WO2017052202A1 - Method for forming carbon-based passivation film while reducing content of metal oxide on metal oxide-containing metal layer - Google Patents

Method for forming carbon-based passivation film while reducing content of metal oxide on metal oxide-containing metal layer Download PDF

Info

Publication number
WO2017052202A1
WO2017052202A1 PCT/KR2016/010546 KR2016010546W WO2017052202A1 WO 2017052202 A1 WO2017052202 A1 WO 2017052202A1 KR 2016010546 W KR2016010546 W KR 2016010546W WO 2017052202 A1 WO2017052202 A1 WO 2017052202A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbon
film
passivation film
based passivation
Prior art date
Application number
PCT/KR2016/010546
Other languages
French (fr)
Korean (ko)
Inventor
이정오
양철수
안기석
버나드두댕
틴다라베르두치
파올로사모리
에마누엘레오리구
박세린
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017052202A1 publication Critical patent/WO2017052202A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention provides a method for forming a carbon-based passivation film while reducing the content of metal oxide and / or metal hydroxide at an interface with the metal oxide and / or metal hydroxide-containing metal layer; A metal electrode having a metal layer and a carbon-based passivation film formed on the metal layer using the metal layer; And it relates to a method for manufacturing an organic device by a solution process using the same.
  • metals Because of its excellent electrical properties, strength and durability, metals are widely used throughout human life. In particular, metals occupy a very high proportion in ships, vehicles, and building materials that require durability, and all processes / reactors involving high temperature based on the high melting point and thermal stability of metals are usually made of metal. However, except for precious metals such as gold, silver, platinum, and the like, most metals tend to form natural oxide films on surfaces in air or to be corroded through moisture / acid components present in solution / atmosphere.
  • a metal forms a native oxide and / or a metal hydroxide on its surface in a natural atmosphere containing air and moisture.
  • metal chlorides may be formed.
  • a thin metal oxide layer or metal hydroxide layer naturally formed on the metal surface in the atmosphere may prevent the metal surface from being oxidized deeper or corrosion of the metal. It is so thin that it is basically weak, and if there is a gap, the corrosion progresses even deeper.
  • metal oxides and metal hydroxides are insulators or semiconductors, and have poor electrical conductivity. Therefore, when using metal as an electrode, it becomes a factor which raises a contact resistance. In addition, when the metal oxide film or the metal hydroxide film is used as the electrode, the metal oxide film or the metal hydroxide film is a region in which scattering of electron transfer occurs a lot, and the spin property of the electron is not maintained.
  • gold which rarely forms an oxide film or a hydroxide film, may be used as an electrode, or a process may be performed without exposing the metal to air or moisture. Or it works with many constraints in an application.
  • Gold is the material of choice for charge injection into organic semiconductors (OSCs). This is because there is an advantage in chemical stability, ease of fabrication and reproducible surface state preparation. In addition, its large work function values match Au well with p-type OSCs.
  • Carbon is often chosen as an electrochemical analytical material because of its attractive fabrication cost and its chemical inertness to many redox reactions.
  • work function very sensitive to impurities (type, content) and eventual chemical state, mechanically brittle characteristics and the accompanying technical difficulties in patterning with thin electrodes are severe in the use of carbon in the connection of organic electronics.
  • ferromagnetic electrodes have attracted interest to extend organic electronic technology to spintronics applications.
  • a magnetic electrode is required to inject (detect) the spin polarization current, and the use of a transition magnetic metal is necessary for room temperature applications.
  • the main constraint here is the chemical reactivity of Fe, Co, Ni surfaces with oxide surface layer growth in an environment containing oxygen or moisture at a partial pressure of 10 ⁇ 9 mbar or higher.
  • the surface oxide (hydroxide) nickel layer has unpredictable magnetic properties such as ferromagnetic and antiferromagnetic, while making spin polarization uncontrollable.
  • the spin implantation / detection electrode is placed on the substrate at a distance set by a controllable patterning process up to a 20 nm length scale using nanolithography, for example E-beam lithography.
  • the horizontal structure is used.
  • the horizontal structure is also more suitable for transmitting various external stimuli such as electric fields, (electro) magnetic fields, pressure, chemical doping, pH, etc. to control the properties of the organic layer, and the device responds to multiple independent stimuli. To do it.
  • solution processable organic materials are in many ways an alternative to vacuum-processing.
  • organic spintronics research using wet chemistry is inadequate and inconclusive, and the main bottleneck is the oxidation problem of magnetic electrodes.
  • An object of the present invention is to remove the oxide film and the hydroxide film on the metal surface without forming a thin carbon film without interfering with the inherent properties of the metal to prevent oxidation / corrosion of the metal surface, and to facilitate electron and spin transfer when used as an electrode. It is to provide a metal protective film that can be made.
  • a first aspect of the present invention is a method for forming a carbon-based passivation film while reducing the metal oxide and / or metal hydroxide content at an interface with a metal oxide and / or metal hydroxide-containing metal layer, the surface of the metal oxide and / or metal hydroxide-containing metal layer Applying a carbon donor precursor to some or all of the phases; And a second step of annealing under a reducing atmosphere and temperature capable of reducing the metal oxide and / or the metal hydroxide to pure metal and decomposing the carbon donor precursor. to provide.
  • a carbon-providing precursor is applied on part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer,
  • the metal oxide and / or metal hydroxide-containing metal layer is annealed under a reducing atmosphere and temperature capable of reducing the metal oxide and / or metal hydroxide to pure metal and decomposing the carbon-providing precursor, thereby forming the metal layer and the carbon-based passivation film.
  • a metal electrode characterized by reduced or eliminated metal oxides and / or metal hydroxides at the interface.
  • a method of preparing a metal electrode including a carbon-based passivation film comprising the steps of a; And it provides a method for producing an organic device comprising the step of forming an organic layer in a solution process on the carbon-based passivation film of the metal electrode.
  • Nickel is a magnetic metal, and much research has been conducted to use it as an electrode of spintronic devices that apply magnetic properties of electrons to electronic devices.
  • nickel oxide and nickel hydroxide on the surface of nickel are causing many obstacles in using nickel as an electrode material.
  • the anti-oxidation film is a semiconductor or non-conductor component, which acts as a factor that inhibits the characteristics of an electronic device or a spin device utilizing a metal for electron transfer.
  • the present inventors apply an electrically conductive carbon-based passivation film to prevent oxidation / corrosion of the metal surface, and design a manufacturing process thereof to facilitate the electron and spin transfer in the metal to which the carbon-based passivation film is applied.
  • a carbon-providing precursor is applied on part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer, and the metal oxide and / or metal hydroxide-containing metal layer is reduced to pure metal.
  • Annealing under a reducing atmosphere and at a temperature capable of decomposing the carbon-providing precursor results in the reduction of or removal of metal oxides and / or metal hydroxides at the interface between the metal layer and the carbon-based passivation film at the same time as the carbon-based passivation film formation.
  • the surface was found to form. The present invention is based on this.
  • the present invention can form a thin carbon film on the metal surface while removing the oxide layer and the hydroxide layer of the metal surface, the thin carbon film formed on the metal surface can provide a property that the contact resistance through the metal surface is lower than the oxide layer. It is possible to improve the spin retention characteristics of the electrons, so that the metal layer on which the carbon-based passivation film is formed can increase the applicability to the organic electronic device.
  • the carbon-based passivation film formed according to the present invention not only acts as a metal antioxidant film and / or a corrosion protection film, but also can suppress electrical conductivity loss and ensure transparency in electron spin.
  • the carbon-based passivation film formed in accordance with the present invention outperformed the simple transfer of graphene onto a nickel film that acts as a protective film (Example 3).
  • a method of forming a carbon-based passivation film while reducing the metal oxide and / or metal hydroxide content at an interface with the metal oxide and / or metal hydroxide-containing metal layer a method of forming a carbon-based passivation film while reducing the metal oxide and / or metal hydroxide content at an interface with the metal oxide and / or metal hydroxide-containing metal layer
  • the first and second steps may be performed separately or simultaneously.
  • the metal layer may be formed on the substrate and may also serve as an electrode. Further, the metal layer may be not only a metal but also a semiconductor material as long as an oxide film and / or a hydrate film can be formed. Non-limiting examples of the metal layer may be Ni, Cu, Fe, Al, Stainless steel, Cr, Si and other semiconductors or mixtures thereof.
  • the metal layer may be formed into a film on the support substrate or may be in the form of a single film.
  • the substrate may be removed after the metal layer is placed on the support substrate and the carbon-based passivation film is formed.
  • the metal layer may be patterned on the support substrate in various circuit designs.
  • the first step can be carried out using conventional coating methods. Typically, spin coating, dip coating, bar coating, Langmuir-Blogget film formation, self-assembly, drop-casting and the like can be.
  • the material to be coated on the surface of the Nickel film is a compound including C, O, H as well as polymer materials such as PMMA, components such as O and H are lost during the heat treatment and carbon remains.
  • O and H may be separated from the compound during the heat treatment, or may be separated together with carbon to escape to the air.
  • Carbon in the compound penetrates into the metal surface during heat treatment and excess carbon must be removed.
  • O and H are inferred to help remove excess carbon from the metal surface. It is inferred that carbon that penetrates into the metal surface during the heat treatment process forms a carbon film as it comes to the surface during the cooling process.
  • the extra carbon, other than carbon that has penetrated into the metal surface, must be smoothly removed during the heat treatment process so that no carbon residues are left on the metal surface.
  • O and H help to remove excess carbon in gaseous form.
  • Non-limiting examples of carbon-providing precursors usable in the present invention include synthetic polymers such as polymethylmetaacrylate (PMMA); Hydrocarbons; Graphene, graphene oxide; Organic small molecule self-assembled layer; It may be a polymer composed of carbon, hydrogen, oxygen, such as carbonates, monosaccharides, disaccharides (eg, sugars) and polysaccharides, starches and analogs, glycols, diols, polyols, various foods, and the like.
  • synthetic polymers such as polymethylmetaacrylate (PMMA); Hydrocarbons; Graphene, graphene oxide; Organic small molecule self-assembled layer; It may be a polymer composed of carbon, hydrogen, oxygen, such as carbonates, monosaccharides, disaccharides (eg, sugars) and polysaccharides, starches and analogs, glycols, diols, polyols, various foods, and the like.
  • PMMA polymethylmetaacrylate
  • the carbon providing precursor can be appropriately selected and used depending on the kind of the metal layer.
  • the same effect as the carbon-based passivation film was obtained even if sugar was used instead of PMMA as the carbon providing precursor.
  • the polymer film graphene or a composite film of graphene and a polymer may be used to form a carbon film having excellent crystallinity. Therefore, the crystallinity of the carbon-based passivation film can be adjusted according to the carbon donor precursor selection.
  • the reducing atmosphere may be a hydrogen containing atmosphere.
  • the reducing atmosphere serves to reduce oxides on the metal surface, allowing the carbon donor precursor (polymer or chemical) coated on the metal surface to decompose.
  • a gas providing such a reducing atmosphere is referred to as a forming gas, and a non-limiting example of the forming gas includes a mixed gas of hydrogen and an inert gas (eg, nitrogen and argon).
  • temperature and forming gas The action of temperature and forming gas is thought to decompose carbon-producing precursors such as polymers, reduce oxides and / or hydroxides on metal surfaces, and provide carbon in polymers to form thin carbon films on metal surfaces.
  • Forming gas may be supplied only at certain parts of the treatment process.
  • Annealing (annealing) in the present invention is to provide a variety of energy sources, such as heat treatment or light irradiation, there is no limitation of the energy source.
  • the energy sources that can be used are energy sources such as ovens, furnaces for simple heat treatment, halogen lamps, xenon lamps, UV lamps, etc., high energy light sources, microwave generators, laser generators, powerful mechanical energy, etc. Can be used according to the application.
  • the temperature range of the annealing chamber may vary depending on the type of metal layer and the carbon providing precursor, but there is no limitation as long as it can reduce the metal oxide and / or metal hydroxide to pure metal and decompose the carbon providing precursor.
  • Preferred temperatures are those at which the carbon-providing precursor should be pyrolyzed smoothly and at such a high temperature that carbon can penetrate properly into the metal, while the carbon atoms can be properly bonded to the metal atoms by the interaction of the metal atoms with the metal atoms,
  • the temperature should not be too high so that the shape or properties are not damaged at this too high temperature, and the temperature range should be adequate so that the carbon-providing precursor does not leave too much pyrolysis or burn-up.
  • too high a temperature can cause carbon to soak into the metal, leaving an excessive and non-uniform carbon film later, and the surface of the metal film begins to become uneven. Therefore, it is preferable not to exceed 650 degreeC.
  • the temperature at which pyrolysis can occur is above 350 ° C.
  • the temperature of pyrolysis may vary slightly depending on the type or solvent, but in most cases, 400 ° C. is sufficient for pyrolysis.
  • the preferred temperature range of the anneal chamber may be 350 to 650 ° C.
  • the annealing time is preferably a time at which the carbon precursor is sufficiently pyrolyzed to remove the unnecessary carbon precursor in gaseous form. It is desirable for the time and conditions that a sufficient amount of carbon can penetrate into the metal surface before the carbon precursor is all removed in gaseous form. In other words, it is preferred that the time provided is that the carbon provided in the carbon precursor contains and maintains the amount of carbon that can hold the bond with the metal in a sufficient amount to completely cover the metal surface. Therefore, the annealing time may be 5 minutes to 60 minutes, preferably 10 minutes to 30 minutes. If the heat treatment time is prolonged in the reducing atmosphere, the surface of the metal film may be uneven due to prolonged high temperature exposure.
