WO2017056934A1 - Busbar electrode, solar battery cell, and solar battery module - Google Patents

Busbar electrode, solar battery cell, and solar battery module Download PDF

Info

Publication number
WO2017056934A1
WO2017056934A1 PCT/JP2016/076749 JP2016076749W WO2017056934A1 WO 2017056934 A1 WO2017056934 A1 WO 2017056934A1 JP 2016076749 W JP2016076749 W JP 2016076749W WO 2017056934 A1 WO2017056934 A1 WO 2017056934A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
bar electrode
interconnector
solar cell
electrode
Prior art date
Application number
PCT/JP2016/076749
Other languages
French (fr)
Japanese (ja)
Inventor
圭祐 大平
友亮 松野
山本 真也
充宏 松下
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017543083A priority Critical patent/JPWO2017056934A1/en
Priority to CN201680056182.1A priority patent/CN108140678A/en
Publication of WO2017056934A1 publication Critical patent/WO2017056934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Definitions

  • An embodiment of the present invention relates to a bus bar electrode, a solar battery cell, and a solar battery module.
  • Japanese Patent Application Laid-Open No. 2007-150356 discloses a solar cell in which a surface electrode including a bus bar portion (bus bar electrode) provided with a slit portion and a finger portion (finger electrode) is formed.
  • the slit part is formed in a direction parallel to or perpendicular to the finger part.
  • the bus bar portion is connected to the surface copper foil (interconnector).
  • the surface electrode is formed using a paste made of silver powder, glass frit, a binder, and a solvent.
  • the bus bar electrode is connected to the interconnector. Therefore, from the viewpoint of increasing the bonding strength between the bus bar electrode and the interconnector, and from the viewpoint of reducing the alignment accuracy when forming the interconnector on the bus bar electrode, the bus bar electrode is formed in a wider area. preferable.
  • the relative positional relationship between the bus bar electrode and the interconnector is the above described design value (hereinafter also referred to as a reference state).
  • a reference state When misaligned in the parallel direction, the bonding area between the bus bar electrode and the interconnector decreases, and there is a problem that the connection strength between the two decreases.
  • the embodiment disclosed herein has been made to solve the above-described problems.
  • the main purpose of the embodiment disclosed herein is to suppress a decrease in the connection strength between the bus bar electrode and the interconnector even when the relative positional relationship between the bus bar electrode and the interconnector is displaced from the design value.
  • Another object is to provide a solar cell module.
  • the bus bar electrode according to the embodiment disclosed herein is provided in a solar battery cell, and is connected to the interconnector in a solar battery string in which a plurality of the solar battery cells are electrically connected via an interconnector. It is a bus bar electrode.
  • the bus bar electrode includes a first portion extending along a first direction and a second portion extending along the first direction and intersecting the first direction. A second portion and a third portion arranged to be spaced apart from the first portion, and extending along the second direction, and the first portion, the second portion, and the And a fourth portion connecting the third portions to each other.
  • a solar cell module can be provided.
  • FIG. 3 is a cross-sectional view seen from an arrow III-III in FIG.
  • FIG. 4 is a cross-sectional view seen from arrows IV-IV in FIG. It is a rear view of the photovoltaic cell which concerns on this Embodiment.
  • (A)-(c) is sectional drawing which shows the manufacturing method of the photovoltaic cell concerning this Embodiment. It is a top view which shows the reference
  • solar cell 1 and bus bar electrode 20 according to the present embodiment will be described with reference to FIGS.
  • the solar cell 1 is formed on the first main surface 10A and the semiconductor substrate 10 having the first main surface 10A and the second main surface 10B located on the opposite side of the first main surface 10A.
  • the semiconductor substrate 10 is, for example, an n-type or p-type single crystal or polycrystalline silicon substrate. As shown in FIG. 3, the semiconductor substrate 10 includes a p-type region 11 and an n-type region 12.
  • the p-type region 11 has a first main surface 10A
  • the n-type region 12 has a second main surface. It has a surface 10B.
  • the first main surface 10A and the second main surface 10B are formed with unevenness (texture structure), and constitute a light receiving surface.
  • the bus bar electrode 20 extends along the first direction A.
  • a plurality of bus bar electrodes 20 are formed, for example, spaced apart from each other in a second direction B intersecting (for example, orthogonal to) the first direction A.
  • the bus bar electrode 20 extends along the first direction A, extends along the first direction A, and is spaced apart from the first portion 21 in the second direction B. It has the 2nd part 22 and the 3rd part 23 which are arrange
  • the bus bar electrode 20 has a fourth portion 24 that extends in the second direction B and connects the first portion 21, the second portion 22, and the third portion 23 to each other.
  • a plurality of fourth portions 24 are formed at intervals in the first direction A.
  • the first portion 21 is disposed so as to overlap the center line of the bus bar electrode 20 in the second direction B.
  • the bus bar electrode 20 (the first portion 21, the second portion 22, the third portion 23, the fourth portion 24, and the convex portion 25) has a first direction A and a second direction B. It has a surface 20A in a third direction (thickness direction of the semiconductor substrate 10) orthogonal to each other.
  • the width W1 of the first portion 21 in the second direction B is wider than the width W2 of the second portion 22 in the second direction B and the width W3 of the third portion 23 in the second direction B.
  • the width W2 of the second portion 22 in the second direction B and the width W3 of the third portion 23 in the second direction B are, for example, equal.
  • the width W1 of the first portion 21 is, for example, not less than 0.2 mm and not more than 0.5 mm.
  • the widths W2, W3 of the second portion 22 and the third portion 23 are, for example, not less than 0.1 mm and not more than 0.5 mm.
  • the bus bar electrode 20 includes an antireflection film, which will be described later, between the first portion 21 and the second portion 22 and between the first portion 21 and the third portion 23.
  • a hollow portion 40 where 50 is exposed is formed.
  • the bus bar electrode 20 includes a plurality of hollow portions 40 that are continuous with the fourth portion 24 in the first direction A, and a plurality of the continuous portions 40 that are continuous with the first portion 21 in the second direction B.
  • a hollow portion 40 is formed.
  • the number of the hollow portions 40 arranged side by side in the second direction B is an even number, and can be, for example, 2, 4, 6, or 8.
  • hollow portions 40 When three hollow portions 40 are arranged side by side in the second direction B, for example, they extend along the first direction A and the second portion 22 is between the first portion 21 and the second portion 22.
  • a fifth portion (not shown) is formed so as to be spaced from the second portion 22 so as to be sandwiched.
  • a hollow portion 40 is formed between the fifth portion and the second portion 22.
  • the plurality of hollow portions 40 may have different shapes or dimensions, or may have the same shape and dimensions.
  • the planar shape of the hollow portion 40 formed in the bus bar electrode 20 may be any shape.
  • two parallel lines extending along the first direction A are in the second direction B. It is a shape joined by a curved line extending in an arc shape.
  • a width W4 of the hollow portion 40 in the second direction B is, for example, the same as the width W1 of the first portion 21 or wider than the width W1.
  • the width W4 of the hollow portion 40 is, for example, not less than 0.1 mm and not more than 1.0 mm.
  • the total width (W4 ⁇ 2 in FIG. 2) of the plurality of hollow portions 40 arranged side by side in the second direction B is a width W7 in the second direction B of the interconnector 70 described later (see FIG. 7).
  • the width W6 of the bus bar electrode 20 in the second direction B is, for example, not less than 0.8 mm and not more than 2.5 mm, and preferably not less than 1.0 mm and not more than 2.0 mm.
  • the ratio of the width W1 of the first portion 21 to the width W6 of the bus bar electrode 20 is 20% or more.
  • the area of the surface 20A (see FIG. 2) of the bus bar electrode 20 is 60% or more of the area of the surface of the bus bar electrode which is not provided with the hollow portion 40 and is configured as a line having the width W6. Is preferred. In other words, the total area of the plurality of hollow portions 40 is 40% or less of the area of the surface of the bus bar electrode which is not provided with the hollow portions 40 and is configured as a line having the width W6. Is preferred.
  • the bus bar electrode 20 protrudes partially from the second portion 22 in the second direction B and partially protrudes from the third portion 23 in the second direction B. And a convex portion 25b.
  • the convex portions 25 a and 25 b are continuous with the fourth portion 24 in the second direction B.
  • the convex portions 25 a and 25 b are continuous with the finger electrode 30 in the second direction B.
  • any one of the convex portions 25a and 25b may be formed.
  • the thickness of the bus bar electrode 20 is equal to the thickness of the finger electrode 30, for example.
  • the material constituting the bus bar electrode 20 includes, for example, at least one selected from the group consisting of silver (Ag), copper (Cu), and aluminum (Al).
  • the finger electrode 30 extends in the second direction B.
  • a plurality of finger electrodes 30 are formed, for example, in the first direction A at intervals.
  • the finger electrode 30 is formed in the second direction B so as to be continuous with the convex portions 25a and 25b.
  • the finger electrode 30 is formed so as to be continuous in the second direction B with the central portion of each of the convex portions 25 a and 25 b in the first direction A.
  • the width of the finger electrode 30 in the first direction A is narrower than the minimum width of the fourth portion 24 in the first direction A.
  • the material constituting the finger electrode 30 includes, for example, at least one selected from the group consisting of Ag, Cu, and Al.
  • the antireflection film 50 covers a region where the bus bar electrode 20 and the finger electrode 30 are not formed on the first main surface 10A.
  • the antireflection film 50 is, for example, a silicon oxide film, a silicon nitride film, a silicon film containing both oxygen and nitrogen, or a multilayer film thereof.
  • back-side bus bar electrode 60 has the same configuration as bus bar electrode 20.
  • the back bus bar electrode 60 extends along the first direction A.
  • a plurality of back surface bus bar electrodes 60 are formed, for example, spaced apart from each other in a second direction B intersecting (for example, orthogonal to) the first direction A.
  • the back surface bus bar electrode 60 extends along the first direction A, extends along the first direction A, and is spaced apart from the first portion 61 in the second direction B.
  • the second portion 62 and the third portion 63 are arranged so as to sandwich the first portion 61 therebetween.
  • the back surface bus bar electrode 60 has a fourth portion 64 that extends along the second direction B and connects the first portion 61, the second portion 62, and the third portion 63 to each other. For example, a plurality of fourth portions 64 are formed at intervals in the first direction A.
  • the backside bus bar electrode 60 has a hollow portion 41 where the antireflection film 51 is exposed between the first portion 61 and the second portion 62 and between the first portion 61 and the third portion 63. Is formed.
  • the back surface bus bar electrode 60 includes a convex portion 65a partially protruding from the second portion 62 in the second direction B and a convex portion 65b partially protruding from the third portion 63 in the second direction B.
  • the back surface bus bar electrode 60 is formed, for example, in a region overlapping the bus bar electrode 20 in a direction perpendicular to the second main surface 10B.
  • the first portion 61, the second portion 62, the third portion 63, the fourth portion 64, the convex portions 65a and 65b, and the hollow portion 41 are each a first portion in a direction perpendicular to the second main surface 10B, for example. 21, the second portion 22, the third portion 23, the fourth portion 24, the convex portions 25 a and 25 b, and the hollow portion 40.
  • the back finger electrode 31 has the same configuration as the finger electrode 30.
  • the antireflection film 51 has the same configuration as the antireflection film 50.
  • the solar cell string 2 is configured by connecting the bus bar electrode 20 and the back bus bar electrode 60 to the interconnector 70.
  • ⁇ Solar cell manufacturing method> Next, with reference to FIG. 6, the manufacturing method of the photovoltaic cell 1 which concerns on this Embodiment is demonstrated. Referring to FIG. 6A, first, p + region 11 is formed on first main surface 10A of semiconductor substrate 10 having a texture structure, and n + region 12 is formed on second main surface 10B. Referring to FIG. 6B, next, an antireflection film 50 is formed so as to cover the first main surface 10A. Further, an antireflection film 50 is formed so as to cover the first main surface 10A. A method of forming the antireflection film 50 is, for example, a plasma CVD method.
  • bus bar electrode 20 and finger electrode 30 are formed on first main surface 10A. Further, back bus bar electrode 60 and back finger electrode 31 are formed on second main surface 10B.
  • the bus bar electrodes 20 and 60 and the finger electrodes 30 and 31 are formed, for example, by screen printing silver paste and baking.
  • the bus bar electrodes 20 and 60 may be formed after the finger electrodes 30 and 31 are formed.
  • the finger electrode 30 extending along the second direction B and the conductive member to be a part of the fourth portion 24 are formed over the entire solar cell 1, and then along the first direction A.
  • a conductive member to be the extended bus bar electrode 20 can also be formed.
  • the bus bar electrode 20 and the finger electrode 30 may be formed after the back surface bus bar electrode 60 and the back surface finger electrode 31 are formed. Further, the antireflection films 50 and 51 may be formed after the bus bar electrodes 20 and 60 and the finger electrodes 30 and 31 are formed.
