WO2017057609A1 - Float and float for solar panel - Google Patents

Float and float for solar panel Download PDF

Info

Publication number
WO2017057609A1
WO2017057609A1 PCT/JP2016/078882 JP2016078882W WO2017057609A1 WO 2017057609 A1 WO2017057609 A1 WO 2017057609A1 JP 2016078882 W JP2016078882 W JP 2016078882W WO 2017057609 A1 WO2017057609 A1 WO 2017057609A1
Authority
WO
WIPO (PCT)
Prior art keywords
float
solar panel
microporous membrane
hole
support plate
Prior art date
Application number
PCT/JP2016/078882
Other languages
French (fr)
Japanese (ja)
Inventor
大野 誠治
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Publication of WO2017057609A1 publication Critical patent/WO2017057609A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/34Pontoons
    • B63B35/38Rigidly-interconnected pontoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4453Floating structures carrying electric power plants for converting solar energy into electric energy

Definitions

  • the present invention relates to a float and a float for a solar panel.
  • a hollow float made of a synthetic resin that floats on water has been used for various purposes by utilizing its buoyancy.
  • solar panels also called solar cell panels or solar cell modules
  • solar power to convert sunlight into electric power
  • land such as roofs, walls, and land of buildings.
  • floats are often used as anchors, floating bridges, aquaculture scaffolds, etc.
  • the hollow float made of synthetic resin is suitable for the above-mentioned applications in terms of ease of construction and maintenance accompanying installation, excellent lightness and durability, low cost, etc. For this reason, the float body made of synthetic resin may be deformed as the internal gas expands and contracts due to changes in weather, particularly temperature. If deformation occurs, the surface will be inclined and the solar panel will not be able to face the sun at the desired angle, reducing the efficiency of solar power generation, or if it is severe, the solar panel may fall off the float. In addition, problems such as hindering the worker from moving on the float for maintenance are caused.
  • Patent Document 1 As a hollow thing made of synthetic resin, there is a thing used as a table for meals, for example, besides a float (refer to patent documents 1).
  • Patent Document 1 it is reported that when the table is washed with hot water or heated and disinfected, the gas in the table expands, and the synthetic resin constituting the table is deformed or damaged. It has been proposed to provide a through-hole closed with a microporous membrane so as to pass outside.
  • the float in a completely different natural environment that floats on the water, what kind of microporous membrane, how to protect the microporous membrane to withstand use in the natural environment, etc. None is disclosed.
  • the present invention has been made in view of such circumstances, and its purpose is to provide a float capable of suppressing deformation of the main body made of synthetic resin even when the internal gas expands and contracts due to environmental temperature changes. There is to do.
  • a first aspect according to the present invention is a float, which is a hollow synthetic resin body, a protrusion provided on the upper surface of the body, having a ventilation hole, and the ventilation And a microporous membrane attached to the outside of the hole.
  • the apparatus further includes a breathable lid that covers the protrusion, and the lid has the gap between the top surface and the microporous membrane.
  • the protrusion may be covered.
  • the lid body may be screwed into the protruding portion.
  • the microporous membrane may be composed of micropores having a diameter of 0.1 to 10 ⁇ m.
  • the microporous membrane may have an air permeability of 5 cm ⁇ 3 ⁇ cm ⁇ 2 ⁇ s ⁇ 1 by a fragile method. .
  • a second aspect according to the present invention is a float for a solar panel, the float for a solar panel, wherein the float according to any one of (1) to (5) above and the float Provided with a first support portion and a second support portion that support the solar panel at a predetermined angle.
  • the present invention it is possible to provide a float capable of suppressing the deformation of the main body made of synthetic resin even when the internal gas expands and contracts due to a change in environmental temperature.
  • the float 10 is levitated on water such as a pond, a lake, a river, and the sea.
  • the float 10 is hollow to obtain buoyancy, and a solar panel is placed on the upper surface thereof.
  • the float 10 itself can be used as a salmon, a floating bridge, an aquaculture raft, or the like.
  • the float 10 will be described as the solar panel float 10, but it is needless to say that the float 10 is not limited thereto.
  • the solar panel float 10 is a float for installing a solar panel 11 having a substantially square shape (substantially square shape in this example) on water such as a pond or a lake.
  • the solar panel 11 is installed on the water while being inclined with respect to the horizontal direction.
  • the inclination angle ⁇ of the solar panel 11 is set to a predetermined angle that is optimal for power generation according to the region and the like.
  • the solar panel float 10 includes a synthetic resin float body 20 formed in a hollow shape.
  • the float body 20 is manufactured, for example, by blow molding in which a molten cylindrical parison is sandwiched between a plurality of divided molds.
  • Various synthetic resins can be used as the molding material, and for example, polyolefin resins such as polyethylene and polypropylene can be used.
  • the layer structure of the float body 20 includes an upper wall 13 and a lower wall 15 that are opposed to each other with the hollow portion 12 therebetween.
  • the upper wall 13 and the lower wall 15 are welded by the parting line PL, and thereby, a space in which the hollow portion 12 is closed is formed.
  • the manufacture of the float body 20 is not particularly limited to blow molding.
  • a cylindrical parison instead of a cylindrical parison, two melted sheets are placed between a pair of split molds, and the sealed space between the sheets and the split molds is sucked so that the two sheets You may manufacture the float main body which has a hollow part in between.
  • the float main body 20 includes an annular float portion 30 and a first support plate portion that is formed inside the annular float portion 30 and supports the solar panel 11 (in this example, a substantially rectangular shape that is long in the left-right direction). 40 (sometimes referred to as a first support in this specification). Further, the solar panel float 10 includes a first attachment member 60 to which the solar panel 11 can be attached.
  • a plurality of solar panels 11 can be laid and installed by arranging a plurality of solar panel floats 10 in the front-rear direction and the left-right direction on the water.
  • Two solar panel floats 10 adjacent in the front-rear direction are fastened by a female screw member 80 and a male screw member 81.
  • two solar panel floats 10 that are adjacent in the left-right direction are connected by a connecting member (not shown) that is fastened by a male screw member 81 and a female screw member 80.
  • Each solar panel float 10 can be stopped at a certain place on the water by an anchor (not shown).
  • the annular float portion 30 is formed in a substantially quadrangular shape (in this example, a substantially rectangular shape that is long in the front-rear direction) in plan view.
  • the annular float portion 30 is integrally formed with a front connection portion 31 and a rear connection portion 32 along the front side portion and the rear side portion thereof.
  • the inner periphery 30 a of the annular float portion 30 includes a front opening 33, and a flat plate portion 37 that connects the left and right side wall surfaces 36 is formed behind the front opening 33.
  • the front opening 33 is a hole formed by cutting and raising the first support plate 40.
  • the front connection part 31 is a thin plate part unevenly distributed on the upper side, and is formed with a thickness of about half of the basic thickness of the annular float part 30.
  • a fitting hole 31 a that is recessed upward is formed in a substantially central portion on the back surface of the front side connecting portion 31.
  • the left and right front corners 31 b of the front connection part 31 are compression molded parts formed thinner than the basic thickness of the front connection part 31.
  • a front through hole 31c is formed in the front corner portion 31b so as to penetrate in the vertical direction. Further, an engagement recess 31d that engages a connecting member (not shown) is formed in the vicinity of the rear side of the front through hole 31c.
  • the rear connection part 32 is a thin plate part that is unevenly distributed on the lower side, and is formed with a thickness that is approximately half the basic thickness of the annular float part 30.
  • a protrusion 32 a that protrudes upward is formed at a substantially central portion of the upper surface of the rear connection portion 32.
  • the rear side connecting portion 32 is a lower side of the front side connecting portion 31 of the other solar panel float 10 in a state where the protrusion 32a is fitted in the fitting hole 31a of the other solar panel float 10 adjacent to the front side. Superimposed on.
  • the left and right rear corners 32 b of the rear connection part 32 are compression molded parts formed thinner than the basic thickness of the rear connection part 32.
  • a rear through hole 32c that penetrates in the vertical direction is formed in the rear corner portion 32b.
  • a female screw member 80 is assembled in the rear side through hole 32c.
  • a convex front engagement portion 36 f that holds the standing state of the first support plate portion 40 is formed at the front end portions of the left and right side wall surfaces 36.
  • a blow hole 201 formed when the float 10 is formed into a hollow body by blow molding is located on the left side of the left side wall surface 36. The blow hole 201 will be described in detail later.
  • the recessed concave rib (not shown) for a reinforcement can be provided in each part as needed.
  • the shape of the concave rib is arbitrary, for example, a shape that is recessed in a groove shape or a cylindrical shape (including a substantially cylindrical shape and a substantially truncated cone shape), and a concave surface of each of the lower walls 15 of the upper wall 13 is recessed. It is possible to select from various forms such as a form in which the end faces are welded together.
  • first support portion (first support plate portion) 40 (Configuration of first support portion (first support plate portion) 40) Then, the structure of the 1st support plate part 40 is demonstrated based on FIG.2 (b). As shown in FIG. 2B, the first support plate portion 40 rises along the front wall surface 38 f while the lower side portion 41 is integrally formed on the front wall surface 38 f of the front opening 33. Further, the side portion 42 of the first support plate portion 40 is engaged with the front edge of the front side engaging portion 36f, and is sandwiched between the front side engaging portion 36f and the front wall surface 38f so as to stand up. Is retained. Furthermore, the height H1 of the first support plate portion 40 is set higher than a groove portion 80 ′ that is a second support portion described later. The first support plate portion 40 supports the upper edge portion 11 u of the solar panel 11 with the upper side portion 43 via the first attachment member 60.
  • the first support plate 40 is assembled in the following procedure.
  • This assembling method includes a step (A) of preparing the hollow molded body 20A of the float body 20, a cutting step (B) for partially cutting the hollow molded body 20A, and a bending step (C) for raising the cut portion. Consists of.
  • a hollow body in which a substantially rectangular flat plate portion corresponding to the first support plate portion 40 is integrally formed on the inner periphery 30a of the annular float portion 30 is prepared during blow molding of the float body 20. .
  • the flat plate portion is set on the parting line PL (see FIG. 1) of the inner periphery 30a so as to block the inner periphery 30a.
  • An annular crushing portion corresponding to the outline of the first support plate portion 40 is formed on the flat plate portion, and this crushing portion is a portion where the upper wall 13 and the lower wall 15 are welded and compression molded. It is formed thinner than other parts.
  • step (B) the portion corresponding to the lower side portion 41 of the first support plate portion 40 is left, and the three sides of the crushed portion are cut with a cutting blade or the like. By cutting the crushed portion in this way, the contours of the front opening 33 and the flat plate portion 37 described above are formed.
  • step (C) the straight plate portion of the flat plate portion is made to function as a hinge, and the straight portion is bent upward as a bending fulcrum. Then, the first support plate portion 40 formed of the cut and raised flat plate portion is further rotated upward and pressed against the front wall surface 38f. At this time, the side portion 42 of the first support plate portion 40 gets over the front engagement portion 36f. Thereby, the standing state of the first support plate part 40 is held (temporarily fixed) with respect to the annular float part 30.
  • the first attachment member 60 is a member interposed between the upper side portion 43 of the first support plate portion 40 and the upper edge portion 11 u (see FIG. 1) of the solar panel 11.
  • the first attachment member 60 has a fitting groove portion 61 opened on the rear side extending in the left-right direction. The upper edge portion 11u of the solar panel 11 can be fitted into the fitting groove portion 61.
  • the width W1 of the first mounting member 60 is set wider than the width W2 of the upper side portion 43 of the first support plate portion 40.
  • the width W1 of the first mounting member 60 is set to be approximately the same as or slightly smaller than the width WS (see FIG. 1) of the upper edge portion 11u of the solar panel 11.
  • Various materials such as synthetic resin can be used as the material constituting the first mounting member 60.
  • the convex portions 65 and the concave portions 66 are alternately formed in the left and right directions on the front portion and the rear portion of the upper end portion of the first mounting member 60, respectively. Further, the front convex portion 65 and the rear concave portion 66 face each other in the front-rear direction. On the other hand, a convex portion 45 and a concave portion 46 that are engaged with the convex portion 65 and the concave portion 66 of the first mounting member 60 are formed on the upper side portion 43 of the first support plate portion 40.
  • the first mounting member 60 has the convex portion 65 and the concave portion 66 engaged with the convex portion 45 and the concave portion 46, thereby sandwiching the upper side portion 43 of the first support plate portion 40 from the front-rear direction, and The first support plate portion 40 is attached in a state where movement in the left-right direction is prevented.
  • the first attachment member 60 is attached to the first support plate portion 40 in a state where the center position in the left-right direction is aligned.
  • the second support part is formed by a groove part 80 ′ formed in the annular float part 30.
  • the support plate portion first support plate portion 40
  • the annular float portion 30 defines the opening 33 as a reflection of the formation of the first support plate portion 40. It comes to have.
  • the groove portion 80 ′ as the second support portion is formed on the upper wall 13 of the annular float portion 30 with a slope of an angle ⁇ with respect to the annular float portion 30. It is formed to have an opening on the 40 side. As a result, as shown in FIG.
  • the solar panel 11 has its other edge engaged with the groove 80 ′, which is the second support, and one edge is the first support plate.
  • the portion 40 By being supported by the portion 40, it can be arranged to be inclined at an angle ⁇ with respect to the annular float portion 30.
  • the solar panel 11 is supported by a first support plate portion 40 that is a first support portion and a groove portion 80 ′ that is a second support portion.
  • a portion of a frame for example, an aluminum frame
  • the first mounting member 60 is fitted into the fitting groove 61 having a substantially U-shaped cross section.
  • the frame 11a and the first attachment member 60 are fastened from the front side of the first attachment member 60 with the male screw member 16 such as a screw.
  • the float 10 is configured as a hollow body.
  • blow molding in blow molding, the molding material is melted by an extruder, two parisons that are formed in a cylindrical shape through the head are sandwiched between a pair of molds, and one mold is placed inside the pair of molds. Gas is blown through the provided blow needle, and the parison is pressed against the inner surfaces of the pair of molds by the pressure to form a hollow body.
  • the head may be composed of a pair, and one parison may be extruded from each.
  • the hollow body that is, the float 10
  • a blow hole 201 penetrating the inside and outside of the float 10 is formed at the trace where the blowing needle for blowing the gas is extracted. Since the float 10 is levitated on the water, if the blow hole 201 is left as it is after the construction on the water, even if it is located on the upper side, the water is introduced from the blow hole 201 to the inside of the float 10 by waves or the like. The float 10 may be submerged in a serious situation.
  • the blow hole 201 generated during molding needs to be welded, and is usually sealed by spin welding.
  • Spin welding is a welding method that uses the frictional heat generated on the contact surface by fixing the float 10 as one member and rotating and pressurizing the stopper as the other member. Since the amount of melt can be increased, it is easy to ensure airtightness and watertightness. Further, a hot melt process is applied to the sealing portion so that the spin weld plug does not fall off, and a rubber sheet is attached to the weld portion.
  • spin welding since airtightness and watertightness are good, when the gas inside the float 10 expands due to environmental temperature changes, the gas cannot be released to the outside, and the float 10 made of synthetic resin is deformed. May occur.
  • the blow hole 201 is used as a ventilation hole
  • the microporous film body 203 is attached to the blow hole 201, and water enters the float 10 from the outside of the float 10
  • the gas expands inside the float 10 due to a change in environmental temperature
  • only the gas is released to the outside of the float 10.
  • the float 10 is provided with a function of breathing in accordance with expansion and contraction of the internal gas due to environmental temperature changes.
  • the manufacture of the float body 20 is not particularly limited to blow molding.
  • a cylindrical parison instead of a cylindrical parison, two melted sheets are placed between a pair of split molds, and the sealed space between the sheets and the split molds is sucked so that the two sheets You may manufacture the float main body which has a hollow part in between. Therefore, since the blow hole 201 is not formed in such a case, in order to suppress the expansion of the gas inside the float 10, the drill hole 201 is positively provided as a vent hole after the hollow portion is completed. Is required.
  • the hole that communicates the inside and the outside of the float 10 is referred to as a vent hole 201 including the blow hole 201 and the drilled hole 201.
  • the float 10 includes a protruding portion 202 having a vent hole 201 on the top surface. And as shown in FIG.4 (b), the microporous film body 203 is affixed on the outer side of the vent hole 201 in order to make the inside and the outside of the float 10 communicate.
  • the relative size of the float 10 and the protrusion 202 may be arbitrarily set in consideration of the use of the float 10 and the convenience of use, and the relative size shown is an example. However, it is not limited to this.
  • vent hole 201 is provided on the top surface of the protruding portion 202 .
  • the vent hole 201 is provided in a flat place or a recess, the place becomes a puddle. Since the inside of the microporous membrane 203 is hollow, once it starts to bend, the microporous membrane 203 will be recessed around that point, and water will be more easily collected. If it does so, even if the penetration
  • the float 10 expands and deforms when the outside air temperature rises.
  • the microporous film body 203 is provided on the top surface of the projecting portion 202 and protruded, thereby reliably preventing the microporous film body 203 itself from being blocked by water.
  • the microporous membrane 203 is liable to be peeled off due to secular change or external force only by being attached, so a lid shaped like a cap of a container. It is preferable to create 204 and cover the periphery of the protruding portion 202 with the lid 204. At that time, in order to prevent the solar panel float 10 from becoming airtight by the lid 204, the lid 204 is provided with air permeability by, for example, making a hole at the tip thereof, and as shown in FIG. The gap is set between the top surface of the lid 204 and the microporous membrane 203 so that a gap is generated even when the lid 204 is completely closed. 4 shows an example in which the lid 204 is locked to the protruding portion 202 by screwing, but it is not limited to screwing but may be locked by fitting, for example.
  • the microporous membrane 203 has a three-layer structure, and has a microporous membrane layer 203a in the middle layer, a packing material layer 203b in the upper layer, and an adhesive layer 203c in the lower layer.
  • Polytetrafluoroethylene (PTFE) can be suitably used as the microporous membrane layer 203a
  • a polyester net can be used as the packing material layer 203b
  • an acrylic adhesive layer composed of a nonwoven fabric substrate can be used as the adhesive layer 203c.
  • the microporous membrane layer 203a is composed of micropores having a diameter of 0.1 to 10 ⁇ m, prevents intrusion of water having a diameter of 100 to 3000 ⁇ m, and is a gas (water vapor) having a diameter of 0.0004 ⁇ m. Allow permeation.
  • a breathable type of 5 cm 3 ⁇ cm -2 ⁇ s -1 can be suitably used.
  • Example 2 A microporous membrane 203 was adhered to the vent hole 201, and the air permeability was measured in accordance with JIS P 8117.
  • the microporous membrane is Timish S-NTF1033-N06T manufactured by Nitto Denko Corporation, and its specifications are as follows (see FIG. 5).
  • ⁇ Outer diameter ED ⁇ 14mm ⁇ Inner diameter ID: ⁇ 8mm ⁇ Total thickness T: 0.25mm -Film thickness t: 0.1 mm ⁇
  • vent hole 201 was sealed by spin welding, and a hot melt process was applied to the sealing portion so that the plug for spin welding did not fall off.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