  • the annealing method is preferably rapid thermal annealing (RTA) or the like for long exposure to high temperature.
  • RTA rapid thermal annealing
  • the annealing chamber is preferably pumped out and kept at a low pressure.
  • the pressure may be a pressure of about 1 torr normally.
  • the pressure was about 30-90 mTorr Gauge readin when vacuumed, and about 980 mTorr when annealing. Therefore, the pressure for performing the experiment was about 30-1000 mTorr, but it is possible outside this range.
  • forming gas is flowed to remove the oxide film and / or hydroxide film on the metal surface and to promote thermal decomposition of the carbon source.
  • the annealing method in the second step may be a heat treatment in a low pressure furnace.
  • Carbon-based passivation film formed in the present invention is that the carbon providing precursor is oxidized on the metal surface to form a carbon, it may take the form of amorphous carbon, graphene and the like.
  • the physical and chemical properties of the Ni electrode covered with a very thin carbon film were analyzed.
  • the carbon-based overlayer prevents oxidation of Ni, and is detectable only by ToF-SIMS and is not observed in XPS. It was found that it had a negligible amount of oxide.
  • Ni processed at a temperature of 550 ° C. or lower maintains the structural quality of the film and exhibits an optimal composition of Ni without oxide and carbide paper, and the resulting electrode has a charge injection capability equivalent to gold. It was confirmed to have.
  • temperatures higher than 600 ° C. were used, crystalline (multilayer) graphene was obtained, but degradation of the topology of the sample was observed and performance degradation of the OFET and EFET properties of the p-type organic semiconductor device was observed.
  • Quantitative analysis of the interfacial resistance value between the active channel and the injection electrode confirmed that according to one embodiment of the present invention, a thin amorphous carbon covered nickel electrode is well suited to replace gold for organic electronic devices. This is cost-effective and is expected to be the best approach for manufacturing spin injectors and detectors for organic spintronics applications.
  • the metal electrode having a metal layer and a carbon-based passivation film formed on the metal layer according to the present invention
  • Applying a carbon donor precursor onto part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer and reducing the metal oxide and / or metal hydroxide-containing metal layer to pure metal and Annealing is carried out under a reducing atmosphere and a temperature capable of decomposing the carbon providing precursor, thereby reducing or removing metal oxides and / or metal hydroxides at the interface between the metal layer and the carbon-based passivation film.
  • the contact resistance between the metal layer and the carbon-based passivation film may be several ohms to several tens of ohms (Ohm), for example, 1 ⁇ 90 ohms Can be.
  • the present invention provides a method for preparing a metal electrode on which a carbon-based passivation film is formed by the method of the first aspect of the present invention.
  • the metal layer in which the carbon-based passivation film is formed according to the present invention and an organic layer can be formed on the carbon-based passivation film of the metal layer by a solution process
  • the device in which the metal layer is not used as an electrode are also within the scope of the present invention.
  • a metal electrode having a reduced or removed metal oxide and / or metal hydroxide at the interface between the metal layer and the carbon-based passivation film can form an organic layer thereon in a solution process, and thus a flexible plastic substrate using a coating and printing process.
  • functions such as a display, a circuit, a battery, and a sensor can be integrated.
  • the wiring, the semiconductor, and the insulating film can all be made of organic material.
  • inkjet printing can produce large-scale and inexpensive plastic electronic components, and thus can be applied to transistor circuits, photovoltanic films, OLEDs, and the like.
  • various devices may be implemented by a 3D printer using ink. Therefore, as long as the solution process is introduced on the carbon-based passivation film of the metal layer, the main component dispersed in the solvent may be not only organic matter but also inorganic matter, and this case also belongs to the scope of the present invention.
  • Non-limiting examples of organic devices that can be fabricated in accordance with the present invention include organic semiconductor devices (OSCs), transistors, solar cells, OLEDs (organic light emitting diodes), sensors, cells, memories, bioinserts, cell culturers, and the like. .
  • OSCs organic semiconductor devices
  • OLEDs organic light emitting diodes
  • sensors cells, memories, bioinserts, cell culturers, and the like.
  • synthesis of graphene on Ni using Ni as a catalyst is followed by fabrication of a protected Ni electrode and these processes for wet process of OSC devices.
  • Nickel electrodes covered with multilayer graphene and amorphous carbon were used as hole injection layers for organic semiconductors.
  • the charge carrier injection capability of the two types of electrodes of the transistor structure of the electrolyte-gate was tested and compared with pure nickel and gold electrodes. As a result, it was confirmed that the nickel electrode covered with low temperature processed amorphous carbon having an interface resistance equivalent to Au had the best performance.
  • the purity and magnetic properties of nickel were retained, which allowed for the fabrication of devices that provide current spin injection with wet chemically processed materials.
  • the metal surface is reduced so that the oxide film and / or hydroxide film already present on the metal surface is reduced and no further oxidation and corrosion occurs.
  • the interfacial resistance is low, it can be used as a metal electrode that does not form a natural oxide film, such as gold (Au).
  • the protective film technology that prevents oxidation / corrosion and deterioration of the metal can not only provide better electronic and spin devices, but also can be used to prevent metal modification in a wide range of fields such as ships, aviation, and construction. .
  • FIG. 1 shows a schematic diagram of a process of forming a carbon-based passivation film 3 on a surface of a metal 1 using a carbon providing precursor 2 according to an embodiment of the present invention.
  • 3 is an XPS spectrum of a nickel surface on which an oxide film and a hydroxide film are formed.
  • FIG. 4 is an XPS spectrum of a deposited pure nickel film exposed to the atmosphere according to Example 1.
  • FIG. 6 is an XPS spectrum showing that the oxide film disappeared almost from the nickel surface after PMMA coating and annealing according to Example 1.
  • FIG. 6 is an XPS spectrum showing that the oxide film disappeared almost from the nickel surface after PMMA coating and annealing according to Example 1.
  • FIG. 7 is a Raman spectrum showing that a carbon thin film was formed on a nickel surface after PMMA coating and annealing according to Example 1.
  • FIG. 7 is a Raman spectrum showing that a carbon thin film was formed on a nickel surface after PMMA coating and annealing according to Example 1.
  • FIG. 8 is a Raman spectrum after coating PMMA on the surface of a nickel film according to Example 1.
  • FIG. 9 is an optical microscope image showing that a protective film is formed on a nickel electrode patterned on a substrate according to Example 1.
  • FIG. 9 is an optical microscope image showing that a protective film is formed on a nickel electrode patterned on a substrate according to Example 1.
  • FIG. 10 is a photograph in which a nickel film having a protective film and a nickel film without a protective film are immersed in a nickel etchant solution according to Example 1;
  • FIG. 11 is a photograph showing the results of etching the graphene synthesized by CVD on a nickel film, and a carbon film formed according to Example 3 in a nickel etchant.
  • FIG. 11 is a photograph showing the results of etching the graphene synthesized by CVD on a nickel film, and a carbon film formed according to Example 3 in a nickel etchant.
  • FIG. 12 is an XPS Ni2p spectrum of nickel surface after coating and annealing (graphene + PMMA) according to Example 4.
  • FIG. 12 is an XPS Ni2p spectrum of nickel surface after coating and annealing (graphene + PMMA) according to Example 4.
  • FIG. 13 is Raman spectroscopy of nickel surface after coating and annealing (graphene + PMMA) according to Example 4.
  • FIG. 13 is Raman spectroscopy of nickel surface after coating and annealing (graphene + PMMA) according to Example 4.
  • FIG. 14 is an optical microscope image of a Cu metal surface on which a protective film was formed in accordance with Example 5.
  • Example 15 is a Raman spectrum of a Cu metal surface on which a protective film is formed in accordance with Example 5.
  • FIG. Each graph is measured at different positions.
  • Figure 16 is a photograph of the change in the copper etching solution after dropping the copper etching solution and the RTA treated copper foil according to Example 5, respectively.
  • 17A is a conceptual diagram of a device structure used for gate 4 probe measurement of contact resistance.
  • 17B is an optical image of graphene CVD processed on top of a Ni electrode. The texture of the graphene layer lying in the same form in the catalyst zone is clearly identified.
  • 18A is a Raman spectrum of CVD (top) multilayer graphene and RTA (bottom) amorphous carbon film on top of a 100 nm thick Ni film.
  • the inset is an optical microscope image of the sample.
  • 18B is a topological profile of these providing additional evidence for very different surface roughness along with 3D micrographs of AFM topology scans of Ni / RTA and Ni / CVD.
  • FIG. 21 is a comparison of depth profiles of Ni (black), Ni / CVD (red) and Ni / RTA (blue) exposed to air for NiO- (top) and NiC 2- (bottom) fragments.
  • FIG. 23 is a shift curve of an IIDDT-C3 based OFET with Au, Ni / RTA, Ni / CVD, and Ni electrodes 100 nm thick.
  • FIG. 24 shows the width-normalized total contact resistance as a function of gate voltage for 100 nm thick Au, Ni / RTA, Ni / CVD and Ni electrodes.
  • Example One PMMA Used Ni Form a protective film on the metal surface
  • a carbon-based passivation film 3 was formed on the surface of the Ni metal 1 using the PMMA 2.
  • a nickel layer 1 having a thickness of 100 nm was deposited on the silicon substrate.
  • the deposited pure nickel film was taken out of the vacuum chamber into the atmosphere, it was exposed to the atmosphere to form nickel oxide and nickel hydrate. As compared with FIGS. 2 and 3, the deposited nickel film may be clearly oxidized nickel film.
  • the Raman spectroscopy (FIG. 5) of the nickel film shows clear carbon-related components (3).
  • the nickel surface was examined by XPS and Raman spectroscopy, indicating that the nickel oxide film and the nickel hydroxide film were missing and the thin carbon film 3 was formed on the nickel surface.
  • Nickel etchant used TFB by Transene Co. Inc.
  • the composition is Nitric Acid 15-20%, + Potassium Perfluoroalkyl Sulfonate ⁇ 1%, in Water.
  • the carbon layer formed according to Example 1 also acts as a corrosion protection film of the nickel film.
  • Example 2 Sugar solution Used Ni Form a protective film on the metal surface
  • a protective film was formed on the nickel layer in the same manner as in Example 1 except that 10 wt% sugar aqueous solution was used instead of PMMA as the carbon providing precursor.
  • the nickel surface was examined by XPS and Raman spectroscopy, and nickel oxide and nickel hydroxide disappeared from the nickel surface, and a thin carbon film was formed.
  • Example 3 Graphene Used Ni Forming a protective film on the metal surface
  • a protective film was formed on the nickel layer in the same manner as in Example 1 except that graphene synthesized by CVD instead of PMMA was used as a carbon providing precursor.
  • the nickel surface was examined by XPS and Raman spectroscopy, and nickel oxide and nickel hydroxide disappeared from the nickel surface, and a thin carbon film was formed.
  • the crystallinity of the carbon film was better than that of PMMA polymer or sugar.
  • the graphene synthesized by the CVD method was coated on a Nickel film, and the carbon film was formed according to Example 3, and subjected to an etching test in nickel etchant.
  • the carbon film formed according to Example 3 was superior as a corrosion preventing film than the simple transfer of graphene on the nickel film that acts as a protective film.
  • Example 4 PMMA + Graphene Used Ni Forming a protective film on the metal surface
  • a protective film was formed on the nickel layer in the same manner as in Example 1 except that graphene and PMMA synthesized by CVD instead of PMMA were used as the carbon providing precursor.
  • the nickel surface was examined by XPS and Raman spectroscopy. As a result, nickel oxide and nickel hydroxide disappeared from the nickel surface, a thin carbon film was formed, and the carbon film had excellent crystallinity.
  • a 100 nm copper (Cu) layer 1 was deposited on the silicon substrate.
  • PMMA C4 (2) was spin coated on the copper film at 2000 rpm for 30 seconds. Subsequently, it was placed in an annealing chamber, and the annealing temperature was heat-treated (rapid thermal annealing, RTA) in a hydrogen atmosphere at 600 ° C. for 1 hour so that the PMMA polymer film could be pyrolyzed.
  • RTA rapid thermal annealing
  • FIG. 14 is an optical microscope image of a Cu metal surface on which a protective film is formed
  • FIG. 15 is a Raman spectrum thereof.
  • FIG. 14 it can be seen that the copper crystal is exposed on the copper surface as it is and a relatively uniform carbon film is formed.
  • the Raman spectrum of FIG. 15 shows that the characteristic Raman peaks of the carbon thin film appear at 1300 and 1750 despite the background caused by the copper thin film. That is, copper oxide and copper hydroxide disappeared from the copper surface, and a thin carbon film was formed.
  • Example 5 the copper etching solution (transene 100) of the RTA treated copper foil and the untreated copper foil was dropped, respectively, and the change was observed. As shown in FIG. 16, in the case of Example 5, the carbon film formed on the copper foil because the protective film is not perfect does not prevent the etching of copper, but the etching rate is different from that of the untreated copper foil.
  • Example 6 Ni Metal electrode phase Graphene Protective film formation
  • FIG. 17A A conceptual diagram of a device architecture with bottom contact electrodes, designed to perform four point probe gate conductance measurements, is shown in FIG. 17A.
  • Source-drain electrodes and voltage probe electrodes were formed by photo-lithography.
