JP2009236563A - Particle separating and measuring instrument and particle separating and measuring method - Google Patents

Particle separating and measuring instrument and particle separating and measuring method Download PDF

Info

Publication number
JP2009236563A
JP2009236563A JP2008080558A JP2008080558A JP2009236563A JP 2009236563 A JP2009236563 A JP 2009236563A JP 2008080558 A JP2008080558 A JP 2008080558A JP 2008080558 A JP2008080558 A JP 2008080558A JP 2009236563 A JP2009236563 A JP 2009236563A
Authority
JP
Japan
Prior art keywords
particles
sieve
particle
measuring
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080558A
Other languages
Japanese (ja)
Inventor
Yasukatsu Yoshida
安克 吉田
Toru Shimada
徹 島田
Masaharu Fujita
正治 藤田
Kazuhiko Fujihashi
一彦 藤橋
Shigeshi Yamakoshi
重志 山越
Hiroshi Deguchi
大志 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Telegraph and Telephone Corp
NTT Infrastructure Network Corp
Original Assignee
Kyoto University
Nippon Telegraph and Telephone Corp
NTT Infrastructure Network Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Telegraph and Telephone Corp, NTT Infrastructure Network Corp filed Critical Kyoto University
Priority to JP2008080558A priority Critical patent/JP2009236563A/en
Publication of JP2009236563A publication Critical patent/JP2009236563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle separating and measuring instrument for measuring the number of particles at each particle size, and a particle separating and measuring method. <P>SOLUTION: Sieves 11, 12 and 13 are arranged in a stepwise shifting state so as to become lower in a particle moving direction and the mesh sizes of the sieves are arranged so as to become large toward a rear stage to sieve particles present in the state of mixture with a fluid. Sensors 18, 19 and 20 are arranged under the sieves to detect the collision of the particles which fall from the sieves. A sensor 21 detects the collision of the particles falling from a water channel plate 17. An analyzer 22 is connected to the sensors 18, 19, 20 and 21 to measure the number of collisions to measure a moving earth and sand amount. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流体によって運ばれる粒子の量を計測する粒子分離計測装置および粒子分離計測方法に関する。   The present invention relates to a particle separation measuring apparatus and a particle separation measuring method for measuring the amount of particles carried by a fluid.

荒廃した山地をはじめとする土地から土砂が流出すると、河床が上昇して河川の流れが変わることがある。また、ダム等により土砂の供給が遮断されると、水みちが固定したり、河床が低下したりする。このような現象は、河川の形を変えて周囲への被害を与えるばかりでなく、生活用水を取水することが不便になる場合も少なくない。このようなことから、河川での土砂の管理が重要な課題となってきている。
河川での土砂の管理を行うことは、河川を構成する水という流体の中で、土砂という粒子を管理することであり、土砂粒子の粒径と分量を分離して計測することが必要になる。粒径と分量を測定(モニタリング)することで、ダムの放水量を決定したり、河川を改修したりするデータとすることができるからである。
When sediment flows from land such as devastated mountains, the riverbed may rise and the river flow may change. In addition, when the supply of earth and sand is cut off by a dam or the like, the water channel is fixed or the river bed is lowered. Such a phenomenon not only causes damage to the surroundings by changing the shape of the river, but it is often inconvenient to take water for daily life. For this reason, management of sediment in rivers has become an important issue.
Managing sediment in rivers is managing particles called sediment in the fluid of water that makes up the river, and it is necessary to measure the particle size and quantity of sediment particles separately. . This is because by measuring (monitoring) the particle size and quantity, it is possible to determine the amount of water discharged from the dam or to reconstruct the river.

