WO2017057221A1 - Ultrasonic diagnostic device and delay data generating method - Google Patents

Ultrasonic diagnostic device and delay data generating method Download PDF

Info

Publication number
WO2017057221A1
WO2017057221A1 PCT/JP2016/078164 JP2016078164W WO2017057221A1 WO 2017057221 A1 WO2017057221 A1 WO 2017057221A1 JP 2016078164 W JP2016078164 W JP 2016078164W WO 2017057221 A1 WO2017057221 A1 WO 2017057221A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay data
reception
transmission
delay
focus
Prior art date
Application number
PCT/JP2016/078164
Other languages
French (fr)
Japanese (ja)
Inventor
将則 久津
栗原 浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680054955.2A priority Critical patent/CN108024798B/en
Publication of WO2017057221A1 publication Critical patent/WO2017057221A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and a delay data generation method, and more particularly to generation of delay data for delay processing executed by a reception beamformer.
  • the receiving beamformer (Receiving Beam former) of the ultrasonic diagnostic device performs phasing and addition processing (Aligning and) on multiple received signals output in parallel from multiple transducers (Transducer Elements) Summing ⁇ Processing) is applied to generate beam data corresponding to the received beam.
  • the phasing and adding process is a process of delaying a plurality of received signals and aligning the phases of the plurality of received signals to form a reception focus, and adding them together, which is Delay and Sum (DAS) It is also said.
  • DAS Delay and Sum
  • a reception dynamic focus technique for continuously changing the reception focal depth in a deep direction is applied to each individual reception beam (see Patent Document 1).
  • the reception focus generally matches the transmission / reception total peak position (maximum sensitivity position).
  • parallel reception technology or the like that is, when the transmission beam central axis and the reception beam central axis are shifted
  • the reception focal point is obtained.
  • the transmission / reception total peak position do not match (see Patent Document 1).
  • not the reception focus but the transmission / reception total peak position is regarded as the position of the imaging point (observation point).
  • a technique for manipulating a reception beam so that an imaging point is in an appropriate position has also been proposed (see Patent Document 1).
  • the parallel reception (Parallel Receiving) technique forms a plurality of reception beams simultaneously and in parallel with respect to one transmission beam. According to this technique, a plurality of beam data can be obtained by one transmission / reception.
  • the reception beamformer generally has a plurality of A / D converters, a plurality of delay units, an adder, and the like. Specifically, a plurality of analog reception signals are converted into a plurality of digital reception signals by a plurality of A / D converters. The plurality of digital received signals are delayed by a plurality of delay units, respectively. A plurality of digital received signals after the delay processing are added by an adder, whereby beam data corresponding to the received beam is obtained. The beam data is composed of a plurality of echo data arranged in the depth direction.
  • the plurality of delay devices described above are actually composed of a plurality of memories, for example.
  • a plurality of received signals are subjected to delay processing by adjusting the read timing of a plurality of data from a plurality of memories.
  • a read controller that controls parallel reading of a plurality of data from a plurality of memories based on a plurality of delay data is provided inside (or outside) the reception beamformer.
  • a delay data generation circuit that generates a delay data set to be supplied to the read controller is provided inside (or outside) the reception beamformer.
  • the delay data set is a collection of delay data for realizing reception dynamic focus, parallel reception, and the like according to the electronic scanning method.
  • the data for forming them is a delayed data set.
  • the individual delay data constituting the delay data set usually corresponds to a propagation time or a delay time. It is also possible to understand the propagation time as a negative delay time (fast reading time). Note that a parameter group necessary for generating delay data by the delay data generator is calculated in advance, and the calculated parameter group is stored in advance in a parameter memory accessed by the delay data generation circuit.
  • delay data given to each reception element constituting the reception aperture includes the forward distance from the transmission reference point (transmission origin) to the reception focal point, and the return path from the reception focal point to the reception element. Calculated based on the distance. Specifically, the delay time, that is, the delay data, is obtained by dividing the round trip distance obtained by adding the forward path distance and the return path distance by the speed of sound. It is very difficult and time-consuming to calculate the delay data individually for each receiving element for all receiving focal points on one scanning plane. For this calculation, it is necessary to calculate a large number of parameters in advance, and for this purpose, a parameter memory having a large storage capacity must be provided.
  • piecewise polynomial interpolation A simple calculation method using a method (Piecewise Polynomial Interpolation) (Spline Interpolation), a method using a recurrence formula (Recurrence Formula) (see Non-Patent Document 1), or the like is employed.
  • a piecewise polynomial interpolation method a piecewise linear interpolation method (PWL method) is known.
  • a plurality of representative propagation times are obtained in advance for a relatively small number of representative reception focal points arranged in the depth direction, and in the process of applying the reception dynamic focus, two representative propagation times forming both ends of the target section are obtained.
  • propagation time or delay data corresponding to each reception focus is generated.
  • delay data corresponding to all paths including the forward path and the return path is generated.
  • An object of the present invention is to enable generation of a delay data set used in received signal processing efficiently or efficiently. Alternatively, the amount of computation or computation time is reduced when generating delay data. Alternatively, the number of parallel receptions is increased. Another object is to realize a reception beamformer adapted to the virtual sound source method.
  • An ultrasonic diagnostic apparatus includes a plurality of vibration elements that output a plurality of reception signals, a generation circuit that generates a plurality of delay data corresponding to the plurality of vibration elements, and the plurality of delay data.
  • a delay processing circuit that delays the plurality of received signals, and the generation circuit generates a forward delay data generator that generates forward delay data corresponding to a forward path from a transmission reference point to a reception focal point, and For each reception vibration element in a plurality of vibration elements, a return path delay data generator that generates return path delay data corresponding to a return path from the reception focus to the reception vibration element, and for each reception vibration element, the forward path delay data and A delay data generator that generates delay data for delaying a reception signal from the reception vibration element based on the return path delay data; That.
  • the forward delay data and the backward delay data are generated separately, and based on them, the delay data that defines the actual delay processing is preferably generated by adding them. Therefore, for example, when the virtual sound source method and the parallel reception method are executed, one forward path delay data (delay data corresponding to the path from the transmission reference point to the reception focus via the transmission focus) is transmitted between the plurality of reception vibration elements.
  • One return path delay data (delay data corresponding to the return path from the reception focal point to the reception vibration element) can be shared between a plurality of transmission beams. Necessary to generate delay data by separating forward delay data and backward delay data in calculation, that is, from the viewpoint of data sharing, by separating delay data into a plurality of components constituting it. The amount of parameters and calculation amount can be reduced.
  • Delay data is data used in delay processing, such as data representing propagation time, data representing delay time, and the like. For example, when the delay data is data representing the propagation time, the larger the delay data, the later the data stored in the memory among the plurality of data stored in the memory in chronological order (that is, the newer data) ) Data is read out.
  • the transmission reference point corresponds to a calculation or space origin, and is typically the transmission aperture center. Depending on the scanning method, the definition of the transmission reference point may change.
  • the forward path delay data generator generates the forward path delay data as data shared by a plurality of receiving vibration elements. That is, it is possible to share the same forward delay data for each reception focal point among a plurality of vibration elements constituting the reception aperture.
  • the forward delay data generator generates the forward delay data based on the transmission reference point, the transmission focus, and the reception focus when a virtual sound source method as a transmission aperture synthesis method is executed. For example, when the ultrasonic beam is scanned one-dimensionally, forward delay data is generated from the coordinates of the transmission reference point, the coordinates of the transmission focal point, and the coordinates of the reception focal point on the scanning plane.
  • the forward delay data is data corresponding to a forward propagation time
  • the forward propagation time is when the distance from the transmission origin to the reception focal point is larger than the distance from the transmission origin to the transmission focal point. Is a time obtained by adding a propagation time corresponding to the distance from the transmission focal point to the reception focal point to a propagation time corresponding to the distance from the transmission origin to the transmission focal point.
  • the propagation time corresponding to the distance from the transmission origin to the transmission focal point corresponds to the distance from the transmission focal point to the reception focal point. This is the time obtained by subtracting the propagation time. That is, the propagation time of the spherical wave is considered according to the virtual sound source method.
  • the forward delay data generator generates the forward delay data according to a piecewise polynomial interpolation method.
  • a plurality of propagation times for a plurality of representative reception focal points are calculated in advance for each transmission beam, and interpolation is performed for each reception focal point when actually applying reception dynamic focus.
  • the propagation time is sequentially calculated by the processing.
  • the return path delay data generator generates the return path delay data as data shared between a plurality of transmission beams.
  • the return path delay data generator generates the return path delay data based on a distance between the reception focus and the reception vibration element.
  • the delay data generation circuit is a circuit that adds the forward path delay data and the return path delay data.
  • the generation circuit further includes a correction delay data generator that generates correction delay data as a correction term, and the delay data generator includes the forward delay data and the return delay data for each of the reception vibration elements. And based on the said correction
  • the correction term corresponds to a reception focus shift amount for adjusting the transmission / reception total peak to a desired imaging point.
  • the method according to the present invention includes a step of generating first delay data as a component shared among a plurality of reception vibration elements, and a first component as a unique component for the reception vibration element for each reception vibration element.
  • a step of generating two delay data, and for each reception vibration element, delay data for delaying a reception signal from the reception vibration element is generated based on the first delay data and the second delay data. And a process.
  • the first delay data as a component shared between the plurality of reception vibration elements and the second delay data as a component (unique component) that is not shared between the plurality of reception vibration elements are separated. Then, delay data is generated based on both components. Since at least the first delay data can be shared among a plurality of reception oscillating elements constituting the reception aperture, the total number of delay data generation parameters and the amount of calculation can be reduced.
  • the first delay data is forward path delay data
  • the second delay data is return path delay data.
  • the first delay data is a component that is not affected by the peak correction for matching the transmission / reception total peak to a desired imaging point by the reception point shift
  • the second delay data is a component that is affected by the peak correction.
  • the above method pays attention to a plurality of components constituting the delay data, and reduces the amount of calculation by separately generating components that can be used in common and components that are not.
  • Each of the above steps is executed in the ultrasonic diagnostic apparatus. More specifically, each of the above steps can be realized by a program executed by a processor included in the ultrasonic diagnostic apparatus.
  • the program may be installed on a portable medium or transmitted over a network.
  • 1 is a block diagram showing a preferred embodiment of an ultrasonic diagnostic apparatus according to the present invention. It is a figure which shows the propagation path model in parallel reception. It is a figure which shows the propagation path model based on a virtual sound source method. It is a figure for demonstrating an example of a virtual sound source method.
  • 1 is a block diagram illustrating a first embodiment of a delay data generation circuit.
  • FIG. It is a figure which shows the relationship between a receiving focus and an imaging point (transmission / reception sensitivity peak).
  • FIG. 1 shows a preferred embodiment of an ultrasonic diagnostic device according to the present invention.
  • This ultrasonic diagnostic apparatus is an apparatus that is installed in a medical institution and forms an ultrasonic image by transmitting and receiving ultrasonic waves to and from a living body.
  • the ultrasonic diagnostic apparatus includes an ultrasonic diagnostic apparatus main body and a probe connected thereto.
  • the probe includes a head, a cable, and a connector.
  • An array transducer 50 is provided in the head.
  • the array transducer 50 is a transmission / reception device including a plurality of vibration elements 50a arranged linearly.
  • An ultrasonic beam is formed by the array transducer 50 and scanned electronically.
  • the ultrasonic beam is actually a combined transmission / reception beam that is conceived when a transmission beam and a reception beam are combined.
  • an electronic scanning method an electronic linear scanning method, an electronic sector scanning method, and the like are known.
  • An electronic convex scanning system is known as an aspect of the electronic linear scanning system.
  • a 2D array transducer including a plurality of transducer elements arranged two-dimensionally may be provided.
  • the transmission beam former 52 is an electronic circuit for forming a transmission beam during transmission. Specifically, a plurality of transmission signals having a fixed delay relationship for forming a transmission beam are generated and supplied to the array transducer 50 in parallel. Thereby, ultrasonic waves are radiated from the individual vibration elements in the transmission opening into the living body. As a result, a transmission beam that is focused at the transmission focal point is formed.
  • the reception beam former 54 is an electronic circuit for forming a reception beam during reception.
  • a plurality of reception signals (a plurality of element reception signals) are output in parallel from the plurality of vibration elements.
  • a phasing addition process is applied to the plurality of reception signals in the reception beam former 54, thereby obtaining beam data corresponding to the reception beam.
  • the beam data consists of a plurality of echo data arranged in the depth direction.
  • the reception beamformer 54 includes a plurality of reception channel circuits 56, an adder 64, a delay data generation circuit 66, and a delay controller 70.
  • the number of reception channel circuits 56 is the same as the number of vibration elements constituting the array transducer 50 or the same as the number of vibration elements constituting the maximum reception aperture set for the array transducer 50.
  • Each reception channel circuit 56 includes an amplifier 58, an A / D converter 60, a delay unit (DL) 62, and the like.
  • the amplifier 58 includes a preamplifier, a gain variable amplifier, and the like.
  • the A / D converter 60 converts an analog reception signal into a digital reception signal.
  • the digital reception signal is composed of a plurality of reception data (a plurality of amplitude values) arranged on the time axis.
  • the delay device 62 is configured by a memory (for example, a ring buffer), and a plurality of received data are written in the time series order therein. By adjusting the read timing of each received data from the memory, the phase of each received data is aligned.
  • a plurality of delay devices 62 constitute a delay processing circuit.
  • a plurality of received data (in parallel relation) after the delay processing is added by the adder 64.
  • a reception focus is formed as a result of this phasing addition processing.
  • Each delay unit 62 may be constituted by a coarse delay memory and a fine delay interpolation circuit.
  • the delay data generation circuit 66 is an electronic circuit that generates a delay data set necessary for the delay processing. It functions as generating means or generating circuit.
  • the delay data generation circuit 66 includes a memory that stores a parameter group, a function calculator, and the like. When a specific transmission / reception condition is set, a delay data set is generated based on the transmission / reception condition and stored in a memory (not shown). Then, simultaneously with the start of transmission / reception, delay data is sequentially read from the memory. However, the delayed data set may be generated in real time, that is, simultaneously with transmission / reception.
  • the delay controller 70 functions as a control unit that controls the plurality of delay units 62, and specifically adjusts the read timing of received data from each delay unit 62 based on the delay data set. At that time, according to the reception dynamic focus method, a plurality of reception data are read in parallel and added in real time.
  • the delay data generation circuit 66 and the delay controller 70 may be realized as functions of the main control unit 72.
  • the reception beamformer 54 can be configured by a device such as an FPGA or an ASIC.
  • the forward delay data and the backward delay data are independently generated separately, and in the third step, the forward delay data And the return delay data are added to generate delay data that is actually used in the delay process.
  • the forward delay data is data representing the time required for the ultrasonic wave to propagate in the forward path from the transmission reference point to the reception focus in the present embodiment.
  • the return path delay data is data representing the time required for the ultrasonic wave to propagate along the return path from the reception focus to the receiving element (vibration element) in the present embodiment.
  • Such parallel generation makes it possible to vary the generation methods of the forward delay data and the backward delay data.
  • forward delay data can be generated by the first generation method
  • backward delay data can be generated by a second generation method different from the first generation method.
  • the same forward path delay data can be shared among a plurality of vibration elements or the same return path delay data can be shared among a plurality of transmissions under a certain condition.
  • delay data correction using a correction term to be described later can be realized with a simple circuit configuration.
  • the ultrasonic diagnostic apparatus of the present embodiment is an apparatus that can perform a transmission / reception operation according to the virtual sound source method and the parallel reception method. For example, 32 reception beams arranged in the scanning direction are simultaneously formed per transmission beam. If such transmission / reception is repeated while shifting the transmission beam position, a plurality of pre-transmission aperture synthesis data (data after reception aperture synthesis) is acquired for each reception focus (imaging point). If a plurality of pre-transmission aperture synthesis data is added for each reception focus, one post-transmission aperture synthesis data can be obtained.
  • the delay time generation under the virtual sound source method will be described in detail later.
  • Each beam data output from the reception beam former 54 is input to the signal processing circuit 76.
  • the signal processing circuit 76 includes a detection circuit, a logarithmic compression circuit, and the like.
  • the transmission aperture synthesis process is executed by the signal processing circuit 76.
  • Each beam data output from the signal processing circuit 76 is input to a DSC (digital scan converter) 78.
  • the DSC 78 is a known electronic circuit that generates a display frame based on a reception frame made up of a plurality of beam data. It has a coordinate conversion function, an interpolation processing function, a frame rate conversion function, and the like.
  • the display frame is, for example, a B-mode tomographic image.
  • the display frame output from the DSC 78 is sent to the display 82 via the display processing circuit 80.
  • a B-mode tomographic image is displayed on the display device 82. Other ultrasonic images may be displayed there.
  • the main control unit 72 controls the operation of each circuit in the ultrasonic diagnostic apparatus. In this embodiment, it is constituted by a CPU and a program.
  • the main control unit 72 has a transmission / reception control function, which is shown as a transmission / reception control unit 74 in FIG.
  • the transmission / reception control unit 74 controls the operations of the transmission beam former 52 and the reception beam former 54. Data necessary for generating delay data (transmission delay data, reception delay data) is given to these circuits.
  • the transmission / reception control unit 74 provides the delay data generation circuit 66 in the reception beamformer 54 with a parameter group necessary for executing the above-described PWL and other parameter groups.
  • a Doppler signal processing unit, a three-dimensional image forming unit, and the like are further provided as necessary. *
  • FIG. 2 shows a general propagation path model according to the parallel reception method.
  • a transmission beam 84 is formed by radiating ultrasonic waves from a plurality of vibration elements in the transmission aperture set on the array transducer 50.
  • the transmit beam 84 has a form of focusing at the transmit focal point 90.
  • the transmission reference point (transmission origin) 88 is typically a point on the central axis 86 of the transmission beam 84, and the transmission reference point 88 is a temporal and spatial reference when calculating the reception delay time. Is done.
  • the reception focal point 92 is on the center line 91 of the specific reception beam of interest.
  • the reception focal point 92 can generally be regarded as an imaging point (observation point).
  • the receiving element 94 is a vibrating element to be noticed now.
  • the straight path from the transmission reference point 88 to the reception focal point 92 is the forward path
  • the straight path from the reception focal point 92 to the reception element 94 is the backward path.
  • the total route is the sum of the outbound route and the inbound route.
  • the propagation time corresponding to the forward path (forward path propagation time) and the propagation time corresponding to the backward path (return path propagation time) are calculated separately, and then the forward path delay time and the backward path By adding the delay time, the total propagation time corresponding to all paths is generated.
  • the delay data given to the delay controller is data representing such total propagation time.
  • the delay data can be configured as data representing the delay time itself.
  • the forward path 96 is common to all the receiving elements in the receiving aperture, that is, it is possible to use the same forward path propagation time in these receiving elements.
  • the propagation time of the return path 98 can be shared among a plurality of transmission beams in the virtual sound source method described below. That is, when paying attention to a certain reception focus, it is possible to use the same return path propagation time for each reception element between a plurality of transmission beams. Even when the reception focus and the imaging point are different, it is possible to share some data. This will be described later.
  • FIG. 3 shows a propagation path model according to the virtual sound source method.
  • the same elements as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 3 shows a center line 91 for one reception beam among a plurality of reception beams according to the parallel reception method.
  • the reception focal point 92 exists on the center line 91.
  • delay data is calculated on the assumption that the transmission focal point 90 is regarded as a virtual sound source and a wave (spherical wave) therefrom reaches the reception focal point 92.
  • the forward path propagation time is calculated as described above. Specifically, the propagation time corresponding to the first portion 100 from the transmission origin 88 to the transmission focal point 90 and the propagation time corresponding to the second portion 102 from the transmission focal point 90 to the reception focal point 92 are calculated.
  • the forward propagation time (propagation time corresponding to the first part 100 and the second part 102) is common to a plurality of receiving elements. Further, the return path propagation time corresponding to the return path 104 from the reception focal point 92 to each receiving element is the same among a plurality of transmission beams.
  • FIG. 4 schematically shows the virtual sound source method.
  • a transmission signal line string 24 is connected to the array transducer 10, and a reception signal line string 26 is drawn from the middle of the signal line string 24.
  • a transmission aperture X0 is set for the array transducer 10, and a plurality of transmission signals having a delay relationship indicated by a delay curve 28 are supplied to a plurality of vibration elements belonging to the array aperture 10.
  • a transmission beam 30a is formed.
  • the transmission beam 30a has a transmission focal point 32a.
  • the transmission beam 30b, the transmission beam 30c,... are formed while changing the transmission position in the scanning direction. They have a transmission focal point 32b, a transmission focal point 32c,.
  • the depths of their transmission focal points are the same, that is, Z0.
  • a plurality of reception beams are formed in one transmission / reception by applying a parallel reception technique.
  • the imaging point p is covered with three transmission beams 30a, 30b, and 30c in the illustrated example. In other words, it belongs to three transmission beams 30a, 30b and 30c.
  • Each transmission focal point 32a, 32b, 32c can be regarded as a virtual sound source (hereinafter, "transmission focal point” will be referred to as “virtual sound source” in some cases). That is, it is possible to think of spherical waves with each virtual sound source as the origin on the near side and the back side of each virtual sound source.
  • FIG. 4 shows a spherical wave emitted from the virtual sound source 32a.
  • Three spherical wave components 36a, 36b, and 36c derived from the three virtual sound sources 32a, 32b, and 32c arrive at the imaging point p.
  • a large amplitude can be observed at the imaging point p by combining the phases. That is, for example, in the reception processing after the transmission beam 30a is formed, in addition to the delay condition for realizing normal reception dynamic focus at the imaging point p, according to the distance between the virtual sound source 32a and the imaging point p. Delay processing is executed in consideration of the delay conditions.
  • the distance from the imaging point p to the specific vibration element 11a in the reception aperture is indicated by reference numeral 38a, and the propagation time at that time is t2.
  • the delay data is given to the received signal output from the receiving element 11a.
  • Similar reception processing is executed in the reception processing after the transmission beams 30b and 30c are formed.
  • the image quality of the ultrasonic image can be improved.
  • the image quality of the ultrasonic image can be improved, so that the number of transmission beams can be reduced by that amount and the frame rate can be improved.
  • FIG. 5 shows a first embodiment of the delay data generation circuit.
  • the delay data generation circuit 66 includes a forward path time (forward path propagation time) calculation circuit 110, a return path time (return path propagation time) calculation circuit 112, an adder 114, a delay data memory 116, and the like.
  • the forward path time calculation circuit 110 functions as a forward path delay data generator, and is configured by a PWL circuit in the first embodiment. A parameter group necessary for executing the PWL is calculated in advance and written in the parameter memory 122 in advance.
  • a parameter group for PWL is calculated and stored in the parameter memory 122.
  • the forward time calculation circuit 110 reads out necessary parameters from the parameter memory 122 by specifying the transmission beam number, parallel reception number, and the like for each reception focal depth in executing each reception dynamic focus. PWL is executed with reference to parameters necessary for calculation, and as a result, forward path delay data corresponding to each reception focus is output.
  • the forward delay data is shared between a plurality of receiving vibration elements under the same transmission / reception conditions.
  • a memory for storing return path delay data is provided in the forward path time calculation circuit 110. Such a memory may be provided in the adder 114.
  • the return path time calculation circuit 112 functions as a return path delay data generator, and calculates the propagation time by dividing the path length of the return path from the reception point to each receiving element by the sound velocity. This corresponds to return path delay data.
  • coordinate data for each receiving element is stored as necessary.
  • the coordinate data specifies the x coordinate and the y coordinate for each receiving element. By holding such two-dimensional coordinate data, it is possible to cope with convex scanning.
  • the return control time calculation circuit 112 is given parameters necessary for the calculation from the main control unit. In that case, the scanning line number to which the reception dynamic focus is applied may be given as a parameter, or the scanning line number may be generated from the transmission beam number and the parallel reception number.
  • one imaging point corresponds to a plurality of transmission beams.
  • the return delay data of each receiving element is shared between the plurality of transmission beams.
  • a memory for storing a plurality of return path delay data corresponding to a plurality of receiving elements is provided in the return time calculation circuit 112. Such a memory may be provided in the adder 114.
  • the return time calculation circuit is configured by, for example, a general function calculator. It may be composed of a circuit such as an FPGA or an ASIC.
  • the entire reception beam former or the delay data generation circuit 66 may be configured by an FPGA or an ASIC.
  • the adder 114 is a circuit that generates delay data by adding the forward path delay data and the backward path delay data, and functions as a delay data generator. That is, the adder 114 calculates the total propagation time by adding the forward propagation time and the backward propagation time. This is performed for each receiving element.
  • the delay data memory 116 stores a delay data set for a predetermined unit, for example, one frame. Of course, individual delay data may be generated in real time.
  • a reception focus is usually formed at all imaging points in the display area.
  • FIG. 2 when paying attention to a certain receiving element, it is ideal to calculate the total propagation distance accurately, divide it by the speed of sound to obtain the propagation time, and use it as delay data.
  • delay data is generated using a piecewise polynomial interpolation method or the like. The total amount of parameters required for such calculation is proportional to the number of transmission beams, the number of parallel receptions, and the number of reception elements.
  • PWL piecewise linear interpolation
  • the number of transmitted beams is 192
  • the number of parallel reception is 32
  • the number of receiving elements is 192
  • the number of sections is 32.
  • the delay data representsative depth delay data
  • this embodiment is also calculated under the same conditions.
  • the receiving element is irrelevant, and the total amount of parameters is as follows.
  • the return delay data can be calculated regardless of the transmission beam number, and since it has become relatively easy to perform square root calculation and the like due to recent advances in electronic circuit technology, the return delay data Can be computed mathematically and sequentially without using PWL.
  • the parameter required for the calculation is about the coordinates (x, y) for each receiving element constituting the receiving aperture per receiving beam. That is, the parameter amounts that should be prepared in advance are as follows, for example.
  • the required total amount of parameters in this embodiment is, for example, as follows.
  • the calculation of the forward path time becomes very simple, that is, the calculation of the straight path from the transmission reference point to the reception focus, and the straight path
  • the forward delay data can be easily calculated from the calculation of dividing by the speed of sound.
  • Numeral 128 indicates a center line that crosses the center of the array transducer 50. Transmit beam 130 is deflected with respect to centerline 128.
  • the imaging point 134 is a point at which imaging is desired on the scanning plane. If the reception focal point is formed at the position of the imaging point 134, a reception beam 136 having a deflection angle ⁇ is formed. However, in that case, the transmission / reception comprehensive peak (transmission / reception combined sensitivity peak) shifts closer to the transmission beam 130 than the imaging point 134 (see Patent Document 1). As a method for coping with this, there is a method of shifting the position of the reception point outward so that the imaging point 134 becomes the position of the transmission / reception total peak.
  • the reception beam is indicated by reference numeral 144
  • the corrected reception focus is indicated by reference numeral 142.
  • the deflection angle of the reception beam 144 actually formed is obtained by adding a correction angle ⁇ to the original deflection angle ⁇ . That is, the angle is ( ⁇ + ⁇ ).
  • Reference numeral 144 denotes a forward path from the transmission reference point 126 to the reception focal point 142. This is the same as the distance from the transmission reference point 126 to the imaging point 134.
  • Reference numeral 138 indicates a path from the imaging point 134 to the receiving element 140 (return path before correction), and reference numeral 146 indicates a path from the reception focal point 142 to the receiving element 140 (return path after correction).
  • the length of the forward path from the transmission reference point 126 is the same (both are r), and a difference occurs in the return path length, so correction is necessary.
  • Xe is the distance from the center 126 to the receiving element 140.
  • the reception beam deflection angle is ⁇ .
  • calculation of the propagation distance d 'when correction is performed is as follows.
  • the correction angle of the reception beam is ⁇ .
  • the corrected propagation distance d ′ is obtained by adding a fixed correction term ( ⁇ ⁇ cos ⁇ ⁇ xe) to the propagation distance d before correction. Therefore, in order to specify the calculation result after correction from the calculation result before correction, the correction term should be considered.
  • the second embodiment considers such a correction term.
  • FIG. 7 shows the configuration of the delay data generation circuit 66A according to the second embodiment.
  • the delay data generation circuit 66A includes a straight forward time (straight forward propagation time) calculation circuit 150, a correction term calculation circuit 152, a return time calculation circuit 154, and the like.
  • the straight forward time calculation circuit 150 executes a calculation of dividing the forward path length r by the speed of sound c.
  • the straight forward time calculation circuit 150 can be configured as a normal function calculation circuit. Parameters necessary for the calculation are passed from the main control unit.
  • the return time calculation circuit 154 is a circuit that executes the second term in the equation (5-1).
  • the return path propagation time may be calculated by dividing the return path length (after the second term) in the equation (5-2) by the speed of sound.
  • the return time calculation circuit 154 can also be constituted by a normal function calculation circuit. Parameters necessary for the calculation are passed from the main control unit.
  • the correction term calculation circuit 152 functions as a correction delay data generator.
  • the correction term calculation circuit 152 calculates a correction term using PWL, and specifically, calculates ( ⁇ ⁇ cos ⁇ ) / c. Then, xe is multiplied by the multiplier 156 with respect to the calculation result. As a result, a correction term is generated.
  • the correction term can be thought of as correction delay data.
  • a parameter group necessary for calculating PWL is written in the parameter memory 166 in advance. Other necessary parameters are passed from the main controller. Note that a parameter memory 168 may be provided in the previous stage of the return time calculation circuit 154, and necessary parameter groups may be written in advance there.
  • the adder 158 In the adder 158, the above three calculation results, the straight forward propagation time, the correction term, and the backward propagation time are added, thereby calculating the total propagation time. It is written into the delay data memory as delay data. In the delay process, the delay data in the delay data memory 160 is sequentially read by the delay controller.
  • the forward delay data and the backward delay data are generated separately.
  • the number of correction terms may be increased according to the dimension of the element coordinates. Further, the correction term may be calculated using the element number.
  • FIG. 8 shows the effect of correcting the reception point.
  • the horizontal axis indicates the deflection angle.
  • the vertical axis represents the sound pressure (sensitivity).
  • a characteristic to be realized is indicated by reference numeral 172.
  • the characteristic indicated by reference numeral 174 can be formed, and the transmission / reception total peak of the characteristic is obtained. Can be set to 0.5 degrees (see reference numeral 176).
  • the delay data generation circuit 66B has a straight forward path time calculation circuit 180, a forward path time / correction term calculation circuit 182 and a return path time calculation circuit 184, similarly to the delay data generation circuit 66A shown in FIG. is doing.
  • 9 corresponds to the linear forward time calculation circuit 150 shown in FIG. 7, and operates in the second transmission / reception mode.
  • the return path time calculation circuit 184 in FIG. 9 corresponds to the return path time calculation circuits 112 and 154 shown in FIGS. It operates in both the first transmission / reception mode and the second transmission / reception mode.
  • the forward path time / correction term calculation circuit 182 in FIG. 9 corresponds to the forward path time calculation circuit 110 shown in FIG. 5 and the correction term calculation circuit 152 shown in FIG.
  • the arithmetic circuit 182 functions as a forward path time arithmetic circuit
  • the arithmetic circuit 182 functions as a correction term arithmetic circuit.
  • a parameter memory 200 is provided before the arithmetic circuit 182
  • a parameter memory 202 is provided before the return time arithmetic circuit 184.
  • the multiplier 186 and the adder 188 function in the second transmission / reception mode, and the selector (SEL) selects the direct output from the arithmetic circuit 182 in the first transmission / reception mode and adds in the second transmission / reception mode.
  • the output from the unit 188 is selected.
  • the adder 192 adds the output of the selector 190 and the output of the return path time calculation circuit 184 in both the first transmission / reception mode and the second transmission / reception mode, thereby generating delay data. It is once written into the delay data memory 194.
  • the delay data by dividing the delay data into a plurality of components, it is possible to obtain advantages such as sharing of components, reduction in parameter amount, and parallel computation, and in turn, effects such as high-speed computation and increase in the number of parallel receptions. . Further, according to the above configuration, even when the transmission / reception conditions are changed, the parameter calculation time for generating the delay data can be shortened, so that the transmission start waiting time can be shortened.
  • a first arithmetic circuit 204 is a straight path arithmetic circuit, and executes the calculation of (2r / c).
  • the first arithmetic circuit 204 can be configured by a simple calculation circuit. The calculation result can be shared among a plurality of receiving vibration elements in the receiving aperture.
  • the second calculation circuit 206 executes the calculation of ((sin ⁇ + ⁇ ⁇ cos ⁇ ) / c) as described above.
  • it may be constituted by a PWL circuit.
  • the calculation result cannot be shared among the plurality of vibration elements.
  • the computing unit 208 includes a circuit that multiplies the computation result of the second computation circuit 206 by xe, and a circuit that adds the multiplication result and the computation result of the first computation circuit 204.
  • Delay data is output from the arithmetic unit 208 and stored in the delay data memory 210.
  • the parameter memory 212 stores parameters necessary for the calculation in the first calculation circuit 204
  • the parameter memory 214 stores parameters required for the calculation in the second calculation circuit 206.
  • a specific component in the delay data can be shared among a plurality of receiving vibration elements.
  • the virtual sound source method it is possible to calculate the forward delay data in the first arithmetic circuit 204 and to calculate the backward delay data in the second arithmetic circuit 206.
  • the parameter group can be calculated in a short time even when the transmission / reception conditions are changed, so that the user's stress associated with the delay of the transmission start timing can be reduced or eliminated.