  • a 100 nm thick Ni and Au / Ti (5 nm) metal film was subjected to E-beam evaporation (deposition rate of 0.5 nm / s) on a 500 nm thermally oxidized SiO 2 / p + -doped Si substrate.
  • the electrode circuit was fabricated by deposition and a lift-off process.
  • the first is to use the high temperature (850 ° C.) growth method by the CVD technique to produce a carbon thin film using a carbon-rich forming gas and its decomposition.
  • the second approach is to use a solid precursor made of a catalytic metal with a carbon-rich coating layer according to one embodiment of the invention, and to heat the sample using the RTA process at a lower temperature, i. .
  • the Ni film was first exposed to a hydrogen-rich reducing gas to remove the originally existing passivation oxide layer.
  • FIG. 17B is an optical microscope image of a device obtained (hereinafter referred to as Ni / CVD sample) with contrast representing non-uniform multilayer type graphene as predicted by the above process conditions.
  • a spin coating of about 300 nm thickness was first spin-coated at 2000 rpm for 30 seconds with PMMA-A2 resist, a solid carbon source, on top of the Ni surface used as a catalyst to convert hydrocarbon materials into graphene. Obtained film.
  • the sample was then placed inside the quartz tube chamber of the RTA system. The chamber was heated for 15 minutes at 550 ° C. for an annealing process (degassing) under a flow of H 2 (4%) / N 2 mixture at a pressure of 1 mbar to remove oxides and hydroxides that passivate the Ni surface. The sample was then cooled to room temperature in H 2 / N 2 for 120 minutes to obtain a sample named Ni / RTA.
  • the organic active channel is a p-type polymer IIDDT-C3, (poly [1,1'-bis), with the main advantages of easy processability, air-stability and high mobility (> 3 cm 2 V -1 s - 1 ). (4-decyltetradecyl) -6-methyl-6 '-(5'-methyl- [2,2'-bithiophene] -5-yl)-[3,3'-biindolinylidene] -2, 2'-dione]). .
  • IIDDT-C3 are 1-Materials
  • child NC was obtained from (1-Materials Inc.)
  • the chips were then placed on a hotplate at 50 ° C. for 30 minutes to evaporate the solvent. All process steps for fabricating the organic layer were carried out inside the glove box under nitrogen atmosphere at room temperature.
  • Ion gel was prepared by dissolving polymer P (VDF-HFP) and ionic liquid [BMIM] [PF 6 ] in acetone at a weight ratio of 1: 4: 7, respectively.
  • the transfer curve is a gate voltage V G at a constant drain voltage V D of ⁇ 0.1 V while monitoring the drain current I SD and the probe potentials V 1 , V 2 of the fingers. ) was obtained by sweeping. V D and V G were added while measuring I SD using a Keithley 2612A Source Meter. The potentials V 1 and V 2 of the two fingers were monitored using a second source meter. Due to the slow field-induced diffusion process of the dielectric gate ions, using a V G sweep speed of 0.001 V / s allowed sufficient time for their movement. All measurements were performed inside an N 2 -filled glove box at room temperature.
  • XPS spectra were obtained with a photon energy of 1486.6 eV (Al K ⁇ ) operating at a vacuum pressure of ⁇ 10 ⁇ 7 mbar. For each sample, XPS measurements were performed on two different areas of the surface and the resulting spectra were obtained after 10 scans. The spot size of the X-ray was 400 ⁇ m and the energy step size was 0.1 eV. Spectral analysis was performed using "XPSPEAK 41" software with Gaussian-Lorentz peak form after Shirley background correction.
  • Graphene-, Ni-layers and their interfaces were investigated via ToF-SIMS chemical-degradation depth profiling using a ToF-SIMS 5 instrument (ION-TOF GmbH). Interlace (interlaced) 1keV Cs + ion-sputtering (dual beam) and the combined 25 keV Bi + 1, to obtain a profile of a high mass degradation mode using primary ions. Negative secondary ions in the mass range of 1-500 mu were recorded from the top surface to a sample depth of ⁇ 200 nm. To ensure representative reproducible results, randomly selected 1-3 scan areas of 100 ⁇ 100 ⁇ m 2 were considered for each sample. Depth calibration was performed by measuring crater depth using a Dektak XT profilometer.
  • AFM terrain mapping was performed with a Bruker Dimension Edge instrument using antimony n-doped silicon tips in intermittent contact mode.
  • FIG. 18A shows Raman spectra of CVD and RTA graphene prepared in Example 6.
  • FIG. The spectrum of CVD graphene shows good crystal properties indicating the presence of graphite hexagonal lattice structures on surfaces with low defect density associated with very small D peaks. Wide and sharp 2D peaks are characteristic of the formation of misoriented graphene multilayers.
  • Optical microscopy images of the surface show patchwork of graphene flakes with different contrast, which can provide evidence for thicker areas.
  • Raman analysis of RTA graphene shows that these surfaces consist of disordered and discontinuous layers of carbon with high and broad D peaks that are indicative of defective materials. Very small 2D peaks indicate no hexagonal structure of C atoms. However, the optical image shows a shiny, uniform surface.
  • Ni / CVD and Ni / RTA interfaces were analyzed by XPS.
  • FIGS. 19A-19C the spectrum for Ni (FIG. 19A) showed the characteristics of oxidized Ni due to air exposure during specimen movement. Is, Ni 3 + (Ni 2 O having an intensity of the binding energy of the, 856.1 eV (3) and 853.8 eV (2) associated with the formation of the formed and NiO in Ni 2 + ions in Ni 3 + ions in the Ni surface, respectively 3 ) and the contribution of Ni 2 + (NiO) oxidation state.
  • the main peak of 852.6 eV (1) is due to pure Ni metal. Peaks (4) and (5) are incidental peaks. For Ni / CVD The spectrum (Fig. 19B) corresponds to the metal Ni without oxide. As can be seen clearly, the XPS oxide peaks appearing for Ni (FIG. 19A) are completely absent and the dominant peaks at 852.8 eV (1) and 853.5 eV (2) correspond to Ni metal and Ni-C solid solutions, respectively. Peaks (3) and (4) with BE near 3.7 eV (minor) and 6.0 eV (major) above the main line (at 852.8 eV) are satellites corresponding to surface and bulk plasmons, respectively. Indicates. Ni / RTA Similar results were obtained for the spectra. A fairly large signal of Ni of similar intensity for three Ni-based samples indicates that the overlay is thin and does not exceed a few nm thickness.
  • C 1s spectra for the same three samples are shown in FIGS. 19D-19F.
  • the main peak was observed, with two components at 284.9 eV (1) and 286.4 eV (2), interpreted as CC (and CH hydrocarbons) and CO (and C-OH), respectively .
  • C 1s high resolution XPS scans for Ni / CVD (FIG. 19E) and Ni / RTA (FIG. 19F) were analyzed in three components.
  • the 284.3 eV (1) and 284.6 eV (2) peaks are the strongest peaks and they relate to sp 2 CC bonds in aromatic networks such as graphene.
  • Another important piece of information that can be inferred from the C 1s spectrum is the absence of detectable Ni carbide (Ni 3 C).
  • Ni 3 C Ni carbide
  • the characteristics of Ni 3 C in the photoelectron emission spectrum of C 1s should be shown at binding energies below 284 eV.
  • the spectra of Figs. 19E and 19F do not have any features at this location.
  • ToF-SIMS was first used to assess the presence and formation of nickel oxide in the surfaces of the Ni / CVD, Ni / RTA and Ni reference samples and in the bulk nickel film.
  • FIG. 20 shows in-depth changes of characteristic fragments for nickel, oxygen and various forms of nickel oxide in a reference sample (Ni exposed to air). Depth was measured by profilometry after the sample was exposed to ion bombardment. A distinct layer of nickel oxide consisting mainly of NiO, NiO 2 and Ni 2 O 3 was observed. This oxide layer reached ⁇ 2 nm, after which a sharp decrease was observed up to 7% of the top content (NiO x / Ni interface). From this, it can be seen that all the oxides decrease exponentially as the depth of the Ni layer increases. Thus, it can be seen that the metallic layer prepared as described above consists of a 2 nm-thick nickel oxide layer on top of the Ni layer, which itself contains a small fraction of the oxide diffusing from the top surface.
  • FIG. 21 shows a comparison of depth-by-depth changes for NiO - and NiC 2 - in reference Ni films (black), Ni / CVD (red) and Ni / RTA (blue).
  • the gray area represents the deposited graphene layer, has a depth scale calibrated with a thickness meter, and used a Ni / SiO 2 interface alignment point.
  • both deposition methods effectively prevent the formation of a nickel oxide layer on top of nickel.
  • a 97.6% reduction in Ni / RTA was observed at the graphene / Ni interface.
  • Ni / RTA As the nickel layer became deeper, the tendency of the oxide in Ni / RTA was similar to that of the reference Ni film and similar to the oxide content at about half the depth of the Ni layer. In Ni / CVD, the trend was less clear. After the initial low level of oxide at the surface, the oxide content seemed to increase with the depth of the Ni layer. This can be explained by the oxide diffusion from the buried Ni / Si interface triggered by higher processing temperatures. Thus, lower temperature RTA processing has been shown to outperform CVD processing in terms of effective oxide formation and diffusion prevention.
  • NiC 2 - ToF-SIMS profile informs about carbon layer thickness and carbon / Ni film interface quality.
  • Ni / RTA a sharp decrease was observed after a short plateau. This shows a graphene layer thickness of ⁇ 5 nm and also shows no or little diffusion of carbon in the Ni layer ( ⁇ 1% after 10 nm).
  • Ni / CVD samples showed much thicker carbon-rich layers (named above 40 nm) and large diffusion in the entire Ni layer. No clear graphene / Ni interface was observed.
  • the profile of the reference Ni film showed no graphene deposition as there was no carbon on or inside the Ni layer.
  • the long tail in the negative thickness range of FIG. 21 for CVD samples quantifies the roughness of samples of the same order as the AFM-reference data. Low temperature RTA deposition forms a good quality graphene layer in terms of interface clarity and minimal carbon diffusion compared to CVD processing.
  • WF Work function
  • Low WF values relate to a relatively high barrier to the injection of holes into the highest occupancy molecule orbital (HOMO), which typically lies at 5.52 eV for IIDDT-C3.
  • HOMO highest occupancy molecule orbital
  • WF measurements for Au, Ni and Ni / C were performed through an atmospheric optoelectronic yield counter as described above with a light source intensity of 100 nW in an energy range between 4.00 and 5.60 eV in steps of 0.05 eV.
  • the measurements of WF for Au, Ni, Ni / RTA and Ni / CVD films were 5.10 eV, 4.85 eV, 5.0 eV and 5.11 eV, respectively.
  • the observed Ni value was below the value of the pure Ni surface.
  • the polyelectrolyte gate can control the OSC's conductivity very effectively on-off with a ratio exceeding 10 7 .
  • the huge hysteresis apparently observed in very large ON conductivity values and shift curves indicates that electrochemical doping of the OSC occurs at the highest applied gate voltage value.
  • the plot of the square root of I SD shows two distinct voltages.
  • the onset voltage V 0 (first slope in FIG. 22) is the gate voltage (device turn-on voltage) at which negative ions begin to accumulate at the ion-gel / OSC interface and acts as the large electric field gate of the device.
  • V Th The threshold voltage (V Th ) is associated with an increase in slope at onset of electrochemical doping of the bulk OSC layer. Since the active channel can be related to the overall thickness of the OSC, this electrochemically doped FET (EFET) section is expected to lead to significantly smaller interfacial resistance values. Interfacial resistance is generally expressed as resistance per unit length, ie R C W, where W relates to the width of the active OSC channel. Comparing the four types of samples, FIG. 23 clearly shows that a difference is observed in the source-drain current and electrochemical threshold voltage values. Au and Ni / RTA samples show the highest conductivity values, while negative Ni electrodes clearly exhibit much smaller currents and larger electrochemical threshold voltages. The latter is expected to result from significantly lower work functions measured for exposed (oxidized) Ni.
  • FIG. 25 shows a comparison of contact resistances R S and R D at the source and drain as a V G function for devices with Au (red line) and Ni / RTA (black line) electrodes. This shows how advantageous Ni / RTA is in comparison to a good Au electrode. For both devices, R S and R D have the same order and exhibit the same behavior, and Au works marginally better than Ni / RTA. At low V G , both the contact resistances of the source and drain exhibit somewhat larger values, and R D is significantly larger than R S. As V G decreases, R S decreases slightly, but R D decreases significantly and eventually falls off the line. In addition, FIG. 25 shows that a large gate bias made R S similar to R D , indicating that charge injection is fully optimized. Table 1 below shows the main observed conductivity / resistance values of the four irradiated samples. This quantitatively shows how Au and Ni / RTA electrodes outperform the other two types of samples.

Abstract

The present invention relates to: a method for forming a carbon-based passivation film while reducing the content of a metal oxide and/or a metal hydroxide in an interface with a metal layer containing a metal oxide and/or a metal hydroxide; a metal electrode comprising a metal layer and a carbon-based passivation film formed on the metal layer using the same; and a method for manufacturing an organic element by a solution process using the same. When the carbon-based passivation film is formed on a surface of the metal layer containing a metal oxide and/or a metal hydroxide in the annealing condition according to the present invention, the carbon-based passivation film can protect a metal surface to reduce an oxide film and/or a hydroxide film, which has already existed on a metal surface, and to prevent further oxidation and corrosion, and can be utilized as a metal electrode, on which a natural oxide film is not formed, like gold (Au), due to the low interfacial resistance.

