WO2017056893A1 - Method for manufacturing mould assembly, method for producing patterned sheet, method for manufacturing electroformed mould, and method for manufacturing second mould using electroformed mould - Google Patents

Method for manufacturing mould assembly, method for producing patterned sheet, method for manufacturing electroformed mould, and method for manufacturing second mould using electroformed mould Download PDF

Info

Publication number
WO2017056893A1
WO2017056893A1 PCT/JP2016/076339 JP2016076339W WO2017056893A1 WO 2017056893 A1 WO2017056893 A1 WO 2017056893A1 JP 2016076339 W JP2016076339 W JP 2016076339W WO 2017056893 A1 WO2017056893 A1 WO 2017056893A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pattern
substrate
producing
sheet
Prior art date
Application number
PCT/JP2016/076339
Other languages
French (fr)
Japanese (ja)
Inventor
小川 正太郎
木戸 健夫
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017056893A1 publication Critical patent/WO2017056893A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to an assembly mold manufacturing method, a pattern sheet manufacturing method, an electroforming mold manufacturing method, and a second mold manufacturing method using an electroforming mold.
  • micro-needle array has been known as a new dosage form that can administer drugs such as insulin, vaccine (Vaccines) and hGH (human Growth Hormone) into the skin without pain.
  • the microneedle array is an array of biodegradable microneedles (also referred to as microneedles or microneedles) containing a drug. By affixing this microneedle array to the skin, each microneedle pierces the skin, the microneedle is absorbed in the skin, and the drug contained in each microneedle can be administered into the skin.
  • the microneedle array is also called a transdermal absorption sheet.
  • a resin-inverted mold can be formed from an original plate having a fine pattern, and the molded product can be produced from this mold. Has been done.
  • Patent Document 1 a large-area master is produced by laminating a plurality of end faces of a small-area master (original), and a large-area molded product is obtained by using a stamper produced from the master through an electroforming process. Making is disclosed.
  • Patent Document 2 discloses the production of a multi-faced mold.
  • a plurality of resin-inverted molds are produced from an original plate, a plurality of molds are arranged between a base plate and a surface plate, and a space between the molds is filled with a filler. An attached mold is produced.
  • Patent Document 2 there is a concern about the shape accuracy of a multi-sided mold, warping or deformation due to curing shrinkage of the filler, a step at a joint between a plurality of molds, and the like.
  • the present invention has been made in view of such circumstances, and is capable of improving productivity, reducing costs, and improving shape accuracy, a method for producing an assembly mold, a method for producing a pattern sheet, and an electroforming mold. It is an object of the present invention to provide a production method and a production method of a second mold using an electroforming mold.
  • a method for producing a collective mold uses a master having a projecting pattern to produce a plurality of first molds made of a resin having a concave pattern that is an inverted shape of the projecting pattern of the master.
  • the first substrate is provided with a frame, and the first mold is arranged inside the frame.
  • the second substrate is brought into contact with a spacer higher than the frame provided around the frame of the first substrate.
  • the first and second adhesives are ultraviolet curable resins.
  • the first mold is made of a material containing an ultraviolet curable resin.
  • the first mold and the first substrate are bonded by a heat release sheet or an ultraviolet release sheet.
  • a method for producing a pattern sheet having a protruding pattern includes a step of producing a collective mold by the production method described above, a filling step of filling a concave pattern of the collective mold with a polymer solution, It includes a drying step of drying the polymer solution to form a polymer sheet, and a polymer sheet peeling step of peeling the polymer sheet from the assembly mold.
  • a method for producing an electroforming mold having a protruding pattern includes a step of producing a collective mold by the above-described production method, and an electroforming method in which a metal is embedded in the concave pattern of the collective mold by an electroforming method. A casting step and a metal peeling step of peeling the embedded metal body from the assembly mold.
  • a method for producing the second mold includes a step of producing an electroformed mold by the above-described production method, and an electroformed mold having a projecting pattern, and the projecting pattern of the electroformed mold. And a step of producing a resin-made second mold having a concave pattern which is a reverse shape of the above.
  • a method of manufacturing a pattern sheet having a protruding pattern includes a step of manufacturing a second mold by the above-described manufacturing method, and a solution that fills the concave pattern of the second mold with a polymer solution.
  • a collective mold capable of improving productivity, reducing costs, and improving shape accuracy can be produced.
  • a pattern sheet can be manufactured using an assembly mold, and an electroformed mold can be produced.
  • a second mold can be produced using this electroformed mold.
  • FIG. 1 is a process diagram showing a procedure of a method for producing a collective mold.
  • FIG. 2 is a perspective view of the original.
  • FIG. 3 is a plan view of the assembly mold.
  • FIG. 4 is a process diagram showing a procedure of a method for producing a pattern sheet using an assembly mold.
  • FIG. 5 is a perspective view of an individual pattern sheet.
  • FIG. 6 is a process diagram showing a procedure of a method for producing an electroforming mold using a collective mold.
  • FIG. 7 is a perspective view of an original plate and an electroforming mold.
  • FIG. 8 is a process diagram showing a procedure of a method for producing a second mold using an electroforming mold.
  • FIG. 9 is a process diagram showing a procedure of a method for producing a pattern sheet using the second mold.
  • FIG. 1 is a process diagram showing the procedure of a method for producing a collective mold.
  • FIG. 2 is a perspective view of the original.
  • FIG. 3 is a plan view of the assembly mold.
  • the collective mold means a mold obtained by integrating a plurality of first resin molds manufactured using an original plate. Therefore, the collective mold includes two or more first molds.
  • FIG. 1 (A) part of FIG. 1 has shown the process of preparing the original plate 10 which has the protruding pattern 10A.
  • an original plate 10 having a protruding pattern 10A is produced.
  • the original plate has the same protruding pattern as the pattern sheet (so-called molded product) having the protruding pattern to be produced.
  • the original plate 10 having the protruding pattern 10A is produced, for example, by machining a metal substrate to be the original plate 10 using a cutting tool such as a diamond bite.
  • a metal substrate stainless steel, aluminum alloy, Ni or the like can be used.
  • the protruding pattern 10 ⁇ / b> A refers to a state in which protruding portions that protrude in a direction away from the plane of the original 10 are arranged on the plane of the original 10.
  • the number of protrusions, the positions of the protrusions, etc. are not limited.
  • the shape of the protrusion a shape that tapers in a direction away from the plane, a shape that has a constant width in the direction away from the plane and tapers toward the tip side, and a frustum shape in a direction away from the plane, then a constant width
  • the shape etc. which taper off to the front end side can be mentioned.
  • the protrusions preferably have a height of 100 to 2000 ⁇ m from the plane of the original 10 and a tip diameter of ⁇ 50 ⁇ m or less, for example.
  • the interval between adjacent protrusions is preferably 300 to 2000 ⁇ m.
  • the aspect ratio of the protrusion (height of the protrusion / width of the bottom surface of the protrusion) is preferably 1 to 5.
  • part (B) of FIG. 1 shows a production process for producing a plurality of resin-made first molds 20 having concave patterns 20A using the original 10.
  • the concave pattern 20 ⁇ / b> A refers to a state in which a concave portion extending from one surface of the first mold 20 toward the other surface is disposed on one surface of the first mold 20.
  • the number of the concave portions, the arrangement of the concave portions, the depth of the concave portions, etc. are not limited.
  • An ultraviolet curable resin that cures when irradiated with ultraviolet rays is prepared.
  • the protruding pattern 10A of the original 10 is pressed against the ultraviolet curable resin.
  • the ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin.
  • the original 10 is peeled from the cured ultraviolet curable resin.
  • a resin-made first mold 20 having a concave pattern 20 ⁇ / b> A that is an inverted shape of the protruding pattern 10 ⁇ / b> A of the original 10 is produced.
  • ultraviolet curable resin refers to a resin that is cured through a crosslinking reaction and a polymerization reaction when irradiated with ultraviolet rays.
  • examples of the ultraviolet polymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group.
  • the first mold 20 As an ultraviolet curable resin, a plurality of the first molds 20 can be separated and easily arranged on the first substrate 30 in the arrangement step of the part (C) of FIG. . Since the ultraviolet curable resin is substantially transparent (including translucent), the first mold 20 can be disposed on the first substrate 30 using the concave pattern 20A of the first mold 20.
  • the first mold 20 as an ultraviolet curable resin, the deformation of the first mold 20 due to heat can be prevented. As shown in FIG. 6 to be described later, when the electroforming mold is manufactured using the collective mold 100, the first mold 20 can be prevented from being deformed due to heat in the electroforming process.
  • thermoplastic resin as a material for the first mold 20 is prepared.
  • the original plate 10 having the protruding pattern 10A is heated.
  • the protruding pattern 10A of the heated original plate 10 is pressed against the surface of the thermoplastic resin. Since the surface of the thermoplastic resin is softened, the protruding pattern 10A is transferred to the thermoplastic resin.
  • the original plate 10 In the state where the original plate 10 is pressed against the thermoplastic resin, the original plate 10 is cooled. The thermoplastic resin is cured by cooling the original plate 10. Thereafter, the original plate 10 is peeled from the thermoplastic resin to which the protruding pattern 10A is transferred. A resin-made first mold 20 having a concave pattern 20 ⁇ / b> A that is an inverted shape of the protruding pattern 10 ⁇ / b> A of the original 10 is produced.
  • thermoplastic resin sheet examples include LDPE (Low Density Polyethylene), HDPE (High Density Polyethylene), PP (polypropylene), and PC (polycarbonate).
  • LDPE Low Density Polyethylene
  • HDPE High Density Polyethylene
  • PP polypropylene
  • PC polycarbonate
  • a silicone resin in which a curing agent is added to PDMS (polydimethylsiloxane, for example, Sylgard 184, Sylgard: registered trademark manufactured by Dow Corning) is prepared.
  • the protruding pattern 10A of the original 10 is pressed against the silicone resin.
  • the silicone resin With the original plate 10 pressed against the silicone resin, the silicone resin is heat-treated at 100 ° C. and cured.
  • the original plate 10 is peeled off from the cured silicone resin.
  • a resin-made first mold 20 having a concave pattern 20 ⁇ / b> A that is an inverted shape of the protruding pattern 10 ⁇ / b> A of the original 10 is produced.
  • the size of each concave portion of the concave pattern 20A is substantially the same as the size of the protruding portion of the protruding pattern 10A.
  • a plurality of resin-made first molds 20 having a concave pattern 20A are produced by the method described above.
  • the method for producing the first mold 20 is not limited to the first to third methods.
  • FIG. 1 part of FIG. 1 has shown the arrangement
  • a frame 32 having an opening 34 is provided on the first substrate 30. In the region of the opening 34 of the frame 32, the first substrate 30 is exposed.
  • the plurality of first molds 20 are arranged in the region of the opening 34 of the frame 32, that is, inside the frame 32.
  • the plurality of first molds 20 are disposed on the first substrate 30 so as to be spaced apart from each other, and are disposed at positions where the surface on which the concave pattern 20A is formed (concave pattern surface) and the first substrate 30 are in contact.
  • the first substrate 30 ensures the flatness of the concave pattern surface of each first mold 20. That is, the position of each first mold 20 is defined by the first substrate 30 with the concave pattern surface of each first mold 20 being flush.
  • a quartz glass plate or the like can be used as the first substrate 30, a quartz glass plate or the like can be used.
  • the material of the first substrate 30 is not limited, but a material having high rigidity is preferable. This is because the position of each first mold 20 is defined by the first substrate 30.
  • Acrylic, PC (polycarbonate), etc. can be used as the material of the frame 32. Although it is not essential to provide the frame 32, it is preferable to provide the frame 32 in consideration of deformation suppression in a later process.
  • the plurality of first molds 20 can be arranged on the first substrate 30 with high accuracy.
  • a plurality of first molds 20 be arranged on the first substrate 30 under a reduced pressure environment.
  • the air existing in the concave portion of the concave pattern 20A of the first mold 20 can be reduced.
  • Under reduced pressure environment means a state below atmospheric pressure.
  • the first mold 20 and the first substrate 30 are not displaced, and in the peeling step described later, the first substrate 30 can be easily peeled from the first mold 20. Is preferred.
  • the heat release sheet refers to a pressure sensitive adhesive sheet having such a property that the adhesive strength is reduced by heating to a predetermined temperature or higher.
  • the term “ultraviolet release sheet” refers to an adhesive sheet having such a property that the adhesive strength is reduced by irradiating ultraviolet rays.
  • the concave pattern surface of the first mold 20 and the first substrate 30 include a case of direct contact and a case of indirect contact via a release sheet such as a heat release sheet or an ultraviolet release sheet. .
  • (D) part and (E) part of FIG. 1 show a supplying process for supplying an adhesive.
  • the adhesive 40 is supplied between the plurality of first molds 20.
  • the adhesive 40 is also supplied between the first mold 20 and the frame 32.
  • the adhesive 40 is cured.
  • an ultraviolet curable adhesive as the adhesive 40.
  • the ultraviolet curable adhesive 40 can be cured in a time of several minutes or less, and the time until curing can be shortened. Further, the irradiation of ultraviolet rays has a small influence on the deformation of the first mold 20.
  • the adhesive 40 is an ultraviolet curable adhesive
  • the adhesive 40 is cured by irradiating the adhesive 40 with ultraviolet rays.
  • the ultraviolet curable adhesive was illustrated as the adhesive 40, it is not particularly limited.
  • a spacer 36 higher than the height of the frame 32 is provided around the frame 32.
  • an adhesive 42 is supplied to the surface opposite to the concave pattern surface of the plurality of first molds 20. It is preferable to use an ultraviolet curable adhesive as the adhesive 42. It is preferable that the adhesive 40 (first adhesive) and the adhesive 42 (second adhesive) have the same composition. Since the ultraviolet curable adhesive 42 can be cured in a period of several minutes or less, the time until curing can be shortened. Further, the irradiation of ultraviolet rays has a small influence on the deformation of the first mold 20. Although the ultraviolet curable adhesive was illustrated as the adhesive 42, it is not particularly limited.
  • the adhesive 40 is supplied between the first mold 20 to be cured, and then the surface opposite to the concave pattern surface of the first mold 20.
  • the adhesive 42 By supplying the adhesive 42 to the substrate, that is, by supplying the adhesive in two stages, warpage, deformation, and the like can be suppressed.
  • the adhesive 40 supplied between the first molds 20 is cured in the step shown in part (D) of FIG.
  • the plurality of first molds 20 become rigid due to the cured adhesive 40. Therefore, even when the adhesive 42 is supplied and cured in the process shown in the (E) part and thereafter in FIG. 1, the plurality of first molds 20 that have undergone the process shown in the (D) part in FIG. It becomes possible to counter warpage and deformation.
  • the concave pattern surface of the first mold 20 and the adhesive 40 are supported by the first substrate 30, the concave pattern surface of the first mold 20 and the adhesive 40 are flush with each other. Thereby, generation
  • the second substrate 50 is prepared.
  • a glass plate, a resin sheet, or the like can be used as the second substrate 50.
  • FIG. 1 (F) part of FIG. 1 has shown the bonding process which bonds the 2nd board
  • the second substrate 50 is pressed against the adhesive 42.
  • the adhesive 42 By curing the adhesive 42, the surface opposite to the concave pattern surface of the first mold 20 and the second substrate 50 are bonded via the adhesive 42.
  • a spacer 36 is provided around the frame 32.
  • the second substrate 50 is pressed against the adhesive 42, the second substrate 50 is brought into contact with the spacer 36.
  • the distance between the first substrate 30 and the second substrate 50 can be defined by the spacer 36.
  • the distance between the first substrate 30 and the second substrate 50 can be defined by bringing the second substrate 50 into contact with the frame 32.
  • the adhesive 42 enters between the frame 32 and the second substrate 50 when the second substrate 50 is pressed against the adhesive 42. Can be made. The frame 32 and the second substrate 50 can be bonded by the adhesive 42.
  • the height means the length from the surface in contact with the first substrate 30 to the distal end surface farthest from the first substrate 30 with respect to the first substrate 30.