Abstract

In the present invention, a forward time arithmetic circuit computes forward delay data that corresponds to a forward path from a transmission reference point to a reception focus. A backward time arithmetic circuit computes backward delay data that corresponds to a backward path from the reception focus to reception vibration elements for each reception vibration element. An adder generates delay data by adding the forward delay data and the backward delay data. The forward delay data is shared among a plurality of reception elements. The backward delay data is shared among a plurality of transmission beams for each reception element in a case where a virtual sound source method is applied.

Description

超音波診断装置及び遅延データ生成方法Ultrasonic diagnostic apparatus and delay data generation method
 本発明は超音波診断装置及び遅延データ生成方法に関し、特に、受信ビームフォーマーで実行される遅延処理のための遅延データの生成に関する。 The present invention relates to an ultrasonic diagnostic apparatus and a delay data generation method, and more particularly to generation of delay data for delay processing executed by a reception beamformer.
 超音波診断装置(Ultrasonic Diagnostic Apparatus)の受信ビームフォーマー(Receiving Beam Former)は、複数の振動素子(Transducer Elements)から並列的に出力される複数の受信信号に対して整相加算処理(Aligning and Summing Processing)を適用し、これにより受信ビームに相当するビームデータを生成する回路である。整相加算処理は、受信焦点を形成するために、複数の受信信号を遅延処理して複数の受信信号の位相を揃えた上で、それらを加算する処理であり、それはDelay and Sum(DAS)とも言われている。整相加算処理は、大別して、遅延処理と加算処理とからなる。 The receiving beamformer (Receiving Beam Former) of the ultrasonic diagnostic device (Ultrasonic Diagnostic Apparatus) performs phasing and addition processing (Aligning and) on multiple received signals output in parallel from multiple transducers (Transducer Elements) Summing 回路 Processing) is applied to generate beam data corresponding to the received beam. The phasing and adding process is a process of delaying a plurality of received signals and aligning the phases of the plurality of received signals to form a reception focus, and adding them together, which is Delay and Sum (DAS) It is also said. The phasing addition process is roughly divided into a delay process and an addition process.
 通常、個々の受信ビームごとに、受信焦点深さを深い方向へ連続的に切り替える受信ダイナミックフォーカス技術が適用される(特許文献1を参照)。受信焦点は、一般に、送受総合ピーク位置(感度最大位置)に一致するが、パラレル受信技術等が適用される場合(つまり送信ビーム中心軸と受信ビーム中心軸とがずれている場合)、受信焦点と送受総合ピーク位置とが不一致となる(同特許文献1を参照)。その場合、受信焦点ではなく送受総合ピーク位置が撮像点(観測点)の位置とみなされる。撮像点が適正な位置になるように受信ビームを操作する技術も提案されている(同特許文献1を参照)。パラレル受信(Parallel Receiving)技術は、1つの送信ビームに対して、複数の受信ビームを同時且つ並列的に形成するものである。この技術によると、一回の送受信で、複数のビームデータが得られる。 Usually, a reception dynamic focus technique for continuously changing the reception focal depth in a deep direction is applied to each individual reception beam (see Patent Document 1). The reception focus generally matches the transmission / reception total peak position (maximum sensitivity position). However, when parallel reception technology or the like is applied (that is, when the transmission beam central axis and the reception beam central axis are shifted), the reception focal point is obtained. And the transmission / reception total peak position do not match (see Patent Document 1). In that case, not the reception focus but the transmission / reception total peak position is regarded as the position of the imaging point (observation point). A technique for manipulating a reception beam so that an imaging point is in an appropriate position has also been proposed (see Patent Document 1). The parallel reception (Parallel Receiving) technique forms a plurality of reception beams simultaneously and in parallel with respect to one transmission beam. According to this technique, a plurality of beam data can be obtained by one transmission / reception.
 受信ビームフォーマーは、一般に、複数のA/D変換器、複数の遅延器、加算器、等を有する。具体的には、複数のA/D変換器により複数のアナログ受信信号が複数のデジタル受信信号に変換される。それらの複数のデジタル受信信号は複数の遅延器でそれぞれ遅延処理される。遅延処理後の複数のデジタル受信信号が加算器において加算され、これにより受信ビームに相当するビームデータが得られる。ビームデータは深さ方向に並んだ複数のエコーデータにより構成される。 The reception beamformer generally has a plurality of A / D converters, a plurality of delay units, an adder, and the like. Specifically, a plurality of analog reception signals are converted into a plurality of digital reception signals by a plurality of A / D converters. The plurality of digital received signals are delayed by a plurality of delay units, respectively. A plurality of digital received signals after the delay processing are added by an adder, whereby beam data corresponding to the received beam is obtained. The beam data is composed of a plurality of echo data arranged in the depth direction.
 上記の複数の遅延器は、実際には、例えば複数のメモリにより構成される。複数のメモリからの複数のデータの読み出しタイミングの調整により、複数の受信信号が遅延処理される。このため、受信ビームフォーマーの内部(又は外部)には、複数の遅延データに基づいて、複数のメモリからの複数のデータの並列的な読み出しを制御する読み出しコントローラが設けられている。また、受信ビームフォーマーの内部(又は外部)には、読み出しコントローラに与える遅延データセットを生成する遅延データ生成回路が設けられている。遅延データセットは、電子走査方式に従って、受信ダイナミックフォーカスやパラレル受信等を実現するための遅延データの集合体である。典型的には、1つのビーム走査面当たり多数の受信焦点を形成する必要があるところ、それらを形成するためのデータが遅延データセットである。遅延データセットを構成する個々の遅延データは、通常、伝搬時間又は遅延時間に相当する。伝搬時間をマイナスの遅延時間(早読み時間)と理解することも可能である。なお、遅延データ生成器で遅延データを生成するために必要となるパラメータ群が事前に計算され、計算されたパラメータ群は遅延データ生成回路によりアクセスされるパラメータメモリに事前に格納される。 The plurality of delay devices described above are actually composed of a plurality of memories, for example. A plurality of received signals are subjected to delay processing by adjusting the read timing of a plurality of data from a plurality of memories. For this reason, a read controller that controls parallel reading of a plurality of data from a plurality of memories based on a plurality of delay data is provided inside (or outside) the reception beamformer. Also, a delay data generation circuit that generates a delay data set to be supplied to the read controller is provided inside (or outside) the reception beamformer. The delay data set is a collection of delay data for realizing reception dynamic focus, parallel reception, and the like according to the electronic scanning method. Typically, a large number of receiving focal points need to be formed per beam scanning plane, and the data for forming them is a delayed data set. The individual delay data constituting the delay data set usually corresponds to a propagation time or a delay time. It is also possible to understand the propagation time as a negative delay time (fast reading time). Note that a parameter group necessary for generating delay data by the delay data generator is calculated in advance, and the calculated parameter group is stored in advance in a parameter memory accessed by the delay data generation circuit.
 一般に、ある受信焦点を形成する際に、受信開口を構成する各受信素子に与える遅延データは、送信基準点(送信原点)から受信焦点までの往路距離と、受信焦点から当該受信素子までの復路距離と、に基づいて計算される。具体的には、往路距離と復路距離とを加算して求まる往復距離を音速で割ることによって遅延時間つまり遅延データが求められる。1つの走査面上の全受信焦点について、受信素子単位で、上記の遅延データを個別的に計算するのは非常に大変であり、かなり時間がかかる。その計算のために多数のパラメータを事前に計算しておく必要があり、そのために大きな記憶容量を有するパラメータメモリを設けなければならない。 In general, when forming a certain reception focal point, delay data given to each reception element constituting the reception aperture includes the forward distance from the transmission reference point (transmission origin) to the reception focal point, and the return path from the reception focal point to the reception element. Calculated based on the distance. Specifically, the delay time, that is, the delay data, is obtained by dividing the round trip distance obtained by adding the forward path distance and the return path distance by the speed of sound. It is very difficult and time-consuming to calculate the delay data individually for each receiving element for all receiving focal points on one scanning plane. For this calculation, it is necessary to calculate a large number of parameters in advance, and for this purpose, a parameter memory having a large storage capacity must be provided.
 以上を背景として、通常の超音波診断装置においては、遅延データ生成回路に与えるパラメータ総数やそこでの演算量を少なくするために、理想的な伝搬時間の計算を実行する代わりに、区分的多項式補間法(Piecewise Polynomial  Interpolation)(スプライン補間法(Spline Interpolation))、漸化式(Recurrence Formula)を用いた方法(非特許文献1を参照)、等による簡易な演算方法が採用されている。区分的多項式補間法の一種として、区分的線形補間(Piecewise Linear Interpolation)法(PWL法)が知られている。この方法は、深さ方向に並ぶ比較的少数の複数の代表受信焦点について複数の代表伝搬時間を事前に求めておき、受信ダイナミックフォーカスの適用過程では、対象区間の両端をなす2つの代表伝搬時間に対して線形補間を適用することにより、個々の受信焦点に対応する伝搬時間あるいは遅延データを生じさせるものである。 With the above background, in normal ultrasound diagnostic equipment, instead of performing ideal propagation time calculations to reduce the total number of parameters given to the delay data generation circuit and the amount of computation there, piecewise polynomial interpolation A simple calculation method using a method (Piecewise Polynomial Interpolation) (Spline Interpolation), a method using a recurrence formula (Recurrence Formula) (see Non-Patent Document 1), or the like is employed. As a kind of piecewise polynomial interpolation method, a piecewise linear interpolation method (PWL method) is known. In this method, a plurality of representative propagation times are obtained in advance for a relatively small number of representative reception focal points arranged in the depth direction, and in the process of applying the reception dynamic focus, two representative propagation times forming both ends of the target section are obtained. By applying linear interpolation to, propagation time or delay data corresponding to each reception focus is generated.
 いずれにしても、従来の超音波診断装置では、往路及び復路からなる全経路に対応する遅延データが生成されている。往路に対応する遅延データと、復路に対応する遅延データと、を独立して生成する技術、更にはそのように生成された個々の遅延データを共用する技術、は未だ提案されていない。 In any case, in the conventional ultrasonic diagnostic apparatus, delay data corresponding to all paths including the forward path and the return path is generated. There has not yet been proposed a technique for independently generating the delay data corresponding to the forward path and the delay data corresponding to the return path, and a technique for sharing the individual delay data generated as such.
 なお、近時、送信開口合成法に基づく仮想音源(Virtual Acoustic Source)法が実用化されつつある。この仮想音源法は、時間的に異なるタイミングで生成される個々の送信焦点をそれぞれ仮想音源とみなし、走査面上の個々の撮像点において、複数の仮想音源から到来する複数の波(球面波)の位相が合うように、複数の受信信号に対して遅延処理を適用するものである(非特許文献2を参照)。平面波を利用する仮想音源法等も知られている。 Recently, a virtual acoustic source method based on a transmission aperture synthesis method is being put into practical use. In this virtual sound source method, individual transmission focal points generated at different timings are regarded as virtual sound sources, and a plurality of waves (spherical waves) arriving from a plurality of virtual sound sources at individual imaging points on the scanning plane. The delay processing is applied to a plurality of received signals so that the phases are matched (see Non-Patent Document 2). A virtual sound source method using a plane wave is also known.
特開平2-206451号公報Japanese Patent Laid-Open No. 2-206451
 以上のように、遅延データの生成に関して、演算量又は演算時間の増大という問題を指摘できる。これに対処するために、非常に高速な回路や巨大なメモリを利用するならば、装置構成の複雑化やコストアップという問題が生じてしまう。特に、仮想音源法の適用下でパラレル受信数を増大させる場合において、上記問題はより深刻となる。 As described above, it can be pointed out that the amount of calculation or the calculation time is increased with respect to the generation of delay data. If a very high-speed circuit or a huge memory is used to cope with this, problems such as a complicated apparatus configuration and an increase in cost occur. In particular, when the number of parallel receptions is increased under application of the virtual sound source method, the above problem becomes more serious.
 本発明の目的は、受信信号処理で利用する遅延データセットを効率的又は能率的に生成できるようにすることにある。あるいは、遅延データの生成に際して演算量又は演算時間を削減することにある。あるいは、パラレル受信数を増大させることにある。あるいは、仮想音源法に適合した受信ビームフォーマーを実現することにある。 An object of the present invention is to enable generation of a delay data set used in received signal processing efficiently or efficiently. Alternatively, the amount of computation or computation time is reduced when generating delay data. Alternatively, the number of parallel receptions is increased. Another object is to realize a reception beamformer adapted to the virtual sound source method.
 (1)本発明に係る超音波診断装置は、複数の受信信号を出力する複数の振動素子と、前記複数の振動素子に対応する複数の遅延データを生成する生成回路と、前記複数の遅延データに従って、前記複数の受信信号を遅延処理する遅延処理回路と、を含み、前記生成回路は、送信基準点から受信焦点までの往路に対応する往路遅延データを生成する往路遅延データ生成器と、前記複数の振動素子における受信振動素子ごとに、前記受信焦点から当該受信振動素子までの復路に対応する復路遅延データを生成する復路遅延データ生成器と、前記受信振動素子ごとに、前記往路遅延データと前記復路遅延データとに基づいて当該受信振動素子からの受信信号を遅延処理するための遅延データを生成する遅延データ生成器と、を含むことを特徴とする。 (1) An ultrasonic diagnostic apparatus according to the present invention includes a plurality of vibration elements that output a plurality of reception signals, a generation circuit that generates a plurality of delay data corresponding to the plurality of vibration elements, and the plurality of delay data. A delay processing circuit that delays the plurality of received signals, and the generation circuit generates a forward delay data generator that generates forward delay data corresponding to a forward path from a transmission reference point to a reception focal point, and For each reception vibration element in a plurality of vibration elements, a return path delay data generator that generates return path delay data corresponding to a return path from the reception focus to the reception vibration element, and for each reception vibration element, the forward path delay data and A delay data generator that generates delay data for delaying a reception signal from the reception vibration element based on the return path delay data; That.
 上記構成によれば、往路遅延データと復路遅延データとが別々に生成された上で、それらに基づいて、望ましくはそれらの加算により、実際の遅延処理を規定する遅延データが生成される。よって、例えば、仮想音源法及びパラレル受信法を実行する場合、1つの往路遅延データ(送信基準点から送信焦点を経由した受信焦点までの経路に対応する遅延データ)を複数の受信振動素子間で共用することが可能であり、また、1つの復路遅延データ(受信焦点から受信振動素子までの復路に対応する遅延データ)を複数の送信ビーム間で共用することが可能である。往路遅延データと復路遅延データを計算上、分離することにより、すなわち、データ共用の観点から、遅延データを、それを構成する複数の成分に分離することにより、遅延データを生成するのに必要なパラメータ量や演算量を削減できる。 According to the above configuration, the forward delay data and the backward delay data are generated separately, and based on them, the delay data that defines the actual delay processing is preferably generated by adding them. Therefore, for example, when the virtual sound source method and the parallel reception method are executed, one forward path delay data (delay data corresponding to the path from the transmission reference point to the reception focus via the transmission focus) is transmitted between the plurality of reception vibration elements. One return path delay data (delay data corresponding to the return path from the reception focal point to the reception vibration element) can be shared between a plurality of transmission beams. Necessary to generate delay data by separating forward delay data and backward delay data in calculation, that is, from the viewpoint of data sharing, by separating delay data into a plurality of components constituting it. The amount of parameters and calculation amount can be reduced.
 遅延データは、遅延処理の際に利用されるデータであり、伝搬時間を表すデータ、遅延時間を表すデータ、等である。例えば、遅延データが伝搬時間を表すデータである場合、遅延データが大きければ大きいほど、時系列順でメモリに記憶された複数のデータの中から、より後にメモリに記憶された(つまり、より新しい)データが読み出される。送信基準点は、計算上又は空間上の原点に相当するものであり、典型的には、送信開口中心である。走査方式によって、送信基準点の定義は変わり得る。 Delay data is data used in delay processing, such as data representing propagation time, data representing delay time, and the like. For example, when the delay data is data representing the propagation time, the larger the delay data, the later the data stored in the memory among the plurality of data stored in the memory in chronological order (that is, the newer data) ) Data is read out. The transmission reference point corresponds to a calculation or space origin, and is typically the transmission aperture center. Depending on the scanning method, the definition of the transmission reference point may change.