このような河川での土砂の管理を行うことを目的として、ハイドロフォンと呼ばれる方法が従来知られていた(非特許文献1参照)。この方法は、土砂の衝突音と衝突回数を測定できるセンサを河床等の所定の場所に設置し、土砂がセンサに衝突する衝突音とその数を音の大きさ毎に集計して、その集計値から土砂量や粒径に変換する方法である。
小竹 利明、他“魚野川上流域におけるハイドロフォンを用いた流砂量観測について”、[平成20年2月4日検索]、インターネット<URL:http://www.hrr.mlit.go.jp/library/kenkyukai/h19/pdf/e/e_07.pdf>
A method called hydrophone has been conventionally known for the purpose of managing sediment in such rivers (see Non-Patent Document 1). In this method, a sensor that can measure the impact sound and the number of collisions of earth and sand is installed at a predetermined location such as a riverbed, and the number of impact sounds and the number of collisions of earth and sand that collide with the sensor are counted for each loudness. It is a method of converting from the value to the amount of earth and sand and the particle size.
Toshiaki Kotake, et al. “Observation of sediment flow using hydrophones in the upstream area of Uono River” [searched on February 4, 2008], Internet <URL: http://www.hrr.mlit.go.jp/ library / kenkyukai / h19 / pdf / e / e_07.pdf>

ハイドロフォンの方法により土砂量や粒径を測定することが一応は可能であったが、この方法で実際に観測している物理量は、センサへの粒子の衝突音の回数(以下「パルス数」という。)とその音の大きさのみである。そこで、パルス数から土砂量および粒径に変換するためには、あらかじめキャリブレーション式を構築しておくなどの工程が不可欠であり、その時々の条件や河川の流速、場所による粒子の分布などの影響を受けるという欠点があった。また、直接の測定ではないので粒径および土砂量については推定値であった。そこで、粒径毎に粒子の個数を計測して土砂量を測定できる装置や方法が望まれていた。   Although it was possible to measure the amount of sediment and particle size by the Hydrophone method, the physical quantity actually observed by this method is the number of particle impact sounds (hereinafter referred to as “pulse number”). And the volume of the sound. Therefore, in order to convert the number of pulses into the amount of sediment and the particle size, it is indispensable to build a calibration equation in advance, such as the conditions at that time, the flow velocity of the river, the distribution of particles by location, etc. There was a drawback of being affected. Moreover, since it was not a direct measurement, it was an estimated value about a particle size and the amount of sediment. Therefore, there has been a demand for an apparatus and method capable of measuring the number of particles for each particle size and measuring the amount of earth and sand.

本発明は、このような問題点に鑑みてなされたものであり、本発明の目的は、粒径毎に粒子の個数を計測できる粒子分離計測装置および粒子分離計測方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a particle separation measuring apparatus and a particle separation measuring method capable of measuring the number of particles for each particle diameter.

上記目的を達成するため、本発明の粒子分離計測装置は、粒子が移動する方向に低くなるように階段状にずらして配置され、かつ、ふるいの目が後段に行くにしたがって大きくなるように配置されて、流体中に混合している、あるいは混合した状態にある粒子をふるい分ける複数個のふるいと、前記ふるいの下に配置され、ふるいから落ちる粒子の衝突を検知するセンサ手段と、前記センサ手段と結線されて信号を受信して粒子の数を計測する計測手段とを備えることを特徴とする。   In order to achieve the above object, the particle separation measuring apparatus of the present invention is arranged so as to be stepped so as to be lowered in the direction in which the particles move, and is arranged so that the sieve eyes become larger as going to the subsequent stage. A plurality of sieves for sieving particles mixed in the fluid or in a mixed state; sensor means for detecting a collision of particles disposed under the sieve and falling from the sieve; and the sensor And measuring means for measuring the number of particles connected to the means and receiving a signal.

前記ふるいは、粒子を前記ふるいに導くための粒子載置手段を、前記ふるいと同じ高さで備えることが好ましい。   It is preferable that the sieve has particle placing means for guiding particles to the sieve at the same height as the sieve.

また、本発明の粒子分離計測装置は、粒子が移動する方向に低くなるように傾斜させるとともに階段状にずらして配置され、かつ、間隔自体を粒径として小さい順番に並べるように配置されて、流体中に混合している、あるいは混合した状態にある粒子をふるい分ける複数個の粒子載置手段と、前記粒子載置手段の間隔でふるい分けられた粒子の衝突を検知するセンサ手段と、前記センサ手段と結線されて信号を受信して粒子の数を計測する計測手段とを備えることを特徴とする。   Further, the particle separation measuring apparatus of the present invention is arranged so as to be inclined so as to be lowered in the moving direction of the particles and shifted stepwise, and arranged so that the intervals themselves are arranged in a small order as the particle diameter, A plurality of particle placing means for sieving particles mixed in a fluid or in a mixed state, a sensor means for detecting collision of particles screened at intervals of the particle placing means, and the sensor And measuring means for measuring the number of particles connected to the means and receiving a signal.

