WO2017056592A1 - Fluorescence detection device - Google Patents

Fluorescence detection device Download PDF

Info

Publication number
WO2017056592A1
WO2017056592A1 PCT/JP2016/068684 JP2016068684W WO2017056592A1 WO 2017056592 A1 WO2017056592 A1 WO 2017056592A1 JP 2016068684 W JP2016068684 W JP 2016068684W WO 2017056592 A1 WO2017056592 A1 WO 2017056592A1
Authority
WO
WIPO (PCT)
Prior art keywords
allergen
fluorescence
unit
light
pollen
Prior art date
Application number
PCT/JP2016/068684
Other languages
French (fr)
Japanese (ja)
Inventor
満 名倉
数也 石原
青躍 王
Original Assignee
シャープ株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 国立大学法人埼玉大学 filed Critical シャープ株式会社
Publication of WO2017056592A1 publication Critical patent/WO2017056592A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a fluorescence detection apparatus for detecting fluorescence emitted from an allergen-containing substance.
  • hay fever which is one of allergies, is caused by an allergen, a protein contained in pollen particles. Since there are many patients who develop hay fever in Japan, the amount of pollen scattered every day is measured and published especially at the time when pollen is scattered.
  • microallergens allergens having a particle size range of several ⁇ m or 1.1 ⁇ m or less (hereinafter referred to as microallergens) are present in a high proportion in the air, and there are more microallergens in urban areas than in mountainous areas. It has been reported.
  • mite allergy can be mentioned.
  • Allergens that cause tick allergies include mites themselves and mite feces.
  • the mites have a size of about 100 ⁇ m to 200 ⁇ m, the mite feces have a size of about 40 ⁇ m to 100 ⁇ m, and the particle size is larger than the allergen contained in the above-mentioned pollen particles.
  • mite carcasses and mite feces are finely decomposed into powder by drying, and the particle size is reduced to several ⁇ m or less (that is, it becomes a microallergen).
  • an index value concentration, etc.
  • SPR surface plasmon resonance
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2001-242065 (published on September 7, 2001)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-216133 (published on September 18, 2008)”
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a fluorescence detection apparatus that can easily detect each of allergen-containing substances having different sizes.
  • a fluorescence detection device is a fluorescence detection device that detects fluorescence emitted from an allergen-containing substance in aspirated air that includes an allergen that is a causative agent of allergy.
  • the detection part which detects the fluorescence which the said allergen containing substance in this branch path part emits is provided in at least two of the said branch path parts.
  • FIG. 1 It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on Embodiment 1 of this invention. It is a figure which shows the cedar pollen which kept spherical shape. It is a figure which shows the ruptured cedar pollen. It is a figure which shows the fluorescence characteristic of a cedar pollen when irradiated with the excitation light of a wavelength of 360 nm. It is a figure which shows the detail of the detection part shown in FIG. It is the schematic of the reflection type
  • Embodiment 1 One embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 1 is a diagram illustrating an example of a main configuration of the fluorescence detector 1.
  • the fluorescence detector 1 is a device that detects fluorescence emitted from a substance containing an allergen causing substance (allergen) (hereinafter, allergen-containing substance).
  • allergen-containing substance an allergen causing substance
  • the fluorescence detector 1 according to the present embodiment includes pollen that contains spherical pollen (that is, an allergen-containing substance, hereinafter simply referred to as “pollen”) and allergen contained in the air.
  • polyen an allergen-containing substance
  • a plurality of types of proteins ie, allergen-containing substances, hereinafter, allergen-containing proteins are aspirated.
  • the fluorescence detector 1 detects the fluorescence, thereby indicating an index value indicating the amount of pollen, and the pollen-derived allergen-containing protein.
  • An index value indicating the quantity is specified.
  • cedar pollen is described as an example, but the pollen that is the detection target of the fluorescence detector 1 is not limited to cedar pollen, and the allergen-containing protein is also limited to the allergen-containing protein derived from cedar pollen. Not. Moreover, allergen-causing substances are not limited to pollen and pollen-derived allergen-containing proteins.
  • the number of pollen is specified as an index value indicating the amount of pollen
  • the concentration of the allergen-containing protein in a predetermined solution is specified as the index value indicating the amount of allergen-containing protein. Is not limited to this example.
  • the fluorescence detector 1 includes a suction unit 2, a path unit 3, branching units 4a and 4b, branch path units 5a, 5b and 5c, detection units 6a and 6b, a calculation unit 7 (first identification Part) and a storage unit 8.
  • a suction unit 2 a path unit 3
  • branching units 4a and 4b branch path units 5a, 5b and 5c
  • detection units 6a and 6b detection units 6a and 6b
  • a calculation unit 7 first identification Part
  • FIG. 2 is a diagram showing cedar pollen maintaining a spherical shape.
  • FIG. 3 is a diagram showing the ruptured cedar pollen.
  • Pollen such as cedar pollen is spherical immediately after being released from the plant as shown in FIG.
  • pollen ruptures as shown in FIG. 3 when wet by rain or when it comes into contact with environmental substances such as PM2.5 and yellow sand.
  • the pollen shown in FIG. 3 is immersed in sodium bicarbonate water and ruptured.
  • allergen-containing proteins that are present inside the pollen are released. Since this allergen-containing protein is pulverized in the air and has a smaller particle diameter, causing pollen asthma and the like, it is necessary to detect not only the pollen in the air but also the amount of the allergen-containing protein.
  • the suction unit 2 sucks a plurality of substances contained in the air into the fluorescence detector 1 by sucking the air around the fluorescence detector 1.
  • the configuration of the suction unit 2 is not particularly limited as long as suction can be performed at a predetermined suction speed or air can be sucked by a predetermined suction amount.
  • the path unit 3 is a path through which a plurality of substances sucked by the suction unit 2 pass, and is, for example, a pipe. Further, the path unit 3 branches into a plurality of branch path units 5.
  • Branch part 4 branches a plurality of substances in the air flow path sucked by the suction part 2 into different branch path parts 5 according to the size of the substance.
  • a specific example of the branching unit 4 is a virtual impactor.
  • a virtual impactor is based on the principle that when a substance accelerates or decelerates in a gas flow, or changes direction, the substance deviates from the gas streamline due to the inertia of the substance. Depending on the route.
  • the branching section 4 is not limited to a virtual impactor as long as a plurality of substances can be branched into different branch path sections 5 according to the size of the substances.
  • the fluorescence detector 1 includes two branch portions 4 (a branch portion 4a and a branch portion 4b).
  • the branch part 4a sends a substance having a particle size of about allergen-containing protein (for example, less than 10 ⁇ m) to the branch path part 5a.
  • the branch part 4b sends a substance having a particle size of about pollen (for example, less than 30 ⁇ m) to the branch path part 5b, and sends a substance having a particle size larger than the pollen (for example, 30 ⁇ m or more) to the branch path part 5c.
  • the particle size in parentheses is an example, and is not limited to the above example.
  • the branch path unit 5 is a path branched from the path unit 3.
  • the fluorescence detector 1 is provided with three branch path parts 5 (branch path parts 5a, 5b, 5c), and a substance having a particle size of about allergen-containing protein passes through the branch path part 5a.
  • a substance having a particle size of about pollen passes through the branch path portion 5b.
  • a substance having a particle size larger than pollen passes through the branch path portion 5c.
  • the detection part 6 is not provided in the branch path
  • the detection part 6a and the detection part 6b are provided in the branch path part 5a and the branch path part 5b, respectively.
  • the branch path unit 5 is configured to discharge the finally passed substance to the outside, but is not limited to this structure, and collects the substance inside the fluorescence detector 1. It may be a configuration.
  • sucks the substance with a particle size larger than pollen to the said filter may be sufficient.
  • the detection unit 6 irradiates the passing substance with excitation light, and detects fluorescence emitted from the allergen-containing substance.
  • Information based on the detected fluorescence specifically, fluorescence intensity for each wavelength, hereinafter simply referred to as “fluorescence intensity”
  • identification information for identifying the detection unit 6a and the detection unit 6b are output to the calculation unit 7.
  • fluorescence intensity specifically, fluorescence intensity for each wavelength, hereinafter simply referred to as “fluorescence intensity”
  • identification information for identifying the detection unit 6a and the detection unit 6b are output to the calculation unit 7.
  • the fluorescence detector 1 includes two detection units 6 (detection unit 6a and detection unit 6b).
  • the detection unit 6a is provided in the branch path unit 5a and includes an irradiation unit 61a, a light receiving unit 62a, and a control unit 63a.
  • the detection part 6b is provided in the branch path
  • irradiation unit 61 when it is not necessary to distinguish between the irradiation units 61a and 61b, the light receiving units 62a and 62b, and the control units 63a and 63b, they are referred to as “irradiation unit 61”, “light receiving unit 62”, and “control unit 63”, respectively. To do.
  • the irradiation unit 61 is a light source that irradiates a substance passing through the branch path unit 5 with excitation light. Note that it is preferable to use an LED (light emitting diode) as the irradiation unit 61.
  • a laser may be used as the irradiation unit 61. However, when a laser is used, there are problems such as an increase in the size of the device and an increase in the manufacturing cost of the device.
  • the light receiving unit 62 is a light receiving element that receives fluorescence emitted from the allergen-containing material among the materials that pass through the branch path unit 5.
  • the detection unit 6 including the light receiving unit 62 is preferably configured to block light from the outside in order to prevent noise due to ambient light. Further, by linking the irradiating unit 61 and the light receiving unit 62, the fluorescence intensity of the fluorescence received by the light receiving unit 62 when the irradiating unit 61 radiates the excitation light and the irradiation unit 61 does not irradiate the excitation light.
  • the control unit 63 controls driving of the irradiation unit 61 and the light receiving unit 62. Specifically, when the substance passes through the branch path unit 5 (for example, when a predetermined time has elapsed since the suction unit 2 started suction), the control unit 63 drives the irradiation unit 61 to generate excitation light. Is emitted and the light receiving unit 62 is driven to receive the fluorescence.
  • FIG. 4 is a diagram showing fluorescence characteristics of cedar pollen when irradiated with excitation light having a wavelength of 360 nm
  • FIG. 5 is a diagram showing details of the detection unit 6a shown in FIG.
  • the horizontal axis of the graph shown in FIG. 4 shows the wavelength (wavelength) of fluorescence
  • shaft shows the intensity
  • cedar pollen emits fluorescence having a peak wavelength of 460 nm when irradiated with light of 360 nm (ultraviolet light).
  • the irradiation part 61 is comprised so that 360-nm light may be irradiated, and the light-receiving part 62 is comprised so that 460-nm light may be received.
  • the irradiating unit 61a selectively transmits light having a wavelength of 400 nm or less (blocks light having a wavelength longer than 400 nm), and a short pass filter 65a (first light blocking member). It has.
  • the light receiving unit 62a includes a band pass filter 66a (second light shielding member) that selectively transmits light having a wavelength of 450 nm to 500 nm (shields light other than this wavelength band).
  • the short-pass filter 65a can suppress the amount of fluorescence generated from substances (for example, other organic substances) other than the pollen and protein to be detected.
  • the bandpass filter 66a can prevent excitation light from entering the light receiving unit 62 and causing noise, the amount of cedar pollen and the allergen-containing protein derived from cedar pollen can be detected more accurately. it can.
  • the structure of the detection part 6a is shown in FIG. 5, it is the same structure also about the detection part 6b.
  • control part 63 is provided for every detection part 6 in FIG. 1, the structure which controls the irradiation part 61 and the light-receiving part 62 which are contained in the some detection part 6 by one control part 63 may be sufficient.
  • the detection unit 6 may further include an amplification unit that amplifies the fluorescence intensity of the fluorescence received by the light receiving unit.
  • the calculation unit 7 specifies an index value indicating the amount of allergen-containing substance (specifically, allergen-containing protein derived from cedar pollen) passing through the branch path unit 5a based on the fluorescence intensity acquired from the detection unit 6a. Moreover, the calculating part 7 specifies the index value which shows the quantity of the allergen containing substance (specifically cedar pollen) which passes the branch path
  • the calculation unit 7 specifies the maximum value from the fluorescence intensity acquired by the detection unit 6 during a predetermined period (a period during which a predetermined amount of air passes through the branch path unit 5). Then, a calibration curve corresponding to the detection unit 6 that has output the fluorescence intensity is read from a calibration curve database 81 (hereinafter referred to as a calibration curve DB 81) stored in the storage unit 8, and the calibration curve and the specified maximum value are read out.
  • the index value is specified. Note that it is not essential to use the maximum value of the fluorescence intensity, and an average value, a mode value, an integrated value within a predetermined time, or the like may be used.
  • the calculation unit 7 specifies the index value of the allergen-containing protein derived from the cedar pollen from the calibration curve DB 81. Read the calibration curve. On the other hand, if the detection unit 6b is identified, a calibration curve for identifying the index value of cedar pollen is read from the calibration curve DB 81. That is, the calculation unit 7 specifies whether the allergen-containing substance is cedar pollen or an allergen-containing protein derived from cedar pollen, depending on whether the fluorescence intensity is acquired from the detection unit 6a or the detection unit 6b. . In other words, the calculation unit 7 specifies an index value indicating the amount of the allergen-containing substance by a method according to the branch path unit 5.
  • the calculation unit 7 may output the specified index value to an output unit (not shown).
  • the configuration of the output unit is not particularly limited as long as it can output the index value.
  • it may be a display unit such as a liquid crystal display, an audio output unit such as a speaker, or a print output such as a printer.
  • These output units may be included in the fluorescence detector 1 or may be included in another device that can communicate with the fluorescence detector 1. If another device is provided, the index value may be transmitted to the device and output.
  • the calculation unit 7 stores the specified index value in the storage unit 8 in association with information indicating whether it is cedar pollen or a cedar pollen-derived allergen-containing protein and information indicating the specified date and time. Also good.
  • the user may be configured to output the stored index value from the output unit using an operation unit (not shown).
  • the calculation unit 7 may be provided in the fluorescence detector 1 as shown in FIG. 1 or may be provided in a device outside the fluorescence detector 1. In the latter case, the fluorescence detector 1 may be provided with a communication unit (not shown), and the fluorescence intensity is transmitted to an external device (index value calculation device) via the communication unit to calculate the index value. Good. Further, the user may input the fluorescence intensity detected by the fluorescence detector 1 to the index value calculation device via a recording medium or manually.
  • the storage unit 8 stores various data handled by the fluorescence detector 1.
  • the calibration curve DB 81 described above is stored.
  • the calibration curve DB 81 is data indicating the calibration curve (correlation between the fluorescence intensity and the index value) of each target allergen-containing substance whose index value is specified by the fluorescence detector 1, for example, by substituting the fluorescence intensity.
  • This is a database including mathematical formulas for which index values are calculated.
  • the calibration curve DB 81 of this embodiment includes a calibration curve of cedar pollen and a calibration curve of allergen-containing protein derived from cedar pollen.
  • the storage unit 8 may be provided in the fluorescence detector 1 as shown in FIG. 1 or may be provided outside the fluorescence detector 1.
  • the fluorescence detector 1 may be provided with a communication unit (not shown), and necessary data may be acquired from the external storage unit 8 via the communication unit.
  • a database such as a calibration curve DB 81 may be stored in a device such as a server on the cloud, and data necessary for calculating the index value may be acquired from the device.
  • the device including the calculation unit 7 and the device including the storage unit 8 may be the same device or different devices. There may be.
  • FIG. 6 is a schematic diagram of a reflection type fluorescence measuring apparatus 20 used for measuring the fluorescence intensity of pollen
  • FIG. 7 is a graph showing the relationship between the number of cedar pollen and the fluorescence intensity
  • FIG. It is a graph which shows the relationship between the density
  • the reflection type fluorescence measuring apparatus 20 includes an excitation light source 21 that emits excitation light and a light receiving unit 22 that receives fluorescence.
  • the reflection type fluorescence measuring apparatus 20 optimizes the angle of the excitation light source 21, the angle of the light receiving unit 22, the height of the excitation light source 21, and the height of the light receiving unit 22 so that the fluorescence intensity of the object is maximized. Yes.
  • the excitation light source 21 an LED that emits excitation light of 365 nm is used.
  • an ultraviolet transmission filter having a half-value width of 30 nm centered on 365 nm is provided on the front surface of the excitation light source.
  • the light of 400 nm or more emitted from the LED is cut so that extra light other than the light necessary for the cedar pollen to emit fluorescence does not enter the light receiving unit 22.
  • cedar pollen A sample of the object (hereinafter referred to as cedar pollen) A shown in FIG. 6 was prepared as follows. First, weigh 1 mg of cedar pollen, add ultrapure water to prevent pollen rupture, and step by step so that the pollen concentration becomes 2 ng / ⁇ L, 20 ng / ⁇ L, 60 ng / ⁇ L, 100 ng / ⁇ L. An ultrapure aqueous solution (hereinafter, solution) was prepared. Next, 10 ⁇ L of the adjusted solution was dropped on a slide glass for holding the sample, and the slide glass on which the solution was dropped was allowed to stand and dried in consideration of use in actual air. As a result, four cedar pollen A samples respectively corresponding to the solutions of the above four concentrations were prepared. Thereafter, the fluorescence intensity of each sample was measured using the reflection type fluorescence measuring apparatus 20.
  • the number of pollen was visually measured for each sample using an optical microscope (not shown).
  • the number of pollen in each sample adjusted to have a pollen concentration of 2 ng / ⁇ L, 20 ng / ⁇ L, 60 ng / ⁇ L, and 100 ng / ⁇ L was 12, 41, 109, and 159, respectively.
  • a graph of the relationship between the number of cedar pollen and the fluorescence intensity shown in FIG. 7 was prepared.
  • the unit of fluorescence intensity “(au)” in FIG. 7 is an arbitrary unit, and the value detected by the reflection type fluorescence measuring apparatus 20 is used as it is for the value of fluorescence intensity in FIG.
  • FIG. 7 there is a correlation between the number of cedar pollen and the fluorescence intensity, and it can be seen that the amount (number) of cedar pollen corresponding to the fluorescence intensity can be specified by using this calibration curve.
  • the calculation unit 7 specifies the index value (number) of cedar pollen that has passed through the branching path unit 5b from the maximum value of the fluorescence intensity of the specified cedar pollen using the calibration curve (the mathematical formula showing the illustrated graph). .
  • a sample of the allergen-containing protein for measuring the fluorescence intensity using the reflection type fluorescence measuring device 20 was prepared as follows. First, about 0.04 g of cedar pollen was weighed and 1000 ⁇ L of protein extract was added. Thereafter, the protein was stored at 4 ° C., and the allergen-containing protein derived from cedar pollen was extracted over 12 hours. The protein extract is a solution for rupturing cedar pollen to extract protein contained in cedar pollen.
  • the solution from which the allergen-containing protein was extracted (cedar pollen concentration 40 ⁇ g / ⁇ L) was diluted with a buffer solution, and solutions with dilution ratios of 1000 times, 2000 times, 3000 times, 5000 times, 6000 times, and 7000 times were prepared. Thereafter, centrifugation was performed at 14000 rpm for 2 minutes. Next, 10 ⁇ L of the supernatant of the adjusted solution was dropped on a slide glass for holding the sample, and the slide glass on which the solution was dropped was allowed to stand and dried in consideration of use in actual air. As a result, six samples (allergen-containing protein samples) respectively corresponding to the solutions of the above six concentrations were prepared.
  • the fluorescence intensity of each sample was measured using the reflection-type fluorescence measuring device 20, and the amount of allergen-containing protein was specified using SPR.
  • the amount of allergen-containing protein in each sample was divided by the liquid amount (10 ⁇ L) of each sample, and the concentration (pg / ⁇ L) of allergen-containing protein in each sample was calculated.
  • concentration of the allergen containing protein derived from a cedar pollen, and fluorescence intensity shown in FIG. 8 was created. As shown in FIG. 8, there is a correlation between the concentration of the allergen-containing protein derived from cedar pollen and the fluorescence intensity.
  • the calculation unit 7 uses the calibration curve (the mathematical formula showing the illustrated graph) to determine the allergen-containing cedar pollen that has passed through the branching path unit 5a from the maximum fluorescence intensity of the identified allergen-containing protein derived from the cedar pollen.
  • the protein index value concentration of allergen-containing protein in the solution
  • the user can estimate the allergen amount by checking the index value of the allergen-containing protein.
  • the fluorescence detector 1 sends a substance of the size of the allergen derived from cedar pollen to the branch path part 5a among the plurality of types of sucked substances, and irradiates the excitation light with the detection part 6a. Fluorescence of allergen-containing protein derived from cedar pollen is received. In addition, the fluorescence detector 1 sends a substance having a size of about a cedar pollen to the branch path part 5b, irradiates excitation light at the detection part 6b, and receives the fluorescence of the cedar pollen.
  • the calculation unit 7 of the fluorescence detector 1 acquires the fluorescence intensity from the detection unit 6, and from the calibration curve DB 81 of the storage unit 8 according to which of the detection unit 6a and the detection unit 6b the fluorescence intensity is acquired. Then, the calibration curve of allergen-containing protein or the calibration curve of cedar pollen is read out. Then, the amount of allergen-containing substance (allergen-containing protein or cedar pollen derived from cedar pollen) is specified using the maximum value specified from the fluorescence intensity and the read calibration curve.
  • the fluorescence detector 1 can detect not only pollen but also the amount of pollen-derived allergen-containing protein. Moreover, since the fluorescence detector 1 sends the allergen-containing protein and the pollen to different branching path portions 5 and irradiates them with excitation light, each of the pollen and the allergen-containing protein can be accurately detected. Therefore, in a situation where the amount of floating pollen is small but the amount of allergen-containing protein is large, the user can be made aware that the amount of allergen-containing protein is large.
  • FIG. 9 is a diagram illustrating an example of a main configuration of the fluorescence detector 1a according to the present embodiment.
  • cedar pollen there are multiple types of pollen that cause hay fever, such as cypress pollen, ragweed pollen, and rice pollen, and the pollen scattered varies depending on the season and region.
  • the excitation wavelength and fluorescence wavelength of each pollen are different.
  • the fluorescence detector 1a includes a plurality of detection units 6a (specifically, detection units) having different allergens (specifically, allergen-containing protein types) to be detected in the branch path unit 5a. N parts 6a1 to 6an).
  • the branch path unit 5b includes a plurality of detection units 6b (specifically, n detection units 6b1 to 6bn) having different detection target allergens (specifically, types of pollen).
  • each detection unit 6 the irradiation unit 61 (not shown) emits excitation light in a wavelength band that excites the allergen to be detected, and the light receiving unit 62 (not shown)
  • the allergens receive fluorescence in the wavelength band emitted by irradiation with the excitation light. Therefore, at least one of the excitation light wavelength band and the receivable fluorescence wavelength band in each detection unit 6 is the excitation light wavelength band and the light reception in the irradiation unit 61 and the light reception unit 62 included in the other detection units 6. It is different from the possible fluorescence wavelength band.
  • detection unit 6 when it is not necessary to distinguish between the detection units 6a1 to 6an and the detection units 6b1 to 6bn, they are described as “detection unit 6”. Further, when it is not necessary to distinguish the detection units 6a1 to 6an, it is described as “detection unit 6a”, and when it is not necessary to distinguish the detection units 6b1 to 6bn, it is described as “detection unit 6b”.
  • each detection part 6 is an irradiation part, when a substance passes the branch path part 5 (for example, when predetermined time passes since the suction part 2 started suction). 61 is driven to emit excitation light, and the light receiving unit 62 is driven to receive fluorescence.
  • FIG. 10 is a diagram showing the fluorescence characteristics of the allergen-containing protein derived from the grass pollen when irradiated with excitation light having a wavelength of 440 nm.
  • allergen-containing protein derived from the grass plant pollen emits fluorescence having a peak wavelength of 515 nm when irradiated with light of 440 nm.
  • the irradiation part 61 in the detection part 6a for detecting the fluorescence of the allergen-containing protein derived from the plant moth pollen is configured to emit light of 440 nm, and the light receiving part 62 receives light of 515 nm. Is configured to do.
  • the detection unit 6b for detecting the giant grass pollen is configured to emit light of 440 nm.
  • the calibration curve DB 81 stores a calibration curve of pollen (a cedar pollen calibration curve and another pollen calibration curve) that is a detection target of each detection unit 6b.
  • a calibration curve of pollen-derived allergen-containing protein that is a detection target of each detection unit 6a (a calibration curve of allergen-containing protein derived from cedar pollen and a calibration curve of allergen-containing protein derived from other pollen) is also stored. That is, the calibration curve DB 81 includes calibration curves of a plurality of allergen-containing substances, information for identifying each allergen-containing substance (for example, “cedar pollen”, “allergen-containing protein derived from cedar pollen”, etc.), and the detection unit 6.
  • FIG. 11 is a graph showing the relationship between fluorescence intensity and allergen-containing protein derived from giant grass pollen, which is an example of such a calibration curve.
  • Oo-Takusa pollen is pollen that is scattered at a different time from cedar pollen and mainly causes autumn hay fever.
  • FIG. 11 there is a correlation between the concentration of the allergen-containing protein derived from the grasshopper pollen and the fluorescence intensity. For this reason, it can be seen that by using this calibration curve, the concentration of allergen-containing protein derived from the grasshopper pollen corresponding to the fluorescence intensity can be specified.
  • a calibration curve for allergen-containing protein derived from the grass plant pollen was prepared as follows. First, about 0.01 g of Oobakutakusa pollen was weighed and 2000 ⁇ L of protein extract was added. Thereafter, the protein was stored at 4 ° C., and the protein containing the giant grass pollen allergen was extracted over 18 hours.
  • the solution from which the allergen-containing protein was extracted (Oobakusa pollen concentration 5 ⁇ g / ⁇ L) was diluted with a buffer solution, and solutions with dilution ratios of 1000 times, 2000 times, 3000 times, 5000 times, 6000 times, and 7000 times were prepared. Thereafter, centrifugation was performed at 14000 rpm for 2 minutes. Next, 10 ⁇ L of the supernatant of the adjusted solution was dropped on a slide glass for holding the sample, and the slide glass on which the solution was dropped was allowed to stand and dried in consideration of use in actual air. As a result, six samples (allergen-containing protein samples) respectively corresponding to the solutions of the above six concentrations were prepared.
  • FIG. 1 The graph which shows the relationship between the density
  • the calculation unit 7 reads a calibration curve from the calibration curve DB 81 according to the identification information acquired from the detection unit 6.
  • the identification information of the detection unit 6 that detects the allergen-containing substance and the calibration curve are associated with each of the plurality of types of allergen-containing substances. Therefore, it can be said that the calculation unit 7 according to the present embodiment specifies not only the pollen or the allergen-containing protein but also the type of the pollen or the allergen-containing protein based on the identification information.
  • the fluorescence detector 1a can identify the index values indicating the amounts of the multiple types of pollen and the allergen-containing protein derived from the multiple types of pollen.
  • the detection unit 6a1 illustrated in FIG. 9 sets the allergen-containing protein derived from cedar pollen as the detection target
  • the detection unit 6a2 sets the allergen-containing protein derived from the giant grass pollen as the detection target.
  • the detection part 6b1 makes cedar pollen a detection object
  • the detection part 6b2 makes a giant obetor pollen a detection object. This eliminates the need to install different fluorescence detectors depending on the season and region.
  • the same fluorescence detector 1a is used in spring and autumn, and the pollen itself and the index value indicating the amount of allergen-containing protein are specified for the cedar pollen and the giant grasshopper pollen. be able to.
  • FIG. 12 is a diagram illustrating an example of a main configuration of the fluorescence detector 1b according to the present modification.
  • the detection unit 6a according to the present embodiment includes a plurality of irradiation units 61a (specifically, n irradiation units 61a1 to 61an).
  • the detection unit 6b includes a plurality of irradiation units 61b (specifically, n irradiation units 61b1 to 61bn).
  • irradiation unit 61 when it is not necessary to distinguish each of the irradiation units 61a1 to 61an and the detection units 61b1 to 61bn, they are referred to as “irradiation unit 61”.
  • the control unit 63 drives each irradiation unit 61 at different timings, and each irradiation unit 61 emits excitation light in a wavelength band that excites the allergen-containing substance to be detected.
  • the light receiving unit 62 receives fluorescence (that is, light in a wide wavelength band) emitted from a plurality of allergen-containing substances to be detected. Thereby, the fluorescence emitted from a plurality of types of allergen-containing substances can be detected by one light receiving unit 62. Therefore, a plurality of types of allergen-containing substances can be detected by a smaller number of light receiving units 62 and control units 63 than in the fluorescence detector 1a.
  • the irradiation unit 61 a and the irradiation unit 61 b are described side by side, but this is for easy understanding that the detection unit 6 includes a plurality of irradiation units 61.
  • the arrangement of 61 is not limited to the example of FIG. Moreover, it is preferable that the irradiation part 61 is arrange
  • the detection unit 6 outputs, to the calculation unit 7, irradiation unit identification information that identifies the irradiation unit 61 that has irradiated the excitation light that has caused the fluorescence, together with the fluorescence intensity.
  • the calibration curve DB 81 includes information for identifying allergen-containing substances (for example, “cedar pollen”, “allergen-containing protein derived from cedar pollen”, etc.), and a calibration curve for allergen-containing substances. It is stored in association with identification information.
  • the light emitted from the allergen-containing substance when the irradiation units 61 are sequentially driven is sequentially received by the light receiving unit 62, and the cause of the fluorescence having the maximum fluorescence intensity Fluorescence intensity of each fluorescence (that is, a plurality of fluorescence generated by different excitation lights) that identifies the allergen-containing substance from the irradiation part identification information of the irradiation part 61 that has been irradiated with the excitation light or that is received by the light receiving part 62 It is conceivable that the allergen-containing substance is specified from the ratio.
  • the calculation unit 7 After specifying the allergen-containing substance, the calculation unit 7 reads a calibration curve associated with the irradiation unit identification information of the irradiation unit 61 that has irradiated the excitation light that caused the fluorescence with the maximum fluorescence intensity. Then, an index value indicating the amount of the allergen-containing substance (the specified pollen-derived allergen-containing protein or the specified pollen) is specified using the specified fluorescence intensity and the read calibration curve.
  • FIG. 13 is a diagram showing the fluorescence characteristics of an allergen-containing protein derived from a dust mite.
  • the allergen-containing protein derived from a mushroom mite emits fluorescence having a peak wavelength of 440 nm when irradiated with ultraviolet light (specifically, light of 360 nm).
  • fluorescence of yellow to green is emitted by irradiation with visible light (specifically, light having a wavelength of 400 to 490 nm).
  • the fluorescence detector 1a includes a branching path part 5 (for example, a branching path part 5d and de (not shown)) different from the branching path parts 5 to 5c, and sends a substance having a particle size about the size of a mushroom mite to the branching path part 5d.
  • a branching part 4d and a branching part 4e that sends a substance having a particle size of about the size of the allergen-containing protein from the mushroom mite to the branching path part 5e, and the irradiation part that emits the excitation light described above is provided in the branching path parts 5d and 5e.
  • the fluorescence detector 1b includes the irradiation unit 61 that emits the above-described excitation light in the detection unit 6, thereby detecting the dust mite and the allergen-containing protein derived from the dust mite.
  • the leopard mite was taken as an example, but other types of mites and mite-derived allergen-containing proteins may be detected.
  • the detection part 6 according to the fluorescence characteristic of the tick to detect and the allergen containing protein derived from a tick should just be provided.
  • FIG. 14 is a diagram showing the fluorescence characteristics of an allergen-containing protein derived from cedar pollen and an allergen-containing protein derived from cypress pollen
  • (a) is a diagram showing the fluorescence characteristics when irradiated with excitation light of 360 nm
  • (B) is a figure which shows the fluorescence characteristic when 440 nm excitation light is irradiated.
  • FIG. 15 is a diagram illustrating an example of a main configuration of the fluorescence detector 1c according to the present embodiment.
  • “pollen fluorescence” described in FIGS. 14A and 14B indicates fluorescence of pollen-derived allergen-containing protein.
  • Embodiment 2 has described the configuration in which the detection unit 6 is provided for each allergen-containing substance to be detected. However, there is a possibility that another allergen-containing substance fluoresces with excitation light for exciting one allergen-containing substance.
  • an allergen-containing protein derived from cypress pollen when an allergen-containing protein derived from cypress pollen is irradiated with excitation light (360 nm) that excites an allergen-containing protein derived from cedar pollen, the allergen-containing protein derived from cedar pollen is irradiated. It emits weaker fluorescence than when Therefore, when both the allergen-containing protein derived from cypress pollen and the allergen-containing protein derived from cedar pollen are scattered, the cedar pollen is irradiated with excitation light for detection of the allergen-containing protein derived from cedar pollen. Not only allergen-containing proteins derived but also allergen-containing proteins derived from cypress pollen emit fluorescence.
  • the allergen-containing protein derived from cedar pollen when the allergen-containing protein derived from cedar pollen is irradiated with excitation light (440 nm) that excites the allergen-containing protein derived from cypress pollen, the allergen-containing protein derived from cypress pollen is irradiated. It emits weaker fluorescence than when Therefore, when both the allergen-containing protein derived from cypress pollen and the allergen-containing protein derived from cedar pollen are scattered, even when irradiated with excitation light for detection of the allergen-containing protein derived from cypress pollen, Not only allergen-containing proteins derived from cypress pollen but also allergen-containing proteins derived from cedar pollen emit fluorescence.
  • excitation light 440 nm
  • the allergen-containing substance that is different from the detection target allergen-containing substance fluoresces with the excitation light emitted from the detection unit 6 that targets the allergen-containing substance as a detection target.
  • cypress pollen is identified as cedar pollen.
  • the storage unit 8c stores a spectrum database 82 (hereinafter, spectrum DB 82).
  • spectrum DB 82 identifies the fluorescence spectra of a plurality of allergen-containing substances, information for identifying each allergen-containing substance (for example, “cedar pollen”, “allergen-containing protein derived from cedar pollen”, etc.), and identification for identifying the detection unit 6.
  • It is a database that is stored in association with information.
  • the identification information of the detection unit 6a1 is associated with a name indicating an allergen-containing protein derived from cedar pollen and an allergen-containing protein derived from cypress pollen and a spectrum illustrated in FIG.
  • the identification information of the detection unit 6a2 is associated with a name indicating the allergen-containing protein derived from cedar pollen and the allergen-containing protein derived from cypress pollen and the spectrum illustrated in FIG.
  • the calculation unit 7c acquires the identification information and the fluorescence intensity from the detection unit 6, the calculation unit 7c reads the fluorescence spectrum of the allergen-containing substance specified by the identification information from the spectrum DB 82. Then, by calculating the ratio of the maximum values of the plurality of acquired fluorescence intensities (for example, the maximum value of the fluorescence intensity acquired from the detection unit 6a1 and the maximum value of the fluorescence intensity acquired from the detection unit 6a2), the branch path unit The main component of the allergen-containing substance that has passed 5 is specified.
  • the calculation unit 7c the main component of the allergen-containing substance is Identified as an allergen-containing protein derived from cedar pollen.
  • the maximum value of the fluorescence intensity acquired from the detection unit 6a1 is about 0.7 times the maximum value of the fluorescence intensity acquired from the detection unit 6a2
  • the calculation unit 7c the main component of the allergen-containing substance is: Identified as an allergen-containing protein derived from cypress pollen.
  • the calculation unit 7 c may specify an index value indicating the amount of each allergen-containing substance that has passed through the branch path unit 5.
  • the calculation unit 7c calculates the allergen derived from cedar pollen out of the allergen-containing substances that have passed through the branching path unit 5, based on the calculated ratio of the maximum fluorescence intensity. Calculate the percentage of protein contained.
  • the index value which shows the quantity of the allergen containing protein derived from a cedar pollen is specified using the said ratio and the calibration curve of the allergen containing protein derived from the cedar pollen read from calibration curve DB81.
  • FIG. 16 is a diagram illustrating an example of a main configuration of the fluorescence detector 1d according to the present embodiment.
  • the fluorescence detector 1d further includes a heating part 9a for heating the allergen-containing substance in the branch path part 5a and a heating part 9b for heating the allergen-containing substance in the branch path part 5b. Yes.
  • the heating unit 9a is referred to as “heating unit 9”.
  • the configuration of the heating unit 9 is not particularly limited as long as the allergen-containing substance at the time of irradiation with excitation light or immediately before the irradiation of excitation light can be heated to a predetermined temperature (preferably 100 to 200 ° C. as described later). .
  • the heating unit 9 is disposed immediately before the irradiation unit 61 in order to heat the allergen-containing substance immediately before the excitation light irradiation.
  • FIG. 17 is a graph showing the relationship between the concentration of the allergen-containing protein derived from cedar pollen and the fluorescence intensity before and after heating. It is known that the fluorescence intensity of a fluorescent substance is amplified by applying heat at the time of excitation light irradiation or immediately before excitation light irradiation. In particular, when heat of 100 to 200 ° C. is applied to the fluorescent material, the fluorescence intensity is amplified by several to several tens of times the fluorescence intensity measured without applying heat. As shown in FIG. 17, the fluorescence intensity of the allergen-containing protein is also amplified by heating for the allergen-containing protein derived from cedar pollen.
  • the calibration curve DB 81 stores the calibration curve of the cedar pollen and the allergen-containing protein derived from the cedar pollen according to the degree of heating by the heating unit 9. is doing. Thereby, in the fluorescence detector 1d, an index value indicating the amount of cedar pollen or an allergen-containing protein derived from cedar pollen can be specified.
  • the fluorescence detector 1d includes the heating unit 9 that heats the allergen-containing substance that passes through the branch path unit 5. As a result, the fluorescence intensity of the allergen-containing substance is amplified, so that a smaller amount of pollen and allergen-containing protein can be detected (lowering the detection limit).
  • the configuration of the present embodiment may be applied to other embodiments. That is, the heating unit 9 can be applied to the configurations of any of the embodiments described above and below.
  • FIG. 18 is a diagram illustrating an example of a main configuration of a fluorescence detector 1e according to Embodiment 5 of the present invention
  • FIG. 19 is a diagram illustrating details of the detection unit 6a1 of the fluorescence detector 1e.
  • the fluorescence detector 1e according to the present embodiment includes a plurality of detection units 6 (in each of the branch path unit 5a and the branch path unit 5b, similarly to the fluorescence detector 1a described in the second embodiment. 6a1-6an, 6b1-6bn). Although details will be described below, the fluorescence detector 1e is different from the fluorescence detector 1a in the configuration of the detection unit.
  • the detection unit 6 of the fluorescence detector 1e will be described with reference to FIG.
  • the detection unit 6a1 includes three light receiving units 64a1, a light receiving unit 64a2, and a light receiving unit 64a3.
  • the light receiving unit 64 may be a light receiving element such as a photodiode.
  • FIG. 19 shows the configuration of the detection unit 6a1, but the detection units 6a2 to 6an and 6b1 to 6bn have the same configuration.
  • the light receiving unit 64a1, the light receiving unit 64a2, and the light receiving unit 64a3 include a B filter 67a1, a G filter 67a2, and an R filter 67a3 (optical elements), respectively.
  • FIG. 20 is a diagram illustrating the light transmission characteristics of each filter provided in the light receiving unit 64.
  • the B filter 67a1 selectively transmits blue light (specifically, 400 to 500 nm)
  • the G filter 67a2 selectively transmits green light (specifically, 500 to 600 nm)
  • the R filter 67a3 selectively transmits red light (specifically, 600 to 700 nm).
  • the light receiving unit 64a1 including the B filter 67a1 receives the transmitted light of the B filter 67a1, that is, the blue component light, included in the fluorescence emitted by the allergic substance, and outputs the fluorescence intensity.
  • the light receiving unit 64a2 including the G filter 67a2 outputs the fluorescence intensity of the green component light included in the fluorescence emitted from the allergic substance
  • the light receiving unit 64a3 including the R filter 67a3 is the red component included in the fluorescence emitted from the allergic substance.
  • the fluorescence intensity of light is output.
  • each of these fluorescence intensities is output to the calculation unit 7e (second specifying unit).
  • the detection unit 6a1 is not limited to the example shown in FIG. 19A as long as it can separate fluorescence for each color component and detect the fluorescence intensity of each color component.
  • an image sensor 69a is provided instead of the plurality of light receiving portions 64a, and the image sensor 69a is provided with a color filter 68a (optical element) instead of the filter.
  • the image sensor 69a may be, for example, a charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS).
  • FIG. 19C is a view of the color filter 68a as viewed from above (fluorescence transmission direction). As shown in FIG.
  • the color filter 68a has a B filter region that selectively transmits blue light, a G filter region that selectively transmits green light, and an R filter region that selectively transmits red light. is doing.
  • Each region corresponds to each pixel of the image sensor 69a.
  • the transmission characteristics of each region are the same as those of the above-described filters. That is, the fluorescence emitted from the allergen-containing substance is decomposed into a blue component, a green component, and a red component by the color filter 68a, and enters each different region (each pixel) of the image sensor 69a. Then, the imaging element 69a specifies the intensities of the blue component, the green component, and the red component for the light received in each region.
  • each intensity of the blue component, the green component, and the red component is specified by averaging light incident on the B filter region, the G filter region, and the R filter region. Then, the image sensor 69a outputs the intensities of the fluorescent blue component, green component, and red component to the computing unit 7e.
  • the detection units 6a2 to 6an and 6b1 to 6bn may have the same configuration.
  • strength of the blue component of a fluorescence, a green component, and a red component is not limited to said example.
  • the light incident on the B filter region, the G filter region, and the R filter region may be integrated.
  • the detection unit 6a1 outputs the intensities of the blue, green, and red components of the fluorescence and the identification information of the detection unit 6a1 to the calculation unit 7e.
  • the calculation unit 7e calculates the gradation value of each component based on the acquired intensity of each component, and sets it as a gradation signal having the R value, the G value, and the B value as elements.
  • the fluorescence received by the light receiving unit 62 is converted into an electrical signal and output to the computing unit 7e.
  • the computing unit 7e converts the electrical signal into a gradation value by performing A / D conversion of the electrical signal, that is, processing for converting an analog signal into a digital signal.
  • the A / D conversion range depends on the magnitude of the fluorescence intensity.
  • a / D conversion may be performed after the electric signal is amplified by an amplifier.
  • the range of A / D conversion is determined based on the range of values that can be taken after amplification.
  • HSV conversion is performed on the gradation signal. Specifically, in the HSV conversion, parameters (calculated values, H value, S value, and V value, respectively) indicating the hue, saturation, and brightness of the fluorescence are calculated from the calculated gradation signal.
  • the H value, the S value, and the V value are calculated using the following calculation formula.
  • the maximum value (MAX) and the minimum value (MIN) of the gradation signal are defined as follows.
  • MAX max (R, G, B)
  • MIN min (R, G, B)
  • max (R, G, B) is the maximum value among the R value, G value, and B value
  • min (R, G, B) is the minimum value among the R value, G value, and B value. It is.
  • the H value, S value, and V value are calculated as follows. Note that the calculation formula of the H value differs depending on whether the minimum value is an R value, a G value, or a B value. In addition, when there are two minimum values, any one of two calculation formulas corresponding to the two values may be used.
  • H 60 ⁇ ⁇ (GR) / (MAX ⁇ MIN) ⁇ + 60
  • HSV space database 83 hereinafter, HSV space DB 83.
  • the HSV space DB 83 uses the H value, S value, and V value calculated from the fluorescence intensities of a plurality of allergen-containing substances as information for identifying each allergen-containing substance (for example, “cedar pollen” or “allergen-containing protein derived from cedar pollen”). Etc.), and a database stored in association with identification information for identifying the detection unit 6.
  • the calculation unit 7e reads the H value, S value, and V value of the allergen-containing substance specified by the identification information acquired from the detection unit 6 from the HSV space DB 83. Then, it is determined whether or not the calculated H value, S value, and V value match the read H value, S value, and V value. Note that the determination may not be a determination as to whether or not they completely match, and may be configured to determine whether or not each value is included in a predetermined range. And when it determines with the calculating part 7e being in agreement, the calibration curve of the said allergen containing substance is read from calibration curve DB81, and the index value which shows the quantity of an allergen containing substance is specified. Then, the calculation unit 7e generates display data based on the specified index value and causes the display unit 10 to display the display data.
  • the display unit 10 is a display device that displays an image, for example, a liquid crystal display. Specifically, the display unit 10 is controlled by the calculation unit 7e and displays display data generated by the calculation unit 7e.
  • the display data is an image for notifying the user of the amount of the allergen-containing substance.
  • the structure which specifies the kind of allergen containing substance may be sufficient.
  • the H value, S value, and V value stored in the HSV space DB 83 are associated with the H value, S value, and V value of another allergen-containing substance that has been excited by light of the same wavelength.
  • the H value of another associated allergen containing substance, S value The V value is read and compared with the calculated H value, S value, and V value.
  • the calibration curve of the said allergen containing material is read from calibration curve DB81.
  • the fluorescence detector 1e may be configured such that only the HSV space DB 83 is stored in the storage unit 8e, and only the type of the allergen-containing substance is specified by the above-described processing.
  • the fluorescence detector 1e may identify the type of the allergen-containing substance by comparing R value, G value, and B value without performing HSV conversion.
  • R values, G values, and B values calculated from the fluorescence intensities of a plurality of allergen-containing substances are used to identify each allergen-containing substance (for example, “cedar pollen” or “cedar pollen-derived” And the like are stored in the storage unit 8e.
  • the fluorescence intensity may be converted to a value different from the H value, S value, and V value by a conversion method other than HSV conversion.
  • the value calculated from the fluorescence intensities of a plurality of allergen-containing substances is used to identify each allergen-containing substance (for example, “cedar pollen” “cedar pollen-derived allergen-containing protein”). And a database stored in association with identification information for identifying the detection unit 6 is stored.
  • the fluorescence detector 1e decomposes the fluorescence emitted from the allergen-containing substance into a plurality of components. Further, parameters indicating the hue, saturation, and brightness of the fluorescence are calculated based on the intensities of the plurality of components, and compared with the parameters of each allergen-containing substance stored in the HSV space DB 83. Thereby, the kind of allergen containing substance can be specified more correctly. In addition, the allergen-containing substance and the other fluorescent substance can be more clearly distinguished. Note that the configuration of the present embodiment may be applied to other embodiments.
  • the fluorescence detectors 1, 1a to 1e described in the first to sixth embodiments may be provided in a cleaner, an air cleaner, or an air conditioner (so-called air conditioner).
  • the vacuum cleaner, the air cleaner, and the air conditioner may be configured to change the suction force based on an index value indicating the detected amount of the allergen-containing substance.
  • an index value indicating the detected amount of the allergen-containing substance.
  • the operating time may be changed based on the index value (more specifically, the operating time may be lengthened according to the size of the index value).
  • An index value indicating the amount of pollen-derived allergen-containing protein in the room and the decomposition of mite carcasses and feces by providing the fluorescence detectors 1, 1a to 1e in vacuum cleaners, air cleaners, and air conditioners. Can be accurately identified, and control according to the index value can be performed. Allergen-containing substances such as pollen-derived allergen-containing substances, dead mite bodies, and those obtained by decomposition of feces have a small particle size and easily re-scatter into the air.
  • an index value indicating the amount of the allergen-containing substance having a small particle diameter existing in the room can be specified more accurately, and the air cleaner can be controlled according to the index value.
  • the detection unit 6b that detects pollen and the detection unit 6a that detects the allergen-containing protein derived from the pollen include an irradiation unit 61 that emits light in the same wavelength band, and In the above description, the light receiving unit 62 that receives light in the same wavelength band is provided.
  • the irradiation unit 61b that irradiates light to cedar pollen and the irradiation unit 61a that irradiates light to an allergen-containing protein derived from cedar pollen emit light in the same wavelength band.
  • the light receiving unit 62b that receives the fluorescence emitted from the cedar pollen and the light receiving unit 62a that receives the fluorescence emitted from the allergen-containing protein derived from the cedar pollen are configured to receive light in the same wavelength band.
  • the fluorescence detectors 1, 1a to 1e according to the present invention are not limited to this example. That is, the wavelength band of the light emitted from the irradiation unit 61 and the wavelength band of the light received by the light receiving unit 62 are the characteristics of the substance to be detected (the wavelength of the light exciting the substance and the fluorescence emitted by the substance). It may be determined according to the characteristics). Therefore, depending on the substance, the wavelength band of the light emitted from the irradiation unit 61a may be different from the wavelength band of the light emitted from the irradiation unit 61b. Similarly, the wavelength band of light received by the light receiving unit 62a may be different from the wavelength band of light received by the light receiving unit 62b.
  • the pollen and the pollen-derived allergen-containing protein have been described as examples. However, the detection unit 6 that detects mites and the detection unit that detects mite-derived allergen-containing proteins described in the second embodiment. The same applies to 6.
  • control blocks (particularly the control unit 63 and the arithmetic unit 7) of the fluorescence detector 1 and 1a to 1e may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU It may be realized by software using (Central Processing Unit).
  • the fluorescence detectors 1 and 1a to 1e are a CPU that executes instructions of a program that is software for realizing each function, and a ROM in which the program and various data are recorded so as to be readable by a computer (or CPU). (Read Only Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a fluorescence detection apparatus (fluorescence detector 1) according to aspect 1 of the present invention is a fluorescence detection apparatus that detects fluorescence emitted from an allergen-containing substance in the aspirated air, which includes an allergen that is a causative substance of allergy.
  • a branch portion (branch portion 4) for branching the allergen-containing substance into different branch path portions (branch path portion 5) according to the size of the allergen-containing substance, and excitation light in the branch path portion
  • the detection part (detection part 6) which detects the fluorescence which the said allergen containing substance in this branch path part emits is provided in at least two of the said branch path parts.
  • the allergen-containing substance that has been sucked is branched into different branching path portions corresponding to the size of the causative substance, and the allergen-containing substance that passes through at least two branching path parts among the branching path parts. Then, the excitation light is irradiated and the generated fluorescence is detected. Thereby, the fluorescence of the allergen-containing substances having different sizes is detected by the detection units provided in the different branch paths. Therefore, each of the allergen-containing substances having different sizes can be easily detected.
  • the fluorescence detection device shows the type of the allergen-containing substance and the amount of the allergen-containing substance in a manner according to the branch path part provided with the detection part in the aspect 1.
  • a first specifying unit (calculation unit 7) that specifies at least one of the index values may be further provided.
  • At least one of the type of the allergen-containing substance and the index value indicating the amount of the allergen-containing substance is specified by a method corresponding to the branch path part provided with the detection unit.
  • at least one of the above-mentioned kind and the above-mentioned index value can be specified by the method according to the allergen-containing substance sent to the different branch path parts. Therefore, it is possible to accurately specify at least one of the type and the index value.
  • the index value of a cedar pollen and a protein containing an allergen derived from cedar pollen is determined using a calibration curve of cedar pollen for the fluorescence detected in the branch path part through which the pollen passes.
  • the index value is specified using a calibration curve of the protein containing the allergen derived from cedar pollen.
  • the detection unit may include a plurality of irradiation units (irradiation units 61) that emit the excitation light in different wavelength bands.
  • the detection unit since the detection unit includes a plurality of irradiation units that emit excitation light of different wavelength bands, even when a plurality of types of allergen-containing substances pass through one branch path unit, Fluorescence can be generated in all the plurality of allergen-containing substances. Thereby, the fluorescence of each of a plurality of types of allergen-containing substances having the same size can be detected.
  • At least one branch path unit is provided with a plurality of detection units each having a different allergen-containing substance to be detected, the fluorescence of each of a plurality of types of allergen-containing substances having the same size can be obtained. Can be detected.
  • each detection unit detects fluorescence emitted by different allergen-containing substances, it is possible to simultaneously detect fluorescence of a plurality of types of allergen-containing substances having the same size.
  • the fluorescence detection apparatus is the fluorescence detection device according to any one of Aspects 1 to 4, wherein the allergen-containing substance provided in the branch path portion provided with the detection unit is sent to the branch path portion. You may further provide the heating part (heating part 9) heated just before the irradiation of the said excitation light, or at the time of irradiation.
  • the allergen-containing substance is heated immediately before the excitation light irradiation or at the time of excitation light irradiation. Since the fluorescence intensity of a substance that emits fluorescence, such as an allergen-containing substance, is enhanced by heating, the fluorescence can be detected even by a small amount of allergen-containing substance by heating the allergen-containing substance.
  • the detection unit irradiates the allergen-containing substance with the excitation light (irradiation unit 61), and the allergen-containing material.
  • a light-receiving unit (light-receiving unit 62) that receives fluorescence emitted from the substance, and the irradiation unit includes a first light-blocking member (short-pass filter 65a) that blocks light in a wavelength band that can be received by the light-receiving unit. May be.
  • the irradiation part since the irradiation part is equipped with the 1st light shielding member which light-shields the light of the wavelength band which a light-receiving part can receive, the wavelength band which the light-receiving part irradiated by the irradiation part can receive Is not received by the light receiving unit. Therefore, it can prevent that the light irradiated by the irradiation part turns into the noise of the fluorescence which the allergen containing substance emitted.
  • the detection unit includes an irradiation unit (irradiation unit 61) that irradiates the allergen-containing substance with the excitation light, and the allergen-containing material.
  • a light-receiving unit (light-receiving unit 62) that receives fluorescence emitted from the substance, and the light-receiving unit may include a second light-blocking member (band-pass filter 66a) that blocks light in the wavelength band of the excitation light. .
  • the light receiving unit since the light receiving unit includes the second light blocking member that blocks light in the wavelength band of the excitation light, the excitation light is not received by the light receiving unit. Therefore, it can prevent that excitation light becomes the noise of the fluorescence which the allergen containing substance emitted.
  • the fluorescence detection device is the fluorescence detection apparatus according to any one of aspects 1 to 7, wherein the detection unit includes a plurality of light reception units (light reception units 64) that receive fluorescence emitted from the allergen-containing substance, You may provide the some optical element (B filter 67a1, G filter 67a2, R filter 67a3) which radiate
  • the some optical element B filter 67a1, G filter 67a2, R filter 67a3
  • the plurality of optical elements emit light of different wavelength bands included in the fluorescence to each of the plurality of light receiving units.
  • the fluorescence detection apparatus can acquire the data which decomposed
  • the detection unit includes a light receiving unit (light receiving unit 64) that receives fluorescence emitted from the allergen-containing substance, and the fluorescence
  • region of a light-receiving part may be provided.
  • the optical element emits light of different wavelength bands included in the fluorescence to different regions of the light receiving unit.
  • the fluorescence detection apparatus can acquire the data which decomposed
  • the fluorescence detection device calculates a calculated value different from the intensity from the intensity of light in each wavelength band, and calculates the calculated value from a plurality of pre-calculated values. You may further provide the 2nd specific
  • the allergen-containing Since the type of substance is specified, there is a possibility that the type of allergen-containing substance can be specified when it is difficult to specify the type of allergen-containing substance from the fluorescence intensity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention easily detects allergen-containing substances having different sizes. A fluorescence detector (1) is provided with a branching unit (4) that causes allergen-containing substances that have been suctioned to be branched into different branch paths (5) which conform to the sizes of the allergen-containing substances. At least two of the branch paths (5) are provided with a detector (6) that radiates excitation light into the branch paths (5) and thereby detects fluorescent light emitted by the allergen-containing substances in the branch paths (5).