 望ましくは、前記往路遅延データ生成器は、複数の受信振動素子間で共用されるデータとして前記往路遅延データを生成する。すなわち、受信開口を構成する複数の振動素子間で受信焦点ごとに同じ往路遅延データを共用することが可能である。 Desirably, the forward path delay data generator generates the forward path delay data as data shared by a plurality of receiving vibration elements. That is, it is possible to share the same forward delay data for each reception focal point among a plurality of vibration elements constituting the reception aperture.
 望ましくは、前記往路遅延データ生成器は、送信開口合成法としての仮想音源法が実行される場合に、前記送信基準点、送信焦点及び前記受信焦点に基づいて、前記往路遅延データを生成する。例えば、超音波ビームが一次元走査される場合、走査面上における送信基準点の座標、送信焦点の座標、及び、受信焦点の座標から、往路遅延データが生成される。 Desirably, the forward delay data generator generates the forward delay data based on the transmission reference point, the transmission focus, and the reception focus when a virtual sound source method as a transmission aperture synthesis method is executed. For example, when the ultrasonic beam is scanned one-dimensionally, forward delay data is generated from the coordinates of the transmission reference point, the coordinates of the transmission focal point, and the coordinates of the reception focal point on the scanning plane.
 望ましくは、前記往路遅延データは往路伝搬時間に対応するデータであり、前記往路伝搬時間は、前記送信原点から前記送信焦点までの距離よりも前記送信原点から前記受信焦点までの距離が大きい場合には、前記送信原点から前記送信焦点までの距離に対応する伝搬時間に対して、前記送信焦点から前記受信焦点までの距離に対応する伝搬時間を加算した時間であり、前記送信原点から前記送信焦点までの距離よりも前記送信原点から前記受信焦点までの距離が小さい場合には、前記送信原点から前記送信焦点までの距離に対応する伝搬時間から、前記送信焦点から前記受信焦点までの距離に対応する伝搬時間を減算した時間である。すなわち、仮想音源法に従って球面波の伝搬時間までが考慮される。 Preferably, the forward delay data is data corresponding to a forward propagation time, and the forward propagation time is when the distance from the transmission origin to the reception focal point is larger than the distance from the transmission origin to the transmission focal point. Is a time obtained by adding a propagation time corresponding to the distance from the transmission focal point to the reception focal point to a propagation time corresponding to the distance from the transmission origin to the transmission focal point. When the distance from the transmission origin to the reception focal point is smaller than the distance from the transmission time, the propagation time corresponding to the distance from the transmission origin to the transmission focal point corresponds to the distance from the transmission focal point to the reception focal point. This is the time obtained by subtracting the propagation time. That is, the propagation time of the spherical wave is considered according to the virtual sound source method.
 望ましくは、前記往路遅延データ生成器は区分的多項式補間法に従って前記往路遅延データを生成する。この構成を採用する場合、例えば、送信ビームごとに複数の代表受信焦点についての複数の伝搬時間を事前に計算しておき、実際に受信ダイナミックフォーカスを適用する場合には個々の受信焦点ごとに補間処理により伝搬時間が逐次演算される。 Preferably, the forward delay data generator generates the forward delay data according to a piecewise polynomial interpolation method. When this configuration is adopted, for example, a plurality of propagation times for a plurality of representative reception focal points are calculated in advance for each transmission beam, and interpolation is performed for each reception focal point when actually applying reception dynamic focus. The propagation time is sequentially calculated by the processing.
 望ましくは、前記復路遅延データ生成器は、複数の送信ビーム間において共用されるデータとして前記復路遅延データを生成する。望ましくは、前記復路遅延データ生成器は、前記受信焦点及び前記受信振動素子の間の距離に基づいて前記復路遅延データを生成する。望ましくは、前記遅延データ生成回路は、前記往路遅延データと前記復路遅延データとを加算する回路である。 Preferably, the return path delay data generator generates the return path delay data as data shared between a plurality of transmission beams. Preferably, the return path delay data generator generates the return path delay data based on a distance between the reception focus and the reception vibration element. Preferably, the delay data generation circuit is a circuit that adds the forward path delay data and the return path delay data.
 望ましくは、前記生成回路は、更に、補正項として補正遅延データを生成する補正遅延データ生成器を含み、前記遅延データ生成器は、前記受信振動素子ごとに、前記往路遅延データ、前記復路遅延データ、及び、前記補正遅延データに基づいて、当該受信振動素子からの受信信号を遅延処理するための前記遅延データを生成する。望ましくは、前記補正項は、送受総合ピークを所望の撮像点に合わせるための受信焦点シフト量に対応する。 Preferably, the generation circuit further includes a correction delay data generator that generates correction delay data as a correction term, and the delay data generator includes the forward delay data and the return delay data for each of the reception vibration elements. And based on the said correction | amendment delay data, the said delay data for carrying out the delay process of the received signal from the said receiving vibration element are produced | generated. Preferably, the correction term corresponds to a reception focus shift amount for adjusting the transmission / reception total peak to a desired imaging point.
 (2)本発明に係る方法は、複数の受信振動素子間で共用される成分として第1遅延データを生成する工程と、前記受信振動素子ごとに、当該受信振動素子用の固有の成分として第2遅延データを生成する工程と、前記受信振動素子ごとに、前記第1遅延データ及び前記第2遅延データに基づいて、当該受信振動素子からの受信信号を遅延処理するための遅延データを生成する工程と、を含むことを特徴とする。 (2) The method according to the present invention includes a step of generating first delay data as a component shared among a plurality of reception vibration elements, and a first component as a unique component for the reception vibration element for each reception vibration element. A step of generating two delay data, and for each reception vibration element, delay data for delaying a reception signal from the reception vibration element is generated based on the first delay data and the second delay data. And a process.
 上記構成によれば、複数の受信振動素子間で共用される成分としての第1遅延データと、複数の受信振動素子間で共用されない成分(固有の成分)としての第2遅延データと、が別々に生成された上で、両成分に基づいて、遅延データが生成される。少なくとも第1遅延データを、受信開口を構成する複数の受信振動素子間で共用できるので、遅延データ生成用のパラメータ総数や演算量を低減できる。望ましくは、第1遅延データは往路遅延データであり、第2遅延データは復路遅延データである。あるいは、第1遅延データは、受信点シフトによって送受総合ピークを所望の撮像点に一致させるピーク補正に影響を受けない成分であり、第2遅延データは、ピーク補正に影響を受ける成分である。 According to the above configuration, the first delay data as a component shared between the plurality of reception vibration elements and the second delay data as a component (unique component) that is not shared between the plurality of reception vibration elements are separated. Then, delay data is generated based on both components. Since at least the first delay data can be shared among a plurality of reception oscillating elements constituting the reception aperture, the total number of delay data generation parameters and the amount of calculation can be reduced. Preferably, the first delay data is forward path delay data, and the second delay data is return path delay data. Alternatively, the first delay data is a component that is not affected by the peak correction for matching the transmission / reception total peak to a desired imaging point by the reception point shift, and the second delay data is a component that is affected by the peak correction.
 上記方法は、遅延データを構成する複数の成分に着目し、共通利用できる成分とそうでない成分とを別々に生成することにより演算量等の削減を図るものである。上記の各工程は超音波診断装置において実行される。より詳しくは、上記の各工程は、超音波診断装置に含まれるプロセッサで実行されるプログラムにより実現され得る。そのプログラムは可搬型の媒体にインストールされてもよいし、また、ネットワーク上において伝送されてもよい。 The above method pays attention to a plurality of components constituting the delay data, and reduces the amount of calculation by separately generating components that can be used in common and components that are not. Each of the above steps is executed in the ultrasonic diagnostic apparatus. More specifically, each of the above steps can be realized by a program executed by a processor included in the ultrasonic diagnostic apparatus. The program may be installed on a portable medium or transmitted over a network.
本発明に係る超音波診断装置の好適な実施形態を示すブロック図である。1 is a block diagram showing a preferred embodiment of an ultrasonic diagnostic apparatus according to the present invention. パラレル受信における伝搬経路モデルを示す図である。It is a figure which shows the propagation path model in parallel reception. 仮想音源法に基づく伝搬経路モデルを示す図である。It is a figure which shows the propagation path model based on a virtual sound source method. 仮想音源法の一例を説明するための図である。It is a figure for demonstrating an example of a virtual sound source method. 遅延データ生成回路の第1実施形態を示すブロック図である。1 is a block diagram illustrating a first embodiment of a delay data generation circuit. FIG. 受信焦点と撮像点(送受信感度ピーク)との関係を示す図である。It is a figure which shows the relationship between a receiving focus and an imaging point (transmission / reception sensitivity peak). 遅延データ生成回路の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of a delay data generation circuit. 補正項の作用を説明するための図である。It is a figure for demonstrating the effect | action of a correction | amendment term. 遅延データ生成回路の第3実施形態を示すブロック図である。It is a block diagram which shows 3rd Embodiment of a delay data generation circuit. 遅延データ生成回路の第4実施形態を示すブロック図である。It is a block diagram which shows 4th Embodiment of a delay data generation circuit.
 以下、本発明の好適な実施形態を図面に基づいて説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 (1)超音波診断装置
 図1には、本発明に係る超音波診断装置の好適な実施形態が示されている。この超音波診断装置は、医療機関に設置され、生体に対する超音波の送受波により超音波画像を形成する装置である。超音波診断装置は、超音波診断装置本体とそれに接続されたプローブとで構成される。プローブはヘッド、ケーブル及びコネクタにより構成される。ヘッド内にアレイ振動子50が設けられる。
(1) Ultrasonic Diagnostic Device FIG. 1 shows a preferred embodiment of an ultrasonic diagnostic device according to the present invention. This ultrasonic diagnostic apparatus is an apparatus that is installed in a medical institution and forms an ultrasonic image by transmitting and receiving ultrasonic waves to and from a living body. The ultrasonic diagnostic apparatus includes an ultrasonic diagnostic apparatus main body and a probe connected thereto. The probe includes a head, a cable, and a connector. An array transducer 50 is provided in the head.
 アレイ振動子50は、本実施形態において、直線状に配列された複数の振動素子50aからなる送受信デバイスである。アレイ振動子50によって超音波ビームが形成され、それが電子的に走査される。超音波ビームは、実際には、送信ビーム及び受信ビームを合成した場合に観念される送受総合ビームである。電子走査方式として、電子リニア走査方式、電子セクタ走査方式、等が知られている。電子リニア走査方式の一態様としての電子コンベックス走査方式が知られている。二次元配列された複数の振動素子からなる2Dアレイ振動子が設けられてもよい。 In the present embodiment, the array transducer 50 is a transmission / reception device including a plurality of vibration elements 50a arranged linearly. An ultrasonic beam is formed by the array transducer 50 and scanned electronically. The ultrasonic beam is actually a combined transmission / reception beam that is conceived when a transmission beam and a reception beam are combined. As an electronic scanning method, an electronic linear scanning method, an electronic sector scanning method, and the like are known. An electronic convex scanning system is known as an aspect of the electronic linear scanning system. A 2D array transducer including a plurality of transducer elements arranged two-dimensionally may be provided.
 送信ビームフォーマー52は、送信時において、送信ビームを形成するための電子回路である。具体的には、送信ビームを形成するための一定の遅延関係をもった複数の送信信号が生成され、それらがアレイ振動子50へ並列的に供給される。これにより送信開口内の個々の振動素子から生体内へ超音波が放射される。その結果、送信焦点において集束する送信ビームが形成される。 The transmission beam former 52 is an electronic circuit for forming a transmission beam during transmission. Specifically, a plurality of transmission signals having a fixed delay relationship for forming a transmission beam are generated and supplied to the array transducer 50 in parallel. Thereby, ultrasonic waves are radiated from the individual vibration elements in the transmission opening into the living body. As a result, a transmission beam that is focused at the transmission focal point is formed.
 受信ビームフォーマー54は、受信時において、受信ビームを形成するための電子回路である。生体内からの反射波が受信開口内の複数の振動素子に到達すると、それらの複数の振動素子から複数の受信信号(複数の素子受信信号)が並列的に出力される。それらの複数の受信信号に対して受信ビームフォーマー54において整相加算処理が適用され、これにより受信ビームに相当するビームデータが得られる。ビームデータは深さ方向に並んだ複数のエコーデータからなるものである。 The reception beam former 54 is an electronic circuit for forming a reception beam during reception. When reflected waves from the living body reach a plurality of vibration elements in the reception opening, a plurality of reception signals (a plurality of element reception signals) are output in parallel from the plurality of vibration elements. A phasing addition process is applied to the plurality of reception signals in the reception beam former 54, thereby obtaining beam data corresponding to the reception beam. The beam data consists of a plurality of echo data arranged in the depth direction.
 具体的には、受信ビームフォーマー54は、複数の受信チャンネル回路56、加算器64、遅延データ生成回路66、及び、遅延コントローラ70を有している。受信チャンネル回路56の個数は、アレイ振動子50を構成する振動素子数と同じか、又は、アレイ振動子50に対して設定される最大受信開口を構成する振動素子数と同じである。個々の受信チャンネル回路56は、アンプ58、A/D変換器60、遅延器(DL)62、等を有している。アンプ58は、プリアンプ、利得可変用アンプ等からなる。A/D変換器60は、アナログ受信信号をデジタル受信信号に変換するものである。デジタル受信信号は、時間軸上に並んだ複数の受信データ(複数の振幅値)からなるものである。遅延器62は、メモリ(例えばリングバッファ)によって構成され、そこには複数の受信データが時系列順で書き込まれる。メモリからの各受信データの読み出しタイミングを調整することにより、各受信データの位相が揃えられる。複数の遅延器62により遅延処理回路が構成される。遅延処理後の(並列関係にある)複数の受信データが加算器64で加算される。この整相加算処理の結果として受信焦点が形成される。受信ビーム軸上において受信焦点の深さを動的に切り替えながら上記整相加算処理を繰り返し実行した結果として、深さ方向に並ぶ複数のエコーデータからなるビームデータが得られる。なお、各遅延器62が粗遅延用のメモリ及び精細遅延用の補間回路で構成されてもよい。 Specifically, the reception beamformer 54 includes a plurality of reception channel circuits 56, an adder 64, a delay data generation circuit 66, and a delay controller 70. The number of reception channel circuits 56 is the same as the number of vibration elements constituting the array transducer 50 or the same as the number of vibration elements constituting the maximum reception aperture set for the array transducer 50. Each reception channel circuit 56 includes an amplifier 58, an A / D converter 60, a delay unit (DL) 62, and the like. The amplifier 58 includes a preamplifier, a gain variable amplifier, and the like. The A / D converter 60 converts an analog reception signal into a digital reception signal. The digital reception signal is composed of a plurality of reception data (a plurality of amplitude values) arranged on the time axis. The delay device 62 is configured by a memory (for example, a ring buffer), and a plurality of received data are written in the time series order therein. By adjusting the read timing of each received data from the memory, the phase of each received data is aligned. A plurality of delay devices 62 constitute a delay processing circuit. A plurality of received data (in parallel relation) after the delay processing is added by the adder 64. A reception focus is formed as a result of this phasing addition processing. As a result of repeatedly executing the phasing addition processing while dynamically switching the depth of the reception focus on the reception beam axis, beam data composed of a plurality of echo data arranged in the depth direction is obtained. Each delay unit 62 may be constituted by a coarse delay memory and a fine delay interpolation circuit.
 遅延データ生成回路66は、上記の遅延処理において必要となる遅延データセットを生成する電子回路である。それは生成手段又は生成回路として機能する。遅延データ生成回路66は、パラメータ群を格納するメモリ、関数演算器、等によって構成される。具体的な送受信条件が設定されると、それに基づいて遅延データセットが生成され、それが図示されていないメモリに格納される。その上で、送受信開始と同時に、そのメモリから遅延データが順次読み出される。但し、リアルタイムで、つまり送受信と同時進行で、遅延データセットが生成されてもよい。 The delay data generation circuit 66 is an electronic circuit that generates a delay data set necessary for the delay processing. It functions as generating means or generating circuit. The delay data generation circuit 66 includes a memory that stores a parameter group, a function calculator, and the like. When a specific transmission / reception condition is set, a delay data set is generated based on the transmission / reception condition and stored in a memory (not shown). Then, simultaneously with the start of transmission / reception, delay data is sequentially read from the memory. However, the delayed data set may be generated in real time, that is, simultaneously with transmission / reception.