Provided is a float that can suppress the deformation of a synthetic-resin body thereof even if a gas in the float expands and contracts due to changes in the environmental temperature. A float 10 is characterized by being provided with the following: a synthetic-resin float body 20 formed so as to be hollow; a projection part 202 that is provided so as to project from the upper surface of the float body 20 and that has a ventilation hole 201; and a microporous membrane body 203 that is adhered to the outside of the ventilation hole 201.

Description

フロート及びソーラーパネル用フロートFloats and floats for solar panels
 本発明は、フロート及びソーラーパネル用フロートに関する。 The present invention relates to a float and a float for a solar panel.
 水上に浮揚させる合成樹脂製の中空のフロートは、近年、その浮力を利用して、種々の用途に用いられるようになってきている。例えば、太陽光を電力に変換する太陽光発電として活用されているソーラパネル(太陽電池パネル、太陽電池モジュールとも称される)は、従来、主に建築物の屋根や壁面、土地などの陸上に設置されてきたが、近年は、ソーラパネル用フロート上に配置して遊休化している池や湖などの水上に設置する例が多く試みられている。その他にも、フロートは、艀、浮橋、養殖用いかだの足場などとしてもよく利用されている。 In recent years, a hollow float made of a synthetic resin that floats on water has been used for various purposes by utilizing its buoyancy. For example, solar panels (also called solar cell panels or solar cell modules) that are used as solar power to convert sunlight into electric power have been used mainly on land such as roofs, walls, and land of buildings. In recent years, there have been many attempts to install it on water such as ponds and lakes that are placed on a float for a solar panel and are idle. In addition, floats are often used as anchors, floating bridges, aquaculture scaffolds, etc.
 合成樹脂製の中空のフロートは、設置に伴う施工及び維持管理の容易性、優秀な軽量性及び耐久性、安価なコストなどの面から、上述の用途に好適に用いられるが、水上という野外のため、天候特に温度の変化によって内部の気体が膨張・収縮することに伴い、合成樹脂製のフロート本体に変形を生じる場合がある。変形が生じると、表面に傾斜が生まれ、配置されているソーラパネルが所望の角度で太陽に対向できずに太陽光発電の効率が低下したり、甚だしい場合にはソーラパネルがフロートから落下したり、また、維持管理のために作業者がフロート上を移動するのに支障が出たりするなどの問題が起こる。 The hollow float made of synthetic resin is suitable for the above-mentioned applications in terms of ease of construction and maintenance accompanying installation, excellent lightness and durability, low cost, etc. For this reason, the float body made of synthetic resin may be deformed as the internal gas expands and contracts due to changes in weather, particularly temperature. If deformation occurs, the surface will be inclined and the solar panel will not be able to face the sun at the desired angle, reducing the efficiency of solar power generation, or if it is severe, the solar panel may fall off the float. In addition, problems such as hindering the worker from moving on the float for maintenance are caused.
 合成樹脂製の中空のものとしては、フロートの他にも、例えば食事用のテーブルとして利用されているものがある(特許文献1を参照)。特許文献1では、テーブルを温水洗浄や加熱消毒するときに、テーブル内の気体が膨張し、テーブルを構成する合成樹脂が変形したり損傷したりすることが報告されており、テーブル内部の気体を外部へ通すように、微多孔膜で塞いだ通孔を設けることが提案されている。しかし、水上に浮揚させるという全く異なる自然環境下におけるフロートにおいて、いかなる微多孔膜とするか、その微多孔膜をいかように保護して自然環境下における使用に耐えるものとするかなどについては、何ら開示されていない。 As a hollow thing made of synthetic resin, there is a thing used as a table for meals, for example, besides a float (refer to patent documents 1). In Patent Document 1, it is reported that when the table is washed with hot water or heated and disinfected, the gas in the table expands, and the synthetic resin constituting the table is deformed or damaged. It has been proposed to provide a through-hole closed with a microporous membrane so as to pass outside. However, regarding the float in a completely different natural environment that floats on the water, what kind of microporous membrane, how to protect the microporous membrane to withstand use in the natural environment, etc. Nothing is disclosed.
特開平11-9351号公報JP-A-11-9351
 本発明は、このような事情に鑑みてなされたものであり、その目的は、環境温度変化により内部の気体が膨張・収縮しても、合成樹脂製の本体の変形を抑制可能なフロートを提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to provide a float capable of suppressing deformation of the main body made of synthetic resin even when the internal gas expands and contracts due to environmental temperature changes. There is to do.
 本発明は、以下の構成によって把握される。
(1)本発明に係る第1の態様は、フロートであって、中空に成形された合成樹脂製の本体と、前記本体の上面に突出して設けられ、通気穴を有する突出部と、前記通気穴の外側に貼着された微多孔膜体と、を備えることを特徴とする。
The present invention is grasped by the following composition.
(1) A first aspect according to the present invention is a float, which is a hollow synthetic resin body, a protrusion provided on the upper surface of the body, having a ventilation hole, and the ventilation And a microporous membrane attached to the outside of the hole.
(2)上記(1)の構成において、前記突出部を覆う通気性の蓋体をさらに備え、前記蓋体は、その天面と前記微多孔膜体との間に間隙が生じるように、前記突出部を覆ってもよい。 (2) In the configuration of (1), the apparatus further includes a breathable lid that covers the protrusion, and the lid has the gap between the top surface and the microporous membrane. The protrusion may be covered.
(3)上記(2)の構成において、前記蓋体は、前記突出部に螺合されてもよい。 (3) In the configuration of (2) above, the lid body may be screwed into the protruding portion.
(4)上記(1)から(3)のいずれか1つの構成において、前記微多孔膜体は、0.1~10μmの径を有する微細孔から構成されてもよい。 (4) In any one of the configurations (1) to (3), the microporous membrane may be composed of micropores having a diameter of 0.1 to 10 μm.
(5)上記(1)から(4)のいずれか1つの構成において、前記微多孔膜体は、フラジール形法で5cm-3・cm-2・s-1の通気度を有してもよい。 (5) In any one of the constitutions (1) to (4), the microporous membrane may have an air permeability of 5 cm −3 · cm −2 · s −1 by a fragile method. .
(6)本発明に係る第2の態様は、ソーラパネル用フロートであって、ソーラパネル用フロートであって、上記(1)から(5)のいずれか1つに記載のフロートと、前記フロートの上面に設けられ、ソーラパネルを所定の角度に支持する第1の支持部及び第2の支持部と、を備えることを特徴とする。 (6) A second aspect according to the present invention is a float for a solar panel, the float for a solar panel, wherein the float according to any one of (1) to (5) above and the float Provided with a first support portion and a second support portion that support the solar panel at a predetermined angle.
 本発明によれば、環境温度変化により内部の気体が膨張・収縮しても、合成樹脂製の本体の変形を抑制可能なフロートを提供することができる。 According to the present invention, it is possible to provide a float capable of suppressing the deformation of the main body made of synthetic resin even when the internal gas expands and contracts due to a change in environmental temperature.
本発明の実施形態に係るソーラパネル用フロートであってソーラパネルを透視して示す斜視図である。It is the float for solar panels which concerns on embodiment of this invention, and is a perspective view which shows a solar panel transparently. 本発明の実施形態に係るソーラパネル用フロートの構成図で、(a)は平面図、(b)は(a)のb-b線における断面図、(c)は(b)の丸枠内における拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the float for solar panels which concerns on embodiment of this invention, (a) is a top view, (b) is sectional drawing in the bb line of (a), (c) is in the round frame of (b) FIG. 本実施形態に係るソーラーパネルの第1の支持部を示す拡大図である。It is an enlarged view which shows the 1st support part of the solar panel which concerns on this embodiment. 本発明の実施形態に係る通気穴の処理を模式的に示す斜視図であって、(a)は通気穴を有する突出部を設ける図、(b)は通気穴に微多孔膜体を貼着する図、(c)は突出部を蓋体で覆った図、(d)は(c)の状態の断面を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows typically the process of the vent hole which concerns on embodiment of this invention, (a) is a figure which provides the protrusion part which has a vent hole, (b) sticks a microporous film body to a vent hole. (C) is a figure which covered the protrusion part with the cover body, (d) is a figure which shows the cross section of the state of (c). 本発明の実施形態に係る微多孔膜体の例を示す図であって、(a)は平面図、(b)は断面図である。It is a figure which shows the example of the microporous film body which concerns on embodiment of this invention, Comprising: (a) is a top view, (b) is sectional drawing.
 以下、添付図面を参照して、本発明を実施するための形態(以下、「実施形態」と称する)について詳細に説明する。なお、実施形態の説明の全体を通して同じ要素には同じ番号を付している。 Hereinafter, with reference to the attached drawings, a mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described in detail. Note that the same number is assigned to the same element throughout the description of the embodiment.
 本発明に係るフロート10は、池、湖、川、海などの水上に浮揚させるものであって、浮力を得るためにその内部が中空となっており、その上面にソーラパネルを載置したり、フロート10自体を艀、浮橋、養殖用のいかだなどとして活用したりすることができる。以下ではフロート10を、ソーラパネル用フロート10として説明するが、それに限定されないことはいうまでもない。 The float 10 according to the present invention is levitated on water such as a pond, a lake, a river, and the sea. The float 10 is hollow to obtain buoyancy, and a solar panel is placed on the upper surface thereof. The float 10 itself can be used as a salmon, a floating bridge, an aquaculture raft, or the like. Hereinafter, the float 10 will be described as the solar panel float 10, but it is needless to say that the float 10 is not limited thereto.
