In place of PAG-1, compound No. described in [0079] of WO201408269 A dry film resist of Example 8 was produced in the same manner as Example 3 except that 10 was used. Further, a copper wiring board as a circuit wiring of Example 8 was produced in the same manner as in Example 1 except that the dry film resist of Example 8 was used as the dry film resist. The absorption coefficient (365 nm) of this compound in acetonitrile was 11,700 cm −1 M −1 .
[実施例9]
 仮支持体として特許4036068号の[0057][0058]記載のフィルムを用いたほかは、実施例3と同様にして実施例9のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例9のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例9の回路配線である銅配線基板を作製した。
[Example 9]
A dry film resist of Example 9 was produced in the same manner as Example 3 except that the film described in [0057] and [0058] of Japanese Patent No. 4036068 was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 9 was produced in the same manner as in Example 1 except that the dry film resist of Example 9 was used as the dry film resist.
[実施例10]
<合成例2:PHS-THFの合成>
 アルカリ可溶性樹脂(VP-8000 日本曹達(株)製)15.6gおよびプロピレングリコールモノメチルエーテルアセテート(PGMEA)100gをフラスコ中で溶解し、減圧蒸留を行い、水とPGMEAを共沸留去した。含水量が十分低くなったことを確認した後、2,3-ジヒドロフラン2.7gおよびパラトルエンスルホン酸0.015gを加え、室温にて2時間撹拌した。そこへトリエチルアミンを0.090g加えて反応を止めた。反応液に酢酸エチルを添加、さらに水洗した後、減圧留去によって酢酸エチル、水を留去し、保護率25モル%の可溶性樹脂であるPHS-THFを得た。得られた樹脂の重量平均分子量は12,000であった。また、多分散度は、1.13であった。
 PHS-THFの構造は以下に示すとおりであり、パラヒドロキシスチレンの2-テトラヒドロフラニル保護体/パラヒドロキシスチレン共重合体(30モル%/70モル%)である。
Figure JPOXMLDOC01-appb-C000036
[Example 10]
<Synthesis Example 2: Synthesis of PHS-THF>
15.6 g of alkali-soluble resin (VP-8000 manufactured by Nippon Soda Co., Ltd.) and 100 g of propylene glycol monomethyl ether acetate (PGMEA) were dissolved in a flask and distilled under reduced pressure, and water and PGMEA were distilled off azeotropically. After confirming that the water content was sufficiently low, 2.7 g of 2,3-dihydrofuran and 0.015 g of paratoluenesulfonic acid were added and stirred at room temperature for 2 hours. Thereto was added 0.090 g of triethylamine to stop the reaction. Ethyl acetate was added to the reaction solution, and the mixture was further washed with water. Then, ethyl acetate and water were distilled off under reduced pressure to obtain PHS-THF, a soluble resin having a protection rate of 25 mol%. The weight average molecular weight of the obtained resin was 12,000. The polydispersity was 1.13.
The structure of PHS-THF is shown below, and is a 2-tetrahydrofuranyl protected form of parahydroxystyrene / parahydroxystyrene copolymer (30 mol% / 70 mol%).
Figure JPOXMLDOC01-appb-C000036
 合成されたPHS-THFを用い、以下の処方でポジ型感光性組成物を調製した。
・PHS-THF:97.9部
・光酸発生剤(上記PAG-2):2部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
Using the synthesized PHS-THF, a positive photosensitive composition was prepared according to the following formulation.
-PHS-THF: 97.9 parts-Photoacid generator (PAG-2): 2 parts-Surfactant (surfactant 1): 0.1 parts-PGMEA: 900 parts
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例10のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例10のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例10の回路配線である銅配線基板を作製した。
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 10.
A copper wiring board as the circuit wiring of Example 10 was produced in the same manner as in Example 1 except that the dry film resist of Example 10 was used as the dry film resist.
[実施例11]
 仮支持体として着色PET(B)を用いたほかは、実施例10と同様にして実施例11のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例11のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例11の回路配線である銅配線基板を作製した。
[Example 11]
A dry film resist of Example 11 was produced in the same manner as Example 10 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 11 was produced in the same manner as in Example 1 except that the dry film resist of Example 11 was used as the dry film resist.
[実施例12]
<合成例3:重合体ノボラック-EVE(1-エトキシエチル保護体)の合成>
 特開2003-98671号公報の実施例1と同様の方法で重合体ノボラック-EVE(1-エトキシエチル保護体。構成単位の比はモル比)を合成した。得られた樹脂の重量平均分子量は5,000であった。また、多分散度は、7.0であった。重合体ノボラック-EVE(1-エトキシエチル保護体)の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000037
[Example 12]
<Synthesis Example 3: Synthesis of polymer novolak-EVE (1-ethoxyethyl protected product)>
A polymer novolak-EVE (1-ethoxyethyl protector. The ratio of constituent units is a molar ratio) was synthesized in the same manner as in Example 1 of JP-A-2003-98671. The weight average molecular weight of the obtained resin was 5,000. The polydispersity was 7.0. The structure of the polymer novolak-EVE (1-ethoxyethyl protector) is shown below.
Figure JPOXMLDOC01-appb-C000037
 合成された重合体ノボラック-EVEを用い、以下の処方でポジ型感光性組成物を調製した。
・重合体ノボラック-EVE:97.9部
・光酸発生剤(上記PAG-2):2部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
Using the synthesized polymer novolak-EVE, a positive photosensitive composition was prepared according to the following formulation.
-Polymer novolak-EVE: 97.9 parts-Photoacid generator (PAG-2): 2 parts-Surfactant (surfactant 1): 0.1 part-PGMEA: 900 parts
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例12のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例12のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例12の回路配線である銅配線基板を作製した。
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 12.
A copper wiring board as the circuit wiring of Example 12 was produced in the same manner as in Example 1 except that the dry film resist of Example 12 was used as the dry film resist.
[実施例13]
 仮支持体として着色PET(B)を用いたほかは、実施例12と同様にして実施例13のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例13のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例13の回路配線である銅配線基板を作製した。
[Example 13]
A dry film resist of Example 13 was produced in the same manner as Example 12 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 13 was produced in the same manner as in Example 1 except that the dry film resist of Example 13 was used as the dry film resist.
[実施例14]
<合成例4:MATHF共重合体の合成>
 メタクリル酸(86g、1mol)を15℃に冷却しておき、カンファースルホン酸(4.6g,0.02mol)添加した。その溶液に、2,3-ジヒドロフラン(71g、1mol、1.0当量)を滴下した。1時間撹拌した後に、飽和炭酸水素ナトリウム(500mL)を加え、酢酸エチル(500mL)で抽出し、硫酸マグネシウムで乾燥後、不溶物を濾過後40℃以下で減圧濃縮し、残渣の黄色油状物を減圧蒸留して沸点(bp.)54~56℃/3.5mmHg留分のメタクリル酸テトラヒドロ-2H-フラン-2-イル(MATHF)125gを無色油状物として得た(収率80モル%)。
 得られたメタクリル酸テトラヒドロ-2H-フラン-2-イルを、メタクリル酸1-エトキシエチルの代わりに用いた以外は特開2003-98671号公報の実施例1と同様の方法でMATHF共重合体を合成した。
 得られたMATHF共重合体のゲルパーミエーションクロマトグラフィー(GPC)により測定した重量平均分子量は、14,000であった。MATHF共重合体の構造(構成単位の比はモル比)を以下に示す。
Figure JPOXMLDOC01-appb-C000038
[Example 14]
<Synthesis Example 4: Synthesis of MATHF copolymer>
Methacrylic acid (86 g, 1 mol) was cooled to 15 ° C., and camphorsulfonic acid (4.6 g, 0.02 mol) was added. To the solution, 2,3-dihydrofuran (71 g, 1 mol, 1.0 equivalent) was added dropwise. After stirring for 1 hour, saturated sodium bicarbonate (500 mL) was added, extracted with ethyl acetate (500 mL), dried over magnesium sulfate, insolubles were filtered and concentrated under reduced pressure at 40 ° C. or lower to give a residual yellow oily product. Distillation under reduced pressure gave 125 g of tetrahydro-2H-furan-2-yl methacrylate (MATHF) as a colorless oil (yield 80 mol%) in a fraction having a boiling point (bp.) Of 54 to 56 ° C./3.5 mmHg.
A MATHF copolymer was prepared in the same manner as in Example 1 of JP-A-2003-98671 except that tetrahydro-2H-furan-2-yl methacrylate was used instead of 1-ethoxyethyl methacrylate. Synthesized.