Description

금속 산화물 함유 금속층 상에서 금속 산화물 함량을 저감시키면서 탄소계 패시베이션막을 형성시키는 방법A method of forming a carbon-based passivation film while reducing the metal oxide content on the metal oxide-containing metal layer
본 발명은 금속 산화물 및/또는 금속 수산화물 함유 금속층과의 계면에서 금속 산화물 및/또는 금속 수산화물 함량을 저감시키면서 탄소계 패시베이션막을 형성시키는 방법; 이를 이용하여 금속층 및 상기 금속층 상에 형성된 탄소계 패시베이션막을 구비한 금속 전극; 및 이를 이용하여 용액공정으로 유기소자를 제조하는 방법에 관한 것이다.The present invention provides a method for forming a carbon-based passivation film while reducing the content of metal oxide and / or metal hydroxide at an interface with the metal oxide and / or metal hydroxide-containing metal layer; A metal electrode having a metal layer and a carbon-based passivation film formed on the metal layer using the metal layer; And it relates to a method for manufacturing an organic device by a solution process using the same.
금속이 갖는 우수한 전기적 특성 및 강도와 내구성 때문에 금속은 인류의 생활 전반에 걸쳐 광범위하게 활용되고 있다. 특히 내구성을 요하는 선박이나 차량, 건축자재 등에서 금속이 차지하는 비중은 매우 높으며, 금속의 높은 용융점과 열 안정성을 기반으로 고온을 수반하는 모든 공정/반응기는 금속으로 제작되는 것이 보통이다. 그러나, 금, 은, 백금 등의 귀금속을 제외하고 대부분의 금속은 공기 중에서 표면에 자연산화막을 형성하거나 용액/대기 중에 존재하는 수분/ 산 성분을 통해 부식되는 경향이 있다. Because of its excellent electrical properties, strength and durability, metals are widely used throughout human life. In particular, metals occupy a very high proportion in ships, vehicles, and building materials that require durability, and all processes / reactors involving high temperature based on the high melting point and thermal stability of metals are usually made of metal. However, except for precious metals such as gold, silver, platinum, and the like, most metals tend to form natural oxide films on surfaces in air or to be corroded through moisture / acid components present in solution / atmosphere.
통상 금속은 공기와 수분을 포함하고 있는 자연 대기상태에서 자연 산화막(native oxide) 및/또는 금속 수산화물(metal hydroxide)가 표면에 형성된다. 금속 산화물, 금속 수산화물 외에 금속 염화물(metal chloride)가 형성되기도 한다. In general, a metal forms a native oxide and / or a metal hydroxide on its surface in a natural atmosphere containing air and moisture. In addition to metal oxides and metal hydroxides, metal chlorides may be formed.
이와 같이 대기 환경에서 금속 표면에 자연적으로 형성되는 얇은 금속 산화물 막(metal oxide layer) 또는 금속 수산화물 막(metal hydroxide layer)는 금속 표면이 더 깊이 산화되거나 금속이 부식(corrosion) 되는 것을 막아주기도 하지만, 매우 얇아서 기본적으로 약하고, 틈이 생기면 부식이 더 깊이 진행되기도 한다. As such, a thin metal oxide layer or metal hydroxide layer naturally formed on the metal surface in the atmosphere may prevent the metal surface from being oxidized deeper or corrosion of the metal. It is so thin that it is basically weak, and if there is a gap, the corrosion progresses even deeper.
대부분의 금속 산화물 및 금속 수산화물은 부도체 또는 반도체로서, 전기전도도가 나쁘다. 따라서, 금속을 전극으로 사용할 때, 접촉저항(contact resistance)를 높이는 요인이 된다. 또한, 금속 산화물 막 또는 금속 수산화물 막은 금속을 전극으로 사용할 때, 전자 전달의 scattering이 많이 일어나는 영역이 되고, 또 전자의 스핀 특성이 유지되지 못하는 요인이 된다. Most metal oxides and metal hydroxides are insulators or semiconductors, and have poor electrical conductivity. Therefore, when using metal as an electrode, it becomes a factor which raises a contact resistance. In addition, when the metal oxide film or the metal hydroxide film is used as the electrode, the metal oxide film or the metal hydroxide film is a region in which scattering of electron transfer occurs a lot, and the spin property of the electron is not maintained.
따라서, 금속을 전극으로 사용하는 많은 전자 소자에서 산화막 또는 수산화 막이 거의 생성되지 않는 금(gold)를 전극으로 사용하거나, 금속을 공기나 수분에 노출하지 않으면서 공정하기도 하지만, 이들 방법은 비용적으로 또는 응용적으로 많은 제약으로 작동한다.Therefore, in many electronic devices using metal as an electrode, gold, which rarely forms an oxide film or a hydroxide film, may be used as an electrode, or a process may be performed without exposing the metal to air or moisture. Or it works with many constraints in an application.
한편, 금(gold)은 유기 반도체(organic semiconductors, OSC) 내로 전하 주입하기 위해 선택된 재료이다. 화학적 안정성, 제작 용이성 및 재현가능한 표면 상태 준비면에서 이점이 있기 때문이다. 또한, 이의 큰 일함수 값은 Au를 p-타입 OSC와 에너지적으로 잘 매치시킨다. Gold, on the other hand, is the material of choice for charge injection into organic semiconductors (OSCs). This is because there is an advantage in chemical stability, ease of fabrication and reproducible surface state preparation. In addition, its large work function values match Au well with p-type OSCs.
탄소는 매력적인 제작 비용과 이것이 많은 산화환원 반응에 화학적으로 비활성인 점 때문에, 종종 전기화학적 분석용 재료로 선택된다. 그러나, 불순물(타입, 함량) 및 최후 화학적 상태에 매우 민감한 일함수와 함께, 얇은 전극으로 패터닝함에 있어 기계적으로 부서지기 쉬운 특성과 수반되는 기술적 어려움이 탄소를 유기 전자기기의 연결부에 사용하는 것에 심한 제약을 가한다.Carbon is often chosen as an electrochemical analytical material because of its attractive fabrication cost and its chemical inertness to many redox reactions. However, with the work function very sensitive to impurities (type, content) and eventual chemical state, mechanically brittle characteristics and the accompanying technical difficulties in patterning with thin electrodes are severe in the use of carbon in the connection of organic electronics. Apply constraints
지난 수십년 동안 떠오른 연구 분야에서 스핀트로닉스 적용에 유기 전자기술을 확장하기 위해 강자성 전극이 관심을 받고 있다. 이러한 적용을 위하여, 스핀 분극 전류를 주입(검출)하기 위하여 자성 전극이 요구되며, 전이 자성 금속의 사용이 상온 적용을 위해 필요하다. 이때, 주요한 제약은 10-9 mbar 이상의 부분 압력의 산소 또는 수분을 함유하는 환경에서 산화물 표면층 성장을 갖는 Fe, Co, Ni 표면의 화학적 반응성이다. 산소/수분 환경에서 표면 산화물 (수산화물) 니켈 층은 강자성, 반강자성 등 예측 불가한 자성특성을 가지는 한편 스핀 분극을 제어할 수 없게 만든다. 따라서 OSC 내부 또는 OSC 에 주입된 전하들의 스핀 분극이 크게 감소될 것으로 예측되고, 이로 인해 재현성이 없어질 것으로 예측된다. 이러한 문제를 회피하기 위한 하나의 가능성은 산소 또는 수분을 제거하기 위해 전극 및 OSC 필름 형성에 초고진공(ultra high-vacuum, UHV) 증발법을 사용하는 것이다. 그러나, 초고진공 프로세스를 이용하는 수직형 설계소자의 경우, 상부전극 형성과정에서 금속입자가 연질 유기층으로 침투함으로 인해 샘플의 유효 두께와 면적을 불확실하게 만드는 문제가 있고, 이는 스핀 이동 결과의 신뢰성 및 재현성에 영향을 준다. In the field of research that has emerged over the last few decades, ferromagnetic electrodes have attracted interest to extend organic electronic technology to spintronics applications. For this application, a magnetic electrode is required to inject (detect) the spin polarization current, and the use of a transition magnetic metal is necessary for room temperature applications. The main constraint here is the chemical reactivity of Fe, Co, Ni surfaces with oxide surface layer growth in an environment containing oxygen or moisture at a partial pressure of 10 −9 mbar or higher. In oxygen / moisture environments, the surface oxide (hydroxide) nickel layer has unpredictable magnetic properties such as ferromagnetic and antiferromagnetic, while making spin polarization uncontrollable. Therefore, the spin polarization of the charges injected into or in the OSC is expected to be greatly reduced, thereby reducing the reproducibility. One possibility to circumvent this problem is to use ultra high-vacuum (UHV) evaporation methods for electrode and OSC film formation to remove oxygen or moisture. However, in the case of a vertical design device using an ultra-high vacuum process, there is a problem that the effective thickness and area of the sample are uncertain due to the penetration of metal particles into the soft organic layer during the formation of the upper electrode, which is reliable and reproducible of the spin movement result. Affects.
이러한 불확실성을 극복하기 위한 하나의 접근법은, 스핀 주입/검출 전극이 나노리소그래피, 예를 들어 E-빔 리소그래피를 사용하여 20 nm 길이 스케일 이하로 제어가능한 패터닝 공정에 의해 세팅된 거리에서 기판 상 에 위치한 수평구조를 이용하는 것이다. 수평 구조는 또한 유기층의 특성을 조절하기 위한 다양한 외부의 자극원, 예를 들어 전기장, (전기)자기장, 압력, 화학적 도핑, pH 등등을 전달하는데 더욱 적합하며, 소자가 복수의 독립적인 자극에 반응할 수 있게 한다. One approach to overcome this uncertainty is that the spin implantation / detection electrode is placed on the substrate at a distance set by a controllable patterning process up to a 20 nm length scale using nanolithography, for example E-beam lithography. The horizontal structure is used. The horizontal structure is also more suitable for transmitting various external stimuli such as electric fields, (electro) magnetic fields, pressure, chemical doping, pH, etc. to control the properties of the organic layer, and the device responds to multiple independent stimuli. To do it.
용액 중 및 표면에서 계층적 자가조립을 일으키는 분자의 물리화학적 특성의 화학적 프로그램화 가능성의 이점을 고려하였을 때 용액 공정가능한 유기 재료들은 다양한 방면에서 진공-가공의 대체 수단이 된다. 그러나, 습식 화학을 사용하는 유기 스핀트로닉스 연구는 미비하고 확정적이지 않으며, 자성 전극의 산화문제가 해결되어야 하는 주요 병목이라고 볼 수 있다.Given the advantages of the chemical programmability of the physicochemical properties of molecules that cause hierarchical self-assembly in solution and at the surface, solution processable organic materials are in many ways an alternative to vacuum-processing. However, organic spintronics research using wet chemistry is inadequate and inconclusive, and the main bottleneck is the oxidation problem of magnetic electrodes.
본 발명의 목적은 금속 고유의 성질을 방해하지 않으면서 금속표면의 산화막과 수산화막을 제거하고 얇은 탄소막을 형성하여 금속 표면의 산화/부식을 방지하는 한편, 전극으로 사용되었을 때 전자 및 스핀 전달이 원활하도록 할 수 있는 금속 보호막을 제공하는 것이다.An object of the present invention is to remove the oxide film and the hydroxide film on the metal surface without forming a thin carbon film without interfering with the inherent properties of the metal to prevent oxidation / corrosion of the metal surface, and to facilitate electron and spin transfer when used as an electrode. It is to provide a metal protective film that can be made.
본 발명의 제1양태는 금속 산화물 및/또는 금속 수산화물 함유 금속층과의 계면에서 금속 산화물 및/또는 금속 수산화물 함량을 저감시키면서 탄소계 패시베이션막을 형성시키는 방법으로서, 금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하는 제1단계; 및 금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하는 제2단계를 포함하는 것이 특징인 탄소계 패시베이션막 형성 방법을 제공한다.A first aspect of the present invention is a method for forming a carbon-based passivation film while reducing the metal oxide and / or metal hydroxide content at an interface with a metal oxide and / or metal hydroxide-containing metal layer, the surface of the metal oxide and / or metal hydroxide-containing metal layer Applying a carbon donor precursor to some or all of the phases; And a second step of annealing under a reducing atmosphere and temperature capable of reducing the metal oxide and / or the metal hydroxide to pure metal and decomposing the carbon donor precursor. to provide.
본 발명의 제2양태는 금속층 및 상기 금속층 상에 형성된 탄소계 패시베이션막을 구비한 금속 전극에 있어서, 금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하고, 금속 산화물 및/또는 금속 수산화물 함유 금속층을 금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하여, 금속층과 탄소계 패시베이션막의 계면에서 금속 산화물 및/또는 금속 수산화물이 감소 또는 제거된 것이 특징인 금속 전극을 제공한다.According to a second aspect of the present invention, in a metal electrode having a metal layer and a carbon-based passivation film formed on the metal layer, a carbon-providing precursor is applied on part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer, The metal oxide and / or metal hydroxide-containing metal layer is annealed under a reducing atmosphere and temperature capable of reducing the metal oxide and / or metal hydroxide to pure metal and decomposing the carbon-providing precursor, thereby forming the metal layer and the carbon-based passivation film. Provided is a metal electrode characterized by reduced or eliminated metal oxides and / or metal hydroxides at the interface.
