WO2017054717A1 - 一种格雷码带、格雷码带智能卷尺及数据读取方法 - Google Patents

一种格雷码带、格雷码带智能卷尺及数据读取方法 Download PDF

Info

Publication number
WO2017054717A1
WO2017054717A1 PCT/CN2016/100522 CN2016100522W WO2017054717A1 WO 2017054717 A1 WO2017054717 A1 WO 2017054717A1 CN 2016100522 W CN2016100522 W CN 2016100522W WO 2017054717 A1 WO2017054717 A1 WO 2017054717A1
Authority
WO
WIPO (PCT)
Prior art keywords
gray code
tape measure
tape
reading device
gray
Prior art date
Application number
PCT/CN2016/100522
Other languages
English (en)
French (fr)
Inventor
李向良
Original Assignee
东莞捷荣技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510633768.7A external-priority patent/CN106556309B/zh
Priority claimed from CN201510633042.3A external-priority patent/CN106556298B/zh
Priority claimed from CN201510632787.8A external-priority patent/CN106556294B/zh
Application filed by 东莞捷荣技术股份有限公司 filed Critical 东莞捷荣技术股份有限公司
Publication of WO2017054717A1 publication Critical patent/WO2017054717A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/10Measuring tapes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the invention relates to the technical field of intelligent tape measure, in particular to a Gray code tape, a Gray code tape intelligent tape measure and a data reading method.
  • Gray code belongs to reliability coding and is an error-mining coding method. Because, although the natural binary code can be directly converted into an analog signal by a digital-to-analog converter, in some cases, for example, when converting from 3 in decimal to 4, each bit of the binary code is changed, so that the digital circuit can be generated very much. Large spike current pulse. Gray code does not have this disadvantage. When it switches between adjacent bits, only one bit changes. It greatly reduces the confusion of logic from one state to the next.
  • Gray code Since there is only one bit difference between the two adjacent code groups of this code, in the linear displacement amount-digital conversion for the direction, when the linear displacement amount slightly changes (which may cause the digital quantity to change) Gray code only changes one bit, which is more reliable than other codes that change two or more bits at the same time, which reduces the possibility of error.
  • a Gray code disk is often used for detecting or counting.
  • the encoder or the brush device reads the Gray code disk, the phenomenon of jumping or missing brush often occurs, that is, the brush is generated because the rotating speed of the brush device is too fast.
  • the device skips a certain Gray code, which causes a counting error, which is not conducive to the use of Gray code.
  • the Gray code disk is disposed in the smart tape measure body to occupy a large internal space, so that the device is bulky.
  • an object of the present invention is to provide a Gray code tape, a Gray code tape intelligent tape measure and a data reading method, which are intended to solve the problem that the reading is easy to be produced when printing the length scale on the tape measure tape in the prior art.
  • a Gray code tape comprising: a tape measure body, and a Gray code disposed on a front side and/or a back side of the tape measure body, the Gray code is a 2-9 bit Gray code, and the Gray code is specified Cycle repeat settings.
  • the Gray code band wherein the Gray code includes a first sub-Gray code corresponding to a binary number 1, and a second sub-Gray code corresponding to a binary number 0.
  • the Gray code strip wherein the first sub-Gray code is a white-colored rectangular silk screen layer having a width of 1-600 mm.
  • the Gray code strip wherein the second sub-Gray code is a black-bottomed rectangular silk screen layer having a width of 1-600 mm.
  • the Gray code strip wherein the front and back sides of the tape measure body are provided with at least one linear Gray code track, and the Gray code track is provided with a plurality of first sub-Gray codes and a second sub-Gray code.
  • the Gray code tape wherein the front and back sides of the tape measure body are provided with three Gray code channels from bottom to top, and each Gray code track corresponds to one of 6 Gray code codes.
  • the Gray code strip wherein a front side of the tape measure body is provided with a lower three-bit Gray code track, and the lower three-bit Gray code track corresponds to a lower three bits of a 6-bit Gray code, the lower three bits
  • the code channel is recorded as the first Gray code channel, the second Gray code channel and the third Gray code channel.
  • the Gray code strip wherein the back side of the tape measure body is provided with a high three-bit Gray code track, and the high three-bit Gray code track corresponds to the upper three bits of the 6-bit Gray code, and the high three-bit Gray code track is respectively recorded as the first Four-bit Gray code channel, fifth Gray code channel and sixth Gray code channel.
  • a Gray code smart tape measure comprising the Gray code tape, further comprising a Gray code reading device for reading the Gray code band reading in real time.
  • the Gray code is provided with a smart tape measure, wherein the smart tape measure body is provided with three Gray code reading devices on the side of the front side of the tape measure, respectively, the first Gray code reading device and the second Gray code reading device. And a third Gray code reading device; wherein the first Gray code reading device is facing the first bit Gray code channel, and the second Gray code reading device is facing the second Gray code device The third Gray code reading device is facing the third bit Gray code channel.
  • the Gray code is provided with a smart tape measure, wherein the smart tape measure body is provided with three Gray code reading devices on the side of the back side of the tape measure, which are respectively the fourth Gray code reading device and the fifth Gray code reading device. And a sixth Gray code reading device; wherein the fourth Gray code reading device is facing the fourth bit Gray code channel, and the fifth Gray code reading device is facing the fifth bit Gray code The sixth Gray code reading device is facing the sixth bit Gray code channel.
  • the Gray code with a smart tape measure wherein the Gray code reading device is an infrared transceiver device; the infrared transceiver device includes an infrared emission module and an infrared receiving module, the infrared transmitting module is connected to an infrared receiving module, and the infrared receiving module The module is connected to the smart tape MCU control chip.
  • a Gray code with a smart tape measure data reading method comprising the following steps:
  • the Gray code reading device obtains the number of repetitions of the Gray code with the specified period on the tape measure body in real time, and determines whether the tape measure body is stationary;
  • the Gray code belt, the Gray code belt intelligent tape measure and the data reading method according to the present invention by setting the Gray code directly on the tape measure, and repeatedly setting the Gray code on the tape measure according to a specified cycle, instead of directly
  • the length scale is set on the tape measure, and the Gray code on the tape measure can be read by the reading device, which replaces the traditional scale reading method, and the stability of the reading is enhanced.
  • the Gray code since the Gray code is directly arranged on the body of the tape measure, it is not necessary to additionally set the Gray code disk when winding it into the tape measure body, thereby reducing the volume of the tape measure.
  • FIG. 1 is a schematic view of the front side of a tape measure body of the Gray code tape of the present invention.
  • FIG. 2 is a schematic view of the back side of the tape measure tape of the Gray code tape of the present invention.