The weight average molecular weight measured by gel permeation chromatography (GPC) of the obtained MATH copolymer was 14,000. The structure of the MATHH copolymer (ratio of constituent units is molar ratio) is shown below.
Figure JPOXMLDOC01-appb-C000038
 合成されたMATHF共重合体を用い、以下の処方でポジ型感光性組成物を作製した。
・MATHF共重合体:97.9部
・光酸発生剤(上記PAG-2):2部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例14のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例14のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例14の回路配線である銅配線基板を作製した。
Using the synthesized MATHF copolymer, a positive photosensitive composition was prepared according to the following formulation.
MATH copolymer: 97.9 parts Photoacid generator (PAG-2): 2 parts Surfactant (surfactant 1): 0.1 parts PGMEA: 900 parts Positive photosensitivity The composition is slit coated on the colored PET (A), which is a temporary support, so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a polyethylene film (Tredeger as a protective film). A dry film resist was prepared by pressure bonding OSM-N). The obtained dry film resist was used as the dry film resist of Example 14.
A copper wiring board as the circuit wiring of Example 14 was produced in the same manner as in Example 1 except that the dry film resist of Example 14 was used as the dry film resist.
[実施例15]
 仮支持体として着色PET(B)を用いたほかは、実施例14と同様にして実施例15のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例15のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例15の回路配線である銅配線基板を作製した。
[Example 15]
A dry film resist of Example 15 was produced in the same manner as Example 14 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 15 was produced in the same manner as in Example 1 except that the dry film resist of Example 15 was used as the dry film resist.
[実施例16]
 以下の処方でポジ型感光性組成物を調製した。
・上記MATHF共重合体:69.1部
・上記PHS-THF:28.8部
・光酸発生剤(上記PAG-2):2部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例16のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例16のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例16の回路配線である銅配線基板を作製した。
[Example 16]
A positive photosensitive composition was prepared according to the following formulation.
-MATHH copolymer: 69.1 parts-PHS-THF: 28.8 parts-Photoacid generator (PAG-2): 2 parts-Surfactant (surfactant 1): 0.1 Parts / PGMEA: 900 parts The positive photosensitive composition is slit-coated on a colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm and dried in a convection oven at 100 ° C. for 2 minutes. Finally, a polyethylene film (manufactured by Tredegar, OSM-N) was pressure-bonded as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Example 16.
A copper wiring board as the circuit wiring of Example 16 was produced in the same manner as in Example 1 except that the dry film resist of Example 16 was used as the dry film resist.
[実施例17]
 仮支持体として着色PET(B)を用いたほかは、実施例16と同様にして実施例17のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例17のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例17の回路配線である銅配線基板を作製した。
[Example 17]
A dry film resist of Example 17 was produced in the same manner as Example 16 except that colored PET (B) was used as a temporary support. Further, a copper wiring board as a circuit wiring of Example 17 was produced in the same manner as in Example 1 except that the dry film resist of Example 17 was used as the dry film resist.
[実施例18]
 以下の処方でポジ型感光性組成物を調製した。
・上記MATHF共重合体:97.7部
・光酸発生剤(上記PAG-2):2部
・塩基性化合物(N-シクロヘキシル-N’-[2-(4-モルホリニル)エチル]チオ尿素、略称CHMETU):0.2部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
[Example 18]
A positive photosensitive composition was prepared according to the following formulation.
-MATH copolymer: 97.7 parts-Photoacid generator (PAG-2): 2 parts-Basic compound (N-cyclohexyl-N '-[2- (4-morpholinyl) ethyl] thiourea, Abbreviation CHMETU): 0.2 part ・ Surfactant (Surfactant 1): 0.1 part ・ PGMEA: 900 parts
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例18のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例18のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例18の回路配線である銅配線基板を作製した。
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 18.
A copper wiring board as the circuit wiring of Example 18 was produced in the same manner as in Example 1 except that the dry film resist of Example 18 was used as the dry film resist.
[実施例19]
 以下の処方でポジ型感光性組成物を調製した。
・上記MATHF共重合体:97.8部
・光酸発生剤(上記PAG-2):2部
・塩基性化合物(1,5-ジアザビシクロ[4.3.0]-5-ノネン、略称DBN):0.1部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
[Example 19]
A positive photosensitive composition was prepared according to the following formulation.
-MATH copolymer: 97.8 parts-Photoacid generator (PAG-2): 2 parts-Basic compound (1,5-diazabicyclo [4.3.0] -5-nonene, abbreviated as DBN) : 0.1 part-Surfactant (Surfactant 1): 0.1 part-PGMEA: 900 parts
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例19のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例19のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例19の回路配線である銅配線基板を作製した。
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 19.
A copper wiring board as the circuit wiring of Example 19 was produced in the same manner as in Example 1 except that the dry film resist of Example 19 was used as the dry film resist.
[実施例20]
 以下の処方でポジ型感光性組成物を調製した。
・上記MATHF共重合体:93.1部
・光酸発生剤(上記PAG-2):2部
・界面活性剤(上記界面活性剤1):0.1部
・ヘテロ環状化合物(デナコールEX-321L(ナガセケムテックス(株)製)):4.8部
・PGMEA:900部
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例20のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例20のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例20の回路配線である銅配線基板を作製した。
[Example 20]
A positive photosensitive composition was prepared according to the following formulation.
-MATH copolymer: 93.1 parts-Photoacid generator (PAG-2): 2 parts-Surfactant (surfactant 1): 0.1 part-Heterocyclic compound (Denacol EX-321L) (Nagase ChemteX Co., Ltd.)): 4.8 parts / PGMEA: 900 parts The above positive photosensitive composition is dried to a thickness of 2.0 μm on colored PET (A) as a temporary support. The film was slit-coated, dried in a convection oven at 100 ° C. for 2 minutes, and finally a polyethylene film (OSM-N, manufactured by Tredegar) was pressure bonded as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Example 20.
A copper wiring board as a circuit wiring of Example 20 was produced in the same manner as in Example 1 except that the dry film resist of Example 20 was used as the dry film resist.
[実施例21]
 以下の処方でポジ型感光性組成物を調製した。
・上記MATHF共重合体:93.0部
・光酸発生剤(上記PAG-2):2部
・界面活性剤(上記界面活性剤1):0.1部
・ヘテロ環状化合物(3-グリシドキシプロピルトリメトキシシラン(KBM-403 信越化学工業(株)製)):4.8部
・PGMEA:900部
[Example 21]
A positive photosensitive composition was prepared according to the following formulation.
• MATH copolymer: 93.0 parts • Photoacid generator (PAG-2): 2 parts • Surfactant (surfactant 1): 0.1 part • Heterocyclic compound (3-glycid Xylpropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)): 4.8 parts, PGMEA: 900 parts
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例21のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例21のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例21の回路配線である銅配線基板を作製した。
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 21.
A copper wiring board as the circuit wiring of Example 21 was produced in the same manner as in Example 1 except that the dry film resist of Example 21 was used as the dry film resist.
[実施例22]
 以下の処方でポジ型感光性組成物を調製した。
・上記MATHF共重合体:97.8部
・光酸発生剤(上記PAG-2):2部
・放射線吸収剤(下記構造の紫外線吸収剤1):0.1部
・界面活性剤(上記界面活性剤1):0.1部
・PGMEA:900部
紫外線吸収剤1
Figure JPOXMLDOC01-appb-C000039
[Example 22]
A positive photosensitive composition was prepared according to the following formulation.
-MATH copolymer: 97.8 parts-Photoacid generator (PAG-2): 2 parts-Radiation absorber (UV absorber 1 having the following structure): 0.1 part-Surfactant (the interface) Activator 1): 0.1 part PGMEA: 900 parts UV absorber 1
Figure JPOXMLDOC01-appb-C000039
 上記ポジ型感光性組成物を、仮支持体である着色PET(A)上に乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例22のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例22のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例22の回路配線である銅配線基板を作製した。
The positive photosensitive composition is slit-coated on colored PET (A) as a temporary support so as to have a dry film thickness of 2.0 μm, dried in a convection oven at 100 ° C. for 2 minutes, and finally a protective film. A dry film resist was prepared by pressure-bonding a polyethylene film (OSM-N, manufactured by Tredegar). The obtained dry film resist was used as the dry film resist of Example 22.
A copper wiring board as the circuit wiring of Example 22 was produced in the same manner as in Example 1 except that the dry film resist of Example 22 was used as the dry film resist.