  • ⁇ Solar cell string> Next, with reference to FIG. 7 and FIG. 8, the solar cell string 2 which concerns on this Embodiment is demonstrated.
  • a plurality of solar cells 1 are electrically connected in series by an interconnector 70.
  • the interconnector 70 electrically connects one bus bar electrode 20 and the other back surface bus bar electrode 60 in two adjacent solar cells 1.
  • the interconnector 70 includes a first connection portion 71 connected to the bus bar electrode 20, a second connection portion 72 connected to the back surface bus bar electrode 60, and a space between the first connection portion 71 and the second connection portion 72. And a third connection portion 73 for connecting the two.
  • the material constituting the interconnector 70 may be any material having conductivity, but includes at least one selected from the group consisting of Ag, Cu, Al, Pb, and Sn, for example.
  • the width W7 in the second direction B of the first connection portion 71 of the interconnector 70 is equal to, for example, the width W6 of the bus bar electrode 20.
  • the bus bar electrode 20 has the first portion 21, the second portion 22, the third portion 23, and the fourth portion 24 as a whole connected to the first connection portion 71 of the interconnector 70.
  • a center line (line segment D in FIG. 7) passing through the center in the direction B and extending along the first direction A are arranged so as to overlap each other.
  • a state in which the center lines are arranged so as to overlap each other is referred to as a reference state.
  • the reference state is a state in which the position is not shifted from the design value in the solar cell string 2, for example.
  • the convex portions 25 and the finger electrodes 30 of the bus bar electrode 20 are not connected to the interconnector 70 and are exposed in the solar cell string 2.
  • the hollow portion 40 of the bus bar electrode 20 is completely covered by the interconnector 70.
  • the light receiving surface in the solar cell string 2 is a region surrounded by the bus bar electrode 20 and the finger electrode 30.
  • the bus bar electrode 20 includes a first connection portion of the interconnector 70 in which at least part of the first portion 21, the second portion 22, the third portion 23, and the fourth portion 24 71 may be connected.
  • the bus bar electrode 20 includes a first connection portion of the interconnector 70 in which at least part of the first portion 21, the second portion 22, the third portion 23, and the fourth portion 24 71 may be connected.
  • the hollow portion 40 of the bus bar electrode 20 is partially covered by the interconnector 70.
  • a portion adjacent to the convex portion 25 in the convex portion 25 and the finger electrode 30 is connected to the interconnector 70. At this time, since the light can reach the hollow portion 40, the region located in the hollow portion 40 can also act as a light receiving surface.
  • connection area of the region connected to the interconnector 70 is preferably 80% or more when the state (reference state) shown in FIGS. 7 and 8 is 100%. In this case, the connection strength between the bus bar electrode 20 and the interconnector 70 can be further increased. In addition, the connection area connected to the bus bar electrode 20 in the interconnector 70 is preferably 80% or more when the reference state is 100%.
  • the width W7 of the interconnector 70 may be 2/3 times or more and 1 time or less of the width W6 of the bus bar electrode 20. In other words, the width W6 of the bus bar electrode 20 may be 1 to 1.5 times the width W7 of the interconnector 70.
  • the width W7 of the interconnector 70 is, for example, not less than 0.5 mm and not more than 2.0 mm, preferably not less than 1.3 mm and not more than 1.8 mm.
  • the ratio of the width W1 of the first portion 21 to the width W7 of the interconnector 70 is not less than 30% and not more than 60%.
  • the width W6 of the bus bar electrode 20 is 1.5 times the width W7 of the interconnector 70, and the center lines of the bus bar electrode 20 and the interconnector 70 are arranged so as to overlap each other.
  • the solar cell string 2 in a state (reference state) is shown.
  • One end and the other end of the first connector 71 of the interconnector 70 in the second direction B are formed at positions overlapping the hollow portion 40.
  • the connection area between the bus bar electrode 20 and the interconnector 70 is preferably 80% or more when the reference state shown in FIGS. 11 and 12 is 100%.
  • the solar cell module 3 is disposed on the plurality of solar cell strings 2, the sealing material 80 and the transparent substrate 81 disposed on the first main surface 10A side of the solar cell string 2, and the second main surface 10B side. A sealing material 80 and a back film 82.
  • the interconnector 70 is electrically connected to the bus bar electrode 20 of one adjacent solar cell 1 and is also electrically connected to the rear bus bar electrode 60 of the other solar cell 1.
  • sealing material 80 for example, a resin transparent to sunlight can be used without particular limitation, and for example, ethylene vinyl acetate can be used.
  • transparent substrate 81 for example, a substrate transparent to sunlight can be used without particular limitation, and for example, a glass substrate or the like can be used.
  • back film 82 for example, a conventionally used sheet such as a weather-resistant film can be used without any particular limitation, and it is preferable to use a film having a metal film sandwiched between insulating films.
  • first main surface 10A and the second main surface 10B may be formed as a light receiving surface.
  • the bus bar electrode of the solar battery cell 1 may be formed only on one of the first main surface 10A and the second main surface 10B. Referring to FIG. 14, for example, when only first main surface 10A is formed as a light receiving surface, bus bar electrode 20 (see FIG. 2) is formed on second main surface 10B (see FIG. 1).
  • the back surface electrode 90 provided with the same structure may be formed. The back electrode 90 extends along the first direction A, extends along the first direction A, and is spaced apart from the first portion 91 in the second direction B.
  • the back electrode 90 has a fourth portion 94 that extends along the second direction B and connects the first portion 91, the second portion 92, and the third portion 93 to each other.
  • a plurality of fourth portions 94 are formed at intervals in the first direction A.
  • the bus bar electrode 20 is disposed at a distance from the first portion 21 located in the center in the second direction B and the first portion 21 so as to sandwich the first portion 21 in the second direction B.
  • a hollow portion 40 is formed between the portion 22 and the third portion.
  • the bus bar electrode 20 has a width W6 in the second direction B equal to or greater than that of the conventional bus bar electrode while suppressing the content of Ag or the like lower than that of the bus bar electrode having the conventional slit portion. be able to. Furthermore, according to the bus bar electrode 20, even if the interconnector 70 is displaced from the reference state, at least one of the first portion 21 and at least one of the second portion 22 and the third portion 23 is used. Can be connected simultaneously with the interconnector 70.
  • the connection strength between the bus bar electrode 20 and the interconnector 70 even when the relative positional relationship between the bus bar electrode and the interconnector is displaced from the reference state. Can be provided. If it says from a different viewpoint, according to the bus-bar electrode 20 which concerns on this Embodiment, the positional offset tolerance of the interconnector 70 with respect to the bus-bar electrode 20 can be made larger than the said conventional bus-bar electrode. Therefore, the solar cell string 2 and the solar cell module 3 in which the plurality of solar cells 1 including the bus bar electrode 20 are electrically connected via the interconnector 70 are compared with the conventional solar cell string and the solar cell module. The bus bar electrode 20 and the interconnector 70 can be easily connected.
  • the solar cell 1, the solar cell string 2, and the solar cell module 3 including the bus bar electrode 20 can reduce the Ag content as compared to the conventional solar cell, solar cell string, and solar cell module. Therefore, the manufacturing cost can be kept low. Further, since the hollow portion 40 can also be configured as a light receiving surface according to the relative positional relationship between the bus bar electrode 20 and the interconnector 70, the light receiving area can be increased while the width W6 of the bus bar electrode 20 is increased. Is also possible.
  • connection area of the region connected to the interconnector 70 on the surface 20A is 80% or more of the connection area when the relative positional relationship between the bus bar electrode 20 and the interconnector 70 is in the reference state. It is preferably 100% or less. In this case, it is possible to provide the solar battery cell 1 in which a decrease in connection strength between the bus bar electrode 20 and the interconnector 70 is suppressed.
  • the ratio (W6 / W7) of the width W6 in the second direction B of the bus bar electrode 20 to the width W7 in the second direction B of the interconnector 70 is 1 or more and 1.5 or less. preferable. If it does in this way, when connecting the photovoltaic cells 1 mutually by the interconnector 70, position alignment of the interconnector 70 with respect to the bus-bar electrode 20 can be made easy.
  • the width W6 of the bus bar electrode 20 includes the width W4 of the hollow portion 40. For this reason, the bus bar electrode 20 has a reduced Ag content compared to the bus bar electrode having the width W6 in which the hollow portion 40 is not formed, and thus the manufacturing cost is kept low.
  • the total value of the distance between the first portion 21 and the second portion 22 and the distance between the first portion 21 and the third portion 23 with respect to the width W 7 in the second direction B of the interconnector 70 is 60. % Or more is preferable.
  • the ratio of the total value of the width W4 of the plurality of hollow portions 40 formed side by side along the second direction B with respect to the width W7 of the interconnector 70 is preferably 60% or more and 80% or less. In this way, the width W6 in the second direction B of the bus bar electrode 20 can be increased while suppressing the Ag content of the bus bar electrode 20 as compared with the bus bar electrode 20 having the ratio of less than 60%. it can.
  • region of the hollow part 40 can comprise a light-receiving surface, the reduction
  • the bus bar electrode 20 since the bus bar electrode 20 is provided, the bus bar electrode 20 and the interconnector 70 can be easily connected with high strength. Therefore, the solar cell string 2 and the solar cell module 3 in which the plurality of solar cells 1 are connected via the interconnector 70 are lower in manufacturing cost and the bus bar electrode than the conventional solar cell string and solar cell module. The connection strength between the connector 20 and the interconnector 70 is high.
  • the solar cell 1 can collect carriers from a wide area of the light receiving surface and collect current. Furthermore, since the finger electrode 30 and the 4th part 24 are each connected in the 2nd direction B, the electrically-conductive member which should become the finger electrode 30 extended along the 2nd direction B is used for the photovoltaic cell 1, for example. After forming over the whole, by forming a conductive member to be the bus bar electrode 20 extending along the first direction A (particularly, the conductive member to be the fourth portion 24 is a part of the conductive member). The solar battery cell 1 can be easily manufactured.
  • the solar battery string 2 includes the solar battery cell 1 including the bus bar electrode 20, the bus bar electrode 20 and the interconnector 70 are connected with high connection strength. Therefore, the solar cell string 2 has a lower manufacturing cost and a higher connection strength between the bus bar electrode 20 and the interconnector 70 than the conventional solar cell string. Moreover, since the solar cell module 3 includes the solar cell string 2, the manufacturing cost is low and the connection strength between the bus bar electrode 20 and the interconnector 70 is high as compared with the conventional solar cell module.
  • the solar cell string 2 (sample 1) in which the ratio of the width W6 in the second direction B of the bus bar electrode 20 to the width W7 in the second direction B of the interconnector 70 is 1, and the ratio is 1 .15 solar cell string 2 (sample 2) and solar cell string 2 (sample 3) having a ratio of 1.5.
  • the width W1 of the first portion 21 is 0.3 mm
  • the widths W2 and W3 of the second portion 22 and the third portion 23 are 0.2 mm
  • the width W4 of the hollow portion 40 Is connected to the bus bar electrode 20 having the width W6 of 1.3 mm and the interconnector 70 having the width W7 of 1.3 mm in the second direction B.
  • a solar cell string 2 was prepared.
  • the width W1 of the first portion 21 is 0.3 mm
  • the widths W2 and W3 of the second portion 22 and the third portion 23 are 0.2 mm
  • the width W4 of the hollow portion 40 is 0.4 mm
  • the solar cell string 2 in which the bus bar electrode 20 having the width W6 of 1.5 mm and the interconnector 70 having the width W7 of 1.3 mm are connected. was made.
  • the width W1 of the first portion 21 is 0.3 mm
  • the widths W2 and W3 of the second portion 22 and the third portion 23 are 0.1 mm
  • the width W4 of the hollow portion 40 is 0.25 mm
  • Two solar cell strings 2 in which two hollow portions 40 are arranged in the second direction B and the bus bar electrode 20 having a width W6 of 1.5 mm and the interconnector 70 having a width W7 of 1.0 mm are connected.
  • Table 1 shows parameters of the solar cell strings 2 of Sample 1 and Sample 2.
  • the relative positional relationship between the bus bar electrode 20 and the interconnector 70 was in the reference state.
  • the total value of the distance between the first portion 21 and the second portion 22 and the distance between the first portion 21 and the third portion 23 with respect to the width W7 in the second direction B of the interconnector 70 is 46 for the sample 1. %, Sample 2 was 61%, and sample 3 was 60%.
  • Table 2 shows the results of peel strength measurement performed on the solar cell strings 2 of Samples 1 to 3 produced.
  • the solar cell strings 2 of Sample 1 to Sample 3 are connected to the bus bar electrode 20 and the interconnector 70 with sufficient strength.
  • busbar electrode 20A surface, 21, 61 1st part, 22, 62 2nd part, 23, 63 3rd part, 24, 64 4th part, 25a, 25b, 65a, 65b convex part, 30, 31 finger electrode, 40, 41 hollow part 50, 51 Antireflection film, 60 Back busbar electrode (busbar electrode), 70 Interconnector, 71 First connection,