Description

蛍光検出装置Fluorescence detection device
 本発明は、アレルゲン含有物質が発する蛍光を検出する蛍光検出装置に関する。 The present invention relates to a fluorescence detection apparatus for detecting fluorescence emitted from an allergen-containing substance.
 近年、花粉やダニなどを原因とするアレルギーが問題となっている。例えば、アレルギーの1つである花粉症は、花粉粒子に含まれるタンパク質であるアレルゲンによって引き起こされる。日本国内には花粉症を発症している患者が多いため、特に花粉が飛散する時期に、日々飛散している花粉量が計測され、公開されている。 In recent years, allergies caused by pollen and ticks have become a problem. For example, hay fever, which is one of allergies, is caused by an allergen, a protein contained in pollen particles. Since there are many patients who develop hay fever in Japan, the amount of pollen scattered every day is measured and published especially at the time when pollen is scattered.
 従来の花粉の飛散量の計測方法としては、ダーラム型花粉捕集器を用いた方法がある。しかしながら、ダーラム型花粉捕集器を用いた方法では、測定に時間がかかり、また、目視で行うため誤差が大きくなる。測定時間を短縮するための方法としては、空気を吸引することで取り込んだ花粉に励起光を照射し、検出した蛍光に基づいて花粉量を算出する方法がある。また、花粉の飛散量だけでなく、下記の特許文献1のように、検出した蛍光に基づいて飛散する花粉の種類を特定する方法もある。他にも、空気を吸引して、吸引した空気に含まれる物質の粒径、形状、偏光度などに基づいて当該物質が花粉であるか否かを識別し、空気中の花粉量を算出する方法がある。下記の特許文献2では、吸引した物質にレーザー光を照射し、物質の粒径、偏光度に基づいて当該物質が花粉であるか否か識別している。これらの方法は、花粉粒子(すなわち、花粉そのもの)に関する情報(量、種類など)を特定する手段として用いられている。 As a conventional method for measuring the amount of pollen scattered, there is a method using a Durham type pollen collector. However, in the method using the Durham type pollen collector, the measurement takes time, and the error increases because it is performed visually. As a method for shortening the measurement time, there is a method in which the pollen taken in by sucking air is irradiated with excitation light, and the amount of pollen is calculated based on the detected fluorescence. In addition to the amount of pollen scattered, there is also a method for specifying the type of pollen that is scattered based on the detected fluorescence, as in Patent Document 1 below. In addition, air is sucked, and whether or not the substance is pollen is calculated based on the particle size, shape, polarization degree, etc. of the substance contained in the sucked air, and the amount of pollen in the air is calculated. There is a way. In the following Patent Document 2, a laser beam is irradiated on the sucked substance, and whether or not the substance is pollen is identified based on the particle size and the degree of polarization of the substance. These methods are used as means for specifying information (amount, type, etc.) regarding pollen particles (that is, pollen itself).
 一方で、花粉粒子に含まれるアレルゲンが、空気中でより小さい粒径となっているため、小さい粒径となったアレルゲンを原因とする花粉喘息の発症が近年報告されている。例えばスギ花粉の場合、数μm、または1.1μm以下の粒径範囲のアレルゲン(以下、微小アレルゲン)が空気中に高い割合で存在し、都市部では山間部よりも多くの微小アレルゲンが存在することが報告されている。 On the other hand, since the allergen contained in the pollen particles has a smaller particle size in the air, the onset of pollen asthma caused by the allergen having a small particle size has recently been reported. For example, in the case of cedar pollen, allergens having a particle size range of several μm or 1.1 μm or less (hereinafter referred to as microallergens) are present in a high proportion in the air, and there are more microallergens in urban areas than in mountainous areas. It has been reported.
 また、花粉症以外のアレルギーの一例として、ダニアレルギーが挙げられる。ダニアレルギーの原因となるアレルゲン(ダニアレルゲン)は、ダニそのものやダニの糞がある。ダニは100μmから200μm程度の大きさであり、ダニの糞は40μmから100μm程度の大きさであり、上述した花粉粒子に含まれるアレルゲンに比べて粒径が大きい。しかしながら、ダニの死骸やダニの糞は乾燥することで細かく粉末状に分解され、数μm以下まで粒径が小さくなる(すなわち、微小アレルゲンとなる)ことが知られている。 As an example of allergies other than hay fever, mite allergy can be mentioned. Allergens that cause tick allergies (mite allergens) include mites themselves and mite feces. The mites have a size of about 100 μm to 200 μm, the mite feces have a size of about 40 μm to 100 μm, and the particle size is larger than the allergen contained in the above-mentioned pollen particles. However, it is known that mite carcasses and mite feces are finely decomposed into powder by drying, and the particle size is reduced to several μm or less (that is, it becomes a microallergen).
 アレルゲンおよび微小アレルゲンの量を示す指標値(濃度など)を特定する方法としては、ELISA法を用いたもの、表面プラズモン共鳴(以下、SPR)法を用いたものが利用されている。しかしながら、これらの方法は測定に時間、コストがかかるという問題がある。 As a method for specifying an index value (concentration, etc.) indicating the amount of allergen and microallergen, those using an ELISA method and those using a surface plasmon resonance (hereinafter, SPR) method are used. However, these methods have a problem that measurement takes time and cost.
日本国公開特許公報「特開2001-242065号公報(2001年9月7日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2001-242065 (published on September 7, 2001)” 日本国公開特許公報「特開2008-216133号公報(2008年9月18日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-216133 (published on September 18, 2008)”
 以上より、近年では、花粉粒子だけでなく、花粉に含まれるアレルゲンや微小アレルゲンに関する情報も簡便に特定することが求められている。しかしながら、特許文献1および2に記載の技術では、アレルゲンや微小アレルゲンを検出対象としていない。 From the above, in recent years, it is required to easily specify not only pollen particles but also information on allergens and microallergens contained in pollen. However, the techniques described in Patent Documents 1 and 2 do not detect allergens or microallergens.
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、大きさの異なるアレルゲン含有物質のそれぞれを、簡便に検出可能な蛍光検出装置を実現することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to realize a fluorescence detection apparatus that can easily detect each of allergen-containing substances having different sizes.
 上記の課題を解決するために、本発明の一態様に係る蛍光検出装置は、アレルギーの原因物質であるアレルゲンを含む、吸引した空気中のアレルゲン含有物質が発する蛍光を検出する蛍光検出装置であって、吸引した空気の流路中の上記アレルゲン含有物質を、該アレルゲン含有物質の大きさに応じた異なる分岐経路部に分岐させる分岐部を備えているとともに、上記分岐経路部内に励起光を照射して該分岐経路部内の上記アレルゲン含有物質が発する蛍光を検出する検出部が、上記分岐経路部の少なくとも2つに設けられている。 In order to solve the above problems, a fluorescence detection device according to one embodiment of the present invention is a fluorescence detection device that detects fluorescence emitted from an allergen-containing substance in aspirated air that includes an allergen that is a causative agent of allergy. A branching part for branching the allergen-containing substance in the flow path of the sucked air into different branching path parts corresponding to the size of the allergen-containing substance, and irradiating the branching path part with excitation light And the detection part which detects the fluorescence which the said allergen containing substance in this branch path part emits is provided in at least two of the said branch path parts.
 本発明の一態様によれば、大きさの異なるアレルゲン含有物質のそれぞれを、簡便に検出することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that each of allergen-containing substances having different sizes can be easily detected.
本発明の実施形態1に係る蛍光検出器の要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on Embodiment 1 of this invention. 球形を保ったスギ花粉を示す図である。It is a figure which shows the cedar pollen which kept spherical shape. 破裂したスギ花粉を示す図である。It is a figure which shows the ruptured cedar pollen. 360nmの波長の励起光を照射したときのスギ花粉の蛍光特性を示す図である。It is a figure which shows the fluorescence characteristic of a cedar pollen when irradiated with the excitation light of a wavelength of 360 nm. 図1に示す検知部の詳細を示す図である。It is a figure which shows the detail of the detection part shown in FIG. 花粉の蛍光強度の測定に使用する反射型蛍光測定装置の概略図である。It is the schematic of the reflection type | mold fluorescence measuring apparatus used for the measurement of the fluorescence intensity of pollen. スギ花粉の個数と蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the number of cedar pollen and fluorescence intensity. スギ花粉由来のアレルゲンを含むタンパク質の濃度と蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the protein containing the allergen derived from a cedar pollen, and fluorescence intensity. 本発明の実施形態2に係る蛍光検出器の要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on Embodiment 2 of this invention. 440nmの波長の励起光を照射したときの、オオブタクサ花粉由来のアレルゲンを含むタンパク質の蛍光特性を示す図である。It is a figure which shows the fluorescence characteristic of the protein containing the allergen derived from a Obata taxa pollen when irradiated with the excitation light of a wavelength of 440 nm. オオブタクサ花粉由来のアレルゲンを含むタンパク質の濃度と蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the protein containing the allergen derived from Oobakusa pollen, and fluorescence intensity. 本発明の実施形態2の変形例に係る蛍光検出器の要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on the modification of Embodiment 2 of this invention. 360nmの波長の励起光を照射したときの、ヤケヒョウダニ由来のアレルゲンを含むタンパク質の蛍光特性を示す図である。It is a figure which shows the fluorescence characteristic of the protein containing the allergen derived from a house dust mite when irradiated with the excitation light of a wavelength of 360 nm. スギ花粉由来のアレルゲンを含むタンパク質およびヒノキ花粉由来のアレルゲンを含むタンパク質の蛍光特性を示す図であり、(a)は、360nmの励起光を照射したときの蛍光特性を示す図であり、(b)は、440nmの励起光を照射したときの蛍光特性を示す図である。It is a figure which shows the fluorescence characteristic of the protein containing the allergen derived from a cedar pollen, and the protein containing the allergen derived from cypress pollen, (a) is a figure which shows the fluorescence characteristic when irradiated with the excitation light of 360 nm, (b ) Is a diagram showing fluorescence characteristics when irradiated with excitation light of 440 nm. 本発明の実施形態3に係る蛍光検出器の要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る蛍光検出器の要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on Embodiment 4 of this invention. 加熱前および加熱後におけるスギ花粉由来のアレルゲンを含むタンパク質の濃度と蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the protein containing the allergen derived from a cedar pollen before a heating, and a fluorescence intensity. 本発明の実施形態5に係る蛍光検出器の要部構成の一例を示す図である。It is a figure which shows an example of a principal part structure of the fluorescence detector which concerns on Embodiment 5 of this invention. 図18に示す検知部の詳細を示す図である。It is a figure which shows the detail of the detection part shown in FIG. 図18に示す蛍光検出器の受光部に設けられたフィルタの光透過特性を示す図である。It is a figure which shows the light transmission characteristic of the filter provided in the light-receiving part of the fluorescence detector shown in FIG.
 〔実施形態1〕
 本発明の一実施形態について、図1~図8に基づいて説明すれば、以下のとおりである。
Embodiment 1
One embodiment of the present invention will be described below with reference to FIGS.
 (蛍光検出器1)
 まず、本実施形態に係る蛍光検出器1(蛍光検出装置)の要部構成について、図1を参照して説明する。図1は蛍光検出器1の要部構成の一例を示す図である。
(Fluorescence detector 1)
First, the configuration of the main part of the fluorescence detector 1 (fluorescence detection device) according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating an example of a main configuration of the fluorescence detector 1.
 蛍光検出器1は、アレルギーの原因物質(アレルゲン)を含む物質(以下、アレルゲン含有物質)が発する蛍光を検出する装置である。具体的には、本実施形態に係る蛍光検出器1は、空気中に含まれる、球形を保った花粉(すなわち、アレルゲン含有物質、以下、単に「花粉」と称する)と、アレルゲンを含む、花粉由来の複数種類のタンパク質(すなわち、アレルゲン含有物質、以下、アレルゲン含有タンパク質)とを吸引する。花粉およびアレルゲン含有タンパク質は励起光の照射によって所定波長の蛍光を発するので、蛍光検出器1は、当該蛍光を検出することにより、花粉の量を示す指標値、および、花粉由来のアレルゲン含有タンパク質の量を示す指標値を特定する。なお、本実施形態ではスギ花粉を例に挙げて説明するが、蛍光検出器1の検出対象である花粉はスギ花粉に限定されず、また、アレルゲン含有タンパク質もスギ花粉由来のアレルゲン含有タンパク質に限定されない。また、アレルギーの原因物質は花粉および花粉由来のアレルゲン含有タンパク質に限定されない。例えば、ダニ、およびダニアレルゲンを含有するタンパク質であってもよい。また、本実施形態では、花粉の量を示す指標値として花粉の個数を特定し、アレルゲン含有タンパク質の量を示す指標値として、所定の溶液中のアレルゲン含有タンパク質の濃度を特定するが、指標値はこの例に限定されない。 The fluorescence detector 1 is a device that detects fluorescence emitted from a substance containing an allergen causing substance (allergen) (hereinafter, allergen-containing substance). Specifically, the fluorescence detector 1 according to the present embodiment includes pollen that contains spherical pollen (that is, an allergen-containing substance, hereinafter simply referred to as “pollen”) and allergen contained in the air. A plurality of types of proteins (ie, allergen-containing substances, hereinafter, allergen-containing proteins) are aspirated. Since the pollen and the allergen-containing protein emit fluorescence of a predetermined wavelength when irradiated with excitation light, the fluorescence detector 1 detects the fluorescence, thereby indicating an index value indicating the amount of pollen, and the pollen-derived allergen-containing protein. An index value indicating the quantity is specified. In the present embodiment, cedar pollen is described as an example, but the pollen that is the detection target of the fluorescence detector 1 is not limited to cedar pollen, and the allergen-containing protein is also limited to the allergen-containing protein derived from cedar pollen. Not. Moreover, allergen-causing substances are not limited to pollen and pollen-derived allergen-containing proteins. For example, it may be a protein containing mites and mite allergens. In the present embodiment, the number of pollen is specified as an index value indicating the amount of pollen, and the concentration of the allergen-containing protein in a predetermined solution is specified as the index value indicating the amount of allergen-containing protein. Is not limited to this example.
 蛍光検出器1は、図1に示すように、吸引部2、経路部3、分岐部4a、4b、分岐経路部5a、5b、5c、検知部6a、6b、演算部7(第1の特定部)、および記憶部8を備えている。なお以降、分岐部4a、4b、分岐経路部5a、5b、5c、および検知部6a、6bを区別する必要が無い場合、それぞれ「分岐部4」、「分岐経路部5」、および「検知部6(検出部)」と記載する。 As shown in FIG. 1, the fluorescence detector 1 includes a suction unit 2, a path unit 3, branching units 4a and 4b, branch path units 5a, 5b and 5c, detection units 6a and 6b, a calculation unit 7 (first identification Part) and a storage unit 8. Hereinafter, when there is no need to distinguish between the branch portions 4a and 4b, the branch path portions 5a, 5b and 5c, and the detection portions 6a and 6b, “branch portion 4”, “branch path portion 5”, and “detection portion”, respectively. 6 (detection unit) ".
 ここで、図2および図3を参照して、花粉と、花粉由来のアレルゲン含有タンパク質とについて説明する。図2は球形を保ったスギ花粉を示す図である。また、図3は破裂したスギ花粉を示す図である。 Here, with reference to FIG. 2 and FIG. 3, pollen and pollen-derived allergen-containing protein will be described. FIG. 2 is a diagram showing cedar pollen maintaining a spherical shape. FIG. 3 is a diagram showing the ruptured cedar pollen.
 スギ花粉などの花粉は、図2に示すように植物から放出された直後は球形である。しかしながら、花粉は雨によって濡れたり、PM2.5、黄砂などの環境物質にふれたりすることで、図3に示すように破裂することが知られている。なお、図3に示す花粉は重曹水に浸して破裂させている。このように花粉が破裂すると、花粉の内部に存在する、アレルゲン含有タンパク質が放出される。このアレルゲン含有タンパク質は、空気中で粉砕され、より小さな粒径となることによって花粉喘息などの原因となるため、空気中の花粉だけでなくアレルゲン含有タンパク質の量を検出することが必要となる。 Pollen such as cedar pollen is spherical immediately after being released from the plant as shown in FIG. However, it is known that pollen ruptures as shown in FIG. 3 when wet by rain or when it comes into contact with environmental substances such as PM2.5 and yellow sand. In addition, the pollen shown in FIG. 3 is immersed in sodium bicarbonate water and ruptured. When pollen ruptures in this way, allergen-containing proteins that are present inside the pollen are released. Since this allergen-containing protein is pulverized in the air and has a smaller particle diameter, causing pollen asthma and the like, it is necessary to detect not only the pollen in the air but also the amount of the allergen-containing protein.
 (吸引部2および経路部3)
 吸引部2は、蛍光検出器1の周囲の空気を吸引することによって、空気中に含まれる複数の物質を蛍光検出器1内に吸引する。所定の吸引速度で吸引する、または、所定の吸引量だけ空気を吸引する事が出来れば、吸引部2の構成は特に限定されない。経路部3は、吸引部2によって吸引された複数の物質が通る経路であり、例えば配管である。また、経路部3は複数の分岐経路部5に分岐する。
(Suction unit 2 and path unit 3)
The suction unit 2 sucks a plurality of substances contained in the air into the fluorescence detector 1 by sucking the air around the fluorescence detector 1. The configuration of the suction unit 2 is not particularly limited as long as suction can be performed at a predetermined suction speed or air can be sucked by a predetermined suction amount. The path unit 3 is a path through which a plurality of substances sucked by the suction unit 2 pass, and is, for example, a pipe. Further, the path unit 3 branches into a plurality of branch path units 5.
 (分岐部4)
 分岐部4は、吸引部2によって吸引された空気の流路中の複数の物質を、当該物質の大きさに応じた異なる分岐経路部5に分岐させる。分岐部4の具体例としては、バーチャルインパクタが挙げられる。バーチャルインパクタとは、物質が気体の流れの中で加速または減速するとき、あるいは流れの方向を変えたときに、物質の慣性によって気体の流線から逸脱するという原理に基づいて、物質を大きさに応じて異なる経路に送るものである。なお、複数の物質を、当該物質の大きさに応じた異なる分岐経路部5に分岐させることができるものであれば、分岐部4はバーチャルインパクタに限定されない。
(Branch part 4)
The branch part 4 branches a plurality of substances in the air flow path sucked by the suction part 2 into different branch path parts 5 according to the size of the substance. A specific example of the branching unit 4 is a virtual impactor. A virtual impactor is based on the principle that when a substance accelerates or decelerates in a gas flow, or changes direction, the substance deviates from the gas streamline due to the inertia of the substance. Depending on the route. Note that the branching section 4 is not limited to a virtual impactor as long as a plurality of substances can be branched into different branch path sections 5 according to the size of the substances.
 図1に示すように、蛍光検出器1には2つの分岐部4(分岐部4aおよび分岐部4b)が備えられている。分岐部4aは、粒径がアレルゲン含有タンパク質程度(例えば、10μm未満)の物質を分岐経路部5aに送る。また、分岐部4bは、粒径が花粉程度(例えば30μm未満)の物質を分岐経路部5bに送り、粒径が花粉より大きい(例えば30μm以上の)物質を分岐経路部5cに送る。なお、括弧書きした粒径は一例であり、上記の例に限定されない。 As shown in FIG. 1, the fluorescence detector 1 includes two branch portions 4 (a branch portion 4a and a branch portion 4b). The branch part 4a sends a substance having a particle size of about allergen-containing protein (for example, less than 10 μm) to the branch path part 5a. Moreover, the branch part 4b sends a substance having a particle size of about pollen (for example, less than 30 μm) to the branch path part 5b, and sends a substance having a particle size larger than the pollen (for example, 30 μm or more) to the branch path part 5c. The particle size in parentheses is an example, and is not limited to the above example.
 (分岐経路部5)
 分岐経路部5は、経路部3から分岐した経路である。蛍光検出器1には3つの分岐経路部5(分岐経路部5a、5b、5c)が備えられており、分岐経路部5aは、粒径がアレルゲン含有タンパク質程度の物質が通過する。また、分岐経路部5bは、粒径が花粉程度の物質が通過する。また、分岐経路部5cは、粒径が花粉より大きい物質が通過する。なお、分岐経路部5cには検知部6は設けられていない。すなわち、粒径が花粉より大きい物質には、アレルゲン含有物質が含まれないものとして、分岐経路部5cを経由して蛍光検出器1から排出される。一方、分岐経路部5aおよび分岐経路部5bには、それぞれ検知部6aおよび検知部6bが設けられている。なお、図1に示すように、分岐経路部5は最終的に通過した物質を外部に排出する構成になっているが、この構成に限定されず、物質を蛍光検出器1の内部に収集する構成であってもよい。また、分岐経路部5cを備える代わりに、吸引部2にフィルタを設け、粒径が花粉より大きい物質を当該フィルタに吸着させる構成であってもよい。
(Branch path part 5)
The branch path unit 5 is a path branched from the path unit 3. The fluorescence detector 1 is provided with three branch path parts 5 (branch path parts 5a, 5b, 5c), and a substance having a particle size of about allergen-containing protein passes through the branch path part 5a. In addition, a substance having a particle size of about pollen passes through the branch path portion 5b. In addition, a substance having a particle size larger than pollen passes through the branch path portion 5c. In addition, the detection part 6 is not provided in the branch path | route part 5c. That is, the substance having a particle size larger than the pollen is discharged from the fluorescence detector 1 via the branch path portion 5c on the assumption that the allergen-containing substance is not included. On the other hand, the detection part 6a and the detection part 6b are provided in the branch path part 5a and the branch path part 5b, respectively. As shown in FIG. 1, the branch path unit 5 is configured to discharge the finally passed substance to the outside, but is not limited to this structure, and collects the substance inside the fluorescence detector 1. It may be a configuration. Moreover, the structure which provides a filter in the suction part 2 instead of providing the branch path | route part 5c, and adsorb | sucks the substance with a particle size larger than pollen to the said filter may be sufficient.
 (検知部6)
 検知部6は、通過する物質に励起光を照射し、アレルゲン含有物質から発せられた蛍光を検知する。そして、検知した蛍光に基づく情報(具体的には、波長ごとの蛍光強度、以下、単に「蛍光強度」と称する)、および検知部6aおよび検知部6bを識別する識別情報を演算部7に出力する。分岐経路部5を通る物質のうち、アレルゲン含有物質は励起光の照射によって所定波長の蛍光を発するので、分岐経路部5を通過する砂塵などの蛍光を発しない無機物とアレルゲン含有物質とを区別することができる。蛍光検出器1には2つの検知部6(検知部6aおよび検知部6b)が備えられている。検知部6aは分岐経路部5aに設けられ、照射部61a、受光部62a、および制御部63aを含む。また、検知部6bは分岐経路部5bに設けられ、照射部61b、受光部62b、および制御部63bを含む。なお以降、照射部61a、61b、受光部62a、62b、および制御部63a、63bを区別する必要が無い場合、それぞれ「照射部61」、「受光部62」、および「制御部63」と記載する。
(Detector 6)
The detection unit 6 irradiates the passing substance with excitation light, and detects fluorescence emitted from the allergen-containing substance. Information based on the detected fluorescence (specifically, fluorescence intensity for each wavelength, hereinafter simply referred to as “fluorescence intensity”) and identification information for identifying the detection unit 6a and the detection unit 6b are output to the calculation unit 7. To do. Among the substances that pass through the branch path part 5, the allergen-containing substance emits fluorescence of a predetermined wavelength when irradiated with excitation light, and therefore, an inorganic substance that does not emit fluorescence such as sand dust that passes through the branch path part 5 is distinguished from the allergen-containing substance. be able to. The fluorescence detector 1 includes two detection units 6 (detection unit 6a and detection unit 6b). The detection unit 6a is provided in the branch path unit 5a and includes an irradiation unit 61a, a light receiving unit 62a, and a control unit 63a. Moreover, the detection part 6b is provided in the branch path | route part 5b, and includes the irradiation part 61b, the light-receiving part 62b, and the control part 63b. Hereinafter, when it is not necessary to distinguish between the irradiation units 61a and 61b, the light receiving units 62a and 62b, and the control units 63a and 63b, they are referred to as “irradiation unit 61”, “light receiving unit 62”, and “control unit 63”, respectively. To do.
 照射部61は、分岐経路部5を通過する物質に励起光を照射する光源である。なお、照射部61としてはLED(light emitting diode)を用いることが好ましい。照射部61としてレーザーを用いてもよいが、レーザーを用いた場合、装置の大型化、装置の製造コストの増加などの課題がある。受光部62は、分岐経路部5を通過する物質のうち、アレルゲン含有物質から発せられる蛍光を受光する受光素子である。なお、照射部61としてLEDを用いる場合、LEDはレーザーに比べて出力強度が低いため、高感度の受光部62を用いることが好ましい。ただし、高感度化によりノイズの影響も大きくなるので、環境光に起因するノイズを防ぐため、受光部62を含む検知部6は、外部からの光を遮断する構成となっていることが好ましい。また、照射部61と受光部62とを連動させることにより、照射部61が励起光を照射したときに受光部62が受光した蛍光の蛍光強度と、照射部61が励起光を照射していないときに受光部62が受光した蛍光の蛍光強度とを用いた演算を行う(例えば、上記2つの蛍光強度の差分をとる)ことによって、ノイズを低減する方法もある。制御部63は、照射部61および受光部62の駆動を制御する。具体的には、制御部63は、分岐経路部5を物質が通過するとき(例えば、吸引部2が吸引を開始してから所定時間が経過したとき)、照射部61を駆動させて励起光を出射させ、受光部62を駆動させて蛍光を受光させる。 The irradiation unit 61 is a light source that irradiates a substance passing through the branch path unit 5 with excitation light. Note that it is preferable to use an LED (light emitting diode) as the irradiation unit 61. A laser may be used as the irradiation unit 61. However, when a laser is used, there are problems such as an increase in the size of the device and an increase in the manufacturing cost of the device. The light receiving unit 62 is a light receiving element that receives fluorescence emitted from the allergen-containing material among the materials that pass through the branch path unit 5. In addition, when using LED as the irradiation part 61, since LED has low output intensity compared with a laser, it is preferable to use the highly sensitive light-receiving part 62. FIG. However, since the influence of noise increases as sensitivity increases, the detection unit 6 including the light receiving unit 62 is preferably configured to block light from the outside in order to prevent noise due to ambient light. Further, by linking the irradiating unit 61 and the light receiving unit 62, the fluorescence intensity of the fluorescence received by the light receiving unit 62 when the irradiating unit 61 radiates the excitation light and the irradiation unit 61 does not irradiate the excitation light. There is also a method of reducing noise by performing calculation using the fluorescence intensity of the fluorescence received by the light receiving unit 62 (for example, taking the difference between the two fluorescence intensities). The control unit 63 controls driving of the irradiation unit 61 and the light receiving unit 62. Specifically, when the substance passes through the branch path unit 5 (for example, when a predetermined time has elapsed since the suction unit 2 started suction), the control unit 63 drives the irradiation unit 61 to generate excitation light. Is emitted and the light receiving unit 62 is driven to receive the fluorescence.