(ソーラパネル用フロート10の全体構成)
 まず、ソーラパネル用フロート10の全体構成を図1に基づいて説明する。また、実施形態及び図中において、「前」は、傾斜したソーラパネルの正面側を水平方向に見たときの「奥」方向を示し、「後」は、「手前」方向を示す。「左」、「右」は、各々、傾斜したソーラパネルの正面側を水平方向に見たときの「左」方向、「右」方向を示す。
(Overall configuration of solar panel float 10)
First, the overall configuration of the solar panel float 10 will be described with reference to FIG. In the embodiments and the drawings, “front” indicates the “back” direction when the front side of the inclined solar panel is viewed in the horizontal direction, and “rear” indicates the “front” direction. “Left” and “right” respectively indicate a “left” direction and a “right” direction when the front side of the inclined solar panel is viewed in the horizontal direction.
 図1に示すように、実施形態のソーラパネル用フロート10は、略四角形状(この例では、略正方形状)のソーラパネル11を池や湖などの水上に設置するためのフロートである。このソーラパネル用フロート10では、ソーラパネル11を水平方向に対して傾斜させて水上に設置する。なお、ソーラパネル11の傾斜角θは、地域などに応じて発電に最適な所定の角度に設定される。 As shown in FIG. 1, the solar panel float 10 according to the embodiment is a float for installing a solar panel 11 having a substantially square shape (substantially square shape in this example) on water such as a pond or a lake. In this solar panel float 10, the solar panel 11 is installed on the water while being inclined with respect to the horizontal direction. Note that the inclination angle θ of the solar panel 11 is set to a predetermined angle that is optimal for power generation according to the region and the like.
 ソーラパネル用フロート10は、中空に成形された合成樹脂製のフロート本体20を備える。フロート本体20は、例えば、溶融状態の筒状のパリソンを複数の分割金型で挟んで膨らますブロー成形によって製造される。成形材料には、各種の合成樹脂を用いることができるが、例えば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂を用いることができる。 The solar panel float 10 includes a synthetic resin float body 20 formed in a hollow shape. The float body 20 is manufactured, for example, by blow molding in which a molten cylindrical parison is sandwiched between a plurality of divided molds. Various synthetic resins can be used as the molding material, and for example, polyolefin resins such as polyethylene and polypropylene can be used.
 フロート本体20の層構造としては、中空部12を介して対向する上壁13及び下壁15からなる。上壁13と下壁15は、パーティングラインPLで溶着されており、これにより、中空部12が閉じた空間となる。 The layer structure of the float body 20 includes an upper wall 13 and a lower wall 15 that are opposed to each other with the hollow portion 12 therebetween. The upper wall 13 and the lower wall 15 are welded by the parting line PL, and thereby, a space in which the hollow portion 12 is closed is formed.
 なお、フロート本体20の製造は、ブロー成形に格別に限定されるものではない。例えば、筒状のパリソンの代わりに2枚の溶融状態のシートを一対の分割金型の間に配置し、シートと分割金型との間の密閉空間を吸引することで、2枚のシートの間に中空部を有するフロート本体を製造してもよい。このような成形法では、2枚のシートの間に発泡材料等を芯材として入れることが容易であるため、より剛性の高いフロート本体が得られる。 In addition, the manufacture of the float body 20 is not particularly limited to blow molding. For example, instead of a cylindrical parison, two melted sheets are placed between a pair of split molds, and the sealed space between the sheets and the split molds is sucked so that the two sheets You may manufacture the float main body which has a hollow part in between. In such a molding method, it is easy to put a foam material or the like as a core material between two sheets, so that a float body with higher rigidity can be obtained.
 フロート本体20は、環状フロート部30と、この環状フロート部30の内側に形成されソーラパネル11を支持する略四角形状(この例では、左右方向に長い略長方形状)の第1の支持板部40(この明細書において、第1の支持部と称する場合がある)を有する。さらに、ソーラパネル用フロート10は、ソーラパネル11を取付け可能な第1の取付け部材60を備える。 The float main body 20 includes an annular float portion 30 and a first support plate portion that is formed inside the annular float portion 30 and supports the solar panel 11 (in this example, a substantially rectangular shape that is long in the left-right direction). 40 (sometimes referred to as a first support in this specification). Further, the solar panel float 10 includes a first attachment member 60 to which the solar panel 11 can be attached.
 ソーラパネル用フロート10は、ここでは図示していないが、水上において前後方向及び左右方向に複数配置されることにより、複数のソーラパネル11を敷き詰めて設置することができる。前後方向に隣り合う2つのソーラパネル用フロート10は、雌ねじ部材80及び雄ねじ部材81によって締結される。一方、左右方向に隣り合う2つのソーラパネル用フロート10は、雄ねじ部材81及び雌ねじ部材80で共締めされる連結部材(不図示)によって連結される。なお、各ソーラパネル用フロート10は、アンカー(不図示)により、水上の一定の場所に停留させることが可能である。 Although the solar panel float 10 is not shown here, a plurality of solar panels 11 can be laid and installed by arranging a plurality of solar panel floats 10 in the front-rear direction and the left-right direction on the water. Two solar panel floats 10 adjacent in the front-rear direction are fastened by a female screw member 80 and a male screw member 81. On the other hand, two solar panel floats 10 that are adjacent in the left-right direction are connected by a connecting member (not shown) that is fastened by a male screw member 81 and a female screw member 80. Each solar panel float 10 can be stopped at a certain place on the water by an anchor (not shown).
(環状フロート部30の構成)
 次に、環状フロート部30の構成を図2に基づいて説明する。図2(a)に示すように、環状フロート部30は、平面視で略四角形状(この例では、前後方向に長い略長方形状)に形成される。この環状フロート部30には、その前側の辺部及びその後側の辺部のそれぞれに沿って前側連結部31及び後側連結部32が一体に形成される。また、環状フロート部30の内周30aは、前側開口部33を含み、前側開口部33の後方には、左右の側壁面36を連結する平板部37が形成される。前側開口部33は、第1の支持板部40が切り起されることで形成される穴である。
(Configuration of the annular float 30)
Next, the structure of the annular float part 30 is demonstrated based on FIG. As shown in FIG. 2A, the annular float portion 30 is formed in a substantially quadrangular shape (in this example, a substantially rectangular shape that is long in the front-rear direction) in plan view. The annular float portion 30 is integrally formed with a front connection portion 31 and a rear connection portion 32 along the front side portion and the rear side portion thereof. The inner periphery 30 a of the annular float portion 30 includes a front opening 33, and a flat plate portion 37 that connects the left and right side wall surfaces 36 is formed behind the front opening 33. The front opening 33 is a hole formed by cutting and raising the first support plate 40.
 前側連結部31は、上側に偏在する薄板部であり、環状フロート部30の基本的な厚みの約半分の厚みで形成される。前側連結部31の裏面の略中央部には、上側に凹む嵌合穴31aが形成される。 The front connection part 31 is a thin plate part unevenly distributed on the upper side, and is formed with a thickness of about half of the basic thickness of the annular float part 30. A fitting hole 31 a that is recessed upward is formed in a substantially central portion on the back surface of the front side connecting portion 31.
 前側連結部31の左右の前側角部31bは、前側連結部31の基本的な厚みよりもさらに薄く形成された圧縮成形部である。前側角部31bには、上下方向に貫通する前側貫通穴31cが形成される。さらに、前側貫通穴31cの後側近傍には、連結部材(不図示)が係合する係合凹部31dが形成される。 The left and right front corners 31 b of the front connection part 31 are compression molded parts formed thinner than the basic thickness of the front connection part 31. A front through hole 31c is formed in the front corner portion 31b so as to penetrate in the vertical direction. Further, an engagement recess 31d that engages a connecting member (not shown) is formed in the vicinity of the rear side of the front through hole 31c.
 後側連結部32は、下側に偏在する薄板部であり、環状フロート部30の基本的な厚みの約半分の厚みで形成される。後側連結部32の上面の略中央部には、上側に突出する突起32aが形成される。さらに後側連結部32は、前側に隣接する他のソーラパネル用フロート10の嵌合穴31aに突起32aを嵌合させた状態で、他のソーラパネル用フロート10の前側連結部31の下側に重ね合わさる。 The rear connection part 32 is a thin plate part that is unevenly distributed on the lower side, and is formed with a thickness that is approximately half the basic thickness of the annular float part 30. A protrusion 32 a that protrudes upward is formed at a substantially central portion of the upper surface of the rear connection portion 32. Furthermore, the rear side connecting portion 32 is a lower side of the front side connecting portion 31 of the other solar panel float 10 in a state where the protrusion 32a is fitted in the fitting hole 31a of the other solar panel float 10 adjacent to the front side. Superimposed on.