前記センサ手段は、粒子が衝突すると反射波が変化するFBGセンサであることが好ましい。   The sensor means is preferably an FBG sensor whose reflected wave changes when particles collide.

また、本発明の粒子分離計測方法は、一方向に移動する流体中に複数個のふるいを、ふるいの目が小さい順に並ぶように設置し、流体中に混合している、あるいは混合した状態にある粒子をふるいの目の大きさの順に分離し、分離されたそれぞれの粒子の数を計測することを特徴とする。   In the particle separation measurement method of the present invention, a plurality of sieves are installed in a fluid moving in one direction so that the meshes of the sieves are arranged in ascending order, and are mixed in the fluid or in a mixed state. It is characterized in that a certain particle is separated in the order of the size of the sieve eye and the number of each separated particle is measured.

本発明は、流体によって運ばれる粒子を粒径によって分離できるので、粒径毎に粒子の個数を計測することができる。   In the present invention, particles carried by a fluid can be separated according to particle size, so the number of particles can be measured for each particle size.

本発明の実施の形態について図面を参照して説明する。図1は、本発明の粒子分離計測装置の一例を説明する図である。図1に示す粒子分離計測装置は、1段目のふるい11と、2段目のふるい12と、3段目のふるい13を備えており、ふるい11、12、13は、粒子が移動する方向に低くなるように階段状にずらして配置され、かつ、ふるいの目が後段に行くにしたがって大きくなるように配置されて、流体中に混合している、あるいは混合した状態にある粒子をふるい分ける。それぞれのふるい11、12、13には、粒子をふるいに導くための水路板14、15、16(粒子載置手段)が、それぞれふるいと同じ高さで配置されている。また、3段目のふるい13の後にも、水路板17が階段状に段差を設けて配置されている。また、ふるい11、12、13の下には、ふるいから落ちる粒子の衝突を検知するセンサ18、19、20(センサ手段)が配置され、さらに、水路板17の後にも水路板17から落ちる粒子の衝突を検知するセンサ21が配置されている。さらに、センサ18、19、20、21にはアナライザ22(計測手段)が接続されている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining an example of the particle separation measuring apparatus of the present invention. The particle separation measuring apparatus shown in FIG. 1 includes a first-stage sieve 11, a second-stage sieve 12, and a third-stage sieve 13, and the sieves 11, 12, and 13 are directions in which particles move. The particles are arranged in a step-like manner so as to be lower, and the screen is arranged so that the size of the sieve becomes larger as it goes to the subsequent stage, and screens particles mixed or mixed in the fluid. . In each of the sieves 11, 12, 13, water channel plates 14, 15, 16 (particle placing means) for guiding the particles to the sieve are arranged at the same height as the sieves. In addition, after the third-stage sieve 13, the water channel plate 17 is arranged in a stepped manner. Sensors 18, 19 and 20 (sensor means) for detecting collision of particles falling from the sieve are disposed under the sieves 11, 12, and 13, and particles falling from the channel plate 17 after the channel plate 17 are also provided. The sensor 21 for detecting the collision is arranged. Furthermore, an analyzer 22 (measuring means) is connected to the sensors 18, 19, 20 and 21.

ふるい11、12、13と水路板14、15、16、17の配置は、縦方向に同一の高さで配置することも可能であるが、図1に示すようにふるいの目の大きさ程度の段差をつけると重力による沈降と分離が可能になるため、より好ましい。
また、水路板17の後にセンサ21を配置したが、これを配置しない構成も考えられる。
The sieves 11, 12, 13 and the channel plates 14, 15, 16, 17 can be arranged at the same height in the vertical direction, but as shown in FIG. It is more preferable that the step of the above is provided because sedimentation and separation by gravity are possible.
Moreover, although the sensor 21 was arrange | positioned after the water channel board 17, the structure which does not arrange | position this is also considered.