 図4は、360nmの波長の励起光を照射したときのスギ花粉の蛍光特性を示す図であり、図5は、図1に示す検知部6aの詳細を示す図である。なお、図4に示すグラフの横軸は蛍光の波長(wavelength)を示し、縦軸は蛍光の強度(Intensity)を示す。また、後述する図10および図13の縦軸および横軸についても、図4と同様である。図4に示すように、スギ花粉は360nmの光(紫外光)を照射すると、460nmをピーク波長とする蛍光を発する。このため、照射部61は360nmの光を照射するよう構成されており、また、受光部62は、460nmの光を受光するように構成されている。具体的には、図5に示すように、照射部61aは、400nm以下の波長の光を選択的に通す(400nmより長い波長の光を遮光する)ショートパスフィルタ65a(第1の遮光部材)を備えている。また、受光部62aは、450nm~500nmの波長の光を選択的に通す(この波長帯域以外の光を遮光する)バンドパスフィルタ66a(第2の遮光部材)を備えている。上記ショートパスフィルタ65aにより、検出対象である花粉やタンパク質以外の物質(例えばその他の有機物)から発生する蛍光の量を抑えることができる。また、上記バンドパスフィルタ66aにより、励起光が受光部62に入射してノイズとなることを防ぐことができるので、スギ花粉およびスギ花粉由来のアレルゲン含有タンパク質の量をより正確に検知することができる。なお、図5には検知部6aの構成を示しているが、検知部6bについても同様の構成である。 FIG. 4 is a diagram showing fluorescence characteristics of cedar pollen when irradiated with excitation light having a wavelength of 360 nm, and FIG. 5 is a diagram showing details of the detection unit 6a shown in FIG. In addition, the horizontal axis of the graph shown in FIG. 4 shows the wavelength (wavelength) of fluorescence, and the vertical axis | shaft shows the intensity | strength (Intensity) of fluorescence. Further, the vertical axis and the horizontal axis in FIGS. 10 and 13 described later are the same as those in FIG. As shown in FIG. 4, cedar pollen emits fluorescence having a peak wavelength of 460 nm when irradiated with light of 360 nm (ultraviolet light). For this reason, the irradiation part 61 is comprised so that 360-nm light may be irradiated, and the light-receiving part 62 is comprised so that 460-nm light may be received. Specifically, as shown in FIG. 5, the irradiating unit 61a selectively transmits light having a wavelength of 400 nm or less (blocks light having a wavelength longer than 400 nm), and a short pass filter 65a (first light blocking member). It has. The light receiving unit 62a includes a band pass filter 66a (second light shielding member) that selectively transmits light having a wavelength of 450 nm to 500 nm (shields light other than this wavelength band). The short-pass filter 65a can suppress the amount of fluorescence generated from substances (for example, other organic substances) other than the pollen and protein to be detected. In addition, since the bandpass filter 66a can prevent excitation light from entering the light receiving unit 62 and causing noise, the amount of cedar pollen and the allergen-containing protein derived from cedar pollen can be detected more accurately. it can. In addition, although the structure of the detection part 6a is shown in FIG. 5, it is the same structure also about the detection part 6b.
 なお、図1では検知部6ごとに制御部63を設けているが、1つの制御部63で複数の検知部6に含まれる照射部61および受光部62を制御する構成であってもよい。また、検知部6は、受光部が受光した蛍光の蛍光強度を増幅する増幅部をさらに備える構成であってもよい。 In addition, although the control part 63 is provided for every detection part 6 in FIG. 1, the structure which controls the irradiation part 61 and the light-receiving part 62 which are contained in the some detection part 6 by one control part 63 may be sufficient. The detection unit 6 may further include an amplification unit that amplifies the fluorescence intensity of the fluorescence received by the light receiving unit.
 (演算部7)
 演算部7は、検知部6aから取得した蛍光強度に基づいて、分岐経路部5aを通るアレルゲン含有物質(具体的には、スギ花粉由来のアレルゲン含有タンパク質)の量を示す指標値を特定する。また、演算部7は、検知部6bから取得した蛍光強度に基づいて、分岐経路部5bを通るアレルゲン含有物質(具体的にはスギ花粉)の量を示す指標値を特定する。上述のように、検知部6aおよび6bは、それぞれの識別情報とともに検出値を演算部7に出力するので、演算部7は、この識別情報に基づいて、検知部6aおよび検知部6bのいずれから蛍光強度を取得したかを特定する。次に、演算部7は、検知部6が所定の期間(所定量の空気が分岐経路部5を通過する期間)に取得した蛍光強度から最大値を特定する。そして、記憶部8に記憶されている検量線データベース81(以下、検量線DB81)から、当該蛍光強度を出力した検知部6に応じた検量線を読み出し、当該検量線と特定した最大値とから上記指標値を特定する。なお、蛍光強度の最大値を用いることは必須ではなく、平均値、最頻値、所定時間内の積算値などを用いてもよい。
(Calculation unit 7)
The calculation unit 7 specifies an index value indicating the amount of allergen-containing substance (specifically, allergen-containing protein derived from cedar pollen) passing through the branch path unit 5a based on the fluorescence intensity acquired from the detection unit 6a. Moreover, the calculating part 7 specifies the index value which shows the quantity of the allergen containing substance (specifically cedar pollen) which passes the branch path | route part 5b based on the fluorescence intensity acquired from the detection part 6b. As described above, since the detection units 6a and 6b output the detection values together with the respective identification information to the calculation unit 7, the calculation unit 7 determines whether the detection unit 6a or the detection unit 6b is based on the identification information. Specify whether the fluorescence intensity has been acquired. Next, the calculation unit 7 specifies the maximum value from the fluorescence intensity acquired by the detection unit 6 during a predetermined period (a period during which a predetermined amount of air passes through the branch path unit 5). Then, a calibration curve corresponding to the detection unit 6 that has output the fluorescence intensity is read from a calibration curve database 81 (hereinafter referred to as a calibration curve DB 81) stored in the storage unit 8, and the calibration curve and the specified maximum value are read out. The index value is specified. Note that it is not essential to use the maximum value of the fluorescence intensity, and an average value, a mode value, an integrated value within a predetermined time, or the like may be used.
 より具体的には、演算部7は、蛍光強度を出力した検知部6が検知部6aであると特定した場合、検量線DB81から、スギ花粉由来のアレルゲン含有タンパク質の指標値を特定するための検量線を読み出す。一方、検知部6bであると特定した場合、検量線DB81から、スギ花粉の指標値を特定するための検量線を読み出す。つまり演算部7は、検知部6aおよび検知部6bのいずれから蛍光強度を取得したかに応じて、アレルゲン含有物質がスギ花粉であるか、またはスギ花粉由来のアレルゲン含有タンパク質であるかを特定する。換言すれば、演算部7は、分岐経路部5に応じた方式で、アレルゲン含有物質の量を示す指標値を特定する。 More specifically, when the calculation unit 7 specifies that the detection unit 6 that outputs the fluorescence intensity is the detection unit 6a, the calculation unit 7 specifies the index value of the allergen-containing protein derived from the cedar pollen from the calibration curve DB 81. Read the calibration curve. On the other hand, if the detection unit 6b is identified, a calibration curve for identifying the index value of cedar pollen is read from the calibration curve DB 81. That is, the calculation unit 7 specifies whether the allergen-containing substance is cedar pollen or an allergen-containing protein derived from cedar pollen, depending on whether the fluorescence intensity is acquired from the detection unit 6a or the detection unit 6b. . In other words, the calculation unit 7 specifies an index value indicating the amount of the allergen-containing substance by a method according to the branch path unit 5.
 また、演算部7は特定した指標値を、図示しない出力部に出力してもよい。出力部は指標値を出力する事ができれば、その構成は特に限定されない。例えば液晶ディスプレイなどの表示部であってもよいし、スピーカなどの音声出力部であってもよく、プリンタなどの印字出力であってもよい。なお、これらの出力部は、蛍光検出器1が備えていてもよいし、蛍光検出器1と通信可能な他の装置が備えていてもよい。他の装置が備えている場合、指標値を該装置に送信して出力させればよい。また、演算部7は特定した指標値を、スギ花粉であるか、またはスギ花粉由来のアレルゲン含有タンパク質であるかを示す情報、特定した日時を示す情報と対応付けて記憶部8に記憶してもよい。また、ユーザが図示しない操作部を用いて、記憶された指標値を出力部から出力させる構成となっていてもよい。 Further, the calculation unit 7 may output the specified index value to an output unit (not shown). The configuration of the output unit is not particularly limited as long as it can output the index value. For example, it may be a display unit such as a liquid crystal display, an audio output unit such as a speaker, or a print output such as a printer. These output units may be included in the fluorescence detector 1 or may be included in another device that can communicate with the fluorescence detector 1. If another device is provided, the index value may be transmitted to the device and output. The calculation unit 7 stores the specified index value in the storage unit 8 in association with information indicating whether it is cedar pollen or a cedar pollen-derived allergen-containing protein and information indicating the specified date and time. Also good. The user may be configured to output the stored index value from the output unit using an operation unit (not shown).
 また、演算部7は、図1に示すように蛍光検出器1内に設けられていてもよいし、蛍光検出器1の外部の装置に設けられていてもよい。後者の場合、蛍光検出器1に通信部(図示せず)を設け、該通信部を介して、外部の装置(指標値の算出装置)に蛍光強度を送信して指標値を算出させてもよい。また、ユーザが、記録媒体を介して、あるいは手入力により、蛍光検出器1の検出した蛍光強度を指標値の算出装置に入力してもよい。 The calculation unit 7 may be provided in the fluorescence detector 1 as shown in FIG. 1 or may be provided in a device outside the fluorescence detector 1. In the latter case, the fluorescence detector 1 may be provided with a communication unit (not shown), and the fluorescence intensity is transmitted to an external device (index value calculation device) via the communication unit to calculate the index value. Good. Further, the user may input the fluorescence intensity detected by the fluorescence detector 1 to the index value calculation device via a recording medium or manually.
 (記憶部8)
 記憶部8は、蛍光検出器1にて扱われる各種データを記憶する。図1に示す例では、上述した検量線DB81が記憶されている。検量線DB81は、蛍光検出器1にて指標値を特定する対象のアレルゲン含有物質のそれぞれの検量線(蛍光強度と指標値との相関関係を示すデータであり、例えば蛍光強度を代入することで指標値が算出される数式)を含むデータベースである。本実施形態の検量線DB81は、スギ花粉の検量線およびスギ花粉由来のアレルゲン含有タンパク質の検量線を含む。なお、記憶部8は、図1に示すように蛍光検出器1内に設けられていてもよいし、蛍光検出器1の外部に設けられていてもよい。後者の場合、蛍光検出器1に通信部(図示せず)を設け、該通信部を介して、外部の記憶部8から必要なデータを取得してもよい。また、例えばクラウド上のサーバ等の装置に検量線DB81などのデータベースを格納しておき、該装置から指標値の算出に必要なデータを取得する構成であってもよい。また、演算部7と記憶部8とが蛍光検出器1の外部に設けられる場合、演算部7を備える装置と、記憶部8を備える装置とは同じ装置であってもよいし、異なる装置であってもよい。
(Storage unit 8)
The storage unit 8 stores various data handled by the fluorescence detector 1. In the example shown in FIG. 1, the calibration curve DB 81 described above is stored. The calibration curve DB 81 is data indicating the calibration curve (correlation between the fluorescence intensity and the index value) of each target allergen-containing substance whose index value is specified by the fluorescence detector 1, for example, by substituting the fluorescence intensity. This is a database including mathematical formulas for which index values are calculated. The calibration curve DB 81 of this embodiment includes a calibration curve of cedar pollen and a calibration curve of allergen-containing protein derived from cedar pollen. The storage unit 8 may be provided in the fluorescence detector 1 as shown in FIG. 1 or may be provided outside the fluorescence detector 1. In the latter case, the fluorescence detector 1 may be provided with a communication unit (not shown), and necessary data may be acquired from the external storage unit 8 via the communication unit. Further, for example, a database such as a calibration curve DB 81 may be stored in a device such as a server on the cloud, and data necessary for calculating the index value may be acquired from the device. When the calculation unit 7 and the storage unit 8 are provided outside the fluorescence detector 1, the device including the calculation unit 7 and the device including the storage unit 8 may be the same device or different devices. There may be.
 (検量線の作成例)
 ここで、スギ花粉の検量線およびスギ花粉由来のアレルゲン含有タンパク質の検量線の作成例について図6~図8を参照して説明する。図6は、花粉の蛍光強度の測定に使用する反射型蛍光測定装置20の概略図であり、図7は、スギ花粉の個数と蛍光強度との関係を示すグラフであり、図8は、スギ花粉由来のアレルゲン含有タンパク質の濃度と蛍光強度との関係を示すグラフである。なお、ここで説明する検量線の作成方法は一例であり、この方法に限定されるものではない。
(Example of creating a calibration curve)
Here, an example of preparing a calibration curve of cedar pollen and a calibration curve of an allergen-containing protein derived from cedar pollen will be described with reference to FIGS. FIG. 6 is a schematic diagram of a reflection type fluorescence measuring apparatus 20 used for measuring the fluorescence intensity of pollen, FIG. 7 is a graph showing the relationship between the number of cedar pollen and the fluorescence intensity, and FIG. It is a graph which shows the relationship between the density | concentration of allergen containing protein derived from pollen, and fluorescence intensity. Note that the calibration curve creation method described here is an example, and the present invention is not limited to this method.
 まず、スギ花粉の検量線の作成例について説明する。スギ花粉の蛍光強度を測定するために、図6に示す反射型蛍光測定装置20を用いた。反射型蛍光測定装置20は、励起光を出射する励起光源21、および蛍光を受光する受光部22を備える。また反射型蛍光測定装置20は、対象物の蛍光強度が最大となるように、励起光源21の角度、受光部22の角度、励起光源21の高さ、受光部22の高さを最適化している。励起光源21として、365nmの励起光を出射するLEDを使用している。また、励起光源の前面には、365nmを中心として半値幅30nmの紫外線透過フィルタが設けられている。これにより、LEDから出射される400nm以上の光をカットし、スギ花粉が蛍光を発するために必要な光以外の余分な光が受光部22に入射しないようにしている。 First, an example of creating a calibration curve for cedar pollen will be described. In order to measure the fluorescence intensity of cedar pollen, a reflection type fluorescence measuring apparatus 20 shown in FIG. 6 was used. The reflection type fluorescence measuring apparatus 20 includes an excitation light source 21 that emits excitation light and a light receiving unit 22 that receives fluorescence. The reflection type fluorescence measuring apparatus 20 optimizes the angle of the excitation light source 21, the angle of the light receiving unit 22, the height of the excitation light source 21, and the height of the light receiving unit 22 so that the fluorescence intensity of the object is maximized. Yes. As the excitation light source 21, an LED that emits excitation light of 365 nm is used. In addition, an ultraviolet transmission filter having a half-value width of 30 nm centered on 365 nm is provided on the front surface of the excitation light source. Thereby, the light of 400 nm or more emitted from the LED is cut so that extra light other than the light necessary for the cedar pollen to emit fluorescence does not enter the light receiving unit 22.
 また、図6に示す対象物(以下、スギ花粉)Aのサンプルは以下のように作製した。まず、スギ花粉1mgを量りとり、花粉の破裂を防ぐための超純水を加え、花粉濃度が2ng/μL、20ng/μL、60ng/μL、100ng/μLとなるように段階的にスギ花粉の超純水溶液(以下、溶液)を調整した。次に、サンプルを保持するためのスライドガラスに、調整した溶液を10μL滴下し、実大気中での使用を考慮して、溶液を滴下したスライドガラスを静置して乾燥させた。これにより、上記の4種類の濃度の溶液にそれぞれ対応する4つのスギ花粉Aのサンプルを作製した。その後、各サンプルについて反射型蛍光測定装置20を用いて蛍光強度の測定を行った。 Further, a sample of the object (hereinafter referred to as cedar pollen) A shown in FIG. 6 was prepared as follows. First, weigh 1 mg of cedar pollen, add ultrapure water to prevent pollen rupture, and step by step so that the pollen concentration becomes 2 ng / μL, 20 ng / μL, 60 ng / μL, 100 ng / μL. An ultrapure aqueous solution (hereinafter, solution) was prepared. Next, 10 μL of the adjusted solution was dropped on a slide glass for holding the sample, and the slide glass on which the solution was dropped was allowed to stand and dried in consideration of use in actual air. As a result, four cedar pollen A samples respectively corresponding to the solutions of the above four concentrations were prepared. Thereafter, the fluorescence intensity of each sample was measured using the reflection type fluorescence measuring apparatus 20.
 また、各サンプルについて光学顕微鏡(不図示)を用いて目視により花粉の個数の計測を行った。その結果、花粉濃度を2ng/μL、20ng/μL、60ng/μL、100ng/μLなるように調整した各サンプルの花粉個数はそれぞれ、12個、41個、109個、159個であった。 Moreover, the number of pollen was visually measured for each sample using an optical microscope (not shown). As a result, the number of pollen in each sample adjusted to have a pollen concentration of 2 ng / μL, 20 ng / μL, 60 ng / μL, and 100 ng / μL was 12, 41, 109, and 159, respectively.
 以上の結果に基づき、図7に示すスギ花粉個数と蛍光強度との関係のグラフを作成した。なお、図7における蛍光強度の単位「(a.u.)」は任意単位であり、図7の蛍光強度の数値には、反射型蛍光測定装置20で検出した数値をそのまま用いている。図7に示すように、スギ花粉個数と蛍光強度とには相関関係があり、この検量線を用いることにより、蛍光強度に応じたスギ花粉の量(個数)を特定可能であることが分かる。演算部7は、この検量線(図示のグラフを示す数式)を用いて、特定したスギ花粉の蛍光強度の最大値から、分岐経路部5bを通過したスギ花粉の指標値(個数)を特定する。 Based on the above results, a graph of the relationship between the number of cedar pollen and the fluorescence intensity shown in FIG. 7 was prepared. Note that the unit of fluorescence intensity “(au)” in FIG. 7 is an arbitrary unit, and the value detected by the reflection type fluorescence measuring apparatus 20 is used as it is for the value of fluorescence intensity in FIG. As shown in FIG. 7, there is a correlation between the number of cedar pollen and the fluorescence intensity, and it can be seen that the amount (number) of cedar pollen corresponding to the fluorescence intensity can be specified by using this calibration curve. The calculation unit 7 specifies the index value (number) of cedar pollen that has passed through the branching path unit 5b from the maximum value of the fluorescence intensity of the specified cedar pollen using the calibration curve (the mathematical formula showing the illustrated graph). .
 続いて、スギ花粉由来のアレルゲン含有タンパク質の検量線の作成例について説明する。反射型蛍光測定装置20を用いて蛍光強度を測定するためのアレルゲン含有タンパク質のサンプルは以下のように作製した。まず、スギ花粉を約0.04g量りとり、タンパク質抽出液1000μLを加えた。その後4℃下に保管して、12時間かけてスギ花粉由来のアレルゲン含有タンパク質を抽出した。なお、タンパク質抽出液とは、スギ花粉を破裂させて、スギ花粉内に含まれるタンパク質を抽出するための溶液である。 Subsequently, an example of preparing a calibration curve for an allergen-containing protein derived from cedar pollen will be described. A sample of the allergen-containing protein for measuring the fluorescence intensity using the reflection type fluorescence measuring device 20 was prepared as follows. First, about 0.04 g of cedar pollen was weighed and 1000 μL of protein extract was added. Thereafter, the protein was stored at 4 ° C., and the allergen-containing protein derived from cedar pollen was extracted over 12 hours. The protein extract is a solution for rupturing cedar pollen to extract protein contained in cedar pollen.
 当該アレルゲン含有タンパク質を抽出した溶液(スギ花粉濃度40μg/μL)を緩衝液で希釈し、希釈倍率1000倍、2000倍、3000倍、5000倍、6000倍、および7000倍の溶液をそれぞれ調整した。その後、14000rpsで2分間の遠心分離を行った。次に、サンプルを保持するためのスライドガラスに、調整した溶液の上澄みを10μL滴下し、実大気中での使用を考慮して、溶液を滴下したスライドガラスを静置して乾燥させた。これにより、上記の6種類の濃度の溶液にそれぞれ対応する6つのサンプル(アレルゲン含有タンパク質のサンプル)を作製した。 The solution from which the allergen-containing protein was extracted (cedar pollen concentration 40 μg / μL) was diluted with a buffer solution, and solutions with dilution ratios of 1000 times, 2000 times, 3000 times, 5000 times, 6000 times, and 7000 times were prepared. Thereafter, centrifugation was performed at 14000 rpm for 2 minutes. Next, 10 μL of the supernatant of the adjusted solution was dropped on a slide glass for holding the sample, and the slide glass on which the solution was dropped was allowed to stand and dried in consideration of use in actual air. As a result, six samples (allergen-containing protein samples) respectively corresponding to the solutions of the above six concentrations were prepared.
 その後、各サンプルについて反射型蛍光測定装置20を用いて蛍光強度の測定を行うとともに、SPRを用いてアレルゲン含有タンパク質の量を特定した。また、各サンプルのアレルゲン含有タンパク質の量を、各サンプルの液量(10μL)で除算し、各サンプルのアレルゲン含有タンパク質の濃度(pg/μL)を算出した。そして、この結果に基づき、図8に示す、スギ花粉由来のアレルゲン含有タンパク質の濃度と蛍光強度との関係を示すグラフを作成した。図8に示すように、スギ花粉由来のアレルゲン含有タンパク質の濃度と蛍光強度とには相関関係がある。このため、この検量線を用いることにより、蛍光強度に応じたスギ花粉由来のアレルゲン含有タンパク質の濃度を特定可能であることが分かる。演算部7は、この検量線(図示のグラフを示す数式)を用いて、特定したスギ花粉由来のアレルゲン含有タンパク質の蛍光強度の最大値から、分岐経路部5aを通過したスギ花粉由来のアレルゲン含有タンパク質の指標値(溶液中のアレルゲン含有タンパク質の濃度)を特定する。アレルゲン含有タンパク質の濃度の値が大きければ、アレルゲンの量が多いとみなせるため、ユーザは、アレルゲン含有タンパク質の指標値を確認することで、アレルゲンの量を推定することができる。 Thereafter, the fluorescence intensity of each sample was measured using the reflection-type fluorescence measuring device 20, and the amount of allergen-containing protein was specified using SPR. In addition, the amount of allergen-containing protein in each sample was divided by the liquid amount (10 μL) of each sample, and the concentration (pg / μL) of allergen-containing protein in each sample was calculated. And based on this result, the graph which shows the relationship between the density | concentration of the allergen containing protein derived from a cedar pollen, and fluorescence intensity shown in FIG. 8 was created. As shown in FIG. 8, there is a correlation between the concentration of the allergen-containing protein derived from cedar pollen and the fluorescence intensity. For this reason, it turns out that the density | concentration of the allergen containing protein derived from a cedar pollen according to fluorescence intensity can be specified by using this calibration curve. The calculation unit 7 uses the calibration curve (the mathematical formula showing the illustrated graph) to determine the allergen-containing cedar pollen that has passed through the branching path unit 5a from the maximum fluorescence intensity of the identified allergen-containing protein derived from the cedar pollen. The protein index value (concentration of allergen-containing protein in the solution) is specified. If the value of the allergen-containing protein concentration is large, it can be considered that the amount of allergen is large. Therefore, the user can estimate the allergen amount by checking the index value of the allergen-containing protein.
 以上のように、蛍光検出器1は、吸引した複数種類の物質のうち、スギ花粉由来のアレルゲン程度の大きさの物質を分岐経路部5aに送り、検知部6aにて励起光を照射し、スギ花粉由来のアレルゲン含有タンパク質の蛍光を受光する。また、蛍光検出器1は、スギ花粉程度の大きさの物質を分岐経路部5bに送り、検知部6bにて励起光を照射し、スギ花粉の蛍光を受光する。また、蛍光検出器1の演算部7は蛍光強度を検知部6から取得し、検知部6aおよび検知部6bのいずれから当該蛍光強度を取得したかに応じて、記憶部8の検量線DB81から、アレルゲン含有タンパク質の検量線またはスギ花粉の検量線を読み出す。そして、蛍光強度から特定した最大値と、読み出した検量線とを用いてアレルゲン含有物質(スギ花粉由来のアレルゲン含有タンパク質またはスギ花粉)の量を特定する。 As described above, the fluorescence detector 1 sends a substance of the size of the allergen derived from cedar pollen to the branch path part 5a among the plurality of types of sucked substances, and irradiates the excitation light with the detection part 6a. Fluorescence of allergen-containing protein derived from cedar pollen is received. In addition, the fluorescence detector 1 sends a substance having a size of about a cedar pollen to the branch path part 5b, irradiates excitation light at the detection part 6b, and receives the fluorescence of the cedar pollen. Further, the calculation unit 7 of the fluorescence detector 1 acquires the fluorescence intensity from the detection unit 6, and from the calibration curve DB 81 of the storage unit 8 according to which of the detection unit 6a and the detection unit 6b the fluorescence intensity is acquired. Then, the calibration curve of allergen-containing protein or the calibration curve of cedar pollen is read out. Then, the amount of allergen-containing substance (allergen-containing protein or cedar pollen derived from cedar pollen) is specified using the maximum value specified from the fluorescence intensity and the read calibration curve.
 以上より、蛍光検出器1は、花粉だけでなく、花粉由来のアレルゲン含有タンパク質の量についても検出することができる。また、蛍光検出器1は、アレルゲン含有タンパク質と花粉とをそれぞれ別の分岐経路部5に送り、励起光を照射するので、花粉およびアレルゲン含有タンパク質のそれぞれを正確に検出することができる。よって、花粉の浮遊量は少ないが、アレルゲン含有タンパク質の浮遊量が多い状況において、アレルゲン含有タンパク質の浮遊量が多いことをユーザに認識させることが可能となる。 From the above, the fluorescence detector 1 can detect not only pollen but also the amount of pollen-derived allergen-containing protein. Moreover, since the fluorescence detector 1 sends the allergen-containing protein and the pollen to different branching path portions 5 and irradiates them with excitation light, each of the pollen and the allergen-containing protein can be accurately detected. Therefore, in a situation where the amount of floating pollen is small but the amount of allergen-containing protein is large, the user can be made aware that the amount of allergen-containing protein is large.
 〔実施形態2〕