본 발명의 제3양태는 제1양태의 방법에 의해 탄소계 패시베이션막이 형성된 금속전극을 준비하는 a단계; 및 금속전극의 탄소계 패시베이션막 상에 용액공정으로 유기층을 형성시키는 b단계를 포함하는 것이 특징인 유기소자 제조방법을 제공한다.According to a third aspect of the present invention, there is provided a method of preparing a metal electrode including a carbon-based passivation film, the method comprising the steps of a; And it provides a method for producing an organic device comprising the step of forming an organic layer in a solution process on the carbon-based passivation film of the metal electrode.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
니켈은 자성을 가진 금속으로 전자의 자기적 성질을 전자소자에 응용하는 spintronic 소자의 전극으로 사용하기 위한 연구가 많이 진행되고 있다. 하지만, 니켈 표면의 nickel oxide, nickel hydroxide가 전극 소재로 니켈을 사용하는데 많은 걸림돌로 작용하고 있다.Nickel is a magnetic metal, and much research has been conducted to use it as an electrode of spintronic devices that apply magnetic properties of electrons to electronic devices. However, nickel oxide and nickel hydroxide on the surface of nickel are causing many obstacles in using nickel as an electrode material.
순수 니켈 필름을 진공챔버에서 증착하여 대기 중으로 꺼내면 대기에 노출되면서 니켈 표면에 Nickel oxide와 Nickel hydroxide가 형성된다. 이것은 XPS 측정(도 4) 및 니켈 필름의 Raman spectroscopy 측정(도 5)으로 확인된다.When a pure nickel film is deposited in a vacuum chamber and taken out into the atmosphere, it is exposed to the atmosphere and nickel nickel and nickel hydroxide are formed on the nickel surface. This is confirmed by XPS measurements (FIG. 4) and Raman spectroscopy measurements of nickel films (FIG. 5).
그러나, 대부분의 산화 방지막은 반도체 또는 부도체 성분으로, 금속을 전자전달용으로 활용하는 전자소자 또는 스핀소자의 특성을 저해하는 요인으로 작용한다. However, most of the anti-oxidation film is a semiconductor or non-conductor component, which acts as a factor that inhibits the characteristics of an electronic device or a spin device utilizing a metal for electron transfer.
따라서, 본 발명자들은 전기전도성이 있는 탄소계 패시베이션막을 적용하여, 금속 표면의 산화/부식을 방지할 뿐만아니라, 탄소계 패시베이션막이 적용된 금속에서 전자 및 스핀 전달이 원활하도록 할 수 있도록 이의 제조공정을 설계하고자 하였다. 이때, 금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하고, 금속 산화물 및/또는 금속 수산화물 함유 금속층을 금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하면, 탄소계 패시베이션막 형성과 동시에 금속층과 탄소계 패시베이션막의 계면에서 금속 산화물 및/또는 금속 수산화물이 감소 또는 제거되어 순수 금속 표면이 형성되는 것을 발견하였다. 본 발명은 이에 기초한 것이다.Therefore, the present inventors apply an electrically conductive carbon-based passivation film to prevent oxidation / corrosion of the metal surface, and design a manufacturing process thereof to facilitate the electron and spin transfer in the metal to which the carbon-based passivation film is applied. Was intended. At this time, a carbon-providing precursor is applied on part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer, and the metal oxide and / or metal hydroxide-containing metal layer is reduced to pure metal. Annealing under a reducing atmosphere and at a temperature capable of decomposing the carbon-providing precursor results in the reduction of or removal of metal oxides and / or metal hydroxides at the interface between the metal layer and the carbon-based passivation film at the same time as the carbon-based passivation film formation. The surface was found to form. The present invention is based on this.
본 발명은 금속 표면의 oxide layer와 hydroxide layer를 없애면서 금속 표면에 얇은 탄소막을 형성할 수 있으므로, 금속 표면에 형성된 얇은 탄소막이 금속 표면을 통한 contact resistance가 oxide layer에 비해 낮도록 하는 특성을 제공할 수 있고 전자의 스핀 유지 특성을 향상시켜서, 탄소계 패시베이션막이 형성된 금속층이 유기전자 소자에의 응용성을 높일 수 있다.Since the present invention can form a thin carbon film on the metal surface while removing the oxide layer and the hydroxide layer of the metal surface, the thin carbon film formed on the metal surface can provide a property that the contact resistance through the metal surface is lower than the oxide layer. It is possible to improve the spin retention characteristics of the electrons, so that the metal layer on which the carbon-based passivation film is formed can increase the applicability to the organic electronic device.
또한, 본 발명에 따라 형성된 탄소계 패시베이션막은 금속 산화방지막 및/또는 부식 방지막으로 작용할 뿐만 아니라, 전기 전도도 손실을 억제할 수 있고, 전자 스핀에 투명성을 확보할 수 있다.In addition, the carbon-based passivation film formed according to the present invention not only acts as a metal antioxidant film and / or a corrosion protection film, but also can suppress electrical conductivity loss and ensure transparency in electron spin.
증착한 니켈 필름을 Nickel etchant에 담그면, 니켈이 에칭되어 녹아 없어지지만, 본 발명의 일구체예의 공정에 따라 탄소계 패시베이션막이 형성된 니켈 필름은 에칭되지 않았다. 부식 방지막으로서 작동시, 본 발명에 따라 형성된 탄소계 패시베이션막은 보호막으로 작동한다는 그래핀을 니켈 필름 위에 단순 전사한 것보다 더 뛰어 났다(실시예 3). When the deposited nickel film was immersed in Nickel etchant, nickel was etched and melted away, but the nickel film on which the carbon-based passivation film was formed was not etched according to the process of one embodiment of the present invention. When operating as an anti-corrosion film, the carbon-based passivation film formed in accordance with the present invention outperformed the simple transfer of graphene onto a nickel film that acts as a protective film (Example 3).
따라서, 본 발명에 따라 금속 산화물 및/또는 금속 수산화물 함유 금속층과의 계면에서 금속 산화물 및/또는 금속 수산화물 함량을 저감시키면서 탄소계 패시베이션막을 형성시키는 방법은,Therefore, according to the present invention, a method of forming a carbon-based passivation film while reducing the metal oxide and / or metal hydroxide content at an interface with the metal oxide and / or metal hydroxide-containing metal layer,
금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하는 제1단계; 및 Applying a carbon-providing precursor on part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer; And
금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하는 제2단계를 포함한다.And a second step of annealing under a reducing atmosphere and temperature capable of reducing the metal oxide and / or metal hydroxide to pure metal and degrading the carbon donor precursor.
상기 제1단계 및 제2단계는 각각 분리되어 수행될 수도, 동시에 수행될 수도 있다.The first and second steps may be performed separately or simultaneously.
금속층은 기재 위에 형성될 수 있고, 또한 전극 역할을 수행할 수도 있다. 또한, 금속층은 산화막 및/또는 수화물막이 형성될 수 있는 한 금속 뿐만아니라 반도체 물질이 될 수 있다. 금속층의 비제한적인 예로는 Ni, Cu, Fe, Al, Stainless steel, Cr, Si 및 기타 반도체 또는 이의 혼합물일 수 있다.The metal layer may be formed on the substrate and may also serve as an electrode. Further, the metal layer may be not only a metal but also a semiconductor material as long as an oxide film and / or a hydrate film can be formed. Non-limiting examples of the metal layer may be Ni, Cu, Fe, Al, Stainless steel, Cr, Si and other semiconductors or mixtures thereof.
금속층은 지지 기재 상부에 필름으로 형성되거나 단독 필름 형태일 수도 있다. 또한, 지지 기재 상부에 금속층을 위치하고 탄소계 패시베이션막을 형성시킨 후 기재를 제거할 수도 있다. 나아가, 금속층은 다양한 회로설계로 지지 기재 상부에 패턴화된 것일 수 있다.The metal layer may be formed into a film on the support substrate or may be in the form of a single film. In addition, the substrate may be removed after the metal layer is placed on the support substrate and the carbon-based passivation film is formed. Furthermore, the metal layer may be patterned on the support substrate in various circuit designs.
제1단계는 통상의 코팅 방법을 사용하여 수행할 수 있다. 대표적으로, 스핀코팅, 딥코팅, 바코팅, Langmuir-Blogget 제막, 자기조립, drop-casting 등이 될 수 있다.The first step can be carried out using conventional coating methods. Typically, spin coating, dip coating, bar coating, Langmuir-Blogget film formation, self-assembly, drop-casting and the like can be.
Nickel 필름 표면에 코팅하는 물질은 PMMA와 같은 Polymer 물질 뿐만 아니라, C, O, H 를 주요 요소로 포함한 화합물이면 열처리 과정에서 O, H 등 성분이 소실되고 탄소 성분이 남는다. 열처리되었을 때 탄소 이외의 다른 원소를 금속에 남기지 않는 화합물이 바람직하다. O, H는 열처리 과정에서 화합물에서 분리되거나, 탄소와 함께 분리되어 공중으로 빠져나갈 수 있다. 화합물 속의 탄소는 열처리 과정에서 금속 표면 안으로 침투해 들어가고 여분의 탄소는 제거 되어야 한다. 이 때, O, H는 여분의 탄소가 금속 표면에서 제거되도록 돕는다고 유추된다. 열처리 과정에서 금속 표면 안으로 스며들어간 탄소는 냉각과정에서 표면으로 나오면서 탄소막을 형성한다고 유추된다. If the material to be coated on the surface of the Nickel film is a compound including C, O, H as well as polymer materials such as PMMA, components such as O and H are lost during the heat treatment and carbon remains. Preference is given to compounds which do not leave elements other than carbon in the metal when heat treated. O and H may be separated from the compound during the heat treatment, or may be separated together with carbon to escape to the air. Carbon in the compound penetrates into the metal surface during heat treatment and excess carbon must be removed. At this time, O and H are inferred to help remove excess carbon from the metal surface. It is inferred that carbon that penetrates into the metal surface during the heat treatment process forms a carbon film as it comes to the surface during the cooling process.
열처리 과정에서 금속 표면 안으로 스며들어간 탄소 이외의 여분의 탄소가 원활히 제거 되어야 금속 표면에 탄소 찌꺼기를 남기지 않는데, O와 H는 여분의 탄소를 기체 형태로 제거되도록 돕는다.The extra carbon, other than carbon that has penetrated into the metal surface, must be smoothly removed during the heat treatment process so that no carbon residues are left on the metal surface. O and H help to remove excess carbon in gaseous form.
본 발명에서 사용가능한 탄소 제공 전구체의 비제한적인 예로는, polymethylmetaacrylate (PMMA) 와 같은 합성고분자; 탄화수소(hydrocarbon); 그래핀, 그래핀 옥사이드; 유기저분자 자기조립층; carbonate, 단당류, 이당류(예, 설탕) 및 다당류, 전분 및 유사물질, glycol, diol, polyols, 각종 음식물 등등과 같이 탄소, 수소, 산소로 이루어진 polymer 일 수 있다. Non-limiting examples of carbon-providing precursors usable in the present invention include synthetic polymers such as polymethylmetaacrylate (PMMA); Hydrocarbons; Graphene, graphene oxide; Organic small molecule self-assembled layer; It may be a polymer composed of carbon, hydrogen, oxygen, such as carbonates, monosaccharides, disaccharides (eg, sugars) and polysaccharides, starches and analogs, glycols, diols, polyols, various foods, and the like.
탄소 제공 전구체는 금속층의 종류에 따라 적절히 선택하여 사용할 수 있다.The carbon providing precursor can be appropriately selected and used depending on the kind of the metal layer.
본 발명의 일구체예에서 탄소 제공 전구체로 PMMA 대신 설탕을 사용하여도 탄소계 패시베이션막으로서 같은 효과를 얻었다. 고분자 막 대신, 그래핀 또는 그래핀과 고분자의 복합막을 사용하면 결정성이 우수한 탄소막을 형성할 수 있다. 따라서, 탄소계 패시베이션막의 결정성을 탄소 제공 전구체 선택에 따라 조절할 수 있다.In one embodiment of the present invention, the same effect as the carbon-based passivation film was obtained even if sugar was used instead of PMMA as the carbon providing precursor. Instead of the polymer film, graphene or a composite film of graphene and a polymer may be used to form a carbon film having excellent crystallinity. Therefore, the crystallinity of the carbon-based passivation film can be adjusted according to the carbon donor precursor selection.
polymer 막 대신에, CVD로 합성한 graphene을 nickel 표면에 코팅한 후에, 챔버에 넣고, forming gas를 공급하고, 온도를 높여도 nickel 표면의 oxide, hydroxide가 없어지고, 얇은 탄소막이 형성되는 것을 관측하였다. 이 경우, 형성되는 탄소막의 결정성은 polymer 또는 설탕을 사용하였을 경우보다 더 좋았다. CVD로 합성한 graphene 뿐만 아니라, graphene 과 polymer coating을 함께 사용하여도 마찬가지의 결과를 얻었다.Instead of the polymer film, graphene synthesized by CVD was coated on the nickel surface, then placed in a chamber, supplied with a forming gas, and the oxide and hydroxide on the nickel surface disappeared and a thin carbon film was formed even when the temperature was increased. . In this case, the crystallinity of the formed carbon film was better than that of polymer or sugar. The same results were obtained when graphene and polymer coating were used together as well as graphene synthesized by CVD.