ふるいの目は後段に行くにしたがって大きくなるようにしており、1段目のふるい11は、粒径2mm以下の土砂を分離できる大きさとし、2段目のふるい12は、粒径4.8mm以下の土砂を分離できる大きさとし、3段目のふるい13は、粒径19mm以下の土砂を分離できる大きさとした。この際の2mm、4.8mm、19mmは例示であって、適宜設計により変更できるが、土木工学・地質学では一般に粒径2mm以下の土砂を砂、それより大きく粒径4.8mm程度以下の土砂を細礫、それより大きく粒径19mm以下の土砂を中礫と呼んで区別しているので、工学的分類のためには本実施の形態のような粒径の分け方が望ましい。   The size of the sieve is increased as it goes to the later stage. The first stage sieve 11 is sized so as to be able to separate earth and sand having a particle size of 2 mm or less, and the second stage sieve 12 is 4.8 mm or less. The size of the third stage sieve 13 was set to a size capable of separating earth and sand having a particle size of 19 mm or less. In this case, 2 mm, 4.8 mm, and 19 mm are exemplifications, and can be appropriately changed depending on the design. However, in civil engineering and geology, earth and sand having a particle size of 2 mm or less is generally sand, and larger particles having a particle size of about 4.8 mm or less. Since the earth and sand is called fine gravel and the earth and sand having a particle size of 19 mm or less is called medium gravel, they are distinguished from each other for the purpose of engineering classification.

ふるい11、12、13の下、および水路板17の後には、土砂が衝突すると反応するセンサが備えられている。このセンサには一般のセンサが広く適用できるが、最も好ましいのはFBG(Fiber Bragg Grating)センサである。図2は、FBGセンサを説明する図であり、光ファイバ25に設けられたFBGセンサ部24を拡大して示している。FBGセンサでは、1本の光ファイバ25に直列に複数のFBGセンサ部24を設けることができる。FBGセンサとは、光ファイバ25のコア部26の屈折率を一定の周期Λで変化させたもので、特定の波長(Bragg波長)の光のみを選択的に反射するものである。屈折率を一定の周期Λで変化させたグレーティング部27に土砂などの粒子が衝突し、歪みが与えられると、Bragg波長がシフトするため、衝突を光信号に変換してカウントすることができる。   Below the sieves 11, 12, and 13 and after the water channel plate 17, sensors that react when earth and sand collide are provided. A general sensor can be widely applied to this sensor, but an FBG (Fiber Bragg Grating) sensor is most preferable. FIG. 2 is a diagram for explaining the FBG sensor, and shows the FBG sensor unit 24 provided in the optical fiber 25 in an enlarged manner. In the FBG sensor, a plurality of FBG sensor units 24 can be provided in series with one optical fiber 25. The FBG sensor is a sensor in which the refractive index of the core portion 26 of the optical fiber 25 is changed with a constant period Λ, and selectively reflects only light of a specific wavelength (Bragg wavelength). When particles such as earth and sand collide with the grating portion 27 whose refractive index is changed at a constant period Λ and are distorted, the Bragg wavelength shifts, so that the collision can be converted into an optical signal and counted.

図3は、FBGセンサの一例を示す図である。FBGセンサ31は、FBG加工された光ファイバを1本以上有し、耐衝撃性のある硬質ゴム物体(望ましくは管、箱)32の上部に、または挟まれて、設置されることにより、防水性を有しているとともに、上部からの粒子の衝突を光の歪みとして信号化して外部に伝えることができる。   FIG. 3 is a diagram illustrating an example of the FBG sensor. The FBG sensor 31 has one or more FBG-processed optical fibers, and is waterproofed by being installed on or sandwiched between an impact-resistant hard rubber object (preferably a tube or a box) 32. In addition, the collision of particles from above can be signaled as light distortion and transmitted to the outside.