[実施例23]
 実施例1と同組成でポジ型感光性組成物を調製した。
[Example 23]
A positive photosensitive composition having the same composition as in Example 1 was prepared.
 次に、以下の組成にて光吸収層用組成物を調製した。
・1,3,5-トリフェニルホルマザン:20部
・ポリビニルピロリドン60質量%とポリアクリル酸40質量%の共重合体ポリマー:80部
・純水:900部
Next, the composition for light absorption layers was prepared with the following compositions.
・ 1,3,5-triphenylformazan: 20 parts ・ Copolymer polymer of polyvinyl pyrrolidone 60 mass% and polyacrylic acid 40 mass%: 80 parts ・ Pure water: 900 parts
 75μmの膜厚のPET上に、上記光吸収層用組成物を乾燥膜厚1.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで5分間乾燥させた。なお作製された光吸収層の、波長365nmの光に対する透過率は55%であった。
 この光吸収層の上に上記ポジ型感光性樹脂組成物を乾燥膜厚2.0μmとなるようにスリットコートし、100℃のコンベクションオーブンで5分間乾燥させた。最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例23のドライフィルムレジストとした。
 ついで、ドライフィルムレジストとして実施例23のドライフィルムレジストを用いたほかは、実施例1と同様にして、実施例23の回路配線である銅配線基板を得た。
The PET composition having a film thickness of 75 μm was slit coated with the above composition for a light absorbing layer so as to have a dry film thickness of 1.0 μm, and dried in a convection oven at 100 ° C. for 5 minutes. Note that the transmittance of the manufactured light absorption layer with respect to light having a wavelength of 365 nm was 55%.
The positive photosensitive resin composition was slit coated on the light absorbing layer so as to have a dry film thickness of 2.0 μm, and dried in a convection oven at 100 ° C. for 5 minutes. Finally, a polyethylene film (Tradegar, OSM-N) was pressure bonded as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Example 23.
Next, a copper wiring substrate as a circuit wiring of Example 23 was obtained in the same manner as in Example 1 except that the dry film resist of Example 23 was used as the dry film resist.
[実施例24]
 光吸収層を以下の組成とした以外は、実施例23と同様にしてドライフィルムレジストを作製した。得られたドライフィルムレジストを実施例24のドライフィルムレジストとした。
 ドライフィルムレジストとして実施例24のドライフィルムレジストを用いた他は、実施例1と同様にして、実施例24の回路配線である銅配線基板を得た。なお、作製された光吸収層の、波長365nmの光に対する透過率は63%であった。
・ポリビニルピロリドン60質量%とポリアクリル酸40質量%の共重合体ポリマー:70部
・純水:900部
・下記特定ナフトキノンジアジド化合物:30部
Figure JPOXMLDOC01-appb-C000040
[Example 24]
A dry film resist was produced in the same manner as in Example 23 except that the light absorption layer had the following composition. The obtained dry film resist was used as the dry film resist of Example 24.
A copper wiring board as the circuit wiring of Example 24 was obtained in the same manner as in Example 1 except that the dry film resist of Example 24 was used as the dry film resist. The manufactured light absorption layer had a transmittance of 63% with respect to light having a wavelength of 365 nm.
-Copolymer polymer of polyvinyl pyrrolidone 60% by mass and polyacrylic acid 40% by mass: 70 parts-Pure water: 900 parts-The following specific naphthoquinone diazide compound: 30 parts
Figure JPOXMLDOC01-appb-C000040
[実施例25]
 ポジ型感光性組成物を実施例10で使用したものと同一のものとしたほかは、実施例23と同様にして実施例25のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例25のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例25の回路配線である銅配線基板を得た。
[Example 25]
A dry film resist of Example 25 was produced in the same manner as in Example 23, except that the positive photosensitive composition was the same as that used in Example 10. Further, a copper wiring substrate as a circuit wiring of Example 25 was obtained in the same manner as in Example 1 except that the dry film resist of Example 25 was used as the dry film resist.
[実施例26]
 ポジ型感光性組成物を実施例12で使用したものと同一のものとしたほかは、実施例23と同様にして実施例26のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例26のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例26の回路配線である銅配線基板を得た。
[Example 26]
A dry film resist of Example 26 was prepared in the same manner as in Example 23 except that the positive photosensitive composition was the same as that used in Example 12. Further, a copper wiring board as a circuit wiring of Example 26 was obtained in the same manner as in Example 1 except that the dry film resist of Example 26 was used as the dry film resist.
[実施例27]
 ポジ型感光性組成物を実施例14で使用したものと同一のものとしたほかは、実施例23と同様にして実施例27のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例27のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例27の回路配線である銅配線基板を得た。
[Example 27]
A dry film resist of Example 27 was produced in the same manner as in Example 23, except that the positive photosensitive composition was the same as that used in Example 14. Further, a copper wiring board as a circuit wiring of Example 27 was obtained in the same manner as in Example 1 except that the dry film resist of Example 27 was used as the dry film resist.
[実施例28]
 ポジ型感光性組成物を実施例16で使用したものと同一のものとしたほかは、実施例23と同様にして実施例28のドライフィルムレジストを作製した。さらにドライフィルムレジストとして実施例28のドライフィルムレジストを用いた以外は実施例1と同様にして、実施例28の回路配線である銅配線基板を得た。
[Example 28]
A dry film resist of Example 28 was prepared in the same manner as in Example 23 except that the positive photosensitive composition was the same as that used in Example 16. Further, a copper wiring board as a circuit wiring of Example 28 was obtained in the same manner as in Example 1 except that the dry film resist of Example 28 was used as the dry film resist.
[実施例29]
 100μmの膜厚のPET基材上に、第2層の導電層としてITOをスパッタリングで150nmの膜厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nmの膜厚にて成膜して、回路形成基板とした。
 実施例14のドライフィルムレジストから保護フィルムを剥離した後、銅層上に実施例14のドライフィルムレジストをラミネートして転写し、ポジ型のレジスト層を作製する(a)ラミネート工程を行った。
 このレジスト層を、仮支持体を剥離せずに、一方向に導電パッドが連結された構成を持つ図4に示したパターンA(第1のパターン)を設けたフォトマスクを用いて仮支持体にフォトマスクを接触させてコンタクトパターン露光する(b1)パターン露光工程を行った。図4に示したパターンAは、実線部およびグレー部が遮光部であり、その他の部分が開口部であり、点線部はアライメント合わせの枠を仮想的に示したものである。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
 その後、仮支持体を剥離し、炭酸ナトリウム水溶液1.0%を用いた現像、水洗を行ってパターンAが形成されたレジスト層を得る(c1)現像工程を行った。
 次いで銅エッチング液(関東化学(株)製Cu-02)を用いて第1層(銅層)をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いて第2層(ITO層)をエッチングすることで回路形成基板に第1のパターンを形成する(d1)エッチング工程を行った。このようにエッチングすることで、レジスト層が形成されていない領域の上記導電層の第1層から第2層までをエッチング処理し、第1のパターンとしたレジスト層が形成されていない領域の第1層(銅層)と第2層(ITO層)が共に第1のパターン(パターンAの存在しない領域(ネガ)の形状であるパターン)で描画された回路形成基板を得た。
 次いで、アライメントを合わせた状態で図5に示したパターンB(第2のパターン)の開口部を設けたフォトマスクを用いてパターン露光する(e1)パターン露光工程を行った。図5に示したパターンBは、グレー部が遮光部であり、その他の部分が開口部であり、点線部はアライメント合わせの枠を仮想的に示したものである。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
 炭酸ナトリウム水溶液1.0質量%を用いた現像、水洗を行って、第1のパターンとは異なる第2のパターン(パターンAの遮光部およびパターンBの遮光部の重なる部分のパターン)を転写したレジスト層を得る(f1)現像工程を行った。
 その後、Cu-02を用いて第1層(銅層)の配線のみをエッチングすることで、第2のパターンとしたレジスト層が形成されていない領域の上記導電層の第1層までをエッチングすることで回路形成基板にパターン露光用パターンを形成する(g)エッチング工程を行った。このようにエッチングすることで、2種類のパターンのみの導電層を含む回路形成基板を得た。得られた導電層は、詳しくは、第2のパターンとしたレジスト層が形成された領域の第1層(銅層)と第2層(ITO層)が共にパターンA(第1のパターンの存在しない領域(ネガ)の形状であるパターン)で描画されており、かつ、第2のパターンとしたレジスト層が形成されていない領域の第2層(ITO層)が第2のパターンの存在しない領域(ネガ)の形状であるパターンで描画されていた。
 残ったレジスト層を剥離液(関東化学(株)製KP-301)を用いて剥離することによって除去し、基材上に2種類のパターンの導電層を含む回路配線が形成された、実施例29の回路配線を得た。実施例29の回路配線は、図6に示したパターンCの回路配線を有する。図6のグレー領域中に含まれる配線部分は第2層(ITO配線)が露出した状態になっている。図6の点線部はアライメント合わせの枠を仮想的に示したものである。それ以外の部分は周辺配線部分にあたり、第2層(ITO配線)上に第1層(銅配線)が積層されて同一の回路パターンを共有する2層以上の導電層積層体を含む構造になっている。同一の回路パターンを共有する2層以上の導電層積層体を含む構造について、図2および図3に模式図を示した。実施例29の回路配線では、図3の点線部は第2層(ITO配線)上に第1層(銅配線)が重なっていた。
[Example 29]
On a PET substrate having a thickness of 100 μm, ITO was deposited as a second conductive layer by sputtering to a thickness of 150 nm, and copper was deposited thereon as a first conductive layer by vacuum evaporation to a thickness of 200 nm. A film was formed with a film thickness to obtain a circuit forming substrate.