제2단계에서 환원 분위기는 수소 함유 분위기일 수 있다.In the second step, the reducing atmosphere may be a hydrogen containing atmosphere.
어닐링을 위한 에너지 제공 하에 적절한 온도 조건에서, 환원 분위기는 금속 표면의 산화물을 환원시키는 역할을 하면서 금속 표면에 코팅한 탄소 제공 전구체(polymer 또는 화학물질)가 분해되도록 한다. 본 명세서에서는 이러한 환원분위기를 제공하는 가스를 forming gas로 지칭하며, forming gas의 비제한적인 예로는 수소와 비활성 가스 (예, 질소, 아르곤)의 혼합가스가 있다.Under the appropriate temperature conditions under the provision of energy for annealing, the reducing atmosphere serves to reduce oxides on the metal surface, allowing the carbon donor precursor (polymer or chemical) coated on the metal surface to decompose. In the present specification, a gas providing such a reducing atmosphere is referred to as a forming gas, and a non-limiting example of the forming gas includes a mixed gas of hydrogen and an inert gas (eg, nitrogen and argon).
온도와 forming gas의 작용으로 polymer 와 같은 탄소 제공 전구체 가 분해되고, 금속 표면의 oxide 및/또는 hydroxide가 환원되어 없어지고, polymer에서 탄소를 제공하여 금속 표면에 얇은 탄소막이 형성되는 것으로 생각된다. Forming gas는 처리공정 중 일정부분에서만 공급하여도 된다. The action of temperature and forming gas is thought to decompose carbon-producing precursors such as polymers, reduce oxides and / or hydroxides on metal surfaces, and provide carbon in polymers to form thin carbon films on metal surfaces. Forming gas may be supplied only at certain parts of the treatment process.
본 발명에서 어닐링(annealing)은 열처리 또는 광조사 등 다양한 에너지원을 제공하는 것으로, 에너지원의 제한은 없다. 이때 사용 가능한 에너지원은 단순 열처리를 위한 오븐, 퍼니스에서부터 할로겐 램프 및 제논램프, UV 램프 등등 각종 고에너지 광원, 마이크로웨이브 발생장치, 레이저 발생장치, 강력한 기계적 에너지 등등 에너지를 인가할 수 있는 에너지원이면 용도에 맞추어 사용 가능하다.Annealing (annealing) in the present invention is to provide a variety of energy sources, such as heat treatment or light irradiation, there is no limitation of the energy source. The energy sources that can be used are energy sources such as ovens, furnaces for simple heat treatment, halogen lamps, xenon lamps, UV lamps, etc., high energy light sources, microwave generators, laser generators, powerful mechanical energy, etc. Can be used according to the application.
어닐링 챔버의 온도 범위는 금속층의 종류 및 탄소 제공 전구체에 따라 달라질 수 있으나, 금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 한 제한은 없다. 바람직한 온도는 탄소 제공 전구체가 원활히 열분해가 일어나야 하고, 또 탄소가 적절히 금속 안으로 스며들 수 있는 정도의 높은 온도이면서, 금속 원자와 탄소 원자의 상호작용으로 탄소 원자가 금속 원자에 적절히 결합될 수 있으며, 금속이 너무 높은 온도에서 형태나 특성이 손상되지 않도록 온도가 너무 높지 않아야 하고, 탄소 제공 전구체가 지나친 열분해나 타서 탄소 찌꺼기를 남기지 아니하는 적정한 온도 범위여야 한다. 또한, 너무 높은 온도는 탄소가 금속에 지나치게 스며들어, 나중에 과도하고 불균일한 탄소 막을 남기게 되고 금속 필름의 표면이 불균질해지기 시작한다. 따라서, 650℃를 넘지 않는 것이 바람직하다.The temperature range of the annealing chamber may vary depending on the type of metal layer and the carbon providing precursor, but there is no limitation as long as it can reduce the metal oxide and / or metal hydroxide to pure metal and decompose the carbon providing precursor. Preferred temperatures are those at which the carbon-providing precursor should be pyrolyzed smoothly and at such a high temperature that carbon can penetrate properly into the metal, while the carbon atoms can be properly bonded to the metal atoms by the interaction of the metal atoms with the metal atoms, The temperature should not be too high so that the shape or properties are not damaged at this too high temperature, and the temperature range should be adequate so that the carbon-providing precursor does not leave too much pyrolysis or burn-up. In addition, too high a temperature can cause carbon to soak into the metal, leaving an excessive and non-uniform carbon film later, and the surface of the metal film begins to become uneven. Therefore, it is preferable not to exceed 650 degreeC.
PMMA의 경우 열분해가 일어날 수 있는 온도는 350 ℃ 이상이다. PMMA의 경우, 종류나 solvent에 따라 열분해의 온도가 약간씩 달라질 수 있으나, 대부분의 경우 400 ℃ 이면 열분해로서 충분한 온도이다. For PMMA, the temperature at which pyrolysis can occur is above 350 ° C. In the case of PMMA, the temperature of pyrolysis may vary slightly depending on the type or solvent, but in most cases, 400 ° C. is sufficient for pyrolysis.
따라서, 어닐링 챔버의 바람직한 온도 범위는 350 ~ 650 ℃일 수 있다. Thus, the preferred temperature range of the anneal chamber may be 350 to 650 ° C.
어닐링 시간은 탄소 전구체가 충분히 열분해가 일어나서 불필요한 탄소 전구체는 기체 형태로 제거가 가능한 시간인 것이 바람직하다. 탄소 전구체가 기체 형태로 모두 제거가 되기 전에 충분한 양의 탄소는 금속 표면 안으로 스며들 수 있는 시간과 조건이 바람직하다. 즉, 탄소 전구체에서 제공되는 탄소가 충분한 양으로 금속과 결합을 유지하여 금속 표면을 완전히 덮을 수 있는 탄소의 양을 함유하고 유지하는 시간인 것이 바람직하다. 따라서, 어닐링 시간은 5분 ~ 60분, 바람직하게는 10분 ~ 30분일 수 있다. 환원분위기에서 열처리 시간이 길어질 경우, 장시간 고열 노출에 의해 금속필름의 표면이 불균질해질 수 있다.The annealing time is preferably a time at which the carbon precursor is sufficiently pyrolyzed to remove the unnecessary carbon precursor in gaseous form. It is desirable for the time and conditions that a sufficient amount of carbon can penetrate into the metal surface before the carbon precursor is all removed in gaseous form. In other words, it is preferred that the time provided is that the carbon provided in the carbon precursor contains and maintains the amount of carbon that can hold the bond with the metal in a sufficient amount to completely cover the metal surface. Therefore, the annealing time may be 5 minutes to 60 minutes, preferably 10 minutes to 30 minutes. If the heat treatment time is prolonged in the reducing atmosphere, the surface of the metal film may be uneven due to prolonged high temperature exposure.
따라서, 상기 어닐링 온도 및 시간에서 수행하기 위해 어닐링 방법은 고온에 오래 노출되지 않기 위한 rapid thermal annealing (RTA) 등인 것이 바람직하다. Therefore, in order to perform at the annealing temperature and time, the annealing method is preferably rapid thermal annealing (RTA) or the like for long exposure to high temperature.
어닐링 시 발생하는 gas를 효과적으로 빼내기 위해서, annealing chamber는 pumping out을 하여 낮은 압력으로 유지하는 것이 바람직하다. 이때 압력은 통상 1 torr 정도의 압력을 이용할 수 있다. 일실시예에서 압력은 진공을 뽑을 때, Gauge readin가 30 ~ 90 mTorr 정도였고, Annealing 시에는 980 mTorr 정도였다. 따라서, 실험을 수행한 압력은 약 30 ~ 1000 mTorr 정도였으나, 이 범위 밖에서도 가능하다.In order to effectively remove the gas generated during annealing, the annealing chamber is preferably pumped out and kept at a low pressure. In this case, the pressure may be a pressure of about 1 torr normally. In one embodiment, the pressure was about 30-90 mTorr Gauge readin when vacuumed, and about 980 mTorr when annealing. Therefore, the pressure for performing the experiment was about 30-1000 mTorr, but it is possible outside this range.
어닐링 챔버의 온도를 높이고, pumping out을 할 때, forming gas를 흘려 주어 금속표면의 산화막 및/또는 수산화막을 제거하고 탄소원의 열분해를 촉진하는 것이 좋다.When increasing the temperature of the annealing chamber and pumping out, forming gas is flowed to remove the oxide film and / or hydroxide film on the metal surface and to promote thermal decomposition of the carbon source.
따라서, 제2단계에서 어닐링 방법은 저압 퍼니스 (low pressure furnace)에서 열처리하는 것일 수 있다.Therefore, the annealing method in the second step may be a heat treatment in a low pressure furnace.
본 발명에서 형성된 탄소계 패시베이션막은 탄소 제공 전구체가 금속표면에서 산화되어 탄소 형태가 된 것으로, 비정질 탄소, 그래핀 등의 형태를 취할 수 있다.Carbon-based passivation film formed in the present invention is that the carbon providing precursor is oxidized on the metal surface to form a carbon, it may take the form of amorphous carbon, graphene and the like.
본 발명의 일 구체예에 따라 초박막 비정질의 탄소 필름에 의해 패시베이션된 니켈 전극을 제공할 수 있었다.According to one embodiment of the present invention, it was possible to provide a nickel electrode passivated by an ultra-thin amorphous carbon film.
본 발명의 일 구체예에 따라 매우 얇은 탄소 필름으로 덮여진 Ni 전극의 물리화학적 특성을 분석한 결과, 탄소 기반의 덧층이 Ni의 산화를 방지하며, ToF-SIMS으로만 검출가능하고 XPS에서는 관찰되지 않는 양의 무시가능할 정도의 양의 산화물을 가짐을 확인하였다. According to an embodiment of the present invention, the physical and chemical properties of the Ni electrode covered with a very thin carbon film were analyzed. The carbon-based overlayer prevents oxidation of Ni, and is detectable only by ToF-SIMS and is not observed in XPS. It was found that it had a negligible amount of oxide.
또한, 본 발명의 일 구체예에 따라 550℃ 이하의 온도에서 가공된 Ni이 필름의 구조적 질을 유지하고, 산화물 및 카바이드 종이 없는 Ni의 최적의 조성을 나타내며, 결과적인 전극이 금과 동등한 전하 주입 능력을 가짐을 확인하였다. 600℃보다 높은 온도를 사용한 경우, 결정성(다층) 그래핀이 얻어지나, 샘플의 토폴로지의 열화가 관찰되며 p-타입 유기 반도체 소자의 OFET 및 EFET 특성의 성능 감소가 관찰되었다. 활성 채널과 주입 전극 간의 계면 저항 값의 정량적인 분석을 통해 본 발명의 일 구체예에 따라 얇은 비정질 탄소로 덮힌 니켈 전극이 유기 전자소자를 위한 금을 대체하기에 매우 적합함을 확인하였다. 이는 비용적으로 이로우며, 유기 스핀트로닉스 적용을 위한 스핀 주입기 및 검출기를 제조하기 위한 최상의 접근법일 것으로 예측된다.In addition, according to one embodiment of the present invention, Ni processed at a temperature of 550 ° C. or lower maintains the structural quality of the film and exhibits an optimal composition of Ni without oxide and carbide paper, and the resulting electrode has a charge injection capability equivalent to gold. It was confirmed to have. When temperatures higher than 600 ° C. were used, crystalline (multilayer) graphene was obtained, but degradation of the topology of the sample was observed and performance degradation of the OFET and EFET properties of the p-type organic semiconductor device was observed. Quantitative analysis of the interfacial resistance value between the active channel and the injection electrode confirmed that according to one embodiment of the present invention, a thin amorphous carbon covered nickel electrode is well suited to replace gold for organic electronic devices. This is cost-effective and is expected to be the best approach for manufacturing spin injectors and detectors for organic spintronics applications.
따라서, 본 발명에 따라 금속층 및 상기 금속층 상에 형성된 탄소계 패시베이션막을 구비한 금속 전극은,Therefore, the metal electrode having a metal layer and a carbon-based passivation film formed on the metal layer according to the present invention,
금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하고, 금속 산화물 및/또는 금속 수산화물 함유 금속층을 금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하여, 금속층과 탄소계 패시베이션막의 계면에서 금속 산화물 및/또는 금속 수산화물이 감소 또는 제거된 것이 특징이다.Applying a carbon donor precursor onto part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer and reducing the metal oxide and / or metal hydroxide-containing metal layer to pure metal and Annealing is carried out under a reducing atmosphere and a temperature capable of decomposing the carbon providing precursor, thereby reducing or removing metal oxides and / or metal hydroxides at the interface between the metal layer and the carbon-based passivation film.
이때, 계면에서 금속 산화물 및/또는 금속 수산화물이 감소 또는 제거됨으로써, 금속층과 탄소계 패시베이션막 사이의 접촉저항이 수 옴~수십 옴 이내(Ohm) 일 수 있으며, 예컨대, 1 ~ 90 옴 (ohm) 일 수 있다.At this time, by reducing or removing the metal oxide and / or metal hydroxide at the interface, the contact resistance between the metal layer and the carbon-based passivation film may be several ohms to several tens of ohms (Ohm), for example, 1 ~ 90 ohms Can be.
한편, 본 발명에 따라 탄소계 패시베이션막이 형성된 금속전극을 사용하면, 금속 표면의 산화/부식이 억제되므로 금속전극의 탄소계 패시베이션막 상에 용액공정으로 유기층을 형성시킬 수 있다. On the other hand, when using a metal electrode having a carbon-based passivation film according to the present invention, since the oxidation / corrosion of the metal surface is suppressed, it is possible to form an organic layer on the carbon-based passivation film of the metal electrode by a solution process.
따라서, 본 발명은 본 발명의 제1양태의 방법에 의해 탄소계 패시베이션막이 형성된 금속전극을 준비하는 a단계; 및Accordingly, the present invention provides a method for preparing a metal electrode on which a carbon-based passivation film is formed by the method of the first aspect of the present invention; And
금속전극의 탄소계 패시베이션막 상에 용액공정으로 유기층을 형성시키는 b단계를 포함하는, 유기소자 제조방법을 제공할 수 있다. It can provide an organic device manufacturing method comprising a step b of forming an organic layer in a solution process on the carbon-based passivation film of the metal electrode.
본 발명에 따라 탄소계 패시베이션막이 형성된 금속층을 사용하고, 금속층의 탄소계 패시베이션막 상에 용액공정으로 유기층을 형성시킬 수 있는 한, 금속층이 전극으로 사용되지 않는 소자도 본 발명의 범주에 속한다.As long as the metal layer in which the carbon-based passivation film is formed according to the present invention and an organic layer can be formed on the carbon-based passivation film of the metal layer by a solution process, the device in which the metal layer is not used as an electrode are also within the scope of the present invention.
본 발명에 따라 금속층과 탄소계 패시베이션막의 계면에서 금속 산화물 및/또는 금속 수산화물이 감소 또는 제거된 금속 전극은 그 위에 유기층을 용액공정으로 형성할 수 있으므로, 도포와 인쇄공정을 이용하여 플렉서블한 플라스틱 기판 상에 실온에 가까운 저온에서 디스플레이, 회로, 전지, 센서 등의 기능을 집적화할 수 있다. 또한, 배선, 반도체, 절연막을 모두 유기물로 구성할 수 있게 해준다. 또한, 잉크젯 인쇄로 대면적이면서도 저렴한 플라스틱 전자부품을 만들 수 있으므로, 트랜지스터 회로와 광기전성 박막(photovoltanic film), OLED 등에 적용될 수 있다. 나아가, 잉크를 사용하는 3D 프린터로 다양한 소자를 구현할 수 있다. 따라서, 금속층의 탄소계 패시베이션막 상에 용액공정을 도입하는 한, 용매에 분산된 주요 성분이 유기물 뿐만 아니라 무기물이 될 수 있으며, 이 경우도 본 발명의 범주에 속한다. According to the present invention, a metal electrode having a reduced or removed metal oxide and / or metal hydroxide at the interface between the metal layer and the carbon-based passivation film can form an organic layer thereon in a solution process, and thus a flexible plastic substrate using a coating and printing process. At low temperatures close to room temperature, functions such as a display, a circuit, a battery, and a sensor can be integrated. In addition, the wiring, the semiconductor, and the insulating film can all be made of organic material. In addition, inkjet printing can produce large-scale and inexpensive plastic electronic components, and thus can be applied to transistor circuits, photovoltanic films, OLEDs, and the like. Furthermore, various devices may be implemented by a 3D printer using ink. Therefore, as long as the solution process is introduced on the carbon-based passivation film of the metal layer, the main component dispersed in the solvent may be not only organic matter but also inorganic matter, and this case also belongs to the scope of the present invention.
본 발명에 따라 제조될 수 있는 유기 소자의 비제한적인 예로는 유기 반도체 소자(OSC), 트랜지스터, 태양전지, OLED(유기발광다이오드), 센서, 전지, 메모리, 생체삽입체, 세포배양기 등이 있다. Non-limiting examples of organic devices that can be fabricated in accordance with the present invention include organic semiconductor devices (OSCs), transistors, solar cells, OLEDs (organic light emitting diodes), sensors, cells, memories, bioinserts, cell culturers, and the like. .
전하 전류를 스핀 분극화하기 위한 전극 후보물질을 찾고자, 본 발명의 일 구체예에서 촉매로서 Ni을 사용하여 Ni 상에 그래핀을 합성한 후 보호된 Ni 전극을 제작하고 OSC 소자의 습식 공정에 대한 이들의 적합성을 테스트하기 위하여, 그래핀 물질의 성장 특성을 이용하였다. 다층 그래핀 및 비정질 탄소로 덮힌 니켈 전극을 유기 반도체를 위한 정공 주입층으로서 사용하였다. 전해질-게이트의 트랜지스터 구조의 2가지 타입의 전극의 전하 캐리어 주입 능력을 테스트하고, 순수 니켈 및 금 전극과 비교하였다. 그 결과, Au와 동등한 계면 저항을 갖는, 저온 가공된 비정질 탄소로 덮힌 니켈 전극이 가장 우수한 성능을 갖는 것으로 확인되었다. 니켈의 순도 및 자기적 특성은 유지되었으며, 이로써 습식 화학 가공된 물질로 전류 스핀 주입을 제공하는 디바이스의 제조가 가능하였다.In order to find electrode candidates for spin polarization of charge current, in one embodiment of the present invention, synthesis of graphene on Ni using Ni as a catalyst is followed by fabrication of a protected Ni electrode and these processes for wet process of OSC devices. In order to test the suitability of the graphene material growth characteristics were used. Nickel electrodes covered with multilayer graphene and amorphous carbon were used as hole injection layers for organic semiconductors. The charge carrier injection capability of the two types of electrodes of the transistor structure of the electrolyte-gate was tested and compared with pure nickel and gold electrodes. As a result, it was confirmed that the nickel electrode covered with low temperature processed amorphous carbon having an interface resistance equivalent to Au had the best performance. The purity and magnetic properties of nickel were retained, which allowed for the fabrication of devices that provide current spin injection with wet chemically processed materials.
본 발명에 따른 어닐링 조건에서 탄소계 패시베이션막을 금속 산화물 및/또는 금속 수산화물 함유 금속층 표면에 형성시키는 경우, 금속 표면에 이미 존재하는 산화막 및/또는 수산화막을 환원시키고 더 이상의 산화 및 부식이 일어나지 않도록 금속 표면을 보호할 수 있을 뿐만아니라, 계면 저항이 낮아서 금(Au)과 같이 자연산화막이 형성되지 않는 금속 전극으로 활용할 수 있다.When the carbon-based passivation film is formed on the surface of the metal oxide and / or metal hydroxide-containing metal layer under the annealing conditions according to the present invention, the metal surface is reduced so that the oxide film and / or hydroxide film already present on the metal surface is reduced and no further oxidation and corrosion occurs. In addition to protecting the, the interfacial resistance is low, it can be used as a metal electrode that does not form a natural oxide film, such as gold (Au).
이와 같은 금속의 산화/부식 및 변질을 막아주는 보호막 기술은 보다 성능이 우수한 전자소자 및 스핀소자를 제공할 수 있을 뿐만 아니라 선박, 항공, 건축 등 광범위한 분야에서 금속의 변성을 막는데 활용될 수 있다.The protective film technology that prevents oxidation / corrosion and deterioration of the metal can not only provide better electronic and spin devices, but also can be used to prevent metal modification in a wide range of fields such as ships, aviation, and construction. .
도 1은 본 발명의 일 구체예에 따라 탄소 제공 전구체(2)를 이용하여 금속(1) 표면에 탄소계 패시베이션막(3)을 형성하는 공정의 모식도를 보여준다.FIG. 1 shows a schematic diagram of a process of forming a carbon-based passivation film 3 on a surface of a metal 1 using a carbon providing precursor 2 according to an embodiment of the present invention.
도 2는 순수 니켈 금속의 XPS 스펙트럼이다.2 is an XPS spectrum of pure nickel metal.
도 3은 산화막 및 수산화막이 형성된 니켈 표면의 XPS 스펙트럼이다.3 is an XPS spectrum of a nickel surface on which an oxide film and a hydroxide film are formed.
도 4는 실시예 1에 따라 대기에 노출된, 증착된 순수 니켈 필름의 XPS 스펙트럼이다.4 is an XPS spectrum of a deposited pure nickel film exposed to the atmosphere according to Example 1. FIG.
도 5는 순수 니켈 금속의 Raman spectroscopy이다.5 is Raman spectroscopy of pure nickel metals.
도 6은 실시예 1에 따라 PMMA 코팅 및 어닐링 후 니켈 표면에서 산화막이 거의 사라진 것을 보여주는 XPS 스펙트럼이다.FIG. 6 is an XPS spectrum showing that the oxide film disappeared almost from the nickel surface after PMMA coating and annealing according to Example 1. FIG.
도 7은 실시예 1에 따라 PMMA 코팅 및 어닐링 후 니켈 표면에 탄소박막이 형성되었음을 보여주는 Raman spectrum이다.FIG. 7 is a Raman spectrum showing that a carbon thin film was formed on a nickel surface after PMMA coating and annealing according to Example 1. FIG.
도 8은 실시예 1에 따라 니켈 필름 표면에 PMMA를 코팅한 후의 Raman spectrum이다. 8 is a Raman spectrum after coating PMMA on the surface of a nickel film according to Example 1. FIG.
도 9는 실시예 1에 따라 기판에 패턴된 니켈 전극 위에 보호막이 형성된 것을 보여주는 광학현미경 이미지이다.FIG. 9 is an optical microscope image showing that a protective film is formed on a nickel electrode patterned on a substrate according to Example 1. FIG.
도 10은 실시예 1에 따라 보호막이 형성된 니켈필름과 보호막이 없는 니켈필름을 니켈 에천트 용액에 담가 반응시킨 사진이다.FIG. 10 is a photograph in which a nickel film having a protective film and a nickel film without a protective film are immersed in a nickel etchant solution according to Example 1;
도 11은 CVD 방법으로 합성한 그래핀을 니켈 필름에 코팅한 것과, 실시예 3에 따라 탄소막을 형성한 것을 nickel etchant에 넣어 etching test한 결과를 나타낸 사진이다.FIG. 11 is a photograph showing the results of etching the graphene synthesized by CVD on a nickel film, and a carbon film formed according to Example 3 in a nickel etchant. FIG.
도 12는 실시예 4에 따라 (그래핀 + PMMA) 코팅 및 어닐링 후 니켈 표면의 XPS Ni2p spectrum 이다.12 is an XPS Ni2p spectrum of nickel surface after coating and annealing (graphene + PMMA) according to Example 4. FIG.
도 13은 실시예 4에 따라 (그래핀 + PMMA) 코팅 및 어닐링 후 니켈 표면의 Raman spectroscopy이다.FIG. 13 is Raman spectroscopy of nickel surface after coating and annealing (graphene + PMMA) according to Example 4. FIG.
도 14은 실시예 5에 따라 보호막이 형성된 Cu 금속 표면의 광학현미경 이미지이다.14 is an optical microscope image of a Cu metal surface on which a protective film was formed in accordance with Example 5. FIG.
도 15는 실시예 5에 따라 보호막이 형성된 Cu 금속 표면의 라만 스펙트럼이다. 각 그래프는 서로 다른 위치에서 측정된 값이다.15 is a Raman spectrum of a Cu metal surface on which a protective film is formed in accordance with Example 5. FIG. Each graph is measured at different positions.
도 16은 실시예 5에 따라 RTA 처리된 구리포일과 처리하지 않은 구리포일을 각각 구리 식각용액을 떨어뜨린 후 그 변화를 관찰한 사진이다.Figure 16 is a photograph of the change in the copper etching solution after dropping the copper etching solution and the RTA treated copper foil according to Example 5, respectively.
도 17a는 접촉 저항의 게이트 4 프로브 측정을 위해 사용된 소자 구조의 개념도이다.17A is a conceptual diagram of a device structure used for gate 4 probe measurement of contact resistance.
도 17b는 Ni 전극의 상부에 CVD 가공된 그래핀의 광학 이미지이다. 촉매 영역에 동일한 형태로 놓인 그래핀층의 질감이 명확히 식별된다.17B is an optical image of graphene CVD processed on top of a Ni electrode. The texture of the graphene layer lying in the same form in the catalyst zone is clearly identified.
도 18a는 100 nm 두께의 Ni 필름 상부의 CVD (상단) 다층 그래핀 및 RTA(하단) 비정질 탄소 필름의 라만 스펙트럼이다. 여기서, 삽입도는 샘플의 광학 현미경 이미지이다.18A is a Raman spectrum of CVD (top) multilayer graphene and RTA (bottom) amorphous carbon film on top of a 100 nm thick Ni film. Here, the inset is an optical microscope image of the sample.
도 18b는 Ni/RTA 및 Ni/CVD의 AFM 토폴로지 스캔의 3D 현미경사진과 함께 매우 다른 표면 거칠기에 대한 추가적인 증거를 제공하는 이들의 토폴로지 프로파일이다.18B is a topological profile of these providing additional evidence for very different surface roughness along with 3D micrographs of AFM topology scans of Ni / RTA and Ni / CVD.
도 19은 (a) 공기 노출된 Ni, (b) Ni/ CVD, (c) Ni/RTA의 스펙트럼, 및 (d) Ni 필름, (e) Ni/CVD 필름, (f) Ni/RTA의 C 1s 코어 레벨 스펙트럼이다.19 shows (a) air exposed Ni, (b) Ni / CVD, (c) spectrum of Ni / RTA, and (d) Ni film, (e) Ni / CVD film, (f) C of Ni / RTA 1s core level spectrum.