Abstract

Provided is a solar battery module in which a decrease in the strength of connection between a busbar electrode and an interconnector is suppressed even in a case where the relative positional relationship between the busbar electrode and the interconnector deviates from a design value. Provided are: a first section (21) extending along a first direction; a second section (22) and a third section (23) that extend along the first direction and that are provided so as to sandwich the first section (21) therebetween and so as to be apart from the first section (21) in a second direction intersecting the first direction; and a fourth section (24) that extends along the second direction and that connects the first section (21), the second section (22), and the third section (23) to one another.

Description

バスバー電極、太陽電池セル、および太陽電池モジュールBus bar electrode, solar battery cell, and solar battery module
 本出願は、2015年9月29日に出願された特願2015-190971号に対して、優先権の利益を主張するものであり、それを参照することにより、その内容のすべてを本書に含める。 This application claims the benefit of priority to Japanese Patent Application No. 2015-190971 filed on Sep. 29, 2015, and the contents of which are incorporated herein by reference. .
 本発明の一実施形態は、バスバー電極、太陽電池セル、および太陽電池モジュールに関する。 An embodiment of the present invention relates to a bus bar electrode, a solar battery cell, and a solar battery module.
 特開2007-150356号公報には、スリット部が設けられているバスバー部(バスバー電極)とフィンガー部(フィンガー電極)とからなる表面電極が形成されている太陽電池が開示されている。スリット部は、フィンガー部と平行な方向または垂直な方向に形成されている。バスバー部は、表面銅箔(インターコネクタ)に接続される。表面電極は、銀粉末、ガラスフリット、結合剤、及び溶剤からなるペーストを用いて形成されている。 Japanese Patent Application Laid-Open No. 2007-150356 discloses a solar cell in which a surface electrode including a bus bar portion (bus bar electrode) provided with a slit portion and a finger portion (finger electrode) is formed. The slit part is formed in a direction parallel to or perpendicular to the finger part. The bus bar portion is connected to the surface copper foil (interconnector). The surface electrode is formed using a paste made of silver powder, glass frit, a binder, and a solvent.
特開2007-150356号公報JP 2007-150356 A
 バスバー電極はインターコネクタと接続される。そのため、バスバー電極とインターコネクタとの接合強度を高める観点、およびインターコネクタをバスバー電極上に形成する際の位置合わせ精度を緩和する観点からは、バスバー電極はより広い領域に形成されているのが好ましい。 The bus bar electrode is connected to the interconnector. Therefore, from the viewpoint of increasing the bonding strength between the bus bar electrode and the interconnector, and from the viewpoint of reducing the alignment accuracy when forming the interconnector on the bus bar electrode, the bus bar electrode is formed in a wider area. preferable.
 しかしながら、フィンガー電極と平行な方向または垂直な方向にスリット部が形成された上記太陽電池では、バスバー電極とインターコネクタとの相対的な位置関係が設計値(以下、基準状態ともいう)に対し上記平行な方向に位置ズレした場合に、バスバー電極とインターコネクタとの接着面積が減少するため、両者の接続強度が低下するという問題がある。 However, in the solar cell in which the slit portion is formed in a direction parallel to or perpendicular to the finger electrode, the relative positional relationship between the bus bar electrode and the interconnector is the above described design value (hereinafter also referred to as a reference state). When misaligned in the parallel direction, the bonding area between the bus bar electrode and the interconnector decreases, and there is a problem that the connection strength between the two decreases.
 ここで開示された実施形態は、上記のような課題を解決するためになされたものである。ここで開示された実施形態の主たる目的は、バスバー電極とインターコネクタとの相対的な位置関係が設計値に対し位置ズレした場合においても、バスバー電極とインターコネクタとの接続強度の低下が抑制された太陽電池モジュールを提供することにある。 The embodiment disclosed herein has been made to solve the above-described problems. The main purpose of the embodiment disclosed herein is to suppress a decrease in the connection strength between the bus bar electrode and the interconnector even when the relative positional relationship between the bus bar electrode and the interconnector is displaced from the design value. Another object is to provide a solar cell module.
 ここで開示された実施形態に係るバスバー電極は、太陽電池セルに設けられ、複数の前記太陽電池セルがインターコネクタを介して電気的に接続されてなる太陽電池ストリングにおいて前記インターコネクタと接続されるバスバー電極である。バスバー電極は、第1の方向に沿って延在する第1部分と、前記第1の方向に沿って延在し、かつ前記第1の方向と交差する第2の方向において前記第1部分を挟むように前記第1部分と間隔を隔てて配置されている第2部分および第3部分と、前記第2の方向に沿って延在し、かつ前記第1部分、前記第2部分、および前記第3部分を互いに接続する第4部分とを備える。 The bus bar electrode according to the embodiment disclosed herein is provided in a solar battery cell, and is connected to the interconnector in a solar battery string in which a plurality of the solar battery cells are electrically connected via an interconnector. It is a bus bar electrode. The bus bar electrode includes a first portion extending along a first direction and a second portion extending along the first direction and intersecting the first direction. A second portion and a third portion arranged to be spaced apart from the first portion, and extending along the second direction, and the first portion, the second portion, and the And a fourth portion connecting the third portions to each other.
 ここで開示された実施形態によれば、バスバー電極とインターコネクタとの相対的な位置関係が設計値に対し位置ズレした場合においても、バスバー電極とインターコネクタとの接着強度の低下が抑制された太陽電池モジュールを提供することができる。 According to the embodiment disclosed herein, even when the relative positional relationship between the bus bar electrode and the interconnector is displaced from the design value, a decrease in the adhesive strength between the bus bar electrode and the interconnector is suppressed. A solar cell module can be provided.
本実施の形態に係る太陽電池セルの上面図である。It is a top view of the photovoltaic cell which concerns on this Embodiment. 図1中の領域IIの部分拡大図である。It is the elements on larger scale of the area | region II in FIG. 図2中の矢印III-IIIから見た断面図である。FIG. 3 is a cross-sectional view seen from an arrow III-III in FIG. 図2中の矢印IV-IVから見た断面図である。FIG. 4 is a cross-sectional view seen from arrows IV-IV in FIG. 本実施の形態に係る太陽電池セルの背面図である。It is a rear view of the photovoltaic cell which concerns on this Embodiment. (a)~(c)は、本実施の形態に係る太陽電池セルの製造方法を示す断面図である。(A)-(c) is sectional drawing which shows the manufacturing method of the photovoltaic cell concerning this Embodiment. 本実施の形態に係る太陽電池ストリングにおいてバスバー電極とインターコネクタとの接続部の基準状態を示す上面図である。It is a top view which shows the reference | standard state of the connection part of a bus-bar electrode and an interconnector in the solar cell string which concerns on this Embodiment. 本実施の形態に係る太陽電池ストリングおいてバスバー電極とインターコネクタとの接続部の基準状態を示す断面図である。It is sectional drawing which shows the reference | standard state of the connection part of a bus-bar electrode and an interconnector in the solar cell string which concerns on this Embodiment. 本実施の形態に係る太陽電池ストリングにおいてバスバー電極とインターコネクタとの接続部が基準状態から位置ズレした状態を示す上面図である。It is a top view which shows the state which the position of the connection part of a bus-bar electrode and an interconnector shifted | deviated from the reference state in the solar cell string which concerns on this Embodiment. 本実施の形態に係る太陽電池ストリングおいてバスバー電極とインターコネクタとの接続部が基準状態から位置ズレした状態を示す断面図である。It is sectional drawing which shows the state which the connection part of a bus-bar electrode and an interconnector shifted from the reference | standard state in the solar cell string which concerns on this Embodiment. 本実施の形態に係る太陽電池ストリングおいてバスバー電極とインターコネクタとの接続部の他の変形例を示す上面図である。It is a top view which shows the other modification of the connection part of a bus-bar electrode and an interconnector in the solar cell string which concerns on this Embodiment. 本実施の形態に係る太陽電池ストリングおいてバスバー電極とインターコネクタとの接続部の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of the connection part of a bus-bar electrode and an interconnector in the solar cell string which concerns on this Embodiment. 本実施の形態に係る太陽電池モジュールを示す断面図である。It is sectional drawing which shows the solar cell module which concerns on this Embodiment. 本実施の形態に係る太陽電池セルの変形例を示す背面図である。It is a rear view which shows the modification of the photovoltaic cell concerning this Embodiment.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
<太陽電池セル>
 はじめに、図1~図5を参照して、本実施の形態に係る太陽電池セル1およびバスバー電極20について説明する。太陽電池セル1は、第1の主面10Aと、第1の主面10Aと反対側に位置する第2の主面10Bとを有する半導体基板10と、第1の主面10A上に形成されたバスバー電極20、フィンガー電極30および反射防止膜50と、第2の主面10B上に形成された裏面バスバー電極60、裏面フィンガー電極31および反射防止膜51とを備える。
Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
<Solar cell>
First, solar cell 1 and bus bar electrode 20 according to the present embodiment will be described with reference to FIGS. The solar cell 1 is formed on the first main surface 10A and the semiconductor substrate 10 having the first main surface 10A and the second main surface 10B located on the opposite side of the first main surface 10A. Bus bar electrode 20, finger electrode 30, and antireflection film 50, and back bus bar electrode 60, back finger electrode 31, and antireflection film 51 formed on second main surface 10B.
 半導体基板10は、たとえばn型またはp型単結晶または多結晶シリコン基板である。図3に示されるように、半導体基板10はp型領域11およびn型領域12を含み、p型領域11は第1の主面10Aを有しており、n型領域12は第2の主面10Bを有している。第1の主面10Aおよび第2の主面10Bは、凹凸(テクスチャ構造)が形成されており、受光面を構成している。 The semiconductor substrate 10 is, for example, an n-type or p-type single crystal or polycrystalline silicon substrate. As shown in FIG. 3, the semiconductor substrate 10 includes a p-type region 11 and an n-type region 12. The p-type region 11 has a first main surface 10A, and the n-type region 12 has a second main surface. It has a surface 10B. The first main surface 10A and the second main surface 10B are formed with unevenness (texture structure), and constitute a light receiving surface.
 図1および図2に示されるように、バスバー電極20は、第1の方向Aに沿って延在している。バスバー電極20は、たとえば第1の方向Aと交差する(たとえば直交する)第2の方向Bにおいて互いに間隔を隔てて複数形成されている。バスバー電極20は、第1の方向Aに沿って延在する第1部分21と、第1の方向Aに沿って延在し、かつ第2の方向Bにおいて第1部分21と間隔を隔てて第1部分21を挟むように配置されている第2部分22および第3部分23とを有している。さらに、バスバー電極20は、第2の方向Bに沿って延在し、かつ第1部分21、第2部分22、および第3部分23を互いに接続する第4部分24を有している。第4部分24は、たとえば、第1の方向Aにおいて互いに間隔を隔てて複数形成されている。第1部分21は、たとえばバスバー電極20の第2の方向Bにおける中心線と重なるように配置されている。 1 and FIG. 2, the bus bar electrode 20 extends along the first direction A. A plurality of bus bar electrodes 20 are formed, for example, spaced apart from each other in a second direction B intersecting (for example, orthogonal to) the first direction A. The bus bar electrode 20 extends along the first direction A, extends along the first direction A, and is spaced apart from the first portion 21 in the second direction B. It has the 2nd part 22 and the 3rd part 23 which are arrange | positioned so that the 1st part 21 may be pinched | interposed. Further, the bus bar electrode 20 has a fourth portion 24 that extends in the second direction B and connects the first portion 21, the second portion 22, and the third portion 23 to each other. For example, a plurality of fourth portions 24 are formed at intervals in the first direction A. For example, the first portion 21 is disposed so as to overlap the center line of the bus bar electrode 20 in the second direction B.
 図3に示されるように、バスバー電極20(第1部分21、第2部分22、第3部分23、第4部分24および凸部25)は、第1の方向Aおよび第2の方向Bと直交する第3の方向(半導体基板10の厚み方向)における表面20Aを有している。 As shown in FIG. 3, the bus bar electrode 20 (the first portion 21, the second portion 22, the third portion 23, the fourth portion 24, and the convex portion 25) has a first direction A and a second direction B. It has a surface 20A in a third direction (thickness direction of the semiconductor substrate 10) orthogonal to each other.
 第1部分21の第2の方向Bにおける幅W1は、第2部分22の第2の方向Bにおける幅W2、および第3部分23の第2の方向Bにおける幅W3よりも広い。第2部分22の第2の方向Bにおける幅W2と第3部分23の第2の方向Bにおける幅W3とは、たとえば同等である。第1部分21の幅W1は、たとえば0.2mm以上0.5mm以下である。第2部分22および第3部分23の幅W2,W3は、たとえば0.1mm以上0.5mm以下である。 The width W1 of the first portion 21 in the second direction B is wider than the width W2 of the second portion 22 in the second direction B and the width W3 of the third portion 23 in the second direction B. The width W2 of the second portion 22 in the second direction B and the width W3 of the third portion 23 in the second direction B are, for example, equal. The width W1 of the first portion 21 is, for example, not less than 0.2 mm and not more than 0.5 mm. The widths W2, W3 of the second portion 22 and the third portion 23 are, for example, not less than 0.1 mm and not more than 0.5 mm.