After the protective film was peeled off from the dry film resist of Example 14, the dry film resist of Example 14 was laminated and transferred onto the copper layer to produce a positive resist layer (a) A lamination process was performed.
The resist layer is temporarily supported using a photomask provided with the pattern A (first pattern) shown in FIG. 4 having a configuration in which conductive pads are connected in one direction without peeling off the temporary support. (B1) A pattern exposure step was performed in which a photomask was contacted to expose the contact pattern. In the pattern A shown in FIG. 4, the solid line portion and the gray portion are light shielding portions, the other portions are openings, and the dotted line portion virtually shows an alignment alignment frame. For the exposure, a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
Thereafter, the temporary support was peeled off, and development using 1.0% sodium carbonate aqueous solution and washing with water were performed to obtain a resist layer on which pattern A was formed (c1).
Next, after etching the first layer (copper layer) using a copper etchant (Cu-02 manufactured by Kanto Chemical Co., Ltd.), the second layer using an ITO etchant (ITO-02 manufactured by Kanto Chemical Co., Inc.). Etching (IT1 layer) was performed to form a first pattern on the circuit formation substrate (d1). By etching in this way, the first to second layers of the conductive layer in the region where the resist layer is not formed are etched, and the first pattern in the region where the resist layer having the first pattern is not formed. A circuit-formed substrate was obtained in which both the first layer (copper layer) and the second layer (ITO layer) were drawn with a first pattern (a pattern having a shape of a region (negative) in which no pattern A was present).
Next, a pattern exposure step (e1) was performed in which pattern exposure was performed using a photomask provided with openings of the pattern B (second pattern) shown in FIG. In the pattern B shown in FIG. 5, the gray portion is a light shielding portion, the other portion is an opening portion, and the dotted line portion virtually shows an alignment alignment frame. For the exposure, a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
Development and washing with 1.0% by mass of an aqueous sodium carbonate solution were performed to transfer a second pattern different from the first pattern (the pattern where the light shielding part of pattern A and the light shielding part of pattern B overlap). A resist layer was obtained (f1).
Thereafter, by etching only the wiring of the first layer (copper layer) using Cu-02, the first layer of the conductive layer in the region where the resist layer having the second pattern is not formed is etched. (G) The etching process which forms the pattern for pattern exposure on a circuit formation board | substrate was performed. By etching in this way, a circuit forming substrate including a conductive layer having only two types of patterns was obtained. Specifically, the obtained conductive layer has a pattern A (existence of the first pattern) in which both the first layer (copper layer) and the second layer (ITO layer) in the region where the resist layer having the second pattern is formed. The second layer (ITO layer) in the region where the resist layer which is the second pattern is not formed and the second pattern is not present is drawn. It was drawn with a pattern having the shape of (negative).
The remaining resist layer was removed by peeling using a peeling solution (KP-301 manufactured by Kanto Chemical Co., Ltd.), and a circuit wiring including a conductive layer of two types of patterns was formed on the substrate. 29 circuit wirings were obtained. The circuit wiring of Example 29 has the circuit wiring of the pattern C shown in FIG. The wiring portion included in the gray region in FIG. 6 is in a state where the second layer (ITO wiring) is exposed. A dotted line portion in FIG. 6 virtually shows an alignment alignment frame. The other part is a peripheral wiring part and has a structure including two or more conductive layer laminates in which the first layer (copper wiring) is laminated on the second layer (ITO wiring) and shares the same circuit pattern. ing. FIGS. 2 and 3 are schematic diagrams showing a structure including two or more conductive layer stacks sharing the same circuit pattern. In the circuit wiring of Example 29, the first layer (copper wiring) overlapped the second layer (ITO wiring) in the dotted line portion of FIG.
[実施例30]
 100μmの膜厚のPET基材上に、第2層の導電層としてITOをスパッタリングで150nmの膜厚にて成膜し、その上に第1層の導電層として銅を真空蒸着法で200nmの膜厚にて成膜して、回路形成基板とした。
 実施例14のドライフィルムレジストから保護フィルムを剥離した後、銅層上に実施例14のドライフィルムレジストをラミネートして転写し、ポジ型のレジスト層を作製する(a)ラミネート工程を行った。
 このレジスト層を、仮支持体を剥離せずに、一方向に導電パッドが連結された構成を持つパターンA(第1のパターン)を設けたフォトマスクを用いて仮支持体にフォトマスクを接触させてコンタクトパターン露光する(b1)パターン露光工程を行った。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
 その後、仮支持体を剥離し、炭酸ナトリウム水溶液1.0%を用いた現像、水洗を行ってパターンAが形成されたレジスト層を得る(c1)現像工程を行った。
 次いで銅エッチング液(関東化学(株)製Cu-02)を用いて第1層(銅層)をエッチングした後、ITOエッチング液(関東化学(株)製ITO-02)を用いて第2層(ITO層)をエッチングすることで回路形成基板にパターン露光用パターンを転写した。このようにエッチングすることで、レジスト層が形成されていない領域の上記導電層の第1層から第2層までをエッチング処理し、第1のパターンとしたレジスト層が形成されていない領域の第1層(銅層)と第2層(ITO層)が共に第1のパターン(パターンAの存在しない領域(ネガ)の形状であるパターン)で描画された回路形成基板を得た。次いで、残存しているレジスト層上に、再度カバーフィルムとして仮支持体に用いていた着色PET(A)をラミネートする(d2)エッチング工程を行った。
 (d2)工程で貼り付けたカバーフィルムを剥離していない状態で、アライメントを合わせた状態でパターンB(第2のパターン)の開口部を設けたフォトマスクを用いてカバーフィルムにフォトマスクを接触させてコンタクトパターン露光する(e2)パターン露光工程を行った。露光にはi線(365nm)を露光主波長とする高圧水銀灯を用いた。
 (d2)エッチング工程で貼り付けたカバーフィルムを剥離した後、炭酸ナトリウム水溶液1.0%を用いた現像、水洗を行って、第1のパターンとは異なる第2のパターン(パターンAの遮光部およびパターンBの遮光部の重なる部分のパターン)を転写したレジスト層を得る(f2)現像工程を行った。
 その後、Cu-02を用いて銅配線をエッチング第1層(銅層)の配線のみをエッチングすることで、第2のパターンとしたレジスト層が形成されていない領域の上記導電層の第1層までをエッチングすることで回路形成基板にパターン露光用パターンを形成する(g)エッチング工程を行った。
 残ったレジスト層を剥離液(関東化学(株)製KP-301)を用いて剥離することによって除去し、基材上に2種類のパターンの導電層を含む回路配線が形成された、実施例30の回路配線を得た。実施例30の回路配線は、図6に示したパターンCの回路配線を有する。
[Example 30]
On a PET substrate having a thickness of 100 μm, ITO was deposited as a second conductive layer by sputtering to a thickness of 150 nm, and copper was deposited thereon as a first conductive layer by vacuum evaporation to a thickness of 200 nm. A film was formed with a film thickness to obtain a circuit forming substrate.
After the protective film was peeled off from the dry film resist of Example 14, the dry film resist of Example 14 was laminated and transferred onto the copper layer to produce a positive resist layer (a) A lamination process was performed.