 後側連結部32の左右の後側角部32bは、後側連結部32の基本的な厚みよりもさらに薄く形成された圧縮成形部である。後側角部32bには、上下方向に貫通する後側貫通穴32cが形成される。この後側貫通穴32cには、雌ねじ部材80が組み付けられる。 The left and right rear corners 32 b of the rear connection part 32 are compression molded parts formed thinner than the basic thickness of the rear connection part 32. A rear through hole 32c that penetrates in the vertical direction is formed in the rear corner portion 32b. A female screw member 80 is assembled in the rear side through hole 32c.
 左右の側壁面36の前端部には、第1の支持板部40の起立状態を保持する凸状の前側係合部36fが形成される。左の側壁面36のさらに左側には、フロート10をブロー成形によって中空体に成形した場合に形成されるブロー穴201が位置している。ブロー穴201については、詳しくは後述する。 A convex front engagement portion 36 f that holds the standing state of the first support plate portion 40 is formed at the front end portions of the left and right side wall surfaces 36. A blow hole 201 formed when the float 10 is formed into a hollow body by blow molding is located on the left side of the left side wall surface 36. The blow hole 201 will be described in detail later.
 なお、フロート本体20においては、補強用の凹状リブ(不図示)を必要に応じて各部に設けることができる。凹状リブの形態は、任意であり、例えば、溝状又は筒状(略円筒形状、略円錐台形状を含む)に凹む形態や、上壁13の下壁15の対向面それぞれを凹ませてその先端面同士を溶着した形態など各種の形態から選択可能である。 In addition, in the float main body 20, the recessed concave rib (not shown) for a reinforcement can be provided in each part as needed. The shape of the concave rib is arbitrary, for example, a shape that is recessed in a groove shape or a cylindrical shape (including a substantially cylindrical shape and a substantially truncated cone shape), and a concave surface of each of the lower walls 15 of the upper wall 13 is recessed. It is possible to select from various forms such as a form in which the end faces are welded together.
(第1の支持部(第1の支持板部)40の構成)
 続いて、第1の支持板部40の構成を図2(b)に基づいて説明する。図2(b)に示すように、第1の支持板部40は、前側開口部33の前側の壁面38fに下辺部41が一体に形成されるとともに前側の壁面38fに沿って立ち上がる。また、第1の支持板部40の側辺部42は、前側係合部36fの前縁に係合されており、前側係合部36fと前側の壁面38fの間に挟まれてその起立状態が保持される。さらに、第1の支持板部40の高さH1は、後述する第2の支持部である溝部80’よりも高く設定される。そして、第1の支持板部40は、第1の取付け部材60を介して、その上辺部43でソーラパネル11の上縁部11uを支持する。
(Configuration of first support portion (first support plate portion) 40)
Then, the structure of the 1st support plate part 40 is demonstrated based on FIG.2 (b). As shown in FIG. 2B, the first support plate portion 40 rises along the front wall surface 38 f while the lower side portion 41 is integrally formed on the front wall surface 38 f of the front opening 33. Further, the side portion 42 of the first support plate portion 40 is engaged with the front edge of the front side engaging portion 36f, and is sandwiched between the front side engaging portion 36f and the front wall surface 38f so as to stand up. Is retained. Furthermore, the height H1 of the first support plate portion 40 is set higher than a groove portion 80 ′ that is a second support portion described later. The first support plate portion 40 supports the upper edge portion 11 u of the solar panel 11 with the upper side portion 43 via the first attachment member 60.
 第1の支持板部40は、次のような手順で組み立てられる。この組立て方法は、フロート本体20の中空成形体20Aを準備する工程(A)と、中空成形体20Aを部分的に切断する切断工程(B)と、切断した部分を起す折り曲げ工程(C)とからなる。 The first support plate 40 is assembled in the following procedure. This assembling method includes a step (A) of preparing the hollow molded body 20A of the float body 20, a cutting step (B) for partially cutting the hollow molded body 20A, and a bending step (C) for raising the cut portion. Consists of.
 工程(A)では、フロート本体20のブロー成形時に、環状フロート部30の内周30aに、第1の支持板部40に相当する略四角形状の平板部を一体に形成した中空体を準備する。平板部は、内周30aを塞ぐように内周30aのパーティングラインPL(図1参照)上に設定される。平板部には、第1の支持板部40の外形線に対応する環状の潰し部を形成しておくが、この潰し部は、上壁13と下壁15が溶着されて圧縮成形される部分であり、他の部分よりも薄肉に形成される。 In the step (A), a hollow body in which a substantially rectangular flat plate portion corresponding to the first support plate portion 40 is integrally formed on the inner periphery 30a of the annular float portion 30 is prepared during blow molding of the float body 20. . The flat plate portion is set on the parting line PL (see FIG. 1) of the inner periphery 30a so as to block the inner periphery 30a. An annular crushing portion corresponding to the outline of the first support plate portion 40 is formed on the flat plate portion, and this crushing portion is a portion where the upper wall 13 and the lower wall 15 are welded and compression molded. It is formed thinner than other parts.
 工程(B)では、第1の支持板部40の下辺部41に相当する部分を残して、潰し部の3つの辺部を切断刃などで切断する。このように潰し部を切断することによって、前述した前側開口部33及び平板部37の輪郭が形成される。 In step (B), the portion corresponding to the lower side portion 41 of the first support plate portion 40 is left, and the three sides of the crushed portion are cut with a cutting blade or the like. By cutting the crushed portion in this way, the contours of the front opening 33 and the flat plate portion 37 described above are formed.
 工程(C)では、平板部を、下辺部41となる直線部分をヒンジとして機能させて、この直線部分を折り曲げ支点としてを上方に切り起こす。そして、この切り起こされた平板部からなる第1の支持板部40を、さらに上方に回動させ、前側の壁面38fに押し付ける。この際、第1の支持板部40の側辺部42が、前側係合部36fを乗り越える。これにより、第1の支持板部40は、環状フロート部30に対してその起立状態が保持される(仮止めされる)。 In step (C), the straight plate portion of the flat plate portion is made to function as a hinge, and the straight portion is bent upward as a bending fulcrum. Then, the first support plate portion 40 formed of the cut and raised flat plate portion is further rotated upward and pressed against the front wall surface 38f. At this time, the side portion 42 of the first support plate portion 40 gets over the front engagement portion 36f. Thereby, the standing state of the first support plate part 40 is held (temporarily fixed) with respect to the annular float part 30.
(第1の取付け部材60の構成)
 次に、第1の取付け部材60の構成を図3に基づいて説明する。図3に示すように、第1の取付け部材60は、第1の支持板部40の上辺部43とソーラパネル11の上縁部11u(図1参照)との間に介在する部材である。第1の取付け部材60は、左右方向に延びる後側に開放した嵌合溝部61を有する。この嵌合溝部61には、ソーラパネル11の上縁部11uが嵌合可能である。
(Configuration of the first mounting member 60)
Next, the structure of the 1st attachment member 60 is demonstrated based on FIG. As shown in FIG. 3, the first attachment member 60 is a member interposed between the upper side portion 43 of the first support plate portion 40 and the upper edge portion 11 u (see FIG. 1) of the solar panel 11. The first attachment member 60 has a fitting groove portion 61 opened on the rear side extending in the left-right direction. The upper edge portion 11u of the solar panel 11 can be fitted into the fitting groove portion 61.
 第1の取付け部材60の幅W1は、第1の支持板部40の上辺部43の幅W2よりも広く設定される。この例では、第1の取付け部材60の幅W1をソーラパネル11の上縁部11uの幅WS(図1参照)と同程度又はそれよりも若干小さく設定する。第1の取付け部材60を構成する材料には、合成樹脂など各種の材料を用いることができる。 The width W1 of the first mounting member 60 is set wider than the width W2 of the upper side portion 43 of the first support plate portion 40. In this example, the width W1 of the first mounting member 60 is set to be approximately the same as or slightly smaller than the width WS (see FIG. 1) of the upper edge portion 11u of the solar panel 11. Various materials such as synthetic resin can be used as the material constituting the first mounting member 60.
 第1の取付け部材60の上端部の前部及び後部のそれぞれには、凸部65と凹部66が左右方向に交互に形成される。また、前側の凸部65と後側の凹部66は前後方向に対向する。一方、第1の支持板部40の上辺部43には、第1の取付け部材60の凸部65及び凹部66に噛み合わさる凸部45及び凹部46が形成される。これにより、第1の取付け部材60は、凸部65及び凹部66が、凸部45及び凹部46に噛み合わされることで、第1の支持板部40の上辺部43を前後方向から挟み、かつ、左右方向の移動が阻止された状態で第1の支持板部40に取り付けられる。また、この例では、第1の取付け部材60は、第1の支持板部40に対して、左右方向の中央位置が揃えられた状態で取り付けられる。 The convex portions 65 and the concave portions 66 are alternately formed in the left and right directions on the front portion and the rear portion of the upper end portion of the first mounting member 60, respectively. Further, the front convex portion 65 and the rear concave portion 66 face each other in the front-rear direction. On the other hand, a convex portion 45 and a concave portion 46 that are engaged with the convex portion 65 and the concave portion 66 of the first mounting member 60 are formed on the upper side portion 43 of the first support plate portion 40. Thus, the first mounting member 60 has the convex portion 65 and the concave portion 66 engaged with the convex portion 45 and the concave portion 46, thereby sandwiching the upper side portion 43 of the first support plate portion 40 from the front-rear direction, and The first support plate portion 40 is attached in a state where movement in the left-right direction is prevented. In this example, the first attachment member 60 is attached to the first support plate portion 40 in a state where the center position in the left-right direction is aligned.
(第2の支持部(溝部)80’)の構成)
 第2の支持部は、環状フロート部30に形成された溝部80’によって形成されている。これにより、第1の支持部だけにおいて支持板部(第1の支持板部40)が形成され、環状フロート部30は該第1の支持板部40の形成の反映としての開口部33を1個有するようになっている。第2の支持部である溝部80’は、図2(c)に示すように、環状フロート部30の上壁13に該環状フロート部30に対して角度θの傾きをもって第1の支持板部40側に開口を有するように形成されている。これにより、ソーラパネル11は、図2(b)に示すように、他側の縁部が第2の支持部である溝部80’に係止され、一側の縁部が第1の支持板部40によって支持されることによって、環状フロート部30に対して角度θで傾斜されるように配置できるようになる。
(Configuration of second support portion (groove portion) 80 ')
The second support part is formed by a groove part 80 ′ formed in the annular float part 30. As a result, the support plate portion (first support plate portion 40) is formed only in the first support portion, and the annular float portion 30 defines the opening 33 as a reflection of the formation of the first support plate portion 40. It comes to have. As shown in FIG. 2 (c), the groove portion 80 ′ as the second support portion is formed on the upper wall 13 of the annular float portion 30 with a slope of an angle θ with respect to the annular float portion 30. It is formed to have an opening on the 40 side. As a result, as shown in FIG. 2B, the solar panel 11 has its other edge engaged with the groove 80 ′, which is the second support, and one edge is the first support plate. By being supported by the portion 40, it can be arranged to be inclined at an angle θ with respect to the annular float portion 30.
(ソーラパネル11の取付け構造)
 ソーラパネル11は、第1の支持部である第1の支持板部40と第2の支持部である溝部80’とによって支持される。ソーラパネル11の取付け構造の一例としては、図3に示すように、例えば、ソーラパネル11の上縁部11uでは、ソーラパネル11の外周に設けられる枠(例えば、アルミニウム製の枠)の部分を第1の取付け部材60の断面略コの字状の嵌合溝部61に差し込んで嵌合する。そして、第1の取付け部材60の前側からビスなどの雄ねじ部材16で枠11aと第1の取付け部材60とを締結する。また、ソーラパネル11の傾斜角θに合わせて、嵌合溝部61を後下方に向けて開放する形状に形成してもよい。
(Solar panel 11 mounting structure)
The solar panel 11 is supported by a first support plate portion 40 that is a first support portion and a groove portion 80 ′ that is a second support portion. As an example of the mounting structure of the solar panel 11, as shown in FIG. 3, for example, in the upper edge portion 11u of the solar panel 11, a portion of a frame (for example, an aluminum frame) provided on the outer periphery of the solar panel 11 is used. The first mounting member 60 is fitted into the fitting groove 61 having a substantially U-shaped cross section. Then, the frame 11a and the first attachment member 60 are fastened from the front side of the first attachment member 60 with the male screw member 16 such as a screw. Moreover, you may form in the shape which open | releases the fitting groove part 61 toward back rear downward according to inclination-angle (theta) of the solar panel 11. FIG.
(通気穴201及び微多孔膜体203の構成)
 フロート10は、前述したように、中空体として構成されている。ブロー成形によって成形する場合、ブロー成形では、押出し機によって成形材料を溶融し、ヘッドを通り筒状に形成された2本のパリソンを一対の金型内に挟み込み、その内側に一方の金型に設けた吹き込み針を介して気体を吹き込み、その圧力で一対の金型の内面にパリソンを押しつけて中空体を成形する。なお、この際、ヘッドを一対のもので構成し、それぞれから1本のパリソンを押し出すようにしてもよい。
(Configuration of vent hole 201 and microporous membrane 203)
As described above, the float 10 is configured as a hollow body. In the case of molding by blow molding, in blow molding, the molding material is melted by an extruder, two parisons that are formed in a cylindrical shape through the head are sandwiched between a pair of molds, and one mold is placed inside the pair of molds. Gas is blown through the provided blow needle, and the parison is pressed against the inner surfaces of the pair of molds by the pressure to form a hollow body. At this time, the head may be composed of a pair, and one parison may be extruded from each.
 このようにブロー成形によって中空体すなわちフロート10を成形する場合、気体を吹き込む吹き込み針を抜き取った跡に、フロート10の内外を貫通するブロー穴201が形成されることとなる。フロート10は水上に浮揚させるものであることから、水上に施工後、ブロー穴201をそのままに放置すると、たとえ上側に位置させていたとしても、波浪などによってブロー穴201からフロート10の内部に水が浸入し、甚だしいときにはフロート10が水没するおそれが生じる。 In this way, when the hollow body, that is, the float 10 is formed by blow molding, a blow hole 201 penetrating the inside and outside of the float 10 is formed at the trace where the blowing needle for blowing the gas is extracted. Since the float 10 is levitated on the water, if the blow hole 201 is left as it is after the construction on the water, even if it is located on the upper side, the water is introduced from the blow hole 201 to the inside of the float 10 by waves or the like. The float 10 may be submerged in a serious situation.
 このような事態を防ぐため、成形の際に生じるブロー穴201は溶着する必要があり、通常、スピン溶着により封止されている。スピン溶着は、一方の部材であるフロート10を固定し、他方の部材である栓を回転させ加圧して、接触面で発生する摩擦熱を利用した溶着方法である。溶け量も多くとることもできるため気密性や水密性を確保しやすい。そして、さらに、スピン溶着の栓が脱落しないよう封止部にホットメルト処理を施し、溶着部にゴムシートを貼り付ける。しかし、スピン溶着では気密性や水密性がよいため、環境温度変化により、フロート10の内部の気体が膨張したときに気体を外部に放出することができず、合成樹脂製のフロート10に変形を生じる場合がある。 In order to prevent such a situation, the blow hole 201 generated during molding needs to be welded, and is usually sealed by spin welding. Spin welding is a welding method that uses the frictional heat generated on the contact surface by fixing the float 10 as one member and rotating and pressurizing the stopper as the other member. Since the amount of melt can be increased, it is easy to ensure airtightness and watertightness. Further, a hot melt process is applied to the sealing portion so that the spin weld plug does not fall off, and a rubber sheet is attached to the weld portion. However, in spin welding, since airtightness and watertightness are good, when the gas inside the float 10 expands due to environmental temperature changes, the gas cannot be released to the outside, and the float 10 made of synthetic resin is deformed. May occur.
 本実施形態では、このような事態を避けるため、ブロー穴201を通気穴として活用し、ブロー穴201に微多孔膜体203を貼着して、フロート10外部からフロート10内部への水の浸入を防ぐとともに、フロート10内部において環境温度変化によって気体が膨張した際に気体のみをフロート10外部へ放出する。いわば、フロート10に、環境温度変化による内部の気体の膨張、収縮に応じて呼吸をさせる機能を持たせるものである。 In this embodiment, in order to avoid such a situation, the blow hole 201 is used as a ventilation hole, the microporous film body 203 is attached to the blow hole 201, and water enters the float 10 from the outside of the float 10 In addition, when the gas expands inside the float 10 due to a change in environmental temperature, only the gas is released to the outside of the float 10. In other words, the float 10 is provided with a function of breathing in accordance with expansion and contraction of the internal gas due to environmental temperature changes.
 なお、前述したように、フロート本体20の製造は、ブロー成形に格別に限定されるものではない。例えば、筒状のパリソンの代わりに2枚の溶融状態のシートを一対の分割金型の間に配置し、シートと分割金型との間の密閉空間を吸引することで、2枚のシートの間に中空部を有するフロート本体を製造してもよい。したがって、このような場合にはブロー穴201は形成されないため、フロート10の内部の気体の膨張を抑制するために、中空部が完成した後に、通気穴として穿設穴201を積極的に設けることが求められる。これ以降、フロート10の内部と外部とを連通する穴は、ブロー穴201及び穿設穴201を含めて通気穴201と称する。 Note that, as described above, the manufacture of the float body 20 is not particularly limited to blow molding. For example, instead of a cylindrical parison, two melted sheets are placed between a pair of split molds, and the sealed space between the sheets and the split molds is sucked so that the two sheets You may manufacture the float main body which has a hollow part in between. Therefore, since the blow hole 201 is not formed in such a case, in order to suppress the expansion of the gas inside the float 10, the drill hole 201 is positively provided as a vent hole after the hollow portion is completed. Is required. Hereinafter, the hole that communicates the inside and the outside of the float 10 is referred to as a vent hole 201 including the blow hole 201 and the drilled hole 201.
 具体的には、図4(a)に示すように、フロート10は、通気穴201を天面に有する突出部202を備えている。そして、図4(b)に示すように、通気穴201の外側には、フロート10の内部と外部とを連通させるため、微多孔膜体203が貼着されている。なお、フロート10と突出部202との相対的な大きさは、フロート10の用途や使用の便宜を考慮して任意に設定してよく、図示されている相対的な大きさは一例であって、これに限られるものではない。 Specifically, as shown in FIG. 4A, the float 10 includes a protruding portion 202 having a vent hole 201 on the top surface. And as shown in FIG.4 (b), the microporous film body 203 is affixed on the outer side of the vent hole 201 in order to make the inside and the outside of the float 10 communicate. The relative size of the float 10 and the protrusion 202 may be arbitrarily set in consideration of the use of the float 10 and the convenience of use, and the relative size shown is an example. However, it is not limited to this.
 通気穴201を突出部202の天面に設けたのは、微多孔膜体203自体が水(雨や波など)によって塞がれることを防止するためである。例えば、フロート10上面に水がのった場合、通気穴201がフラットな場所や凹部に設けてあると、その箇所が水たまりのようになってしまう。微多孔膜体203は内部が中空のため、一度たわみ始めるとその箇所を中心に凹んでいき、より一層水がたまりやすくなる。そうすると、フロート10内部への水の侵入は防ぐことはできたとしても、フロート10の呼吸を阻害してしまうことになる。その結果、外気温が上昇した際にフロート10が膨張し変形を起こす。このようなことを防止するため、微多孔膜体203を突出部202の天面に設けて突出させることにより、微多孔膜体203自体が水によって塞がれることを確実に防止する。 The reason why the vent hole 201 is provided on the top surface of the protruding portion 202 is to prevent the microporous membrane 203 itself from being blocked by water (rain, waves, etc.). For example, when water is applied to the upper surface of the float 10, if the vent hole 201 is provided in a flat place or a recess, the place becomes a puddle. Since the inside of the microporous membrane 203 is hollow, once it starts to bend, the microporous membrane 203 will be recessed around that point, and water will be more easily collected. If it does so, even if the penetration | invasion of the water to the inside of the float 10 could be prevented, the respiration of the float 10 will be inhibited. As a result, the float 10 expands and deforms when the outside air temperature rises. In order to prevent such a situation, the microporous film body 203 is provided on the top surface of the projecting portion 202 and protruded, thereby reliably preventing the microporous film body 203 itself from being blocked by water.
 さらに、図4(c)に示すように、微多孔膜体203は、貼着したのみでは経年変化や外部からの力により剥離される懸念があるため、容器のキャップのような形状の蓋体204を作成し、突出部202の周囲を蓋体204で覆うことが好ましい。その際、蓋体204によってソーラパネル用フロート10が気密とならないよう、蓋体204にはその先端に穴をあけるなどして通気性を確保し、また、図4(d)に示すように、蓋体204の天面と微多孔膜体203との間には蓋体204を完全に閉鎖した状態でも間隙が生じるように設定する。なお、図4では、蓋体204が突出部202に螺合によって係止されている例を示しているが、螺合に限らず、例えば嵌合することによって係止してもよい。 Furthermore, as shown in FIG. 4 (c), the microporous membrane 203 is liable to be peeled off due to secular change or external force only by being attached, so a lid shaped like a cap of a container. It is preferable to create 204 and cover the periphery of the protruding portion 202 with the lid 204. At that time, in order to prevent the solar panel float 10 from becoming airtight by the lid 204, the lid 204 is provided with air permeability by, for example, making a hole at the tip thereof, and as shown in FIG. The gap is set between the top surface of the lid 204 and the microporous membrane 203 so that a gap is generated even when the lid 204 is completely closed. 4 shows an example in which the lid 204 is locked to the protruding portion 202 by screwing, but it is not limited to screwing but may be locked by fitting, for example.
 微多孔膜体203は、図5に示すように、三層構造を有しており、中層に微多孔膜層203a、上層にパッキング材層203b、下層に粘着層203cを有する。微多孔膜層203aとしてはポリテトラフルオロエチレン(PTFE)を、パッキング材層203bとしてはポリエステルネットを、粘着層203cとしては不織布基材から構成されるアクリル粘着層を、それぞれ好適に用いることができる。微多孔膜層203aは、0.1~10μmの径を有する微細孔から構成されており、100~3000μmの径を有する水の侵入を防ぐとともに、0.0004μmの径を有する気体(水蒸気)の透過を許容する。JIS P 8117準拠で、フラジール形法で5cm・cm-2・s-1の通気性のものを好適に用いることができる。 As shown in FIG. 5, the microporous membrane 203 has a three-layer structure, and has a microporous membrane layer 203a in the middle layer, a packing material layer 203b in the upper layer, and an adhesive layer 203c in the lower layer. Polytetrafluoroethylene (PTFE) can be suitably used as the microporous membrane layer 203a, a polyester net can be used as the packing material layer 203b, and an acrylic adhesive layer composed of a nonwoven fabric substrate can be used as the adhesive layer 203c. . The microporous membrane layer 203a is composed of micropores having a diameter of 0.1 to 10 μm, prevents intrusion of water having a diameter of 100 to 3000 μm, and is a gas (water vapor) having a diameter of 0.0004 μm. Allow permeation. According to JIS P 8117, a breathable type of 5 cm 3 · cm -2 · s -1 can be suitably used.
 本実施形態に係るソーラパネル用フロート10の通気性を検討するため、膨張の程度を検証した実験について、その結果を説明する。 The results of an experiment verifying the degree of expansion will be described in order to examine the air permeability of the solar panel float 10 according to the present embodiment.
(条件)
 ソーラパネル用フロート10のサンプルとして、容積が約200L、通気穴の径が8mmのものを用意した。温度は、23℃から47℃まで、1.5時間で変化させた。
(conditions)
A sample of the solar panel float 10 was prepared with a volume of about 200 L and a vent hole diameter of 8 mm. The temperature was changed from 23 ° C. to 47 ° C. in 1.5 hours.
(実施例)
 通気穴201に微多孔膜体203を貼着し、JIS P 8117準拠で、通気度を測定した。微多孔膜は日東電工株式会社製のティミッシュS-NTF1033-N06Tを用い、そのスペックは次のとおりである(図5参照)。
   ・外径ED:φ14mm
   ・内径ID:φ8mm
   ・総厚T:0.25mm
   ・膜厚t:0.1mm
   ・公称孔径:0.6μm
   ・通気度:5cm・cm-2・s-1(フラジール形法)。実験に用いた通気穴201の径が8mmであることを反映させると、通気度は2.5cm・s-1となる。
(Example)
A microporous membrane 203 was adhered to the vent hole 201, and the air permeability was measured in accordance with JIS P 8117. The microporous membrane is Timish S-NTF1033-N06T manufactured by Nitto Denko Corporation, and its specifications are as follows (see FIG. 5).
・ Outer diameter ED: φ14mm
・ Inner diameter ID: φ8mm
・ Total thickness T: 0.25mm
-Film thickness t: 0.1 mm
・ Nominal pore diameter: 0.6μm
- air permeability: 5cm 3 · cm -2 · s -1 ( Frazier method). Reflecting that the diameter of the vent hole 201 used in the experiment is 8 mm, the air permeability is 2.5 cm 3 · s −1 .
(比較例)
 通気穴201をスピン溶着にて封止し、さらにスピン溶着の栓が脱落しないよう封止部にホットメルト処理を施した。
(Comparative example)
The vent hole 201 was sealed by spin welding, and a hot melt process was applied to the sealing portion so that the plug for spin welding did not fall off.
(結果)
 比較例では、23℃から47℃までの温度変化に対し、約15L(当初の容積に対して約7.5%)の膨張がみられた。実施例と比較例の対比にあたっては、ソーラパネル用フロート10の傾斜が問題となるところから、ソーラパネル用フロート10を水平に静置したときの周縁端部の上下方向の寸法変化で測定した。そうすると、比較例が約17mmの寸法変化であったのに対し、実施例では約5mmとなり、概ね1/3以下の寸法変化に止まった。これにより、通気穴201を封止せずに微多孔膜体203で覆うことによる効果が確かめられた。
(result)
In the comparative example, expansion of about 15 L (about 7.5% with respect to the original volume) was observed with respect to the temperature change from 23 ° C. to 47 ° C. In the comparison between the example and the comparative example, since the inclination of the solar panel float 10 becomes a problem, the measurement was performed by the vertical dimension change of the peripheral edge when the solar panel float 10 was placed horizontally. Then, while the comparative example had a dimensional change of about 17 mm, in the example, the dimensional change was about 5 mm, and the dimensional change was about 1/3 or less. Thereby, the effect by covering the ventilation hole 201 with the microporous film body 203 without sealing was confirmed.
 なお、比較例における膨張分の容積15L(15000cm)を1.5時間すなわち5400秒で除算すると2.7cm・s-1となるが、この数値の通気度を有する微多孔膜体203を使用すると、理論的には、膨張を避けることが可能となる。 Although made when the expansion amount of volume 15L in the comparative example (15000 cm 3) is divided by 1.5 hours i.e. 5400 seconds and 2.7 cm 3 · s -1, a microporous film body 203 having air permeability of this number When used, it is theoretically possible to avoid swelling.
 以上、実施形態及び実施例を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態及び実施例に記載の範囲には限定されないことは言うまでもない。上記実施形態及び実施例に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。またその様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment and an Example, it cannot be overemphasized that the technical scope of this invention is not limited to the range as described in the said embodiment and Example. It will be apparent to those skilled in the art that various modifications and improvements can be made to the above-described embodiments and examples. Further, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
10…ソーラパネル用フロート
11…ソーラパネル
11u…上縁部(一側の縁部)
11d…下縁部(他側の縁部)
20…フロート本体
201…通気穴(ブロー穴、穿設穴)
202…突出部
203…微多孔膜体
204…蓋体
30…環状フロート部
30a…内周
38f…前側の壁面(一側の壁面)
40…第1の支持板部(第1の支持部)
41…下辺部
42…側辺部
43…上辺部
80’…溝部(第2の支持部)
10 ... Solar panel float 11 ... Solar panel 11u ... Upper edge (one edge)
11d: Lower edge (edge on the other side)
20 ... Float body 201 ... Vent hole (blow hole, drilled hole)
202 ... Projection 203 ... Microporous membrane 204 ... Lid 30 ... Annular float 30a ... Inner circumference 38f ... Front wall (one wall)
40 ... 1st support board part (1st support part)
41 ... Lower side part 42 ... Side part 43 ... Upper side part 80 '... Groove part (second support part)

Claims (6)

  1.  フロートであって、
     中空に成形された合成樹脂製のフロート本体と、
     前記フロート本体の上面に突出して設けられ、通気穴を有する突出部と、
     前記通気穴の外側に貼着された微多孔膜体と、を備えることを特徴とするフロート。
    A float,
    A float body made of synthetic resin formed into a hollow,
    A protruding portion provided on the upper surface of the float body and having a vent hole;
    And a microporous membrane attached to the outside of the vent hole.
  2.  前記突出部を覆う通気性の蓋体をさらに備え、
     前記蓋体が、その天面と前記微多孔膜体との間に間隙が生じるように、前記突出部を覆うことを特徴とする請求項1に記載のフロート。
    Further comprising a breathable lid that covers the protrusion,
    2. The float according to claim 1, wherein the lid covers the protrusion so that a gap is formed between the top surface of the lid and the microporous membrane.
  3.  前記蓋体が前記突出部に螺合されることを特徴とする請求項2に記載のフロート。 The float according to claim 2, wherein the lid body is screwed into the projecting portion.
  4.  前記微多孔膜体が0.1~10μmの径を有する微細孔から構成されていることを特徴とする請求項1から3のいずれか1項に記載のフロート。 The float according to any one of claims 1 to 3, wherein the microporous membrane is composed of micropores having a diameter of 0.1 to 10 µm.
  5.  前記微多孔膜体がフラジール形法で5cm-3・cm-2・s-1の通気度を有することを特徴とする請求項1から4のいずれか1項に記載のフロート。 The float according to any one of claims 1 to 4, wherein the microporous membrane has an air permeability of 5 cm -3 · cm -2 · s -1 in a fragile method.
  6.  ソーラパネル用フロートであって、
     請求項1から5のいずれか1項に記載のフロートと、
     前記フロートの上面に設けられ、ソーラパネルを所定の角度に支持する第1の支持部及び第2の支持部と、を備えることを特徴とするソーラパネル用フロート。
     