4つのセンサ(好ましくはFBGセンサ)18、19、20、21により得られた光信号は電気信号に変換されて、または光信号のまま、粒子の数を計測する計測手段であるアナライザ(コンピュータ)22に入力される。アナライザ(コンピュータ)22は、各センサからの電気または光の信号を計測して、どのふるいの位置に何回の土砂が落ちたか、位置情報と衝突回数を記録する。   An optical signal obtained by the four sensors (preferably FBG sensors) 18, 19, 20, 21 is converted into an electrical signal, or an analyzer (computer) which is a measuring means for measuring the number of particles while maintaining the optical signal. 22 is input. The analyzer (computer) 22 measures the electrical or optical signal from each sensor, and records the position information and the number of collisions, which number of times the earth and sand have fallen to which position.

上述した本発明の粒子分離計測装置は、一方向に移動する流体中に、ふるいの目が小さい順に並ぶように設置される。具体的には、第1段目のふるいが、河川の上流側となるように本発明の粒子分離計測装置は設置される。河川における土砂の粒子は、水により運搬されるが、この粒子分離計測装置を土砂とともに水が流れて通るとき、ふるいの部分で目の大きさにあわせ、当該の目より小さい土砂は重力の作用で沈降してふるいの下に設置されたセンサに衝突することになる。センサは衝突の刺激を受けると、これを信号としてアナライザ(コンピュータ)に伝え、アナライザ(コンピュータ)は集計を行う。これにより、粒径と土砂量を分離して記録することができる。   The particle separation measuring apparatus of the present invention described above is installed in a fluid moving in one direction so that the sieve eyes are arranged in ascending order. Specifically, the particle separation measuring apparatus of the present invention is installed so that the first stage sieve is on the upstream side of the river. Sediment particles in rivers are transported by water. When water flows through this particle separation and measurement device, the size of the screen is adjusted to the size of the eyes. Will settle down and collide with the sensor installed under the sieve. When the sensor receives a collision stimulus, it transmits this to the analyzer (computer) as a signal, and the analyzer (computer) performs aggregation. Thereby, the particle size and the amount of earth and sand can be separated and recorded.

図4は、本発明の粒子分離計測装置の他の例を説明する図である。上述した実施の形態では、ふるいを用いて粒子の選別を行ったが、図4に示すように、水路板の間隔自体を粒径として粒子の選別を行うようにしてもよい。
複数の水路板14、15、16、17(粒子載置手段)は、粒子が移動する方向に低くなるように傾斜させるとともに階段状にずらして配置され、かつ、水路板の間隔自体を粒径として小さい順番に並べるように配置されて、流体中に混合している、あるいは混合した状態にある粒子をふるい分ける。
水路板14と水路板15との間隔を2mmとし、水路板15と水路板16との間隔を4.8mmとし、水路板16と水路板17との間隔を19mmとした。
さらに、水路板と水路板との間の段差部には、水路板の間隔でふるい分けられた粒子の衝突を検知するセンサ18、19、20、21(センサ手段)が配置され、センサ18、19、20、21にはアナライザ22(計測手段)が接続されている。
FIG. 4 is a diagram for explaining another example of the particle separation measuring apparatus of the present invention. In the above-described embodiment, the particles are selected using a sieve. However, as shown in FIG.
The plurality of water channel plates 14, 15, 16, 17 (particle placing means) are arranged so as to be inclined so as to be lowered in the direction in which the particles move, and are shifted in a staircase pattern, and the interval between the water channel plates itself is the particle size. Are arranged so that they are arranged in ascending order, and the particles mixed or mixed in the fluid are screened.
The interval between the water channel plate 14 and the water channel plate 15 was 2 mm, the interval between the water channel plate 15 and the water channel plate 16 was 4.8 mm, and the interval between the water channel plate 16 and the water channel plate 17 was 19 mm.
Further, sensors 18, 19, 20, and 21 (sensor means) for detecting collision of particles screened at intervals of the water channel plates are arranged at the step portion between the water channel plates. , 20 and 21 are connected to an analyzer 22 (measuring means).