 本発明の他の実施形態について、図9~図13に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図9は、本実施形態に係る蛍光検出器1aの要部構成の一例を示す図である。花粉症を発症する原因となる花粉には、スギ花粉以外にもヒノキ花粉、ブタクサ花粉、イネ花粉など複数の種類があり、季節、地域などによって飛散する花粉が異なる。また、それぞれの花粉の励起波長および蛍光波長は異なる。 FIG. 9 is a diagram illustrating an example of a main configuration of the fluorescence detector 1a according to the present embodiment. In addition to cedar pollen, there are multiple types of pollen that cause hay fever, such as cypress pollen, ragweed pollen, and rice pollen, and the pollen scattered varies depending on the season and region. Moreover, the excitation wavelength and fluorescence wavelength of each pollen are different.
 そこで、本実施形態に係る蛍光検出器1aは、分岐経路部5aにおいて、検知対象のアレルギー物質(具体的には、アレルゲン含有タンパク質の種類)が異なる複数の検知部6a(具体的には、検知部6a1~6anのn個)を備える。同様に、分岐経路部5bにおいて、検知対象のアレルギー物質(具体的には、花粉の種類)が異なる複数の検知部6b(具体的には、検知部6b1~6bnのn個)を備える。具体的には、各検知部6では、照射部61(図示せず)は、検知対象のアレルギー物質を励起する波長帯域の励起光を照射し、受光部62(図示せず)は、検知対象のアレルギー物質が上記励起光の照射を受けて発する波長帯域の蛍光を受光する。このため、各検知部6における、励起光の波長帯域および受光可能な蛍光の波長帯域の少なくとも一方が、他の検知部6に含まれる照射部61および受光部62における励起光の波長帯域および受光可能な蛍光の波長帯域と異なるようになっている。なお以降、検知部6a1~6anおよび検知部6b1~6bnのそれぞれを区別する必要が無い場合は、「検知部6」と記載する。また、検知部6a1~6anを区別する必要が無い場合は、「検知部6a」と記載し、検知部6b1~6bnを区別する必要が無い場合は、「検知部6b」と記載する。 Therefore, the fluorescence detector 1a according to this embodiment includes a plurality of detection units 6a (specifically, detection units) having different allergens (specifically, allergen-containing protein types) to be detected in the branch path unit 5a. N parts 6a1 to 6an). Similarly, the branch path unit 5b includes a plurality of detection units 6b (specifically, n detection units 6b1 to 6bn) having different detection target allergens (specifically, types of pollen). Specifically, in each detection unit 6, the irradiation unit 61 (not shown) emits excitation light in a wavelength band that excites the allergen to be detected, and the light receiving unit 62 (not shown) The allergens receive fluorescence in the wavelength band emitted by irradiation with the excitation light. Therefore, at least one of the excitation light wavelength band and the receivable fluorescence wavelength band in each detection unit 6 is the excitation light wavelength band and the light reception in the irradiation unit 61 and the light reception unit 62 included in the other detection units 6. It is different from the possible fluorescence wavelength band. Hereinafter, when it is not necessary to distinguish between the detection units 6a1 to 6an and the detection units 6b1 to 6bn, they are described as “detection unit 6”. Further, when it is not necessary to distinguish the detection units 6a1 to 6an, it is described as “detection unit 6a”, and when it is not necessary to distinguish the detection units 6b1 to 6bn, it is described as “detection unit 6b”.
 また、各検知部6の制御部63(図示せず)は、分岐経路部5を物質が通過するとき(例えば、吸引部2が吸引を開始してから所定時間が経過したとき)、照射部61を駆動させて励起光を出射させ、受光部62を駆動させて蛍光を受光させる。 Moreover, the control part 63 (not shown) of each detection part 6 is an irradiation part, when a substance passes the branch path part 5 (for example, when predetermined time passes since the suction part 2 started suction). 61 is driven to emit excitation light, and the light receiving unit 62 is driven to receive fluorescence.
 図10は、440nmの波長の励起光を照射したときの、オオブタクサ花粉由来のアレルゲン含有タンパク質の蛍光特性を示す図である。図10に示すように、オオブタクサ花粉由来のアレルゲン含有タンパク質は440nmの光を照射すると、515nmをピーク波長とする蛍光を発する。このため、オオブタクサ花粉由来のアレルゲン含有タンパク質の蛍光を検出するための検知部6aにおける照射部61は440nmの光を照射するように構成されており、また、受光部62は、515nmの光を受光するように構成されている。なお、オオブタクサ花粉を検出するための検知部6bについても同様である。 FIG. 10 is a diagram showing the fluorescence characteristics of the allergen-containing protein derived from the grass pollen when irradiated with excitation light having a wavelength of 440 nm. As shown in FIG. 10, allergen-containing protein derived from the grass plant pollen emits fluorescence having a peak wavelength of 515 nm when irradiated with light of 440 nm. For this reason, the irradiation part 61 in the detection part 6a for detecting the fluorescence of the allergen-containing protein derived from the plant moth pollen is configured to emit light of 440 nm, and the light receiving part 62 receives light of 515 nm. Is configured to do. The same applies to the detection unit 6b for detecting the giant grass pollen.
 本実施形態に係る検量線DB81は、各検知部6bの検知対象である花粉の検量線(スギ花粉の検量線および他の花粉の検量線)を格納している。また、各検知部6aの検知対象である花粉由来のアレルゲン含有タンパク質の検量線(スギ花粉由来のアレルゲン含有タンパク質の検量線および他の花粉由来のアレルゲン含有タンパク質の検量線)も格納している。つまり、検量線DB81は、複数のアレルゲン含有物質の検量線を、各アレルゲン含有物質を識別する情報(例えば、「スギ花粉」「スギ花粉由来のアレルゲン含有タンパク質」など)、および、検知部6を識別する識別情報と対応付けて格納している。図11は、このような検量線の一例である、オオブタクサ花粉由来のアレルゲン含有タンパク質と蛍光強度との関係を示すグラフである。オオブタクサ花粉はスギ花粉と異なる時期に飛散する花粉であり、主に秋の花粉症の原因となる。図11に示すように、オオブタクサ花粉由来のアレルゲン含有タンパク質の濃度と蛍光強度とには相関関係がある。このため、この検量線を用いることにより、蛍光強度に応じたオオブタクサ花粉由来のアレルゲン含有タンパク質の濃度を特定可能であることがわかる。 The calibration curve DB 81 according to this embodiment stores a calibration curve of pollen (a cedar pollen calibration curve and another pollen calibration curve) that is a detection target of each detection unit 6b. In addition, a calibration curve of pollen-derived allergen-containing protein that is a detection target of each detection unit 6a (a calibration curve of allergen-containing protein derived from cedar pollen and a calibration curve of allergen-containing protein derived from other pollen) is also stored. That is, the calibration curve DB 81 includes calibration curves of a plurality of allergen-containing substances, information for identifying each allergen-containing substance (for example, “cedar pollen”, “allergen-containing protein derived from cedar pollen”, etc.), and the detection unit 6. It is stored in association with identification information to be identified. FIG. 11 is a graph showing the relationship between fluorescence intensity and allergen-containing protein derived from giant grass pollen, which is an example of such a calibration curve. Oo-Takusa pollen is pollen that is scattered at a different time from cedar pollen and mainly causes autumn hay fever. As shown in FIG. 11, there is a correlation between the concentration of the allergen-containing protein derived from the grasshopper pollen and the fluorescence intensity. For this reason, it can be seen that by using this calibration curve, the concentration of allergen-containing protein derived from the grasshopper pollen corresponding to the fluorescence intensity can be specified.
 なお、オオブタクサ花粉由来のアレルゲン含有タンパク質の検量線は、以下のように作成した。まず、オオブタクサ花粉を約0.01g量りとり、タンパク質抽出液2000μLを加えた。その後4℃下に保管して、18時間かけてオオブタクサ花粉アレルゲンを含むタンパク質を抽出した。 Note that a calibration curve for allergen-containing protein derived from the grass plant pollen was prepared as follows. First, about 0.01 g of Oobakutakusa pollen was weighed and 2000 μL of protein extract was added. Thereafter, the protein was stored at 4 ° C., and the protein containing the giant grass pollen allergen was extracted over 18 hours.
 当該アレルゲン含有タンパク質を抽出した溶液(オオブタクサ花粉濃度5μg/μL)を緩衝液で希釈し、希釈倍率1000倍、2000倍、3000倍、5000倍、6000倍、および7000倍の溶液をそれぞれ調整した。その後、14000rpsで2分間の遠心分離を行った。次に、サンプルを保持するためのスライドガラスに、調整した溶液の上澄みを10μL滴下し、実大気中での使用を考慮して、溶液を滴下したスライドガラスを静置して乾燥させた。これにより、上記の6種類の濃度の溶液にそれぞれ対応する6つのサンプル(アレルゲン含有タンパク質のサンプル)を作製した。 The solution from which the allergen-containing protein was extracted (Oobakusa pollen concentration 5 μg / μL) was diluted with a buffer solution, and solutions with dilution ratios of 1000 times, 2000 times, 3000 times, 5000 times, 6000 times, and 7000 times were prepared. Thereafter, centrifugation was performed at 14000 rpm for 2 minutes. Next, 10 μL of the supernatant of the adjusted solution was dropped on a slide glass for holding the sample, and the slide glass on which the solution was dropped was allowed to stand and dried in consideration of use in actual air. As a result, six samples (allergen-containing protein samples) respectively corresponding to the solutions of the above six concentrations were prepared.
 その後、各サンプルについて反射型蛍光測定装置20を用いて蛍光強度の測定を行うとともに、SPRを用いてアレルゲン含有タンパク質の量を特定した。また、各サンプルのアレルゲン含有タンパク質の量を、各サンプルの液量(10μL)で割って、各サンプルのアレルゲン含有タンパク質の濃度(pg/μL)を算出した、そして、この結果に基づき、図11に示す、オオブタクサ花粉由来のアレルゲン含有タンパク質の濃度と蛍光強度との関係を示すグラフを作成した。 Thereafter, the fluorescence intensity of each sample was measured using the reflection-type fluorescence measuring device 20, and the amount of allergen-containing protein was specified using SPR. Further, the amount of allergen-containing protein in each sample was divided by the liquid volume (10 μL) of each sample to calculate the concentration (pg / μL) of allergen-containing protein in each sample. Based on this result, FIG. The graph which shows the relationship between the density | concentration of the allergen containing protein derived from the grasshopper pollen and fluorescence intensity shown in FIG.
 本実施形態に係る演算部7は、検知部6から取得した識別情報に応じて、検量線DB81から検量線を読み出す。上述のように、検量線DB81では、複数種類のアレルゲン含有物質のそれぞれについて、該アレルゲン含有物質を検出する検知部6の識別情報と検量線が対応付けられている。よって、本実施形態に係る演算部7は、識別情報によって花粉であるか、またはアレルゲン含有タンパク質であるかだけでなく、花粉またはアレルゲン含有タンパク質の種類を特定していると言える。 The calculation unit 7 according to the present embodiment reads a calibration curve from the calibration curve DB 81 according to the identification information acquired from the detection unit 6. As described above, in the calibration curve DB 81, the identification information of the detection unit 6 that detects the allergen-containing substance and the calibration curve are associated with each of the plurality of types of allergen-containing substances. Therefore, it can be said that the calculation unit 7 according to the present embodiment specifies not only the pollen or the allergen-containing protein but also the type of the pollen or the allergen-containing protein based on the identification information.
 以上より、蛍光検出器1aは複数種類の花粉、および、複数種類の花粉由来のアレルゲン含有タンパク質の量を示す指標値をそれぞれ特定することができる。例えば、図9に示す検知部6a1は、スギ花粉由来のアレルゲン含有タンパク質を検知対象とし、検知部6a2は、オオブタクサ花粉由来のアレルゲン含有タンパク質を検知対象とする。また、検知部6b1は、スギ花粉を検知対象とし、検知部6b2は、オオブタクサ花粉を検知対象とする。これにより、季節や地域に応じて異なる蛍光検出器を設置する必要が無くなる。例えば、上記の蛍光検出器1aによれば、春と秋とで同じ蛍光検出器1aを使用して、スギ花粉およびオオブタクサ花粉について、花粉そのもの、およびアレルゲン含有タンパク質の量を示す指標値を特定することができる。 From the above, the fluorescence detector 1a can identify the index values indicating the amounts of the multiple types of pollen and the allergen-containing protein derived from the multiple types of pollen. For example, the detection unit 6a1 illustrated in FIG. 9 sets the allergen-containing protein derived from cedar pollen as the detection target, and the detection unit 6a2 sets the allergen-containing protein derived from the giant grass pollen as the detection target. Moreover, the detection part 6b1 makes cedar pollen a detection object, and the detection part 6b2 makes a giant obetor pollen a detection object. This eliminates the need to install different fluorescence detectors depending on the season and region. For example, according to the above-described fluorescence detector 1a, the same fluorescence detector 1a is used in spring and autumn, and the pollen itself and the index value indicating the amount of allergen-containing protein are specified for the cedar pollen and the giant grasshopper pollen. be able to.
 (実施形態2の変形例)
 次に、実施形態2の変形例について説明する。図12は、本変形例に係る蛍光検出器1bの要部構成の一例を示す図である。図12に示すように、本実施形態に係る検知部6aは、複数の照射部61a(具体的には、照射部61a1~61anのn個)を備えている。同様に、検知部6bは、複数の照射部61b(具体的には、照射部61b1~61bnのn個)を備えている。なお以降、照射部61a1~61anおよび検知部61b1~61bnのそれぞれを区別する必要が無い場合は、「照射部61」と記載する。
(Modification of Embodiment 2)
Next, a modification of the second embodiment will be described. FIG. 12 is a diagram illustrating an example of a main configuration of the fluorescence detector 1b according to the present modification. As shown in FIG. 12, the detection unit 6a according to the present embodiment includes a plurality of irradiation units 61a (specifically, n irradiation units 61a1 to 61an). Similarly, the detection unit 6b includes a plurality of irradiation units 61b (specifically, n irradiation units 61b1 to 61bn). Hereinafter, when it is not necessary to distinguish each of the irradiation units 61a1 to 61an and the detection units 61b1 to 61bn, they are referred to as “irradiation unit 61”.
 本実施形態に係る制御部63は、それぞれ異なるタイミングで各照射部61を駆動させ、各照射部61は、検知対象のアレルゲン含有物質を励起する波長帯域の励起光を照射する。そして、本実施形態に係る受光部62は、検知対象の複数のアレルゲン含有物質が発する蛍光(すなわち、広範囲の波長帯域の光)を受光する。これにより、1つの受光部62にて、複数種類のアレルゲン含有物質から発せられる蛍光を検出することができる。よって、蛍光検出器1aに比べて少ない数の受光部62および制御部63にて、複数種類のアレルゲン含有物質を検出することができる。また、これにより、蛍光検出器1aに比べて装置を小型化および簡易化することも可能になる。なお、図12では、照射部61aおよび照射部61bが、それぞれ横並びで記載されているが、これは検知部6が複数の照射部61を備えることをわかりやすく示すためのものであり、照射部61の配置は図12の例に限定されない。また、照射部61は、各照射部61と受光部62との距離が略同一となるように配置されていることが好ましい。この場合、例えば、照射部61はアレイ状に並んで配置されている。 The control unit 63 according to the present embodiment drives each irradiation unit 61 at different timings, and each irradiation unit 61 emits excitation light in a wavelength band that excites the allergen-containing substance to be detected. The light receiving unit 62 according to the present embodiment receives fluorescence (that is, light in a wide wavelength band) emitted from a plurality of allergen-containing substances to be detected. Thereby, the fluorescence emitted from a plurality of types of allergen-containing substances can be detected by one light receiving unit 62. Therefore, a plurality of types of allergen-containing substances can be detected by a smaller number of light receiving units 62 and control units 63 than in the fluorescence detector 1a. This also makes it possible to downsize and simplify the apparatus as compared with the fluorescence detector 1a. In FIG. 12, the irradiation unit 61 a and the irradiation unit 61 b are described side by side, but this is for easy understanding that the detection unit 6 includes a plurality of irradiation units 61. The arrangement of 61 is not limited to the example of FIG. Moreover, it is preferable that the irradiation part 61 is arrange | positioned so that the distance of each irradiation part 61 and the light-receiving part 62 may become substantially the same. In this case, for example, the irradiation units 61 are arranged in an array.
 また、本変形例に係る検知部6は、蛍光強度とともに、当該蛍光の要因となった励起光を照射した照射部61を識別する照射部識別情報を演算部7に出力する。また、本変形例に係る検量線DB81は、アレルゲン含有物質を識別する情報(例えば、「スギ花粉」「スギ花粉由来のアレルゲン含有タンパク質」など)と、アレルゲン含有物質の検量線とを、照射部識別情報に対応付けて格納している。 In addition, the detection unit 6 according to this modification outputs, to the calculation unit 7, irradiation unit identification information that identifies the irradiation unit 61 that has irradiated the excitation light that has caused the fluorescence, together with the fluorescence intensity. In addition, the calibration curve DB 81 according to this variation includes information for identifying allergen-containing substances (for example, “cedar pollen”, “allergen-containing protein derived from cedar pollen”, etc.), and a calibration curve for allergen-containing substances. It is stored in association with identification information.
 演算部7が実行するアレルゲン含有物質の特定方法としては、各照射部61が順次駆動した際のアレルゲン含有物質が発する蛍光を、受光部62が順次受光し、蛍光強度が最大の蛍光の要因となった励起光を照射した照射部61の照射部識別情報から、アレルゲン含有物質を特定する、または、受光部62が受光した各蛍光(すなわち、異なる励起光によって発生した複数の蛍光)の蛍光強度の比からアレルゲン含有物質を特定するといったことが考えられる。 As a method for specifying the allergen-containing substance executed by the calculation unit 7, the light emitted from the allergen-containing substance when the irradiation units 61 are sequentially driven is sequentially received by the light receiving unit 62, and the cause of the fluorescence having the maximum fluorescence intensity Fluorescence intensity of each fluorescence (that is, a plurality of fluorescence generated by different excitation lights) that identifies the allergen-containing substance from the irradiation part identification information of the irradiation part 61 that has been irradiated with the excitation light or that is received by the light receiving part 62 It is conceivable that the allergen-containing substance is specified from the ratio.
 アレルゲン含有物質を特定した後、演算部7は、蛍光強度が最大の蛍光の要因となった励起光を照射した照射部61の照射部識別情報に対応付けられている検量線を読み出す。そして、特定した蛍光強度と、読み出した検量線とを用いてアレルゲン含有物質(特定した花粉由来のアレルゲン含有タンパク質、または、特定した花粉)の量を示す指標値を特定する。 After specifying the allergen-containing substance, the calculation unit 7 reads a calibration curve associated with the irradiation unit identification information of the irradiation unit 61 that has irradiated the excitation light that caused the fluorescence with the maximum fluorescence intensity. Then, an index value indicating the amount of the allergen-containing substance (the specified pollen-derived allergen-containing protein or the specified pollen) is specified using the specified fluorescence intensity and the read calibration curve.
 なお、蛍光検出器1aおよび蛍光検出器1bは、花粉だけでなく、ダニおよびダニ由来のアレルゲン含有タンパク質を検出可能に構成されていてもよい。図13は、ヤケヒョウダニ由来のアレルゲン含有タンパク質の蛍光特性を示す図である。図13に示すように、ヤケヒョウダニ由来のアレルゲン含有タンパク質は、紫外光(具体的には、360nmの光)を照射することで、440nmをピーク波長とする蛍光を発する。また、可視光(具体的には、400~490nmの光)を照射することで黄色から緑色(具体的には、550~580nm)の蛍光を発する。なお、ヤケヒョウダニ自体の蛍光特性についても同様である。蛍光検出器1aは、分岐経路部5~5cと異なる分岐経路部5(例えば、分岐経路部5dおよびde(図示せず))を備え、ヤケヒョウダニ程度の粒径の物質を分岐経路部5dに送る分岐部4dと、ヤケヒョウダニ由来アレルゲン含有タンパク質程度の粒径の物質を分岐経路部5eに送る分岐部4eとをさらに備え、当該分岐経路部5dおよび5eには、上述した励起光を出射する照射部61、および、上述したような蛍光を受光する受光部62を含む検知部6を備えることで、ヤケヒョウダニおよびヤケヒョウダニ由来のアレルゲン含有タンパク質を検出することができる。また、蛍光検出器1bは、上述した励起光を出射する照射部61を検知部6内に備えることで、ヤケヒョウダニおよびヤケヒョウダニ由来のアレルゲン含有タンパク質を検出することができる。 Note that the fluorescence detector 1a and the fluorescence detector 1b may be configured to detect not only pollen but also mites and mite-derived allergen-containing proteins. FIG. 13 is a diagram showing the fluorescence characteristics of an allergen-containing protein derived from a dust mite. As shown in FIG. 13, the allergen-containing protein derived from a mushroom mite emits fluorescence having a peak wavelength of 440 nm when irradiated with ultraviolet light (specifically, light of 360 nm). In addition, fluorescence of yellow to green (specifically, 550 to 580 nm) is emitted by irradiation with visible light (specifically, light having a wavelength of 400 to 490 nm). The same applies to the fluorescence characteristics of the dust mite itself. The fluorescence detector 1a includes a branching path part 5 (for example, a branching path part 5d and de (not shown)) different from the branching path parts 5 to 5c, and sends a substance having a particle size about the size of a mushroom mite to the branching path part 5d. A branching part 4d and a branching part 4e that sends a substance having a particle size of about the size of the allergen-containing protein from the mushroom mite to the branching path part 5e, and the irradiation part that emits the excitation light described above is provided in the branching path parts 5d and 5e. 61 and the detection unit 6 including the light receiving unit 62 that receives the fluorescence as described above can detect a dust mite and an allergen-containing protein derived from a dust mite. In addition, the fluorescence detector 1b includes the irradiation unit 61 that emits the above-described excitation light in the detection unit 6, thereby detecting the dust mite and the allergen-containing protein derived from the dust mite.
 なお、上述の例では、ヤケヒョウダニを例に挙げて説明したが、他の種類のダニおよびダニ由来のアレルゲン含有タンパク質を検出してもよい。この場合、検出するダニおよびダニ由来のアレルゲン含有タンパク質の蛍光特性に応じた検知部6を設ければよい。 In the above-described example, the leopard mite was taken as an example, but other types of mites and mite-derived allergen-containing proteins may be detected. In this case, the detection part 6 according to the fluorescence characteristic of the tick to detect and the allergen containing protein derived from a tick should just be provided.
 〔実施形態3〕
 本発明のさらに別の実施形態について、図14および図15に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図14は、スギ花粉由来のアレルゲン含有タンパク質およびヒノキ花粉由来のアレルゲン含有タンパク質の蛍光特性を示す図であり、(a)は、360nmの励起光を照射したときの蛍光特性を示す図であり、(b)は、440nmの励起光を照射したときの蛍光特性を示す図である。また、図15は、本実施形態に係る蛍光検出器1cの要部構成の一例を示す図である。なお、図14の(a)および(b)に記載の「pollen fluorescence」は、花粉由来のアレルゲン含有タンパク質の蛍光であることを示している。 FIG. 14 is a diagram showing the fluorescence characteristics of an allergen-containing protein derived from cedar pollen and an allergen-containing protein derived from cypress pollen, (a) is a diagram showing the fluorescence characteristics when irradiated with excitation light of 360 nm, (B) is a figure which shows the fluorescence characteristic when 440 nm excitation light is irradiated. FIG. 15 is a diagram illustrating an example of a main configuration of the fluorescence detector 1c according to the present embodiment. In addition, “pollen fluorescence” described in FIGS. 14A and 14B indicates fluorescence of pollen-derived allergen-containing protein.
 実施形態2では、検知対象のアレルゲン含有物質ごとに検知部6を設ける構成を説明した。しかしながら、あるアレルゲン含有物質を励起するための励起光で、別のアレルゲン含有物質が蛍光する可能性がある。 Embodiment 2 has described the configuration in which the detection unit 6 is provided for each allergen-containing substance to be detected. However, there is a possibility that another allergen-containing substance fluoresces with excitation light for exciting one allergen-containing substance.
 例えば、図14の(a)に示すように、ヒノキ花粉由来のアレルゲン含有タンパク質に、スギ花粉由来のアレルゲン含有タンパク質を励起する励起光(360nm)を照射すると、スギ花粉由来のアレルゲン含有タンパク質に照射したときよりも弱い蛍光を発する。このため、ヒノキ花粉由来のアレルゲン含有タンパク質と、スギ花粉由来のアレルゲン含有タンパク質との双方が飛散しているときに、スギ花粉由来のアレルゲン含有タンパク質の検出用の励起光を照射した場合、スギ花粉由来のアレルゲン含有タンパク質のみならず、ヒノキ花粉由来のアレルゲン含有タンパク質も蛍光を発する。 For example, as shown in FIG. 14A, when an allergen-containing protein derived from cypress pollen is irradiated with excitation light (360 nm) that excites an allergen-containing protein derived from cedar pollen, the allergen-containing protein derived from cedar pollen is irradiated. It emits weaker fluorescence than when Therefore, when both the allergen-containing protein derived from cypress pollen and the allergen-containing protein derived from cedar pollen are scattered, the cedar pollen is irradiated with excitation light for detection of the allergen-containing protein derived from cedar pollen. Not only allergen-containing proteins derived but also allergen-containing proteins derived from cypress pollen emit fluorescence.
 また、図14の(b)に示すように、スギ花粉由来のアレルゲン含有タンパク質に、ヒノキ花粉由来のアレルゲン含有タンパク質を励起する励起光(440nm)を照射すると、ヒノキ花粉由来のアレルゲン含有タンパク質に照射したときよりも弱い蛍光を発する。このため、ヒノキ花粉由来のアレルゲン含有タンパク質と、スギ花粉由来のアレルゲン含有タンパク質との双方が飛散しているときに、ヒノキ花粉由来のアレルゲン含有タンパク質の検出用の励起光を照射した場合にも、ヒノキ花粉由来のアレルゲン含有タンパク質のみならず、スギ花粉由来のアレルゲン含有タンパク質も蛍光を発する。 Further, as shown in FIG. 14B, when the allergen-containing protein derived from cedar pollen is irradiated with excitation light (440 nm) that excites the allergen-containing protein derived from cypress pollen, the allergen-containing protein derived from cypress pollen is irradiated. It emits weaker fluorescence than when Therefore, when both the allergen-containing protein derived from cypress pollen and the allergen-containing protein derived from cedar pollen are scattered, even when irradiated with excitation light for detection of the allergen-containing protein derived from cypress pollen, Not only allergen-containing proteins derived from cypress pollen but also allergen-containing proteins derived from cedar pollen emit fluorescence.
 つまり、あるアレルゲン含有物質を検知対象とする検知部6から照射された励起光で、検知対象のアレルゲン含有物質と異なるアレルゲン含有物質が蛍光を発した結果、アレルゲン含有物質の種類を誤って特定してしまう(例えば、ヒノキ花粉をスギ花粉と特定してしまう)可能性がある。 In other words, the allergen-containing substance that is different from the detection target allergen-containing substance fluoresces with the excitation light emitted from the detection unit 6 that targets the allergen-containing substance as a detection target. (For example, cypress pollen is identified as cedar pollen).