  • the adhesive 42 is an ultraviolet curable adhesive
  • the adhesive 42 can be cured by irradiating the adhesive 42 with ultraviolet rays.
  • the second substrate 50 is preferably made of a material that can transmit ultraviolet rays.
  • FIG. 1 part of FIG. 1 has shown the board
  • the first substrate 30 is peeled from the plurality of first molds 20.
  • the first mold 20 is moved away from the first substrate 30.
  • the first substrate 30 may be moved away from the first mold 20, or both the first substrate 30 and the first mold 20 may be moved away from each other. .
  • the spacer 36 is peeled from the second substrate 50 when the first mold 20 and the first substrate 30 are peeled off.
  • the spacer 36 may not be peeled off from the second substrate 50.
  • the heating more than predetermined temperature or an ultraviolet-ray is irradiated.
  • the adhesive force between the 1st mold 20 and a heat release sheet or the adhesive force between the 1st mold 20 and an ultraviolet release sheet is reduced.
  • the first mold 20 and the first substrate 30 can be easily peeled off.
  • the thermal release sheet or the ultraviolet release sheet is preferably peeled from the plurality of first molds 20 together with the first substrate 30.
  • part of FIG. 1 is a sectional view of the assembly mold 100.
  • the assembly mold 100 is completed when the first mold 20 and the first substrate 30 are separated from each other.
  • a collective mold 100 in which a plurality of first molds 20 are integrated from an original 10 is produced.
  • a plurality of original plates are not manufactured and a large-area original plate is not manufactured, so that the cost for manufacturing the original plate 10 can be reduced.
  • the assembly mold 100 is manufactured by a relatively simple process shown in FIG. 1, the productivity is high. Moreover, since it is supported by the first substrate 30, it is possible to suppress the occurrence of a step or deformation between the concave pattern surface of the first mold 20 and the adhesive 40.
  • a microneedle array will be described as an example of a pattern sheet having a protruding pattern. However, it is not limited to a microneedle array.
  • FIG. 4 is a process diagram showing the procedure of a method for producing a pattern sheet using a collective mold. Part (A) of FIG. 4 shows a state in which the assembly mold 100 is prepared. The collective mold 100 is produced by the collective mold producing method described above.
  • (B) part of FIG. 4 has shown the supply process which supplies a polymer solution to the concave pattern of an assembly mold.
  • a polymer solution 200 is prepared.
  • a material of the resin polymer used for the polymer solution 200 it is preferable to use a biocompatible resin.
  • resins include glucose, maltose, pullulan, sodium chondroitin sulfate, sodium hyaluronate, saccharides such as hydroxyethyl starch and hydroxypropylcellulose, biodegradable proteins such as gelatin, polylactic acid and lactic acid glycolic acid copolymer.
  • a conductive polymer it is preferable to use a conductive polymer.
  • gelatin-based materials have adhesiveness to many substrates and have strong gel strength as a material to be gelled. Therefore, they can be adhered to the substrates in the peeling step described later, and the collective mold 100 Since the polymer sheet can be peeled from the substrate using the base material, it can be suitably used.
  • medical agent can be included in the polymer solution 200.
  • medical agent contained in the polymer solution 200 should just be a substance which has physiological activity, and is not specifically limited.
  • the drug is preferably selected from peptides, proteins, nucleic acids, polysaccharides, vaccines, pharmaceutical compounds, or cosmetic ingredients.
  • a pharmaceutical compound belongs to a water-soluble low molecular weight compound.
  • the low molecular compound is a compound having a molecular weight in the range of several hundred to several thousand.
  • the concentration varies depending on the material, it is preferable that the concentration is such that 10 to 50% by mass of the resin polymer is contained in the polymer solution 200 containing no drug.
  • the solvent used for dissolution may be volatile even if it is other than warm water, and methyl ethyl ketone, alcohol, or the like can be used.
  • the solution of polymer resin it is possible to dissolve together the medicine for supplying into the body according to the use.
  • the polymer concentration of the polymer solution 200 containing the drug is preferably 0 to 40% by mass.
  • Consing a drug means including an amount of a drug that exhibits a medicinal effect when puncturing the body surface.
  • the term “not containing a drug” means that the drug does not contain an amount of a drug that exhibits a medicinal effect, and the range of the amount of the drug includes a range from 0 that does not include a drug to an amount that does not exhibit a drug effect.
  • a water-soluble powder may be dissolved in water, and a drug may be added after dissolution, or a liquid in which a drug is dissolved.
  • a water-soluble polymer powder may be put in and dissolved. If it is difficult to dissolve in water, it may be dissolved by heating.
  • the temperature can be appropriately selected depending on the type of the polymer material, but it is preferable to heat at a temperature of about 60 ° C. or lower.
  • the viscosity of the polymer resin solution is preferably 100 Pa ⁇ s or less, more preferably 10 Pa ⁇ s or less, in the case of a solution containing a drug.
  • a solution that does not contain a drug it is preferably 2000 Pa ⁇ s or less, more preferably 1000 Pa ⁇ s or less.
  • the viscosity of the polymer resin solution can be measured with a capillary tube viscometer, falling ball viscometer, rotary viscometer, or vibration viscometer.
  • the polymer solution 200 is supplied to the first mold 20 constituting the assembly mold 100, and the polymer solution 200 is filled in the recesses of the concave pattern 20A.
  • the polymer solution 200 is difficult to enter into the recess of the concave pattern 20A of the first mold 20 due to the presence of air. Therefore, it is desirable to perform the supply process under a reduced pressure environment.
  • Under reduced pressure environment means a state below atmospheric pressure.
  • the tip of the concave pattern 20A is drawn while drawing air in the concave portion in a reduced pressure environment. It becomes possible to fill the polymer solution 200 up to.
  • the assembly mold 100 supplied with the polymer solution 200 is placed in a pressure vessel. After the inside of the pressure vessel is heated to 40 ° C. by the heating jacket, compressed air is injected into the pressure vessel from the compressor. The pressure vessel is held at a pressure of 0.5 MPa for 5 minutes, and pressure is applied to the collective mold 100 to remove air in the recess and fill the polymer solution 200 up to the tip of the concave pattern 20A of the first mold 20 It becomes possible to do.
  • (C) part of FIG. 4 has shown the drying process which dries the polymer solution 200 and makes it the polymer sheet 210.
  • FIG. the polymer solution 200 supplied to the assembly mold 100 can be dried by blowing air.
  • the drying is divided into four zones: (1) set drying at 15 ° C. (low humidity, wind speed 4 m / sec), (2) weak wind drying at 35 ° C. (low humidity, wind speed 8 m / sec), (3 It can be efficiently dried by setting conditions such as high wind drying at 50 ° C. (wind speed 12 m / sec) and (4) high wind drying at 30 ° C. (wind speed 20 m / sec).
  • the applied polymer solution 200 is dried, or the polymer solution 200 is gelled and then dried to form a polymer sheet 210.
  • the polymer solution 200 can be gelled by flowing low-humidity cold air.
  • cool air of 10 to 15 [° C.] is blown for a longer time than in the above case, and thereafter, wind is blown in the same manner as described above.
  • when flowing hot air for drying after this if the temperature of the hot air is too high, gelation in the polymer solution 200 may return, or depending on the chemical, heating may occur. Careful attention must be paid to the temperature of the wind to be blown, as the efficacy changes due to decomposition.
  • the polymer sheet 210 By using the polymer sheet 210, the polymer sheet is reduced more than the state when the polymer solution 200 is injected, and particularly when gelation is performed, the polymer sheet is significantly reduced. Thereby, peeling of the polymer sheet 210 from the assembly mold 100 described later is facilitated.
  • the polymer sheet 210 means a state after the polymer solution 200 is subjected to a desired drying process.
  • the water content of the polymer sheet 210 is set as appropriate.
  • FIG. 4D and 4E show a polymer sheet peeling step for peeling the polymer sheet 210 from the assembly mold 100.
  • FIG. As shown in part (D) of FIG. 4, a sheet-like base material 300 on which an adhesive layer is formed is attached to the opposite side of the assembly mold 100 to the polymer sheet 210. The surface of the substrate 300 may be bonded by performing a surface activation treatment. Furthermore, after making the base material 300 adhere, the polymer solution may be applied on the base material 300 to embed the base material 300.
  • PET polyethylene terephthalate
  • PP polypropylene: polypropylene
  • PC polycarbonate
  • PE Polyethylene: polyethylene
  • the base material 300 and the polymer sheet 210 are peeled off at the same time.
  • a suction cup (not shown) is installed on the surface of the base material 300 opposite to the surface to be bonded to the polymer sheet 210, and the base material 300 is pulled up vertically while being sucked with air.
  • the polymer sheet 210 is peeled from the assembly mold 100 to form a pattern sheet 220 having a protruding pattern 220A.
  • the material of the 1st mold 20 which comprises the assembly mold 100 is preferable to comprise the material of the 1st mold 20 which comprises the assembly mold 100 by the material which is easy to peel.
  • the stress applied to the protruding pattern 220A of the pattern sheet 220 at the time of peeling can be relieved by making the material constituting the first mold 20 a soft material having high elasticity.
  • the projecting pattern 220A of the pattern sheet 220 has a reverse shape of the concave pattern 20A of the first mold 20.
  • the polymer sheet 210 may shrink due to drying, and the protruding pattern 220A of the pattern sheet 220 may be smaller than the volume of the concave pattern 20A.
  • the pattern sheet 220 is basically the same as the polymer sheet 210 peeled from the assembly mold 100.
  • 4 (F) and 4 (G) show a cutting process in which the pattern sheet 220 is cut into individual pattern sheets 220.
  • the pattern sheet 220 having the protruding pattern 220A peeled off from the collective mold 100 and the substrate 300 are set in a cutting device (not shown).
  • the position for cutting the pattern sheet 220 is determined. Basically, the cutting position is determined so as to be every protrusion pattern 220A.
  • the pattern sheet 220 is cut into a plurality of individual pattern sheets 220.
  • the example in which the pattern sheet 220 and the substrate 300 are cut at the same time has been shown, but the present invention is not limited to this.
  • the substrate 300 can be peeled from the pattern sheet 220 and the substrate 300 peeled from the collective mold 100, and the pattern sheet 220 can be made into individual pattern sheets 220.
  • the present invention is not limited thereto.
  • the polymer solution 200 containing the drug can be filled in the concave pattern 20A and dried, and then the polymer solution 200 not containing the drug can be filled in the concave pattern 20A and dried to obtain a polymer sheet.
  • the number of times the polymer solution 200 is supplied and the presence or absence of the drug in the polymer solution 200 can be appropriately changed.
  • FIG. 5 is a perspective view of the individual pattern sheet 220.
  • the individual pattern sheet 220 has a protruding pattern 220A on one surface. Further, the pattern sheet 220 has a base material 300 on the surface opposite to the surface on which the protruding pattern 220A is formed.
  • FIG. 6 is a process diagram showing a procedure of a method for producing an electroforming mold using the collective mold 100.
  • FIG. 6 shows the state where collective mold 100 was prepared.
  • the collective mold 100 is produced by the collective mold producing method described above.
  • FIG. 6 (B) is a process diagram showing an electroforming process in which metal is embedded in the concave pattern 20A of the assembly mold 100 by an electroforming method.
  • a conductive treatment is performed on the assembly mold 100.
  • a metal for example, nickel
  • the metal is sputtered on the first mold 20 of the collective mold 100, and the metal is attached to the surface of the first mold 20 of the collective mold 100 and the concave pattern 20A.
  • the assembly mold 100 that has undergone the conductive treatment is held on the cathode (not shown).
  • the metal pellet is held in a metal case to serve as an anode (not shown).
  • the electroforming liquid is stored in a storage tank (not shown).
  • a cathode for holding the assembly mold 100 and an anode for holding the metal pellets are immersed in an electroforming solution and energized.
  • a metal body 400 is formed by embedding a metal in the concave pattern 20A of the first mold 20 by electroforming.
  • FIG. 6 (C) is a process diagram showing a metal peeling process for peeling the metal body 400 from the assembly mold 100.
  • FIG. As shown in part (C) of FIG. 6, the metal body 400 is peeled from the collective mold 100 to produce an electroformed mold 410 having a protruding pattern 410A.
  • the protruding pattern 410A has a reverse shape of the concave pattern 20A of the first mold 20.
  • the electroforming mold 410 is basically the same as the metal body 400 peeled from the assembly mold 100.
  • FIG. 7 is a perspective view of the original plate 10 and the electroformed mold 410.
  • 7A is a perspective view of the original plate 10
  • FIG. 7B is a perspective view of the electroformed mold 410.
  • the first mold is produced using the original 10
  • the collective mold 100 is produced from the plurality of first molds 20, and the electroformed mold 410 is produced from the collective mold 100.
  • an electroforming mold 410 having a large area can be obtained.
  • the electroforming mold 410 has the same function as that of the original plate 10 in the sense that it becomes an original plate for producing the first mold 20, and has a larger area than the original plate 10. In other words, since the large-area original plate is produced by electroforming rather than by machining such as grinding, the original production cost can be reduced.
  • FIG. 8 is a process diagram showing a procedure of a method for producing a second mold using the electroforming mold 410.
  • the electroforming mold 410 is prepared.
  • the electroforming mold 410 is manufactured by the above-described method for manufacturing an electroforming mold.
  • the concave pattern 500 ⁇ / b> A refers to a state in which a concave portion extending from one surface of the second mold 500 toward the other surface is disposed on one surface of the second mold 500.
  • the number of the concave portions, the arrangement of the concave portions, the depth of the concave portions, etc. are not limited.
  • the method for producing the second mold 500 using the electroforming mold 410 can basically be produced by the same method as the method for producing the first mold 20 using the original plate 10 having the protruding pattern 10A. .
  • the second mold 500 having the concave pattern 500A can be manufactured by the first to third methods described in the part (B) of FIG.
  • An ultraviolet curable resin that cures when irradiated with ultraviolet rays is prepared.
  • the protruding pattern 410A of the electroforming mold 410 is pressed against the ultraviolet curable resin.
  • the ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin.
  • the electroforming mold 410 is peeled from the cured ultraviolet curable resin.
  • a resin-made second mold 500 having a concave pattern 500 ⁇ / b> A that is an inverted shape of the protruding pattern 410 ⁇ / b> A of the electroforming mold 410 is produced.
  • thermoplastic resin as a material for the second mold 500 is prepared.
  • the electroforming mold 410 having the protruding pattern 410A is heated.
  • the protruding pattern 410A of the heated electroforming mold 410 is pressed against the surface of the thermoplastic resin. Since the surface of the thermoplastic resin is softened, the protruding pattern 410A is transferred to the thermoplastic resin.
  • the electroformed mold 410 In the state where the electroformed mold 410 is pressed against the thermoplastic resin, the electroformed mold 410 is cooled. The thermoplastic resin is cured by cooling the electroforming mold 410. Thereafter, the electroformed mold 410 is peeled from the thermoplastic resin to which the protruding pattern 410A is transferred. A resin-made second mold 500 having a concave pattern 500 ⁇ / b> A that is an inverted shape of the protruding pattern 410 ⁇ / b> A of the electroforming mold 410 is produced.
  • a silicone resin in which a curing agent is added to PDMS (polydimethylsiloxane, for example, Sylgard 184, Sylgard: registered trademark manufactured by Dow Corning) is prepared.
  • the protruding pattern 410A of the electroforming mold 410 is pressed against the silicone resin.
  • the silicone resin is heated at 100 ° C. to be cured.
  • the electroformed mold 410 is peeled from the cured silicone resin.
  • a resin-made second mold 500 having a concave pattern 500 ⁇ / b> A that is an inverted shape of the protruding pattern 410 ⁇ / b> A of the electroforming mold 410 is produced.
  • the size of each concave portion of the concave pattern 500A is substantially the same as the size of the protruding portion of the protruding pattern 410A.
  • the method is not limited to the method for manufacturing the second mold 500 and the first to third methods.
  • FIG. 9 is a process diagram illustrating a procedure of a method for manufacturing a pattern sheet using the second mold.