 遅延コントローラ70は、複数の遅延器62を制御する制御部として機能し、具体的には、遅延データセットに基づいて、個々の遅延器62からの受信データの読み出しタイミングを調整する。その際、受信ダイナミックフォーカス法に従って、リアルタイムで、複数の受信データが並列的に読み出されつつ、それらが加算される。遅延データ生成回路66や遅延コントローラ70が主制御部72の機能として実現されてもよい。受信ビームフォーマー54は、FPGA、ASIC等のデバイスによって構成され得る。 The delay controller 70 functions as a control unit that controls the plurality of delay units 62, and specifically adjusts the read timing of received data from each delay unit 62 based on the delay data set. At that time, according to the reception dynamic focus method, a plurality of reception data are read in parallel and added in real time. The delay data generation circuit 66 and the delay controller 70 may be realized as functions of the main control unit 72. The reception beamformer 54 can be configured by a device such as an FPGA or an ASIC.
 本実施形態においては、後に詳しく説明するように、第1工程及び第2工程において、往路遅延データと復路遅延データとが独立して別々に生成された上で、第3工程において、往路遅延データと復路遅延データとを加算することにより、実際に遅延処理で用いる遅延データが生成される。往路遅延データは、本実施形態において、送信基準点から受信焦点までの往路を超音波が伝搬するのに要する時間を表すデータである。復路遅延データは、本実施形態において、受信焦点から受信素子(振動素子)までの復路を超音波が伝搬するのに要する時間を表すデータである。このような並列生成により、往路遅延データと復路遅延データの発生方式を異ならせることが可能となる。例えば、第1生成方式により往路遅延データを生成し、第1生成方式とは異なる第2生成方式により復路遅延データを生成することが可能となる。また、一定条件下で、複数の振動素子間で同じ往路遅延データを共用したり、複数の送信間で同じ復路遅延データを共用したりすることが可能となる。更に、後述する補正項による遅延データ補正を簡易な回路構成で実現できる。 In this embodiment, as will be described in detail later, in the first step and the second step, the forward delay data and the backward delay data are independently generated separately, and in the third step, the forward delay data And the return delay data are added to generate delay data that is actually used in the delay process. The forward delay data is data representing the time required for the ultrasonic wave to propagate in the forward path from the transmission reference point to the reception focus in the present embodiment. The return path delay data is data representing the time required for the ultrasonic wave to propagate along the return path from the reception focus to the receiving element (vibration element) in the present embodiment. Such parallel generation makes it possible to vary the generation methods of the forward delay data and the backward delay data. For example, forward delay data can be generated by the first generation method, and backward delay data can be generated by a second generation method different from the first generation method. Further, the same forward path delay data can be shared among a plurality of vibration elements or the same return path delay data can be shared among a plurality of transmissions under a certain condition. Furthermore, delay data correction using a correction term to be described later can be realized with a simple circuit configuration.
 本実施形態の超音波診断装置は、仮想音源法及びパラレル受信法に従った送受信動作を行える装置である。例えば、1個の送信ビームあたり、走査方向に並ぶ32個の受信ビームが同時に形成される。送信ビーム位置をシフトさせながら、そのような送受信を繰り返せば、個々の受信焦点(撮像点)あたり、複数の送信開口合成前データ(受信開口合成後データ)が取得される。個々の受信焦点ごとに、複数の送信開口合成前データを加算すれば、1つの送信開口合成後データが得られる。仮想音源法の下での遅延時間生成については、後に詳しく説明する。 The ultrasonic diagnostic apparatus of the present embodiment is an apparatus that can perform a transmission / reception operation according to the virtual sound source method and the parallel reception method. For example, 32 reception beams arranged in the scanning direction are simultaneously formed per transmission beam. If such transmission / reception is repeated while shifting the transmission beam position, a plurality of pre-transmission aperture synthesis data (data after reception aperture synthesis) is acquired for each reception focus (imaging point). If a plurality of pre-transmission aperture synthesis data is added for each reception focus, one post-transmission aperture synthesis data can be obtained. The delay time generation under the virtual sound source method will be described in detail later.
 受信ビームフォーマー54から出力された各ビームデータは信号処理回路76に入力される。信号処理回路76は、検波回路、対数圧縮回路、等を備えるものである。仮想音源法が適用される場合、送信開口合成処理が信号処理回路76で実行される。信号処理回路76から出力された各ビームデータがDSC(デジタルスキャンコンバータ)78に入力される。DSC78は複数のビームデータからなる受信フレームに基づいて表示フレームを生成する公知の電子回路である。それは座標変換機能、補間処理機能、フレームレート変換機能等を有する。表示フレームは例えばBモード断層画像である。DSC78から出力された表示フレームは表示処理回路80を経由して表示器82に送られる。表示器82にはBモード断層画像が表示される。そこに他の超音波画像が表示されてもよい。 Each beam data output from the reception beam former 54 is input to the signal processing circuit 76. The signal processing circuit 76 includes a detection circuit, a logarithmic compression circuit, and the like. When the virtual sound source method is applied, the transmission aperture synthesis process is executed by the signal processing circuit 76. Each beam data output from the signal processing circuit 76 is input to a DSC (digital scan converter) 78. The DSC 78 is a known electronic circuit that generates a display frame based on a reception frame made up of a plurality of beam data. It has a coordinate conversion function, an interpolation processing function, a frame rate conversion function, and the like. The display frame is, for example, a B-mode tomographic image. The display frame output from the DSC 78 is sent to the display 82 via the display processing circuit 80. A B-mode tomographic image is displayed on the display device 82. Other ultrasonic images may be displayed there.
 主制御部72は超音波診断装置内の各回路の動作を制御するものである。それは本実施形態においてCPU及びプログラムによって構成される。主制御部72は送受信制御機能を有し、それが図1において送受信制御部74として示されている。送受信制御部74は、送信ビームフォーマー52及び受信ビームフォーマー54の動作を制御する。それらの回路に対して、遅延データ(送信遅延データ、受信遅延データ)を生成するために必要なデータを与えている。例えば、送受信制御部74は、受信ビームフォーマー54内の遅延データ生成回路66に対して、上述したPWLを実行するために必要となるパラメータ群及びそれ以外のパラメータ群を提供している。超音波診断装置内には、必要に応じて、更に、ドプラ信号処理部、三次元画像形成部、等が設けられる。  The main control unit 72 controls the operation of each circuit in the ultrasonic diagnostic apparatus. In this embodiment, it is constituted by a CPU and a program. The main control unit 72 has a transmission / reception control function, which is shown as a transmission / reception control unit 74 in FIG. The transmission / reception control unit 74 controls the operations of the transmission beam former 52 and the reception beam former 54. Data necessary for generating delay data (transmission delay data, reception delay data) is given to these circuits. For example, the transmission / reception control unit 74 provides the delay data generation circuit 66 in the reception beamformer 54 with a parameter group necessary for executing the above-described PWL and other parameter groups. In the ultrasonic diagnostic apparatus, a Doppler signal processing unit, a three-dimensional image forming unit, and the like are further provided as necessary. *
 (2)遅延データ生成方法及び仮想音源法の説明
 図2には、パラレル受信法に従う一般的な伝搬経路モデルが示されている。アレイ振動子50上に設定された送信開口内の複数の振動素子から超音波を放射することにより、送信ビーム84が形成される。送信ビーム84は送信焦点90において集束する形態を有する。送信基準点(送信原点)88は、典型的には、送信ビーム84の中心軸86上の点であり、受信用遅延時間の計算に際しても、送信基準点88が時間的かつ空間的な基準とされる。受信焦点92は、現在注目している特定の受信ビームの中心線91上にある。受信焦点92は一般に撮像点(観測点)とみなせる。但し、送受信総合ピークのシフト現象が生じる場合(あるいはそれを無視し得ない場合)、受信焦点と送受信総合ピークは不一致となる。その場合、送受信総合ピークを所望の撮像点に合わせるために、受信焦点の位置が補正される。これについては後に説明する。いま注目する振動素子が受信素子94である。
(2) Description of Delay Data Generation Method and Virtual Sound Source Method FIG. 2 shows a general propagation path model according to the parallel reception method. A transmission beam 84 is formed by radiating ultrasonic waves from a plurality of vibration elements in the transmission aperture set on the array transducer 50. The transmit beam 84 has a form of focusing at the transmit focal point 90. The transmission reference point (transmission origin) 88 is typically a point on the central axis 86 of the transmission beam 84, and the transmission reference point 88 is a temporal and spatial reference when calculating the reception delay time. Is done. The reception focal point 92 is on the center line 91 of the specific reception beam of interest. The reception focal point 92 can generally be regarded as an imaging point (observation point). However, when the transmission / reception total peak shift phenomenon occurs (or when it cannot be ignored), the reception focus and the transmission / reception total peak do not match. In that case, the position of the reception focus is corrected in order to match the transmission / reception total peak to a desired imaging point. This will be described later. The receiving element 94 is a vibrating element to be noticed now.
 図2に示したモデルにおいて、送信基準点88から受信焦点92までの直線経路が往路であり、受信焦点92から受信素子94までの直線経路が復路である。往路と復路とを合わせたものが全経路である。全経路長を音速で割ることにより、全経路に相当する伝搬時間が求まる。複数の受信素子間において伝搬時間の違いを解消して位相を揃えるのが遅延処理である。 In the model shown in FIG. 2, the straight path from the transmission reference point 88 to the reception focal point 92 is the forward path, and the straight path from the reception focal point 92 to the reception element 94 is the backward path. The total route is the sum of the outbound route and the inbound route. By dividing the total path length by the speed of sound, the propagation time corresponding to the total path can be obtained. Delay processing is to eliminate the difference in propagation time between a plurality of receiving elements and to align the phases.
 本実施形態の受信ビームフォーマーでは、往路に対応する伝搬時間(往路伝搬時間)と、復路に対応する伝搬時間(復路伝搬時間)とが個別的に計算された上で、往路遅延時間と復路遅延時間とを加算することにより、全経路に対応する全伝搬時間が生成される。遅延コントローラに与える遅延データはそのような全伝搬時間を表すデータである。但し、遅れ時間それ自体を表すデータとして遅延データを構成することも可能である。 In the receive beamformer of the present embodiment, the propagation time corresponding to the forward path (forward path propagation time) and the propagation time corresponding to the backward path (return path propagation time) are calculated separately, and then the forward path delay time and the backward path By adding the delay time, the total propagation time corresponding to all paths is generated. The delay data given to the delay controller is data representing such total propagation time. However, the delay data can be configured as data representing the delay time itself.
 図2に示したモデルにおいて、往路96は受信開口内のすべての受信素子において共通であり、つまり、それらの受信素子において同じ往路伝搬時間を利用することが可能である。一方、復路98の伝搬時間は、以下に説明する仮想音源法において、複数の送信ビーム間で共用することが可能である。つまり、ある受信焦点に着目した場合、複数の送信ビーム間において、受信素子ごとに同じ復路伝搬時間を利用することが可能である。なお、受信焦点と撮像点とを異ならせるような場合にも、一部のデータを共用することが可能である。これについては後述する。 In the model shown in FIG. 2, the forward path 96 is common to all the receiving elements in the receiving aperture, that is, it is possible to use the same forward path propagation time in these receiving elements. On the other hand, the propagation time of the return path 98 can be shared among a plurality of transmission beams in the virtual sound source method described below. That is, when paying attention to a certain reception focus, it is possible to use the same return path propagation time for each reception element between a plurality of transmission beams. Even when the reception focus and the imaging point are different, it is possible to share some data. This will be described later.
 図3には仮想音源法に従う伝搬経路モデルが示されている。なお、図2に示した要素と同一の要素には同じ符号を付し、その説明を省略する。 FIG. 3 shows a propagation path model according to the virtual sound source method. The same elements as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
 図3においては、パラレル受信法に従う複数の受信ビームの内で、1つの受信ビームについての中心線91が示されている。受信焦点92はその中心線91上に存在する。仮想音源法では、送信焦点90が仮想音源とみなされ、そこからの波(球面波)が受信焦点92に到達すると仮定して、遅延データが計算される。まず、往路については上記同様に往路伝搬時間が計算される。具体的には、送信原点88から送信焦点90までの第1部分100に対応する伝搬時間と、送信焦点90から受信焦点92までの第2部分102に対応する伝搬時間と、が計算される。往路伝搬時間(第1部分100及び第2部分102に対応する伝搬時間)は、複数の受信素子において共通となる。また、受信焦点92から各受信素子までの復路104に対応する復路伝搬時間は複数の送信ビーム間で同じとなる。 FIG. 3 shows a center line 91 for one reception beam among a plurality of reception beams according to the parallel reception method. The reception focal point 92 exists on the center line 91. In the virtual sound source method, delay data is calculated on the assumption that the transmission focal point 90 is regarded as a virtual sound source and a wave (spherical wave) therefrom reaches the reception focal point 92. First, for the forward path, the forward path propagation time is calculated as described above. Specifically, the propagation time corresponding to the first portion 100 from the transmission origin 88 to the transmission focal point 90 and the propagation time corresponding to the second portion 102 from the transmission focal point 90 to the reception focal point 92 are calculated. The forward propagation time (propagation time corresponding to the first part 100 and the second part 102) is common to a plurality of receiving elements. Further, the return path propagation time corresponding to the return path 104 from the reception focal point 92 to each receiving element is the same among a plurality of transmission beams.
 図4には仮想音源法が模式的に示されている。図示の例では、アレイ振動子10に対して送信用信号線列24が接続されており、信号線列24の途中から受信用信号線列26が引き出されている。アレイ振動子10に対しては送信開口X0が設定されており、それに属する複数の振動素子に対し、遅延カーブ28で示される遅延関係をもった複数の送信信号が供給される。これにより送信ビーム30aが形成される。送信ビーム30aは送信焦点32aを有する。同様に、走査方向において送信位置を変えながら、送信ビーム30b、送信ビーム30c、・・・が形成される。それらは送信焦点32b、送信焦点32c、・・・を有する。図4において、それらの送信焦点の深さは同一であり、つまりZ0である。なお、図4には示されていないが、この例では、送信ビームごとに、パラレル受信技術の適用により、1回の送受信で、複数の受信ビームが形成される。 FIG. 4 schematically shows the virtual sound source method. In the illustrated example, a transmission signal line string 24 is connected to the array transducer 10, and a reception signal line string 26 is drawn from the middle of the signal line string 24. A transmission aperture X0 is set for the array transducer 10, and a plurality of transmission signals having a delay relationship indicated by a delay curve 28 are supplied to a plurality of vibration elements belonging to the array aperture 10. As a result, a transmission beam 30a is formed. The transmission beam 30a has a transmission focal point 32a. Similarly, the transmission beam 30b, the transmission beam 30c,... Are formed while changing the transmission position in the scanning direction. They have a transmission focal point 32b, a transmission focal point 32c,. In FIG. 4, the depths of their transmission focal points are the same, that is, Z0. Although not shown in FIG. 4, in this example, for each transmission beam, a plurality of reception beams are formed in one transmission / reception by applying a parallel reception technique.