なお、上述した実施の形態では、ふるいの段数を3段としたが、段数は複数であれば4段でも5段でもよい。
また、上述した実施の形態では、水と土砂を例示しているものの、その対象は流体と粒子であればよく、ふるいの目およびセンサの感度を適宜適切な値に変更することにより、本発明の粒子分離計測装置は、水と土砂以外の系に対しても適用が可能である。例えば、大気中でのゴミの大きさによる分別などにも利用が可能である。
In the above-described embodiment, the number of sieve stages is three. However, as long as there are a plurality of stages, four or five stages may be used.
In the above-described embodiment, although water and earth and sand are exemplified, the objects may be fluids and particles, and the present invention can be achieved by appropriately changing the sieve eyes and the sensitivity of the sensor to appropriate values. This particle separation measuring apparatus can be applied to systems other than water and earth and sand. For example, it can be used for sorting according to the size of garbage in the atmosphere.

本発明の粒子分離計測装置の一例を説明する図である。It is a figure explaining an example of the particle separation measuring device of the present invention. FBGセンサを説明する図である。It is a figure explaining an FBG sensor. FBGセンサの一例を示す図である。It is a figure which shows an example of an FBG sensor. 本発明の粒子分離計測装置の他の例を説明する図である。It is a figure explaining other examples of the particle separation measuring device of the present invention.

符号の説明Explanation of symbols

11,12,13 ふるい
14,15,16,17 水路板
18,19,20,21 センサ
22 アナライザ
24 FBGセンサ部
25 光ファイバ
26 コア部
27 グレーティング部
31 FBGセンサ
32 硬質ゴム物体
11, 12, 13 Sieve 14, 15, 16, 17 Channel plate 18, 19, 20, 21 Sensor 22 Analyzer 24 FBG sensor unit 25 Optical fiber 26 Core unit 27 Grating unit 31 FBG sensor 32 Hard rubber object

Claims (5)

粒子が移動する方向に低くなるように階段状にずらして配置され、かつ、ふるいの目が後段に行くにしたがって大きくなるように配置されて、流体中に混合している、あるいは混合した状態にある粒子をふるい分ける複数個のふるいと、
前記ふるいの下に配置され、ふるいから落ちる粒子の衝突を検知するセンサ手段と、
前記センサ手段と結線されて信号を受信して粒子の数を計測する計測手段と、
を備えることを特徴とする粒子分離計測装置。
The particles are arranged so as to be lowered in the moving direction so as to be lowered in a stepped manner, and the sieve eyes are arranged so as to increase as they go to the subsequent stage, and are mixed in the fluid or in a mixed state. Multiple sieves that screen certain particles,
Sensor means disposed under the sieve for detecting a collision of particles falling from the sieve;
Measuring means connected to the sensor means for receiving a signal and measuring the number of particles;
A particle separation measuring apparatus comprising:
前記ふるいは、粒子を前記ふるいに導くための粒子載置手段を、前記ふるいと同じ高さで備えることを特徴とする請求項1に記載の粒子分離計測装置。   The particle separation measuring apparatus according to claim 1, wherein the sieve includes particle placing means for guiding particles to the sieve at the same height as the sieve. 粒子が移動する方向に低くなるように傾斜させるとともに階段状にずらして配置され、かつ、間隔自体を粒径として小さい順番に並べるように配置されて、流体中に混合している、あるいは混合した状態にある粒子をふるい分ける複数個の粒子載置手段と、
前記粒子載置手段の間隔でふるい分けられた粒子の衝突を検知するセンサ手段と、
前記センサ手段と結線されて信号を受信して粒子の数を計測する計測手段と、
を備えることを特徴とする粒子分離計測装置。
The particles are arranged so as to be lowered in the moving direction and shifted in a stepped manner, and arranged so that the intervals themselves are arranged in ascending order of the particle size, and are mixed or mixed in the fluid. A plurality of particle mounting means for sieving particles in a state;
Sensor means for detecting a collision of particles screened at intervals of the particle mounting means;
Measuring means connected to the sensor means for receiving a signal and measuring the number of particles;
A particle separation measuring apparatus comprising:
前記センサ手段は、粒子が衝突すると反射波が変化するFBGセンサであることを特徴とする請求項1ないし3のいずれか1項に記載の粒子分離計測装置。   4. The particle separation measuring apparatus according to claim 1, wherein the sensor unit is an FBG sensor in which a reflected wave changes when particles collide. 5. 一方向に移動する流体中に複数個のふるいを、ふるいの目が小さい順に並ぶように設置し、流体中に混合している、あるいは混合した状態にある粒子をふるいの目の大きさの順に分離し、分離されたそれぞれの粒子の数を計測することを特徴とする粒子分離計測方法。   A plurality of sieves are installed in a fluid moving in one direction so that the sieve eyes are arranged in ascending order, and particles mixed or mixed in the fluid are arranged in the order of the size of the sieve eyes. A particle separation measurement method characterized by measuring the number of particles separated and separated.
JP2008080558A 2008-03-26 2008-03-26 Particle separating and measuring instrument and particle separating and measuring method Pending JP2009236563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080558A JP2009236563A (en) 2008-03-26 2008-03-26 Particle separating and measuring instrument and particle separating and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080558A JP2009236563A (en) 2008-03-26 2008-03-26 Particle separating and measuring instrument and particle separating and measuring method