  • 4 is a process diagram showing the procedure of the pattern sheet manufacturing method
  • FIG. 9 is a process diagram showing the procedure of the pattern sheet manufacturing method, except for the difference between the collective mold and the second mold. Are the same. Therefore, the same components as those in the process diagram shown in FIG.
  • FIG. 9 shows the state where the 2nd mold 500 was prepared.
  • the second mold 500 is manufactured by the above-described second mold manufacturing method.
  • FIG. 9 part of FIG. 9 has shown the supply process which supplies the polymer solution 200 to the concave pattern 500A of the 2nd mold 500.
  • FIG. First a polymer solution 200 is prepared.
  • the polymer solution 200 is basically the same as the polymer solution 200 described in FIG.
  • the polymer solution 200 is supplied to the second mold 500, and the polymer solution 200 is filled in the recesses of the concave pattern 500A.
  • the filling method described in FIG. 4 can be applied as a method for filling the polymer solution 200 into the concave portions of the concave pattern 500A.
  • (C) part of FIG. 9 has shown the drying process which dries the polymer solution 200 and makes it the polymer sheet 210.
  • FIG. the polymer solution 200 supplied to the second mold 500 can be dried by blowing air. The drying method and conditions described in FIG. 4 can be applied.
  • FIG. 9D and 9E show a polymer sheet peeling step for peeling the polymer sheet 210 from the second mold 500.
  • FIG. As shown in part (D) of FIG. 9, a sheet-like base material 300 on which an adhesive layer is formed is attached to the surface of the polymer sheet 210 opposite to the second mold 500.
  • the material of the second mold 500 is made of a material that is very easy to peel off. Moreover, the stress applied to the protruding pattern 220A of the pattern sheet 220 at the time of peeling can be relieved by making the material constituting the second mold 500 a soft material having high elasticity.
  • the protruding pattern 220A of the pattern sheet 220 has a reverse shape of the concave pattern 500A of the second mold 500.
  • the pattern sheet 220 is basically the same as the polymer sheet 210 peeled from the second mold 500.
  • FIG. 9 (F) and (G) show a cutting process in which the pattern sheet 220 is cut into individual pattern sheets 220.
  • the pattern sheet 220 having the protruding pattern 220A peeled off from the second mold 500 and the substrate 300 are set in a cutting device (not shown).
  • the position for cutting the pattern sheet 220 is determined. Basically, the cutting position is determined so as to be every protrusion pattern 220A.
  • the pattern sheet 220 is cut into a plurality of individual pattern sheets 220.
  • the example in which the pattern sheet 220 and the substrate 300 are cut at the same time has been shown, but the present invention is not limited to this.
  • the base material 300 can be peeled, and the pattern sheet 220 can be made into individual pattern sheets 220.
  • the present invention is not limited thereto.
  • the polymer solution 200 containing the drug can be filled in the concave pattern 20A and dried, and then the polymer solution 200 not containing the drug can be filled in the concave pattern 20A and dried to obtain a polymer sheet.
  • the number of times the polymer solution 200 is supplied and the presence or absence of the drug in the polymer solution 200 can be appropriately changed.
  • the assembly mold can be manufactured with low cost and high shape accuracy.
  • the pattern sheet can be produced efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

This method for manufacturing a mould assembly 100 is provided with: a manufacturing step in which an original plate 10 having a protruded pattern 10A is used to manufacture a plurality of resin first moulds 20 having a recessed pattern 20A which has the inverse shape to the protruded pattern 10A of the original plate 10; an arrangement step in which the plurality of first moulds 20 are arranged on a first substrate 30 in a state in which the plurality of first moulds are separated from each other, and the recessed pattern surfaces of the first moulds 20 are in contact with the first substrate 30; a supply step in which an adhesive 40 is supplied to the spaces between the plurality of first moulds 20, and cured, and an additional adhesive 42 is subsequently supplied to the surfaces of the plurality of first moulds 20 opposite to the recessed pattern surfaces; a bonding step in which the adhesive 42 is used to bond a second substrate 50 to the side of the surfaces of the plurality of first moulds 20 opposite to the recessed pattern surfaces; and a substrate separation step in which, after the second substrate 50 has been bonded, the plurality of first moulds 20 and the first substrate 30 are separated.

Description

集合モールドの作製方法、パターンシートの製造方法、電鋳金型の作製方法、及び電鋳金型を用いた第2モールドの作製方法Method for producing collective mold, method for producing pattern sheet, method for producing electroformed mold, and method for producing second mold using electroformed mold
 本発明は、集合モールドの作製方法、パターンシートの製造方法、電鋳金型の作製方法、及び電鋳金型を用いた第2モールドの作製方法に関する。 The present invention relates to an assembly mold manufacturing method, a pattern sheet manufacturing method, an electroforming mold manufacturing method, and a second mold manufacturing method using an electroforming mold.
 近年、痛みを伴わずにインシュリン(Insulin)及びワクチン(Vaccines)及びhGH(human Growth Hormone)などの薬剤を皮膚内に投与可能な新規剤型として、マイクロニードルアレイ(Micro-Needle Array)が知られている。マイクロニードルアレイは、薬剤を含み、生分解性のあるマイクロニードル(微細針、又は微小針ともいう)をアレイ状に配列したものである。このマイクロニードルアレイを皮膚に貼付することにより、各マイクロニードルが皮膚に突き刺さり、これらマイクロニードルが皮膚内で吸収され、各マイクロニードル中に含まれた薬剤を皮膚内に投与することができる。マイクロニードルアレイは経皮吸収シートとも呼ばれる。 In recent years, a micro-needle array has been known as a new dosage form that can administer drugs such as insulin, vaccine (Vaccines) and hGH (human Growth Hormone) into the skin without pain. ing. The microneedle array is an array of biodegradable microneedles (also referred to as microneedles or microneedles) containing a drug. By affixing this microneedle array to the skin, each microneedle pierces the skin, the microneedle is absorbed in the skin, and the drug contained in each microneedle can be administered into the skin. The microneedle array is also called a transdermal absorption sheet.
 上述のようなマイクロニードルアレイのような微細なパターンを有する成形品を作製するため、微細なパターンを有する原版から樹脂製の反転形状のモールドを形成し、このモールドから成形品を作製することが行われている。 In order to produce a molded product having a fine pattern such as the microneedle array as described above, a resin-inverted mold can be formed from an original plate having a fine pattern, and the molded product can be produced from this mold. Has been done.
 このような微細なパターンを有する成形品の生産性を向上させることが求められており、成形品の生産性向上のため種々の提案がなされている。特許文献1には、小面積の原盤(原版)の端面を複数貼り合わせることによって大面積の原盤を作製し、原盤から電鋳工程を経て作製されるスタンパーを用いることによって大面積の成形品を作製することが開示されている。 There is a demand for improving the productivity of molded products having such fine patterns, and various proposals have been made to improve the productivity of molded products. In Patent Document 1, a large-area master is produced by laminating a plurality of end faces of a small-area master (original), and a large-area molded product is obtained by using a stamper produced from the master through an electroforming process. Making is disclosed.
 特許文献2には、多面付けのモールドを作製することが開示されている。特許文献2に記載の技術では、原版から樹脂製の反転形状のモールドを複数作製し、ベース板と定盤との間に複数のモールドを配置し、モールドの間を充填剤で埋めて、多面付けのモールドを作製している。 Patent Document 2 discloses the production of a multi-faced mold. In the technique described in Patent Document 2, a plurality of resin-inverted molds are produced from an original plate, a plurality of molds are arranged between a base plate and a surface plate, and a space between the molds is filled with a filler. An attached mold is produced.
特開平9-024557号公報Japanese Patent Laid-Open No. 9-024557 特開平10-177745号公報JP-A-10-177745
 特許文献1に記載の技術では、複数の原盤を作製することが必要なため、コストの低減が難しい。また、原盤を光学研磨された板の上で高粘度の接着剤を用いて仮固定した後、低粘度の接着剤で裏打ち処理を行うので、原盤の端面を貼合わせるための作業が複雑で、作業の負荷が大きい。 In the technique described in Patent Document 1, since it is necessary to produce a plurality of masters, it is difficult to reduce the cost. Also, after temporarily fixing the master on the optically polished plate using a high-viscosity adhesive, the backing process is performed with a low-viscosity adhesive, so the work for pasting the end faces of the master is complicated, Heavy work load.
 また、特許文献2に記載の技術では、充填材の硬化収縮により反りや変形が生じたり、複数のモールド間の継ぎ目で段差が生じたり、多面付けのモールドの形状精度に対する懸念がある。 Further, in the technique described in Patent Document 2, there is a concern about the shape accuracy of a multi-sided mold, warping or deformation due to curing shrinkage of the filler, a step at a joint between a plurality of molds, and the like.
 本発明は、このような事情に鑑みてなされたもので、生産性の向上、コストの低減、及び形状の精度向上が可能な、集合モールドの作製方法、パターンシートの製造方法、電鋳金型の作製方法、及び電鋳金型を用いた第2モールドの作製方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is capable of improving productivity, reducing costs, and improving shape accuracy, a method for producing an assembly mold, a method for producing a pattern sheet, and an electroforming mold. It is an object of the present invention to provide a production method and a production method of a second mold using an electroforming mold.
 本発明の一態様によると、集合モールドの作製方法は、突起状パターンを有する原版を用いて、原版の突起状パターンの反転形状である凹状パターンを有する樹脂製の第1モールドを複数作製する作製工程と、複数の第1モールドを離間して、かつ第1モールドの凹状パターン面と第1基板とを接触させた状態で、第1基板に配置する配置工程と、複数の第1モールドの間に第1接着剤を供給して硬化させた後、複数の第1モールドの凹状パターン面と反対面にさらに第2接着剤を供給する供給工程と、複数の第1モールドの凹状パターン面と反対面側に、第2接着剤を介して第2基板を貼合する貼合工程と、第2基板を貼合した後、複数の第1モールドと第1基板とを剥離する基板剥離工程と、を有する。 According to one aspect of the present invention, a method for producing a collective mold uses a master having a projecting pattern to produce a plurality of first molds made of a resin having a concave pattern that is an inverted shape of the projecting pattern of the master. A step, a plurality of first molds spaced apart, and a step of arranging the first mold in a state where the concave pattern surface of the first mold and the first substrate are in contact with each other. Supplying the first adhesive to the first mold and curing the second adhesive on the surface opposite to the concave pattern surface of the plurality of first molds; opposite to the concave pattern surface of the plurality of first molds On the surface side, a bonding step of bonding the second substrate via the second adhesive, a substrate peeling step of peeling the plurality of first molds and the first substrate after bonding the second substrate, Have
 好ましくは、配置工程において、第1基板に枠が備えられ、枠の内側に第1モールドが配置される。 Preferably, in the arranging step, the first substrate is provided with a frame, and the first mold is arranged inside the frame.
 好ましくは、貼合工程において、第1基板の枠の周囲に備えられた枠より高いスペーサに、第2基板を接触させる。 Preferably, in the bonding step, the second substrate is brought into contact with a spacer higher than the frame provided around the frame of the first substrate.
 好ましくは、第1及び第2接着剤が、紫外線硬化樹脂である。 Preferably, the first and second adhesives are ultraviolet curable resins.
 好ましくは、第1モールドが、紫外線硬化樹脂を含む材料からなる。 Preferably, the first mold is made of a material containing an ultraviolet curable resin.
 好ましくは、配置工程において、第1モールドと第1基板とが熱剥離シート、又は紫外線剥離シートにより接着される。 Preferably, in the arrangement step, the first mold and the first substrate are bonded by a heat release sheet or an ultraviolet release sheet.
 本発明の別の態様によると、突起状パターンを有するパターンシートの製造方法は、上述の作製方法により集合モールドを作製する工程と、集合モールドの凹状パターンにポリマー溶解液を充填する充填工程と、ポリマー溶解液を乾燥させてポリマーシートとする乾燥工程と、ポリマーシートを集合モールドから剥離するポリマーシート剥離工程と、を含む。 According to another aspect of the present invention, a method for producing a pattern sheet having a protruding pattern includes a step of producing a collective mold by the production method described above, a filling step of filling a concave pattern of the collective mold with a polymer solution, It includes a drying step of drying the polymer solution to form a polymer sheet, and a polymer sheet peeling step of peeling the polymer sheet from the assembly mold.
 本発明の別の態様によると、突起状パターンを有する電鋳金型の作製方法は、上述の作製方法により集合モールドを作製する工程と、集合モールドの凹状パターンに、電鋳法により金属を埋める電鋳工程と、埋め込まれた金属体を集合モールドから剥離する金属剥離工程と、を含む。 According to another aspect of the present invention, a method for producing an electroforming mold having a protruding pattern includes a step of producing a collective mold by the above-described production method, and an electroforming method in which a metal is embedded in the concave pattern of the collective mold by an electroforming method. A casting step and a metal peeling step of peeling the embedded metal body from the assembly mold.
 本発明の別の態様によると、第2モールドの作製方法は、上述の作製方法により電鋳金型を作製する工程と、突起状パターンを有する電鋳金型を用いて、電鋳金型の突起状パターンの反転形状である凹状パターンを有する樹脂製の第2モールドを作製する工程と、を含む。 According to another aspect of the present invention, a method for producing the second mold includes a step of producing an electroformed mold by the above-described production method, and an electroformed mold having a projecting pattern, and the projecting pattern of the electroformed mold. And a step of producing a resin-made second mold having a concave pattern which is a reverse shape of the above.
 本発明の別の態様によると、突起状パターンを有するパターンシートの製造方法は、上述の作製方法により第2モールドを作製する工程と、第2モールドの凹状パターンにポリマー溶解液を充填する溶解液充填工程と、ポリマー溶解液を乾燥させてポリマーシートとする乾燥工程と、ポリマーシートを第2モールドから剥離する剥離工程と、を含む。 According to another aspect of the present invention, a method of manufacturing a pattern sheet having a protruding pattern includes a step of manufacturing a second mold by the above-described manufacturing method, and a solution that fills the concave pattern of the second mold with a polymer solution. A filling step, a drying step of drying the polymer solution to form a polymer sheet, and a peeling step of peeling the polymer sheet from the second mold.
 本発明によれば、生産性の向上、コストの低減、及び形状の精度向上が可能な、集合モールドを作製できる。集合モールドを用いてパターンシートの製造することができ、また、電鋳金型を作製することができ、この電鋳金型を用いて第2モールドの作製することができる。 According to the present invention, a collective mold capable of improving productivity, reducing costs, and improving shape accuracy can be produced. A pattern sheet can be manufactured using an assembly mold, and an electroformed mold can be produced. A second mold can be produced using this electroformed mold.
図1は、集合モールドの作製方法の手順を示す工程図である。FIG. 1 is a process diagram showing a procedure of a method for producing a collective mold. 図2は、原版の斜視図である。FIG. 2 is a perspective view of the original. 図3は、集合モールドの平面図である。FIG. 3 is a plan view of the assembly mold. 図4は、集合モールドを用いたパターンシートの製造方法の手順を示す工程図である。FIG. 4 is a process diagram showing a procedure of a method for producing a pattern sheet using an assembly mold. 図5は、個別のパターンシートの斜視図である。FIG. 5 is a perspective view of an individual pattern sheet. 図6は、集合モールドを用いて電鋳金型の作製方法の手順を示す工程図である。FIG. 6 is a process diagram showing a procedure of a method for producing an electroforming mold using a collective mold. 図7は、原版と電鋳金型の斜視図である。FIG. 7 is a perspective view of an original plate and an electroforming mold. 図8は、電鋳金型を用いた第2モールドの作製方法の手順を示す工程図である。FIG. 8 is a process diagram showing a procedure of a method for producing a second mold using an electroforming mold. 図9は、第2モールドを用いたパターンシートの作製方法の手順を示す工程図である。FIG. 9 is a process diagram showing a procedure of a method for producing a pattern sheet using the second mold.
 以下、添付図面にしたがって本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明される。本発明の範囲を逸脱すること無く、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention is illustrated by the following preferred embodiments. Changes can be made by many techniques without departing from the scope of the present invention, and other embodiments than the present embodiment can be utilized. Accordingly, all modifications within the scope of the present invention are included in the claims.