 撮像点(受信焦点)pに着目する。撮像点pは図示の例において3つの送信ビーム30a,30b,30cに覆われている。換言すれば、3つの送信ビーム30a,30b,30cに属している。各送信焦点32a,32b,32cはそれぞれ仮想音源とみなせる(以下、場合により「送信焦点」を「仮想音源」と称する。)。つまり、各仮想音源の手前側及び奥側において、各仮想音源を原点とした球面波を観念することができる。図4には、仮想音源32aから出た球面波が図示されている。撮像点pには、3つの仮想音源32a,32b,32cに由来する3つの球面波成分36a、36b、36cが到達する。それらの位相を合わせて合成することにより、撮像点pにおいて大きな振幅を観測することが可能である。つまり、例えば、送信ビーム30a形成後の受信処理においては、撮像点pでの通常の受信ダイナミックフォーカスを実現するための遅延条件に加えて、仮想音源32aと撮像点pとの間の距離に応じた遅延条件を考慮して、遅延処理が実行される。図4においては、撮像点pから受信開口内の特定の振動素子11aまでの距離が符号38aで示されおり、その際の伝搬時間はt2である。送信基準点から送信焦点を経由して受信焦点までに至る往路の伝搬時間(球面波分t1を含む)と、受信焦点から受信素子11aまでの復路の伝搬時間t2と、を加算した伝搬時間が、遅延データとして、受信素子11aから出力された受信信号に対して与え得られる。同様の受信処理が送信ビーム30b,30cの形成後の受信処理においても実行される。撮像点pをカバーする送信ビーム数が多くなればなるほど(送信開口合成数が多くなればなるほど)、受信点においてより大きな振幅を得られ、つまり超音波イメージの画質を高められる。逆に言えば、仮想音源法では、超音波イメージの画質を高められるので、その分だけ送信ビーム本数を低減して、フレームレートを向上させることが可能である。 Pay attention to the imaging point (reception focal point) p. The imaging point p is covered with three transmission beams 30a, 30b, and 30c in the illustrated example. In other words, it belongs to three transmission beams 30a, 30b and 30c. Each transmission focal point 32a, 32b, 32c can be regarded as a virtual sound source (hereinafter, "transmission focal point" will be referred to as "virtual sound source" in some cases). That is, it is possible to think of spherical waves with each virtual sound source as the origin on the near side and the back side of each virtual sound source. FIG. 4 shows a spherical wave emitted from the virtual sound source 32a. Three spherical wave components 36a, 36b, and 36c derived from the three virtual sound sources 32a, 32b, and 32c arrive at the imaging point p. A large amplitude can be observed at the imaging point p by combining the phases. That is, for example, in the reception processing after the transmission beam 30a is formed, in addition to the delay condition for realizing normal reception dynamic focus at the imaging point p, according to the distance between the virtual sound source 32a and the imaging point p. Delay processing is executed in consideration of the delay conditions. In FIG. 4, the distance from the imaging point p to the specific vibration element 11a in the reception aperture is indicated by reference numeral 38a, and the propagation time at that time is t2. Propagation time obtained by adding the forward propagation time from the transmission reference point to the reception focal point via the transmission focal point (including the spherical wave component t1) and the return propagation time t2 from the reception focal point to the receiving element 11a. The delay data is given to the received signal output from the receiving element 11a. Similar reception processing is executed in the reception processing after the transmission beams 30b and 30c are formed. As the number of transmission beams covering the imaging point p increases (the transmission aperture synthesis number increases), a larger amplitude can be obtained at the reception point, that is, the image quality of the ultrasonic image can be improved. In other words, in the virtual sound source method, the image quality of the ultrasonic image can be improved, so that the number of transmission beams can be reduced by that amount and the frame rate can be improved.
 (3)遅延データ生成回路の第1実施形態
 図5には、遅延データ生成回路の第1実施形態が示されている。遅延データ生成回路66は、往路時間(往路伝搬時間)演算回路110、復路時間(復路伝搬時間)演算回路112、加算器114、遅延データメモリ116等を有している。往路時間演算回路110は、往路遅延データ生成器として機能するものであり、第1実施形態ではPWL回路によって構成されている。PWLを実行するために必要なパラメータ群が事前に計算された上で、パラメータメモリ122に事前に書き込まれる。例えば、主制御部において、診断レンジ、送信焦点深さ、送信条件、パラレル受信条件、区間数、等の諸条件が決まった段階で、PWL用のパラメータ群が演算され、それらがパラメータメモリ122内に格納される。往路時間演算回路110は、個々の受信ダイナミックフォーカスの実行に当たり、受信焦点深さごとに、送信ビーム番号、パラレル受信番号、等を特定して必要なパラメータをパラメータメモリ122から読み出し、また音速等の演算上必要なパラメータを参照して、PWLを実行し、その結果として各受信焦点に対応した往路遅延データを出力する。往路遅延データは、同一送受信条件下において、複数の受信振動素子間において共用されるものである。往路時間演算回路110内には復路遅延データを格納するためのメモリが設けられる。そのようなメモリが加算器114に設けられてもよい。
(3) First Embodiment of Delay Data Generation Circuit FIG. 5 shows a first embodiment of the delay data generation circuit. The delay data generation circuit 66 includes a forward path time (forward path propagation time) calculation circuit 110, a return path time (return path propagation time) calculation circuit 112, an adder 114, a delay data memory 116, and the like. The forward path time calculation circuit 110 functions as a forward path delay data generator, and is configured by a PWL circuit in the first embodiment. A parameter group necessary for executing the PWL is calculated in advance and written in the parameter memory 122 in advance. For example, in the main control unit, when various conditions such as a diagnostic range, a transmission focal depth, a transmission condition, a parallel reception condition, and the number of sections are determined, a parameter group for PWL is calculated and stored in the parameter memory 122. Stored in The forward time calculation circuit 110 reads out necessary parameters from the parameter memory 122 by specifying the transmission beam number, parallel reception number, and the like for each reception focal depth in executing each reception dynamic focus. PWL is executed with reference to parameters necessary for calculation, and as a result, forward path delay data corresponding to each reception focus is output. The forward delay data is shared between a plurality of receiving vibration elements under the same transmission / reception conditions. A memory for storing return path delay data is provided in the forward path time calculation circuit 110. Such a memory may be provided in the adder 114.
 復路時間演算回路112は、復路遅延データ生成器として機能するものであり、受信点から各受信素子までの復路の経路長を音速で割ることによって伝搬時間を演算する。それが復路遅延データに相当する。パラメータメモリ124内には必要に応じて受信素子ごとの座標データが格納される。座標データは受信素子ごとにx座標及びy座標を特定するものである。このような二次元座標データの保有によりコンベックス走査にも対応可能である。復路時間演算回路112に対しては、主制御部から、その演算で必要なパラメータが与えられる。その場合、受信ダイナミックフォーカスを適用する走査線番号をパラメータとして与えてもよいし、送信ビーム番号とパラレル受信番号とから走査線番号を生成するようにしてもよい。仮想音源法では1つの撮像点が複数の送信ビームに対応する。複数の送信ビーム間において、個々の受信素子の復路遅延データが共用される。複数の受信素子に対応する複数の復路遅延データを格納しておくメモリが復路時間演算回路112内に設けられる。そのようなメモリが加算器114内に設けられてもよい。復路時間演算回路は、例えば一般的な関数演算器によって構成される。それがFPGAやASIC等の回路で構成されてもよい。受信ビームフォーマー全体又は遅延データ生成回路66がFPGAやASICで構成されてもよい。 The return path time calculation circuit 112 functions as a return path delay data generator, and calculates the propagation time by dividing the path length of the return path from the reception point to each receiving element by the sound velocity. This corresponds to return path delay data. In the parameter memory 124, coordinate data for each receiving element is stored as necessary. The coordinate data specifies the x coordinate and the y coordinate for each receiving element. By holding such two-dimensional coordinate data, it is possible to cope with convex scanning. The return control time calculation circuit 112 is given parameters necessary for the calculation from the main control unit. In that case, the scanning line number to which the reception dynamic focus is applied may be given as a parameter, or the scanning line number may be generated from the transmission beam number and the parallel reception number. In the virtual sound source method, one imaging point corresponds to a plurality of transmission beams. The return delay data of each receiving element is shared between the plurality of transmission beams. A memory for storing a plurality of return path delay data corresponding to a plurality of receiving elements is provided in the return time calculation circuit 112. Such a memory may be provided in the adder 114. The return time calculation circuit is configured by, for example, a general function calculator. It may be composed of a circuit such as an FPGA or an ASIC. The entire reception beam former or the delay data generation circuit 66 may be configured by an FPGA or an ASIC.
 加算器114は、往路遅延データと復路遅延データとを加算することにより遅延データを生成する回路であり、それは遅延データ生成器として機能する。つまり、加算器114は、往路伝搬時間と復路伝搬時間とを加算して全伝搬時間を算出する。これを受信素子ごとに行う。遅延データメモリ116には所定単位分の、例えば1フレーム分の遅延データセットが格納される。もちろん、リアルタイムに個々の遅延データが生成されてもよい。 The adder 114 is a circuit that generates delay data by adding the forward path delay data and the backward path delay data, and functions as a delay data generator. That is, the adder 114 calculates the total propagation time by adding the forward propagation time and the backward propagation time. This is performed for each receiving element. The delay data memory 116 stores a delay data set for a predetermined unit, for example, one frame. Of course, individual delay data may be generated in real time.
 図5に示されるように、本実施形態によれば、往路と復路とで別々の演算方式を適用することが可能である。しかも、そのような成分分離により個々の演算結果を共用することが可能である。更に以下に説明するように演算上必要となるパラメータ(主制御部において事前に計算又は用意しておくパラメータ値の集団)を大幅に削減することが可能である。 As shown in FIG. 5, according to the present embodiment, it is possible to apply different calculation methods for the forward path and the backward path. In addition, individual calculation results can be shared by such component separation. Furthermore, as will be described below, it is possible to greatly reduce the parameters required for calculation (a group of parameter values calculated or prepared in advance in the main control unit).
 (4)データ量の比較
 超音波診断装置における送受信ビームの形成においては、通常、表示領域内の全撮像点で受信焦点が形成される。図2に示したように、ある受信素子に着目すると、全伝搬距離を正確に算出し、それを音速で割って伝搬時間を求め、それを遅延データとして利用するのが理想的である。しかし、そのような演算は実際には大変なので、従来においては例えば区分的多項式補間法等を利用して遅延データを生成している。そのような演算で必要となるパラメータ総量は、送信ビーム数、パラレル受信数、及び、受信素子数に比例する。
(4) Comparison of data amount In the formation of transmission / reception beams in the ultrasonic diagnostic apparatus, a reception focus is usually formed at all imaging points in the display area. As shown in FIG. 2, when paying attention to a certain receiving element, it is ideal to calculate the total propagation distance accurately, divide it by the speed of sound to obtain the propagation time, and use it as delay data. However, since such an operation is actually difficult, conventionally, for example, delay data is generated using a piecewise polynomial interpolation method or the like. The total amount of parameters required for such calculation is proportional to the number of transmission beams, the number of parallel receptions, and the number of reception elements.
 区分的多項式補間法の一種である区分的線形補間法(PWL)を利用する場合、送信ビーム数が192、パラレル受信数が32、受信素子数が192、区間数が32と仮定し、個々の遅延データ(代表深さの遅延データ)が2byteで表現されると仮定すると、PWLで必要となるパラメータ総量は、以下の(1)式のように計算される。 When using piecewise linear interpolation (PWL), which is a kind of piecewise polynomial interpolation, it is assumed that the number of transmitted beams is 192, the number of parallel reception is 32, the number of receiving elements is 192, and the number of sections is 32. Assuming that the delay data (representative depth delay data) is expressed in 2 bytes, the total amount of parameters required in the PWL is calculated as in the following equation (1).
  [数1]
  送信ビーム数(192)*パラレル受信数(32)*受信素子数(192)
          *区間数(32)*2[byte] = 75,497,472[byte]・・・(1)
[Equation 1]
Number of transmitted beams (192) * Number of parallel receptions (32) * Number of receiving elements (192)
* Number of sections (32) * 2 [byte] = 75,497,472 [byte] ... (1)
 上記のようにPWLであっても膨大なパラメータを用意しておく必要がある。これはパラレル受信での受信ビーム数を多くすることができない大きな要因となる。 As described above, it is necessary to prepare enormous parameters even for PWL. This is a major factor that makes it impossible to increase the number of reception beams in parallel reception.
 一方、本実施形態についても同じ条件で計算してみる。まず、往路遅延データの計算に際しては、受信素子は無関係となり、パラメータの総量は以下のとおりとなる。 On the other hand, this embodiment is also calculated under the same conditions. First, when calculating the forward delay data, the receiving element is irrelevant, and the total amount of parameters is as follows.
  [数2]
  送信ビーム数(192)*パラレル受信数(32)*区間(32)*2[byte]
                       = 786,432[byte]・・・(2)
[Equation 2]
Number of transmission beams (192) * Number of parallel receptions (32) * Section (32) * 2 [byte]
= 786,432 [byte] (2)
 次に、復路遅延データに関しては、送信ビーム番号とは無関係に計算でき、しかも近時の電子回路技術の進歩から平方根演算等を行うことは比較的容易になってきていることから、復路遅延データについてはPWLを利用せずにそれを数学的に逐次的に演算することが可能である。その演算において必要なパラメータは、1つの受信ビームあたり、受信開口を構成する受信素子ごとの座標(x、y)程度である。すなわち、事前に用意しておくべきパラメータ量は例えば下のとおりである。 Next, the return delay data can be calculated regardless of the transmission beam number, and since it has become relatively easy to perform square root calculation and the like due to recent advances in electronic circuit technology, the return delay data Can be computed mathematically and sequentially without using PWL. The parameter required for the calculation is about the coordinates (x, y) for each receiving element constituting the receiving aperture per receiving beam. That is, the parameter amounts that should be prepared in advance are as follows, for example.
  [数3]
  受信走査線数(384)*受信素子数(192)*素子座標(2)*2[byte]
                      =294,912[byte]・・・(3)
[Equation 3]
Number of scanning lines (384) * Number of receiving elements (192) * Element coordinates (2) * 2 [byte]
= 294,912 [byte] (3)
 上記(2)式の演算結果と上記(3)式の演算結果とを加算すると、本実施形態において、必要なパラメータ総量は例えば以下となる。 When the calculation result of the above formula (2) and the calculation result of the above formula (3) are added, the required total amount of parameters in this embodiment is, for example, as follows.
  [数4]
 (2)式の演算結果+(3)式の演算結果=1,081,344[byte]・・・(4)
[Equation 4]
Calculation result of formula (2) + calculation result of formula (3) = 1,081,344 [bytes] (4)
 上記(4)式の演算結果を上記(1)式の演算結果と比較すると、本実施形態によれば、パラメータ総量を大幅に削減可能であることを理解できる。 Comparing the calculation result of the above formula (4) with the calculation result of the above formula (1), it can be understood that according to the present embodiment, the total parameter amount can be greatly reduced.
 なお、図5に示した構成において、仮想音源法を適用しない場合には、往路時間の計算が非常に簡素となり、つまり、送信基準点から受信焦点までの直線経路の演算と、その直線経路を音速で割る計算と、から簡単に往路遅延データを算出することができる。 In the configuration shown in FIG. 5, when the virtual sound source method is not applied, the calculation of the forward path time becomes very simple, that is, the calculation of the straight path from the transmission reference point to the reception focus, and the straight path The forward delay data can be easily calculated from the calculation of dividing by the speed of sound.
 (5)第2実施形態
 最初に、図6を用いて、受信焦点からの送受信感度ピークのずれ及びその対処法について説明する。図6の内容は電子セクタ走査が前提となっているが、以下に説明する考え方は他の走査方式にも適用することができる。
(5) Second Embodiment First, a transmission / reception sensitivity peak shift from the reception focal point and a coping method thereof will be described with reference to FIG. Although the content of FIG. 6 is based on electronic sector scanning, the concept described below can be applied to other scanning methods.
 符号128はアレイ振動子50の中央を横断する中心線を示している。送信ビーム130は中心線128に対して偏向している。撮像点134は走査面上において画像化を行いたい点である。仮に、撮像点134の位置に受信焦点を形成した場合、偏向角度θをもった受信ビーム136が形成されることになる。しかし、その場合、送受総合ピーク(送受合成感度ピーク)は、撮像点134よりも送信ビーム130に近い方へシフトしてしまう(特許文献1を参照)。これに対処する方法として、撮像点134が送受総合ピークの位置となるように、受信点の位置を外側へシフトする方法がある。その場合における受信ビームが符号144で示され、補正後の受信焦点が符号142で示されている。実際に形成される受信ビーム144の偏向角度は元の偏向角度θに対して補正角度Δθを追加したものとなる。つまりその角度は(θ+Δθ)である。なお、符号144は、送信基準点126から受信焦点142までの往路を示している。これは送信基準点126から撮像点134までの距離と同一である。符号138は、撮像点134から受信素子140までの経路(補正前の復路)を示しており、符号146は受信焦点142から受信素子140までの経路(補正後の復路)を示している。 Numeral 128 indicates a center line that crosses the center of the array transducer 50. Transmit beam 130 is deflected with respect to centerline 128. The imaging point 134 is a point at which imaging is desired on the scanning plane. If the reception focal point is formed at the position of the imaging point 134, a reception beam 136 having a deflection angle θ is formed. However, in that case, the transmission / reception comprehensive peak (transmission / reception combined sensitivity peak) shifts closer to the transmission beam 130 than the imaging point 134 (see Patent Document 1). As a method for coping with this, there is a method of shifting the position of the reception point outward so that the imaging point 134 becomes the position of the transmission / reception total peak. In this case, the reception beam is indicated by reference numeral 144, and the corrected reception focus is indicated by reference numeral 142. The deflection angle of the reception beam 144 actually formed is obtained by adding a correction angle Δθ to the original deflection angle θ. That is, the angle is (θ + Δθ). Reference numeral 144 denotes a forward path from the transmission reference point 126 to the reception focal point 142. This is the same as the distance from the transmission reference point 126 to the imaging point 134. Reference numeral 138 indicates a path from the imaging point 134 to the receiving element 140 (return path before correction), and reference numeral 146 indicates a path from the reception focal point 142 to the receiving element 140 (return path after correction).