 図2~図4に示されるように、バスバー電極20には、第1部分21と第2部分22との間、および第1部分21と第3部分23との間に、後述する反射防止膜50が露出している中抜け部40がそれぞれ形成されている。言い換えると、バスバー電極20は、第1の方向Aにおいて第4部分24を隔てて連なる複数の中抜け部40が形成されており、かつ第2の方向Bにおいて第1部分21を隔てて連なる複数の中抜け部40が形成されている。第2の方向Bにおいて並んで配置された中抜け部40の個数は、偶数個であり、たとえば2個、4個、6個または8個とすることができる。中抜け部40が第2の方向Bにおいて3個並んで配置されている場合には、たとえば第1の方向Aに沿って延在し、かつ第2部分22を第1部分21との間で挟むように第2部分22と間隔を隔てて配置されている第5の部分(図示しない)が形成されている。当該第5部分と第2部分22との間に中抜け部40が形成されている。複数の中抜け部40は、互いに異なる形状または寸法を有していても良いし、同一の形状および寸法を有していても良い。 As shown in FIGS. 2 to 4, the bus bar electrode 20 includes an antireflection film, which will be described later, between the first portion 21 and the second portion 22 and between the first portion 21 and the third portion 23. A hollow portion 40 where 50 is exposed is formed. In other words, the bus bar electrode 20 includes a plurality of hollow portions 40 that are continuous with the fourth portion 24 in the first direction A, and a plurality of the continuous portions 40 that are continuous with the first portion 21 in the second direction B. A hollow portion 40 is formed. The number of the hollow portions 40 arranged side by side in the second direction B is an even number, and can be, for example, 2, 4, 6, or 8. When three hollow portions 40 are arranged side by side in the second direction B, for example, they extend along the first direction A and the second portion 22 is between the first portion 21 and the second portion 22. A fifth portion (not shown) is formed so as to be spaced from the second portion 22 so as to be sandwiched. A hollow portion 40 is formed between the fifth portion and the second portion 22. The plurality of hollow portions 40 may have different shapes or dimensions, or may have the same shape and dimensions.
 バスバー電極20に形成されている中抜け部40の平面形状は、任意の形状であればよいが、たとえば第1の方向Aに沿って延在する2本の平行線が第2の方向Bに円弧状に延在する曲線で結合された形状である。中抜け部40の第2の方向Bにおける幅W4は、たとえば第1部分21の上記幅W1と同じもしくは、上記幅W1よりも広い。中抜け部40の上記幅W4は、たとえば0.1mm以上1.0mm以下である。第2の方向Bにおいて並んで配置された複数の中抜け部40の合計の幅(図2においてはW4×2)は、後述するインターコネクタ70の第2の方向Bにおける幅W7(図7参照)の60%以上80%以下であるのが好ましい。バスバー電極20の第2の方向Bにおける幅W6は、たとえば0.8mm以上2.5mm以下であり、好ましくは1.0mm以上2.0mm以下である。バスバー電極20の上記幅W6に対する第1部分21の上記幅W1の比率は20%以上である。 The planar shape of the hollow portion 40 formed in the bus bar electrode 20 may be any shape. For example, two parallel lines extending along the first direction A are in the second direction B. It is a shape joined by a curved line extending in an arc shape. A width W4 of the hollow portion 40 in the second direction B is, for example, the same as the width W1 of the first portion 21 or wider than the width W1. The width W4 of the hollow portion 40 is, for example, not less than 0.1 mm and not more than 1.0 mm. The total width (W4 × 2 in FIG. 2) of the plurality of hollow portions 40 arranged side by side in the second direction B is a width W7 in the second direction B of the interconnector 70 described later (see FIG. 7). ) Is preferably 60% or more and 80% or less. The width W6 of the bus bar electrode 20 in the second direction B is, for example, not less than 0.8 mm and not more than 2.5 mm, and preferably not less than 1.0 mm and not more than 2.0 mm. The ratio of the width W1 of the first portion 21 to the width W6 of the bus bar electrode 20 is 20% or more.
 バスバー電極20の表面20A(図2参照)の面積は、中抜け部40が設けられておらず上記幅W6を有するライン状として構成されているバスバー電極の表面の面積の60%以上であるのが好ましい。言い換えると、複数の中抜け部40の面積の合計は、中抜け部40が設けられておらず上記幅W6を有するライン状として構成されているバスバー電極の表面の面積の40%以下であるのが好ましい。 The area of the surface 20A (see FIG. 2) of the bus bar electrode 20 is 60% or more of the area of the surface of the bus bar electrode which is not provided with the hollow portion 40 and is configured as a line having the width W6. Is preferred. In other words, the total area of the plurality of hollow portions 40 is 40% or less of the area of the surface of the bus bar electrode which is not provided with the hollow portions 40 and is configured as a line having the width W6. Is preferred.
 図3に示されるように、バスバー電極20は、第2の方向Bに第2部分22から部分的に突出する凸部25aと、第2の方向Bに第3部分23から部分的に突出する凸部25bとを含む。凸部25a,25bは、第2の方向Bにおいて第4部分24と連なっている。また、凸部25a,25bは、第2の方向Bにおいてフィンガー電極30と連なっている。なお、凸部25a,25bは、いずれか一方が形成されていればよい。バスバー電極20の厚さは、たとえばフィンガー電極30の厚さと同等である。バスバー電極20を構成する材料は、たとえば銀(Ag)、銅(Cu)、およびアルミニウム(Al)からなる群から選択される少なくとも1つを含む。 As shown in FIG. 3, the bus bar electrode 20 protrudes partially from the second portion 22 in the second direction B and partially protrudes from the third portion 23 in the second direction B. And a convex portion 25b. The convex portions 25 a and 25 b are continuous with the fourth portion 24 in the second direction B. Further, the convex portions 25 a and 25 b are continuous with the finger electrode 30 in the second direction B. In addition, any one of the convex portions 25a and 25b may be formed. The thickness of the bus bar electrode 20 is equal to the thickness of the finger electrode 30, for example. The material constituting the bus bar electrode 20 includes, for example, at least one selected from the group consisting of silver (Ag), copper (Cu), and aluminum (Al).
 図1および図2に示されるように、フィンガー電極30は、第2の方向Bに延在している。フィンガー電極30は、たとえば第1の方向Aに互いに間隔を隔てて複数形成されている。フィンガー電極30は、第2の方向Bに凸部25a,25bと連なるように形成されている。フィンガー電極30は、第1の方向Aにおける凸部25a,25bのそれぞれの中央部と第2の方向Bにおいて連なるように形成されている。フィンガー電極30の第1の方向Aにおける幅は、第4部分24の第1の方向Aにおける最小幅よりも狭い。フィンガー電極30を構成する材料は、たとえばAg、Cu、およびAlからなる群から選択される少なくとも1つを含む。 1 and 2, the finger electrode 30 extends in the second direction B. A plurality of finger electrodes 30 are formed, for example, in the first direction A at intervals. The finger electrode 30 is formed in the second direction B so as to be continuous with the convex portions 25a and 25b. The finger electrode 30 is formed so as to be continuous in the second direction B with the central portion of each of the convex portions 25 a and 25 b in the first direction A. The width of the finger electrode 30 in the first direction A is narrower than the minimum width of the fourth portion 24 in the first direction A. The material constituting the finger electrode 30 includes, for example, at least one selected from the group consisting of Ag, Cu, and Al.
 図1および図2に示されるように、反射防止膜50は、第1の主面10A上において、バスバー電極20およびフィンガー電極30が形成されていない領域を覆っている。反射防止膜50は、たとえば酸化シリコン膜、窒化シリコン膜、酸素および窒素の両方を含有するシリコン膜、またはこれらの複層膜である。 As shown in FIGS. 1 and 2, the antireflection film 50 covers a region where the bus bar electrode 20 and the finger electrode 30 are not formed on the first main surface 10A. The antireflection film 50 is, for example, a silicon oxide film, a silicon nitride film, a silicon film containing both oxygen and nitrogen, or a multilayer film thereof.
 図3および図5を参照して、裏面バスバー電極60は、バスバー電極20と同様の構成を備えている。裏面バスバー電極60は、第1の方向Aに沿って延在している。裏面バスバー電極60は、たとえば第1の方向Aと交差する(たとえば直交する)第2の方向Bにおいて互いに間隔を隔てて複数形成されている。裏面バスバー電極60は、第1の方向Aに沿って延在する第1部分61と、第1の方向Aに沿って延在し、かつ第2の方向Bにおいて第1部分61と間隔を隔てて第1部分61を挟むように配置されている第2部分62および第3部分63とを有している。さらに、裏面バスバー電極60は、第2の方向Bに沿って延在し、かつ第1部分61、第2部分62、および第3部分63を互いに接続する第4部分64を有している。第4部分64は、たとえば、第1の方向Aにおいて互いに間隔を隔てて複数形成されている。裏面バスバー電極60には、第1部分61と第2部分62との間、および第1部分61と第3部分63との間に、反射防止膜51が露出している中抜け部41がそれぞれ形成されている。裏面バスバー電極60は、第2の方向Bに第2部分62から部分的に突出する凸部65aと、第2の方向Bに第3部分63から部分的に突出する凸部65bとを含む。 Referring to FIGS. 3 and 5, back-side bus bar electrode 60 has the same configuration as bus bar electrode 20. The back bus bar electrode 60 extends along the first direction A. A plurality of back surface bus bar electrodes 60 are formed, for example, spaced apart from each other in a second direction B intersecting (for example, orthogonal to) the first direction A. The back surface bus bar electrode 60 extends along the first direction A, extends along the first direction A, and is spaced apart from the first portion 61 in the second direction B. The second portion 62 and the third portion 63 are arranged so as to sandwich the first portion 61 therebetween. Furthermore, the back surface bus bar electrode 60 has a fourth portion 64 that extends along the second direction B and connects the first portion 61, the second portion 62, and the third portion 63 to each other. For example, a plurality of fourth portions 64 are formed at intervals in the first direction A. The backside bus bar electrode 60 has a hollow portion 41 where the antireflection film 51 is exposed between the first portion 61 and the second portion 62 and between the first portion 61 and the third portion 63. Is formed. The back surface bus bar electrode 60 includes a convex portion 65a partially protruding from the second portion 62 in the second direction B and a convex portion 65b partially protruding from the third portion 63 in the second direction B.
 裏面バスバー電極60は、たとえば第2の主面10Bに垂直な方向において、バスバー電極20と重なる領域に形成されている。第1部分61、第2部分62、第3部分63、第4部分64、凸部65a,65b、および中抜け部41は、たとえば第2の主面10Bに垂直な方向において、それぞれ第1部分21、第2部分22、第3部分23、第4部分24、凸部25a,25b、および中抜け部40と重なるように形成されている。 The back surface bus bar electrode 60 is formed, for example, in a region overlapping the bus bar electrode 20 in a direction perpendicular to the second main surface 10B. The first portion 61, the second portion 62, the third portion 63, the fourth portion 64, the convex portions 65a and 65b, and the hollow portion 41 are each a first portion in a direction perpendicular to the second main surface 10B, for example. 21, the second portion 22, the third portion 23, the fourth portion 24, the convex portions 25 a and 25 b, and the hollow portion 40.
 裏面フィンガー電極31は、フィンガー電極30と同様の構成を備えている。反射防止膜51は、反射防止膜50と同様の構成を備えている。図8に示すように、バスバー電極20および裏面バスバー電極60がインターコネクタ70に接続されることにより、太陽電池ストリング2が構成される。
<太陽電池セルの製造方法>
 次に、図6を参照して、本実施の形態に係る太陽電池セル1の製造方法について説明する。図6(a)を参照して、はじめに、テクスチャ構造を有する半導体基板10の第1の主面10Aにp+領域11および第2の主面10Bにn+領域12が形成される。図6(b)を参照して、次に、第1の主面10Aを覆うように反射防止膜50が形成される。さらに、第1の主面10Aを覆うように反射防止膜50が形成される。反射防止膜50の形成方法は、たとえばプラズマCVD法などである。
The back finger electrode 31 has the same configuration as the finger electrode 30. The antireflection film 51 has the same configuration as the antireflection film 50. As shown in FIG. 8, the solar cell string 2 is configured by connecting the bus bar electrode 20 and the back bus bar electrode 60 to the interconnector 70.
<Solar cell manufacturing method>
Next, with reference to FIG. 6, the manufacturing method of the photovoltaic cell 1 which concerns on this Embodiment is demonstrated. Referring to FIG. 6A, first, p + region 11 is formed on first main surface 10A of semiconductor substrate 10 having a texture structure, and n + region 12 is formed on second main surface 10B. Referring to FIG. 6B, next, an antireflection film 50 is formed so as to cover the first main surface 10A. Further, an antireflection film 50 is formed so as to cover the first main surface 10A. A method of forming the antireflection film 50 is, for example, a plasma CVD method.
 図6(c)を参照して、次に、第1の主面10A上にバスバー電極20およびフィンガー電極30が形成される。さらに、第2の主面10B上に、裏面バスバー電極60および裏面フィンガー電極31が形成される。バスバー電極20,60およびフィンガー電極30,31は、たとえば銀ペーストをスクリーン印刷して焼成されることにより形成される。バスバー電極20,60は、フィンガー電極30,31が形成された後に形成されてもよい。たとえば第2の方向Bに沿って延在するフィンガー電極30および第4部分24の一部となるべき導電部材を太陽電池セル1の全体に渡って形成した後、第1の方向Aに沿って延在するバスバー電極20となるべき導電部材を形成することもできる。なお、バスバー電極20およびフィンガー電極30は、裏面バスバー電極60および裏面フィンガー電極31が形成された後に、形成されてもよい。また、反射防止膜50,51は、バスバー電極20,60およびフィンガー電極30,31が形成された後に、形成されてもよい。
<太陽電池ストリング>
 次に、図7および図8を参照して、本実施の形態に係る太陽電池ストリング2について説明する。太陽電池ストリング2は、複数の太陽電池セル1がインターコネクタ70により電気的に直列に接続されたものである。インターコネクタ70は、隣り合う2つの太陽電池セル1において、一方のバスバー電極20と他方の裏面バスバー電極60とを電気的に接続している。インターコネクタ70は、バスバー電極20と接続されている第1接続部71と、裏面バスバー電極60と接続されている第2接続部72と、第1接続部71と第2接続部72との間を接続する第3接続部73とを有している。インターコネクタ70を構成する材料は、導電性を有する任意の材料であればよいが、たとえばAg、Cu、Al、PbおよびSnからなる群から選択される少なくとも1つを含む。
Referring to FIG. 6C, next, bus bar electrode 20 and finger electrode 30 are formed on first main surface 10A. Further, back bus bar electrode 60 and back finger electrode 31 are formed on second main surface 10B. The bus bar electrodes 20 and 60 and the finger electrodes 30 and 31 are formed, for example, by screen printing silver paste and baking. The bus bar electrodes 20 and 60 may be formed after the finger electrodes 30 and 31 are formed. For example, the finger electrode 30 extending along the second direction B and the conductive member to be a part of the fourth portion 24 are formed over the entire solar cell 1, and then along the first direction A. A conductive member to be the extended bus bar electrode 20 can also be formed. The bus bar electrode 20 and the finger electrode 30 may be formed after the back surface bus bar electrode 60 and the back surface finger electrode 31 are formed. Further, the antireflection films 50 and 51 may be formed after the bus bar electrodes 20 and 60 and the finger electrodes 30 and 31 are formed.
<Solar cell string>
Next, with reference to FIG. 7 and FIG. 8, the solar cell string 2 which concerns on this Embodiment is demonstrated. In the solar cell string 2, a plurality of solar cells 1 are electrically connected in series by an interconnector 70. The interconnector 70 electrically connects one bus bar electrode 20 and the other back surface bus bar electrode 60 in two adjacent solar cells 1. The interconnector 70 includes a first connection portion 71 connected to the bus bar electrode 20, a second connection portion 72 connected to the back surface bus bar electrode 60, and a space between the first connection portion 71 and the second connection portion 72. And a third connection portion 73 for connecting the two. The material constituting the interconnector 70 may be any material having conductivity, but includes at least one selected from the group consisting of Ag, Cu, Al, Pb, and Sn, for example.