 ここで、図中、同一の記号で示される部分は、同様の機能を有する同様の要素である。また、本明細書中で、数値範囲を“ ~ ”を用いて表す場合は、“ ~ ”で示される上限、下限の数値も数値範囲に含むものとする。 Here, parts indicated by the same symbols in the figure are similar elements having similar functions. In addition, in this specification, when the numerical range is expressed using “˜”, the upper and lower numerical values indicated by “˜” are also included in the numerical range.
 本発明の実施形態について、図面を参照して説明する。図1は集合モールドの作製方法の手順を示す工程図である。図2は原版の斜視図である。図3は、集合モールドの平面図である。 Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing the procedure of a method for producing a collective mold. FIG. 2 is a perspective view of the original. FIG. 3 is a plan view of the assembly mold.
 ここで、集合モールドとは、原版を用いて作製された複数の樹脂製の第1モールドを一体化させたモールドを意味する。したがって、集合モールドは、2個以上の第1モールドを含んでいる。 Here, the collective mold means a mold obtained by integrating a plurality of first resin molds manufactured using an original plate. Therefore, the collective mold includes two or more first molds.
 図1の(A)部は、突起状パターン10Aを有する原版10を準備する工程を示している。図1の(A)部、及び図2に示すように、突起状パターン10Aを有する原版10を作製する。原版は、作製したい突起状パターンを有するパターンシート(いわゆる成形品)と同一の突起状パターンを有している。 (A) part of FIG. 1 has shown the process of preparing the original plate 10 which has the protruding pattern 10A. As shown in FIG. 1 (A) and FIG. 2, an original plate 10 having a protruding pattern 10A is produced. The original plate has the same protruding pattern as the pattern sheet (so-called molded product) having the protruding pattern to be produced.
 突起状パターン10Aを有する原版10は、例えば原版10となる金属基板をダイヤモンドバイト等の切削工具等を用いて機械加工することにより作製される。金属基板としては、ステンレス、アルミニウム合金、Ni等を使用することができる。 The original plate 10 having the protruding pattern 10A is produced, for example, by machining a metal substrate to be the original plate 10 using a cutting tool such as a diamond bite. As the metal substrate, stainless steel, aluminum alloy, Ni or the like can be used.
 突起状パターン10Aとは、原版10の平面から離間する方向に突出する突起部が、原版10の平面の上に配置されている状態をいう。突起部の数、突起部の配置の位置等は限定されない。 The protruding pattern 10 </ b> A refers to a state in which protruding portions that protrude in a direction away from the plane of the original 10 are arranged on the plane of the original 10. The number of protrusions, the positions of the protrusions, etc. are not limited.
 突起部の形状として、平面から離間する方向に先細りとなる形状、平面から離間する方向に一定幅の形状で先端側に先細りとなる形状、また平面から離間する方向に錐台形状で次いで一定幅の形状で先端側に先細りとなる形状等を挙げることができる。 As the shape of the protrusion, a shape that tapers in a direction away from the plane, a shape that has a constant width in the direction away from the plane and tapers toward the tip side, and a frustum shape in a direction away from the plane, then a constant width The shape etc. which taper off to the front end side can be mentioned.
 突起部は、例えば、原版10の平面から100~2000μmの高さを有し、Φ50μm以下の先端径を有することが好ましい。複数の突起部を有する場合、隣り合う突起部の間隔は300~2000μmであることが好ましい。突起部のアスペクト比(突起部の高さ/突起部の底面の幅)は、1~5であることが好ましい。 The protrusions preferably have a height of 100 to 2000 μm from the plane of the original 10 and a tip diameter of Φ50 μm or less, for example. In the case of having a plurality of protrusions, the interval between adjacent protrusions is preferably 300 to 2000 μm. The aspect ratio of the protrusion (height of the protrusion / width of the bottom surface of the protrusion) is preferably 1 to 5.
 次に、図1の(B)部は、原版10を用いて凹状パターン20Aを有する樹脂製の第1モールド20を複数作製する作製工程を示している。凹状パターン20Aとは、第1モールド20の一方面から他方面に向けて延びる凹部が、第1モールド20の一方面に配置されている状態をいう。凹部の数、凹部の配置、凹部の深さ等は限定されない。 Next, part (B) of FIG. 1 shows a production process for producing a plurality of resin-made first molds 20 having concave patterns 20A using the original 10. The concave pattern 20 </ b> A refers to a state in which a concave portion extending from one surface of the first mold 20 toward the other surface is disposed on one surface of the first mold 20. The number of the concave portions, the arrangement of the concave portions, the depth of the concave portions, etc. are not limited.
 突起状パターン10Aを有する原版10を用いて、第1モールド20を作製する方法として以下の方法を挙げることができる。 As a method for producing the first mold 20 using the original plate 10 having the protruding pattern 10A, the following method can be exemplified.
 まず、第1の方法について説明する。紫外線を照射することにより硬化する紫外線硬化樹脂を準備する。原版10の突起状パターン10Aを紫外線硬化樹脂に押圧する。紫外線硬化樹脂に原版10を押圧した状態で、紫外線硬化樹脂に紫外線を照射し、紫外線硬化樹脂を硬化させる。硬化させた紫外線硬化樹脂から原版10を剥離する。原版10の突起状パターン10Aの反転形状である凹状パターン20Aを有する樹脂製の第1モールド20が作製される。 First, the first method will be described. An ultraviolet curable resin that cures when irradiated with ultraviolet rays is prepared. The protruding pattern 10A of the original 10 is pressed against the ultraviolet curable resin. In a state where the original plate 10 is pressed against the ultraviolet curable resin, the ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin. The original 10 is peeled from the cured ultraviolet curable resin. A resin-made first mold 20 having a concave pattern 20 </ b> A that is an inverted shape of the protruding pattern 10 </ b> A of the original 10 is produced.
 紫外線硬化樹脂とは、紫外線を照射することにより架橋反応、重合反応を経て硬化する樹脂をいう。紫外線重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられる。 The term “ultraviolet curable resin” refers to a resin that is cured through a crosslinking reaction and a polymerization reaction when irradiated with ultraviolet rays. Examples of the ultraviolet polymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group.
 第1モールド20を紫外線硬化樹脂にすることにより、後述する図1の(C)部の配置工程において、複数の第1モールド20を離間して、第1基板30に容易に配置することができる。紫外線硬化樹脂は、ほぼ透明(半透明を含む)であるため、第1モールド20の凹状パターン20Aを利用して、第1モールド20を第1基板30に配置することができる。 By using the first mold 20 as an ultraviolet curable resin, a plurality of the first molds 20 can be separated and easily arranged on the first substrate 30 in the arrangement step of the part (C) of FIG. . Since the ultraviolet curable resin is substantially transparent (including translucent), the first mold 20 can be disposed on the first substrate 30 using the concave pattern 20A of the first mold 20.
 また、第1モールド20を紫外線硬化樹脂にすることにより、熱による第1モールド20の変形を防止することができる。後述の図6に示すように、集合モールド100を用いて電鋳金型を作製する際、電鋳工程での熱のために第1モールド20が変形することを抑制することができる。 Further, by using the first mold 20 as an ultraviolet curable resin, the deformation of the first mold 20 due to heat can be prevented. As shown in FIG. 6 to be described later, when the electroforming mold is manufactured using the collective mold 100, the first mold 20 can be prevented from being deformed due to heat in the electroforming process.
 第2の方法について説明する。第1モールド20の材料となる熱可塑性樹脂を準備する。突起状パターン10Aを有する原版10を加熱する。加熱された原版10の突起状パターン10Aを熱可塑性樹脂の表面に押圧する。熱可塑性樹脂の表面は軟化されているので、突起状パターン10Aが熱可塑性樹脂に転写される。 The second method will be described. A thermoplastic resin as a material for the first mold 20 is prepared. The original plate 10 having the protruding pattern 10A is heated. The protruding pattern 10A of the heated original plate 10 is pressed against the surface of the thermoplastic resin. Since the surface of the thermoplastic resin is softened, the protruding pattern 10A is transferred to the thermoplastic resin.
 熱可塑性樹脂に原版10を押圧した状態で、原版10を冷却する。原版10を冷却することにより熱可塑性樹脂を硬化させる。その後、突起状パターン10Aが転写された熱可塑性樹脂から原版10を剥離する。原版10の突起状パターン10Aの反転形状である凹状パターン20Aを有する樹脂製の第1モールド20が作製される。 In the state where the original plate 10 is pressed against the thermoplastic resin, the original plate 10 is cooled. The thermoplastic resin is cured by cooling the original plate 10. Thereafter, the original plate 10 is peeled from the thermoplastic resin to which the protruding pattern 10A is transferred. A resin-made first mold 20 having a concave pattern 20 </ b> A that is an inverted shape of the protruding pattern 10 </ b> A of the original 10 is produced.
 熱可塑性樹脂シートの材料として、LDPE(Low Density Polyethylene:低密度ポリエチレン)、HDPE(High Density Polyethylene:高密度ポリエチレン)、PP(polypropylene:ポリプロピレン)、PC(polycarbonate:ポリカーボネート)等を挙げることができる。 Examples of the material of the thermoplastic resin sheet include LDPE (Low Density Polyethylene), HDPE (High Density Polyethylene), PP (polypropylene), and PC (polycarbonate).
 次に、第3の方法について説明する。PDMS(polydimethylsiloxane:ポリジメチルシロキサン、例えば、ダウコーニング社製シルガード184、シルガード:登録商標)に硬化剤を添加したシリコーン樹脂を準備する。原版10の突起状パターン10Aをシリコーン樹脂に押圧する。シリコーン樹脂に原版10を押圧した状態で、シリコーン樹脂を100℃で加熱処理し硬化させる。硬化させたシリコーン樹脂から原版10を剥離する。原版10の突起状パターン10Aの反転形状である凹状パターン20Aを有する樹脂製の第1モールド20が作製される。 Next, the third method will be described. A silicone resin in which a curing agent is added to PDMS (polydimethylsiloxane, for example, Sylgard 184, Sylgard: registered trademark manufactured by Dow Corning) is prepared. The protruding pattern 10A of the original 10 is pressed against the silicone resin. With the original plate 10 pressed against the silicone resin, the silicone resin is heat-treated at 100 ° C. and cured. The original plate 10 is peeled off from the cured silicone resin. A resin-made first mold 20 having a concave pattern 20 </ b> A that is an inverted shape of the protruding pattern 10 </ b> A of the original 10 is produced.
 凹状パターン20Aは突起状パターン10Aの反転形状であるので、凹状パターン20Aの各凹部の大きさは、突起状パターン10Aの突起部の大きさと、ほぼ同じとなる。 Since the concave pattern 20A is an inverted shape of the protruding pattern 10A, the size of each concave portion of the concave pattern 20A is substantially the same as the size of the protruding portion of the protruding pattern 10A.
 図1の(B)部に示すように、上述した方法により凹状パターン20Aを有する樹脂製の第1モールド20を複数作製する。但し、第1モールド20を作製する方法は、第1~第3の方法に限定されない。 As shown in part (B) of FIG. 1, a plurality of resin-made first molds 20 having a concave pattern 20A are produced by the method described above. However, the method for producing the first mold 20 is not limited to the first to third methods.
 図1の(C)部は、複数の第1モールド20を互いに離間して、第1基板30に配置する配置工程を示している。図1の(C)部に示すように、開口部34を有する枠32が第1基板30の上に備えられている。枠32の開口部34の領域では第1基板30が露出している。複数の第1モールド20が、枠32の開口部34の領域、すなわち枠32の内側に配置される。 (C) part of FIG. 1 has shown the arrangement | positioning process which arrange | positions the some 1st mold 20 on the 1st board | substrate 30 mutually spaced apart. As shown in part (C) of FIG. 1, a frame 32 having an opening 34 is provided on the first substrate 30. In the region of the opening 34 of the frame 32, the first substrate 30 is exposed. The plurality of first molds 20 are arranged in the region of the opening 34 of the frame 32, that is, inside the frame 32.
 複数の第1モールド20は第1基板30の上で互いに離間して配置され、かつ凹状パターン20Aの形成された面(凹状パターン面)と第1基板30とが接触する位置に配置される。第1基板30により、各第1モールド20の凹状パターン面の平面性が確保されることになる。すなわち、第1基板30により、各第1モールド20の凹状パターン面が面一の状態で、各第1モールド20の位置が規定される。第1基板30として、石英ガラス板等を使用することができる。特に、第1基板30の素材は限定されないが、剛性が高い素材が好ましい。第1基板30により各第1モールド20の位置が規定されるからである。 The plurality of first molds 20 are disposed on the first substrate 30 so as to be spaced apart from each other, and are disposed at positions where the surface on which the concave pattern 20A is formed (concave pattern surface) and the first substrate 30 are in contact. The first substrate 30 ensures the flatness of the concave pattern surface of each first mold 20. That is, the position of each first mold 20 is defined by the first substrate 30 with the concave pattern surface of each first mold 20 being flush. As the first substrate 30, a quartz glass plate or the like can be used. In particular, the material of the first substrate 30 is not limited, but a material having high rigidity is preferable. This is because the position of each first mold 20 is defined by the first substrate 30.
 枠32の素材としてアクリル、PC(polycarbonate:ポリカーボネート)等を使用することができる。枠32を設けることは必須ではないが、後工程での変形抑制などを考慮すると、設けた方が好ましい。 Acrylic, PC (polycarbonate), etc. can be used as the material of the frame 32. Although it is not essential to provide the frame 32, it is preferable to provide the frame 32 in consideration of deformation suppression in a later process.
 第1基板30に位置合わせ用のマーク(不図示)を形成することが好ましい。複数の第1モールド20を第1基板30に精度良く配置することができる。 It is preferable to form alignment marks (not shown) on the first substrate 30. The plurality of first molds 20 can be arranged on the first substrate 30 with high accuracy.
 また、減圧環境下で、複数の第1モールド20を第1基板30に配置することが好ましい。第1モールド20の凹状パターン20Aの凹部に存在する空気を減らすことができる。減圧環境下とは大気圧以下の状態を意味する。例えば、減圧装置(不図示)内で複数の第1モールド20を第1基板30に配置することにより、減圧環境下を実現することができる。 In addition, it is preferable that a plurality of first molds 20 be arranged on the first substrate 30 under a reduced pressure environment. The air existing in the concave portion of the concave pattern 20A of the first mold 20 can be reduced. Under reduced pressure environment means a state below atmospheric pressure. For example, by placing a plurality of first molds 20 on the first substrate 30 in a decompression device (not shown), a decompressed environment can be realized.
 後述する接着剤の充填工程では、第1モールド20と第1基板30とが位置ずれを生じないことが好ましく、また後述する剥離工程では、第1モールド20から第1基板30が容易に剥離できることが好ましい。 In the adhesive filling step described later, it is preferable that the first mold 20 and the first substrate 30 are not displaced, and in the peeling step described later, the first substrate 30 can be easily peeled from the first mold 20. Is preferred.
 したがって、配置工程において、熱剥離シート(不図示)又は、紫外線剥離シート(不図示)により、第1モールド20と第1基板30とを接着することが好ましい。熱剥離シートとは、所定温度以上に加熱することで粘着力が低下する性質を持つ粘着シートをいう。紫外線剥離シートとは、紫外線を照射することにより粘着力が低下する性質を持つ粘着シートをいう。 Therefore, it is preferable to bond the first mold 20 and the first substrate 30 with a thermal release sheet (not shown) or an ultraviolet release sheet (not shown) in the arranging step. The heat release sheet refers to a pressure sensitive adhesive sheet having such a property that the adhesive strength is reduced by heating to a predetermined temperature or higher. The term “ultraviolet release sheet” refers to an adhesive sheet having such a property that the adhesive strength is reduced by irradiating ultraviolet rays.
 第1モールド20の凹状パターン面と第1基板30とは、直接的に接触する場合と、熱剥離シート又は、紫外線剥離シート等の剥離シートを介して間接的に接触する場合とを含んでいる。 The concave pattern surface of the first mold 20 and the first substrate 30 include a case of direct contact and a case of indirect contact via a release sheet such as a heat release sheet or an ultraviolet release sheet. .