    A solar panel float,
    The float according to any one of claims 1 to 5,
    A float for a solar panel, comprising: a first support portion and a second support portion which are provided on an upper surface of the float and support the solar panel at a predetermined angle.
PCT/JP2016/078882 2015-09-29 2016-09-29 Float and float for solar panel WO2017057609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191176A JP6697154B2 (en) 2015-09-29 2015-09-29 Floats and floats for solar panels
JP2015-191176 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057609A1 true WO2017057609A1 (en) 2017-04-06

Family

ID=58423975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078882 WO2017057609A1 (en) 2015-09-29 2016-09-29 Float and float for solar panel

Country Status (2)

Country Link
JP (1) JP6697154B2 (en)
WO (1) WO2017057609A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2026459B1 (en) * 2020-09-11 2022-05-09 Profloating B V Solar float with a breathable cap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288578B2 (en) * 2019-05-31 2023-06-08 キョーラク株式会社 Molded body inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354950A (en) * 2001-05-31 2002-12-10 Sekisui House Ltd Environmental raft, and artificial pond and artificial river using the same
JP2012230983A (en) * 2011-04-26 2012-11-22 Nitto Denko Corp Ventilation member
JP2013253213A (en) * 2012-05-08 2013-12-19 Nitto Denko Corp Porous polytetrafluoroethylene film and waterproof air-permeable member
JP2015115595A (en) * 2013-08-09 2015-06-22 エルエス産電株式会社Lsis Co., Ltd. Supporting device for solar panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010151A (en) * 1983-06-29 1985-01-19 Shikishima Kanbasu Kk Simple air permeation rate measuring instrument of industrial cloth
JP5481314B2 (en) * 2010-08-17 2014-04-23 クラレクラフレックス株式会社 Laminated nonwoven fabric and wiper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354950A (en) * 2001-05-31 2002-12-10 Sekisui House Ltd Environmental raft, and artificial pond and artificial river using the same
JP2012230983A (en) * 2011-04-26 2012-11-22 Nitto Denko Corp Ventilation member
JP2013253213A (en) * 2012-05-08 2013-12-19 Nitto Denko Corp Porous polytetrafluoroethylene film and waterproof air-permeable member
JP2015115595A (en) * 2013-08-09 2015-06-22 エルエス産電株式会社Lsis Co., Ltd. Supporting device for solar panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2026459B1 (en) * 2020-09-11 2022-05-09 Profloating B V Solar float with a breathable cap

Also Published As

Publication number Publication date
JP6697154B2 (en) 2020-05-20
JP2017065354A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
CN106458301B (en) Solar panel floating body and its union body
JP6592876B2 (en) Float connector for solar panels
WO2017057609A1 (en) Float and float for solar panel
KR101392586B1 (en) Buoyant Body for Supporting Floating Frame Structure
KR101563211B1 (en) water surface floating body using eco-friendly materials
JP2004063497A (en) Resin aquafloat for solar battery
KR101646095B1 (en) Sea buoy farms
JP6326956B2 (en) Solar panel float
TWI732983B (en) Floating board for solar panel
KR102389229B1 (en) Bottom cover sealed float
KR102228573B1 (en) Buoy
CN218112933U (en) Waterproof plug only used for air single circulation and used for floating body
JP2005051657A (en) Luneberg lens, and antenna assembly using it
JP6017156B2 (en) Waterproofing method using waterproofing screw
JP2012031621A (en) Heat storage board, heating panel having heat storage board, and manufacturing method of heat storage board
CN218229339U (en) Waterproof ventilating device for water floating body
JP2016223183A (en) Panel sandbag and method for producing the same
CN211523568U (en) Back attached heat insulation board structure
KR102370188B1 (en) Light buoy for route marking
JP2001151294A (en) Panel collapsible tank
CN1665997B (en) Sheet flashing member and a flashing kit
CN209037130U (en) A kind of ethylene closed cell cystosepiment
CN115123475A (en) Waterproof ventilating device for water floating body
JP2015155756A (en) waterproof screw
JP2016152332A (en) Solar battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851780

Country of ref document: EP

Kind code of ref document: A1