 図7に示されるように、インターコネクタ70の第1接続部71の第2の方向Bにおける幅W7は、たとえばバスバー電極20の上記幅W6と同等である。このとき、バスバー電極20は、第1部分21、第2部分22、第3部分23、および第4部分24の全体がインターコネクタ70の第1接続部71と接続されているのが好ましい。バスバー電極20(たとえば第1部分21)の第2の方向Bにおける中心を通り、かつ第1の方向Aに沿って延びる中心線(図7中の線分C)と、インターコネクタ70の第2の方向Bにおける中心を通り、かつ第1の方向Aに沿って延びる中心線(図7中の線分D)とは、互いに重なるように配置されている。以下、バスバー電極20とインターコネクタ70との相対的な位置関係について、上記各中心線同士が互いに重なるように配置された状態を基準状態という。基準状態は、たとえば太陽電池ストリング2における設計値に対して位置ズレしていない状態である。バスバー電極20の凸部25およびフィンガー電極30は、インターコネクタ70と接続されておらず、太陽電池ストリング2において表出している。また、このとき、バスバー電極20の中抜け部40は、インターコネクタ70により完全に覆われている。言い換えると、当該太陽電池ストリング2における受光面は、バスバー電極20とフィンガー電極30とに囲まれた領域である。 As shown in FIG. 7, the width W7 in the second direction B of the first connection portion 71 of the interconnector 70 is equal to, for example, the width W6 of the bus bar electrode 20. At this time, it is preferable that the bus bar electrode 20 has the first portion 21, the second portion 22, the third portion 23, and the fourth portion 24 as a whole connected to the first connection portion 71 of the interconnector 70. A center line (line segment C in FIG. 7) passing through the center in the second direction B of the bus bar electrode 20 (for example, the first portion 21) and extending along the first direction A, and the second of the interconnector 70 And a center line (line segment D in FIG. 7) passing through the center in the direction B and extending along the first direction A are arranged so as to overlap each other. Hereinafter, with respect to the relative positional relationship between the bus bar electrode 20 and the interconnector 70, a state in which the center lines are arranged so as to overlap each other is referred to as a reference state. The reference state is a state in which the position is not shifted from the design value in the solar cell string 2, for example. The convex portions 25 and the finger electrodes 30 of the bus bar electrode 20 are not connected to the interconnector 70 and are exposed in the solar cell string 2. At this time, the hollow portion 40 of the bus bar electrode 20 is completely covered by the interconnector 70. In other words, the light receiving surface in the solar cell string 2 is a region surrounded by the bus bar electrode 20 and the finger electrode 30.
 一方、図9および図10を参照して、バスバー電極20は、第1部分21、第2部分22、第3部分23、および第4部分24の少なくとも一部がインターコネクタ70の第1接続部71と接続されていてもよい。たとえば、第1部分21の少なくとも一部が第1接続部71と接続されている限りにおいて、第2部分22および第3部分23の少なくとも一方と第4部分24の一部とが第1接続部71と接続されていてもよい。バスバー電極20の中抜け部40は、インターコネクタ70により部分的に覆われている。凸部25およびフィンガー電極30において凸部25と隣接する部分は、インターコネクタ70と接続されている。このとき、中抜け部40内にも光は到達可能であるため、中抜け部40内に位置する領域も、受光面として作用し得る。 On the other hand, referring to FIG. 9 and FIG. 10, the bus bar electrode 20 includes a first connection portion of the interconnector 70 in which at least part of the first portion 21, the second portion 22, the third portion 23, and the fourth portion 24 71 may be connected. For example, as long as at least a part of the first part 21 is connected to the first connection part 71, at least one of the second part 22 and the third part 23 and a part of the fourth part 24 are connected to the first connection part. 71 may be connected. The hollow portion 40 of the bus bar electrode 20 is partially covered by the interconnector 70. A portion adjacent to the convex portion 25 in the convex portion 25 and the finger electrode 30 is connected to the interconnector 70. At this time, since the light can reach the hollow portion 40, the region located in the hollow portion 40 can also act as a light receiving surface.
 バスバー電極20において、インターコネクタ70と接続されている領域の接続面積は、図7および図8に示される状態(基準状態)を100%としたときに、80%以上であるのが好ましい。この場合には、バスバー電極20とインターコネクタ70との接続強度をより高くすることができる。またインターコネクタ70においてバスバー電極20と接続されている接続面積は、基準状態を100%としたときに、80%以上であるのが好ましい。 In the bus bar electrode 20, the connection area of the region connected to the interconnector 70 is preferably 80% or more when the state (reference state) shown in FIGS. 7 and 8 is 100%. In this case, the connection strength between the bus bar electrode 20 and the interconnector 70 can be further increased. In addition, the connection area connected to the bus bar electrode 20 in the interconnector 70 is preferably 80% or more when the reference state is 100%.
 なお、インターコネクタ70の上記幅W7は、バスバー電極20の上記幅W6の2/3倍以上1倍以下であればよい。言い換えると、バスバー電極20の上記幅W6は、インターコネクタ70の上記幅W7の1倍以上1.5倍以下であればよい。インターコネクタ70の上記幅W7は、たとえば0.5mm以上2.0mm以下であり、好ましくは1.3mm以上1.8mm以下である。インターコネクタ70の上記幅W7に対する第1部分21の上記幅W1の比は、30%以上60%以下である。 In addition, the width W7 of the interconnector 70 may be 2/3 times or more and 1 time or less of the width W6 of the bus bar electrode 20. In other words, the width W6 of the bus bar electrode 20 may be 1 to 1.5 times the width W7 of the interconnector 70. The width W7 of the interconnector 70 is, for example, not less than 0.5 mm and not more than 2.0 mm, preferably not less than 1.3 mm and not more than 1.8 mm. The ratio of the width W1 of the first portion 21 to the width W7 of the interconnector 70 is not less than 30% and not more than 60%.
 図11および図12は、バスバー電極20の上記幅W6がインターコネクタ70の上記幅W7の1.5倍であって、バスバー電極20およびインターコネクタ70の上記中心線同士が重なるように配置された状態(基準状態)の太陽電池ストリング2を示す。インターコネクタ70の第1接続部71の第2の方向Bにおける一端および他端は、中抜け部40と重なる位置に形成されている。この場合にも、バスバー電極20とインターコネクタ70との接続面積は、図11および図12に示される基準状態を100%としたときに、80%以上であるのが好ましい。たとえば、インターコネクタ70が上記基準状態に対して第2の方向Bに位置ズレし、バスバー電極20の第1部分21および第2部分22の全体と接続されたときには、上記接続面積は100%超えとなる。
<太陽電池モジュール>
 次に、図13を参照して、本実施の形態に係る太陽電池モジュール3について説明する。太陽電池モジュール3は、複数の太陽電池ストリング2と、太陽電池ストリング2の第1の主面10A側に配置された封止材80および透明基板81と、第2の主面10B側に配置された封止材80および裏面フィルム82とを備える。太陽電池モジュール3において、インターコネクタ70は、隣接する一方の太陽電池セル1のバスバー電極20と電気的に接続されているとともに、他方の太陽電池セル1の裏面バスバー電極60と電気的に接続されている。封止材80としては、たとえば太陽光に対して透明な樹脂などを特に限定なく用いることができ、たとえばエチレンビニルアセテートを用いることができる。透明基板81としては、たとえば太陽光に対して透明な基板を特に限定なく用いることができ、たとえばガラス基板などを用いることができる。裏面フィルム82としては、たとえば従来から用いられている耐候性フィルム等のシートを特に限定なく用いることができ、なかでも絶縁性フィルムの間に金属フィルムを挟み込んだ構成のものを用いることが好ましい。
11 and 12, the width W6 of the bus bar electrode 20 is 1.5 times the width W7 of the interconnector 70, and the center lines of the bus bar electrode 20 and the interconnector 70 are arranged so as to overlap each other. The solar cell string 2 in a state (reference state) is shown. One end and the other end of the first connector 71 of the interconnector 70 in the second direction B are formed at positions overlapping the hollow portion 40. Also in this case, the connection area between the bus bar electrode 20 and the interconnector 70 is preferably 80% or more when the reference state shown in FIGS. 11 and 12 is 100%. For example, when the interconnector 70 is displaced in the second direction B with respect to the reference state and is connected to the entire first portion 21 and the second portion 22 of the bus bar electrode 20, the connection area exceeds 100%. It becomes.
<Solar cell module>
Next, the solar cell module 3 according to the present embodiment will be described with reference to FIG. The solar cell module 3 is disposed on the plurality of solar cell strings 2, the sealing material 80 and the transparent substrate 81 disposed on the first main surface 10A side of the solar cell string 2, and the second main surface 10B side. A sealing material 80 and a back film 82. In the solar cell module 3, the interconnector 70 is electrically connected to the bus bar electrode 20 of one adjacent solar cell 1 and is also electrically connected to the rear bus bar electrode 60 of the other solar cell 1. ing. As the sealing material 80, for example, a resin transparent to sunlight can be used without particular limitation, and for example, ethylene vinyl acetate can be used. As the transparent substrate 81, for example, a substrate transparent to sunlight can be used without particular limitation, and for example, a glass substrate or the like can be used. As the back film 82, for example, a conventionally used sheet such as a weather-resistant film can be used without any particular limitation, and it is preferable to use a film having a metal film sandwiched between insulating films.
 なお、本実施の形態に係る太陽電池セル1は、第1の主面10Aおよび第2の主面10Bのいずれか一方のみが受光面として形成されていてもよい。太陽電池セル1のバスバー電極は、第1の主面10Aおよび第2の主面10Bのいずれか一方にのみ形成されていてもよい。図14を参照して、たとえば第1の主面10Aのみが受光面として形成されている場合には、第2の主面10B(図1参照)上には、バスバー電極20(図2参照)と同様の構成を備える裏面電極90が形成されていてもよい。裏面電極90は、第1の方向Aに沿って延在する第1部分91と、第1の方向Aに沿って延在し、かつ第2の方向Bにおいて第1部分91と間隔を隔てて第1部分91を挟むように配置されている第2部分92および第3部分93とを有している。さらに、裏面電極90は、第2の方向Bに沿って延在し、かつ第1部分91、第2部分92、および第3部分93を互いに接続する第4部分94を有している。第4部分94は、たとえば、第1の方向Aにおいて互いに間隔を隔てて複数形成されている。
<作用効果>
 次に、本実施の形態に係るバスバー電極20、太陽電池セル1、太陽電池ストリング2、および太陽電池モジュール3の作用効果について説明する。
Note that, in the solar cell 1 according to the present embodiment, only one of the first main surface 10A and the second main surface 10B may be formed as a light receiving surface. The bus bar electrode of the solar battery cell 1 may be formed only on one of the first main surface 10A and the second main surface 10B. Referring to FIG. 14, for example, when only first main surface 10A is formed as a light receiving surface, bus bar electrode 20 (see FIG. 2) is formed on second main surface 10B (see FIG. 1). The back surface electrode 90 provided with the same structure may be formed. The back electrode 90 extends along the first direction A, extends along the first direction A, and is spaced apart from the first portion 91 in the second direction B. It has the 2nd part 92 and the 3rd part 93 which are arrange | positioned so that the 1st part 91 may be pinched | interposed. Further, the back electrode 90 has a fourth portion 94 that extends along the second direction B and connects the first portion 91, the second portion 92, and the third portion 93 to each other. For example, a plurality of fourth portions 94 are formed at intervals in the first direction A.
<Effect>
Next, functions and effects of the bus bar electrode 20, the solar battery cell 1, the solar battery string 2, and the solar battery module 3 according to the present embodiment will be described.
 バスバー電極20は、第2の方向Bにおいて中央に位置する第1部分21と、第2の方向Bにおいて第1部分21を挟むように第1部分21と間隔を隔てて配置されている第2部分22および第3部分との間に、それぞれ中抜け部40が形成されている。バスバー電極20は、従来のスリット部が形成されたバスバー電極と比べてAg等の含有量を低く抑えながらも、当該従来のバスバー電極と比べて第2の方向Bにおける幅W6を同等以上とすることができる。さらに、バスバー電極20によれば、インターコネクタ70が上記基準状態に対して位置ズレを起こしても、第1部分21の少なくとも一部と、第2部分22および第3部分23の少なくともいずれか一方とがインターコネクタ70と同時に接続可能である。そのため、本実施の形態に係るバスバー電極20によれば、バスバー電極とインターコネクタとの相対的な位置関係が基準状態に対し位置ズレした場合においても、バスバー電極20とインターコネクタ70との接続強度の低下が抑制された太陽電池モジュール3を提供することができる。異なる観点から言えば、本実施の形態に係るバスバー電極20によれば、バスバー電極20に対するインターコネクタ70の位置ズレ許容量を上記従来のバスバー電極よりも大きくすることができる。そのため、該バスバー電極20を備える複数の太陽電池セル1がインターコネクタ70を介して電気的に接続された太陽電池ストリング2および太陽電池モジュール3は、従来の太陽電池ストリングおよび太陽電池モジュールと比べて、バスバー電極20とインターコネクタ70との接続が容易である。さらに、該バスバー電極20を備える太陽電池セル1、太陽電池ストリング2および太陽電池モジュール3は、従来の太陽電池セル、太陽電池ストリングおよび太陽電池モジュールと比べて、Agの含有量を低減することができるため、製造コストを低く抑えることができる。また、バスバー電極20とインターコネクタ70との相対的な位置関係に応じて中抜け部40内も受光面として構成され得るため、バスバー電極20の上記幅W6を広げながらも受光面積を大きくすることも可能である。 The bus bar electrode 20 is disposed at a distance from the first portion 21 located in the center in the second direction B and the first portion 21 so as to sandwich the first portion 21 in the second direction B. A hollow portion 40 is formed between the portion 22 and the third portion. The bus bar electrode 20 has a width W6 in the second direction B equal to or greater than that of the conventional bus bar electrode while suppressing the content of Ag or the like lower than that of the bus bar electrode having the conventional slit portion. be able to. Furthermore, according to the bus bar electrode 20, even if the interconnector 70 is displaced from the reference state, at least one of the first portion 21 and at least one of the second portion 22 and the third portion 23 is used. Can be connected simultaneously with the interconnector 70. Therefore, according to the bus bar electrode 20 according to the present embodiment, the connection strength between the bus bar electrode 20 and the interconnector 70 even when the relative positional relationship between the bus bar electrode and the interconnector is displaced from the reference state. Can be provided. If it says from a different viewpoint, according to the bus-bar electrode 20 which concerns on this Embodiment, the positional offset tolerance of the interconnector 70 with respect to the bus-bar electrode 20 can be made larger than the said conventional bus-bar electrode. Therefore, the solar cell string 2 and the solar cell module 3 in which the plurality of solar cells 1 including the bus bar electrode 20 are electrically connected via the interconnector 70 are compared with the conventional solar cell string and the solar cell module. The bus bar electrode 20 and the interconnector 70 can be easily connected. Furthermore, the solar cell 1, the solar cell string 2, and the solar cell module 3 including the bus bar electrode 20 can reduce the Ag content as compared to the conventional solar cell, solar cell string, and solar cell module. Therefore, the manufacturing cost can be kept low. Further, since the hollow portion 40 can also be configured as a light receiving surface according to the relative positional relationship between the bus bar electrode 20 and the interconnector 70, the light receiving area can be increased while the width W6 of the bus bar electrode 20 is increased. Is also possible.