  • FIG. 3 is a schematic structural view of a Gray tape smart tape measure according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic exploded view of a preferred embodiment of the Gray coded smart tape measure of the present invention.
  • FIG. 5 is a flow chart of a preferred embodiment of a data reading method for a Gray coded smart tape measure according to the present invention.
  • the present invention provides a Gray code strip, a Gray coded tape, and a data reading method.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a schematic view of the front side of the tape measure body of the Gray code tape of the present invention
  • FIG. 2 is a schematic view of the back side of the tape measure tape body of the Gray code tape of the present invention
  • the Gray code The belt includes a tape measure body 100, and a Gray code 110 disposed on the front and/or the back of the tape measure body 100.
  • the Gray code 110 is a 2-9 bit Gray code, and the Gray code 110 is repeatedly set in a specified cycle. .
  • the Gray code 110 includes a first sub-Gray code 111 corresponding to a binary number 1, and a second sub-Gray code 112 corresponding to a binary number 0.
  • the first sub-Gray code 111 is a white-colored rectangular silk screen layer having a width of 1-600 mm. Most preferably, the first sub-Gray code 111 has a width of 2 mm.
  • the second sub-Gray code is a black-colored rectangular silk screen layer having a width of 1-600 mm. Most preferably, the second sub-Gray code 112 has a width of 2 mm.
  • the first sub-Gray code 111 is set as a white-colored rectangular silk screen layer, and the second sub-Gray code 112 black-bottom color rectangular silk-printing layer is only for increasing the color difference of the two sub-Gray codes, and the Gray code band is facilitated. The reading device accurately reads the current Gray code.
  • the specific implementation is not limited to the white-colored rectangular silk screen layer and the black background rectangular silk screen layer, as long as the color difference between the first sub-Gray code corresponding to the binary number 1 and the second sub-Gray code corresponding to the binary number 0 is higher than Specifying a color difference threshold, for example, the first sub-Gray code 111 A yellow-bottomed rectangular silkscreen layer, the second sub-Gray code 112 is a black-bottomed rectangular silkscreen layer.
  • the front and back sides of the tape measure body 100 are provided with at least one linear Gray code channel 120, and the Gray code track 120 is provided with a plurality of first sub-greals. Code 111 and second sub-Gray code 112.
  • the Gray code track 120 is only used to limit the setting interval of the Gray code 110 on the tape measure body 100.
  • the tape tape body 120 is provided with a gray code channel 120 having a length of 1.5 m and a width of 5 mm
  • the first sub-Gray code 111 is a white-colored rectangular silk screen layer having a width of 2 mm and a height of 5 mm
  • the second sub-Gray code 112 is A black-colored rectangular silk screen layer having a width of 2 mm and a height of 5 mm can be set to 750 when the Gray code 120 is arranged along the length direction of the Gray code channel 120.
  • only one Gray code channel 120 is provided, only one bit of Gray code can be set on the tape measure body 100, which is not practical, so at least one straight line is disposed on the front and/or the back side of the tape measure body 100 in a specific implementation.
  • Type Gray code channel 120 is only one Gray code channel 120 is provided, only one bit of Gray code can be set on the tape measure body 100, which is not practical, so at least one straight line is disposed on the front and/or the back side of the tape measure body 100 in
  • the width of the tape measure body 100 is increased, and when the tape measure body 100 is wound around the inside of the smart tape measure, the height of the tape measure exit is increased, that is, the height is increased.
  • the thickness of the intelligent tape measure body increases the volume of the entire smart tape measure and is not convenient for the user to carry.
  • the Gray code channel 120 is disposed on the front and back sides of the tape measure body 100, the width of the tape measure body 100 can be reduced, which is advantageous for reducing the volume of the smart tape measure and facilitating the user to carry.
  • N Gray code tracks can be disposed on the front side (where 1 ⁇ N ⁇ 6, and N is a positive integer), and are disposed on the back side (6) -N) Gray code. Since each Gray code track 120 has the same width and Is a fixed value, the sum of the widths of the Gray code tracks 120 on the same side of the tape strip body 100 plus the width of the non-Gray code track area is equal to the width of the tape measure body 100, so when the tape measure tape body 100 is on the front side of the Gray code track 120 When the number is different from the number of Gray code tracks 120 on the back side of the tape tape body 100, the width of the tape tape body 100 can be minimized.
  • the front and back sides of the tape measure body 100 are provided with three Gray code channels from bottom to top, and each Gray code channel corresponds to one of the 6-bit Gray code.
  • the lower third bit of the Gray code channel is disposed on the front side of the tape measure body 100, and the lower three bits of the Gray code track correspond to the lower three bits of the 6-bit Gray code, and the lower three bits of the Gray code track are respectively recorded as the first bit of Gray.
  • the code track 121, the second bit Gray code channel 122 and the third bit Gray code track 123; the back side of the tape measure body 100 is provided with a high three-bit Gray code track, and the high three-bit Gray code track corresponds to the third of the 6-bit Gray code.
  • the high three-bit Gray code channel is recorded as the fourth bit Gray code channel 124, the fifth bit Gray code channel 125, and the sixth bit Gray code channel 126, respectively.
  • the order of setting the first bit Gray code channel 121, the second bit Gray code channel 122, and the third bit Gray code channel 123 on the front side of the tape tape body 100 can be arbitrarily interchanged, and the same tape measure tape has the back side of the body 100.
  • the order of setting of the four-bit Gray code channel 124, the fifth bit Gray code channel 125, and the sixth bit Gray code channel 126 can be interchanged arbitrarily.
  • the Gray codes are arranged in the longitudinal direction on the same side of the tape measure body 100 (i.e., in the width direction of the tape tape body 100). If the front side of the tape measure body 100 is provided with a third bit Gray code channel 123, a second bit Gray code channel 122 and a first bit Gray code track 121 from the bottom to the top, the back side of the tape measure tape body 100 is sequentially arranged from bottom to top.
  • the highest position (ie, the sixth bit) 1 corresponds to the white-colored rectangular silk screen layer
  • the next highest position (ie, the fifth place) 1 corresponds to the white-colored rectangular silk screen layer
  • the fourth place 1 corresponds to the white background color
  • the rectangular silk screen layers are aligned in the longitudinal direction (i.e., along the width direction of the tape measure body 100).
  • the layers are longitudinally aligned (i.e., along the width direction of the tape measure body 100).
  • the 6-bit Gray code of a whole period is set, and the length is 32*l (where l is The width of the first sub-Gray code 111 or the second sub-Gray code 112, such as 2 mm).
  • the Gray code is directly disposed on the tape measure, and the Gray code is repeatedly set on the tape measure in a specified cycle, instead of directly setting the length scale on the tape measure, the Gray code on the tape measure can be read by the reading device. It replaces the traditional scale reading method and enhances the stability of readings. At the same time, since the Gray code is directly arranged on the body of the tape measure, it is not necessary to additionally set the Gray code disk when winding it into the tape measure body, thereby reducing the volume of the tape measure.
  • the present invention also provides a Gray code tape smart tape measure, as shown in FIG. 3 and FIG. 4, including the Gray code band, and further comprising reading the Gray code band reading in real time.
  • Gray code reading device 200 Based on the above Gray code band, the present invention also provides a Gray code tape smart tape measure, as shown in FIG. 3 and FIG. 4, including the Gray code band, and further comprising reading the Gray code band reading in real time. Gray code reading device 200.
  • a Gray code reading device 200 corresponding to the Gray code channel 120 is further provided, and The illumination range of the infrared light emitted by each Gray code reading device does not exceed the height range of each Gray code track 120.
  • the first Gray code reading device is facing the first bit Gray code channel 121
  • the second Gray code reading device is facing the second bit Gray code channel 122
  • the third Gray code reading device is facing the first
  • the fourth Gray code reading device is facing the fourth bit Gray code channel 124
  • the fifth Gray code reading device is facing the fifth bit Gray code channel 125
  • sixth The Gray code reading device is facing the sixth bit Gray code track 126.
  • the above six Gray code reading devices are respectively connected to corresponding I/O ports in the MCU control chip in the smart tape measure body.
  • the Gray code reading device 200 is an infrared transceiver or a brush.
  • the Gray code reading device 200 is an infrared transceiver device
  • the Gray code reading on the tape measure tape body 100 is read in a contactless manner.
  • the Gray code reading device 200 For the brush the Gray code reading on the tape strip body 100 is read in a contact manner.
  • the infrared transceiver device when the Gray code reading device 200 is an infrared transceiver device, the infrared transceiver device includes an infrared transmitting module and an infrared receiving module, and the infrared transmitting module is connected to the infrared receiving module, and the infrared receiving module is connected to the smart tape measure. MCU control chip.
  • the Gray code reading device 200 is an infrared transceiver device
  • the infrared transceiver devices on both sides of the tape measure tape body 100 are completely facing each other, the tape measure tape is provided.
  • infrared rays emitted from the infrared transceiver device on the side of the body 100 are transmitted through the tape measure body 100, the infrared light receiving result of the Gray code reading device 200 on the other side is changed, which affects the measurement result.
  • the starting point of the Gray code track on the front side of the tape measure body 100 is offset from the start point of the Gray code track on the back side of the tape measure body 100. Since the first Gray code reading device is facing the start point of the first bit Gray code track 121 when the tape measure tape body 100 is in a state of not being pulled out initially, the second Gray code reading device is facing the The starting point of the second bit Gray code channel 122, the third Gray code reading device is facing the starting point of the third bit Gray code channel 123, and the fourth Gray code reading device is facing the fourth bit Gray code channel 124.
  • the starting point, the fifth Gray code reading device is facing the starting point of the fifth bit Gray code channel 125, and the sixth Gray code reading device is facing the starting point of the sixth bit Gray code channel 126. Since the starting point of the Gray code track on both sides of the tape tape body 100 is misaligned, the first Gray code reading device, the second Gray code reading device, and the third Gray code reading distributed on the side of the tape tape body 100 are read. The position of the device facing the fourth Gray code reading device, the fifth Gray code reading device and the sixth Gray distributed on the other side of the tape measure body 100 The position where the code reading device is facing has a certain distance misalignment.
  • the starting point of the Gray code track on the front side of the tape measure body 100 and the starting point of the Gray code track on the back side of the tape measure body 100 are 3-10 mm.
  • the starting point of the Gray code track on the front side of the tape measure body 100 and the starting point of the Gray code track on the back side of the tape measure body 100 are 5.5 mm.
  • each Gray code track 120 has a black code and a white code appearing in a certain period, and the white code and the black code appear alternately.
  • the black code and the white code have different absorption rates of the infrared light emitted by the Gray code reading device 200, specifically, the absorption rate of the black code to the infrared light is high, the absorption rate of the white code to the infrared light is low, and the black code is lower than the black code.
  • the infrared light absorption rate, the infrared light reflected back by the black code is received by the Gray code reading device 200 and decoded into 0, and the infrared light reflected back by the white code is received by the Gray code reading device 200 and decoded into 1.
  • the Gray code reading device 200 and the MCU control chip disposed in the smart tape measure body and connected to the Gray code reading device 200 jointly detect that the tape measure tape body 100 is pulled.
  • the Gray code on the tape measure can be read by the reading device, which replaces the traditional scale reading mode, and the reading stability is enhanced. Sex.
  • the present invention also provides a data reading method for the Gray code with a smart tape measure, as shown in FIG. 5, comprising:
  • Step S100 when detecting that the tape measure tape body is drawn from the smart tape measure through the tape measure tape outlet When it is out, the Gray code reading device obtains the number of repetitions of the Gray code with the specified period on the tape tape body in real time, and determines whether the tape tape body is stationary;
  • Step S200 when it is determined that the tape measure body is stationary, acquiring a binary number corresponding to the Gray code aligned by the Gray code reading device, and acquiring a distance moved within a current period of the Gray code according to the Gray code table;
  • Step S300 Obtain a reading of the current measured length according to the total width of the Gray code per cycle, the number of repetitions of the Gray code, and the distance moved within the current period of the Gray code.
  • the tape measure body 100 is detected by the Gray code reading device 200 and the MCU control chip disposed in the smart tape measure body and connected to the Gray code reading device 200 to detect when the tape measure tape body 100 is pulled.
  • the Gray code strip, the Gray code with the smart tape measure and the data reading method of the present invention by setting the Gray code directly on the tape measure, and repeatedly setting the Gray code on the tape measure in a specified cycle, instead of The length scale is set directly on the tape measure, and the Gray code on the tape measure can be read by the reading device, which replaces the traditional scale reading method, and the stability of the reading is enhanced.
  • the Gray code since the Gray code is directly arranged on the body of the tape measure, it is not necessary to additionally set the Gray code disk when winding it into the tape measure body, thereby reducing the volume of the tape measure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tape Measures (AREA)

Abstract

一种格雷码带包括卷尺带本体(100),及设置在卷尺带本体(100)正面和/或背面的格雷码(110),格雷码(110)为按指定周期重复设置的2-9位格雷码(110)。还公开了一种格雷码带智能卷尺及一种数据读取方法。通过将格雷码(110)直接设置在卷尺带上,且卷尺带上按指定周期重复设置格雷码(110),而不是直接在卷尺带上设置长度刻度,可通过读取装置读取卷尺带上的格雷码(110),取代了传统的刻度读取方式,增强了读数的稳定性。同时由于采用直接在卷尺带本体(100)上设置格雷码(110),将其缠绕设置至卷尺本体内时无需再附加设置格雷码盘,减小了卷尺的体积。

Description

一种格雷码带、格雷码带智能卷尺及数据读取方法 技术领域
本发明涉及智能卷尺技术领域,尤其涉及的是一种格雷码带、格雷码带智能卷尺及数据读取方法。
背景技术
格雷码属于可靠性编码,是一种错误最小化的编码方式。因为,虽然自然二进制码可以直接由数/模转换器转换成模拟信号,但在某些情况,例如从十进制的3转换为4时二进制码的每一位都要变,能使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它在相邻位间转换时,只有一位产生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。由于这种编码相邻的两个码组之间只有一位不同,因而在用于方向的直线位移量-数字量的转换中,当直线位移量发生微小变化(而可能引起数字量发生变化时,格雷码仅改变一位,这样与其它编码同时改变两位或多位的情况相比更为可靠,即可减少出错的可能性。
现有技术中多采用格雷码盘用于检测或计数,在编码器或电刷装置读取格雷码盘时常会出现跳刷或漏刷的现象,即由于电刷装置转速过快,出现电刷装置弹跳过某个格雷码,导致计数错误的现象,不利于格雷码的使用。同时,将格雷码盘设置在智能卷尺本体内占用较大内部空间,使得装置体积较大。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种格雷码带、格雷码带智能卷尺及数据读取方法,旨在解决现有技术中在卷尺带上印制长度刻度时读数易产生误差,或是采用塑胶卷尺在卷尺内的卷筒上缠绕半径变化较大而导致测量误差的缺陷。
本发明的技术方案如下:
一种格雷码带,其特征在于,包括卷尺带本体,及设置在所述卷尺带本体正面和/或背面的格雷码,所述格雷码为2-9位格雷码,所述格雷码按指定周期重复设置。
所述格雷码带,其中,所述格雷码包括对应二进制数1的第一子格雷码,及对应二进制数0的第二子格雷码。
所述格雷码带,其中,所述第一子格雷码为宽度为1-600mm的白底色矩形丝印层。
所述格雷码带,其中,所述第二子格雷码为宽度为1-600mm的黑底色矩形丝印层。
所述格雷码带,其中,所述卷尺带本体的正反两面均设置有至少一个直线型的格雷码道,所述格雷码道上设置有多个第一子格雷码和第二子格雷码。
所述格雷码带,其中,所述卷尺带本体的正面和背面均从下至上设置有3个格雷码道,每一格雷码道对应设置6位格雷码的其中一位。
所述格雷码带,其中,所述卷尺带本体的正面设置低三位格雷码道,所述低三位格雷码道对应6位格雷码中的低三位,所述低三位格 雷码道分别记为第一位格雷码道、第二位格雷码道及第三位格雷码道。
所述格雷码带,其中,所述卷尺带本体的背面设置高三位格雷码道,所述高三位格雷码道对应6位格雷码中的高三位,所述高三位格雷码道分别记为第四位格雷码道、第五位格雷码道及第六位格雷码道。
一种格雷码带智能卷尺,其中,包括所述的格雷码带,还包括用于实时读取所述格雷码带读数的格雷码读取装置。
所述格雷码带智能卷尺,其中,所述智能卷尺本体内正对卷尺带正面的一侧设置有3个格雷码读取装置,分别为第一格雷码读取装置、第二格雷码读取装置及第三格雷码读取装置;其中,所述第一格雷码读取装置正对所述第一位格雷码道,所述第二格雷码读取装置正对所述第二位格雷码道,所述第三格雷码读取装置正对所述第三位格雷码道。
所述格雷码带智能卷尺,其中,所述智能卷尺本体内正对卷尺带背面的一侧设置有3个格雷码读取装置,分别为第四格雷码读取装置、第五格雷码读取装置及第六格雷码读取装置;其中,所述第四格雷码读取装置正对所述第四位格雷码道,所述第五格雷码读取装置正对所述第五位格雷码道,所述第六格雷码读取装置正对所述第六位格雷码道。
所述格雷码带智能卷尺,其中,所述格雷码读取装置为红外收发装置;所述红外收发装置包括红外发射模块和红外接收模块,所述红外发射模块连接红外接收模块,所述红外接收模块连接智能卷尺内的 MCU控制芯片。
一种格雷码带智能卷尺的数据读取方法,其中,包括以下步骤:
A、当检测到卷尺带本体从智能卷尺内经卷尺带出口抽出时,通过格雷码读取装置实时获取卷尺带本体上具有指定周期的格雷码的重复次数,并判断卷尺带本体是否静止;
B、当判断卷尺带本体静止时,则获取格雷码读取装置对准的格雷码对应的二进制数,并根据格雷码表获取在格雷码的当前周期内移动的距离;
C、根据每一周期格雷码的总宽度、格雷码的重复次数及在格雷码的当前周期内移动的距离获取当前测量长度的读数。
有益效果:本发明所述的格雷码带、格雷码带智能卷尺及数据读取方法,通过将格雷码直接设置在卷尺带上,且卷尺带上按指定周期重复设置格雷码,而不是直接在卷尺带上设置长度刻度,可通过读取装置读取卷尺带上的格雷码,取代了传统的刻度读取方式,增强了读数的稳定性。同时由于采用直接在卷尺带本体上设置格雷码,将其缠绕设置至卷尺本体内时无需再附加设置格雷码盘,减小了卷尺的体积。
附图说明
图1为本发明所述格雷码带的卷尺带本体正面的示意图。
图2为本发明所述格雷码带的卷尺带本体背面的示意图。
图3为本发明所述格雷码带智能卷尺较佳实施例的结构示意图。
图4为本发明所述格雷码带智能卷尺较佳实施例的爆炸示意图。
图5为本发明所述格雷码带智能卷尺的数据读取方法较佳实施例的流程图。
具体实施方式
本发明提供一种格雷码带、格雷码带智能卷尺及数据读取方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参见图1-图2,其中图1是本发明所述格雷码带的卷尺带本体正面的示意图,图2是本发明所述格雷码带的卷尺带本体背面的示意图,所述格雷码带,包括卷尺带本体100,及设置在所述卷尺带本体100正面和/或背面的格雷码110,所述格雷码110为2-9位格雷码,所述格雷码110按指定周期重复设置。
进一步的,所述格雷码110包括对应二进制数1的第一子格雷码111,及对应二进制数0的第二子格雷码112。
请再次参考图1和图2,所述第一子格雷码111为宽度为1-600mm的白底色矩形丝印层。最佳的,所述第一子格雷码111的宽度为2mm。所述第二子格雷码为宽度为1-600mm的黑底色矩形丝印层。最佳的,所述第二子格雷码112的宽度为2mm。将所述第一子格雷码111设置为白底色矩形丝印层,并将所述第二子格雷码112黑底色矩形丝印层仅仅是为了增大两种子格雷码的色差,便于格雷码带的读取装置准确读取当前格雷码。
具体实施时并不局限于白底色矩形丝印层和黑底色矩形丝印层,只要将对应二进制数1的第一子格雷码及对应二进制数0的第二子格雷码之间的色差高于指定色差阈值即可,例如所述第一子格雷码111 为黄底色矩形丝印层,所述第二子格雷码112为黑底色矩形丝印层。
进一步的,如图1和图2所示,所述卷尺带本体100的正反两面均设置有至少一个直线型的格雷码道120,所述格雷码道120上设置有多个第一子格雷码111和第二子格雷码112。所述格雷码道120仅用于限制格雷码110在卷尺带本体100上的设置区间。例如卷尺带本体100上设置了1个长1.5m、宽5mm的格雷码道120,同时第一子格雷码111为宽2mm、高5mm的白底色矩形丝印层,第二子格雷码112为宽2mm、高5mm的黑底色矩形丝印层,则在该格雷码道120沿长度方向设置格雷码时共可设置750个。若只设置一个格雷码道120时,则卷尺带本体100上只能设置1位格雷码,实际用途不大,故在具体实施时在卷尺带本体100的正面和/或反面设置有至少一个直线型的格雷码道120。
若将所有格雷码道120均设置在卷尺带本体100的同一面会增大卷尺带本体100的宽度,将卷尺带本体100缠绕设置于智能卷尺内部时增大卷尺带出口的高度,也就是增加了智能卷尺本体的厚度,从而增大了整个智能卷尺的体积,不便于用户携带。
若将格雷码道120设置在卷尺带本体100的正反两面时,则可降低卷尺带本体100的宽度,有利于减小智能卷尺的体积,便于用户携带。
例如,当卷尺带本体100上共设置有6个平行的格雷码道120时,可在正面设置N个格雷码道(其中1≤N≤6,且N为正整数),在背面设置(6-N)个格雷码道。由于每一格雷码道120的宽度均相等且 是固定值,卷尺带本体100同一面的格雷码道120的宽度之和再加上非格雷码道区域的宽度等于卷尺带本体100的宽度,故当卷尺带本体100正面的格雷码道120的个数与卷尺带本体100背面的格雷码道120的个数相差1个或完全相等时,可将卷尺带本体100的宽度降至最低值。
优选的,如图1和图2所示,所述卷尺带本体100的正面和背面均从下至上设置有3个格雷码道,每一格雷码道对应设置6位格雷码的其中一位。所述卷尺带本体100的正面设置低三位格雷码道,所述低三位格雷码道对应6位格雷码中的低三位,所述低三位格雷码道分别记为第一位格雷码道121、第二位格雷码道122及第三位格雷码道123;所述卷尺带本体100的背面设置高三位格雷码道,所述高三位格雷码道对应6位格雷码中的高三位,所述高三位格雷码道分别记为第四位格雷码道124、第五位格雷码道125及第六位格雷码道126。具体实施时,卷尺带本体100正面的第一位格雷码道121、第二位格雷码道122及第三位格雷码道123的设置顺序可任意互换,同样的卷尺带本体100背面的第四位格雷码道124、第五位格雷码道125及第六位格雷码道126的设置顺序可任意互换。
本发明中的6位格雷码中各位格雷码在卷尺带本体100的同一面沿纵向设置(即按照卷尺带本体100的宽度方向设置)。若卷尺带本体100的正面从下至上依次设置有第三位格雷码道123、第二位格雷码道122及第一位格雷码道121,卷尺带本体100的背面从下至上依次设置有第四位格雷码道124、第五位格雷码道125及第六位格雷码 道126,如有六位格雷码111111,其中最高位(即第6位)1所对应的白底色矩形丝印层(宽为2mm)设置在第六位格雷码道126,次高位(即第5位)1所对应的白底色矩形丝印层(宽为2mm)设置在第五位格雷码道125,第4位1所对应的白底色矩形丝印层(宽为2mm)设置在第四位格雷码道124,第3位1所对应的白底色矩形丝印层(宽为2mm)设置在第三位格雷码道123,次低位(即第2位)1所对应的白底色矩形丝印层(宽为2mm)设置在第二位格雷码道122,最低位(即第1位)1所对应的白底色矩形丝印层(宽为2mm)设置在第一位格雷码道121。
其中,最高位(即第6位)1所对应的白底色矩形丝印层、次高位(即第5位)1所对应的白底色矩形丝印层及第4位1所对应的白底色矩形丝印层沿纵向(即沿卷尺带本体100的宽度方向)对齐设置。第3位1所对应的白底色矩形丝印层、次低位(即第2位)1所对应的白底色矩形丝印层及最低位(即第1位)1所对应的白底色矩形丝印层纵向(即沿卷尺带本体100的宽度方向)对齐设置。由于6位格雷码的周期为64(即2的6次方),具体可参见表1-表4,故将一整个周期的6位格雷码设置完,其长度为32*l(其中l为第一子格雷码111或第二子格雷码112的宽度,如2mm)。
Figure PCTCN2016100522-appb-000001
Figure PCTCN2016100522-appb-000002
表1
Figure PCTCN2016100522-appb-000003
表2
Figure PCTCN2016100522-appb-000004
表3
Figure PCTCN2016100522-appb-000005
表4
可见,由于将格雷码直接设置在卷尺带上,且卷尺带上按指定周期重复设置格雷码,而不是直接在卷尺带上设置长度刻度,可通过读取装置读取卷尺带上的格雷码,取代了传统的刻度读取方式,增强了读数的稳定性。同时由于采用直接在卷尺带本体上设置格雷码,将其缠绕设置至卷尺本体内时无需再附加设置格雷码盘,减小了卷尺的体积。
基于上述格雷码带,本发明还提供了一种格雷码带智能卷尺,如图3和图4所示,包括所述的格雷码带,还包括用于实时读取所述格雷码带读数的格雷码读取装置200。
当所述智能卷尺的卷尺带本体100的正面及背面均从下至上设置有3个格雷码道120时,还设置有与所述格雷码道120一一对应的格雷码读取装置200,且每一格雷码读取装置发出的红外光的照射范围不超出每一格雷码道120的高度范围。具体的,第一格雷码读取装置正对所述第一位格雷码道121,第二格雷码读取装置正对所述第二位格雷码道122,第三格雷码读取装置正对所述第三位格雷码道123,第四格雷码读取装置正对所述第四位格雷码道124,第五格雷码读取装置正对所述第五位格雷码道125,第六格雷码读取装置正对所述第六位格雷码道126。上述六个格雷码读取装置分别连接智能卷尺本体内的MCU控制芯片中的对应I/O口。
具体实施时,所述格雷码读取装置200为红外收发装置或电刷。当所述格雷码读取装置200为红外收发装置时,则采用的是无接触的方式读取卷尺带本体100上格雷码读数。当所述格雷码读取装置200 为电刷时,则采用的是有接触的方式读取卷尺带本体100上格雷码读数。
具体的,当所述格雷码读取装置200为红外收发装置;所述红外收发装置包括红外发射模块和红外接收模块,所述红外发射模块连接红外接收模块,所述红外接收模块连接智能卷尺内的MCU控制芯片。
当所述格雷码读取装置200为红外收发装置时,由于卷尺带本体100的两侧各设置了3个红外收发装置,若卷尺带本体100两侧的红外收发装置完全正对,则卷尺带本体100一侧的红外收发装置发出的红外线透射过所述卷尺带本体100时,会导致另一侧的格雷码读取装置200的红外光接收结果改变,影响测量结果。
为了确保测量结果的准确性,需将所述卷尺带本体100正面的格雷码道的起点与所述卷尺带本体100背面的格雷码道的起点错位设置。由于当卷尺带本体100为初始未被拉出的状态时,所述第一格雷码读取装置正对所述第一位格雷码道121的起点,第二格雷码读取装置正对所述第二位格雷码道122的起点,第三格雷码读取装置正对所述第三位格雷码道123的起点,第四格雷码读取装置正对所述第四位格雷码道124的起点,第五格雷码读取装置正对所述第五位格雷码道125的起点,第六格雷码读取装置正对所述第六位格雷码道126的起点。由于卷尺带本体100双面的格雷码道的起点存在错位,故分布在所述卷尺带本体100一侧的第一格雷码读取装置、第二格雷码读取装置及第三格雷码读取装置正对的位置相对于分布在所述卷尺带本体100另一侧的第四格雷码读取装置、第五格雷码读取装置及第六格雷 码读取装置正对的位置有一定距离的错位。具体实施时,所述卷尺带本体100正面的格雷码道的起点与所述卷尺带本体100背面的格雷码道的起点错位距离为3-10mm。最佳的,所述卷尺带本体100正面的格雷码道的起点与所述卷尺带本体100背面的格雷码道的起点错位距离为5.5mm。
由于每一格雷码道120上都是以一定周期出现黑码和白码,而且白码和黑码是交替出现。同时黑码及白码对格雷码读取装置200发出的红外光的吸收率不同,具体是黑码对红外光的吸收率高,白码对红外光的吸收率低、且低于黑码的红外光吸收率,经过黑码反射回去的红外光被格雷码读取装置200接收后被解码为0,经过白码反射回去的红外光被格雷码读取装置200接收后被解码为1。
故当卷尺带本体100在被拉动的过程中,由格雷码读取装置200、及与设置在智能卷尺本体内且与格雷码读取装置200连接的MCU控制芯片共同检测卷尺带本体100被拉动时重复周期长度的次数n和在当前重复周期长度内的偏移量ΔL,再通过L=n*LT+ΔL即可计算得到实际测量长度L,这样实现对长度的精准测量,降低了测量误差。具体是因为在尺带每一格雷码道上设置具有一定宽度的黑码和白码,可通过读取装置读取卷尺带上的格雷码,取代了传统的刻度读取方式,增强了读数的稳定性。
基于上述格雷码带智能卷尺,本发明还提供了一种格雷码带智能卷尺的数据读取方法,如图5所示,包括:
步骤S100、当检测到卷尺带本体从智能卷尺内经卷尺带出口抽 出时,通过格雷码读取装置实时获取卷尺带本体上具有指定周期的格雷码的重复次数,并判断卷尺带本体是否静止;
步骤S200、当判断卷尺带本体静止时,则获取格雷码读取装置对准的格雷码对应的二进制数,并根据格雷码表获取在格雷码的当前周期内移动的距离;
步骤S300、根据每一周期格雷码的总宽度、格雷码的重复次数及在格雷码的当前周期内移动的距离获取当前测量长度的读数。
即卷尺带本体100在被拉动的过程中,由格雷码读取装置200、及与设置在智能卷尺本体内且与格雷码读取装置200连接的MCU控制芯片共同检测卷尺带本体100被拉动时重复周期长度的次数n和在当前重复周期长度内的偏移量ΔL,再通过L=n*LT+ΔL即可计算得到实际测量长度L,这样实现对长度的精准测量,降低了测量误差。
综上所述,本发明所述的格雷码带、格雷码带智能卷尺及数据读取方法,通过将格雷码直接设置在卷尺带上,且卷尺带上按指定周期重复设置格雷码,而不是直接在卷尺带上设置长度刻度,可通过读取装置读取卷尺带上的格雷码,取代了传统的刻度读取方式,增强了读数的稳定性。同时由于采用直接在卷尺带本体上设置格雷码,将其缠绕设置至卷尺本体内时无需再附加设置格雷码盘,减小了卷尺的体积。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,例如,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (13)

  1. 一种格雷码带,其特征在于,包括卷尺带本体,及设置在所述卷尺带本体正面和/或背面的格雷码,所述格雷码为2-9位格雷码,所述格雷码按指定周期重复设置。
  2. 根据权利要求1所述格雷码带,其特征在于,所述格雷码包括对应二进制数1的第一子格雷码,及对应二进制数0的第二子格雷码。
  3. 根据权利要求2所述格雷码带,其特征在于,所述第一子格雷码为宽度为1-600mm的白底色矩形丝印层。
  4. 根据权利要求3所述格雷码带,其特征在于,所述第二子格雷码为宽度为1-600mm的黑底色矩形丝印层。
  5. 根据权利要求4所述格雷码带,其特征在于,所述卷尺带本体的正反两面均设置有至少一个直线型的格雷码道,所述格雷码道上设置有多个第一子格雷码和第二子格雷码。
  6. 根据权利要求5所述格雷码带,其特征在于,所述卷尺带本体的正面和背面均从下至上设置有3个格雷码道,每一格雷码道对应设置6位格雷码的其中一位。
  7. 根据权利要求6所述格雷码带,其特征在于,所述卷尺带本体的正面设置低三位格雷码道,所述低三位格雷码道对应6位格雷码中的低三位,所述低三位格雷码道分别记为第一位格雷码道、第二位格雷码道及第三位格雷码道。
  8. 根据权利要求7所述格雷码带,其特征在于,所述卷尺带本 体的背面设置高三位格雷码道,所述高三位格雷码道对应6位格雷码中的高三位,所述高三位格雷码道分别记为第四位格雷码道、第五位格雷码道及第六位格雷码道。
  9. 一种格雷码带智能卷尺,其特征在于,包括如权利要求8所述的格雷码带,还包括用于实时读取所述格雷码带读数的格雷码读取装置。
  10. 根据权利要求9所述格雷码带智能卷尺,其特征在于,所述智能卷尺本体内正对卷尺带正面的一侧设置有3个格雷码读取装置,分别为第一格雷码读取装置、第二格雷码读取装置及第三格雷码读取装置;其中,所述第一格雷码读取装置正对所述第一位格雷码道,所述第二格雷码读取装置正对所述第二位格雷码道,所述第三格雷码读取装置正对所述第三位格雷码道。
  11. 根据权利要求10所述格雷码带智能卷尺,其特征在于,所述智能卷尺本体内正对卷尺带背面的一侧设置有3个格雷码读取装置,分别为第四格雷码读取装置、第五格雷码读取装置及第六格雷码读取装置;其中,所述第四格雷码读取装置正对所述第四位格雷码道,所述第五格雷码读取装置正对所述第五位格雷码道,所述第六格雷码读取装置正对所述第六位格雷码道。
  12. 根据权利要求10或11所述格雷码带智能卷尺,其特征在于,所述格雷码读取装置为红外收发装置;所述红外收发装置包括红外发射模块和红外接收模块,所述红外发射模块连接红外接收模块,所述 红外接收模块连接智能卷尺内的MCU控制芯片。
  13. 一种格雷码带智能卷尺的数据读取方法,其特征在于,包括以下步骤:
    A、当检测到卷尺带本体从智能卷尺内经卷尺带出口抽出时,通过格雷码读取装置实时获取卷尺带本体上具有指定周期的格雷码的重复次数,并判断卷尺带本体是否静止;
    B、当判断卷尺带本体静止时,则获取格雷码读取装置对准的格雷码对应的二进制数,并根据格雷码表获取在格雷码的当前周期内移动的距离;
    C、根据每一周期格雷码的总宽度、格雷码的重复次数及在格雷码的当前周期内移动的距离获取当前测量长度的读数。
PCT/CN2016/100522 2015-09-30 2016-09-28 一种格雷码带、格雷码带智能卷尺及数据读取方法 WO2017054717A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201510633768.7A CN106556309B (zh) 2015-09-30 2015-09-30 一种格雷码带、格雷码带智能卷尺及数据读取方法
CN201510633042.3A CN106556298B (zh) 2015-09-30 2015-09-30 一种格雷码带智能卷尺
CN201510632787.8A CN106556294B (zh) 2015-09-30 2015-09-30 一种基于红外收发读数的智能卷尺
CN201510633042.3 2015-09-30
CN201510632787.8 2015-09-30
CN201510633768.7 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017054717A1 true WO2017054717A1 (zh) 2017-04-06

Family

ID=58422678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100522 WO2017054717A1 (zh) 2015-09-30 2016-09-28 一种格雷码带、格雷码带智能卷尺及数据读取方法

Country Status (1)

Country Link
WO (1) WO2017054717A1 (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2081524U (zh) * 1990-08-24 1991-07-24 戴进武 测量位移量的循环码尺带
US5208767A (en) * 1985-11-28 1993-05-04 The Stanley Works Displacement measuring apparatus
US20080276477A1 (en) * 2005-07-25 2008-11-13 Hoechkstmass Balzer Gmbh Electronic Measuring Tape and a Length Measuring Device Provided Therewith
CN103900434A (zh) * 2014-04-03 2014-07-02 河南世纪华联工量具有限公司 语音钢卷尺
CN104764392A (zh) * 2015-03-13 2015-07-08 东莞捷荣技术股份有限公司 一种电子软尺
CN104764391A (zh) * 2015-03-13 2015-07-08 东莞捷荣技术股份有限公司 一种电子钢卷尺
CN204479010U (zh) * 2015-03-13 2015-07-15 东莞捷荣技术股份有限公司 一种电子软尺
CN204479009U (zh) * 2015-03-13 2015-07-15 东莞捷荣技术股份有限公司 一种电子钢卷尺
CN205027226U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有尺带挂钩的格雷码带智能卷尺
CN205027228U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种码带初始位置错位的格雷码带智能卷尺
CN205027223U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种可红外测距的格雷码带智能卷尺
CN205027231U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种可语音播报的格雷码带智能卷尺
CN205027236U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有全黑涂层的格雷码带智能卷尺
CN205027312U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有折叠扣结构的格雷码带智能卷尺
CN205027233U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有防摩擦杆的格雷码带智能卷尺
CN205027239U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有划粉装置的格雷码带智能卷尺
CN205027234U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种自发电式的格雷码带智能卷尺
CN205027237U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种格雷码带及格雷码带智能卷尺
CN205027230U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种格雷码带智能卷尺
CN205279905U (zh) * 2015-09-30 2016-06-01 捷荣科技集团有限公司 一种可扫码的格雷码带智能卷尺

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208767A (en) * 1985-11-28 1993-05-04 The Stanley Works Displacement measuring apparatus
CN2081524U (zh) * 1990-08-24 1991-07-24 戴进武 测量位移量的循环码尺带
US20080276477A1 (en) * 2005-07-25 2008-11-13 Hoechkstmass Balzer Gmbh Electronic Measuring Tape and a Length Measuring Device Provided Therewith
CN103900434A (zh) * 2014-04-03 2014-07-02 河南世纪华联工量具有限公司 语音钢卷尺
CN104764392A (zh) * 2015-03-13 2015-07-08 东莞捷荣技术股份有限公司 一种电子软尺
CN104764391A (zh) * 2015-03-13 2015-07-08 东莞捷荣技术股份有限公司 一种电子钢卷尺
CN204479010U (zh) * 2015-03-13 2015-07-15 东莞捷荣技术股份有限公司 一种电子软尺
CN204479009U (zh) * 2015-03-13 2015-07-15 东莞捷荣技术股份有限公司 一种电子钢卷尺
CN205027223U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种可红外测距的格雷码带智能卷尺
CN205027228U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种码带初始位置错位的格雷码带智能卷尺
CN205027226U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有尺带挂钩的格雷码带智能卷尺
CN205027231U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种可语音播报的格雷码带智能卷尺
CN205027236U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有全黑涂层的格雷码带智能卷尺
CN205027312U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有折叠扣结构的格雷码带智能卷尺
CN205027233U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有防摩擦杆的格雷码带智能卷尺
CN205027239U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种具有划粉装置的格雷码带智能卷尺
CN205027234U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种自发电式的格雷码带智能卷尺
CN205027237U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种格雷码带及格雷码带智能卷尺
CN205027230U (zh) * 2015-09-30 2016-02-10 捷荣科技集团有限公司 一种格雷码带智能卷尺
CN205279905U (zh) * 2015-09-30 2016-06-01 捷荣科技集团有限公司 一种可扫码的格雷码带智能卷尺

Similar Documents

Publication Publication Date Title
JP2730725B2 (ja) 変位量測定装置
CN103134532A (zh) 一种基于绝对位置判定的圆周码道编解码方法
CN205027230U (zh) 一种格雷码带智能卷尺
CN109724519B (zh) 一种基于十进制移位编码的绝对式直线位移传感器
CN102003976A (zh) 单码道绝对位置编码方法、解码方法及测量装置
CN107063096A (zh) 位置编码方法及装置
WO2017054717A1 (zh) 一种格雷码带、格雷码带智能卷尺及数据读取方法
CN106556297B (zh) 一种可将测量长度转化为鞋码值的智能卷尺
CN205027237U (zh) 一种格雷码带及格雷码带智能卷尺
CN106556309B (zh) 一种格雷码带、格雷码带智能卷尺及数据读取方法
CN205027241U (zh) 一种基于红外收发读数的智能卷尺
CN106556294B (zh) 一种基于红外收发读数的智能卷尺
CN106556295B (zh) 一种具有划粉装置的格雷码带智能卷尺
CN205027228U (zh) 一种码带初始位置错位的格雷码带智能卷尺
CN106556303A (zh) 一种可测围的智能卷尺及其测围方法
CN106556296B (zh) 一种隐形油墨格雷码带及智能卷尺
CN205482996U (zh) 基于塑料光纤传感与通讯的光电编码计数器
CN204442350U (zh) 一种格雷码盘
CN204442349U (zh) 一种计数用格雷码盘
CN204515832U (zh) 一种计数码盘
CN205027222U (zh) 一种基于电刷读数的智能卷尺
CN106556311B (zh) 一种带开关的智能卷尺及其数据获取方法
CN102306272B (zh) 一种用于计量计数器编码的方法
CN205027236U (zh) 一种具有全黑涂层的格雷码带智能卷尺
CN106556307B (zh) 一种可显示面积周长的格雷码带智能卷尺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850341

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850341

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16850341

Country of ref document: EP

Kind code of ref document: A1