 受信焦点142と撮像点134を対比した場合、送信基準点126からの往路の長さは同一であり(いずれもr)、復路長において差が生じるので、補正が必要である。 When the reception focal point 142 and the imaging point 134 are compared, the length of the forward path from the transmission reference point 126 is the same (both are r), and a difference occurs in the return path length, so correction is necessary.
 まず、上記の補正を行わない場合の伝搬距離(全経路長)dについて計算すると、以下のようになる。なお、xeは中心126から受信素子140までの距離である。上記のように受信ビーム偏向角がθである。 First, calculation of the propagation distance (total path length) d when the above correction is not performed is as follows. Xe is the distance from the center 126 to the receiving element 140. As described above, the reception beam deflection angle is θ.
Figure JPOXMLDOC01-appb-M000001
 上記(5-2)式において、第1項のrが往路長を示しており、第2項以降が復路長を示している。ここでは音速による除算は省略されている。
Figure JPOXMLDOC01-appb-M000001
In the above equation (5-2), r in the first term indicates the forward path length, and the second and subsequent terms indicate the return path length. Here, division by sound speed is omitted.
 次に補正を行う場合における伝搬距離d’について計算すると、以下のようになる。受信ビームの補正角度がΔθである。 Next, calculation of the propagation distance d 'when correction is performed is as follows. The correction angle of the reception beam is Δθ.
Figure JPOXMLDOC01-appb-M000002
 上記(6)式において、Δθは微小角度であり、それゆえsin(Δθ)をΔθで近似でき、またcos(Δθ)を1と近似できる。Δθはrに従って変化する。これにより以下の(7)式を導ける。
Figure JPOXMLDOC01-appb-M000002
In the above equation (6), Δθ is a minute angle, so sin (Δθ) can be approximated by Δθ, and cos (Δθ) can be approximated by 1. Δθ varies according to r. As a result, the following equation (7) can be derived.
Figure JPOXMLDOC01-appb-M000003
 上記(7)式において、補正後の伝搬距離d’は、補正前の伝搬距離dに対して、一定の補正項(-Δθ・cosθ・xe)を加えたものとなっている。よって、補正前の計算結果から補正後の計算結果を特定するには、補正項を考慮すればよいことになる。そのような補正項を考慮したものが第2実施形態である。
Figure JPOXMLDOC01-appb-M000003
In the equation (7), the corrected propagation distance d ′ is obtained by adding a fixed correction term (−Δθ · cos θ · xe) to the propagation distance d before correction. Therefore, in order to specify the calculation result after correction from the calculation result before correction, the correction term should be considered. The second embodiment considers such a correction term.
 図7には、第2実施形態に係る遅延データ生成回路66Aの構成が示されている。遅延データ生成回路66Aは、直線往路時間(直線往路伝搬時間)演算回路150、補正項演算回路152、復路時間演算回路154、等を備えている。直線往路時間演算回路150は、往路長rを音速cで割る演算を実行する。直線往路時間演算回路150は通常の関数演算回路として構成することができる。その演算に際して必要なパラメータは主制御部からわたされる。復路時間演算回路154は、上記(5-1)式における第2項を実行する回路である。ただし、その回路で、上記(5-2)式における復路長(第2項以後)を音速で割ることによって復路伝搬時間を演算してもよい。復路時間演算回路154も通常の関数演算回路によって構成され得る。その演算で必要なパラメータが主制御部からわたされる。 FIG. 7 shows the configuration of the delay data generation circuit 66A according to the second embodiment. The delay data generation circuit 66A includes a straight forward time (straight forward propagation time) calculation circuit 150, a correction term calculation circuit 152, a return time calculation circuit 154, and the like. The straight forward time calculation circuit 150 executes a calculation of dividing the forward path length r by the speed of sound c. The straight forward time calculation circuit 150 can be configured as a normal function calculation circuit. Parameters necessary for the calculation are passed from the main control unit. The return time calculation circuit 154 is a circuit that executes the second term in the equation (5-1). However, in that circuit, the return path propagation time may be calculated by dividing the return path length (after the second term) in the equation (5-2) by the speed of sound. The return time calculation circuit 154 can also be constituted by a normal function calculation circuit. Parameters necessary for the calculation are passed from the main control unit.
 補正項演算回路152は、補正遅延データ生成器として機能する。図示の例では、補正項演算回路152は、PWLを用いて補正項を演算するものであり、具体的には、(Δθ・cosθ)/cの演算を実行している。その上で、その演算結果に対して乗算器156でxeが乗算されている。これにより補正項が生成される。補正項は補正遅延データとして観念され得る。パラメータメモリ166にはPWLの計算を行うために必要なパラメータ群が予め書き込まれる。他の必要なパラメータ群は主制御部からわたされる。なお、復路時間演算回路154の前段にパラメータメモリ168を設け、そこに必要なパラメータ群を事前に書き込むようにしてもよい。 The correction term calculation circuit 152 functions as a correction delay data generator. In the example shown in the figure, the correction term calculation circuit 152 calculates a correction term using PWL, and specifically, calculates (Δθ · cos θ) / c. Then, xe is multiplied by the multiplier 156 with respect to the calculation result. As a result, a correction term is generated. The correction term can be thought of as correction delay data. A parameter group necessary for calculating PWL is written in the parameter memory 166 in advance. Other necessary parameters are passed from the main controller. Note that a parameter memory 168 may be provided in the previous stage of the return time calculation circuit 154, and necessary parameter groups may be written in advance there.
 加算器158においては、上記3つの演算結果、直線往路伝搬時間、補正項及び復路伝搬時間が加算され、これにより全伝搬時間が演算される。それは遅延データとして遅延データメモリに書き込まれる。遅延処理においては、遅延コントローラにおいて、遅延データメモリ160上の遅延データが順次読み出される。 In the adder 158, the above three calculation results, the straight forward propagation time, the correction term, and the backward propagation time are added, thereby calculating the total propagation time. It is written into the delay data memory as delay data. In the delay process, the delay data in the delay data memory 160 is sequentially read by the delay controller.
 以上のように、第2実施形態においても、往路遅延データと復路遅延データとが別々に生成される。素子座標の次元に従って補正項の個数を増やすようにしてもよい。また、素子番号を用いて補正項を演算するようにしてもよい。 As described above, also in the second embodiment, the forward delay data and the backward delay data are generated separately. The number of correction terms may be increased according to the dimension of the element coordinates. Further, the correction term may be calculated using the element number.
 図8には、受信点の補正による効果が示されている。横軸は偏向角度を示している。縦軸は音圧(感度)を示している。実現したい特性が符号172で示されている。これは送受信総合ピークを0.5度のところにするものである。それに合わせて受信ビーム偏向角度を0.5度とした場合(補正を行わない場合)、符号170で示すような特性となる。つまり、送受信総合ピークが0.5度よりも小さくなってしまい、換言すれば送受信総合ピークが送信ビーム中心側へ引き込まれてしまう。これに対して、偏向角度Δθによって受信焦点を補正すると(補正後の受信ビーム偏向角度として0.9度を設定すると)、符号174で示されるような特性を形成でき、その特性の送受信総合ピークを0.5度にすることが可能となる(符号176参照)。 FIG. 8 shows the effect of correcting the reception point. The horizontal axis indicates the deflection angle. The vertical axis represents the sound pressure (sensitivity). A characteristic to be realized is indicated by reference numeral 172. This sets the transmission / reception total peak at 0.5 degrees. Accordingly, when the reception beam deflection angle is set to 0.5 degrees (when correction is not performed), the characteristics indicated by reference numeral 170 are obtained. That is, the transmission / reception total peak becomes smaller than 0.5 degrees, in other words, the transmission / reception total peak is drawn toward the center of the transmission beam. On the other hand, when the reception focus is corrected by the deflection angle Δθ (when the received beam deflection angle after correction is set to 0.9 degrees), the characteristic indicated by reference numeral 174 can be formed, and the transmission / reception total peak of the characteristic is obtained. Can be set to 0.5 degrees (see reference numeral 176).
 (6)第3実施形態
 同じ遅延データ生成回路を用いて、図3及び図4に示した仮想音源法(第1送受信モード)を実行し、且つ、図6に示した感度ピーク補正(第2送受信モード)を実現するには、図9に示すような回路構成を採用すればよい。
(6) Third Embodiment Using the same delay data generation circuit, the virtual sound source method (first transmission / reception mode) shown in FIGS. 3 and 4 is executed, and sensitivity peak correction (second) shown in FIG. In order to realize (transmission / reception mode), a circuit configuration as shown in FIG. 9 may be employed.
 図9において、遅延データ生成回路66Bは、図7に示した遅延データ生成回路66Aと同様に、直線往路時間演算回路180、往路時間/補正項演算回路182、及び、復路時間演算回路184を有している。図9の直線往路時間演算回路180は図7に示した直線往路時間演算回路150に相当し、それは第2送受信モードにおいて動作する。図9の復路時間演算回路184は図2及び図5に示した復路時間演算回路112,154に相当する。それは第1送受信モード及び第2送受信モードの両方で動作する。図9の往路時間/補正項演算回路182は、図5に示した往路時間演算回路110と、図7に示した補正項演算回路152とに相当し、それはPWL方式に従う演算を行うものである。第1送受信モードにおいては、演算回路182は往路時間演算回路として機能し、第2送受信モードにおいては、演算回路182は補正項演算回路として機能する。なお、演算回路182の前段にはパラメータメモリ200が設けられており、復路時間演算回路184の前段にはパラメータメモリ202が設けられている。乗算器186及び加算器188は、第2送受信モードにおいて機能し、セレクタ(SEL)は、第1送受信モードの場合に演算回路182からの直接の出力を選択し、第2送受信モードの場合に加算器188からの出力を選択する。加算器192においては、第1送受信モード及び第2送受信モードのいずれにおいても、セレクタ190の出力と、復路時間演算回路184の出力とを加算し、これにより遅延データを生成する。それは遅延データメモリ194にいったん書き込まれる。 In FIG. 9, the delay data generation circuit 66B has a straight forward path time calculation circuit 180, a forward path time / correction term calculation circuit 182 and a return path time calculation circuit 184, similarly to the delay data generation circuit 66A shown in FIG. is doing. 9 corresponds to the linear forward time calculation circuit 150 shown in FIG. 7, and operates in the second transmission / reception mode. The return path time calculation circuit 184 in FIG. 9 corresponds to the return path time calculation circuits 112 and 154 shown in FIGS. It operates in both the first transmission / reception mode and the second transmission / reception mode. The forward path time / correction term calculation circuit 182 in FIG. 9 corresponds to the forward path time calculation circuit 110 shown in FIG. 5 and the correction term calculation circuit 152 shown in FIG. 7, which performs calculations according to the PWL method. . In the first transmission / reception mode, the arithmetic circuit 182 functions as a forward path time arithmetic circuit, and in the second transmission / reception mode, the arithmetic circuit 182 functions as a correction term arithmetic circuit. Note that a parameter memory 200 is provided before the arithmetic circuit 182, and a parameter memory 202 is provided before the return time arithmetic circuit 184. The multiplier 186 and the adder 188 function in the second transmission / reception mode, and the selector (SEL) selects the direct output from the arithmetic circuit 182 in the first transmission / reception mode and adds in the second transmission / reception mode. The output from the unit 188 is selected. The adder 192 adds the output of the selector 190 and the output of the return path time calculation circuit 184 in both the first transmission / reception mode and the second transmission / reception mode, thereby generating delay data. It is once written into the delay data memory 194.
 以上のように、図9に示した回路構成によれば、複数のプロセッサを共用しつつ、2つの送受信モードに対応することが可能である。 As described above, according to the circuit configuration shown in FIG. 9, it is possible to support two transmission / reception modes while sharing a plurality of processors.
 以上のように、遅延データを複数の成分に分けて演算することにより、成分の共用、パラメータ量の削減、並列演算といった利点を得られ、ひいては高速演算、パラレル受信数の増大といった効果を得られる。また、上記構成によれば、送受信条件を変更した場合でも、遅延データ生成のためのパラメータ演算時間を短縮化できるから、送信開始待ち時間を短くできる。 As described above, by dividing the delay data into a plurality of components, it is possible to obtain advantages such as sharing of components, reduction in parameter amount, and parallel computation, and in turn, effects such as high-speed computation and increase in the number of parallel receptions. . Further, according to the above configuration, even when the transmission / reception conditions are changed, the parameter calculation time for generating the delay data can be shortened, so that the transmission start waiting time can be shortened.
 (7)第4実施形態
 上記の(7)式を変形すると、以下のようになる。
(7) Fourth Embodiment The above formula (7) is modified as follows.
  [数8]
  D’=2r-xe(sinθ+Δθ・cosθ)・・・(8)
[Equation 8]
D ′ = 2r−xe (sin θ + Δθ · cos θ) (8)
 上記(8)式における第2項のカッコ内に関する演算((sinθ+Δθ・cosθ)/c)を実行した上で、その演算結果に対してxeを乗算した上で、その乗算結果と、上記(8)式における第1項に関する演算(2r/c)と、を加算するようにしてもよい。その場合には図10に示す遅延データ生成回路66Cを利用することが可能である。図10において、第1演算回路204は、直線経路演算回路であり、(2r/c)の計算を実行するものである。第1演算回路204は単純な計算回路によって構成され得る。その演算結果は受信開口内における複数の受信振動素子間で共用可能である。 After executing the operation ((sin θ + Δθ · cos θ) / c) in the parenthesis of the second term in the above equation (8), the operation result is multiplied by xe, the multiplication result, and (8 ) (2r / c) with respect to the first term in the equation may be added. In that case, the delay data generation circuit 66C shown in FIG. 10 can be used. In FIG. 10, a first arithmetic circuit 204 is a straight path arithmetic circuit, and executes the calculation of (2r / c). The first arithmetic circuit 204 can be configured by a simple calculation circuit. The calculation result can be shared among a plurality of receiving vibration elements in the receiving aperture.
 第2演算回路206は、上記のように((sinθ+Δθ・cosθ)/c)の演算を実行するものである。それは例えばPWL回路によって構成されてもよい。その演算結果は上記複数の振動素子間では共用できないものである。 The second calculation circuit 206 executes the calculation of ((sin θ + Δθ · cos θ) / c) as described above. For example, it may be constituted by a PWL circuit. The calculation result cannot be shared among the plurality of vibration elements.
 演算器208は、第2演算回路206の演算結果に対してxeを乗算する回路と、その乗算結果と第1演算回路204の演算結果とを加算する回路と、を含む。演算器208から遅延データが出力され、それが遅延データメモリ210に格納される。パラメータメモリ212には第1演算回路204での演算で必要なパラメータが格納され、パラメータメモリ214には第2演算回路206での演算で必要なパラメータが格納される。 The computing unit 208 includes a circuit that multiplies the computation result of the second computation circuit 206 by xe, and a circuit that adds the multiplication result and the computation result of the first computation circuit 204. Delay data is output from the arithmetic unit 208 and stored in the delay data memory 210. The parameter memory 212 stores parameters necessary for the calculation in the first calculation circuit 204, and the parameter memory 214 stores parameters required for the calculation in the second calculation circuit 206.
 図10に示した構成においても、遅延データにおける特定の成分を複数の受信振動素子間で共用することが可能である。仮想音源法を適用する場合、第1演算回路204において往路遅延データを演算し、第2演算回路206で復路遅延データを演算することが可能である。 In the configuration shown in FIG. 10 as well, a specific component in the delay data can be shared among a plurality of receiving vibration elements. When the virtual sound source method is applied, it is possible to calculate the forward delay data in the first arithmetic circuit 204 and to calculate the backward delay data in the second arithmetic circuit 206.
 いずれにしても、従来においては、パラメータ群に基づいて1つの遅延データが一度に生成されていたが、上記のような段階的又は並列的な生成方法を利用することにより、演算量又はパラメータ量を削減できるという利点が得られる。上記構成によれば、送受信条件を変更した場合においてもパラメータ群を短時間で演算できるので、送信開始タイミングが遅れることに伴うユーザーのストレスを緩和又は解消できる。 In any case, in the past, one piece of delay data was generated at a time based on the parameter group. However, by using the stepwise or parallel generation method as described above, the calculation amount or the parameter amount The advantage that can be reduced is obtained. According to the above configuration, the parameter group can be calculated in a short time even when the transmission / reception conditions are changed, so that the user's stress associated with the delay of the transmission start timing can be reduced or eliminated.

Claims (11)

  1.  複数の受信信号を出力する複数の振動素子と、
     前記複数の振動素子に対応する複数の遅延データを生成する生成回路と、
     前記複数の遅延データに従って、前記複数の受信信号を遅延処理する遅延処理回路と、
     を含み、
     前記生成回路は、
     送信基準点から受信焦点までの往路に対応する往路遅延データを生成する往路遅延データ生成器と、
     前記複数の振動素子における受信振動素子ごとに、前記受信焦点から当該受信振動素子までの復路に対応する復路遅延データを生成する復路遅延データ生成器と、
     前記受信振動素子ごとに、前記往路遅延データと前記復路遅延データとに基づいて当該受信振動素子からの受信信号を遅延処理するための遅延データを生成する遅延データ生成器と、
     を含むことを特徴とする超音波診断装置。
    A plurality of vibration elements that output a plurality of received signals;
    A generation circuit for generating a plurality of delay data corresponding to the plurality of vibration elements;
    A delay processing circuit that delays the plurality of received signals according to the plurality of delay data;
    Including
    The generation circuit includes:
    An outbound delay data generator that generates outbound delay data corresponding to the outbound path from the transmission reference point to the reception focus;
    A return delay data generator for generating return delay data corresponding to a return path from the reception focus to the reception vibration element for each reception vibration element in the plurality of vibration elements;
    A delay data generator for generating delay data for delaying a reception signal from the reception vibration element based on the forward path delay data and the return path delay data for each reception vibration element;
    An ultrasonic diagnostic apparatus comprising:
  2.  請求項1記載の装置において、
     前記往路遅延データ生成器は、複数の受信振動素子間で共用されるデータとして前記往路遅延データを生成する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The forward delay data generator generates the forward delay data as data shared among a plurality of receiving vibration elements;
    An ultrasonic diagnostic apparatus.
  3.  請求項2記載の装置において、
     前記往路遅延データ生成器は、送信開口合成法としての仮想音源法が実行される場合に、前記送信基準点、送信焦点及び前記受信焦点に基づいて、前記往路遅延データを生成する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 2.
    The forward delay data generator generates the forward delay data based on the transmission reference point, the transmission focus, and the reception focus when a virtual sound source method as a transmission aperture synthesis method is executed.
    An ultrasonic diagnostic apparatus.
  4.  請求項3記載の装置において、
     前記往路遅延データは往路伝搬時間に対応するデータであり、
     前記往路伝搬時間は、
     前記送信原点から前記送信焦点までの距離よりも前記送信原点から前記受信焦点までの距離が大きい場合には、前記送信原点から前記送信焦点までの距離に対応する伝搬時間に対して、前記送信焦点から前記受信焦点までの距離に対応する伝搬時間を加算した時間であり、
     前記送信原点から前記送信焦点までの距離よりも前記送信原点から前記受信焦点までの距離が小さい場合には、前記送信原点から前記送信焦点までの距離に対応する伝搬時間から、前記送信焦点から前記受信焦点までの距離に対応する伝搬時間を減算した時間である、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 3.
    The forward path delay data is data corresponding to the forward path propagation time,
    The outward propagation time is
    When the distance from the transmission origin to the reception focus is larger than the distance from the transmission origin to the transmission focus, the transmission focus with respect to the propagation time corresponding to the distance from the transmission origin to the transmission focus. Is a time obtained by adding a propagation time corresponding to the distance from the reception focal point to
    When the distance from the transmission origin to the reception focus is smaller than the distance from the transmission origin to the transmission focus, from the propagation time corresponding to the distance from the transmission origin to the transmission focus, from the transmission focus to the transmission focus. This is the time obtained by subtracting the propagation time corresponding to the distance to the reception focus.
    An ultrasonic diagnostic apparatus.
  5.  請求項1記載の装置において、
     前記往路遅延データ生成器は区分的多項式補間法に従って前記往路遅延データを生成する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The forward delay data generator generates the forward delay data according to piecewise polynomial interpolation;
    An ultrasonic diagnostic apparatus.
  6.  請求項1記載の装置において、
     前記復路遅延データ生成器は、複数の送信ビーム間において共用されるデータとして前記復路遅延データを生成する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The return path delay data generator generates the return path delay data as data shared between a plurality of transmission beams.
    An ultrasonic diagnostic apparatus.
  7.  請求項6記載の装置において、
     前記復路遅延データ生成器は、前記受信焦点と前記受信振動素子との間の距離に基づいて前記復路遅延データを生成する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 6.
    The return path delay data generator generates the return path delay data based on a distance between the reception focus and the reception vibration element.
    An ultrasonic diagnostic apparatus.
  8.  請求項1記載の装置において、
     前記遅延データ生成回路は、前記往路遅延データと前記復路遅延データとを加算する回路である、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The delay data generation circuit is a circuit that adds the forward delay data and the backward delay data.
    An ultrasonic diagnostic apparatus.
  9.  請求項1記載の装置において、
     前記生成回路は、更に、補正項として補正遅延データを生成する補正遅延データ生成器を含み、
     前記遅延データ生成器は、前記受信振動素子ごとに、前記往路遅延データ、前記復路遅延データ、及び、前記補正遅延データに基づいて、当該受信振動素子からの受信信号を遅延処理するための前記遅延データを生成する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 1.
    The generation circuit further includes a correction delay data generator that generates correction delay data as a correction term,
    The delay data generator is configured to delay the received signal from the reception vibration element based on the forward path delay data, the return path delay data, and the correction delay data for each reception vibration element. Generate data,
    An ultrasonic diagnostic apparatus.
  10.  請求項9記載の装置において、
     前記補正項は、送受総合ピークを所望の撮像点に合わせるための受信焦点シフト量に対応する、
     ことを特徴とする超音波診断装置。
    The apparatus of claim 9.
    The correction term corresponds to a reception focus shift amount for adjusting the transmission / reception total peak to a desired imaging point.
    An ultrasonic diagnostic apparatus.
  11.  複数の受信振動素子間で共用される成分として第1遅延データを生成する工程と、
     前記受信振動素子ごとに、当該受信振動素子用の固有の成分として第2遅延データを生成する工程と、
     前記受信振動素子ごとに、前記第1遅延データ及び前記第2遅延データに基づいて、当該受信振動素子からの受信信号を遅延処理するための遅延データを生成する工程と、
     を含むことを特徴とする、超音波診断装置における遅延データ生成方法。
    Generating first delay data as a component shared among a plurality of receiving vibration elements;
    Generating second delay data as a unique component for the reception vibration element for each reception vibration element;
    Generating delay data for delaying a reception signal from the reception vibration element based on the first delay data and the second delay data for each reception vibration element;
    A method for generating delay data in an ultrasonic diagnostic apparatus.
PCT/JP2016/078164 2015-10-01 2016-09-26 Ultrasonic diagnostic device and delay data generating method WO2017057221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680054955.2A CN108024798B (en) 2015-10-01 2016-09-26 Ultrasonic diagnostic apparatus and delay data generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015195842A JP6059782B1 (en) 2015-10-01 2015-10-01 Ultrasonic diagnostic apparatus and delay data generation method
JP2015-195842 2015-10-01