Publications (1)

Publication Number Publication Date
JP2009236563A true JP2009236563A (en) 2009-10-15

Family

ID=41250711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080558A Pending JP2009236563A (en) 2008-03-26 2008-03-26 Particle separating and measuring instrument and particle separating and measuring method

Country Status (1)

Country Link
JP (1) JP2009236563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194050A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Method and apparatus for measuring particle size
WO2017056592A1 (en) * 2015-10-01 2017-04-06 シャープ株式会社 Fluorescence detection device
WO2021097910A1 (en) * 2019-11-19 2021-05-27 江苏苏净集团有限公司 Detection device and method for tiny particles in liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012194050A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Method and apparatus for measuring particle size
WO2017056592A1 (en) * 2015-10-01 2017-04-06 シャープ株式会社 Fluorescence detection device
WO2021097910A1 (en) * 2019-11-19 2021-05-27 江苏苏净集团有限公司 Detection device and method for tiny particles in liquid

Similar Documents

Publication Publication Date Title
Clifford et al. Laboratory and field assessment of an infrared turbidity probe and its response to particle size and variation in suspended sediment concentration
Rickenmann et al. Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers
Gartner Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California
Rasmussen et al. Vertical variation of particle speed and flux density in aeolian saltation: Measurement and modeling
Hofland et al. Measurement of fluctuating pressures on coarse bed material
Davies et al. The use of wide-band transmittance imaging to size and classify suspended particulate matter in seawater
Mizuyama et al. Laboratory tests of a Japanese pipe geophone for continuous acoustic monitoring of coarse bedload
Barchyn et al. From particle counts to flux: Wind tunnel testing and calibration of the ‘Wenglor’aeolian sediment transport sensor
Hamilton et al. Acoustic backscatter measurements of estuarine suspended cohesive sediment concentration profiles
Nicollier et al. Field and flume measurements with the impact plate: Effect of bedload grain‐size distribution on signal response
JP2009236563A (en) Particle separating and measuring instrument and particle separating and measuring method
Dell'Agnese et al. Calibration of an acoustic pipe sensor through bedload traps in a glacierized basin
Fettweis et al. The impact of disposal of fine-grained sediments from maintenance dredging works on SPM concentration and fluid mud in and outside the harbor of Zeebrugge
Camenen et al. Tentative measurements of bedload transport in an energetic alpine gravel bed river
Nicollier et al. Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
De Winter et al. Measuring high spatiotemporal variability in saltation intensity using a low-cost Saltation Detection System: Wind tunnel and field experiments
Dhont et al. Continuous monitoring of bed-load transport in a laboratory flume using an impact sensor
Knowles et al. Quantification of dispersed phase concentration using light sheet imaging methods
Møen et al. Bedload measurement in rivers using passive acoustic sensors
Schönfeldt High resolution sensors in space and time for determination saltation and creep intensity
Hassan et al. Experiments on the Sediment Transport Along Pool‐Riffle Unit
KR20180029612A (en) The monitoring system for measuring impact force and dredged sediment amount of debris flow using earth pressure cell and the maintenance method of dredged sediment behind debris flow barrier
Horoshenkov et al. Finite difference time domain modelling of sound scattering by the dynamically rough surface of a turbulent open channel flow
JP2010276343A (en) System and method for measuring soil grain
Wang et al. Suspended sediment concentration measurement based on optical fiber technology