 そこで、本実施形態に係る蛍光検出器1cは、図15に示すように、記憶部8cが、スペクトルデータベース82(以下、スペクトルDB82)を記憶している。スペクトルDB82は、複数のアレルゲン含有物質の蛍光スペクトルを、各アレルゲン含有物質を識別する情報(例えば、「スギ花粉」「スギ花粉由来のアレルゲン含有タンパク質」など)、および、検知部6を識別する識別情報と対応付けて格納しているデータベースである。例えば、検知部6a1の識別情報には、スギ花粉由来のアレルゲン含有タンパク質、および、ヒノキ花粉由来のアレルゲン含有タンパク質を示す名称と、図14の(a)に示すスペクトルが対応付けられている。また、検知部6a2の識別情報には、スギ花粉由来のアレルゲン含有タンパク質、および、ヒノキ花粉由来のアレルゲン含有タンパク質を示す名称と、図14の(b)に示すスペクトルが対応付けられている。 Therefore, in the fluorescence detector 1c according to the present embodiment, as shown in FIG. 15, the storage unit 8c stores a spectrum database 82 (hereinafter, spectrum DB 82). The spectrum DB 82 identifies the fluorescence spectra of a plurality of allergen-containing substances, information for identifying each allergen-containing substance (for example, “cedar pollen”, “allergen-containing protein derived from cedar pollen”, etc.), and identification for identifying the detection unit 6. It is a database that is stored in association with information. For example, the identification information of the detection unit 6a1 is associated with a name indicating an allergen-containing protein derived from cedar pollen and an allergen-containing protein derived from cypress pollen and a spectrum illustrated in FIG. In addition, the identification information of the detection unit 6a2 is associated with a name indicating the allergen-containing protein derived from cedar pollen and the allergen-containing protein derived from cypress pollen and the spectrum illustrated in FIG.
 演算部7cは、検知部6から識別情報と蛍光強度とを取得すると、識別情報によって特定されるアレルゲン含有物質の蛍光スペクトルをスペクトルDB82から読み出す。そして、取得した複数の蛍光強度の最大値(例えば、検知部6a1から取得した蛍光強度の最大値と、検知部6a2から取得した蛍光強度の最大値)の比率を算出ることで、分岐経路部5を通過したアレルゲン含有物質の主成分を特定する。例えば、検知部6a1から取得した蛍光強度の最大値が、検知部6a2から取得した蛍光強度の最大値の1.4倍程度であった場合、演算部7cは、アレルゲン含有物質の主成分は、スギ花粉由来のアレルゲン含有タンパク質であると特定する。一方、検知部6a1から取得した蛍光強度の最大値が、検知部6a2から取得した蛍光強度の最大値の0.7倍程度であった場合、演算部7cは、アレルゲン含有物質の主成分は、ヒノキ花粉由来のアレルゲン含有タンパク質であると特定する。 When the calculation unit 7c acquires the identification information and the fluorescence intensity from the detection unit 6, the calculation unit 7c reads the fluorescence spectrum of the allergen-containing substance specified by the identification information from the spectrum DB 82. Then, by calculating the ratio of the maximum values of the plurality of acquired fluorescence intensities (for example, the maximum value of the fluorescence intensity acquired from the detection unit 6a1 and the maximum value of the fluorescence intensity acquired from the detection unit 6a2), the branch path unit The main component of the allergen-containing substance that has passed 5 is specified. For example, when the maximum value of the fluorescence intensity acquired from the detection unit 6a1 is about 1.4 times the maximum value of the fluorescence intensity acquired from the detection unit 6a2, the calculation unit 7c, the main component of the allergen-containing substance is Identified as an allergen-containing protein derived from cedar pollen. On the other hand, when the maximum value of the fluorescence intensity acquired from the detection unit 6a1 is about 0.7 times the maximum value of the fluorescence intensity acquired from the detection unit 6a2, the calculation unit 7c, the main component of the allergen-containing substance is: Identified as an allergen-containing protein derived from cypress pollen.
 なお、蛍光強度の最大値を用いることは必須ではなく、平均値や最頻値などを用いてもよい。また、演算部7cは、分岐経路部5を通過したアレルゲン含有物質それぞれの量を示す指標値を特定してもよい。スギ花粉由来のアレルゲン含有タンパク質を例に挙げて説明すると、演算部7cは、算出した蛍光強度の最大値の比率から、分岐経路部5を通過したアレルゲン含有物質のうちの、スギ花粉由来のアレルゲン含有タンパク質の割合を算出する。そして、当該割合と、検量線DB81から読み出したスギ花粉由来のアレルゲン含有タンパク質の検量線とを用いて、スギ花粉由来のアレルゲン含有タンパク質の量を示す指標値を特定する。 Note that it is not essential to use the maximum value of the fluorescence intensity, and an average value or a mode value may be used. The calculation unit 7 c may specify an index value indicating the amount of each allergen-containing substance that has passed through the branch path unit 5. When the allergen-containing protein derived from cedar pollen is described as an example, the calculation unit 7c calculates the allergen derived from cedar pollen out of the allergen-containing substances that have passed through the branching path unit 5, based on the calculated ratio of the maximum fluorescence intensity. Calculate the percentage of protein contained. And the index value which shows the quantity of the allergen containing protein derived from a cedar pollen is specified using the said ratio and the calibration curve of the allergen containing protein derived from the cedar pollen read from calibration curve DB81.
 〔実施形態4〕
 本発明のさらに別の実施形態について、図16および図17に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
Still another embodiment of the present invention will be described below with reference to FIGS. 16 and 17. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図16は、本実施形態に係る蛍光検出器1dの要部構成の一例を示す図である。蛍光検出器1dは、図16に示すように、分岐経路部5a内のアレルゲン含有物質を加熱する加熱部9aと、分岐経路部5b内のアレルゲン含有物質を加熱する加熱部9bとをさらに備えている。なお以降、加熱部9aおよび加熱部9bを区別する必要が無い場合、「加熱部9」と記載する。また、加熱部9の構成は、励起光の照射時、または励起光の照射直前のアレルゲン含有物質を所定の温度(後述するように100~200℃が好ましい)に加熱することができれば特に限定されない。なお、図示の例では、励起光照射直前のアレルゲン含有物質を加熱するために、加熱部9を照射部61の直前に配置している。 FIG. 16 is a diagram illustrating an example of a main configuration of the fluorescence detector 1d according to the present embodiment. As shown in FIG. 16, the fluorescence detector 1d further includes a heating part 9a for heating the allergen-containing substance in the branch path part 5a and a heating part 9b for heating the allergen-containing substance in the branch path part 5b. Yes. Hereinafter, when it is not necessary to distinguish between the heating unit 9a and the heating unit 9b, the heating unit 9a is referred to as “heating unit 9”. The configuration of the heating unit 9 is not particularly limited as long as the allergen-containing substance at the time of irradiation with excitation light or immediately before the irradiation of excitation light can be heated to a predetermined temperature (preferably 100 to 200 ° C. as described later). . In the illustrated example, the heating unit 9 is disposed immediately before the irradiation unit 61 in order to heat the allergen-containing substance immediately before the excitation light irradiation.
 蛍光検出器1dがアレルゲン含有物質を加熱する理由を図17に基づいて説明する。図17は、加熱前および加熱後におけるスギ花粉由来のアレルゲン含有タンパク質の濃度と蛍光強度との関係を示すグラフである。蛍光物質は、励起光照射時、または励起光照射直前に熱を加えることによって蛍光強度が増幅することが知られている。特に、100~200℃の熱を蛍光物質に加えることによって、熱を加えずに測定した蛍光強度の数倍から数10倍程度、蛍光強度が増幅する。図17に示すように、スギ花粉由来のアレルゲン含有タンパク質についても、加熱によってアレルゲン含有タンパク質の蛍光強度が増幅される。 The reason why the fluorescence detector 1d heats the allergen-containing substance will be described with reference to FIG. FIG. 17 is a graph showing the relationship between the concentration of the allergen-containing protein derived from cedar pollen and the fluorescence intensity before and after heating. It is known that the fluorescence intensity of a fluorescent substance is amplified by applying heat at the time of excitation light irradiation or immediately before excitation light irradiation. In particular, when heat of 100 to 200 ° C. is applied to the fluorescent material, the fluorescence intensity is amplified by several to several tens of times the fluorescence intensity measured without applying heat. As shown in FIG. 17, the fluorescence intensity of the allergen-containing protein is also amplified by heating for the allergen-containing protein derived from cedar pollen.
 上述のように、加熱によって蛍光強度が変化するので、本実施形態に係る検量線DB81は、加熱部9による加熱の程度に応じた、スギ花粉およびスギ花粉由来のアレルゲン含有タンパク質の検量線を記憶している。これにより、蛍光検出器1dにおいてスギ花粉またはスギ花粉由来のアレルゲン含有タンパク質の量を示す指標値を特定することができる。 As described above, since the fluorescence intensity changes due to heating, the calibration curve DB 81 according to the present embodiment stores the calibration curve of the cedar pollen and the allergen-containing protein derived from the cedar pollen according to the degree of heating by the heating unit 9. is doing. Thereby, in the fluorescence detector 1d, an index value indicating the amount of cedar pollen or an allergen-containing protein derived from cedar pollen can be specified.
 以上より、本実施形態に係る蛍光検出器1dによれば、分岐経路部5を通るアレルゲン含有物質を加熱する加熱部9を備えている。これによって、アレルゲン含有物質の蛍光強度が増幅されるので、より少量の花粉やアレルゲン含有タンパク質を検出すること(検出限界を下げること)ができる。なお、本実施形態の構成をその他の実施形態に適用してもよい。つまり、加熱部9は、上述および後述のいずれの実施形態の構成にも適用可能である。 As described above, the fluorescence detector 1d according to the present embodiment includes the heating unit 9 that heats the allergen-containing substance that passes through the branch path unit 5. As a result, the fluorescence intensity of the allergen-containing substance is amplified, so that a smaller amount of pollen and allergen-containing protein can be detected (lowering the detection limit). Note that the configuration of the present embodiment may be applied to other embodiments. That is, the heating unit 9 can be applied to the configurations of any of the embodiments described above and below.
 〔実施形態5〕
 本発明のさらに別の実施形態について、図18~図20に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
The following will describe still another embodiment of the present invention with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図18は、本発明の実施形態5に係る蛍光検出器1eの要部構成の一例を示す図であり、図19は、蛍光検出器1eの検知部6a1の詳細を示す図であり、図20は、受光部64に設けられた各フィルタの光透過特性を示す図である。図18に示すように、本実施形態に係る蛍光検出器1eは、実施形態2で説明した蛍光検出器1aと同様に、分岐経路部5aおよび分岐経路部5bのそれぞれに複数の検知部6(6a1~6an、6b1~6bn)を備える構成である。詳細は以下で説明するが、蛍光検出器1eは検知部の構成が蛍光検出器1aと相違している。 FIG. 18 is a diagram illustrating an example of a main configuration of a fluorescence detector 1e according to Embodiment 5 of the present invention, and FIG. 19 is a diagram illustrating details of the detection unit 6a1 of the fluorescence detector 1e. These are figures which show the light transmission characteristic of each filter provided in the light-receiving part 64. FIG. As shown in FIG. 18, the fluorescence detector 1e according to the present embodiment includes a plurality of detection units 6 (in each of the branch path unit 5a and the branch path unit 5b, similarly to the fluorescence detector 1a described in the second embodiment. 6a1-6an, 6b1-6bn). Although details will be described below, the fluorescence detector 1e is different from the fluorescence detector 1a in the configuration of the detection unit.
 蛍光検出器1eの検知部6について、図19に基づいて説明する。図19の(a)に示すように、検知部6a1は、3つの受光部64a1、受光部64a2、受光部64a3を備える。以降、受光部64a1、受光部64a2、受光部64a3を区別する必要が無い場合、「受光部64」と記載する。受光部64は、フォトダイオードなどの受光素子であってもよい。なお、図19には、検知部6a1の構成を示しているが、検知部6a2~6anおよび6b1~6bnも同様の構成である。 The detection unit 6 of the fluorescence detector 1e will be described with reference to FIG. As shown in FIG. 19A, the detection unit 6a1 includes three light receiving units 64a1, a light receiving unit 64a2, and a light receiving unit 64a3. Hereinafter, when it is not necessary to distinguish the light receiving unit 64a1, the light receiving unit 64a2, and the light receiving unit 64a3, they are referred to as “light receiving unit 64”. The light receiving unit 64 may be a light receiving element such as a photodiode. FIG. 19 shows the configuration of the detection unit 6a1, but the detection units 6a2 to 6an and 6b1 to 6bn have the same configuration.
 また、図19の(a)に示すように、受光部64a1、受光部64a2、受光部64a3は、それぞれBフィルタ67a1、Gフィルタ67a2、Rフィルタ67a3(光学素子)を備えている。 Further, as shown in FIG. 19A, the light receiving unit 64a1, the light receiving unit 64a2, and the light receiving unit 64a3 include a B filter 67a1, a G filter 67a2, and an R filter 67a3 (optical elements), respectively.
 この3種類のフィルタについて、図20を参照して説明する。図20は、受光部64に設けられた各フィルタの光透過特性を示す図である。図20に示すように、Bフィルタ67a1は青色光(具体的には、400~500nm)を選択的に通し、Gフィルタ67a2は緑色光(具体的には500~600nm)を選択的に通し、Rフィルタ67a3は赤色光(具体的には600~700nm)を選択的に通す。 These three types of filters will be described with reference to FIG. FIG. 20 is a diagram illustrating the light transmission characteristics of each filter provided in the light receiving unit 64. As shown in FIG. 20, the B filter 67a1 selectively transmits blue light (specifically, 400 to 500 nm), the G filter 67a2 selectively transmits green light (specifically, 500 to 600 nm), The R filter 67a3 selectively transmits red light (specifically, 600 to 700 nm).
 以上より、Bフィルタ67a1を備える受光部64a1は、アレルギー物質が発する蛍光に含まれる、Bフィルタ67a1の透過光、すなわち青色成分の光を受光し、その蛍光強度を出力する。同様に、Gフィルタ67a2を備える受光部64a2はアレルギー物質が発する蛍光に含まれる緑色成分の光の蛍光強度を出力し、Rフィルタ67a3を備える受光部64a3はアレルギー物質が発する蛍光に含まれる赤色成分の光の蛍光強度を出力する。そして、これらの各蛍光強度は、演算部7e(第2の特定部)に出力される。 As described above, the light receiving unit 64a1 including the B filter 67a1 receives the transmitted light of the B filter 67a1, that is, the blue component light, included in the fluorescence emitted by the allergic substance, and outputs the fluorescence intensity. Similarly, the light receiving unit 64a2 including the G filter 67a2 outputs the fluorescence intensity of the green component light included in the fluorescence emitted from the allergic substance, and the light receiving unit 64a3 including the R filter 67a3 is the red component included in the fluorescence emitted from the allergic substance. The fluorescence intensity of light is output. Then, each of these fluorescence intensities is output to the calculation unit 7e (second specifying unit).
 なお、検知部6a1は、蛍光を色成分ごとに分離し、各色成分の蛍光強度を検出できるものであればよく、図19の(a)の例に限られない。例えば、図19の(b)に示すように、複数の受光部64aの代わりに撮像素子69aを備え、当該撮像素子69aに、上記フィルタの代わりにカラーフィルタ68a(光学素子)を備えた構成であってもよい。撮像素子69aは、例えばCCD(charge-coupled device)やCMOS(complementary metal-oxide semiconductor)であってもよい。図19の(c)は、カラーフィルタ68aを上方向(蛍光の透過方向)から見た図である。カラーフィルタ68aは、図19の(c)に示すように、青色光を選択的に通すBフィルタ領域、緑色光を選択的に通すGフィルタ領域、赤色光を選択的に通すRフィルタ領域を有している。各領域はそれぞれ、撮像素子69aの各画素に対応している。なお、各領域の透過特性は、上述の各フィルタと同様である。つまり、アレルゲン含有物質が発した蛍光は、カラーフィルタ68aによって青色成分、緑色成分、および赤色成分に分解されて撮像素子69aのそれぞれ異なる領域(各画素)に入射する。そして、撮像素子69aは各領域で受光した光について、青色成分、緑色成分、および赤色成分の各強度を特定する。具体的には、Bフィルタ領域、Gフィルタ領域、Rフィルタ領域に入射した光をそれぞれ平均することで、青色成分、緑色成分、および赤色成分の各強度を特定する。そして、撮像素子69aは、蛍光の青色成分、緑色成分、および赤色成分の各強度を演算部7eに出力する。なお、検知部6a2~6anおよび6b1~6bnについても同様の構成としてもよい。なお、蛍光の青色成分、緑色成分、および赤色成分の各強度の特定方法は上記の例に限定されない。例えば、Bフィルタ領域、Gフィルタ領域、Rフィルタ領域に入射した光をそれぞれ積算してもよい。 Note that the detection unit 6a1 is not limited to the example shown in FIG. 19A as long as it can separate fluorescence for each color component and detect the fluorescence intensity of each color component. For example, as shown in FIG. 19B, an image sensor 69a is provided instead of the plurality of light receiving portions 64a, and the image sensor 69a is provided with a color filter 68a (optical element) instead of the filter. There may be. The image sensor 69a may be, for example, a charge-coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). FIG. 19C is a view of the color filter 68a as viewed from above (fluorescence transmission direction). As shown in FIG. 19C, the color filter 68a has a B filter region that selectively transmits blue light, a G filter region that selectively transmits green light, and an R filter region that selectively transmits red light. is doing. Each region corresponds to each pixel of the image sensor 69a. The transmission characteristics of each region are the same as those of the above-described filters. That is, the fluorescence emitted from the allergen-containing substance is decomposed into a blue component, a green component, and a red component by the color filter 68a, and enters each different region (each pixel) of the image sensor 69a. Then, the imaging element 69a specifies the intensities of the blue component, the green component, and the red component for the light received in each region. Specifically, each intensity of the blue component, the green component, and the red component is specified by averaging light incident on the B filter region, the G filter region, and the R filter region. Then, the image sensor 69a outputs the intensities of the fluorescent blue component, green component, and red component to the computing unit 7e. The detection units 6a2 to 6an and 6b1 to 6bn may have the same configuration. In addition, the identification method of each intensity | strength of the blue component of a fluorescence, a green component, and a red component is not limited to said example. For example, the light incident on the B filter region, the G filter region, and the R filter region may be integrated.
 以上のようにして、検知部6a1は、蛍光の青色成分、緑色成分、および赤色成分の各強度と、検知部6a1の識別情報とを演算部7eに出力する。演算部7eは、取得した各成分の強度に基づいて各成分の階調値をそれぞれ算出してR値、G値、およびB値を要素とする階調信号とする。具体的には、受光部62が受光した蛍光を電気信号に変換し、演算部7eに出力する。演算部7eは、当該電気信号をA/D変換、すなわち、アナログ信号をデジタル信号に変換する処理を行うことで、当該電気信号を階調値に変換する。なお、A/D変換のレンジは蛍光強度の大きさに依存する。なお、電気信号を増幅器で増幅した後に、A/D変換を行ってもよい。この場合、A/D変換のレンジは増幅後に取り得る値の範囲に基づいて決定される。そして、該階調信号に対してHSV変換を行う。具体的には、HSV変換では、算出した階調信号から蛍光の色相、彩度、および明度を示すパラメータ(算出値、それぞれ、H値、S値、V値)を算出する。 As described above, the detection unit 6a1 outputs the intensities of the blue, green, and red components of the fluorescence and the identification information of the detection unit 6a1 to the calculation unit 7e. The calculation unit 7e calculates the gradation value of each component based on the acquired intensity of each component, and sets it as a gradation signal having the R value, the G value, and the B value as elements. Specifically, the fluorescence received by the light receiving unit 62 is converted into an electrical signal and output to the computing unit 7e. The computing unit 7e converts the electrical signal into a gradation value by performing A / D conversion of the electrical signal, that is, processing for converting an analog signal into a digital signal. Note that the A / D conversion range depends on the magnitude of the fluorescence intensity. Note that A / D conversion may be performed after the electric signal is amplified by an amplifier. In this case, the range of A / D conversion is determined based on the range of values that can be taken after amplification. Then, HSV conversion is performed on the gradation signal. Specifically, in the HSV conversion, parameters (calculated values, H value, S value, and V value, respectively) indicating the hue, saturation, and brightness of the fluorescence are calculated from the calculated gradation signal.
 例えば、以下のような計算式を用いて、H値、S値、V値を算出する。まず、階調信号の最大値(MAX)および最小値(MIN)を以下のように定義する。
MAX=max(R,G,B)
MIN=min(R,G,B)
 ここで、max(R,G,B)はR値、G値、B値のうちの最大値であり、min(R,G,B)はR値、G値、B値のうちの最小値である。
For example, the H value, the S value, and the V value are calculated using the following calculation formula. First, the maximum value (MAX) and the minimum value (MIN) of the gradation signal are defined as follows.
MAX = max (R, G, B)
MIN = min (R, G, B)
Here, max (R, G, B) is the maximum value among the R value, G value, and B value, and min (R, G, B) is the minimum value among the R value, G value, and B value. It is.
 そして、H値、S値、V値を以下のように算出する。なおH値は、最小値がR値、G値、B値のいずれであるかに応じて計算式が異なる。なお、最小値が2つある場合は、当該2つの値にそれぞれ対応する2つの計算式のうち、いずれを使ってもよい。
MIN=Bである場合
H=60×{(G-R)/(MAX-MIN)}+60
MIN=Rである場合
H=60×{(B-G)/(MAX-MIN)}+180
MIN=Gである場合
H=60×{(R-B)/(MAX-MIN)}+300
MIN=MAXである場合
H=undefined
S=MAX-MIN
V=MAX
 また、本実施形態に係る蛍光検出器1eの記憶部8eは、新たにHSV空間データベース83(以下、HSV空間DB83)を記憶している。HSV空間DB83は、複数のアレルゲン含有物質の蛍光強度から算出したH値、S値、V値を、各アレルゲン含有物質を識別する情報(例えば、「スギ花粉」「スギ花粉由来のアレルゲン含有タンパク質」など)、および、検知部6を識別する識別情報と対応付けて格納しているデータベースである。
Then, the H value, S value, and V value are calculated as follows. Note that the calculation formula of the H value differs depending on whether the minimum value is an R value, a G value, or a B value. In addition, when there are two minimum values, any one of two calculation formulas corresponding to the two values may be used.
When MIN = B, H = 60 × {(GR) / (MAX−MIN)} + 60
When MIN = R, H = 60 × {(BG) / (MAX−MIN)} + 180
When MIN = G H = 60 × {(RB) / (MAX−MIN)} + 300
H = undefined when MIN = MAX
S = MAX-MIN
V = MAX
In addition, the storage unit 8e of the fluorescence detector 1e according to the present embodiment newly stores an HSV space database 83 (hereinafter, HSV space DB 83). The HSV space DB 83 uses the H value, S value, and V value calculated from the fluorescence intensities of a plurality of allergen-containing substances as information for identifying each allergen-containing substance (for example, “cedar pollen” or “allergen-containing protein derived from cedar pollen”). Etc.), and a database stored in association with identification information for identifying the detection unit 6.
 演算部7eは、検知部6から取得した識別情報によって特定されるアレルゲン含有物質のH値、S値、V値をHSV空間DB83から読み出す。そして、算出したH値、S値、V値と読み出したH値、S値、V値とが一致するか否かを判定する。なお、当該判定は完全に一致するか否かの判定でなくてもよく、それぞれの値が所定の範囲内に含まれているか否かを判定する構成であってもよい。そして、演算部7eは、一致すると判定した場合、当該アレルゲン含有物質の検量線を検量線DB81から読み出し、アレルゲン含有物質の量を示す指標値を特定する。そして、演算部7eは、特定した指標値に基づいて、表示用データを生成し、表示部10に表示させる。 The calculation unit 7e reads the H value, S value, and V value of the allergen-containing substance specified by the identification information acquired from the detection unit 6 from the HSV space DB 83. Then, it is determined whether or not the calculated H value, S value, and V value match the read H value, S value, and V value. Note that the determination may not be a determination as to whether or not they completely match, and may be configured to determine whether or not each value is included in a predetermined range. And when it determines with the calculating part 7e being in agreement, the calibration curve of the said allergen containing substance is read from calibration curve DB81, and the index value which shows the quantity of an allergen containing substance is specified. Then, the calculation unit 7e generates display data based on the specified index value and causes the display unit 10 to display the display data.
 表示部10は、画像を表示する表示デバイスであり、例えば液晶ディスプレイである。具体的には、表示部10は、演算部7eによって制御されて、演算部7eが生成した表示用データを表示する。なお、表示用データとは、ユーザにアレルゲン含有物質の量を報知するための画像である。 The display unit 10 is a display device that displays an image, for example, a liquid crystal display. Specifically, the display unit 10 is controlled by the calculation unit 7e and displays display data generated by the calculation unit 7e. The display data is an image for notifying the user of the amount of the allergen-containing substance.
 なお、演算部7eは、一致しないと判定した場合でも、アレルゲン含有物質の種類を特定する構成であってもよい。例えば、HSV空間DB83に格納されているH値、S値、V値に、同一波長の光で励起した、別のアレルゲン含有物質のH値、S値、V値を対応付けておく。そして、演算部7eは、識別情報によって特定されるアレルゲン含有物質が発した蛍光でないと判定した場合、HSV空間DB83を参照して、対応付けられた別のアレルゲン含有物質のH値、S値、V値を読み出し、算出したH値、S値、V値と比較する。そして、読み出したH値、S値、V値が示すアレルゲン含有物質が発した蛍光であると判定した場合、検量線DB81から、当該アレルゲン含有物質の検量線を読み出す。 In addition, even when it determines with the calculating part 7e not being in agreement, the structure which specifies the kind of allergen containing substance may be sufficient. For example, the H value, S value, and V value stored in the HSV space DB 83 are associated with the H value, S value, and V value of another allergen-containing substance that has been excited by light of the same wavelength. And when it determines with the calculating part 7e not being the fluorescence which the allergen containing substance specified by identification information emitted, with reference to HSV space DB83, the H value of another associated allergen containing substance, S value, The V value is read and compared with the calculated H value, S value, and V value. And when it determines with it being the fluorescence which the allergen containing material which the read H value, S value, and V value show, the calibration curve of the said allergen containing material is read from calibration curve DB81.
 また、本実施形態に係る蛍光検出器1eは、記憶部8eにはHSV空間DB83のみが記憶されており、上述した処理によって、アレルゲン含有物質の種類のみを特定する構成であってもよい。 Further, the fluorescence detector 1e according to the present embodiment may be configured such that only the HSV space DB 83 is stored in the storage unit 8e, and only the type of the allergen-containing substance is specified by the above-described processing.