The resist layer is contacted with the temporary support using a photomask provided with a pattern A (first pattern) having a configuration in which conductive pads are connected in one direction without peeling off the temporary support. (B1) A pattern exposure step was performed to expose the contact pattern. For the exposure, a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
Thereafter, the temporary support was peeled off, and development using 1.0% sodium carbonate aqueous solution and washing with water were performed to obtain a resist layer on which pattern A was formed (c1).
Next, after etching the first layer (copper layer) using a copper etchant (Cu-02 manufactured by Kanto Chemical Co., Ltd.), the second layer using an ITO etchant (ITO-02 manufactured by Kanto Chemical Co., Inc.). The pattern exposure pattern was transferred to the circuit forming substrate by etching the (ITO layer). By etching in this way, the first to second layers of the conductive layer in the region where the resist layer is not formed are etched, and the first pattern in the region where the resist layer having the first pattern is not formed. A circuit-formed substrate was obtained in which both the first layer (copper layer) and the second layer (ITO layer) were drawn with a first pattern (a pattern having a shape of a region (negative) in which no pattern A was present). Next, an etching process was performed (d2) in which colored PET (A) used as a temporary support was again laminated as a cover film on the remaining resist layer.
(D2) Contact the photomask with the cover film using the photomask provided with the opening of the pattern B (second pattern) in a state where the alignment is aligned in a state where the cover film attached in the step is not peeled off (E2) A pattern exposure step was performed to expose the contact pattern. For the exposure, a high pressure mercury lamp having i-line (365 nm) as an exposure dominant wavelength was used.
(D2) After the cover film attached in the etching step is peeled off, development using 1.0% aqueous sodium carbonate solution and washing with water are performed, and a second pattern different from the first pattern (light shielding portion of pattern A) And a pattern in which the light-shielding portion of pattern B overlaps) (f2) A development step was performed to obtain a resist layer to which the pattern layer was transferred.
Thereafter, the copper wiring is etched using Cu-02. Only the wiring of the first layer (copper layer) is etched, whereby the first layer of the conductive layer in the region where the resist layer having the second pattern is not formed. (G) The etching process which forms the pattern for pattern exposure on a circuit formation board | substrate by etching up to was performed.
The remaining resist layer was removed by peeling using a peeling solution (KP-301 manufactured by Kanto Chemical Co., Ltd.), and a circuit wiring including a conductive layer of two types of patterns was formed on the substrate. 30 circuit wirings were obtained. The circuit wiring of Example 30 has the circuit wiring of the pattern C shown in FIG.
[比較例1]
 実施例1と同様にして調製したポジ型感光性樹脂組成物を、仮支持体となる75μmの膜厚のPET上に、スリット状ノズルを用いて乾燥膜厚が2.0μmとなるように塗布した。その後、100℃のコンベクションオーブンで2分間乾燥させ、最後に保護フィルムとしてポリエチレンフィルム(トレデガー社製、OSM-N)を圧着してドライフィルムレジストを作製した。得られたドライフィルムレジストを比較例1のドライフィルムレジストとした。なお、上記75μmの膜厚のPETは波長365nmの光に85%の透過率を持ち、かつ全光線ヘイズが2.0%である。
 ついで、ドライフィルムレジストとして比較例1のドライフィルムレジストを用いたほかは、実施例1と同様にして、比較例1の回路配線である銅配線基板を得た。
[Comparative Example 1]
A positive photosensitive resin composition prepared in the same manner as in Example 1 was applied on a 75 μm-thick PET film serving as a temporary support using a slit nozzle so that the dry film thickness was 2.0 μm. did. Thereafter, the film was dried in a convection oven at 100 ° C. for 2 minutes, and finally a polyethylene film (manufactured by Tredegar, OSM-N) was pressed as a protective film to prepare a dry film resist. The obtained dry film resist was used as the dry film resist of Comparative Example 1. The 75 μm-thick PET has a transmittance of 85% for light having a wavelength of 365 nm and a total light haze of 2.0%.
Next, a copper wiring board as a circuit wiring of Comparative Example 1 was obtained in the same manner as in Example 1 except that the dry film resist of Comparative Example 1 was used as the dry film resist.
[比較例2]
 ポジ型感光性組成物を実施例14で使用したものと同一のものとしたほかは、比較例1と同じようにしてドライフィルムレジストを作製した。得られたドライフィルムレジストを比較例2のドライフィルムレジストとした。
 ドライフィルムレジストとして比較例2のドライフィルムレジストを用いたほかは、実施例1と同様にして、比較例2の回路配線である銅配線基板作製を得た。
[Comparative Example 2]
A dry film resist was prepared in the same manner as in Comparative Example 1 except that the positive photosensitive composition was the same as that used in Example 14. The obtained dry film resist was used as the dry film resist of Comparative Example 2.
A copper wiring substrate was produced as the circuit wiring of Comparative Example 2 in the same manner as in Example 1 except that the dry film resist of Comparative Example 2 was used as the dry film resist.
[比較例3]
 コンタクトパターン露光時に仮支持体を剥離して、レジスト層にフォトマスクを接触させてコンタクトパターン露光したほかは、比較例2と同様にして、比較例3の回路配線である銅配線基板を得た。
[Comparative Example 3]
A copper wiring substrate which is a circuit wiring of Comparative Example 3 was obtained in the same manner as Comparative Example 2, except that the temporary support was peeled off during contact pattern exposure and the photomask was brought into contact with the resist layer to expose the contact pattern. .
[比較例4]
 仮支持体にフォトマスクを接触させてコンタクトパターン露光する代わりに、露光時に仮支持体とフォトマスクの間に75μmギャップを空けてプロキシ露光したほかは、比較例2と同様にして、比較例4の回路配線である銅配線基板を得た。
[Comparative Example 4]
Comparative Example 4 is the same as Comparative Example 2 except that a proxy mask is exposed with a gap of 75 μm between the temporary support and the photomask at the time of exposure instead of contacting the photomask with the temporary support and exposing the contact pattern. The copper wiring board which is the circuit wiring of was obtained.
[評価]
<パターン直線性(LWR)>
 得られた各実施例および比較例の回路配線を有する配線基板のラインアンドスペースパターンからアトランダムに選んだ箇所のパターン幅を20箇所測定した。得られた線幅データから標準偏差σをもとめ、標準偏差σを3倍した値をLWR(Line Width Roughness)と定義し、パターン直線性の指標とした。
 LWRは定義上、小さいほど線幅変動が小さいこととなり好ましい。5μm線幅のパターンに対しては、LWRの値によって以下のように評価される。
 1.0≦LWR:線幅変動が大きく、回路不良に繋がるため不適
 0.5≦LWR<1.0:配線基板として使用可能
 LWR<0.5:非常に好ましい
 下記表1に評価結果を示す。
[Evaluation]
<Pattern linearity (LWR)>
Twenty pattern widths were measured at locations selected at random from the line-and-space patterns of the wiring boards having the circuit wirings of the obtained examples and comparative examples. A standard deviation σ was determined from the obtained line width data, and a value obtained by multiplying the standard deviation σ by 3 was defined as LWR (Line Width Roughness), which was used as an index of pattern linearity.
By definition, the smaller the LWR, the smaller the line width variation, which is preferable. For a pattern with a line width of 5 μm, the value is evaluated as follows according to the value of LWR.
1.0 ≦ LWR: Unsuitable because the line width variation is large and leads to circuit failure 0.5 ≦ LWR <1.0: Usable as a wiring board LWR <0.5: Very preferable Table 1 shows the evaluation results. .
<工程汚染>
 露光時のフォトマスクへのレジスト転写に起因する、フォトマスクの汚染の有無を以下の基準で評価した。
A:露光時にフォトマスクの汚染が無い。
B:露光時にフォトマスクの汚染が有る。
 下記表1に評価結果を示す。
<Process contamination>
The presence or absence of contamination of the photomask due to transfer of the resist to the photomask during exposure was evaluated according to the following criteria.
A: No photomask contamination during exposure.
B: Photomask is contaminated during exposure.