 図1の(D)部、及び(E)部は、接着剤を供給する供給工程を示している。まず、図1の(D)部に示すように、複数の第1モールド20の間に接着剤40を供給する。第1基板30の上に枠32が備えられている場合、第1モールド20と枠32と間にも接着剤40を供給する。次いで、接着剤40を硬化させる。 (D) part and (E) part of FIG. 1 show a supplying process for supplying an adhesive. First, as shown in part (D) of FIG. 1, the adhesive 40 is supplied between the plurality of first molds 20. When the frame 32 is provided on the first substrate 30, the adhesive 40 is also supplied between the first mold 20 and the frame 32. Next, the adhesive 40 is cured.
 なお、接着剤40として紫外線硬化型の接着剤を使用することが好ましい。紫外線硬化型の接着剤40は、数分以下の時間で硬化することができ、硬化までの時間を短くすることができる。また、紫外線の照射は第1モールド20の変形への影響が小さい。 In addition, it is preferable to use an ultraviolet curable adhesive as the adhesive 40. The ultraviolet curable adhesive 40 can be cured in a time of several minutes or less, and the time until curing can be shortened. Further, the irradiation of ultraviolet rays has a small influence on the deformation of the first mold 20.
 接着剤40が紫外線硬化型の接着剤である場合、接着剤40に紫外線を照射することにより、接着剤40を硬化させる。接着剤40として紫外線硬化型の接着剤を例示したが、特に、限定されない。 When the adhesive 40 is an ultraviolet curable adhesive, the adhesive 40 is cured by irradiating the adhesive 40 with ultraviolet rays. Although the ultraviolet curable adhesive was illustrated as the adhesive 40, it is not particularly limited.
 本実施形態においては、枠32の周囲に、枠32の高さより高いスペーサ36が備えられている。 In the present embodiment, a spacer 36 higher than the height of the frame 32 is provided around the frame 32.
 次に、図1の(E)部に示すように、複数の第1モールド20の凹状パターン面と反対面側に接着剤42を供給する。接着剤42として紫外線硬化型の接着剤を使用することが好ましい。接着剤40(第1接着剤)と接着剤42(第2接着剤)とは同じ組成であることが好ましい。紫外線硬化型の接着剤42は、数分以下の時間で硬化することができるので、硬化までの時間を短くすることができる。また、紫外線の照射は第1モールド20の変形への影響が小さい。接着剤42として紫外線硬化型の接着剤を例示したが、特に、限定されない。 Next, as shown in part (E) of FIG. 1, an adhesive 42 is supplied to the surface opposite to the concave pattern surface of the plurality of first molds 20. It is preferable to use an ultraviolet curable adhesive as the adhesive 42. It is preferable that the adhesive 40 (first adhesive) and the adhesive 42 (second adhesive) have the same composition. Since the ultraviolet curable adhesive 42 can be cured in a period of several minutes or less, the time until curing can be shortened. Further, the irradiation of ultraviolet rays has a small influence on the deformation of the first mold 20. Although the ultraviolet curable adhesive was illustrated as the adhesive 42, it is not particularly limited.
 図1の(D)部、及び(E)部に示すように、最初に第1モールド20の間に接着剤40を供給して硬化させ、その後、第1モールド20の凹状パターン面と反対面に接着剤42を供給すること、すなわち、2段階で接着剤を供給することにより、反りや変形等を抑制することができる。 As shown in the (D) part and (E) part of FIG. 1, first, the adhesive 40 is supplied between the first mold 20 to be cured, and then the surface opposite to the concave pattern surface of the first mold 20. By supplying the adhesive 42 to the substrate, that is, by supplying the adhesive in two stages, warpage, deformation, and the like can be suppressed.
 本実施形態とは異なり、接着剤を第1モールド20の間、及び第1モールド20の凹状パターン面の反対面側に同時に供給した場合、接着剤の硬化収縮に起因して、反りや変形等が発生する懸念がある。 Unlike this embodiment, when an adhesive is simultaneously supplied between the first molds 20 and on the opposite side of the concave pattern surface of the first mold 20, warping, deformation, etc., due to curing shrinkage of the adhesive There is a concern that will occur.
 本実施形態では、図1の(D)部に示す工程で、第1モールド20の間に供給した接着剤40を硬化させている。硬化された接着剤40により、複数の第1モールド20が剛性を持つ状態となる。そのため、次いで、図1の(E)部以降に示す工程で、接着剤42を供給し、硬化させた場合でも、図1の(D)部に示す工程を経た複数の第1モールド20は、反りや変形等に対抗することが可能となる。 In the present embodiment, the adhesive 40 supplied between the first molds 20 is cured in the step shown in part (D) of FIG. The plurality of first molds 20 become rigid due to the cured adhesive 40. Therefore, even when the adhesive 42 is supplied and cured in the process shown in the (E) part and thereafter in FIG. 1, the plurality of first molds 20 that have undergone the process shown in the (D) part in FIG. It becomes possible to counter warpage and deformation.
 第1基板30により第1モールド20の凹状パターン面と接着剤40とを支持しているので、第1モールド20の凹状パターン面と接着剤40とが面一となる。これにより、第1モールド20と接着剤40と間に段差、変形等が発生することを抑制することができる。 Since the concave pattern surface of the first mold 20 and the adhesive 40 are supported by the first substrate 30, the concave pattern surface of the first mold 20 and the adhesive 40 are flush with each other. Thereby, generation | occurrence | production of a level | step difference, a deformation | transformation, etc. between the 1st mold 20 and the adhesive agent 40 can be suppressed.
 接着剤42の供給を終えると、第2基板50が準備される。第2基板50として、ガラス板、樹脂シート等を使用することができる。 When the supply of the adhesive 42 is finished, the second substrate 50 is prepared. As the second substrate 50, a glass plate, a resin sheet, or the like can be used.
 図1の(F)部は、第2基板50を、複数の第1モールド20の凹状パターン面と反対面に貼合する貼合工程を示している。 (F) part of FIG. 1 has shown the bonding process which bonds the 2nd board | substrate 50 to the surface opposite to the concave pattern surface of the some 1st mold 20. FIG.
 接着剤42を供給し終えると、第2基板50を接着剤42に押圧する。接着剤42を硬化させることにより、第1モールド20の凹状パターン面と反対面と第2基板50とを接着剤42を介して貼合する。 When the adhesive 42 has been supplied, the second substrate 50 is pressed against the adhesive 42. By curing the adhesive 42, the surface opposite to the concave pattern surface of the first mold 20 and the second substrate 50 are bonded via the adhesive 42.
 本実施形態では、枠32の周囲にスペーサ36が設けられている。第2基板50を接着剤42に押圧した際、第2基板50をスペーサ36に接触させる。スペーサ36により、第1基板30と第2基板50との距離を規定することができる。 In this embodiment, a spacer 36 is provided around the frame 32. When the second substrate 50 is pressed against the adhesive 42, the second substrate 50 is brought into contact with the spacer 36. The distance between the first substrate 30 and the second substrate 50 can be defined by the spacer 36.
 なお、スペーサ36を設けない場合は、第2基板50を枠32に接触させることにより、第1基板30と第2基板50との距離を規定することができる。 When the spacer 36 is not provided, the distance between the first substrate 30 and the second substrate 50 can be defined by bringing the second substrate 50 into contact with the frame 32.
 また、スペーサ36の高さは、枠32の高さより高く設定されているので、第2基板50を接着剤42に押圧した際、枠32と第2基板50との間に接着剤42を入り込ませることができる。接着剤42により枠32と第2基板50とを接着することができる。 Further, since the height of the spacer 36 is set to be higher than the height of the frame 32, the adhesive 42 enters between the frame 32 and the second substrate 50 when the second substrate 50 is pressed against the adhesive 42. Can be made. The frame 32 and the second substrate 50 can be bonded by the adhesive 42.
 ここで、高さとは、第1基板30を基準に、第1基板30と接触する面から第1基板30から最も遠い先端面までの長さを意味する。 Here, the height means the length from the surface in contact with the first substrate 30 to the distal end surface farthest from the first substrate 30 with respect to the first substrate 30.
 接着剤42が紫外線硬化型の接着剤である場合、接着剤42に紫外線を照射することにより接着剤42を硬化させることができる。また、接着剤42に紫外線を照射する場合、第2基板50が紫外線を透過することができる素材であることが好ましい。 When the adhesive 42 is an ultraviolet curable adhesive, the adhesive 42 can be cured by irradiating the adhesive 42 with ultraviolet rays. When the adhesive 42 is irradiated with ultraviolet rays, the second substrate 50 is preferably made of a material that can transmit ultraviolet rays.
 図1の(G)部は、第1モールド20と第1基板30とを剥離する基板剥離工程を示している。 (G) part of FIG. 1 has shown the board | substrate peeling process which peels the 1st mold 20 and the 1st board | substrate 30. FIG.
 複数の第1モールド20と第2基板50との貼合を終えると、複数の第1モールド20から第1基板30を剥離する。第1モールド20と第1基板30とを剥離する場合、本実施形態では、第1モールド20を第1基板30から離間する方向に移動させている。これに限定されることなく、第1基板30を第1モールド20から離間する方向に移動させても良いし、第1基板30と第1モールド20の両方を離間する方向に移動させても良い。 When the bonding of the plurality of first molds 20 and the second substrate 50 is completed, the first substrate 30 is peeled from the plurality of first molds 20. In the case where the first mold 20 and the first substrate 30 are peeled off, in the present embodiment, the first mold 20 is moved away from the first substrate 30. Without being limited thereto, the first substrate 30 may be moved away from the first mold 20, or both the first substrate 30 and the first mold 20 may be moved away from each other. .
 本実施形態では、第1モールド20と第1基板30とを剥離する際、スペーサ36を第2基板50から剥離している。しかしながら、スペーサ36を第2基板50から剥離しなくても良い。 In this embodiment, the spacer 36 is peeled from the second substrate 50 when the first mold 20 and the first substrate 30 are peeled off. However, the spacer 36 may not be peeled off from the second substrate 50.
 なお、第1モールド20と第1基板30とを熱剥離シート又は、紫外線剥離シートを介して接着している場合、所定温度以上の加熱、又は紫外線を照射する。これにより、第1モールド20と熱剥離シートと間の粘着力又は、第1モールド20と紫外線剥離シートと間の粘着力を低下させる。第1モールド20と第1基板30と容易に剥離することができる。熱剥離シート又は、紫外線剥離シートは第1基板30と共に、複数の第1モールド20から剥離することが好ましい。 In addition, when the 1st mold 20 and the 1st board | substrate 30 are adhere | attached through the heat | fever peeling sheet or the ultraviolet-ray peeling sheet, the heating more than predetermined temperature or an ultraviolet-ray is irradiated. Thereby, the adhesive force between the 1st mold 20 and a heat release sheet or the adhesive force between the 1st mold 20 and an ultraviolet release sheet is reduced. The first mold 20 and the first substrate 30 can be easily peeled off. The thermal release sheet or the ultraviolet release sheet is preferably peeled from the plurality of first molds 20 together with the first substrate 30.
 図1の(H)部は、集合モールド100の断面図である。図1の(H)部に示すように,第1モールド20と第1基板30との剥離を終えると、集合モールド100が完成する。図1の(H)部、及び図3に示すように、集合モールド100は、複数の第1モールド20(4×4=16個)を有している。複数の第1モールド20は、第2基板50の一方面に配置され、接着剤40及び42により一体化されている。 (H) part of FIG. 1 is a sectional view of the assembly mold 100. As shown in part (H) of FIG. 1, the assembly mold 100 is completed when the first mold 20 and the first substrate 30 are separated from each other. As shown in FIG. 1H and FIG. 3, the assembly mold 100 has a plurality of first molds 20 (4 × 4 = 16 pieces). The plurality of first molds 20 are arranged on one surface of the second substrate 50 and integrated by adhesives 40 and 42.
 図1に示すように、原版10から複数の第1モールド20を一体化した集合モールド100を作製している。本実施形態の集合モールド100では、複数の原版を作製せず、また大面積の原版を作製しないので、原版10を作製するためのコストを削減することができる。 As shown in FIG. 1, a collective mold 100 in which a plurality of first molds 20 are integrated from an original 10 is produced. In the collective mold 100 of the present embodiment, a plurality of original plates are not manufactured and a large-area original plate is not manufactured, so that the cost for manufacturing the original plate 10 can be reduced.
 集合モールド100を、図1に示す比較的簡単な工程で作製しているので生産性が高い。また、第1基板30に支持されているので、第1モールド20の凹状パターン面と接着剤40との間に段差や変形等が発生することを抑制することができる。 Since the assembly mold 100 is manufactured by a relatively simple process shown in FIG. 1, the productivity is high. Moreover, since it is supported by the first substrate 30, it is possible to suppress the occurrence of a step or deformation between the concave pattern surface of the first mold 20 and the adhesive 40.
 次に、集合モールドを用いた、微細なパターンを有する成形品である突起状パターンを有するパターンシートの製造方法について説明する。突起状パターンを有するパターンシートとして、マイクロニードルアレイを例示して説明する。しかし、マイクロニードルアレイに限定されない。 Next, a method for producing a pattern sheet having a protruding pattern, which is a molded product having a fine pattern, using a collective mold will be described. A microneedle array will be described as an example of a pattern sheet having a protruding pattern. However, it is not limited to a microneedle array.
 図4は、集合モールドを用いたパターンシートの製造方法の手順を示す工程図である。図4の(A)部は、集合モールド100を準備した状態を示している。集合モールド100は、上述の集合モールドの作製方法により作製される。 FIG. 4 is a process diagram showing the procedure of a method for producing a pattern sheet using a collective mold. Part (A) of FIG. 4 shows a state in which the assembly mold 100 is prepared. The collective mold 100 is produced by the collective mold producing method described above.
 図4の(B)部は、集合モールドの凹状パターンにポリマー溶解液を供給する供給工程を示している。 (B) part of FIG. 4 has shown the supply process which supplies a polymer solution to the concave pattern of an assembly mold.
 まず、ポリマー溶解液200を準備する。ポリマー溶解液200に用いられる樹脂ポリマーの素材としては、生体適合性のある樹脂を用いることが好ましい。このような樹脂としては、グルコース、マルトース、プルラン、コンドロイチン硫酸ナトリウム、ヒアルロン酸ナトリウム、ヒドロキシエチルデンプン、ヒドロキシプロピルセルロースなどの糖類、ゼラチンなどのタンパク質、ポリ乳酸、乳酸グリコール酸共重合体などの生分解性ポリマーを使用することが好ましい。これらの中でもゼラチン系の素材は多くの基材と密着性をもち、ゲル化する材料としても強固なゲル強度を持つため、後述する剥離工程において、基材と密着させることができ、集合モールド100から基材を用いてポリマーシートを剥離することができるので、好適に利用することができる。 First, a polymer solution 200 is prepared. As a material of the resin polymer used for the polymer solution 200, it is preferable to use a biocompatible resin. Such resins include glucose, maltose, pullulan, sodium chondroitin sulfate, sodium hyaluronate, saccharides such as hydroxyethyl starch and hydroxypropylcellulose, biodegradable proteins such as gelatin, polylactic acid and lactic acid glycolic acid copolymer. It is preferable to use a conductive polymer. Among these, gelatin-based materials have adhesiveness to many substrates and have strong gel strength as a material to be gelled. Therefore, they can be adhered to the substrates in the peeling step described later, and the collective mold 100 Since the polymer sheet can be peeled from the substrate using the base material, it can be suitably used.
 なお、ポリマー溶解液200に薬剤を含ませることができる。ポリマー溶解液200に含有させる薬剤は、生理活性を有する物質であればよく、特に限定されない。薬剤として、ペプチド、タンパク質、核酸、多糖類、ワクチン、医薬化合物、又は化粧品成分から選択することが好ましい。また、医薬化合物は水溶性低分子化合物に属するものであることが好ましい。ここで、低分子化合物とは数百から数千の分子量の範囲の化合物である。 In addition, a chemical | medical agent can be included in the polymer solution 200. The chemical | medical agent contained in the polymer solution 200 should just be a substance which has physiological activity, and is not specifically limited. The drug is preferably selected from peptides, proteins, nucleic acids, polysaccharides, vaccines, pharmaceutical compounds, or cosmetic ingredients. Moreover, it is preferable that a pharmaceutical compound belongs to a water-soluble low molecular weight compound. Here, the low molecular compound is a compound having a molecular weight in the range of several hundred to several thousand.