 また、HSV変換を行う変換式は、上述の例に限定されない。また、本実施形態に係る蛍光検出器1eは、HSV変換を行わず、R値、G値、B値を比較することでアレルゲン含有物質の種類を特定するものであってもよい。この場合、HSV空間DB83の代わりに、複数のアレルゲン含有物質の蛍光強度から算出したR値、G値、B値を、各アレルゲン含有物質を識別する情報(例えば、「スギ花粉」「スギ花粉由来のアレルゲン含有タンパク質」など)と対応付けて格納しているデータベースが記憶部8eに格納される。また、蛍光強度は、HSV変換以外の変換方法で、H値、S値、V値とは異なる値に変換されてもよい。この場合、記憶部8eには、複数のアレルゲン含有物質の蛍光強度から算出した当該値を、各アレルゲン含有物質を識別する情報(例えば、「スギ花粉」「スギ花粉由来のアレルゲン含有タンパク質」など)、および、検知部6を識別する識別情報と対応付けて格納しているデータベースが格納されている。 Also, the conversion formula for performing HSV conversion is not limited to the above example. In addition, the fluorescence detector 1e according to the present embodiment may identify the type of the allergen-containing substance by comparing R value, G value, and B value without performing HSV conversion. In this case, instead of the HSV space DB 83, R values, G values, and B values calculated from the fluorescence intensities of a plurality of allergen-containing substances are used to identify each allergen-containing substance (for example, “cedar pollen” or “cedar pollen-derived” And the like are stored in the storage unit 8e. The fluorescence intensity may be converted to a value different from the H value, S value, and V value by a conversion method other than HSV conversion. In this case, in the storage unit 8e, the value calculated from the fluorescence intensities of a plurality of allergen-containing substances is used to identify each allergen-containing substance (for example, “cedar pollen” “cedar pollen-derived allergen-containing protein”). And a database stored in association with identification information for identifying the detection unit 6 is stored.
 以上のように、蛍光検出器1eは、アレルゲン含有物質が発した蛍光を複数成分に分解する。また、当該複数成分の強度に基づいて、蛍光の色相、彩度、および明度を示すパラメータを算出し、HSV空間DB83に格納されている各アレルゲン含有物質の上記パラメータと比較する。これにより、より正確にアレルゲン含有物質の種類を特定することができる。また、アレルゲン含有物質とそれ以外の蛍光物質とをより明確に区別することができる。なお、本実施形態の構成をその他の実施形態に適用してもよい。 As described above, the fluorescence detector 1e decomposes the fluorescence emitted from the allergen-containing substance into a plurality of components. Further, parameters indicating the hue, saturation, and brightness of the fluorescence are calculated based on the intensities of the plurality of components, and compared with the parameters of each allergen-containing substance stored in the HSV space DB 83. Thereby, the kind of allergen containing substance can be specified more correctly. In addition, the allergen-containing substance and the other fluorescent substance can be more clearly distinguished. Note that the configuration of the present embodiment may be applied to other embodiments.
 〔変形例〕
 上述した実施形態1~6に記載の蛍光検出器1、1a~1eは、掃除機、空気清浄機、または空調装置(いわゆるエアコン)内に設けられてもよい。そして、当該掃除機、空気清浄機、およびエアコンは、検出したアレルゲン含有物質の量を示す指標値に基づいて、吸引力を変化させる構成であってもよい。また、上記掃除機が全自動掃除機(自走式の掃除機)の場合、指標値が高い箇所を何度も通過するように制御してもよい。また、空気清浄機の場合、上記指標値に基づいて稼働時間を変えてもよい(より詳細には、指標値の大きさに応じて稼働時間を長くしてもよい)。
[Modification]
The fluorescence detectors 1, 1a to 1e described in the first to sixth embodiments may be provided in a cleaner, an air cleaner, or an air conditioner (so-called air conditioner). The vacuum cleaner, the air cleaner, and the air conditioner may be configured to change the suction force based on an index value indicating the detected amount of the allergen-containing substance. Moreover, when the said vacuum cleaner is a fully automatic vacuum cleaner (self-propelled cleaner), you may control so that a location with a high index value may pass many times. In the case of an air cleaner, the operating time may be changed based on the index value (more specifically, the operating time may be lengthened according to the size of the index value).
 掃除機、空気清浄機、エアコンに上記蛍光検出器1、1a~1eを設けることで、室内に存在する花粉由来のアレルゲン含有タンパク質、および、ダニの死骸や糞が分解したものの量を示す指標値を正確に特定し、指標値に応じた制御を行うことができる。花粉由来のアレルゲン含有物質や、ダニの死骸、糞が分解したものといったアレルゲン含有物質は粒径が小さく、容易に空気中に再飛散するので、特に、空気清浄機やエアコンに上記蛍光検出器1、1a~1eを設けた場合、より正確に室内に存在する粒径の小さいアレルゲン含有物質の量を示す指標値を特定し、指標値に応じて空気清浄機を制御することができる。 An index value indicating the amount of pollen-derived allergen-containing protein in the room and the decomposition of mite carcasses and feces by providing the fluorescence detectors 1, 1a to 1e in vacuum cleaners, air cleaners, and air conditioners. Can be accurately identified, and control according to the index value can be performed. Allergen-containing substances such as pollen-derived allergen-containing substances, dead mite bodies, and those obtained by decomposition of feces have a small particle size and easily re-scatter into the air. When 1a to 1e are provided, an index value indicating the amount of the allergen-containing substance having a small particle diameter existing in the room can be specified more accurately, and the air cleaner can be controlled according to the index value.
 また、上述した実施形態1~6では、花粉を検出する検知部6bと、当該花粉由来のアレルゲン含有タンパク質を検出する検知部6aとは、同じ波長帯域の光を出射する照射部61、および、同じ波長帯域の光を受光する受光部62を備えるものとして説明した。例えば、スギ花粉に光を照射する照射部61bと、スギ花粉由来のアレルゲン含有タンパク質に光を照射する照射部61aとは、同じ波長帯域の光を出射していた。また、スギ花粉が発した蛍光を受光する受光部62bと、スギ花粉由来のアレルゲン含有タンパク質が発した蛍光を受光する受光部62aとは、同じ波長帯域の光を受光する構成であった。 In the first to sixth embodiments described above, the detection unit 6b that detects pollen and the detection unit 6a that detects the allergen-containing protein derived from the pollen include an irradiation unit 61 that emits light in the same wavelength band, and In the above description, the light receiving unit 62 that receives light in the same wavelength band is provided. For example, the irradiation unit 61b that irradiates light to cedar pollen and the irradiation unit 61a that irradiates light to an allergen-containing protein derived from cedar pollen emit light in the same wavelength band. The light receiving unit 62b that receives the fluorescence emitted from the cedar pollen and the light receiving unit 62a that receives the fluorescence emitted from the allergen-containing protein derived from the cedar pollen are configured to receive light in the same wavelength band.
 しかしながら、本発明に係る蛍光検出器1、1a~1eはこの例に限定されない。すなわち、照射部61が出射する光の波長帯域と、受光部62が受光する光の波長帯域とは、検出対象となる物質の特性(当該物質を励起する光の波長と、当該物質が発する蛍光特性)に応じて決定されればよい。そのため、物質によっては、照射部61aが出射する光の波長帯域と、照射部61bが出射する光の波長帯域とが異なってもよい。同様に、受光部62aが受光する光の波長帯域と、受光部62bが受光する光の波長帯域とが異なってもよい。なお、ここでは花粉と花粉由来のアレルゲン含有タンパク質とを例に挙げて説明したが、実施形態2で説明した、ダニを検出する検知部6、および、ダニ由来のアレルゲン含有タンパク質を検出する検知部6についても、同様である。 However, the fluorescence detectors 1, 1a to 1e according to the present invention are not limited to this example. That is, the wavelength band of the light emitted from the irradiation unit 61 and the wavelength band of the light received by the light receiving unit 62 are the characteristics of the substance to be detected (the wavelength of the light exciting the substance and the fluorescence emitted by the substance). It may be determined according to the characteristics). Therefore, depending on the substance, the wavelength band of the light emitted from the irradiation unit 61a may be different from the wavelength band of the light emitted from the irradiation unit 61b. Similarly, the wavelength band of light received by the light receiving unit 62a may be different from the wavelength band of light received by the light receiving unit 62b. Here, the pollen and the pollen-derived allergen-containing protein have been described as examples. However, the detection unit 6 that detects mites and the detection unit that detects mite-derived allergen-containing proteins described in the second embodiment. The same applies to 6.
 〔ソフトウェアによる実現例〕
 蛍光検出器1、および1a~1eの制御ブロック(特に制御部63および演算部7)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (particularly the control unit 63 and the arithmetic unit 7) of the fluorescence detector 1 and 1a to 1e may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU It may be realized by software using (Central Processing Unit).
 後者の場合、蛍光検出器1、および1a~1eは、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the fluorescence detectors 1 and 1a to 1e are a CPU that executes instructions of a program that is software for realizing each function, and a ROM in which the program and various data are recorded so as to be readable by a computer (or CPU). (Read Only Memory) or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る蛍光検出装置(蛍光検出器1)は、アレルギーの原因物質であるアレルゲンを含む、吸引した空気中のアレルゲン含有物質が発する蛍光を検出する蛍光検出装置であって、吸引した上記アレルゲン含有物質を、該アレルゲン含有物質の大きさに応じた異なる分岐経路部(分岐経路部5)に分岐させる分岐部(分岐部4)を備えているとともに、上記分岐経路部内に励起光を照射して該分岐経路部内の上記アレルゲン含有物質が発する蛍光を検出する検出部(検知部6)が、上記分岐経路部の少なくとも2つに設けられている。
[Summary]
A fluorescence detection apparatus (fluorescence detector 1) according to aspect 1 of the present invention is a fluorescence detection apparatus that detects fluorescence emitted from an allergen-containing substance in the aspirated air, which includes an allergen that is a causative substance of allergy. A branch portion (branch portion 4) for branching the allergen-containing substance into different branch path portions (branch path portion 5) according to the size of the allergen-containing substance, and excitation light in the branch path portion The detection part (detection part 6) which detects the fluorescence which the said allergen containing substance in this branch path part emits is provided in at least two of the said branch path parts.
 上記の構成によれば、吸引したアレルゲン含有物質を、該原因物質の大きさに応じた異なる分岐経路部に分岐させ、各分岐経路部のうち少なくとも2つの分岐経路部を通るアレルゲン含有物質に対して、励起光を照射し、発生した蛍光を検出する。これにより、大きさが異なるアレルゲン含有物質は、それぞれ異なる分岐経路部に設けられた検出部によって蛍光を検出される。よって、大きさが異なるアレルゲン含有物質のそれぞれを、簡便に検出することができる。 According to the above configuration, the allergen-containing substance that has been sucked is branched into different branching path portions corresponding to the size of the causative substance, and the allergen-containing substance that passes through at least two branching path parts among the branching path parts. Then, the excitation light is irradiated and the generated fluorescence is detected. Thereby, the fluorescence of the allergen-containing substances having different sizes is detected by the detection units provided in the different branch paths. Therefore, each of the allergen-containing substances having different sizes can be easily detected.
 本発明の態様2に係る蛍光検出装置は、上記態様1において、上記検出部が設けられた上記分岐経路部に応じた方式で、上記アレルゲン含有物質の種類、および上記アレルゲン含有物質の量を示す指標値の少なくとも一方を特定する第1の特定部(演算部7)をさらに備えてもよい。 The fluorescence detection device according to aspect 2 of the present invention shows the type of the allergen-containing substance and the amount of the allergen-containing substance in a manner according to the branch path part provided with the detection part in the aspect 1. A first specifying unit (calculation unit 7) that specifies at least one of the index values may be further provided.
 上記の構成によれば、上記検出部が設けられた分岐経路部に応じた方式で、アレルゲン含有物質の種類、およびアレルゲン含有物質の量を示す指標値の少なくとも一方を特定する。これにより、異なる分岐経路部に送られたアレルゲン含有物質に応じた方式で、上記種類および上記指標値の少なくとも一方を特定することができる。よって、上記種類および上記指標値の少なくとも一方を正確に特定することができる。 According to the above configuration, at least one of the type of the allergen-containing substance and the index value indicating the amount of the allergen-containing substance is specified by a method corresponding to the branch path part provided with the detection unit. Thereby, at least one of the above-mentioned kind and the above-mentioned index value can be specified by the method according to the allergen-containing substance sent to the different branch path parts. Therefore, it is possible to accurately specify at least one of the type and the index value.
 例えば、スギ花粉とスギ花粉由来のアレルゲンを含むタンパク質との上記指標値を特定する場合、花粉が通る分岐経路部にて検出された蛍光には、スギ花粉の検量線を用いて上記指標値を特定し、スギ花粉由来のアレルゲンを含むタンパク質が通る分岐経路部にて検出された蛍光には、スギ花粉由来のアレルゲンを含むタンパク質の検量線を用いて上記指標値を特定する。これにより、スギ花粉、およびスギ花粉由来のアレルゲンを含むタンパク質の上記指標値について、それぞれを正確に特定することができる。 For example, when specifying the index value of a cedar pollen and a protein containing an allergen derived from cedar pollen, the index value is determined using a calibration curve of cedar pollen for the fluorescence detected in the branch path part through which the pollen passes. For the fluorescence detected at the branching path portion through which the protein containing the allergen derived from cedar pollen passes, the index value is specified using a calibration curve of the protein containing the allergen derived from cedar pollen. Thereby, each can be correctly specified about the said index value of the protein containing the cedar pollen and the allergen derived from a cedar pollen.
 本発明の態様3に係る蛍光検出装置は、上記態様1または2において、上記検出部は、それぞれ異なる波長帯域の上記励起光を出射する複数の照射部(照射部61)を備えてもよい。 In the fluorescence detection device according to aspect 3 of the present invention, in the aspect 1 or 2, the detection unit may include a plurality of irradiation units (irradiation units 61) that emit the excitation light in different wavelength bands.
 上記の構成によれば、検出部がそれぞれ異なる波長帯域の励起光を出射する複数の照射部を備えているので、1つの分岐経路部を複数種類のアレルゲン含有物質が通る場合であっても、当該複数種類のアレルゲン含有物質すべてに蛍光を発生させることができる。これにより、大きさが同じ複数種類のアレルゲン含有物質それぞれの蛍光を検出することができる。 According to the above configuration, since the detection unit includes a plurality of irradiation units that emit excitation light of different wavelength bands, even when a plurality of types of allergen-containing substances pass through one branch path unit, Fluorescence can be generated in all the plurality of allergen-containing substances. Thereby, the fluorescence of each of a plurality of types of allergen-containing substances having the same size can be detected.
 本発明の態様4に係る蛍光検出装置は、上記態様1または2において、上記分岐経路部の少なくとも1つには、検出対象のアレルゲン含有物質がそれぞれ異なる複数の上記検出部が設けられていてもよい。 In the fluorescence detection device according to aspect 4 of the present invention, in the above aspect 1 or 2, even if at least one of the branch path parts is provided with a plurality of the detection parts with different allergen-containing substances to be detected. Good.
 上記の構成によれば、少なくとも1つの分岐経路部には、検出対象のアレルゲン含有物質がそれぞれ異なる複数の検出部が設けられているので、大きさが同じ複数種類のアレルゲン含有物質それぞれの蛍光を検出することができる。また、検出部が複数あり、各検出部はそれぞれ異なるアレルゲン含有物質が発する蛍光を検出するようになっているので、大きさが同じ複数種類のアレルゲン含有物質の蛍光を同時に検出することができる。 According to the above configuration, since at least one branch path unit is provided with a plurality of detection units each having a different allergen-containing substance to be detected, the fluorescence of each of a plurality of types of allergen-containing substances having the same size can be obtained. Can be detected. In addition, since there are a plurality of detection units, and each detection unit detects fluorescence emitted by different allergen-containing substances, it is possible to simultaneously detect fluorescence of a plurality of types of allergen-containing substances having the same size.
 本発明の態様5に係る蛍光検出装置は、上記態様1から4のいずれかにおいて、上記検出部が設けられた上記分岐経路部に設けられ、上記分岐経路部に送られた上記アレルゲン含有物質を上記励起光の照射直前、または照射時に加熱する加熱部(加熱部9)をさらに備えてもよい。 The fluorescence detection apparatus according to Aspect 5 of the present invention is the fluorescence detection device according to any one of Aspects 1 to 4, wherein the allergen-containing substance provided in the branch path portion provided with the detection unit is sent to the branch path portion. You may further provide the heating part (heating part 9) heated just before the irradiation of the said excitation light, or at the time of irradiation.
 上記の構成によれば、励起光の照射直前、または励起光の照射時にアレルゲン含有物質を加熱する。アレルゲン含有物質などの蛍光を発する物質は、加熱によって蛍光強度が増強されるので、アレルゲン含有物質を加熱することによって、少量のアレルゲン含有物質であっても蛍光を検出することができる。 According to the above configuration, the allergen-containing substance is heated immediately before the excitation light irradiation or at the time of excitation light irradiation. Since the fluorescence intensity of a substance that emits fluorescence, such as an allergen-containing substance, is enhanced by heating, the fluorescence can be detected even by a small amount of allergen-containing substance by heating the allergen-containing substance.
 本発明の態様6に係る蛍光検出装置は、上記態様1から5のいずれかにおいて、上記検出部は、上記励起光を上記アレルゲン含有物質に照射する照射部(照射部61)と、上記アレルゲン含有物質が発する蛍光を受光する受光部(受光部62)とを備え、上記照射部は、上記受光部が受光可能な波長帯域の光を遮光する第1の遮光部材(ショートパスフィルタ65a)を備えてもよい。 In the fluorescence detection device according to aspect 6 of the present invention, in any one of aspects 1 to 5, the detection unit irradiates the allergen-containing substance with the excitation light (irradiation unit 61), and the allergen-containing material. A light-receiving unit (light-receiving unit 62) that receives fluorescence emitted from the substance, and the irradiation unit includes a first light-blocking member (short-pass filter 65a) that blocks light in a wavelength band that can be received by the light-receiving unit. May be.
 上記の構成によれば、照射部が、受光部が受光可能な波長帯域の光を遮光する第1の遮光部材を備えているので、照射部によって照射された、受光部が受光可能な波長帯域の光が、受光部によって受光されることがなくなる。よって、照射部によって照射された光が、アレルゲン含有物質が発した蛍光のノイズとなることを防ぐことができる。 According to said structure, since the irradiation part is equipped with the 1st light shielding member which light-shields the light of the wavelength band which a light-receiving part can receive, the wavelength band which the light-receiving part irradiated by the irradiation part can receive Is not received by the light receiving unit. Therefore, it can prevent that the light irradiated by the irradiation part turns into the noise of the fluorescence which the allergen containing substance emitted.
 本発明の態様7に係る蛍光検出装置は、上記態様1から6のいずれかにおいて、上記検出部は、上記励起光を上記アレルゲン含有物質に照射する照射部(照射部61)と、上記アレルゲン含有物質が発する蛍光を受光する受光部(受光部62)とを備え、上記受光部は、上記励起光の波長帯域の光を遮光する第2の遮光部材(バンドパスフィルタ66a)を備えてもよい。 In the fluorescence detection device according to aspect 7 of the present invention, in any of the above aspects 1 to 6, the detection unit includes an irradiation unit (irradiation unit 61) that irradiates the allergen-containing substance with the excitation light, and the allergen-containing material. A light-receiving unit (light-receiving unit 62) that receives fluorescence emitted from the substance, and the light-receiving unit may include a second light-blocking member (band-pass filter 66a) that blocks light in the wavelength band of the excitation light. .
 上記の構成によれば、受光部が、励起光の波長帯域の光を遮光する第2の遮光部材を備えているので、励起光が受光部によって受光されることがなくなる。よって、励起光が、アレルゲン含有物質が発した蛍光のノイズとなることを防ぐことができる。 According to the above configuration, since the light receiving unit includes the second light blocking member that blocks light in the wavelength band of the excitation light, the excitation light is not received by the light receiving unit. Therefore, it can prevent that excitation light becomes the noise of the fluorescence which the allergen containing substance emitted.
 本発明の態様8に係る蛍光検出装置は、上記態様1から7のいずれか1項において、上記検出部は、上記アレルゲン含有物質が発する蛍光を受光する複数の受光部(受光部64)と、当該蛍光に含まれる、それぞれ異なる波長帯域の光を、当該複数の受光部のそれぞれに出射する複数の光学素子(Bフィルタ67a1、Gフィルタ67a2、Rフィルタ67a3)と、を備えてもよい。 The fluorescence detection device according to aspect 8 of the present invention is the fluorescence detection apparatus according to any one of aspects 1 to 7, wherein the detection unit includes a plurality of light reception units (light reception units 64) that receive fluorescence emitted from the allergen-containing substance, You may provide the some optical element (B filter 67a1, G filter 67a2, R filter 67a3) which radiate | emits the light of a respectively different wavelength band contained in the said fluorescence to each of the said some light-receiving part.
 上記の構成によれば、複数の光学素子は、蛍光に含まれる、それぞれ異なる波長帯域の光を、複数の受光部それぞれに出射する。これにより、蛍光検出装置は、アレルゲン含有物質が発した蛍光を、異なる波長帯域の光に分解したデータを取得することができる。よって、より正確なアレルゲン含有物質の種類、量を示す指標値などの特定が可能となる。 According to the above configuration, the plurality of optical elements emit light of different wavelength bands included in the fluorescence to each of the plurality of light receiving units. Thereby, the fluorescence detection apparatus can acquire the data which decomposed | disassembled the fluorescence which the allergen containing substance emitted into the light of a different wavelength band. Therefore, it is possible to specify the index value indicating the type and amount of the allergen-containing substance more accurately.
 本発明の態様9に係る蛍光検出装置は、上記態様1から7のいずれか1項において、上記検出部は、上記アレルゲン含有物質が発する蛍光を受光する受光部(受光部64)と、当該蛍光に含まれる、それぞれ異なる波長帯域の光を、受光部のそれぞれ異なる領域に出射する光学素子(カラーフィルタ68a)と、を備えてもよい。 In the fluorescence detection device according to aspect 9 of the present invention, in any one of the aspects 1 to 7, the detection unit includes a light receiving unit (light receiving unit 64) that receives fluorescence emitted from the allergen-containing substance, and the fluorescence The optical element (color filter 68a) which radiate | emits the light of a different wavelength band contained in each to a respectively different area | region of a light-receiving part may be provided.
 上記の構成によれば、光学素子は、蛍光に含まれる、それぞれ異なる波長帯域の光を、受光部のそれぞれ異なる領域に出射する。これにより、蛍光検出装置は、アレルゲン含有物質が発した蛍光を、異なる波長帯域の光に分解したデータを取得することができる。よって、より正確なアレルゲン含有物質の種類、量を示す指標値などの特定が可能となる。 According to the above configuration, the optical element emits light of different wavelength bands included in the fluorescence to different regions of the light receiving unit. Thereby, the fluorescence detection apparatus can acquire the data which decomposed | disassembled the fluorescence which the allergen containing substance emitted into the light of a different wavelength band. Therefore, it is possible to specify the index value indicating the type and amount of the allergen-containing substance more accurately.
 本発明の態様10に係る蛍光検出装置は、上記態様8または9において、各波長帯域の光の強度から、当該強度と異なる算出値を算出し、当該算出値を、予め算出されている複数の上記アレルゲン含有物質の上記算出値と比較することによって、上記アレルゲン含有物質の種類を特定する第2の特定部(演算部7e)をさらに備えてもよい。 The fluorescence detection device according to aspect 10 of the present invention, in the above-described aspect 8 or 9, calculates a calculated value different from the intensity from the intensity of light in each wavelength band, and calculates the calculated value from a plurality of pre-calculated values. You may further provide the 2nd specific | specification part (calculation part 7e) which specifies the kind of the said allergen containing substance by comparing with the said calculated value of the said allergen containing substance.
 上記の構成によれば、各波長帯域の光の強度から、当該強度と異なる算出値を算出し、予め算出されている複数の上記アレルゲン含有物質の上記算出値と比較することによって、上記アレルゲン含有物質の種類を特定するので、アレルゲン含有物質の種類を蛍光強度から特定することが難しい場合に、アレルゲン含有物質の種類を特定できる可能性がある。 According to the above configuration, by calculating a calculated value different from the intensity from the intensity of light in each wavelength band, and comparing the calculated value with a plurality of the allergen-containing substances calculated in advance, the allergen-containing Since the type of substance is specified, there is a possibility that the type of allergen-containing substance can be specified when it is difficult to specify the type of allergen-containing substance from the fluorescence intensity.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 1、1a~1e 蛍光検出器(蛍光検出装置)
 4 分岐部
 5 分岐経路部
 6 検知部(検出部)
 7 演算部(第1の特定部)
 7e 演算部(第2の特定部)
 9 加熱部
 61 照射部
 62、64 受光部
 65a ショートパスフィルタ(第1の遮光部材)
 66a バンドパスフィルタ(第2の遮光部材)
 67a1 Bフィルタ(光学素子)
 67a2 Gフィルタ(光学素子)
 67a3 Rフィルタ(光学素子)
 68a カラーフィルタ(光学素子)
1, 1a ~ 1e Fluorescence detector (Fluorescence detection device)
4 Branching part 5 Branching path part 6 Detection part (detection part)
7 Calculation part (first specific part)
7e arithmetic unit (second specific unit)
9 Heating unit 61 Irradiation unit 62, 64 Light receiving unit 65a Short pass filter (first light shielding member)
66a Band pass filter (second light shielding member)
67a1 B filter (optical element)
67a2 G filter (optical element)
67a3 R filter (optical element)
68a Color filter (optical element)