 上記バスバー電極20では、表面20Aにおいてインターコネクタ70に接続されている領域の接続面積は、バスバー電極20とインターコネクタ70との相対的な位置関係が基準状態にあるときの接続面積の80%以上100%以下であるのが好ましい。この場合には、バスバー電極20とインターコネクタ70との接続強度の低下が抑制された太陽電池セル1を提供することができる。 In the bus bar electrode 20, the connection area of the region connected to the interconnector 70 on the surface 20A is 80% or more of the connection area when the relative positional relationship between the bus bar electrode 20 and the interconnector 70 is in the reference state. It is preferably 100% or less. In this case, it is possible to provide the solar battery cell 1 in which a decrease in connection strength between the bus bar electrode 20 and the interconnector 70 is suppressed.
 上記バスバー電極20は、インターコネクタ70の第2の方向Bにおける幅W7に対するバスバー電極20の第2の方向Bにおける幅W6の比率(W6/W7)が、1以上1.5以下であるのが好ましい。このようにすれば、太陽電池セル1同士をインターコネクタ70により接続する際に、バスバー電極20に対するインターコネクタ70の位置合わせを容易とすることができる。また、バスバー電極20の上記幅W6には中抜け部40の幅W4が含まれている。そのため、このようなバスバー電極20は、中抜け部40が形成されておらず幅W6を有するバスバー電極と比べて、Agの含有量が低減されているため、製造コストが低く抑えられている。 In the bus bar electrode 20, the ratio (W6 / W7) of the width W6 in the second direction B of the bus bar electrode 20 to the width W7 in the second direction B of the interconnector 70 is 1 or more and 1.5 or less. preferable. If it does in this way, when connecting the photovoltaic cells 1 mutually by the interconnector 70, position alignment of the interconnector 70 with respect to the bus-bar electrode 20 can be made easy. The width W6 of the bus bar electrode 20 includes the width W4 of the hollow portion 40. For this reason, the bus bar electrode 20 has a reduced Ag content compared to the bus bar electrode having the width W6 in which the hollow portion 40 is not formed, and thus the manufacturing cost is kept low.
 上記バスバー電極20は、インターコネクタ70の第2の方向Bにおける幅W7に対する、第1部分21と第2部分22との間隔および第1部分21と第3部分23との間隔の合計値が60%以上であるのが好ましい。言い換えると、インターコネクタ70の幅W7に対する第2の方向Bに沿って並んで形成された複数の中抜け部40の幅W4の合計値の比率が60%以上80%以下であるのが好ましい。このようにすれば、上記比率が60%未満であるバスバー電極20と比べて、バスバー電極20のAgの含有量を抑えながらもバスバー電極20の第2の方向Bにおける幅W6を広くすることができる。また、中抜け部40の内周領域は受光面を構成し得るため、バスバー電極20の上記幅W6を広くしながらも、太陽電池セル1の受光面積の減少を抑制することができる。 In the bus bar electrode 20, the total value of the distance between the first portion 21 and the second portion 22 and the distance between the first portion 21 and the third portion 23 with respect to the width W 7 in the second direction B of the interconnector 70 is 60. % Or more is preferable. In other words, the ratio of the total value of the width W4 of the plurality of hollow portions 40 formed side by side along the second direction B with respect to the width W7 of the interconnector 70 is preferably 60% or more and 80% or less. In this way, the width W6 in the second direction B of the bus bar electrode 20 can be increased while suppressing the Ag content of the bus bar electrode 20 as compared with the bus bar electrode 20 having the ratio of less than 60%. it can. Moreover, since the inner peripheral area | region of the hollow part 40 can comprise a light-receiving surface, the reduction | decrease of the light-receiving area of the photovoltaic cell 1 can be suppressed, making the said width | variety W6 of the bus-bar electrode 20 wide.
 太陽電池セル1によれば、上記バスバー電極20を備えるため、バスバー電極20とインターコネクタ70とが容易に、かつ高い強度で接続され得る。そのため、複数の太陽電池セル1がインターコネクタ70を介して接続された太陽電池ストリング2および太陽電池モジュール3は、従来の太陽電池ストリングおよび太陽電池モジュールと比べて、製造コストが低く、かつバスバー電極20とインターコネクタ70との接続強度が高い。 According to the solar cell 1, since the bus bar electrode 20 is provided, the bus bar electrode 20 and the interconnector 70 can be easily connected with high strength. Therefore, the solar cell string 2 and the solar cell module 3 in which the plurality of solar cells 1 are connected via the interconnector 70 are lower in manufacturing cost and the bus bar electrode than the conventional solar cell string and solar cell module. The connection strength between the connector 20 and the interconnector 70 is high.
 上記太陽電池セル1は、1つのバスバー電極20に複数のフィンガー電極30が接続されているため、受光面の広い領域からキャリアを収集し、集電することができる。さらに、フィンガー電極30と第4部分24とがそれぞれ第2の方向Bに連なっているため、たとえば第2の方向Bに沿って延在するフィンガー電極30となるべき導電部材を太陽電池セル1の全体に渡って形成した後、第1の方向Aに沿って延在するバスバー電極20となるべき導電部材を形成することにより(特に第4部分24となるべき導電部材を上記導電部材の一部と重なるように形成することにより)、太陽電池セル1を容易に製造し得る。 Since the plurality of finger electrodes 30 are connected to one bus bar electrode 20, the solar cell 1 can collect carriers from a wide area of the light receiving surface and collect current. Furthermore, since the finger electrode 30 and the 4th part 24 are each connected in the 2nd direction B, the electrically-conductive member which should become the finger electrode 30 extended along the 2nd direction B is used for the photovoltaic cell 1, for example. After forming over the whole, by forming a conductive member to be the bus bar electrode 20 extending along the first direction A (particularly, the conductive member to be the fourth portion 24 is a part of the conductive member). The solar battery cell 1 can be easily manufactured.
 太陽電池ストリング2は、上記バスバー電極20を含む太陽電池セル1を備えるため、バスバー電極20とインターコネクタ70とが高い接続強度で接続されている。そのため、太陽電池ストリング2は、従来の太陽電池ストリングと比べて、製造コストが低く、かつバスバー電極20とインターコネクタ70との接続強度が高い。また、太陽電池モジュール3は、上記太陽電池ストリング2を備えるため、従来の太陽電池モジュールと比べて、製造コストが低く、かつバスバー電極20とインターコネクタ70との接続強度が高い。 Since the solar battery string 2 includes the solar battery cell 1 including the bus bar electrode 20, the bus bar electrode 20 and the interconnector 70 are connected with high connection strength. Therefore, the solar cell string 2 has a lower manufacturing cost and a higher connection strength between the bus bar electrode 20 and the interconnector 70 than the conventional solar cell string. Moreover, since the solar cell module 3 includes the solar cell string 2, the manufacturing cost is low and the connection strength between the bus bar electrode 20 and the interconnector 70 is high as compared with the conventional solar cell module.
 <試料>
 本実施例では、インターコネクタ70の第2の方向Bにおける幅W7に対するバスバー電極20の第2の方向Bにおける幅W6の比率が1である太陽電池ストリング2(試料1)と、当該比率が1.15である太陽電池ストリング2(試料2)と、当該比率が1.5である太陽電池ストリング2(試料3)とを作製した。
<Sample>
In this embodiment, the solar cell string 2 (sample 1) in which the ratio of the width W6 in the second direction B of the bus bar electrode 20 to the width W7 in the second direction B of the interconnector 70 is 1, and the ratio is 1 .15 solar cell string 2 (sample 2) and solar cell string 2 (sample 3) having a ratio of 1.5.
 具体的には、試料1として、第1部分21の上記幅W1が0.3mm、第2部分22および第3部分23の上記幅W2,W3が0.2mm、中抜け部40の上記幅W4が0.3mm、第2の方向Bにおいて中抜け部40が2個並んで配置され、上記幅W6が1.3mmのバスバー電極20と、上記幅W7が1.3mmのインターコネクタ70とを接続した太陽電池ストリング2を作製した。試料2として、第1部分21の上記幅W1が0.3mm、第2部分22および第3部分23の上記幅W2,W3が0.2mm、中抜け部40の上記幅W4が0.4mm、第2の方向Bにおいて中抜け部40が2個並んで配置され、上記幅W6が1.5mmのバスバー電極20と、上記幅W7が1.3mmのインターコネクタ70とを接続した太陽電池ストリング2を作製した。試料3として、第1部分21の上記幅W1が0.3mm、第2部分22および第3部分23の上記幅W2,W3が0.1mm、中抜け部40の上記幅W4が0.25mm、第2の方向Bにおいて中抜け部40が2個並んで配置され、上記幅W6が1.5mmのバスバー電極20と、上記幅W7が1.0mmのインターコネクタ70とを接続した太陽電池ストリング2を作製した。表1に、試料1および試料2の太陽電池ストリング2の各パラメータを示す。 Specifically, as the sample 1, the width W1 of the first portion 21 is 0.3 mm, the widths W2 and W3 of the second portion 22 and the third portion 23 are 0.2 mm, and the width W4 of the hollow portion 40. Is connected to the bus bar electrode 20 having the width W6 of 1.3 mm and the interconnector 70 having the width W7 of 1.3 mm in the second direction B. A solar cell string 2 was prepared. As the sample 2, the width W1 of the first portion 21 is 0.3 mm, the widths W2 and W3 of the second portion 22 and the third portion 23 are 0.2 mm, the width W4 of the hollow portion 40 is 0.4 mm, In the second direction B, two hollow portions 40 are arranged side by side, and the solar cell string 2 in which the bus bar electrode 20 having the width W6 of 1.5 mm and the interconnector 70 having the width W7 of 1.3 mm are connected. Was made. As the sample 3, the width W1 of the first portion 21 is 0.3 mm, the widths W2 and W3 of the second portion 22 and the third portion 23 are 0.1 mm, the width W4 of the hollow portion 40 is 0.25 mm, Two solar cell strings 2 in which two hollow portions 40 are arranged in the second direction B and the bus bar electrode 20 having a width W6 of 1.5 mm and the interconnector 70 having a width W7 of 1.0 mm are connected. Was made. Table 1 shows parameters of the solar cell strings 2 of Sample 1 and Sample 2.
Figure JPOXMLDOC01-appb-T000001
 なお、試料1~3の太陽電池ストリング2は、バスバー電極20とインターコネクタ70との相対的な位置関係が上記基準状態であった。また、インターコネクタ70の第2の方向Bにおける幅W7に対する、第1部分21と第2部分22との間隔および第1部分21と第3部分23との間隔の合計値は、試料1が46%、試料2が61%、試料3が60%であった。
Figure JPOXMLDOC01-appb-T000001
In the solar cell strings 2 of Samples 1 to 3, the relative positional relationship between the bus bar electrode 20 and the interconnector 70 was in the reference state. The total value of the distance between the first portion 21 and the second portion 22 and the distance between the first portion 21 and the third portion 23 with respect to the width W7 in the second direction B of the interconnector 70 is 46 for the sample 1. %, Sample 2 was 61%, and sample 3 was 60%.
 <評価>
 作製した試料1~3の太陽電池ストリング2について、バスバー電極20とインターコネクタ70との接続部に対するピール試験を行い、バスバー電極20とインターコネクタ70との接続強度を評価した。ピール試験は、バスバー電極20とインターコネクタ70とを150度~250度の温度で溶着させた後、日本電産シンポ株式会社製フォースゲージを用いてバスバー電極20とインターコネクタ70とを逆方向(互いに180度異なる方向)に引っ張ることにより行った。ピール試験では、バスバー電極20とインターコネクタ70との接続部が破壊されたときの力(ピール強度)を測定した。
<Evaluation>
For the produced solar cell strings 2 of Samples 1 to 3, a peel test was performed on the connection portion between the bus bar electrode 20 and the interconnector 70, and the connection strength between the bus bar electrode 20 and the interconnector 70 was evaluated. In the peel test, the bus bar electrode 20 and the interconnector 70 are welded at a temperature of 150 to 250 degrees, and then the bus bar electrode 20 and the interconnector 70 are reversed (using a force gauge manufactured by Nidec Sympo Co., Ltd.) It was performed by pulling in directions different from each other by 180 degrees. In the peel test, the force (peel strength) when the connecting portion between the bus bar electrode 20 and the interconnector 70 was broken was measured.
 <結果>
 表2に作製した試料1~3の太陽電池ストリング2について実施した、ピール強度測定結果を示す。
<Result>
Table 2 shows the results of peel strength measurement performed on the solar cell strings 2 of Samples 1 to 3 produced.
Figure JPOXMLDOC01-appb-T000002
 本実施例により、試料1~試料3の太陽電池ストリング2は、バスバー電極20とインターコネクタ70とが十分な強度で接続されていることが確認された。
Figure JPOXMLDOC01-appb-T000002
According to this example, it was confirmed that the solar cell strings 2 of Sample 1 to Sample 3 are connected to the bus bar electrode 20 and the interconnector 70 with sufficient strength.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 太陽電池セル、2 太陽電池ストリング、3 太陽電池モジュール、10 半導体基板、10A 第1の主面、10B 第2の主面、11 n型領域、12 p型領域、20 バスバー電極、20A 表面、21,61 第1部分、22,62 第2部分、23,63 第3部分、24,64 第4部分、25a,25b,65a,65b 凸部、30,31 フィンガー電極、40,41 中抜け部、50,51 反射防止膜、60 裏面バスバー電極(バスバー電極)、70 インターコネクタ、71 第1接続部、72 第2接続部、73 第3接続部、80 封止材、81 透明基板、82 裏面フィルム。 1 solar cell, 2 solar cell string, 3 solar cell module, 10 semiconductor substrate, 10A first main surface, 10B second main surface, 11 n-type region, 12 p-type region, 20 busbar electrode, 20A surface, 21, 61 1st part, 22, 62 2nd part, 23, 63 3rd part, 24, 64 4th part, 25a, 25b, 65a, 65b convex part, 30, 31 finger electrode, 40, 41 hollow part 50, 51 Antireflection film, 60 Back busbar electrode (busbar electrode), 70 Interconnector, 71 First connection, 72 Second connection, 73 Third connection, 80 Sealant, 81 Transparent substrate, 82 Back the film.