 濃度は材料によっても異なるが、薬剤を含まないポリマー溶解液200中に樹脂ポリマーが10~50質量%含まれる濃度とすることが好ましい。また、溶解に用いる溶媒は、温水以外であっても揮発性を有するものであればよく、メチルエチルケトン、アルコールなどを用いることができる。そして、ポリマー樹脂の溶解液中には、用途に応じて体内に供給するための薬剤を共に溶解させることが可能である。薬剤を含むポリマー溶解液200のポリマー濃度(薬剤自体がポリマーである場合は薬剤を除いたポリマーの濃度)としては、0~40質量%含まれることが好ましい。 Although the concentration varies depending on the material, it is preferable that the concentration is such that 10 to 50% by mass of the resin polymer is contained in the polymer solution 200 containing no drug. Further, the solvent used for dissolution may be volatile even if it is other than warm water, and methyl ethyl ketone, alcohol, or the like can be used. And in the solution of polymer resin, it is possible to dissolve together the medicine for supplying into the body according to the use. The polymer concentration of the polymer solution 200 containing the drug (when the drug itself is a polymer, the concentration of the polymer excluding the drug) is preferably 0 to 40% by mass.
 薬剤を含むとは、体表に穿刺した際に薬効を発揮する量の薬剤を含むことを意味する。また、薬剤を含まないとは、薬効を発揮する量の薬剤を含んでいないことを意味し、薬剤の量の範囲が、全く含まない0から薬効を発揮しない量までの範囲を含んでいる。 “Containing a drug” means including an amount of a drug that exhibits a medicinal effect when puncturing the body surface. Moreover, the term “not containing a drug” means that the drug does not contain an amount of a drug that exhibits a medicinal effect, and the range of the amount of the drug includes a range from 0 that does not include a drug to an amount that does not exhibit a drug effect.
 ポリマー溶解液200の調製方法としては、水溶性の高分子(ゼラチンなど)を用いる場合は、水溶性粉体を水に溶解し、溶解後に薬剤を添加しても良いし、薬剤が溶解した液体に水溶性高分子の粉体を入れて溶かしても良い。水に溶解しにくい場合、加温して溶解しても良い。温度は高分子材料の種類により、適宜選択可能であるが、約60℃以下の温度で加温することが好ましい。ポリマー樹脂の溶解液の粘度は、薬剤を含む溶解液では100Pa・s以下であることが好ましく、より好ましくは10Pa・s以下とすることが好ましい。薬剤を含まない溶解液では2000Pa・s以下であることが好ましく、より好ましくは1000Pa・s以下とすることが好ましい。ポリマー樹脂の溶解液の粘度を適切に調整することにより、モールドの針状凹部に容易に溶解液を注入することが容易となる。例えば、ポリマー樹脂の溶解液の粘度は、細管式粘度計、落球式粘度計、回転式粘度計、又は振動式粘度計で測定することができる。 As a method for preparing the polymer solution 200, when a water-soluble polymer (gelatin or the like) is used, a water-soluble powder may be dissolved in water, and a drug may be added after dissolution, or a liquid in which a drug is dissolved. Alternatively, a water-soluble polymer powder may be put in and dissolved. If it is difficult to dissolve in water, it may be dissolved by heating. The temperature can be appropriately selected depending on the type of the polymer material, but it is preferable to heat at a temperature of about 60 ° C. or lower. The viscosity of the polymer resin solution is preferably 100 Pa · s or less, more preferably 10 Pa · s or less, in the case of a solution containing a drug. In the case of a solution that does not contain a drug, it is preferably 2000 Pa · s or less, more preferably 1000 Pa · s or less. By appropriately adjusting the viscosity of the polymer resin solution, it becomes easy to inject the solution into the needle-shaped recess of the mold. For example, the viscosity of the polymer resin solution can be measured with a capillary tube viscometer, falling ball viscometer, rotary viscometer, or vibration viscometer.
 図4の(B)部に示すように、集合モールド100を構成する第1モールド20にポリマー溶解液200を供給し、ポリマー溶解液200を凹状パターン20Aの凹部に充填する。 4B, the polymer solution 200 is supplied to the first mold 20 constituting the assembly mold 100, and the polymer solution 200 is filled in the recesses of the concave pattern 20A.
 ポリマー溶解液200を凹状パターン20Aに充填する方法として、スピンコータを用いて充填する方法、スキージを移動させて充填する方法、スリットノズルを移動させながら充填する方法、ディスペンサーで凹状パターン20Aの凹部に充填する方法等を挙げることができる。 Filling the concave pattern 20A with the polymer solution 200 by using a spin coater, moving by filling the squeegee, filling by moving the slit nozzle, filling the concave portion of the concave pattern 20A with a dispenser And the like.
 空気の存在により、第1モールド20の凹状パターン20Aの凹部にポリマー溶解液200が奥まで入り込み難い場合が考えられる。そのため、供給工程を減圧環境下で行うことが望ましい。減圧環境下とは大気圧以下の状態を意味する。例えば、減圧装置(不図示)内に集合モールド100をセットした状態で、集合モールド100にポリマー溶解液200を供給することにより、減圧環境下で凹部内の空気を引き抜きながら、凹状パターン20Aの先端までポリマー溶解液200充填することが可能になる。 It can be considered that the polymer solution 200 is difficult to enter into the recess of the concave pattern 20A of the first mold 20 due to the presence of air. Therefore, it is desirable to perform the supply process under a reduced pressure environment. Under reduced pressure environment means a state below atmospheric pressure. For example, by supplying the polymer solution 200 to the collective mold 100 in a state where the collective mold 100 is set in a decompression device (not shown), the tip of the concave pattern 20A is drawn while drawing air in the concave portion in a reduced pressure environment. It becomes possible to fill the polymer solution 200 up to.
 また、別の方法として、ポリマー溶解液200が供給された、集合モールド100を耐圧容器の中に入れる。加熱ジャケットにより耐圧容器の内部を40℃まで加熱した後、コンプレッサーから耐圧容器内に圧縮空気を注入する。耐圧容器内を0.5MPaの圧力で5分間保持し、集合モールド100に圧力をかけることにより、凹部内の空気を除去し、第1モールド20の凹状パターン20Aの先端までポリマー溶解液200を充填することが可能になる。 As another method, the assembly mold 100 supplied with the polymer solution 200 is placed in a pressure vessel. After the inside of the pressure vessel is heated to 40 ° C. by the heating jacket, compressed air is injected into the pressure vessel from the compressor. The pressure vessel is held at a pressure of 0.5 MPa for 5 minutes, and pressure is applied to the collective mold 100 to remove air in the recess and fill the polymer solution 200 up to the tip of the concave pattern 20A of the first mold 20 It becomes possible to do.
 図4の(C)部は、ポリマー溶解液200を乾燥させてポリマーシート210とする乾燥工程を示している。例えば、集合モールド100に供給されたポリマー溶解液200に風を吹付けることにより乾燥させることができる。 (C) part of FIG. 4 has shown the drying process which dries the polymer solution 200 and makes it the polymer sheet 210. FIG. For example, the polymer solution 200 supplied to the assembly mold 100 can be dried by blowing air.
 乾燥は、例えば、4ゾーンに分けて、(1)15℃でのセット乾燥(低湿、風速4m/sec)、(2)35℃での弱風乾燥(低湿、風速8m/sec)、(3)50℃で強風乾燥(風速12m/sec)、(4)30℃で強風乾燥(風速20m/sec)のような条件に設定することで効率的に乾燥できる。 For example, the drying is divided into four zones: (1) set drying at 15 ° C. (low humidity, wind speed 4 m / sec), (2) weak wind drying at 35 ° C. (low humidity, wind speed 8 m / sec), (3 It can be efficiently dried by setting conditions such as high wind drying at 50 ° C. (wind speed 12 m / sec) and (4) high wind drying at 30 ° C. (wind speed 20 m / sec).
 塗布されたポリマー溶解液200を乾燥、あるいは、ポリマー溶解液200をゲル化させた後乾燥させることにより固化し、ポリマーシート210とする。ポリマー溶解液200をゲル化させることにより、形状を縮小させ集合モールド100(第1モールド20)からの剥離性を高めることができる。この場合、低湿度の冷風を流すことによりポリマー溶解液200をゲル化させることができる。完全にゲル化させるために10~15〔℃〕の冷風を上記の場合よりも長時間吹付け、この後、上記と同様に風を吹付ける。又、この場合において、この後の乾燥させるために高温の温風を流す際には、温風の温度が高すぎると、ポリマー溶解液200におけるゲル化が戻ってしまったり、薬剤によっては加熱により分解等により効能が変化したりするため、吹付ける風の温度には注意を要する。 The applied polymer solution 200 is dried, or the polymer solution 200 is gelled and then dried to form a polymer sheet 210. By gelling the polymer solution 200, the shape can be reduced and the peelability from the assembly mold 100 (first mold 20) can be enhanced. In this case, the polymer solution 200 can be gelled by flowing low-humidity cold air. In order to achieve complete gelation, cool air of 10 to 15 [° C.] is blown for a longer time than in the above case, and thereafter, wind is blown in the same manner as described above. Further, in this case, when flowing hot air for drying after this, if the temperature of the hot air is too high, gelation in the polymer solution 200 may return, or depending on the chemical, heating may occur. Careful attention must be paid to the temperature of the wind to be blown, as the efficacy changes due to decomposition.
 ポリマーシート210とすることで、ポリマー溶解液200を注入した際の状態よりも縮小し、特に、ゲル化を行う場合は顕著に縮小する。これにより、後述する集合モールド100からのポリマーシート210の剥離が容易となる。 By using the polymer sheet 210, the polymer sheet is reduced more than the state when the polymer solution 200 is injected, and particularly when gelation is performed, the polymer sheet is significantly reduced. Thereby, peeling of the polymer sheet 210 from the assembly mold 100 described later is facilitated.
 ポリマーシート210とは、ポリマー溶解液200に所望の乾燥処理を施した後の状態を意味する。ポリマーシート210の水分量等は適宜設定される。 The polymer sheet 210 means a state after the polymer solution 200 is subjected to a desired drying process. The water content of the polymer sheet 210 is set as appropriate.
 図4の(D)部、及び(E)部は、ポリマーシート210を集合モールド100から剥離するポリマーシート剥離工程を示している。図4の(D)部に示すように、ポリマーシート210に対して集合モールド100の反対側の面に、粘着層が形成されているシート状の基材300を付着させる。基材300の表面に、表面活性処理をして接着させてもよい。さらには、基材300を付着させた後に、基材300の上からポリマー溶解液を塗布して、基材300を埋め込んでもよい。なお、シート状の基材300の素材として、例えば、PET(polyethylene terephthalate:ポリエチレンテレフタレート)、PP(polypropylene:ポリプロピレン)、PC(polycarbonate:ポリカーボネート)、PE(Polyethylene:ポリエチレン)等を使用することができる。 4D and 4E show a polymer sheet peeling step for peeling the polymer sheet 210 from the assembly mold 100. FIG. As shown in part (D) of FIG. 4, a sheet-like base material 300 on which an adhesive layer is formed is attached to the opposite side of the assembly mold 100 to the polymer sheet 210. The surface of the substrate 300 may be bonded by performing a surface activation treatment. Furthermore, after making the base material 300 adhere, the polymer solution may be applied on the base material 300 to embed the base material 300. In addition, as a raw material of the sheet-like base material 300, for example, PET (polyethylene terephthalate), PP (polypropylene: polypropylene), PC (polycarbonate), PE (Polyethylene: polyethylene), or the like can be used. .
 図4の(E)部に示すように、基材300をポリマーシート210に付着させた後、基材300とポリマーシート210とを同時に剥離する。基材300のポリマーシート210との接着面と反対面に吸盤(不図示)を設置し、エアーで基材300を吸引しながら垂直に引き上げる。ポリマーシート210を集合モールド100から剥離し、突起状パターン220Aを有するパターンシート220を形成する。 4 (E), after the base material 300 is attached to the polymer sheet 210, the base material 300 and the polymer sheet 210 are peeled off at the same time. A suction cup (not shown) is installed on the surface of the base material 300 opposite to the surface to be bonded to the polymer sheet 210, and the base material 300 is pulled up vertically while being sucked with air. The polymer sheet 210 is peeled from the assembly mold 100 to form a pattern sheet 220 having a protruding pattern 220A.
 なお、集合モールド100を構成する第1モールド20の材料を、剥離が非常にしやすい材料により構成することが好ましい。また、第1モールド20を構成する材料を弾性が高く柔らかい材料とすることにより、剥離する際における、パターンシート220の突起状パターン220Aに加えられる応力を緩和することができる。 In addition, it is preferable to comprise the material of the 1st mold 20 which comprises the assembly mold 100 by the material which is easy to peel. Moreover, the stress applied to the protruding pattern 220A of the pattern sheet 220 at the time of peeling can be relieved by making the material constituting the first mold 20 a soft material having high elasticity.
 パターンシート220の突起状パターン220Aは、第1モールド20の凹状パターン20Aの反転形状となる。但し、ポリマー溶解液200を乾燥させたポリマーシート210とした際、乾燥によりポリマーシート210が収縮し、パターンシート220の突起状パターン220Aが凹状パターン20Aの体積より小さくなる場合もある。 The projecting pattern 220A of the pattern sheet 220 has a reverse shape of the concave pattern 20A of the first mold 20. However, when the polymer solution 210 is obtained by drying the polymer solution 200, the polymer sheet 210 may shrink due to drying, and the protruding pattern 220A of the pattern sheet 220 may be smaller than the volume of the concave pattern 20A.
 ここで、パターンシート220は、集合モールド100から剥離されたポリマーシート210と基本的には同じである。 Here, the pattern sheet 220 is basically the same as the polymer sheet 210 peeled from the assembly mold 100.
 図4の(F)部、及び(G)部は、パターンシート220を切断して、個別のパターンシート220とする切断工程を示している。 4 (F) and 4 (G) show a cutting process in which the pattern sheet 220 is cut into individual pattern sheets 220.
 図4の(F)部に示すように、集合モールド100から剥離した突起状パターン220Aを有するパターンシート220と基材300とを切断装置(不図示)にセットする。パターンシート220を切断する位置を決定する。基本的には、突起状パターン220Aごととなるように切断位置を決定する。 As shown in FIG. 4F, the pattern sheet 220 having the protruding pattern 220A peeled off from the collective mold 100 and the substrate 300 are set in a cutting device (not shown). The position for cutting the pattern sheet 220 is determined. Basically, the cutting position is determined so as to be every protrusion pattern 220A.
 図4の(G)部に示すように、パターンシート220を切断して、複数の個別のパターンシート220とする。なお、本実施形態では、パターンシート220と基材300とを同時に切断する例を示したが、これに限定されない。 As shown in part (G) of FIG. 4, the pattern sheet 220 is cut into a plurality of individual pattern sheets 220. In the present embodiment, the example in which the pattern sheet 220 and the substrate 300 are cut at the same time has been shown, but the present invention is not limited to this.
 例えば、集合モールド100から剥離したパターンシート220と基材300とから、基材300を剥離し、パターンシート220を個別のパターンシート220とすることができる。 For example, the substrate 300 can be peeled from the pattern sheet 220 and the substrate 300 peeled from the collective mold 100, and the pattern sheet 220 can be made into individual pattern sheets 220.
 本実施形態では、ポリマー溶解液200を凹状パターン20Aに充填し、乾燥することによりポリマーシート210を形成する場合を説明したが、これに限定されない。 In the present embodiment, the case where the polymer sheet 210 is formed by filling the polymer solution 200 in the concave pattern 20A and drying is described, but the present invention is not limited thereto.