The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 上記表1より、本発明のドライフィルムレジストによれば、高解像度のパターンを形成しやすいポジ型であり、パターン直線性が高い回路配線を製造できることがわかった。パターン直線性が高い回路配線は、入力装置、表示装置の回路配線として好適であった。また、本発明の回路配線の製造方法によれば、パターン直線性が高い回路配線を工程汚染なく製造できることがわかった。
 比較例1および2に示されるように、露光主波長に対する透過率が高い仮支持体越しのパターン露光を行った場合、パターン直線性が非常に低く、入力装置、表示装置の回路配線として適さないことが分かった。これは比較例4のように、露光主波長に対する透過率が高い仮支持体を用いてプロキシ露光した場合であっても同様であり、パターン直線性が非常に低い。また比較例3に示されるように仮支持体を剥離しての露光であれば高いパターン直線性が得られるが、マスクへのレジスト転写が起こり、工程汚染が生じるため好ましくないことがわかった。
 上記表1からは、上記(i)例えば仮支持体のヘイズを抑制すること等に起因する仮支持体での光拡散抑制、および、上記(ii)仮支持体を通過した拡散光の仮支持体内またはレジスト層に到達するまでに配置された他の部材での吸収について、それぞれのパターン直線性の改善効果の大小関係が読み取れた。例えば、実施例5よりも実施例6の方がパターン直線性の改善効果が高い理由は、仮支持体の透過率が実施例5よりも実施例6の方が低いことに起因する仮支持体を通過した拡散光の仮支持体内での吸収に起因するパターン直線性の改善効果が、仮支持体のヘイズが実施例6よりも実施例5の方が低いことに起因する仮支持体のヘイズを抑制すること等に起因する仮支持体での光拡散抑制に起因するパターン直線性の改善効果を上回ったためであると読み取れた。また、実施例5よりも実施例9の方がパターン直線性の改善効果が高い理由は、仮支持体のヘイズが実施例5よりも実施例9の方が低いことに起因する仮支持体のヘイズを抑制すること等に起因する仮支持体での光拡散抑制に起因するパターン直線性の改善効果が、仮支持体の透過率が実施例9よりも実施例5の方が低いことに起因する仮支持体を通過した拡散光の仮支持体内での吸収に起因するパターン直線性の改善効果を上回ったためであると読み取れた。
From Table 1 above, it was found that according to the dry film resist of the present invention, it is possible to manufacture a circuit wiring that is a positive type that easily forms a high-resolution pattern and that has high pattern linearity. The circuit wiring having high pattern linearity is suitable as the circuit wiring for the input device and the display device. Moreover, according to the circuit wiring manufacturing method of the present invention, it has been found that circuit wiring with high pattern linearity can be manufactured without process contamination.
As shown in Comparative Examples 1 and 2, when pattern exposure is performed through a temporary support having a high transmittance with respect to the exposure main wavelength, the pattern linearity is very low, and it is not suitable as a circuit wiring for an input device or a display device. I understood that. This is the same even when proxy exposure is performed using a temporary support having a high transmittance with respect to the exposure main wavelength as in Comparative Example 4, and the pattern linearity is very low. Further, as shown in Comparative Example 3, high pattern linearity can be obtained if the exposure is performed by peeling off the temporary support, but it is not preferable because resist transfer to the mask occurs and process contamination occurs.
From Table 1 above, (i) suppression of light diffusion in the temporary support due to, for example, suppressing haze of the temporary support, and (ii) temporary support of diffused light that has passed through the temporary support. Regarding the absorption by other members arranged in the body or before reaching the resist layer, the magnitude relationship of the improvement effect of each pattern linearity can be read. For example, the reason why the effect of improving pattern linearity is higher in Example 6 than in Example 5 is that the temporary support is caused by the fact that the transmittance of the temporary support is lower in Example 6 than in Example 5. The effect of improving the linearity of the pattern due to the absorption of the diffused light passing through the temporary support within the temporary support is due to the fact that the temporary support has a lower haze in Example 5 than in Example 6. It can be read that this is because the effect of improving the linearity of the pattern due to the suppression of light diffusion in the temporary support due to the suppression of the above was exceeded. Further, the reason why the effect of improving pattern linearity is higher in Example 9 than in Example 5 is that the temporary support is caused by the fact that the haze of the temporary support is lower in Example 9 than in Example 5. The effect of improving the linearity of the pattern due to suppression of light diffusion in the temporary support due to suppression of haze and the like is due to the fact that the transmittance of the temporary support is lower in Example 5 than in Example 9. It can be read that this is because the effect of improving the pattern linearity due to the absorption of the diffused light passing through the temporary support within the temporary support was exceeded.
 1 :基材
 2 :マスク層
 3 :第一の電極パターン
3a :パッド部分
3b :接続部分
 4 :第二の電極パターン
 5 :絶縁層
 6 :別の導電性要素(周辺配線部分と取り出し配線部分)
 7 :透明保護層
10 :静電容量型入力装置
1: Base material 2: Mask layer 3: First electrode pattern 3a: Pad portion 3b: Connection portion 4: Second electrode pattern 5: Insulating layer 6: Another conductive element (peripheral wiring portion and lead-out wiring portion)
7: Transparent protective layer 10: Capacitance type input device

Claims (18)

  1.  仮支持体の上にレジスト層を有するポジ型ドライフィルムレジストであり、
     以下の条件(1)および条件(2)の少なくとも一つを満たすドライフィルムレジスト;
    条件(1):前記仮支持体が、前記レジスト層の露光主波長に対して80%以下の透過率を有する;
    条件(2):前記仮支持体および前記レジスト層の間に前記レジスト層の露光主波長に対して80%以下の透過率を有する光吸収層を有する。
    A positive dry film resist having a resist layer on a temporary support,
    A dry film resist satisfying at least one of the following conditions (1) and (2);
    Condition (1): The temporary support has a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer;
    Condition (2): A light absorption layer having a transmittance of 80% or less with respect to the exposure main wavelength of the resist layer is provided between the temporary support and the resist layer.
  2.  前記レジスト層が感光剤を含み、
     前記感光剤の前記レジスト層の露光主波長に対する吸光係数が12,000cm-1-1未満である請求項1に記載のドライフィルムレジスト。
    The resist layer contains a photosensitizer;
    2. The dry film resist according to claim 1, wherein an extinction coefficient of the photosensitive agent with respect to an exposure principal wavelength of the resist layer is less than 12,000 cm −1 M −1 .
  3.  前記仮支持体の全光線ヘイズが3.0%以下である請求項1または2に記載のドライフィルムレジスト。 The dry film resist according to claim 1 or 2, wherein the total light haze of the temporary support is 3.0% or less.
  4.  前記レジスト層がナフトキノンジアジド化合物およびフェノール性水酸基を有する樹脂を含む請求項1~3のいずれか一項に記載のドライフィルムレジスト。 The dry film resist according to any one of claims 1 to 3, wherein the resist layer contains a naphthoquinonediazide compound and a resin having a phenolic hydroxyl group.
  5.  前記レジスト層が、(A)成分および(B)光酸発生剤を含み、
     前記(A)成分が、酸基が酸分解性基で保護された基を有する重合体である請求項1~3のいずれか一項に記載のドライフィルムレジスト。
    The resist layer contains (A) component and (B) photoacid generator,
    The dry film resist according to any one of claims 1 to 3, wherein the component (A) is a polymer having an acid group protected by an acid-decomposable group.
  6.  前記(A)成分が、カルボキシ基またはフェノール性水酸基がアセタールの形で保護された酸構成単位a1を有する重合体を含む重合体成分である請求項5に記載のドライフィルムレジスト。 6. The dry film resist according to claim 5, wherein the component (A) is a polymer component including a polymer having an acid structural unit a1 in which a carboxy group or a phenolic hydroxyl group is protected in the form of an acetal.
  7.  前記(A)成分が、下記一般式A1または一般式A1’で表される構成単位を有する重合体である請求項5または6に記載のドライフィルムレジスト;
    一般式A1
    Figure JPOXMLDOC01-appb-C000001
    一般式A1中、RおよびRはそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともRおよびRのいずれか一方がアルキル基またはアリール基であり、Rはアルキル基またはアリール基を表し、RまたはRと、Rとが連結して環状エーテルを形成してもよく、Rは水素原子またはメチル基を表す;
    一般式A1’
    Figure JPOXMLDOC01-appb-C000002
    一般式A1’中、R11およびR12はそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともR11およびR12のいずれか一方がアルキル基またはアリール基であり、R13はアルキル基またはアリール基を表し、R11またはR12と、R13とが連結して環状エーテルを形成してもよく、R14はそれぞれ独立に、水素原子、水酸基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基またはシクロアルキル基を表す。
    The dry film resist according to claim 5 or 6, wherein the component (A) is a polymer having a structural unit represented by the following general formula A1 or general formula A1 '.