Claims (9)

  1.  太陽電池セルに設けられ、複数の前記太陽電池セルがインターコネクタを介して電気的に接続されてなる太陽電池ストリングにおいて前記インターコネクタと接続されるバスバー電極であって、
     第1の方向に沿って延在する第1部分と、前記第1の方向に沿って延在し、かつ前記第1の方向と交差する第2の方向において前記第1部分を挟むように前記第1部分と間隔を隔てて配置されている第2部分および第3部分と、前記第2の方向に沿って延在し、かつ前記第1部分、前記第2部分、および前記第3部分を互いに接続する第4部分とを備える、バスバー電極。
    A bus bar electrode connected to the interconnector in a solar battery string provided in a solar battery cell, wherein a plurality of the solar battery cells are electrically connected via an interconnector,
    A first portion extending along a first direction; and a second portion extending along the first direction and intersecting the first direction so as to sandwich the first portion. A second portion and a third portion disposed at a distance from the first portion; and extending along the second direction; and the first portion, the second portion, and the third portion A bus bar electrode comprising a fourth portion connected to each other.
  2.  第1主面を有する半導体基板と、
     前記第1主面上において、請求項1に記載のバスバー電極とを備える、太陽電池セル。
    A semiconductor substrate having a first major surface;
    A solar battery cell comprising the bus bar electrode according to claim 1 on the first main surface.
  3.  前記半導体基板は、前記第1主面の反対側に位置する第2主面をさらに有し、
     前記第2主面上において、前記バスバー電極をさらに備える、請求項2に記載の太陽電池セル。
    The semiconductor substrate further includes a second main surface located on the opposite side of the first main surface,
    The photovoltaic cell according to claim 2, further comprising the bus bar electrode on the second main surface.
  4.  前記第2の方向に沿って延在し、かつ前記第2部分および前記第3部分に接続されているフィンガー電極をさらに備え、
     前記フィンガー電極と前記第4部分とはそれぞれ前記第2の方向に連なっている、請求項2または請求項3に記載の太陽電池セル。
    A finger electrode extending along the second direction and connected to the second portion and the third portion;
    4. The solar cell according to claim 2, wherein the finger electrode and the fourth portion are continuous in the second direction. 5.
  5.  前記バスバー電極は、前記第2の方向において前記第2部分および前記第3部分の少なくとも一方から前記第2の方向に部分的に突出する凸部を含み、
     前記凸部は前記フィンガー電極と連なっている、請求項4に記載の太陽電池セル。
    The bus bar electrode includes a convex portion that partially protrudes in the second direction from at least one of the second portion and the third portion in the second direction,
    The solar cell according to claim 4, wherein the convex portion is continuous with the finger electrode.
  6.  前記太陽電池ストリングを複数備え、
     前記太陽電池ストリングは、
     請求項2~請求項5のいずれか1項に記載の複数の太陽電池セルと、
     複数の前記太陽電池セル間を電気的に接続する前記インターコネクタとを含み、
     前記インターコネクタは、少なくとも隣接する一方の前記太陽電池セルの前記バスバー電極と電気的に接続されている、太陽電池モジュール。
    A plurality of the solar cell strings are provided,
    The solar cell string is
    A plurality of solar cells according to any one of claims 2 to 5,
    The interconnector for electrically connecting a plurality of the solar cells, and
    The interconnector is a solar cell module that is electrically connected to the bus bar electrode of at least one of the adjacent solar cells.
  7.  前記インターコネクタに接続されている領域の接続面積は、前記バスバー電極と前記インターコネクタとの相対的な位置関係が基準状態にあるときの前記接続面積の80%以上100%以下である、請求項6に記載の太陽電池モジュール。 The connection area of the region connected to the interconnector is 80% or more and 100% or less of the connection area when the relative positional relationship between the bus bar electrode and the interconnector is in a reference state. 6. The solar cell module according to 6.
  8.  前記インターコネクタの前記第2の方向における幅に対する前記バスバー電極の前記第2の方向における幅の比率が、1以上1.5以下である、請求項6または請求項7に記載の太陽電池モジュール。 The solar cell module according to claim 6 or 7, wherein a ratio of a width in the second direction of the bus bar electrode to a width in the second direction of the interconnector is 1 or more and 1.5 or less.
  9.  前記インターコネクタの前記第2の方向における幅に対する、前記第1部分と前記第2部分との前記第2の方向における間隔および前記第1部分と前記第3部分との前記第2の方向における間隔の合計が60%以上80%以下である、請求項8に記載の太陽電池モジュール。 The distance between the first part and the second part in the second direction and the distance between the first part and the third part in the second direction with respect to the width of the interconnector in the second direction The solar cell module according to claim 8, wherein the total is 60% or more and 80% or less.
PCT/JP2016/076749 2015-09-29 2016-09-12 Busbar electrode, solar battery cell, and solar battery module WO2017056934A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017543083A JPWO2017056934A1 (en) 2015-09-29 2016-09-12 Bus bar electrode, solar battery cell, and solar battery module
CN201680056182.1A CN108140678A (en) 2015-09-29 2016-09-12 Bus bar electrode, solar battery cell and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-190971 2015-09-29
JP2015190971 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056934A1 true WO2017056934A1 (en) 2017-04-06