 例えば、薬剤を含むポリマー溶解液200を凹状パターン20Aに充填して乾燥し、その後薬剤を含まないポリマー溶解液200を凹状パターン20Aに充填して乾燥しポリマーシートとすることができる。 For example, the polymer solution 200 containing the drug can be filled in the concave pattern 20A and dried, and then the polymer solution 200 not containing the drug can be filled in the concave pattern 20A and dried to obtain a polymer sheet.
 パターンシート220を形成できるポリマー溶解液200を供給する限り、ポリマー溶解液200を供給する回数、ポリマー溶解液200中の薬剤の有無を適宜変更することができる。 As long as the polymer solution 200 that can form the pattern sheet 220 is supplied, the number of times the polymer solution 200 is supplied and the presence or absence of the drug in the polymer solution 200 can be appropriately changed.
 図5は、個別のパターンシート220の斜視図である。個別のパターンシート220は、一方面に突起状パターン220Aを有している。また、パターンシート220は突起状パターン220Aの形成された面と反対面に基材300とを有している。 FIG. 5 is a perspective view of the individual pattern sheet 220. The individual pattern sheet 220 has a protruding pattern 220A on one surface. Further, the pattern sheet 220 has a base material 300 on the surface opposite to the surface on which the protruding pattern 220A is formed.
 次に、集合モールド100を用いて電鋳金型を作製する方法について説明する。図6は集合モールド100を用いた電鋳金型の作製方法の手順を示す工程図である。 Next, a method for producing an electroforming mold using the assembly mold 100 will be described. FIG. 6 is a process diagram showing a procedure of a method for producing an electroforming mold using the collective mold 100.
 図6の(A)部は、集合モールド100を準備した状態を示している。集合モールド100は、上述の集合モールドの作製方法により作製される。 (A) part of Drawing 6 shows the state where collective mold 100 was prepared. The collective mold 100 is produced by the collective mold producing method described above.
 図6の(B)部は、集合モールド100の凹状パターン20Aに、電鋳法により金属を埋める電鋳工程を示す工程図である。電鋳工程においては、まず、集合モールド100に対して導電化処理を行う。集合モールド100の第1モールド20に、金属(例えば、ニッケル)をスパッターし、集合モールド100の第1モールド20の表面、及び凹状パターン20Aに金属を付着させる。 6 (B) is a process diagram showing an electroforming process in which metal is embedded in the concave pattern 20A of the assembly mold 100 by an electroforming method. In the electroforming process, first, a conductive treatment is performed on the assembly mold 100. A metal (for example, nickel) is sputtered on the first mold 20 of the collective mold 100, and the metal is attached to the surface of the first mold 20 of the collective mold 100 and the concave pattern 20A.
 次いで、導電化処理を経た集合モールド100を陰極(不図示)に保持する。金属ペレットを金属製のケースに保持し陽極(不図示)とする。電鋳液を貯留槽(不図示)に蓄える。集合モールド100を保持する陰極と、金属ペレットを保持する陽極と、を電鋳液に浸漬し、通電する。電鋳法により、第1モールド20の凹状パターン20Aに金属を埋め込み、金属体400が形成される。 Next, the assembly mold 100 that has undergone the conductive treatment is held on the cathode (not shown). The metal pellet is held in a metal case to serve as an anode (not shown). The electroforming liquid is stored in a storage tank (not shown). A cathode for holding the assembly mold 100 and an anode for holding the metal pellets are immersed in an electroforming solution and energized. A metal body 400 is formed by embedding a metal in the concave pattern 20A of the first mold 20 by electroforming.
 図6の(C)部は、集合モールド100から金属体400を剥離する金属剥離工程を示す工程図である。図6の(C)部に示すように、金属体400が集合モールド100から剥離されて、突起状パターン410Aを有する電鋳金型410が作製される。突起状パターン410Aは第1モールド20の凹状パターン20Aの反転形状となる。ここで、電鋳金型410は、集合モールド100から剥離された金属体400と基本的には同じである。 6 (C) is a process diagram showing a metal peeling process for peeling the metal body 400 from the assembly mold 100. FIG. As shown in part (C) of FIG. 6, the metal body 400 is peeled from the collective mold 100 to produce an electroformed mold 410 having a protruding pattern 410A. The protruding pattern 410A has a reverse shape of the concave pattern 20A of the first mold 20. Here, the electroforming mold 410 is basically the same as the metal body 400 peeled from the assembly mold 100.
 図7は、原版10と電鋳金型410の斜視図である。図7の(A)部は原版10の斜視図であり、図7の(B)部は電鋳金型410の斜視図である。図7に示すように、原版10を用いて第1モールドを作製し、複数の第1モールド20から集合モールド100を作製し、集合モールド100から電鋳金型410を作製しているので、原版10と比較して大面積の電鋳金型410を得ることができる。電鋳金型410は、第1モールド20を作製する際の原版となる意味で原版10と同じ機能を有し、原版10と比較して大きな面積を有する。すなわち、大面積の原版を研削等の機械加工ではなく、電鋳法により大面積の原版を作製しているので、原版作製のコストを低減することができる。 FIG. 7 is a perspective view of the original plate 10 and the electroformed mold 410. 7A is a perspective view of the original plate 10, and FIG. 7B is a perspective view of the electroformed mold 410. As shown in FIG. 7, the first mold is produced using the original 10, the collective mold 100 is produced from the plurality of first molds 20, and the electroformed mold 410 is produced from the collective mold 100. As compared with the above, an electroforming mold 410 having a large area can be obtained. The electroforming mold 410 has the same function as that of the original plate 10 in the sense that it becomes an original plate for producing the first mold 20, and has a larger area than the original plate 10. In other words, since the large-area original plate is produced by electroforming rather than by machining such as grinding, the original production cost can be reduced.
 次に、電鋳金型410を用いて第2モールドを作製する方法について説明する。図8は電鋳金型410を用いた第2モールドの作製方法の手順を示す工程図である。 Next, a method for producing the second mold using the electroforming mold 410 will be described. FIG. 8 is a process diagram showing a procedure of a method for producing a second mold using the electroforming mold 410.
 図8の(A)部は、電鋳金型410を準備した状態を示している。電鋳金型410は、上述の電鋳金型の作製方法により作製される。 8A shows a state where the electroforming mold 410 is prepared. The electroforming mold 410 is manufactured by the above-described method for manufacturing an electroforming mold.
 図8の(B)部、及び(C)部は、突起状パターン410Aを有する電鋳金型410を用いて、電鋳金型410の突起状パターンの反転形状である凹状パターン500Aを有する樹脂製の第2モールド500を作製する工程を示す工程図である。凹状パターン500Aとは、第2モールド500の一方面から他方面に向けて延びる凹部が、第2モールド500の一方面に配置されている状態をいう。凹部の数、凹部の配置、凹部の深さ等は限定されない。 8B and 8C are made of a resin having a concave pattern 500A which is an inverted shape of the protruding pattern of the electroformed mold 410 by using the electroformed mold 410 having the protruding pattern 410A. It is process drawing which shows the process of producing the 2nd mold 500. The concave pattern 500 </ b> A refers to a state in which a concave portion extending from one surface of the second mold 500 toward the other surface is disposed on one surface of the second mold 500. The number of the concave portions, the arrangement of the concave portions, the depth of the concave portions, etc. are not limited.
 電鋳金型410を用いて第2モールド500を作製する方法は、基本的に、突起状パターン10Aを有する原版10を用いて、第1モールド20を作製する方法と同じ方法で作製することができる。 The method for producing the second mold 500 using the electroforming mold 410 can basically be produced by the same method as the method for producing the first mold 20 using the original plate 10 having the protruding pattern 10A. .
 したがって、図1の(B)部で説明した第1から第3の方法により、凹状パターン500Aを有する第2モールド500を作製することができる。 Therefore, the second mold 500 having the concave pattern 500A can be manufactured by the first to third methods described in the part (B) of FIG.
 まず、第1の方法について説明する。紫外線を照射することにより硬化する紫外線硬化樹脂を準備する。電鋳金型410の突起状パターン410Aを紫外線硬化樹脂に押圧する。紫外線硬化樹脂に電鋳金型410を押圧した状態で、紫外線硬化樹脂に紫外線を照射し、紫外線硬化樹脂を硬化させる。硬化させた紫外線硬化樹脂から電鋳金型410を剥離する。電鋳金型410の突起状パターン410Aの反転形状である凹状パターン500Aを有する樹脂製の第2モールド500が作製される。 First, the first method will be described. An ultraviolet curable resin that cures when irradiated with ultraviolet rays is prepared. The protruding pattern 410A of the electroforming mold 410 is pressed against the ultraviolet curable resin. In a state where the electroforming mold 410 is pressed against the ultraviolet curable resin, the ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin. The electroforming mold 410 is peeled from the cured ultraviolet curable resin. A resin-made second mold 500 having a concave pattern 500 </ b> A that is an inverted shape of the protruding pattern 410 </ b> A of the electroforming mold 410 is produced.
 第2の方法について説明する。第2モールド500の材料となる熱可塑性樹脂を準備する。突起状パターン410Aを有する電鋳金型410を加熱する。加熱された電鋳金型410の突起状パターン410Aを熱可塑性樹脂の表面に押圧する。熱可塑性樹脂の表面は軟化されているので、突起状パターン410Aが熱可塑性樹脂に転写される。 The second method will be described. A thermoplastic resin as a material for the second mold 500 is prepared. The electroforming mold 410 having the protruding pattern 410A is heated. The protruding pattern 410A of the heated electroforming mold 410 is pressed against the surface of the thermoplastic resin. Since the surface of the thermoplastic resin is softened, the protruding pattern 410A is transferred to the thermoplastic resin.
 熱可塑性樹脂に電鋳金型410を押圧した状態で、電鋳金型410を冷却する。電鋳金型410を冷却することにより熱可塑性樹脂を硬化させる。その後、突起状パターン410Aが転写された熱可塑性樹脂から電鋳金型410を剥離する。電鋳金型410の突起状パターン410Aの反転形状である凹状パターン500Aを有する樹脂製の第2モールド500が作製される。 In the state where the electroformed mold 410 is pressed against the thermoplastic resin, the electroformed mold 410 is cooled. The thermoplastic resin is cured by cooling the electroforming mold 410. Thereafter, the electroformed mold 410 is peeled from the thermoplastic resin to which the protruding pattern 410A is transferred. A resin-made second mold 500 having a concave pattern 500 </ b> A that is an inverted shape of the protruding pattern 410 </ b> A of the electroforming mold 410 is produced.
 次に、第3の方法について説明する。PDMS(polydimethylsiloxane:ポリジメチルシロキサン、例えば、ダウコーニング社製シルガード184、シルガード:登録商標)に硬化剤を添加したシリコーン樹脂を準備する。電鋳金型410の突起状パターン410Aをシリコーン樹脂に押圧する。シリコーン樹脂に電鋳金型410を押圧した状態で、シリコーン樹脂を100℃で加熱処理し硬化させる。硬化させたシリコーン樹脂から電鋳金型410を剥離する。電鋳金型410の突起状パターン410Aの反転形状である凹状パターン500Aを有する樹脂製の第2モールド500が作製される。 Next, the third method will be described. A silicone resin in which a curing agent is added to PDMS (polydimethylsiloxane, for example, Sylgard 184, Sylgard: registered trademark manufactured by Dow Corning) is prepared. The protruding pattern 410A of the electroforming mold 410 is pressed against the silicone resin. In a state where the electroforming mold 410 is pressed against the silicone resin, the silicone resin is heated at 100 ° C. to be cured. The electroformed mold 410 is peeled from the cured silicone resin. A resin-made second mold 500 having a concave pattern 500 </ b> A that is an inverted shape of the protruding pattern 410 </ b> A of the electroforming mold 410 is produced.
 凹状パターン500Aは突起状パターン410Aの反転形状であるので、凹状パターン500Aの各凹部の大きさは、突起状パターン410Aの突起部の大きさと、ほぼ同じとなる。但し、第2モールド500を作製する方法、第1~第3の方法に限定されない。 Since the concave pattern 500A is an inverted shape of the protruding pattern 410A, the size of each concave portion of the concave pattern 500A is substantially the same as the size of the protruding portion of the protruding pattern 410A. However, the method is not limited to the method for manufacturing the second mold 500 and the first to third methods.
 次に、第2モールドを用いて突起状パターンを有するパターンシートの製造方法について説明する。図9は、第2モールドを用いたパターンシートの製造方法の手順を示す工程図である。なお、図4のパターンシートの製造方法の手順を示す工程図と、図9は、パターンシートの製造方法の手順を示す工程図とでは、集合モールドと第2モールドとの違いを除いて、基本的に同じである。したがって、図4に示した工程図と同様の構成には同一符号を付して説明を省略する場合がある。 Next, a method for producing a pattern sheet having a protruding pattern using the second mold will be described. FIG. 9 is a process diagram illustrating a procedure of a method for manufacturing a pattern sheet using the second mold. 4 is a process diagram showing the procedure of the pattern sheet manufacturing method, and FIG. 9 is a process diagram showing the procedure of the pattern sheet manufacturing method, except for the difference between the collective mold and the second mold. Are the same. Therefore, the same components as those in the process diagram shown in FIG.
 図9の(A)部は、第2モールド500を準備した状態を示している。第2モールド500は、上述の第2モールドの作製方法により作製される。 (A) part of Drawing 9 shows the state where the 2nd mold 500 was prepared. The second mold 500 is manufactured by the above-described second mold manufacturing method.
 図9の(B)部は、第2モールド500の凹状パターン500Aにポリマー溶解液200を供給する供給工程を示している。まず、ポリマー溶解液200を準備する。ポリマー溶解液200は図4で説明したポリマー溶解液200と基本的に同じである。図9の(B)部に示すように、第2モールド500にポリマー溶解液200を供給し、ポリマー溶解液200を凹状パターン500Aの凹部に充填する。ポリマー溶解液200が凹状パターン500Aの凹部に充填する方法として、図4で説明した充填方法を適用することができる。 (B) part of FIG. 9 has shown the supply process which supplies the polymer solution 200 to the concave pattern 500A of the 2nd mold 500. FIG. First, a polymer solution 200 is prepared. The polymer solution 200 is basically the same as the polymer solution 200 described in FIG. As shown in part (B) of FIG. 9, the polymer solution 200 is supplied to the second mold 500, and the polymer solution 200 is filled in the recesses of the concave pattern 500A. As a method for filling the polymer solution 200 into the concave portions of the concave pattern 500A, the filling method described in FIG. 4 can be applied.
 図9の(C)部は、ポリマー溶解液200を乾燥させてポリマーシート210とする乾燥工程を示している。例えば、第2モールド500に供給されたポリマー溶解液200に風を吹付けることにより乾燥させることができる。図4で説明した乾燥方法、条件等を適用することができる。 (C) part of FIG. 9 has shown the drying process which dries the polymer solution 200 and makes it the polymer sheet 210. FIG. For example, the polymer solution 200 supplied to the second mold 500 can be dried by blowing air. The drying method and conditions described in FIG. 4 can be applied.
 図9の(D)部、及び(E)部は、ポリマーシート210を第2モールド500から剥離するポリマーシート剥離工程を示している。図9の(D)部に示すように、ポリマーシート210に対して第2モールド500の反対側の面に、粘着層が形成されているシート状の基材300を付着させる。 9D and 9E show a polymer sheet peeling step for peeling the polymer sheet 210 from the second mold 500. FIG. As shown in part (D) of FIG. 9, a sheet-like base material 300 on which an adhesive layer is formed is attached to the surface of the polymer sheet 210 opposite to the second mold 500.
 図9の(E)部に示すように、基材300をポリマーシート210に付着させた後、基材300とポリマーシート210と同時に剥離を行う。基材300のポリマーシート210との接着面と反対面に吸盤(不図示)を設置し、エアーで基材300を吸引しながら垂直に引き上げる。ポリマーシート210を第2モールド500から剥離し、突起状パターン220Aを有するパターンシート220を形成する。 As shown in part (E) of FIG. 9, after the base material 300 is attached to the polymer sheet 210, peeling is performed simultaneously with the base material 300 and the polymer sheet 210. A suction cup (not shown) is installed on the surface of the base material 300 opposite to the surface to be bonded to the polymer sheet 210, and the base material 300 is pulled up vertically while being sucked with air. The polymer sheet 210 is peeled from the second mold 500 to form a pattern sheet 220 having a protruding pattern 220A.