Publications (1)

Publication Number Publication Date
WO2017057221A1 true WO2017057221A1 (en) 2017-04-06

Family

ID=57756164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078164 WO2017057221A1 (en) 2015-10-01 2016-09-26 Ultrasonic diagnostic device and delay data generating method

Country Status (3)

Country Link
JP (1) JP6059782B1 (en)
CN (1) CN108024798B (en)
WO (1) WO2017057221A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724797B2 (en) * 2017-01-13 2020-07-15 コニカミノルタ株式会社 Ultrasonic diagnostic device and control method thereof
JP6933102B2 (en) * 2017-11-20 2021-09-08 コニカミノルタ株式会社 Ultrasonic signal processing device and ultrasonic signal processing method
JP7387249B2 (en) 2018-01-10 2023-11-28 キヤノンメディカルシステムズ株式会社 Ultrasound diagnostic equipment, medical image processing equipment, and medical image processing programs
US20190361102A1 (en) * 2018-05-22 2019-11-28 Analog Devices, Inc. Delay and apodization control interface for ultrasound beamformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052342A (en) * 2003-08-04 2005-03-03 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2012030048A (en) * 2010-07-02 2012-02-16 Toshiba Corp Ultrasonic diagnostic apparatus, image processing device, and analysis program
JP2012239813A (en) * 2011-05-24 2012-12-10 Sony Corp Signal processing apparatus, signal processing system, probe, signal processing method and program

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312534A (en) * 1994-05-17 1995-11-28 Hitachi Medical Corp Variable delay circuit and ultrasonic diagnostic system using the same
JP4202801B2 (en) * 2003-03-27 2008-12-24 パナソニック株式会社 Ultrasonic receiver
JP4495430B2 (en) * 2003-09-26 2010-07-07 パナソニック株式会社 Ultrasonic diagnostic equipment
US7635334B2 (en) * 2004-04-28 2009-12-22 Siemens Medical Solutions Usa, Inc. Dynamic sub-array mapping systems and methods for ultrasound imaging
JP5629052B2 (en) * 2008-06-03 2014-11-19 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
JP5315153B2 (en) * 2009-07-21 2013-10-16 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment
JP2011030908A (en) * 2009-08-05 2011-02-17 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP5558858B2 (en) * 2010-02-15 2014-07-23 株式会社東芝 Ultrasonic probe
CN101858972B (en) * 2010-03-23 2013-01-30 深圳市蓝韵实业有限公司 Multi-beam synthesis method and device based on delay parameter real-time calculation and assembly line
JP5689697B2 (en) * 2011-01-27 2015-03-25 株式会社東芝 Ultrasonic probe and ultrasonic diagnostic apparatus
CN104812311B (en) * 2012-12-07 2017-07-04 株式会社日立制作所 Ultrasonic probe and diagnostic ultrasound equipment
JP5602914B1 (en) * 2013-07-10 2014-10-08 日立アロカメディカル株式会社 Ultrasonic diagnostic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052342A (en) * 2003-08-04 2005-03-03 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2012030048A (en) * 2010-07-02 2012-02-16 Toshiba Corp Ultrasonic diagnostic apparatus, image processing device, and analysis program
JP2012239813A (en) * 2011-05-24 2012-12-10 Sony Corp Signal processing apparatus, signal processing system, probe, signal processing method and program

Also Published As

Publication number Publication date
CN108024798A (en) 2018-05-11
CN108024798B (en) 2020-12-25
JP2017064249A (en) 2017-04-06
JP6059782B1 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US11360199B2 (en) Ultrasound signal processing device, ultrasound diagnostic device
CN108209971B (en) Ultrasonic signal processing apparatus and method, and ultrasonic diagnostic apparatus
JP6793444B2 (en) Ultrasonic diagnostic equipment
WO2017057221A1 (en) Ultrasonic diagnostic device and delay data generating method
JP2015213673A (en) Ultrasonic diagnostic apparatus
US9955952B2 (en) Ultrasonic diagnostic device and correction method
JP6393824B2 (en) Ultrasonic imaging apparatus and ultrasonic signal processing method
JP2018029702A (en) Ultrasonic signal processing apparatus, ultrasonic diagnostic apparatus, and ultrasonic signal processing method
CN107569254B (en) Ultrasonic signal processing device, ultrasonic signal processing method, and ultrasonic diagnostic device
US11484292B2 (en) Ultrasound signal processing device that uses synthetic aperture method and delay and sum method
US11744555B2 (en) Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method
US11103217B2 (en) Ultrasound signal processing method and ultrasound signal processing device
KR101627821B1 (en) Method for synthetic focusing ultrasound field based on virtual source and ultrasonic apparatus using the method
JP2017000547A (en) Ultrasonic diagnostic equipment
US10702246B2 (en) Ultrasound diagnostic apparatus and an ultrasound signal processing method
US20200077977A1 (en) Ultrasound signal processing device, ultrasound diagnostic device, and ultrasound signal processing method
JPWO2007039972A1 (en) Ultrasonic diagnostic equipment
JP5932932B2 (en) Photoacoustic device
JP5627756B2 (en) Control method of photoacoustic apparatus
US11413012B2 (en) Ultrasound signal processing device and ultrasound signal processing method
JP6863817B2 (en) Ultrasound imaging device
JP2018027450A (en) Reception data processing device for photoacoustic tomography
WO2005060832A1 (en) Ultrasonographic device and ultrasonic imaging method
JP2016129818A (en) Reception data processing device for photoacoustic tomography
JP2011024758A (en) Ultrasonic diagnostic apparatus, medical image processing unit, and medical image processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851392

Country of ref document: EP

Kind code of ref document: A1