Claims (10)

  1.  アレルギーの原因物質であるアレルゲンを含む、吸引した空気中のアレルゲン含有物質が発する蛍光を検出する蛍光検出装置であって、
     吸引した空気の流路中の上記アレルゲン含有物質を、該アレルゲン含有物質の大きさに応じた異なる分岐経路部に分岐させる分岐部を備えているとともに、
     上記分岐経路部内に励起光を照射して該分岐経路部内の上記アレルゲン含有物質が発する蛍光を検出する検出部が、上記分岐経路部の少なくとも2つに設けられていることを特徴とする蛍光検出装置。
    A fluorescence detection device that detects fluorescence emitted from an allergen-containing substance in the aspirated air, including allergens that cause allergies,
    A branching part for branching the allergen-containing substance in the flow path of the sucked air into different branching path parts according to the size of the allergen-containing substance;
    Fluorescence detection characterized in that at least two of the branch path portions are provided with a detection section for detecting fluorescence emitted from the allergen-containing substance in the branch path portion by irradiating the branch path portion with excitation light. apparatus.
  2.  上記検出部が設けられた上記分岐経路部に応じた方式で、上記アレルゲン含有物質の種類、および上記アレルゲン含有物質の量を示す指標値の少なくとも一方を特定する第1の特定部をさらに備えることを特徴とする請求項1に記載の蛍光検出装置。 A first specifying unit that specifies at least one of the type of the allergen-containing substance and the index value indicating the amount of the allergen-containing substance in a manner corresponding to the branch path part provided with the detection unit; The fluorescence detection apparatus according to claim 1.
  3.  上記検出部は、それぞれ異なる波長帯域の上記励起光を出射する複数の照射部を備える請求項1または2に記載の蛍光検出装置。 The fluorescence detection apparatus according to claim 1 or 2, wherein the detection unit includes a plurality of irradiation units that emit the excitation light in different wavelength bands.
  4.  上記分岐経路部の少なくとも1つには、検出対象のアレルゲン含有物質がそれぞれ異なる複数の上記検出部が設けられていることを特徴とする請求項1または2のいずれか1項に記載の蛍光検出装置。 3. The fluorescence detection according to claim 1, wherein at least one of the branch path parts is provided with a plurality of the detection parts different from each other in allergen-containing substances to be detected. apparatus.
  5.  上記検出部が設けられた上記分岐経路部に設けられ、上記分岐経路部に送られた上記アレルゲン含有物質を上記励起光の照射直前、または照射時に加熱する加熱部をさらに備えることを特徴とする請求項1から4のいずれか1項に記載の蛍光検出装置。 The heating device is further provided with a heating unit that is provided in the branch path unit provided with the detection unit and that heats the allergen-containing substance sent to the branch path unit immediately before or during irradiation of the excitation light. The fluorescence detection apparatus of any one of Claim 1 to 4.
  6.  上記検出部は、上記励起光を上記アレルゲン含有物質に照射する照射部と、上記アレルゲン含有物質が発する蛍光を受光する受光部とを備え、
     上記照射部は、上記受光部が受光可能な波長帯域の光を遮光する第1の遮光部材を備えることを特徴とする請求項1から5のいずれか1項に記載の蛍光検出装置。
    The detection unit includes an irradiation unit that irradiates the allergen-containing substance with the excitation light, and a light-receiving unit that receives fluorescence emitted from the allergen-containing substance,
    6. The fluorescence detection apparatus according to claim 1, wherein the irradiation unit includes a first light blocking member that blocks light in a wavelength band that can be received by the light receiving unit.
  7.  上記検出部は、上記励起光を上記アレルゲン含有物質に照射する照射部と、上記アレルゲン含有物質が発する蛍光を受光する受光部とを備え、
     上記受光部は、上記励起光の波長帯域の光を遮光する第2の遮光部材を備えることを特徴とする請求項1から6のいずれか1項に記載の蛍光検出装置。
    The detection unit includes an irradiation unit that irradiates the allergen-containing substance with the excitation light, and a light-receiving unit that receives fluorescence emitted from the allergen-containing substance,
    The fluorescence detection apparatus according to claim 1, wherein the light receiving unit includes a second light blocking member that blocks light in a wavelength band of the excitation light.
  8.  上記検出部は、上記アレルゲン含有物質が発する蛍光を受光する複数の受光部と、当該蛍光に含まれる、それぞれ異なる波長帯域の光を、当該複数の受光部のそれぞれに出射する複数の光学素子と、を備えていることを特徴とする請求項1から7のいずれか1項に記載の蛍光検出装置。 The detection unit includes a plurality of light receiving units that receive fluorescence emitted from the allergen-containing substance, and a plurality of optical elements that emit light of different wavelength bands included in the fluorescence to each of the plurality of light receiving units. 8. The fluorescence detection apparatus according to claim 1, comprising:
  9.  上記検出部は、上記アレルゲン含有物質が発する蛍光を受光する受光部と、当該蛍光に含まれる、それぞれ異なる波長帯域の光を、受光部のそれぞれ異なる領域に出射する光学素子と、を備えていることを特徴とする請求項1から7のいずれか1項に記載の蛍光検出装置。 The detection unit includes a light receiving unit that receives fluorescence emitted from the allergen-containing substance, and an optical element that emits light of different wavelength bands included in the fluorescence to different regions of the light receiving unit. The fluorescence detection device according to any one of claims 1 to 7, wherein
  10.  各波長帯域の光の強度から、当該強度と異なる算出値を算出し、当該算出値を、予め算出されている複数の上記アレルゲン含有物質の上記算出値と比較することによって、上記アレルゲン含有物質の種類を特定する第2の特定部をさらに備えることを特徴とする請求項8または9に記載の蛍光検出装置。 A calculated value different from the intensity is calculated from the intensity of light in each wavelength band, and the calculated value is compared with the calculated values of a plurality of the allergen-containing substances calculated in advance. The fluorescence detection apparatus according to claim 8, further comprising a second specifying unit that specifies a type.
PCT/JP2016/068684 2015-10-01 2016-06-23 Fluorescence detection device WO2017056592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015196136A JP2017067696A (en) 2015-10-01 2015-10-01 Fluorescence detection device
JP2015-196136 2015-10-01