 なお、第2モールド500の材料を、剥離が非常にしやすい材料により構成することが好ましい。また、第2モールド500を構成する材料を弾性が高く柔らかい材料とすることにより、剥離する際における、パターンシート220の突起状パターン220Aに加えられる応力を緩和することができる。 Note that it is preferable that the material of the second mold 500 is made of a material that is very easy to peel off. Moreover, the stress applied to the protruding pattern 220A of the pattern sheet 220 at the time of peeling can be relieved by making the material constituting the second mold 500 a soft material having high elasticity.
 パターンシート220の突起状パターン220Aは、第2モールド500の凹状パターン500Aの反転形状となる。ここで、パターンシート220は、第2モールド500から剥離されたポリマーシート210と基本的には同じである。 The protruding pattern 220A of the pattern sheet 220 has a reverse shape of the concave pattern 500A of the second mold 500. Here, the pattern sheet 220 is basically the same as the polymer sheet 210 peeled from the second mold 500.
 図9の(F)部、及び(G)部は、パターンシート220を切断して、個別のパターンシート220とする切断工程を示している。 9 (F) and (G) show a cutting process in which the pattern sheet 220 is cut into individual pattern sheets 220. FIG.
 図9の(F)部に示すように、第2モールド500から剥離した突起状パターン220Aを有するパターンシート220と基材300とを切断装置(不図示)にセットする。パターンシート220を切断する位置を決定する。基本的には、突起状パターン220Aごととなるように切断位置を決定する。 9 (F), the pattern sheet 220 having the protruding pattern 220A peeled off from the second mold 500 and the substrate 300 are set in a cutting device (not shown). The position for cutting the pattern sheet 220 is determined. Basically, the cutting position is determined so as to be every protrusion pattern 220A.
 図9の(G)部に示すように、パターンシート220を切断して、複数の個別のパターンシート220とする。なお、本実施形態では、パターンシート220と基材300とを同時に切断する例を示したが、これに限定されない。 As shown in part (G) of FIG. 9, the pattern sheet 220 is cut into a plurality of individual pattern sheets 220. In the present embodiment, the example in which the pattern sheet 220 and the substrate 300 are cut at the same time has been shown, but the present invention is not limited to this.
 例えば、第2モールド500から剥離したパターンシート220と基材300とから、基材300を剥離し、パターンシート220を個別のパターンシート220とすることができる。 For example, from the pattern sheet 220 and the base material 300 peeled from the second mold 500, the base material 300 can be peeled, and the pattern sheet 220 can be made into individual pattern sheets 220.
 本実施形態では、ポリマー溶解液200を凹状パターン20Aに充填し、乾燥することによりポリマーシート210を形成する場合を説明したが、これに限定されない。 In the present embodiment, the case where the polymer sheet 210 is formed by filling the polymer solution 200 in the concave pattern 20A and drying is described, but the present invention is not limited thereto.
 例えば、薬剤を含むポリマー溶解液200を凹状パターン20Aに充填して乾燥し、その後薬剤を含まないポリマー溶解液200を凹状パターン20Aに充填して乾燥し、ポリマーシートとすることができる。 For example, the polymer solution 200 containing the drug can be filled in the concave pattern 20A and dried, and then the polymer solution 200 not containing the drug can be filled in the concave pattern 20A and dried to obtain a polymer sheet.
 パターンシート220を形成できるポリマー溶解液200を供給する限り、ポリマー溶解液200を供給する回数、ポリマー溶解液200中の薬剤の有無を適宜変更することができる。 As long as the polymer solution 200 that can form the pattern sheet 220 is supplied, the number of times the polymer solution 200 is supplied and the presence or absence of the drug in the polymer solution 200 can be appropriately changed.
 上述したように、本実施形態によれば、低コストで、且つ高い形状の精度で集合モールドを作製することができる。集合モールドを用いてパターンシートを作製することで、パターンシートを効率良く作製することができる。 As described above, according to the present embodiment, the assembly mold can be manufactured with low cost and high shape accuracy. By producing a pattern sheet using an assembly mold, the pattern sheet can be produced efficiently.
 また、集合モールドを用いて電鋳金型を作製することで、低いコストで大面積の原版と同機能を有する電鋳金型を得ることができる。 Also, by producing an electroforming mold using a collective mold, it is possible to obtain an electroforming mold having the same function as a large-area original plate at a low cost.
 10 原版
 10A 突起状パターン
 20 第1モールド
 20A 凹状パターン 
 30 第1基板 
 32 枠
 34 開口部
 36 スペーサ
 40 接着剤
 42 接着剤
 50 第2基板
 36 スペーサ
 40 接着剤
 42 接着剤
 50 第2基板
 100 集合モールド
 200 ポリマー溶解液
 210 ポリマーシート
 220 パターンシート
 220A 突起状パターン
 300 基材
 400 金属体
 410 電鋳金型
 410A 突起状パターン
 500 第2モールド
 500A 凹状パターン
DESCRIPTION OF SYMBOLS 10 Original 10A Projection pattern 20 1st mold 20A Concave pattern
30 First substrate
32 Frame 34 Opening 36 Spacer 40 Adhesive 42 Adhesive 50 Second Substrate 36 Spacer 40 Adhesive 42 Adhesive 50 Second Substrate 100 Aggregate Mold 200 Polymer Dissolving Solution 210 Polymer Sheet 220 Pattern Sheet 220A Protruding Pattern 300 Base Material 400 Metal body 410 Electroformed mold 410A Protruding pattern 500 Second mold 500A Concave pattern

Claims (10)

  1.  突起状パターンを有する原版を用いて、前記原版の突起状パターンの反転形状である凹状パターンを有する樹脂製の第1モールドを複数作製する作製工程と、
     複数の前記第1モールドを互いに離間して、かつ前記第1モールドの凹状パターン面と第1基板とを接触させた状態で、前記第1基板に配置する配置工程と、
     複数の前記第1モールドの間に第1接着剤を供給して硬化させた後、複数の前記第1モールドの凹状パターン面と反対面にさらに第2接着剤を供給する供給工程と、
     複数の前記第1モールドの凹状パターン面と反対面側に、前記第2接着剤を介して第2基板を貼合する貼合工程と、
     前記第2基板を貼合した後、複数の前記第1モールドと前記第1基板とを剥離する基板剥離工程と、
     を有する集合モールドの作製方法。
    A production step of producing a plurality of resin-made first molds having a concave pattern which is a reversal shape of the projection pattern of the original plate, using a master having a projection pattern;
    An arranging step of arranging the plurality of first molds on the first substrate in a state where the first molds are separated from each other and the concave pattern surface of the first mold is in contact with the first substrate;
    A supply step of supplying a second adhesive to a surface opposite to the concave pattern surface of the plurality of first molds after supplying and curing the first adhesive between the plurality of first molds;
    A bonding step of bonding the second substrate to the opposite surface side of the plurality of first molds through the second adhesive,
    A substrate peeling step of peeling a plurality of the first mold and the first substrate after bonding the second substrate;
    A method for producing an assembly mold having
  2.  前記配置工程において、前記第1基板に枠が備えられ、前記枠の内側に前記第1モールドが配置される請求項1に記載の集合モールドの作製方法。 The method for producing a collective mold according to claim 1, wherein, in the arranging step, the first substrate is provided with a frame, and the first mold is arranged inside the frame.
  3.  前記貼合工程において、前記第1基板の前記枠の周囲に備えられた前記枠の高さより高いスペーサに、前記第2基板を接触させる請求項2に記載の集合モールドの作製方法。 The method for producing a collective mold according to claim 2, wherein, in the bonding step, the second substrate is brought into contact with a spacer higher than a height of the frame provided around the frame of the first substrate.
  4.  前記第1及び第2接着剤が、紫外線硬化樹脂である請求項1から3の何れか一項に記載の集合モールドの作製方法。 The method for producing a collective mold according to any one of claims 1 to 3, wherein the first and second adhesives are ultraviolet curable resins.
  5.  前記第1モールドが、紫外線硬化樹脂を含む材料からなる請求項1から4の何れか一項に記載の集合モールドの作製方法。 The method for producing a collective mold according to any one of claims 1 to 4, wherein the first mold is made of a material containing an ultraviolet curable resin.
  6.  前記配置工程において、前記第1モールドと前記第1基板とが熱剥離シート、又は紫外線剥離シートにより接着される請求項1から5の何れか一項に記載の集合モールドの作製方法。 The method for producing a collective mold according to any one of claims 1 to 5, wherein, in the arranging step, the first mold and the first substrate are bonded by a heat release sheet or an ultraviolet release sheet.
  7.  請求項1から6の何れか一項に記載の作製方法により集合モールドを作製する工程と、
     前記集合モールドの凹状パターンにポリマー溶解液を供給する供給工程と、
     前記ポリマー溶解液を乾燥させてポリマーシートとする乾燥工程と、
     前記ポリマーシートを前記集合モールドから剥離するポリマーシート剥離工程と、
     を含む突起状パターンを有するパターンシートの製造方法。
    Producing a collective mold by the production method according to any one of claims 1 to 6;
    Supplying a polymer solution to the concave pattern of the assembly mold; and
    A drying step of drying the polymer solution to form a polymer sheet;
    A polymer sheet peeling step of peeling the polymer sheet from the assembly mold;
    The manufacturing method of the pattern sheet | seat which has a protruding pattern containing this.
  8.  請求項1から6の何れか一項に記載の作製方法により集合モールドを作製する工程と、
     前記集合モールドの凹状パターンに、電鋳法により金属を埋める電鋳工程と、
     埋め込まれた金属体を前記集合モールドから剥離する金属剥離工程と、
     を含む突起状パターンを有する電鋳金型の作製方法。
    Producing a collective mold by the production method according to any one of claims 1 to 6;
    An electroforming step of filling the concave pattern of the assembly mold with metal by electroforming;
    A metal peeling step of peeling the embedded metal body from the assembly mold;
    A method for producing an electroforming mold having a protruding pattern including:
  9.  請求項8に記載の作製方法により電鋳金型を作製する工程と、
     突起状パターンを有する前記電鋳金型を用いて、前記電鋳金型の突起状パターンの反転形状である凹状パターンを有する樹脂製の第2モールドを作製する工程と、
     を含む第2モールドの作製方法。
    A step of producing an electroformed mold by the production method according to claim 8;
    Using the electroformed mold having a projecting pattern to produce a resin-made second mold having a concave pattern that is a reverse shape of the projecting pattern of the electroformed mold;
    The manufacturing method of the 2nd mold containing this.
  10.  請求項9に記載の作製方法により第2モールドを作製する工程と、
     前記第2モールドの凹状パターンにポリマー溶解液を供給する供給工程と、
     前記ポリマー溶解液を乾燥させてポリマーシートとする乾燥工程と、
     前記ポリマーシートを前記第2モールドから剥離する剥離工程と、
     を含む突起状パターンを有するパターンシートの製造方法。
    Producing a second mold by the production method according to claim 9;
    Supplying a polymer solution to the concave pattern of the second mold;
    A drying step of drying the polymer solution to form a polymer sheet;
    A peeling step of peeling the polymer sheet from the second mold;
    The manufacturing method of the pattern sheet | seat which has a protruding pattern containing this.
PCT/JP2016/076339 2015-09-30 2016-09-07 Method for manufacturing mould assembly, method for producing patterned sheet, method for manufacturing electroformed mould, and method for manufacturing second mould using electroformed mould WO2017056893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015193479 2015-09-30
JP2015-193479 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017056893A1 true WO2017056893A1 (en) 2017-04-06

Family

ID=58423279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076339 WO2017056893A1 (en) 2015-09-30 2016-09-07 Method for manufacturing mould assembly, method for producing patterned sheet, method for manufacturing electroformed mould, and method for manufacturing second mould using electroformed mould

Country Status (1)

Country Link
WO (1) WO2017056893A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034151A (en) * 2017-08-17 2019-03-07 コスメディ製薬株式会社 Microneedle array for lips
CN111660468A (en) * 2019-03-05 2020-09-15 富士胶片株式会社 Method for manufacturing mold having concave pattern in concave step portion and method for manufacturing pattern sheet
EP3803513A4 (en) * 2018-06-06 2022-03-09 LEIA Inc. Wafer tiling method to form large-area mold master having sub-micrometer features
CN111660468B (en) * 2019-03-05 2024-06-04 富士胶片株式会社 Method for producing thermoplastic resin original plate, method for producing metal mold, method for producing mold, and method for producing pattern sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183128A (en) * 1995-12-28 1997-07-15 Canon Inc Manufacture of resin parts and manufacture of liquid jet recording head
JP2009233170A (en) * 2008-03-27 2009-10-15 Fujifilm Corp Method for manufacturing sheet with high aspect ratio structure
JP2011245055A (en) * 2010-05-27 2011-12-08 Fujifilm Corp Method for manufacturing needle sheet
WO2014175310A1 (en) * 2013-04-26 2014-10-30 凸版印刷株式会社 Production method for acicular body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183128A (en) * 1995-12-28 1997-07-15 Canon Inc Manufacture of resin parts and manufacture of liquid jet recording head
JP2009233170A (en) * 2008-03-27 2009-10-15 Fujifilm Corp Method for manufacturing sheet with high aspect ratio structure
JP2011245055A (en) * 2010-05-27 2011-12-08 Fujifilm Corp Method for manufacturing needle sheet
WO2014175310A1 (en) * 2013-04-26 2014-10-30 凸版印刷株式会社 Production method for acicular body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019034151A (en) * 2017-08-17 2019-03-07 コスメディ製薬株式会社 Microneedle array for lips
EP3803513A4 (en) * 2018-06-06 2022-03-09 LEIA Inc. Wafer tiling method to form large-area mold master having sub-micrometer features
CN111660468A (en) * 2019-03-05 2020-09-15 富士胶片株式会社 Method for manufacturing mold having concave pattern in concave step portion and method for manufacturing pattern sheet
CN111660468B (en) * 2019-03-05 2024-06-04 富士胶片株式会社 Method for producing thermoplastic resin original plate, method for producing metal mold, method for producing mold, and method for producing pattern sheet

Similar Documents

Publication Publication Date Title
JP6495465B2 (en) Method for producing mold, method for producing pattern sheet, method for producing electroformed mold, and method for producing mold using electroformed mold
US20180250851A1 (en) Manufacturing method of pattern sheet
JP6038173B2 (en) Method for producing transdermal absorption sheet
JP4885816B2 (en) Method and apparatus for producing functional film
JP6499598B2 (en) Method for producing transdermal absorption sheet
JP2008006178A (en) Manufacturing method and device for microneedle sheet
JP2009082206A (en) Method of manufacturing functional film
JP6549012B2 (en) Method of manufacturing mold and method of manufacturing pattern sheet
JP2010094414A (en) Microneedle sheet patch, and method and apparatus for manufacturing the same
WO2016140174A1 (en) Transdermal absorption sheet, and method for manufacturing same
JP6571586B2 (en) Method for producing mold, method for producing pattern sheet, method for producing electroformed mold, and method for producing mold using electroformed mold
WO2017056893A1 (en) Method for manufacturing mould assembly, method for producing patterned sheet, method for manufacturing electroformed mould, and method for manufacturing second mould using electroformed mould
JP2017070389A (en) Method of manufacturing mold and method of manufacturing pattern sheet
JP6691025B2 (en) Method for manufacturing needle-shaped array sheet
JP2009083125A (en) Method and apparatus for producing functional film
WO2017061310A1 (en) Percutaneous absorption sheet production method
JP6635876B2 (en) Concave pattern mold, method for producing concave pattern mold, and method for producing pattern sheet
JP2018042677A (en) Concave pattern mold and manufacturing method of pattern sheet
JP2017070425A (en) Mold, and method for producing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP