WO2017054477A1 - 无线资源管理rrm测量事件的评估方法及装置 - Google Patents

无线资源管理rrm测量事件的评估方法及装置 Download PDF

Info

Publication number
WO2017054477A1
WO2017054477A1 PCT/CN2016/083336 CN2016083336W WO2017054477A1 WO 2017054477 A1 WO2017054477 A1 WO 2017054477A1 CN 2016083336 W CN2016083336 W CN 2016083336W WO 2017054477 A1 WO2017054477 A1 WO 2017054477A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
filtering
evaluation
measurement
inner layer
Prior art date
Application number
PCT/CN2016/083336
Other languages
English (en)
French (fr)
Inventor
杨立
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017054477A1 publication Critical patent/WO2017054477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to, but is not limited to, the field of communications, and more particularly to a method and apparatus for jointly evaluating radio resource management RRM measurement events.
  • any kind of mobile cellular system including network side network element nodes and terminal devices
  • radio access technology Radio Access Technology, RAT for short
  • it is composed of cellular network element network element nodes. (such as core network, gateway, centralized controller, base station, wireless access node), terminal, and the most basic coverage unit cell Cell providing mobile communication service, FIG.
  • the Cell downlink coverage reflects: the base station node (eNB, AP, etc.) can achieve the effective transmission range under the controllable downlink data;
  • the Cell downlink load reflects: the current downlink air interface of the base station node The extent to which the radio resources are used and occupied;
  • the uplink coverage of the Cell reflects that the terminal can implement the effective transmission range under the controllable uplink data, and the downlink coverage may be different;
  • the uplink load of the Cell reflects: the current air interface uplink radio resources of the base station node are used and The degree of occupancy may be different from the downlink load; in addition to the above basic radio resource management (Radio Resource Management, Jane) Was changed to RRM) measurement evaluation amount, there can be other reflected Cell RRM measurement properties other aspects, such as throughput, delay, backhaul bandwidth channel preemption rate.
  • the cellular network element node allocates related radio resources to the communication service of the terminal, and configures a corresponding radio data bearer (Data Radio Bearer, referred to as DRB); in order to implement the quality of service (QoS) associated with the DRB,
  • DRB Data Radio Bearer
  • QoS quality of service
  • the base station node realizes the reselection/redirection/switching/shunting of the terminal in the homogeneous heterogeneous macro segment through a specific mobile flow. Mobility control.
  • the base station node may also include: a plurality of nodes upstream of the network managing the downstream base station nodes, such as a wireless controller, a wireless gateway, and a core network element.
  • the mobility control is embodied in: the terminal optionally performs measurement records based on network configuration parameters, filtering analysis, and gates on the uplink and downlink coverage strength/quality, uplink and downlink load, and the like. Limiting the comparison, etc., and then generating one or more cell-level granular RRM measurements, which we call the cell-level RRM measurement; if a mobile process can be completed by the terminal autonomously, the terminal does not need to report the RRM measurement content result to the base station. Based on the local RRM measurement result, the terminal directly selects a more suitable target cell, attempts to camp, automatically leaves the source cell after success, and the base station side cannot perceive the UE's movement.
  • the terminal usually needs to report all or part of the RRM measurement content to the base station for reference.
  • the base station comprehensively selects the appropriate based on the RRM measurement content reported by the terminal and other local reference conditions.
  • the target cell is instructed to try to access the new target cell, and the target cell continues to go to the communication service of the radio bearer terminal. After the success, the terminal leaves the source cell and releases the radio bearer resources allocated by the previous source cell.
  • the sequence is performed: Handover Preparation, handover execution (Handover Execution), Handover Complete process operation.
  • the content of the MR is compared with the dynamic measurement evaluation quantity obtained by the local actual eNB based on the relevant parameters (such as threshold, period, offset, etc.) of the RRM measurement configured by the source eNB through the RRC signaling.
  • the UE may report the RRM measurement content result in a periodic and/or event manner, and make reference to the source eNB for handover decision.
  • a single MR measurement report does not necessarily trigger the source eNB to do the handover.
  • the old RRM measurement model of the current LTE cellular system is: for a specific measurement object (cell) and measurement evaluation amount, A is a UE.
  • the preliminary measurement sample value measured according to the internal implementation where B is the intermediate measurement sample value obtained by the UE after filtering by the Layer 1 Filtering module layer 1 in a certain sampling period, and C is the UE within a certain sampling period.
  • C' is the reference analysis evaluation value (having the same measurement evaluation dimension as C)
  • D is the content result value reported by the UE in the MR message.
  • the behavior of the Layer 3 filter processing module and the Evaluation and reporting Criteria module and the use of parameters are standardized by the LTE protocol, and the relevant configuration parameters are from RRC signaling.
  • the LTE protocol has defined multiple RRM measurement events for different mobility purposes.
  • the Event A1 event indicates that the UE measures the strength RSRP or quality RSRQ of the pilot signal of the current serving cell (which may be one or more) (already already After the layer 3 filtering process, compared with the threshold Thresh that the source eNB has configured through RRC signaling, it is better (there is also a neural buffer offset value Hys) and continues to exceed the trigger time of an event ( TTT: time to trigger), so that the UE can generate an A1 event locally, triggering the MR report; otherwise, the A1 event cannot be generated.
  • TTT time to trigger
  • the above old RRM measurement model and definition have the following characteristics: for a certain RRM measurement event, only a certain determined source cell and/or a certain Neighbour Cell are associated to form a 1-to-1 cell evaluation. Pairing Pair; always associated with a certain measurement evaluation quantity (such as pilot strength/quality, or wireless load, etc.), regardless of the joint evaluation constraint relationship between different measurement evaluation quantities, in the control parameters of RRC signaling configuration At least Hys and TTT are included and remain unique during the dynamic assessment using common inequalities.
  • the old RRM measurement model and definition in the related art may relate to the smallest radio coverage service granularity cell Cell in the mobile cellular system, so the base station can obtain the RRM measurement result of the cell precision level, and refer to the mobile flow process of the cell granularity level.
  • the related art RRM measurement model and definition are when the UE is configured with multiple serving cells (such as carrier aggregation, multi-connection, heterogeneous WLAN offload, etc.), and there are a large number of macro-small heterogeneous neighboring cells deployed (such as super In a heterogeneous network deployed in a dense small cell, the UE needs to perform RRM measurement evaluation analysis for all possible paired cells, generate a large amount of RRM measurement intermediate information, RRM event result information, and MR report content.
  • This cell-level granularity RRM Measurements while producing very detailed RRM measurement information, are sometimes redundant and unnecessary for the base station's movement decisions.
  • the RRM result event can only reflect the independent evaluation relationship of the single measurement evaluation amount, and cannot reflect the joint relationship between different RRM measurement evaluation quantities, which may cause the non-optimization of the moving target selection.
  • the present application provides a method and apparatus for evaluating a radio resource management RRM measurement event to address at least the RRM measurement model in the related art and the problem of defining an independent evaluation relationship that can only reflect a single measurement evaluation amount.
  • a method for evaluating a radio resource management RRM measurement event includes: providing an RRM measurement event with a target serving cell set in a first group and/or a source in a second group a serving cell set association, wherein the RRM measurement event includes one or more measurement evaluation amounts; the one or the filtering module of the inner layer of the first group and/or the inner layer of the second group The plurality of measurement evaluation quantities are filtered to obtain one or more dynamic analysis evaluation values; and the one or more dynamic analysis evaluation quantities are dynamically combined and evaluated.
  • the one or more measurement evaluation quantities are filtered by the filtering module of the first group inner layer and/or the second group inner layer to obtain one or more dynamic analysis evaluation values.
  • the method includes: filtering, by the first filtering module of the first group inner layer and/or the second group inner layer, the one or more measurement measurement values to obtain one or more intermediate measurement sample values;
  • the second filtering module of the first group inner layer and/or the second group inner layer filters the one or more intermediate measurement sample values to obtain one or more dynamic analysis evaluation values.
  • the filtering manner of the first filtering module is a standardized or non-standardized filtering manner
  • the filtering manner of the second filtering module is a standardized filtering manner
  • performing dynamic joint evaluation on the one or more dynamic analysis evaluation values includes: referencing the evaluation value corresponding to the one or more dynamic analysis evaluation values to the one or more dynamic analysis evaluation values, And the combination of radio resource control RRC configuration parameters for dynamic joint evaluation.
  • the RRC configuration parameter includes: a neural buffer offset value Hys, an offset value Offset, and a trigger time TTT.
  • an apparatus for evaluating a radio resource management RRM measurement event includes: an association module, configured to: associate an RRM measurement event with a first group The target serving cell set and/or the source serving cell set in the second group are associated, wherein the RRM measurement event includes one or more measurement evaluation quantities; and the filtering module is configured to: pass the first group The inner layer and/or the filtering module of the inner layer of the second group filters the one or more measurement evaluation quantities to obtain one or more dynamic analysis evaluation values; and the evaluation module is configured to: the one or more Dynamic analysis of assessments for dynamic joint assessment.
  • the filtering module includes: a first filtering unit, configured to: pair the one or more by using a first filtering module of the first group inner layer and/or the second group inner layer Measuring the evaluation amount to obtain one or more intermediate measurement sample values; the second filtering unit is configured to: pass the second filter module of the first group inner layer and/or the second group inner layer One or more intermediate measurement sample values are filtered to obtain one or more dynamic analysis evaluation values.
  • a first filtering unit configured to: pair the one or more by using a first filtering module of the first group inner layer and/or the second group inner layer Measuring the evaluation amount to obtain one or more intermediate measurement sample values
  • the second filtering unit is configured to: pass the second filter module of the first group inner layer and/or the second group inner layer
  • One or more intermediate measurement sample values are filtered to obtain one or more dynamic analysis evaluation values.
  • the filtering manner of the first filtering module is a standardized or non-standardized filtering manner
  • the filtering manner of the second filtering module is a standardized filtering manner
  • the evaluating module is configured to combine the one or more dynamic analysis evaluation values with reference analysis evaluation values corresponding to the one or more dynamic analysis evaluation values, and radio resource control RRC configuration parameters. Conduct a dynamic joint assessment.
  • the RRC configuration parameter includes: a neural buffer offset value Hys, an offset value Offset, and a trigger time TTT.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the above method.
  • the RRM measurement event is associated with a target serving cell set in the first group and/or a source serving cell set in the second group, where the RRM measurement event includes one or more measurement evaluations. And filtering one or more measurement evaluations by the filtering module of the inner layer of the first group and/or the inner layer of the second group to obtain one or more dynamic analysis evaluation values, and thus one or more dynamics
  • the evaluation evaluation value is dynamically evaluated. It can be seen that the evaluation object reported by the RRM event in the embodiment of the present invention changes from the cell to the cell group, and the RRM measurement model and the definition in the related technology can only reflect the single measurement evaluation amount. The issue of independent evaluation of relationships fills a gap in related technologies.
  • FIG. 1 is a schematic diagram of a cellular network composed of a macro-micro base station (macro micro cell) in the related art;
  • FIG. 2 is a schematic diagram of a current old RRM measurement model in the related art
  • FIG. 3 is a flowchart of a method for evaluating a radio resource management RRM measurement event according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of an apparatus for evaluating a radio resource management RRM measurement event according to an embodiment of the present invention
  • FIG. 5 is a block diagram 1 of an optional structure of an apparatus for evaluating a radio resource management RRM measurement event according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a multi-dimensional RRM measurement model of the present invention in accordance with an alternative embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a multi-frequency heterogeneous cellular network composed of an LTE macro base station (macro micro cell) according to an alternative embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a heterogeneous cellular network composed of LTE macro base stations and WLAN APs nodes in accordance with an alternative embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for evaluating a radio resource management RRM measurement event according to an embodiment of the present invention. As shown in FIG. 3, the process includes The following steps:
  • Step S402 Associate the RRM measurement event with the target serving cell set in the first group and/or the source serving cell set in the second group, where the RRM measurement event includes one or more measurements. Amount of quantity
  • Step S404 Filter one or more measurement evaluation quantities by using a filtering module of the first group inner layer and/or the second group inner layer to obtain one or more dynamic analysis evaluation values;
  • Step S406 Perform dynamic joint evaluation on one or more dynamic analysis evaluation quantities.
  • the dynamic joint assessment is the effect of a dynamic analysis assessment on the evaluation of the RRM module's assessment of other dynamic analysis.
  • the RRM measurement event is associated with the target serving cell set in the first group and/or the source serving cell set in the second group, where the RRM measurement event is included.
  • the dynamic joint evaluation of one or more dynamic analysis evaluation values shows that the evaluation object reported by the RRM event in this embodiment changes from a cell to a cell group, and the RRM measurement model and definition in the related technology can only be reflected.
  • the problem of independent evaluation of the single measurement assessment fills the gaps in the relevant technology.
  • the serving cell involved in this embodiment may be the smallest wireless coverage service unit configurable and manageable in the cellular system.
  • the filtering module of the first group inner layer and/or the second group inner layer involved in step S404 of the embodiment For filtering the one or more measurement evaluation quantities by the filtering module of the first group inner layer and/or the second group inner layer involved in step S404 of the embodiment to obtain one or more dynamic analysis evaluation values.
  • the method can be implemented as follows:
  • Step S11 Filtering one or more measurement evaluation quantities by using a first filtering module of the first group inner layer and/or the second group inner layer to obtain one or more intermediate measurement sampling values;
  • Step S12 Filter one or more intermediate measurement sample values by the second filter module of the first group inner layer and/or the second group inner layer to obtain one or more dynamic analysis evaluation values.
  • the filtering mode of the first filtering module involved in the embodiment is a standardized or non-standardized filtering mode
  • the filtering mode of the second filtering module is a standardized filtering mode. That is, the standardized filtering mode is the filtering control configured by the RRC parameter of the radio resource control.
  • the manner of dynamically jointly evaluating one or more dynamic analysis evaluation values involved in step S406 may be implemented by: evaluating one or more dynamic analysis The value is combined with one or more reference analysis evaluation values corresponding to the dynamic analysis evaluation values, and the radio resource control RRC configuration parameters are combined for dynamic joint evaluation.
  • the RRC configuration parameters involved in this embodiment may include: a neural buffer offset value Hys, an offset value Offset, and a trigger time TTT.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present application can be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), and includes a plurality of instructions for making one
  • the terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) performs the method described in the embodiments of the present invention.
  • a joint evaluation device for the RRM measurement event of the radio resource management is also provided in this embodiment.
  • the device is used to implement the foregoing embodiment and the optional implementation manner, and details are not described herein.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments may be implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: an association module 52, configured to: associate an RRM measurement event with a first group.
  • the target serving cell set and/or the source serving cell set in the second group are associated, wherein the RRM measurement event includes one or more measurement evaluation quantities;
  • the filtering module 54 is coupled to the association module 52 and configured to: pass The filtering module of the first group inner layer and/or the second group inner layer filters one or more measurement evaluation quantities to obtain one or more dynamic analysis evaluation values;
  • the evaluation module 56 is coupled with the filtering module 54 and configured To: Dynamically and jointly evaluate one or more dynamic analysis evaluation values.
  • FIG. 5 is a block diagram of an optional structure of a joint evaluation apparatus for a radio resource management RRM measurement event according to an embodiment of the present invention.
  • the filtering module 54 includes: a first filtering unit 62, configured to: pass the first The first filtering module of the inner layer of the group and/or the inner layer of the second group filters one or more measured evaluation quantities to obtain one or more intermediate measurement sample values; the second filtering unit 64 is coupled with the first filtering unit 62 The connection is configured to: filter one or more intermediate measurement sample values by the second filter module of the first group inner layer and/or the second group inner layer to obtain one or more dynamic analysis evaluation values.
  • the filtering mode of the first filtering module is a standardized or non-standardized filtering mode
  • the filtering mode of the second filtering module is a standardized filtering mode
  • the evaluation module 56 is configured to perform dynamic joint evaluation by combining one or more dynamic analysis evaluation values with reference analysis evaluation values corresponding to one or more dynamic analysis evaluation values, and radio resource control RRC configuration parameters.
  • the RRC configuration parameters involved in this embodiment include: a neural buffer offset value Hys, an offset value Offset, and a trigger time TTT.
  • modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are respectively located in multiple processes. In the device.
  • the optional embodiment provides a method for measuring a radio resource management RRM measurement event, where the RRM measurement event involved in the embodiment is always associated with a set of source serving cells determined by a certain group. 1 to N) and a set of target serving cells determined by a certain group (numbers from 1 to M, M may be different from N), and associated with one or more different measurement evaluation quantities, such as pilot strength Quality, or wireless load, etc., increase the joint evaluation between different measurement evaluations.
  • At least the parameters of RRC configuration include: Hys and TTT.
  • the dynamic joint assessment process can be changed or unchanged according to standardized rules.
  • FIG. 6 is a schematic diagram of a multi-dimensional RRM measurement model according to an alternative embodiment of the present invention.
  • the multi-dimensional RRM measurement model is upgraded to the group inner layer 1 compared to the old RRM measurement model in FIG. a filtering module, whose input changes from a preliminary measurement sample value of a single associated cell to a preliminary measurement sample value of n associated cell sets (belonging to the same group), and the behavior of the intra-group layer 1 filtering processing module may depend on the implementation of the UE without Standardized;
  • Layer 3 Filtering is upgraded to the group inner layer 3 filtering module, whose input changes from the intermediate measurement sample value of a single associated cell to n intermediate measurement sample values, and the behavior of the group inner layer 3 filtering processing module needs to accept RRC configuration.
  • the control of the parameters can be standardized; the evaluation principle of the Evaluation Quotation Evaluation Module of the RRM and the Evaluation of the Criteria module of the related technology is consistent (using the basic inequality principle), the input is a single C value and C' reference value, and the output is the D value.
  • the evaluation principle of the Evaluation Quotation Evaluation Module of the RRM and the Evaluation of the Criteria module of the related technology is consistent (using the basic inequality principle)
  • the input is a single C value and C' reference value
  • the output is the D value.
  • f parallel evaluation links for different measurement evaluations f is the number of different RRM measurement evaluations
  • the RRC parameters such as Hys and TTT may change or remain unchanged during the evaluation of the dynamic analysis evaluation values C1, C2...Cf associated with the group cell.
  • FIG. 7 is a schematic diagram of a multi-frequency heterogeneous cellular network composed of an LTE macro base station (macro micro cell) according to an alternative embodiment of the present invention.
  • LTE macro base station macro micro cell
  • FIG. 7 the coverage of an LTE macro cell deployed at an F1 frequency point is shown in FIG.
  • a small cell group set of Small Cell Clusters 1 and 2 is densely deployed at frequency point F2, and in the same hotspot area, Small Cell Cluster 3 is also super densely deployed at frequency point F3.
  • the small cell group set of 4 the mobility of the UE in the small cell group set is relatively simple, and may not involve the signaling interaction of the gateway node and the upstream network node that controls the small cell group, so the UE is small
  • the mobility in the cell group is transparent to the gateway node and its upstream network node.
  • the UE only needs to update the radio link of different small cells or TPs in the small cell group according to the RRM measurement result of the cell accuracy level in the air interface.
  • the mobility of the UE between these small cell group sets is relatively complex, involving the signaling interaction between the gateway nodes controlling these small cell groups and their upstream network nodes, so the UE moves between the small cell groups to the gateway.
  • the node and its upstream network nodes are opaque.
  • the UE If the UE only updates the radio link of a small cell or TP in the new target small cell group according to the RRM measurement result of the cell precision level, and then determines the target small cell group to which it belongs, the new target may not be guaranteed.
  • the small cell group must be better than the source target small cell group; or when the UE faces multiple target small cell groups as mobile candidates, it may not be guaranteed to select the optimal new target small cell group. Therefore, through the multi-dimensional RRM measurement model of the alternative embodiment, an evaluation of the granularity level of the small cell group can be obtained, and the steps of the method include:
  • Step 502 A1, A2, A3, and A4 respectively correspond to the pilot downlink signal quality RSRQ preliminary measurement sample values of the four cells in the Small Cell Cluster 1 group, and first adopt the manner implemented internally by the terminal to perform intra-group layer 1 filtering (filtering The mode does not need to be standardized), and the intermediate measurement sample values B1, B2, B3, and B4 are obtained; and then processed by the group inner layer 3 filtering method that can be standardized to obtain a dynamic analysis evaluation value C1; wherein the group inner layer 3 is filtered.
  • the processing method is:
  • T1(n) (1-a1)*T1(n-1)+a1*B1(n);
  • T2(n) (1-a2)*T2(n-1)+a2*B2(n);
  • T3(n) (1-a3)*T3(n-1)+a3*B3(n);
  • T4(n) (1-a4)*T4(n-1)+a4*B4(n);
  • n is the time sequence or sequence
  • T(n-1) represents the previous time value of T(n) (the initial value T(0) is 0)
  • a1/a2/a3/a4 is the filter coefficient (can be The parameters of the RRC configuration may be different.)
  • T1/T2/T3/T4 are respectively the intermediate values of the intra-group 3 filtering of the four intermediate measurement sample values, and then processed by a specific average Average algorithm (which can be configured by the RRC switch and Select) to obtain a unique dynamic analysis evaluation value C1.
  • Step 503 According to the processing method similar to the step 2, the terminal performs related measurement filtering processing on the other RRC-configured measurement object Small Cell Cluster group, and obtains C1' of each Small Cell Cluster as a reference.
  • the corresponding RRM event for the set of cell groups can be defined as:
  • Event A1 (new): The currently serving cell group is better than a certain threshold, that is, C1–hys>Threshold;
  • Event A2 (new): The currently serving cell group is worse than a certain threshold, that is, C1+hys ⁇ Threshold;
  • Event A3 (new): The neighbor cell group is better than the currently serving cell group by an offset C1'–hys’>C1+hys+offset
  • Event A4 the neighbor cell group is better than a certain threshold, that is, C1'-hys'>Threshold;
  • Event A5 (new): The currently serving cell group is worse than a certain threshold, that is, C1+hys ⁇ Threshold1; and the neighboring cell group is better than a certain threshold, that is, C1'-hys'>Threshold2;
  • FIG. 8 is a schematic diagram of a heterogeneous cellular network composed of an LTE macro base station and a WLAN APs node according to an alternative embodiment of the present invention. As shown in FIG. 8, under the coverage of an LTE macro cell deployed at an F1 frequency point, at 2.4G.
  • the AP group set of WLAN AP Groups 1 and 2 is deployed in the unlicensed frequency band, and the AP group set of WLAN AP Groups 3 and 4 is also densely deployed in the same hotspot coverage area on the 5G unlicensed frequency band;
  • the mobility of the UE in the AP group set is relatively simple, and the gateway nodes that control the AP groups and their upstream network control may not be involved.
  • the signaling interaction of the node so the UE's movement in the AP group is transparent to the gateway node and its upstream network control node, and the UE only needs to perform the RRM measurement result according to the WLAN cell accuracy level in the WLAN air interface, and the update is different from the AP group.
  • the wireless link of the AP In comparison, the mobility of the UE between these AP group sets is compared. To be complex, it is necessary to control the signaling interaction between the gateway nodes of these AP groups and their upstream network control nodes, so the UE's movement between AP groups is opaque to the gateway nodes and their upstream network control nodes.
  • the UE only updates the radio link of an AP in the new target AP group according to the RRM measurement result of the WLAN cell accuracy level, and then determines the target AP group to which it belongs, the new target AP group may not be guaranteed. It is better than the source target AP group; or when the UE faces multiple target AP groups as mobile candidates, it may not be guaranteed to select the optimal new target AP group. Therefore, by using the multi-dimensional RRM measurement model of the alternative embodiment, an evaluation of the AP group granularity level can be obtained.
  • the method steps are as follows:
  • Step 602 A1, A2, A3, A4, and A5 respectively correspond to the pilot downlink signal strength RSSI and the preliminary measurement sample value of the WLAN air interface load of the five WLAN cells in the AP Group 1 group, and first adopt the manner of internal implementation of the terminal.
  • the inner layer 1 filtering process (may not be standardized), the intermediate measurement sample values B1, B2, B3, B4, B5 are obtained; and after a specific group inner layer 3 filtering module is processed, a dynamic analysis evaluation value C1 is obtained (corresponding to WLAN pilot downlink signal strength RSSI dynamic analysis evaluation value), C2 (corresponding to the dynamic analysis evaluation value of WLAN air interface load ChannelUtilization); wherein the group inner layer 3 filtering processing method is:
  • T1(n) (1-a1)*T1(n-1)+a1*B1(n);
  • T2(n) (1-a2)*T2(n-1)+a2*B2(n);
  • T3(n) (1-a3)*T3(n-1)+a3*B3(n);
  • T4(n) (1-a4)*T4(n-1)+a4*B4(n);
  • T5(n) (1-a5)*T5(n-1)+a5*B5(n);
  • C2(n) Average ⁇ T1(n), T2(n), T3(n), T4(n), T5(n) ⁇ ;
  • n is the time sequence or sequence
  • T(n-1) represents the previous time value of T(n) (the initial value T(0) is 0)
  • a1/a2/a3/a4/a5 is the filter coefficient
  • the parameters that can be configured by RRC can be different.
  • T1/T2/T3/T4/T5 are the intermediate values of the intra-group 3 filtering of the five intermediate measurement samples, respectively, and the corresponding WLAN pilot downlink signal strength RSSI measurement evaluation Quantity, then take the maximum value
  • the dynamic analysis evaluation value C1 is obtained by processing (can be configured and switched by the RRC); the evaluation amount is measured corresponding to the WLAN air interface load ChannelUtilization, and the dynamic analysis evaluation value C2 is obtained by a specific average Average algorithm processing (which can be RRC configuration switch and selection).
  • Step 603 According to the processing manner similar to step 602, the terminal performs related measurement filtering processing on other RRC-configured measurement target AP Group groups, and obtains C1' and C2' of each AP Group as a reference.
  • New RRM measurement events can be defined based on WLAN system characteristics, such as:
  • Event A1 (new): WLAN average air interface load in the currently served AP Group group;
  • the maximum pilot strength is better than a certain threshold, namely C1–hys>Threshold (RSSI);
  • Event A3 Under the premise of the average air interface load C2' ⁇ Threshold' (ChannelUtilization) of a neighboring AP group, the maximum pilot strength of the currently served AP Group group is worse than a certain threshold, that is, C1+ Hys ⁇ Threshold(RSSI);
  • the evaluation object reported by the new RRM event in this embodiment is changed from a single WLAN cell to a WLAN AP Group group, and multiple measurement evaluations are evaluated.
  • the quantities can be mutually referenced to form a constraint relationship, and a simple inequality principle can be used to construct a variety of new RRM measurement events.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S3 Dynamic joint assessment of one or more dynamic analysis assessments.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by a computing device such that they may be stored in a storage device by a computing device and, in some cases, may be executed in a different order than herein.
  • the steps shown or described are either fabricated as integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • the evaluation object reported by the RRM event changes from the cell to the cell group, and solves the problem that the RRM measurement model and the definition in the related technology can only reflect the independent evaluation relationship of the single measurement evaluation amount, and fills the related technology.
  • Whitespace

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种无线资源管理RRM测量事件的联合评估方法及装置,其中,该方法包括:将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,RRM测量事件中包括一个或多个测量评估量;通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;对一个或多个动态分析评估量进行动态联合评估。

Description

无线资源管理RRM测量事件的评估方法及装置 技术领域
本申请涉及但不限于通信领域,尤指一种无线资源管理RRM测量事件的联合评估方法及装置。
背景技术
对于任何一种移动蜂窝系统(包括网络侧网元节点和终端设备),无论其背后的无线接入技术(Radio Access Technology,简称为RAT)技术是什么,它都是由蜂窝网基本网元节点(如核心网、网关、集中控制器、基站、无线接入节点),终端,和提供移动通信服务的最基本覆盖单元小区Cell所组成,图1是相关技术中由宏微基站(宏微小区)构成的蜂窝网络示意图,如图1所示,Cell下行覆盖反映了:基站节点(eNB,AP等)可实现下行数据可控下的有效传输范围;Cell下行负荷反映了:基站节点当前下行空口无线资源被使用和占用的程度;Cell上行覆盖反映了:终端可实现上行数据可控下的有效传输范围,和下行覆盖可能不同;Cell上行负荷反映了:基站节点当前空口上行无线资源被使用和占用的程度,和下行负荷可能不同;除上述基本的无线资源管理(Radio Resource Management,简称为RRM)测量评估量之外,还可以有其他反映Cell其他方面的RRM测量属性,如吞吐率,延时,回传带宽,频道抢占率等。
蜂窝网网元节点为终端的通信业务分配相关的无线资源,配置对应的无线数据承载(Data Radio Bearer,简称为DRB);为了实现DRB相关联的服务质量(Quality of Service,简称为QoS)在移动中的连续性,为了实现基站间上下行无线资源的均衡化合理化使用,基站节点通过特定的移动流程,来实现对终端在同质异质宏微小区间的重选/重定向/切换/分流等的移动性控制。该基站节点广义上也可以包括:管理下游基站节点的网络上游多种节点,如无线控制器,无线网关,核心网网元等。
移动性控制体现在:终端可选地对小区上下行覆盖强度/质量,上下行负荷等RRM属性动态量进行基于网络配置参数的测量记录,滤波分析,门 限比较等,继而产生一个或者多个小区级别粒度的RRM测量结果,我们称为小区级别的RRM测量;如果某移动流程可以由终端自主完成,则终端不需要上报上述RRM测量内容结果给基站,终端基于本地的RRM测量结果,直接选择到更合适的目标小区,尝试驻留,成功后自动离开源小区,基站侧不能感知UE的移动。如果某移动流程必须由基站控制完成,则终端通常需要上报上述全部或部分RRM测量内容结果给基站做参考,基站基于终端上报的RRM测量内容结果和本地其他的参考条件,综合地去选择更合适的目标小区,并且告知终端尝试接入新目标小区,让目标小区继续去无线承载终端的通信业务,成功后再让终端离开源小区并且释放之前源小区分配的无线承载资源。
LTE蜂窝系统中,当源基站eNB接收到来自终端UE的测量报告(Measurement Reports,简称为MR)测量报告后,根据内部HO Decision的判决结果,将顺序进行:切换准备(Handover Preparation),切换执行(Handover Execution),切换完成(Handover Complete)流程操作。MR的内容是UE基于之前源eNB通过RRC信令给UE配置的控制其RRM测量的相关参数(如门限,周期,偏移量等),和本地实际测量而获得的动态测量评估量进行对比分析评估而产生的,UE可以以周期和/或事件的方式上报RRM测量内容结果,给源eNB做切换决策的参考。单一的MR测量报告不一定会触发源eNB做切换。
图2是相关技术中当前的旧RRM测量模型示意图,如图3所示,当前LTE蜂窝系统的旧RRM测量模型为:针对某个特定的测量对象(蜂窝小区)和测量评估量,A为UE根据内部实现而测量得到的初步测量采样值,B为UE在一定的采样周期内,通过Layer 1 Filtering模块层1过滤处理后而获得的中间测量采样值,C为UE在一定的采样周期内,通过Layer 3 Filtering模块层3过滤处理后而获得的动态分析评估值,C’为参考分析评估值(和C有相同的测量评估量纲),D为UE在MR消息中上报的内容结果值。旧RRM测量模型中,层3过滤处理模块和评估和上报准则(Evaluation of reporting Criteria)模块的行为和参数使用方式都是被LTE协议标准化的,相关的配置参数来自RRC信令。
LTE协议已经为不同的移动目的,定义了多个RRM测量事件,比如Event A1事件表示:UE对当前服务小区(可以是一个或多个)导频信号的强度RSRP或者质量RSRQ的测量结果(已经经过了层3过滤的处理),和源eNB已经通过RRC信令配置的门限值Thresh相比较,要更好(中间还有一个神经缓冲偏移值Hys)且持续超过一段事件的触发时间(TTT:time to trigger),这样UE才能本地产生A1事件,触发MR上报;否则不能产生A1事件。其他Event事件的含义可以参考LTE协议。
上述旧RRM测量模型和定义有如下特点:对于某个RRM测量事件,只是关联某一个确定的源服务小区和/或某一个确定的相邻服务小区(Neighbour Cell),形成1对1的小区评估配对Pair;总是关联某一个确定的测量评估量(如导频的强度/质量,或者无线负荷等),不考虑不同测量评估量之间的联合评估约束关系,RRC信令配置的控制参数中至少包括Hys和TTT,在采用常用不等式进行动态评估的过程中保持唯一不变。
采用相关技术中旧RRM测量模型和定义可以涉及到移动蜂窝系统中最小的无线覆盖服务粒度单元小区Cell,因此基站可以获得小区精度级别的RRM测量结果,为小区粒度级别的移动流程做参考,从源小区到目标小区。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
相关技术中RRM测量模型和定义在UE被配置有多个服务小区(如载波聚合,多连接,异构WLAN分流等操作),且有大量的宏微异构相邻小区部署的时候(如超密集小小区部署的异构网中),UE需要针对所有可能的配对小区Pair做RRM测量评估分析,产生大量的RRM测量中间信息,RRM事件结果信息和MR上报内容,这种小区级别粒度的RRM测量,虽然能产生很详细的RRM测量信息,但有时候对基站的移动判决是冗余且没有必要的。另外由于不能同时考虑多个不同RRM测量评估量之间的联合评估关 系,因此RRM结果事件只能反映单一测量评估量的独立评估关系,无法反映不同RRM测量评估量之间联合关系,可能会造成移动目标选择的非最优化。
本申请提供了一种无线资源管理RRM测量事件的评估方法及装置,以至少解决相关技术中RRM测量模型和定义只能反映单一测量评估量的独立评估关系的问题。
根据本发明实施例的一个方面,提供了一种无线资源管理RRM测量事件的评估方法,包括:将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,所述RRM测量事件中包括一个或多个测量评估量;通过所述第一群组内层和/或所述第二群组内层的过滤模块对所述一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;对所述一个或多个动态分析评估量进行动态联合评估。
可选地,所述通过所述第一群组内层和/或所述第二群组内层的过滤模块对所述一个或多个测量评估量进行过滤得到一个或多个动态分析评估值包括:通过所述第一群组内层和/或所述第二群组内层的第一过滤模块对所述一个或多个测量评估量过滤得到一个或多个中间测量采样值;通过所述第一群组内层和/或所述第二群组内层的第二过滤模块对所述一个或多个中间测量采样值过滤得到一个或多个动态分析评估值。
可选地,所述第一过滤模块的过滤方式为标准化或非标准化的过滤方式,所述第二过滤模块的过滤方式为标准化过滤方式。
可选地,对所述一个或多个动态分析评估值进行动态联合评估包括:将所述一个或多个动态分析评估值与所述一个或多个动态分析评估值对应的参考分析评估值,以及无线资源控制RRC配置参数相结合进行动态联合评估。
可选地,所述RRC配置参数包括:神经缓冲偏移值Hys,偏移值Offset,和触发时间TTT。
根据本发明实施例的一个方面,提供了一种无线资源管理RRM测量事件的评估装置,包括:关联模块,设置为:将RRM测量事件与第一群组中 的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,所述RRM测量事件中包括一个或多个测量评估量;过滤模块,设置为:通过所述第一群组内层和/或所述第二群组内层的过滤模块对所述一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;评估模块,设置为:对所述一个或多个动态分析评估量进行动态联合评估。
可选地,所述过滤模块包括:第一过滤单元,设置为:通过所述第一群组内层和/或所述第二群组内层的第一过滤模块对所述一个或多个测量评估量过滤得到一个或多个中间测量采样值;第二过滤单元,设置为:通过所述第一群组内层和/或所述第二群组内层的第二过滤模块对所述一个或多个中间测量采样值过滤得到一个或多个动态分析评估值。
可选地,所述第一过滤模块的过滤方式为标准化或非标准化的过滤方式,所述第二过滤模块的过滤方式为标准化过滤方式。
可选地,所述评估模块,设置为:将所述一个或多个动态分析评估值与所述一个或多个动态分析评估值对应的参考分析评估值,以及无线资源控制RRC配置参数相结合进行动态联合评估。
可选地,所述RRC配置参数包括:神经缓冲偏移值Hys,偏移值Offset,和触发时间TTT。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
通过本发明实施例,采用将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,RRM测量事件中包括一个或多个测量评估量,并通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值,进而可以对一个或多个动态分析评估值进行动态联合评估,可见,通过本发明实施例中的RRM事件上报的评估对象从小区变成了小区群组,解决了相关技术中RRM测量模型和定义只能反映单一测量评估量的独立评估关系的问题,填补了相关技术中的空白。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是相关技术中由宏微基站(宏微小区)构成的蜂窝网络示意图;
图2是相关技术中当前的旧RRM测量模型示意图;
图3是根据本发明实施例的无线资源管理RRM测量事件的评估方法的流程图;
图4是根据本发明实施例的无线资源管理RRM测量事件的评估装置的结构框图;
图5是根据本发明实施例的无线资源管理RRM测量事件的评估装置的可选结构框图一;
图6是根据本发明可选实施例的本发明多维化RRM测量模型示意图;
图7是根据本发明可选实施例的由LTE宏微基站(宏微小区)构成的多频点异构蜂窝网络示意图;
图8是根据本发明可选实施例的由LTE宏基站和WLAN APs节点构成的异构蜂窝网络示意图。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本发明的实施方式。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种无线资源管理RRM测量事件的评估方法,图3是根据本发明实施例的无线资源管理RRM测量事件的评估方法的流程图,如图3所示,该流程包括如下步骤:
步骤S402:将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,RRM测量事件中包括一个或多个测 量评估量;
步骤S404:通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;
步骤S406:对一个或多个动态分析评估量进行动态联合评估。
其中,该动态联合评估为某个动态分析评估量会作用影响到RRM模块对其他动态分析评估量的评估结果。
通过本实施例中的步骤S402至步骤S406,采用将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,RRM测量事件中包括一个或多个测量评估量,并通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值,进而可以对一个或多个动态分析评估值进行动态联合评估,可见,通过本实施例中的RRM事件上报的评估对象从小区变成了小区群组,解决了相关技术中RRM测量模型和定义只能反映单一测量评估量的独立评估关系的问题,填补了相关技术中的空白。
对于本实施例中涉及到的服务小区可以是蜂窝系统中可配置和管理的最小无线覆盖服务单元。
对于本实施例步骤S404中涉及到的通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值的方式,在本实施例的可选实施方式中,可以通过如下方式来实现:
步骤S11:通过第一群组内层和/或第二群组内层的第一过滤模块对一个或多个测量评估量过滤得到一个或多个中间测量采样值;
步骤S12:通过第一群组内层和/或第二群组内层的第二过滤模块对一个或多个中间测量采样值过滤得到一个或多个动态分析评估值。
对于本实施例中涉及到的第一过滤模块的过滤方式为标准化或非标准化的过滤方式,第二过滤模块的过滤方式为标准化过滤方式。即该标准化过滤方式是受到无线资源控制RRC参数配置的滤波控制。
在本实施例的另一个可选实施方式中,步骤S406中涉及到的对一个或多个动态分析评估值进行动态联合评估的方式,可以通过如下方式来实现:将一个或多个动态分析评估值与一个或多个动态分析评估值对应的参考分析评估值,以及无线资源控制RRC配置参数相结合进行动态联合评估。
对于本实施例中涉及到的RRC配置参数可以包括:神经缓冲偏移值Hys,偏移值Offset,和触发时间TTT。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明实施例所述的方法。
在本实施例中还提供了一种无线资源管理RRM测量事件的联合评估装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的无线资源管理RRM测量事件的联合评估装置的结构框图,如图4所示,该装置包括:关联模块52,设置为:将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,RRM测量事件中包括一个或多个测量评估量;过滤模块54,与关联模块52耦合连接,设置为:通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;评估模块56,与过滤模块54耦合连接,设置为:对一个或多个动态分析评估值进行动态联合评估。
图5是根据本发明实施例的无线资源管理RRM测量事件的联合评估装置的可选结构框图一,如图5所示,该过滤模块54包括:第一过滤单元62,设置为:通过第一群组内层和/或第二群组内层的第一过滤模块对一个或多个测量评估量过滤得到一个或多个中间测量采样值;第二过滤单元64,与第一过滤单元62耦合连接,设置为:通过第一群组内层和/或第二群组内层的第二过滤模块对一个或多个中间测量采样值过滤得到一个或多个动态分析评估值。
可选地,第一过滤模块的过滤方式为标准化或非标准化的过滤方式,第二过滤模块的过滤方式为标准化过滤方式。
此外,该评估模块56,设置为:将一个或多个动态分析评估值与一个或多个动态分析评估值对应的参考分析评估值,以及无线资源控制RRC配置参数相结合进行动态联合评估。
对于本实施例中涉及到的RRC配置参数包括:神经缓冲偏移值Hys,偏移值Offset,和触发时间TTT。
需要说明的是,上述模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本发明的可选实施例进行举例说明;
本可选实施例提供了一种无线资源管理RRM测量事件的测量方法,在该本实施例中涉及到的RRM测量事件总是关联到某一群组所确定的源服务小区集合(个数从1到N)和某一群组所确定的目标服务小区集合(个数从1到M,M可以和N不同),同时关联到1个或者多个不同的测量评估量,如导频的强度质量,或者无线负荷等,增加对不同测量评估量之间的联合评估,RRC配置的参数中至少也要包括:Hys和TTT,动态联合评估的过程中可以按照标准化的规则发生变化或者不变。
图6是根据本发明可选实施例的多维化RRM测量模型示意图,如图6所示,多维化RRM测量模型相比图2中的旧RRM测量模型,Layer 1 Filtering升级为群组内层1过滤模块,其输入从单个关联小区的初步测量采样值变为n个关联小区集合(属于同一群组)的初步测量采样值,群组内层1过滤处理模块的行为可以依赖UE的实现而不被标准化;Layer 3 Filtering升级为群组内层3过滤模块,其输入从单个关联小区的中间测量采样值变为n个中间测量采样值,群组内层3过滤处理模块的行为需要接受RRC配置参数的控制,可以被标准化;RRM上报评估准则模块和相关技术中模型的Evaluation of Reporting Criteria模块的评估原理一致(采用基本不等式原理),输入为单个C值和C’参考值,输出为D值,但在多维化RRM测量模型中,有f个并行的对不同测量评估量的评估链路(f为不同的RRM测量评估量个数),可以联合地对不同测量评估量C1…Cf进行动态联合评估,同时产生f个评估内容结果值D1…Df。RRC参数如Hys和TTT在和群组小区关联的动态分析评估值C1,C2…Cf被评估的过程中,可以发生变化或者保持不变。
可选实施例一
图7是根据本发明可选实施例的由LTE宏微基站(宏微小区)构成的多频点异构蜂窝网络示意图,如图7所示,在部署在F1频点的LTE宏小区的覆盖下,在频点F2上超密部署了Small Cell Cluster(微小区群组)1和2的小小区群组集合,另外在同一热点区域,在频点F3上也超密部署了Small Cell Cluster 3和4的小小区群组集合;UE在这些小小区群组集合内的移动性较为简单,可以不涉及控制这些小小区群组的网关节点及其上游网络节点的信令交互,因此UE在小小区群组内的移动对网关节点及其上游网络节点透明,UE仅仅需要在空口按照小区精度级别的RRM测量结果,去更新和小小区群组内不同小小区或者TP的无线链路。相比较,UE在这些小小区群组集合间的移动性较为复杂,涉及控制这些小小区群组的网关节点及其上游网络节点的信令交互,因此UE在小小区群组间的移动对网关节点及其上游网络节点不透明。如果UE仅仅按照小区精度级别的RRM测量结果,去更新和新目标小小区群组内某个小小区或者TP的无线链路,从而再确定所属的那个目标小小区群组,可能不能保证新目标小小区群组一定比源目标小小区群组要好;或者当UE面临多个目标小小区群组作为移动候选的时候,可能不能保证选择到最优的新目标小小区群组。因此通过可选实施例的多维化RRM测量模型,可以获得对小小区群组粒度级别的评估,该方法的步骤包括:
步骤501:确定源小小区群组内小区的个数n和需要评估的测量评估量个数f,假设UE此时在Small Cell Cluster 1内,即n=4;假设只需要评估小区导频下行信号质量RSRQ一个测量评估量,即f=1。
步骤502:A1,A2,A3,A4分别对应Small Cell Cluster 1群组内4个小区的导频下行信号质量RSRQ初步测量采样值,先采取终端内部实现的方式进行群组内层1过滤(过滤方式不需要被标准化),得到中间测量采样值B1,B2,B3,B4;再经过可被标准化的群组内层3过滤方式处理,得到动态分析评估值C1;其中群组内层3过滤的处理方式为:
T1(n)=(1-a1)*T1(n-1)+a1*B1(n);
T2(n)=(1-a2)*T2(n-1)+a2*B2(n);
T3(n)=(1-a3)*T3(n-1)+a3*B3(n);
T4(n)=(1-a4)*T4(n-1)+a4*B4(n);
C1(n)=Averge{T1(n),T2(n),T3(n),T4(n)}
上面公式中n为时间序号或者序列,T(n-1)表示T(n)的前一个时刻值(初始值T(0)为0),a1/a2/a3/a4为过滤系数(可被RRC配置的参数,可以不同),T1/T2/T3/T4分别为4个中间测量采样值的群组内层3过滤后的中间值,再经过特定平均Average算法处理(可以被RRC配置开关和选择)获得唯一的动态分析评估值C1。
步骤503:按照类似步骤2的处理方式,终端对其他被RRC配置的测量对象Small Cell Cluster群组进行相关测量过滤处理,获得每个Small Cell Cluster的C1’作为参考。基于已经被标准化的LTE RRM测量事件定义,对应的面向小区群组集合的RRM事件可以定义为:
Event A1(new):当前服务的小区群组好于某个门限,即C1–hys>Threshold;
Event A2(new):当前服务的小区群组差于某个门限,即C1+hys<Threshold;
Event A3(new):相邻小区群组比当前服务的小区群组要更好一个偏移量C1’–hys’>C1+hys+offset
Event A4(new):相邻小区群组好于某个门限,即C1’–hys’>Threshold;
Event A5(new):当前服务的小区群组差于某个门限,即C1+hys<Threshold1;同时相邻小区群组好于某个门限,即C1’–hys’>Threshold2;
可选实施例二
图8是根据本发明可选实施例的由LTE宏基站和WLAN APs节点构成的异构蜂窝网络示意图,如图8所示,在部署在F1频点的LTE宏小区的覆盖下,在2.4G非授权频段上超密部署了WLAN AP Group 1和2的AP群组集合,另外在同一热点覆盖区域,在5G非授权频段上也超密部署了WLAN AP Group 3和4的AP群组集合;在上述AP群组和宏基站做LWA(LTE&WIFI聚合)紧耦合的场景下,UE在这些AP群组集合内的移动性较为简单,可以不涉及控制这些AP群组的网关节点及其上游网络控制节点的信令交互,因此UE在AP群组内的移动对网关节点及其上游网络控制节点透明,UE仅仅需要在WLAN空口按照WLAN小区精度级别的RRM测量结果,去更新和AP群组内不同AP的无线链路。相比较,UE在这些AP群组集合间的移动性较 为复杂,必须涉及控制这些AP群组的网关节点及其上游网络控制节点的信令交互,因此UE在AP群组间的移动对网关节点及其上游网络控制节点不透明。如果UE仅仅按照WLAN小区精度级别的RRM测量结果,去更新和新目标AP群组内某个AP的无线链路,从而再确定所属的那个目标AP群组,可能不能保证新目标AP群组一定比源目标AP群组要好;或者当UE面临多个目标AP群组作为移动候选的时候,可能不能保证选择到最优的新目标AP群组。因此通过本可选实施例的多维化RRM测量模型,可以获得对AP群组粒度级别的评估,该方法步骤如下:
步骤601:确定源AP群组内AP的个数n和需要评估的测量评估量个数f,假设UE此时WLAN紧耦合分流在AP Group 1内,即n=5;假设需要联合评估WLAN小区导频Beacon下行信号强度RSSI和空口负荷(ChannelUtilization)两个测量评估量,即f=2。
步骤602:A1,A2,A3,A4,A5分别对应AP Group 1群组内5个WLAN小区的导频下行信号强度RSSI和WLAN空口负荷的初步测量采样值,先采取终端内部实现的方式进行群组内层1过滤处理(可以不被标准化),得到中间测量采样值B1,B2,B3,B4,B5;再经过特定的群组内层3过滤模块的处理,得到动态分析评估值C1(对应WLAN导频下行信号强度RSSI的动态分析评估值),C2(对应WLAN空口负荷ChannelUtilization的动态分析评估值);其中群组内层3过滤处理的方式为:
T1(n)=(1-a1)*T1(n-1)+a1*B1(n);
T2(n)=(1-a2)*T2(n-1)+a2*B2(n);
T3(n)=(1-a3)*T3(n-1)+a3*B3(n);
T4(n)=(1-a4)*T4(n-1)+a4*B4(n);
T5(n)=(1-a5)*T5(n-1)+a5*B5(n);
C1(n)=Max{T1(n),T2(n),T3(n),T4(n),T5(n)};
C2(n)=Average{T1(n),T2(n),T3(n),T4(n),T5(n)};
上面公式中n为时间序号或者序列,T(n-1)表示T(n)的前一个时刻值(初始值T(0)为0),a1/a2/a3/a4/a5为过滤系数(可被RRC配置的参数,可以不同),T1/T2/T3/T4/T5分别为5个中间测量采样值的群组内层3过滤后的中间值,对应WLAN导频下行信号强度RSSI测量评估量,再经过取最大值的 处理(可以被RRC配置开关和选择)获得动态分析评估值C1;对应WLAN空口负荷ChannelUtilization测量评估量,再经过特定平均Average算法处理(可以被RRC配置开关和选择)获得动态分析评估值C2。
步骤603:按照类似步骤602的处理方式,终端对其他被RRC配置的测量对象AP Group群组进行相关测量过滤处理,获得每个AP Group的C1’和C2’作为参考。可以根据WLAN系统特点定义新RRM测量事件,比如:
Event A1(new):在当前服务的AP Group群组的WLAN平均空口负荷;
C2>Threshold(ChannelUtilization)的前提下,最大导频强度好于某个门限,即C1–hys>Threshold(RSSI);
Event A2(new):在当前服务的AP Group群组的最大导频强度C1>Threshold(RSSI)的前提下,平均空口负荷好于某个门限,即C2–hys>Threshold(ChannelUtilization);
Event A3(new):在某相邻AP Group群组的平均空口负荷C2’<Threshold’(ChannelUtilization)的前提下,当前服务的AP Group群组最大导频强度差于某个门限,即C1+hys<Threshold(RSSI);
Event A4(new):在某相邻AP Group群组的平均空口负荷C2’<Threshold’(ChannelUtilization)的前提下,相邻AP Group群组的最大导频强度C1’比当前服务的AP Group群组的最大导频强度要好一个偏移量,即C1’–hys’>C1+hys+offset;
可见,通过本可选实施例相比相关技术中的RRM测量模型,本实施例中的新RRM事件上报的评估对象从单个WLAN小区变成了WLAN AP Group群组,而评估的多个测量评估量可以相互参考形成约束关系,利用简单的不等式原理可以构建多种需要的RRM测量新事件。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1:将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,RRM测量事件中包括一个或多个测量评估量;
S2:通过第一群组内层和/或第二群组内层的过滤模块对一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;
S3:对一个或多个动态分析评估量进行动态联合评估。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有多种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
通过本发明实施例,RRM事件上报的评估对象从小区变成了小区群组,解决了相关技术中RRM测量模型和定义只能反映单一测量评估量的独立评估关系的问题,填补了相关技术中的空白。

Claims (10)

  1. 一种无线资源管理RRM测量事件的评估方法,包括:
    将RRM测量事件与第一群组中的目标服务小区集合和/或第二群组中的源服务小区集合关联,其中,所述RRM测量事件中包括一个或多个测量评估量;
    通过所述第一群组内层和/或所述第二群组内层的过滤模块对所述一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;
    对所述一个或多个动态分析评估量进行动态联合评估。
  2. 根据权利要求1所述的方法,其中,所述通过所述第一群组内层和/或所述第二群组内层的过滤模块对所述一个或多个测量评估量进行过滤得到一个或多个动态分析评估值包括:
    通过所述第一群组内层和/或所述第二群组内层的第一过滤模块对所述一个或多个测量评估量过滤得到一个或多个中间测量采样值;
    通过所述第一群组内层和/或所述第二群组内层的第二过滤模块对所述一个或多个中间测量采样值过滤得到一个或多个动态分析评估值。
  3. 根据权利要求2所述的方法,其中,所述第一过滤模块的过滤方式为标准化或非标准化的过滤方式,所述第二过滤模块的过滤方式为标准化过滤方式。
  4. 根据权利要求1所述的方法,其中,对所述一个或多个动态分析评估值进行动态联合评估包括:
    将所述一个或多个动态分析评估值与所述一个或多个动态分析评估值对应的参考分析评估值,以及无线资源控制RRC配置参数相结合进行动态联合评估。
  5. 根据权利要求4所述的方法,其中,所述RRC配置参数包括:神经缓冲偏移值Hys,偏移值Offset,和触发时间TTT。
  6. 一种无线资源管理RRM测量事件的评估装置,包括:
    关联模块,设置为:将RRM测量事件与第一群组中的目标服务小区集 合和/或第二群组中的源服务小区集合关联,其中,所述RRM测量事件中包括一个或多个测量评估量;
    过滤模块,设置为:通过所述第一群组内层和/或所述第二群组内层的过滤模块对所述一个或多个测量评估量进行过滤得到一个或多个动态分析评估值;
    评估模块,设置为:对所述一个或多个动态分析评估量进行动态联合评估。
  7. 根据权利要求6所述的装置,其中,所述过滤模块包括:
    第一过滤单元,设置为:通过所述第一群组内层和/或所述第二群组内层的第一过滤模块对所述一个或多个测量评估量过滤得到一个或多个中间测量采样值;
    第二过滤单元,设置为:通过所述第一群组内层和/或所述第二群组内层的第二过滤模块对所述一个或多个中间测量采样值过滤得到一个或多个动态分析评估值。
  8. 根据权利要求7所述的装置,其中,所述第一过滤模块的过滤方式为标准化或非标准化的过滤方式,所述第二过滤模块的过滤方式为标准化过滤方式。
  9. 根据权利要求6所述的装置,其中,
    所述评估模块,设置为:将所述一个或多个动态分析评估值与所述一个或多个动态分析评估值对应的参考分析评估值,以及无线资源控制RRC配置参数相结合进行动态联合评估。
  10. 根据权利要求9所述的装置,其中,所述RRC配置参数包括:神经缓冲偏移值Hys,偏移值Offset,和触发时间TTT。
PCT/CN2016/083336 2015-09-28 2016-05-25 无线资源管理rrm测量事件的评估方法及装置 WO2017054477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510627327.6 2015-09-28
CN201510627327.6A CN106559800B (zh) 2015-09-28 2015-09-28 无线资源管理rrm测量事件的联合评估方法及装置

Publications (1)

Publication Number Publication Date
WO2017054477A1 true WO2017054477A1 (zh) 2017-04-06

Family

ID=58416573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083336 WO2017054477A1 (zh) 2015-09-28 2016-05-25 无线资源管理rrm测量事件的评估方法及装置

Country Status (2)

Country Link
CN (1) CN106559800B (zh)
WO (1) WO2017054477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214355A1 (zh) * 2018-05-11 2019-11-14 电信科学技术研究院有限公司 一种确定rrm测量配置的方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114222333B (zh) * 2020-07-28 2022-11-25 华为技术有限公司 一种无线数据传输方法、设备、存储介质及芯片系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052087A (zh) * 2011-10-11 2013-04-17 中兴通讯股份有限公司 空闲态用户设备的干扰检测方法及用户设备
WO2015061952A1 (zh) * 2013-10-28 2015-05-07 华为技术有限公司 一种无线资源管理的测量方法、设备及系统
WO2015094365A1 (en) * 2013-12-20 2015-06-25 Intel Corporation User equipment handover error reporting
WO2015100556A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 邻区测量方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052087A (zh) * 2011-10-11 2013-04-17 中兴通讯股份有限公司 空闲态用户设备的干扰检测方法及用户设备
WO2015061952A1 (zh) * 2013-10-28 2015-05-07 华为技术有限公司 一种无线资源管理的测量方法、设备及系统
WO2015094365A1 (en) * 2013-12-20 2015-06-25 Intel Corporation User equipment handover error reporting
WO2015100556A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 邻区测量方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214355A1 (zh) * 2018-05-11 2019-11-14 电信科学技术研究院有限公司 一种确定rrm测量配置的方法及设备
US11647434B2 (en) 2018-05-11 2023-05-09 Datang Mobile Communications Equipment Co., Ltd. Method and device for determining RRM measurement configuration

Also Published As

Publication number Publication date
CN106559800B (zh) 2020-01-10
CN106559800A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
US9942819B2 (en) System and method for group based handover parameter optimization for wireless radio access network load balancing
JP6048694B2 (ja) 通信システム、基地局、及び通信方法
US9973993B2 (en) System and method for programmable joint optimization of mobility load balancing and mobility robustness optimization
US10341912B2 (en) Enhancement of access points to support heterogeneous networks
JP6214667B2 (ja) Rat相互間のモビリティ設定を協調するための方法
CN106165475B (zh) 测量控制方法以及基站
CN109392019B (zh) 一种lte网络容量均衡优化方法
US9883431B2 (en) High speed handovers in a wireless network
EP3107330A2 (en) System and method to facilitate service hand-outs using user equipment groups in a network environment
JP2018514966A (ja) 特定セル確率負荷分散の装置、システム及び方法
US20220210706A1 (en) Method and apparatus for identifying target neighbor cell for handover of user equipment (ue)
WO2017080248A1 (zh) 非授权载波的测量上报方法和终端及配置方法和基站
US20230276431A1 (en) Method and apparatus for cooperative scheduling in a mobile communication system
KR101710969B1 (ko) 무선 네트워크 정보 관리 방법 및 네트워크 장치
US20160156440A1 (en) Network management
CN106797614B (zh) 无线基站、移动站、无线通信系统、无线基站的控制方法以及记录介质
US9264960B1 (en) Systems and methods for determinng access node candidates for handover of wireless devices
WO2017054477A1 (zh) 无线资源管理rrm测量事件的评估方法及装置
CN105744534B (zh) 一种基于频率迁移的fdd-lte异频组网方法
US20220210709A1 (en) Method and apparatus for initiating handover (ho) procedure in an open-radio access network (o-ran) environment
US9668180B1 (en) Systems and methods for identifying and resolving cell ID confusion between neighboring cells in a wireless network
US9237502B1 (en) Systems and methods for balancing wireless network load between band classes using automatic neighbor relations
EP4068851A1 (en) Method for identifying user equipment for handover and target cell selection
CN108235829B (zh) 通过分组授权辅助接入(laa)网络中的小小区同步接入非授权介质的方法
CN106465207A (zh) 异构网中负载分流的方法和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850102

Country of ref document: EP

Kind code of ref document: A1