Publications (1)

Publication Number Publication Date
WO2017056592A1 true WO2017056592A1 (en) 2017-04-06

Family

ID=58423307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068684 WO2017056592A1 (en) 2015-10-01 2016-06-23 Fluorescence detection device

Country Status (2)

Country Link
JP (1) JP2017067696A (en)
WO (1) WO2017056592A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180618A1 (en) * 2018-03-20 2019-09-26 Sanofi Pasteur Limited Methods for determining adjuvanted protein concentration and percent adsorption using intrinsic fluorescence

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242065A (en) * 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd Pollen detector
JP2006349448A (en) * 2005-06-15 2006-12-28 Kowa Co Measuring device of particulate in atmosphere
WO2009108223A2 (en) * 2007-11-09 2009-09-03 Biovigilant Systems, Inc. Pathogen detection by simultaneous size/fluorescence measurement
JP2009236563A (en) * 2008-03-26 2009-10-15 Nippon Telegr & Teleph Corp <Ntt> Particle separating and measuring instrument and particle separating and measuring method
JP2012233796A (en) * 2011-05-02 2012-11-29 Sharp Corp Detection device and detection method
JP2013170970A (en) * 2012-02-22 2013-09-02 Sharp Corp Detection device and detection method
JP2015075478A (en) * 2013-10-11 2015-04-20 シャープ株式会社 Fluorescence detector and cleaner
JP2015114176A (en) * 2013-12-10 2015-06-22 シャープ株式会社 Particle measuring apparatus and particle measuring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242065A (en) * 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd Pollen detector
JP2006349448A (en) * 2005-06-15 2006-12-28 Kowa Co Measuring device of particulate in atmosphere
WO2009108223A2 (en) * 2007-11-09 2009-09-03 Biovigilant Systems, Inc. Pathogen detection by simultaneous size/fluorescence measurement
JP2009236563A (en) * 2008-03-26 2009-10-15 Nippon Telegr & Teleph Corp <Ntt> Particle separating and measuring instrument and particle separating and measuring method
JP2012233796A (en) * 2011-05-02 2012-11-29 Sharp Corp Detection device and detection method
JP2013170970A (en) * 2012-02-22 2013-09-02 Sharp Corp Detection device and detection method
JP2015075478A (en) * 2013-10-11 2015-04-20 シャープ株式会社 Fluorescence detector and cleaner
JP2015114176A (en) * 2013-12-10 2015-06-22 シャープ株式会社 Particle measuring apparatus and particle measuring method

Also Published As

Publication number Publication date
JP2017067696A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
DK2706515T3 (en) Apparatus and method for detecting light scattering signals
CN101784880B (en) Apparatus for real-time analysis of chemical, biological and explosive substances in the air
US7430046B2 (en) Pathogen and particle detector system and method
JP4690789B2 (en) Atmospheric particulate measuring device
CN105980833B (en) Method and apparatus for distributing plasma samples
EP2535700A2 (en) Device and system for the quantification of breath gases
TWI685652B (en) System and method for determining information for defects on wafers
CN113631912B (en) Bead-based sample analysis
EP1095262A1 (en) Optoelectronic apparatus for detecting damaged grain
EP2609418A2 (en) Defect inspection and photoluminescence measurement system
US11841311B2 (en) Multimodal dust sensor
JP2012026837A (en) Fine particle measurement instrument
JP2003038163A (en) Microorganism detector
DK2439513T3 (en) METHOD AND APPARATUS FOR DETECTION OF MIRROR FOODS IN AIR AIR
JP3720799B2 (en) Pollen sensor
JP2013518270A (en) In particular, a measuring device and a measuring method for measuring blood glucose
CN101498721B (en) Colloidal-gold strip measuring method and detection system
CN113039427A (en) Multi-mode dust sensor
WO2017056592A1 (en) Fluorescence detection device
JP2015178993A (en) Detection device
CN106053303A (en) Laser forward scattering cloud droplet spectrum detection system
JP2005087728A5 (en)
US9689792B1 (en) Biological material detection apparatus
KR101592499B1 (en) Ultramicroanalysis Methods of fluorescence
US8711354B2 (en) Method for spore detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850769

Country of ref document: EP

Kind code of ref document: A1