    General formula A1
    Figure JPOXMLDOC01-appb-C000001
    In general formula A1, R 1 and R 2 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 1 and R 2 is an alkyl group or an aryl group, and R 3 is an alkyl group or Represents an aryl group, R 1 or R 2 and R 3 may be linked to form a cyclic ether, and R 4 represents a hydrogen atom or a methyl group;
    General formula A1 '
    Figure JPOXMLDOC01-appb-C000002
    In General Formula A1 ′, R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group Or an aryl group, and R 11 or R 12 and R 13 may be linked to form a cyclic ether, and each R 14 independently represents a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, an alkoxy group, An alkenyl group, an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group or a cycloalkyl group is represented.
  8.  前記レジスト層が、前記(A)成分を2種類以上含有し、かつ、
     前記(A)成分として、下記一般式A2’で表される構成単位を有する重合体を含有する請求項5~7のいずれか一項に記載のドライフィルムレジスト;
    一般式A2’
    Figure JPOXMLDOC01-appb-C000003
    一般式A2’中、R31およびR32はそれぞれ独立に水素原子、アルキル基またはアリール基を表し、少なくともR31およびR32のいずれか一方がアルキル基またはアリール基であり、R33はアルキル基またはアリール基を表し、R31またはR32と、R33とが連結して環状エーテルを形成してもよく、R34は水素原子またはメチル基を表し、Xは単結合またはアリーレン基を表す。
    The resist layer contains two or more types of the component (A), and
    The dry film resist according to any one of claims 5 to 7, which contains a polymer having a structural unit represented by the following general formula A2 'as the component (A);
    General formula A2 '
    Figure JPOXMLDOC01-appb-C000003
    In general formula A2 ′, R 31 and R 32 each independently represent a hydrogen atom, an alkyl group or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group Or an aryl group, R 31 or R 32 and R 33 may be linked to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, and X 0 represents a single bond or an arylene group. .
  9.  前記レジスト層が、さらに(C)ヘテロ環状化合物を含む請求項1~8のいずれか一項に記載のドライフィルムレジスト。 The dry film resist according to any one of claims 1 to 8, wherein the resist layer further comprises (C) a heterocyclic compound.
  10.  前記レジスト層が、さらに塩基性化合物を含む請求項1~9のいずれか一項に記載のドライフィルムレジスト。 The dry film resist according to claim 1, wherein the resist layer further contains a basic compound.
  11.  前記レジスト層が、さらに放射線吸収剤を含む請求項1~10のいずれか一項に記載のドライフィルムレジスト。 The dry film resist according to any one of claims 1 to 10, wherein the resist layer further contains a radiation absorber.
  12.  下記(a)工程、(b)工程、(c)工程および(d)工程、を含む回路配線の製造方法;
    (a) 基材と導電層とを有する回路形成基板の上へ請求項1~11のいずれか一項に記載のドライフィルムレジストをラミネートするラミネート工程;
    (b) 前記ドライフィルムレジストの前記仮支持体を剥離せずに、パターン露光用パターンでコンタクトパターン露光するパターン露光工程;
    (c) 前記仮支持体を剥離後、現像して前記レジスト層に前記パターン露光用パターンを形成する現像工程;
    (d) エッチングにより、前記回路形成基板に前記パターン露光用パターンを形成するエッチング工程。
    A circuit wiring manufacturing method including the following steps (a), (b), (c) and (d);
    (A) a laminating step of laminating the dry film resist according to any one of claims 1 to 11 on a circuit-forming substrate having a base material and a conductive layer;
    (B) A pattern exposure step of exposing a contact pattern with a pattern for pattern exposure without peeling off the temporary support of the dry film resist;
    (C) A development step of peeling off the temporary support and developing to form the pattern exposure pattern on the resist layer;
    (D) An etching step of forming the pattern exposure pattern on the circuit forming substrate by etching.
  13.  前記(b)工程が下記(b1)工程であり、
     前記(c)工程が下記(c1)工程であり、
     前記(d)工程が下記(d1)工程であり、
     さらに下記(e1)工程、(f1)工程および(g)工程を含む請求項12に記載の回路配線の製造方法;
    (b1) 前記ドライフィルムレジストの前記仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程;
    (c1) 前記仮支持体を剥離後、現像して前記レジスト層に前記第1のパターンを形成する現像工程;
    (d1) エッチングにより、前記回路形成基板に前記第1のパターンを形成するエッチング工程;
    (e1) 前記(c1)工程で前記第1のパターンを形成した前記レジスト層を剥離することなく、第2のパターンでコンタクトパターン露光するパターン露光工程;
    (f1) 現像して前記レジスト層に前記第1のパターンとは異なる第2のパターンを形成する現像工程;
    (g) エッチングにより、前記回路形成基板に前記第2のパターンを形成するエッチング工程。
    The step (b) is the following step (b1),
    The step (c) is the following step (c1),
    The step (d) is the following step (d1),
    Furthermore, the manufacturing method of the circuit wiring of Claim 12 including the following (e1) process, (f1) process, and (g) process;
    (B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
    (C1) A development step of peeling the temporary support and developing to form the first pattern on the resist layer;
    (D1) an etching step of forming the first pattern on the circuit forming substrate by etching;
    (E1) A pattern exposure step of exposing a contact pattern with a second pattern without peeling off the resist layer on which the first pattern has been formed in the step (c1);
    (F1) A development step of developing and forming a second pattern different from the first pattern on the resist layer;
    (G) An etching step of forming the second pattern on the circuit forming substrate by etching.
  14.  前記(b)工程が下記(b1)工程であり、
     前記(c)工程が下記(c1)工程であり、
     前記(d)工程が下記(d2)工程であり、
     さらに(e2)工程、(f2)工程および(g)工程を含む請求項12に記載の回路配線の製造方法;
    (b1) 前記ドライフィルムレジストの前記仮支持体を剥離せずに、第1のパターンでコンタクトパターン露光するパターン露光工程;
    (c1) 前記仮支持体を剥離後、現像して前記レジスト層に前記第1のパターンを形成する現像工程;
    (d2) エッチングにより、前記回路形成基板に前記第1のパターンを形成したのち、前記(c1)工程で前記第1のパターンを形成した前記レジスト層を剥離することなく、残りの前記レジスト層の上にカバーフィルムを貼り付けるエッチング工程;
    (e2) 前記(d2)工程で貼り付けた前記カバーフィルムを剥離せずに、第2のパターンでコンタクトパターン露光するパターン露光工程;
    (f2) 前記(d2)工程で貼り付けた前記カバーフィルムを剥離した後、現像して前記レジスト層に前記第1のパターンとは異なる第2のパターンを形成する現像工程;
    (g) エッチングにより、前記回路形成基板に前記第2のパターンを形成するエッチング工程。
    The step (b) is the following step (b1),
    The step (c) is the following step (c1),
    The step (d) is the following step (d2),
    Furthermore, the manufacturing method of the circuit wiring of Claim 12 including the process (e2), the process (f2), and the process (g);
    (B1) A pattern exposure step of exposing the contact pattern with the first pattern without peeling off the temporary support of the dry film resist;
    (C1) A development step of peeling the temporary support and developing to form the first pattern on the resist layer;
    (D2) After the first pattern is formed on the circuit forming substrate by etching, the resist layer on which the first pattern is formed in the step (c1) without peeling off the remaining resist layer. Etching process to attach a cover film on top;
    (E2) A pattern exposure step of exposing the contact pattern with a second pattern without peeling off the cover film attached in the step (d2);
    (F2) A development step in which the cover film attached in the step (d2) is peeled and then developed to form a second pattern different from the first pattern on the resist layer;
    (G) An etching step of forming the second pattern on the circuit forming substrate by etching.
  15.  請求項12~14のいずれか一項に記載の回路配線の製造方法で製造された回路配線。 A circuit wiring manufactured by the circuit wiring manufacturing method according to any one of claims 12 to 14.
  16.  請求項15に記載の回路配線を用いた入力装置。 An input device using the circuit wiring according to claim 15.
  17.  前記入力装置が静電容量型タッチパネルである請求項16に記載の入力装置。 The input device according to claim 16, wherein the input device is a capacitive touch panel.
  18.  請求項16または17に記載の入力装置を備える、表示装置。 A display device comprising the input device according to claim 16 or 17.