Family

ID=58423412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076749 WO2017056934A1 (en) 2015-09-29 2016-09-12 Busbar electrode, solar battery cell, and solar battery module

Country Status (3)

Country Link
JP (1) JPWO2017056934A1 (en)
CN (1) CN108140678A (en)
WO (1) WO2017056934A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116906A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Silicon solar battery cell and its manufacturing method
JP2008227262A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Solar battery module
WO2009122977A1 (en) * 2008-03-31 2009-10-08 シャープ株式会社 Solar cell, solar cell string and solar cell module
US20140230879A1 (en) * 2013-02-18 2014-08-21 Au Optronics Corporation Photovoltaic module
JP2015005754A (en) * 2013-06-21 2015-01-08 エルジー エレクトロニクス インコーポレイティド Solar cell
WO2015064696A1 (en) * 2013-10-30 2015-05-07 京セラ株式会社 Solar cell and solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446986A (en) * 2010-09-30 2012-05-09 常州天合光能有限公司 Grid line structure of silicon solar battery
KR101826912B1 (en) * 2011-11-07 2018-02-08 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 Photovoltaic device and the manufacturing methode thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116906A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Silicon solar battery cell and its manufacturing method
JP2008227262A (en) * 2007-03-14 2008-09-25 Sanyo Electric Co Ltd Solar battery module
WO2009122977A1 (en) * 2008-03-31 2009-10-08 シャープ株式会社 Solar cell, solar cell string and solar cell module
US20140230879A1 (en) * 2013-02-18 2014-08-21 Au Optronics Corporation Photovoltaic module
JP2015005754A (en) * 2013-06-21 2015-01-08 エルジー エレクトロニクス インコーポレイティド Solar cell
WO2015064696A1 (en) * 2013-10-30 2015-05-07 京セラ株式会社 Solar cell and solar cell module

Also Published As

Publication number Publication date
CN108140678A (en) 2018-06-08
JPWO2017056934A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
EP3300124B1 (en) Solar cell module
JP5285880B2 (en) Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
JP5687506B2 (en) Solar cell and solar cell module
EP2053661B1 (en) Solar cell module
EP2426726A1 (en) Solar battery cell
EP2400561A2 (en) Photovoltaic module
US20160079459A1 (en) Solar cell module
JP2000261012A (en) Solar battery
KR20150088784A (en) Photovoltaic apparatus
KR20120010251A (en) Wiring sheet, solar cell provided with wiring sheet, and solar cell module
EP2500949A2 (en) Photovoltaic module
JP5299975B2 (en) Back electrode type solar cell, wiring sheet, solar cell with wiring sheet and solar cell module
JP5819862B2 (en) SOLAR CELL HAVING SPECIAL BUSLINE SHAPE, SOLAR CELL ARRAY INCLUDING THE SOLAR CELL, AND METHOD FOR PRODUCING A SOLAR CELL
JP2013211341A (en) Solar cell and solar cell module
EP3242334A1 (en) Solar cell module
JP5035845B2 (en) Solar cell and solar cell module
US10665744B2 (en) Bifacial photovoltaic module
WO2017056934A1 (en) Busbar electrode, solar battery cell, and solar battery module
JP2013065588A (en) Solar cell
JP5020179B2 (en) Solar cell module
CN216719958U (en) Solar cell, solar cell piece and photovoltaic module
EP3151287A1 (en) Solar cell module
CN114303250A (en) Optimized solar cell, solar cell module and method for producing the same
EP3147953A1 (en) Solar cell module
TWI478364B (en) Solar cell and module comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851108

Country of ref document: EP

Kind code of ref document: A1