PCT/JP2016/078890 2015-09-30 2016-09-29 Dry film resist, manufacturing method for circuit wiring, circuit wiring, input device, and display device WO2017057616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543584A JP6574846B2 (en) 2015-09-30 2016-09-29 Dry film resist, circuit wiring manufacturing method, circuit wiring, input device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193659 2015-09-30
JP2015193659 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057616A1 true WO2017057616A1 (en) 2017-04-06

Family

ID=58423978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078890 WO2017057616A1 (en) 2015-09-30 2016-09-29 Dry film resist, manufacturing method for circuit wiring, circuit wiring, input device, and display device

Country Status (2)

Country Link
JP (1) JP6574846B2 (en)
WO (1) WO2017057616A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212079A1 (en) * 2017-05-19 2018-11-22 富士フイルム株式会社 Active ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device production method
WO2019044138A1 (en) * 2017-08-28 2019-03-07 富士フイルム株式会社 Photosensitive transfer material, method for manufacturing same, and method for manufacturing circuit wiring
WO2019230345A1 (en) * 2018-05-29 2019-12-05 富士フイルム株式会社 Photosensitive transfer material, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
CN112136081A (en) * 2018-05-22 2020-12-25 富士胶片株式会社 Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel
WO2021172455A1 (en) * 2020-02-27 2021-09-02 富士フイルム株式会社 Transfer film and method for producing layered body
WO2023181966A1 (en) * 2022-03-23 2023-09-28 富士フイルム株式会社 Ultraviolet light sensing member and ultraviolet light sensing kit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345000A (en) * 2002-05-29 2003-12-03 Teijin Dupont Films Japan Ltd Laminated film for photoresist
JP2004109421A (en) * 2002-09-18 2004-04-08 Toray Ind Inc Film for dry film photoresist
JP2005303016A (en) * 2004-04-13 2005-10-27 Mitsui Chemicals Inc Manufacturing method of printed wiring substrate and its wiring substrate
JP2006243272A (en) * 2005-03-02 2006-09-14 Fuji Photo Film Co Ltd Photosensitive transfer material, substrate for display device using the same and display device
JP2011164886A (en) * 2010-02-09 2011-08-25 Dainippon Printing Co Ltd Touch panel sensor manufacturing method, and touch panel sensor
JP2011180374A (en) * 2010-03-01 2011-09-15 Hitachi Chem Co Ltd Photosensitive adhesive sheet
JP2014085643A (en) * 2012-10-26 2014-05-12 Fujifilm Corp Photosensitive transfer material, pattern formation method, and etching method
WO2014091997A1 (en) * 2012-12-12 2014-06-19 日立化成株式会社 Photosensitive resin composition and photosensitive film using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085116A (en) * 2004-08-17 2006-03-30 Fuji Photo Film Co Ltd Photosensitive transfer material, method for forming pattern, and pattern

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345000A (en) * 2002-05-29 2003-12-03 Teijin Dupont Films Japan Ltd Laminated film for photoresist
JP2004109421A (en) * 2002-09-18 2004-04-08 Toray Ind Inc Film for dry film photoresist
JP2005303016A (en) * 2004-04-13 2005-10-27 Mitsui Chemicals Inc Manufacturing method of printed wiring substrate and its wiring substrate
JP2006243272A (en) * 2005-03-02 2006-09-14 Fuji Photo Film Co Ltd Photosensitive transfer material, substrate for display device using the same and display device
JP2011164886A (en) * 2010-02-09 2011-08-25 Dainippon Printing Co Ltd Touch panel sensor manufacturing method, and touch panel sensor
JP2011180374A (en) * 2010-03-01 2011-09-15 Hitachi Chem Co Ltd Photosensitive adhesive sheet
JP2014085643A (en) * 2012-10-26 2014-05-12 Fujifilm Corp Photosensitive transfer material, pattern formation method, and etching method
WO2014091997A1 (en) * 2012-12-12 2014-06-19 日立化成株式会社 Photosensitive resin composition and photosensitive film using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017564B2 (en) 2017-05-19 2022-02-08 富士フイルム株式会社 A method for producing a sensitive light-sensitive or radiation-sensitive resin composition, a resist film, a pattern forming method, and an electronic device.
KR20190120382A (en) * 2017-05-19 2019-10-23 후지필름 가부시키가이샤 Actinic-ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and manufacturing method of electronic device
CN110494806A (en) * 2017-05-19 2019-11-22 富士胶片株式会社 The manufacturing method of sensitized ray or radiation-sensitive resin composition, resist film, pattern forming method and electronic device
WO2018212079A1 (en) * 2017-05-19 2018-11-22 富士フイルム株式会社 Active ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device production method
JPWO2018212079A1 (en) * 2017-05-19 2020-03-12 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and electronic device manufacturing method
CN110494806B (en) * 2017-05-19 2024-03-15 富士胶片株式会社 Actinic-ray-or radiation-sensitive resin composition, resist film, pattern forming method, and method for manufacturing electronic device
TWI825018B (en) * 2017-05-19 2023-12-11 日商富士軟片股份有限公司 Photosensitive radiation or radiation-sensitive resin composition, resist film, pattern forming method, and manufacturing method of electronic component
KR102431163B1 (en) * 2017-05-19 2022-08-10 후지필름 가부시키가이샤 Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacturing method
WO2019044138A1 (en) * 2017-08-28 2019-03-07 富士フイルム株式会社 Photosensitive transfer material, method for manufacturing same, and method for manufacturing circuit wiring
CN112136081A (en) * 2018-05-22 2020-12-25 富士胶片株式会社 Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel
WO2019230345A1 (en) * 2018-05-29 2019-12-05 富士フイルム株式会社 Photosensitive transfer material, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
JP7102517B2 (en) 2018-05-29 2022-07-19 富士フイルム株式会社 Photosensitive transfer material, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
JPWO2019230345A1 (en) * 2018-05-29 2021-05-13 富士フイルム株式会社 Photosensitive transfer material, resin pattern manufacturing method, circuit wiring manufacturing method, and touch panel manufacturing method
CN112204468A (en) * 2018-05-29 2021-01-08 富士胶片株式会社 Photosensitive transfer material, method for producing resin pattern, method for producing circuit wiring, and method for producing touch panel
WO2021172455A1 (en) * 2020-02-27 2021-09-02 富士フイルム株式会社 Transfer film and method for producing layered body
WO2023181966A1 (en) * 2022-03-23 2023-09-28 富士フイルム株式会社 Ultraviolet light sensing member and ultraviolet light sensing kit

Also Published As

Publication number Publication date
JPWO2017057616A1 (en) 2018-07-05
JP6574846B2 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
CN107015437B (en) Dry film resist, method for manufacturing circuit wiring, input device, and display device
JP6574846B2 (en) Dry film resist, circuit wiring manufacturing method, circuit wiring, input device and display device
JP6100500B2 (en) Photosensitive transfer material, pattern forming method and etching method
JP6267951B2 (en) Photosensitive transfer material, pattern forming method and etching method
JP6507239B2 (en) METHOD FOR MANUFACTURING CIRCUIT WIRING, CIRCUIT WIRING, INPUT DEVICE AND DISPLAY DEVICE
JP6397948B2 (en) Photosensitive transfer material, pattern forming method and etching method
JP6573545B2 (en) Positive photosensitive transfer material and method of manufacturing circuit wiring
JP6999693B2 (en) Photosensitive transfer material, resin pattern manufacturing method, and wiring manufacturing method
KR102110818B1 (en) Method for manufacturing a substrate on which a pattern is formed, and method for manufacturing a circuit board
CN107132731B (en) Photosensitive transfer material and method for manufacturing circuit wiring
JP6502284B2 (en) Photosensitive transfer material and method of manufacturing circuit wiring
JPWO2019044138A1 (en) Photosensitive transfer material, method for manufacturing the same, and method for manufacturing circuit wiring
TW201922817A (en) Method for manufacturing circuit wiring and method for manufacturing touch panel
JP6685461B2 (en) Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel
JPWO2019160101A1 (en) Resist pattern manufacturing method, circuit board manufacturing method, and touch panel manufacturing method
WO2018179641A1 (en) Photosensitive transferring material and method for producing circuit wiring
JP6685460B2 (en) Photosensitive transfer material, method for manufacturing circuit wiring, and method for manufacturing touch panel
JP6808045B2 (en) Photosensitive resin composition, photosensitive transfer material, circuit wiring manufacturing method, and touch panel manufacturing method
JP2018177889A (en) Manufacturing method of polymer solution for photosensitive transfer material, manufacturing method of composition for photosensitive transfer material, manufacturing method of photosensitive transfer material, manufacturing method of circuit wiring, and manufacturing method of touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543584

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851787

Country of ref document: EP

Kind code of ref document: A1