도 20는 공기에 노출된 Ni의 ToF-SIMS 깊이 프로파일이다. 니켈, 산소 및 니켈 산화물의 특징적인 단편이 나타나 있으며, 상부 표면(0 nm)으로부터 니켈 층의 깊이(85nm)까지이다.20 is ToF-SIMS depth profile of Ni exposed to air. Characteristic fragments of nickel, oxygen and nickel oxide are shown, from the top surface (0 nm) to the depth of the nickel layer (85 nm).
도 21는 NiO- (상단) 및 NiC2- (하단) 단편에 대한 공기에 노출된 Ni(검정색), Ni/CVD (적색) 및 Ni/RTA (청색)의 깊이 프로파일 비교이다.FIG. 21 is a comparison of depth profiles of Ni (black), Ni / CVD (red) and Ni / RTA (blue) exposed to air for NiO- (top) and NiC 2- (bottom) fragments.
도 22은 IIDDT-C3 OSC의 이동 곡선이다. -1.5 내지 -3V 사이의 게이트 전압에 대하여, 고분자전해질이 대부분 경계면으로 분극하였다. 더욱 큰 음의 게이트 전압에 대하여, 부피 전기화학적 도핑이 전도 물질의 유효 두께를 증가시킨다.22 is a movement curve of the IIDDT-C3 OSC. For gate voltages between -1.5 and -3V, most of the polymer electrolyte was polarized to the interface. For larger negative gate voltages, volume electrochemical doping increases the effective thickness of the conductive material.
도 23은 100 nm 두께의 Au, Ni/ RTA, Ni/CVD 및 Ni 전극을 갖는 IIDDT-C3 기반의 OFET의 이동 곡선이다.FIG. 23 is a shift curve of an IIDDT-C3 based OFET with Au, Ni / RTA, Ni / CVD, and Ni electrodes 100 nm thick.
도 24은 100 nm 두께의 Au, Ni/RTA, Ni/ CVD 및 Ni 전극에 대한 게이트 전압의 함수로서 너비-정규화된 전체 접촉 저항을 나타낸다.FIG. 24 shows the width-normalized total contact resistance as a function of gate voltage for 100 nm thick Au, Ni / RTA, Ni / CVD and Ni electrodes.
도 25는 Au (적색 곡선) 및 Ni/RTA (검정색 곡선) OFET에 대한 VG의 함수로서 소스 및 드레인 접촉 저항을 나타낸다.25 shows the source and drain contact resistances as a function of V G for Au (red curve) and Ni / RTA (black curve) OFETs.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, but the scope of the present invention is not limited by these examples.
실시예Example 1:  One: PMMA 를PMMA 이용한  Used NiNi 금속 표면에 보호막 형성 Form a protective film on the metal surface
도 1에 도시된 바와 같이, PMMA(2) 를 이용한 Ni 금속(1) 표면에 탄소계 패시베이션막(3)을 형성하였다.As shown in FIG. 1, a carbon-based passivation film 3 was formed on the surface of the Ni metal 1 using the PMMA 2.
실리콘 기판 위에 두께 100 nm 의 니켈 층(1)을 증착하였다.  A nickel layer 1 having a thickness of 100 nm was deposited on the silicon substrate.
증착된 순수 니켈 필름을 진공챔버에서 대기 중으로 꺼내면 대기에 노출되면서 니켈 표면에 니켈 산화물과 니켈 수화화물이 형성되었다. 상기 증착된 니켈 필름은, 도 4에서 보는 바와 같이 도 2 및 도 3과 비교해보면, 명확하게 산화된 니켈필름임을 알 수 있다.When the deposited pure nickel film was taken out of the vacuum chamber into the atmosphere, it was exposed to the atmosphere to form nickel oxide and nickel hydrate. As compared with FIGS. 2 and 3, the deposited nickel film may be clearly oxidized nickel film.
상기 니켈 필름 위에 폴리메틸메타크릴레이트 (Poly(methyl methacrylate), PMMA)을 스핀코팅기(마이다스시스템사)를 사용하여 5000 rpm으로 30초 동안, 상온에서 스핀코팅하였다(도 5). 이어서, 어닐링 챔버에 넣고, 어닐링 온도는 PMMA 고분자 필름이 열분해될 수 있도록 350 ℃ 이상으로 높였다. 이때, 발생하는 가스들을 효과적으로 제거하면서, 챔버의 압력을 낮은 압력(970 mTorr)으로 유지하였다. 이 때 챔버 내부에 형성가스(forming gas) (수소, 메탄)와 비활성가스의 혼합가스를 흘려 주었다. 도 6에 나타낸 바와 같이 XPS 스펙트럼에서 니켈 표면의 산화막이 거의 사라진 것을 알 수 있다.On the nickel film, polymethyl methacrylate (Poly (methyl methacrylate), PMMA) was spin-coated at 5000 rpm for 30 seconds using a spin coater (MIDAS SYSTEM Co., Ltd.) at room temperature (FIG. 5). It was then placed in an annealing chamber and the annealing temperature was raised above 350 ° C. so that the PMMA polymer film could be pyrolyzed. At this time, the pressure of the chamber was maintained at a low pressure (970 mTorr) while effectively removing the generated gases. At this time, a mixed gas of forming gas (hydrogen, methane) and an inert gas was flowed into the chamber. As shown in FIG. 6, it can be seen that the oxide film on the nickel surface disappeared almost in the XPS spectrum.
이와 같이 보호막이 생성된 니켈필름의 라만 스펙트럼(도 7)을 Nickel film의 Raman spectroscopy (도 5)와 비교해 보면 명확한 탄소 관련 성분들(3)이 나타나는 것을 알 수 있다.As compared with Raman spectroscopy (FIG. 5) of the nickel film in which the protective film is formed, the Raman spectroscopy (FIG. 5) of the nickel film shows clear carbon-related components (3).
실시예 1에 따라 보호막이 생성된 니켈필름의 라만 스펙트럼(도 7)을, 니켈 필름 표면에 PMMA를 코팅하고 Raman spectrum을 측정한 결과(도 8)과 구별된다는 것을 알 수 있다. It can be seen that the Raman spectrum (FIG. 7) of the nickel film in which the protective film was produced according to Example 1 is distinguished from the result of coating PMMA on the surface of the nickel film and measuring the Raman spectrum (FIG. 8).
도 6 및 도 7에 나타난 바와 같이, 니켈 표면을 XPS와 Raman spectroscopy로 조사한 결과, 니켈 표면에 니켈 산화막과 니켈 수산화막이 없어진 점 및 얇은 탄소 막(3)이 형성되었음을 알 수 있다. As shown in FIG. 6 and FIG. 7, the nickel surface was examined by XPS and Raman spectroscopy, indicating that the nickel oxide film and the nickel hydroxide film were missing and the thin carbon film 3 was formed on the nickel surface.
실험예Experimental Example 1: PMMA 기반 보호막이 형성된  1: PMMA based protective film formed 니켈박막의Nickel thin film 부식 안정성 확인시험 Corrosion stability test
Nickel etchant로 TFB (by Transene Co. Inc.,)를 사용하였으며, 조성은 Nitric Acid 15~20 %, + Potassium Perfluoroalkyl Sulfonate < 1%, in Water이다.Nickel etchant used TFB (by Transene Co. Inc.), and the composition is Nitric Acid 15-20%, + Potassium Perfluoroalkyl Sulfonate <1%, in Water.
하기 도 10에 도시된 바와 같이, 증착한 니켈 필름을 Nickel etchant에 담그면, 니켈이 에칭되어 녹아 없어지지만, 실시예 1과 같이 PMMA 기반 보호막이 형성된 니켈 필름은 에칭되지 않았다.As shown in FIG. 10, when the deposited nickel film was immersed in Nickel etchant, nickel was etched and melted away, but the nickel film on which the PMMA-based protective film was formed as in Example 1 was not etched.
실시예 1에 따라 형성된 탄소층(carbon layer)은 니켈 필름의 부식 방지막으로서도 작용한다는 것을 알 수 있다. It can be seen that the carbon layer formed according to Example 1 also acts as a corrosion protection film of the nickel film.
실시예Example 2:  2: 설탕용액을Sugar solution 이용한  Used NiNi 금속 표면에 보호막 형성 Form a protective film on the metal surface
탄소 제공 전구체로 PMMA 대신 10wt% 설탕수용액을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈 층에 보호막을 형성시켰다.A protective film was formed on the nickel layer in the same manner as in Example 1 except that 10 wt% sugar aqueous solution was used instead of PMMA as the carbon providing precursor.
이 경우도, 니켈 표면을 XPS와 Raman spectroscopy로 조사한 결과, 니켈 표면에 nickel oxide와 nickel hydroxide가 없어졌고, 얇은 탄소 막이 형성되었다.In this case, the nickel surface was examined by XPS and Raman spectroscopy, and nickel oxide and nickel hydroxide disappeared from the nickel surface, and a thin carbon film was formed.
실시예Example 3:  3: 그래핀을Graphene 이용한  Used NiNi 금속표면에 보호막 형성 Forming a protective film on the metal surface
탄소 제공 전구체로 PMMA 대신 CVD 로 합성한 그래핀을 전사하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈 층에 보호막을 형성시켰다.A protective film was formed on the nickel layer in the same manner as in Example 1 except that graphene synthesized by CVD instead of PMMA was used as a carbon providing precursor.
이 경우도, 니켈 표면을 XPS와 Raman spectroscopy로 조사한 결과, 니켈 표면에 nickel oxide와 nickel hydroxide가 없어졌고, 얇은 탄소 막이 형성되었다. 탄소막의 결정성은 PMMA 고분자 또는 설탕을 사용하였을 경우보다 더 좋았다.In this case, the nickel surface was examined by XPS and Raman spectroscopy, and nickel oxide and nickel hydroxide disappeared from the nickel surface, and a thin carbon film was formed. The crystallinity of the carbon film was better than that of PMMA polymer or sugar.
실험예Experimental Example 2:  2: 그래핀Graphene 기반 보호막이 형성된  Foundation shield formed 니켈박막의Nickel thin film 부식 안정성 확인시험 Corrosion stability test
CVD 방법으로 합성한 그래핀을 Nickel 필름에 코팅한 것과, 실시예 3에 따라 탄소막을 형성한 것을 nickel etchant에 넣어 etching test를 하였다. The graphene synthesized by the CVD method was coated on a Nickel film, and the carbon film was formed according to Example 3, and subjected to an etching test in nickel etchant.
도 11에 도시된 바와 같이, 그래핀만을 코팅한 것도 어느 정도 nickel etchant로부터 nickel을 보호하였으나, 자세히 들여다보면, nickel 필름의 etching이 상당히 진행되고 있음을 확인하였다. 반면에, 실시예 3에 따라 탄소막을 형성한 것은 니켈 필름의 etching이 거의 무시될 정도였다.As shown in FIG. 11, coating only graphene also protected nickel from nickel etchant to some extent, but looking closely, it was confirmed that etching of the nickel film was proceeding considerably. On the other hand, the formation of the carbon film according to Example 3 was such that the etching of the nickel film was almost ignored.
즉, 실시예 3에 따라 형성된 탄소막은 보호막으로 작동한다는 그래핀을 니켈 필름 위에 단순 전사한 것보다 부식방지막으로서 더 뛰어 났다. That is, the carbon film formed according to Example 3 was superior as a corrosion preventing film than the simple transfer of graphene on the nickel film that acts as a protective film.
실시예Example 4: PMMA +  4: PMMA + 그래핀을Graphene 이용한  Used NiNi 금속표면에 보호막 형성 Forming a protective film on the metal surface
탄소 제공 전구체로 PMMA 대신 CVD 로 합성한 그래핀과 PMMA을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈 층에 보호막을 형성시켰다.A protective film was formed on the nickel layer in the same manner as in Example 1 except that graphene and PMMA synthesized by CVD instead of PMMA were used as the carbon providing precursor.
도 12 및 도 13에 나타난 바와 같이 니켈 표면을 XPS와 Raman spectroscopy로 조사한 결과, 니켈 표면에 nickel oxide와 nickel hydroxide가 없어졌고, 얇은 탄소 막이 형성되었고, 탄소막의 결정성이 우수하였다.As shown in FIGS. 12 and 13, the nickel surface was examined by XPS and Raman spectroscopy. As a result, nickel oxide and nickel hydroxide disappeared from the nickel surface, a thin carbon film was formed, and the carbon film had excellent crystallinity.
실시예Example 5:  5: PMMA 를PMMA 이용한 Cu 금속 표면에 보호막 형성 Protective film formation on the used Cu metal surface
실리콘 기판 위에 100 nm 의 구리(Cu) 층(1)을 증착하였다. 상기 구리 필름 위에 PMMA C4 (2)을 2000 rpm으로 30초 동안 스핀코팅하였다. 이어서, 어닐링 챔버에 넣고, 어닐링 온도는 PMMA 고분자 필름이 열분해될 수 있도록 600 ℃ 에서 1시간동안 수소분위기에서 열처리(rapid thermal annealing, RTA)하였다. A 100 nm copper (Cu) layer 1 was deposited on the silicon substrate. PMMA C4 (2) was spin coated on the copper film at 2000 rpm for 30 seconds. Subsequently, it was placed in an annealing chamber, and the annealing temperature was heat-treated (rapid thermal annealing, RTA) in a hydrogen atmosphere at 600 ° C. for 1 hour so that the PMMA polymer film could be pyrolyzed.
도 14은 보호막이 형성된 Cu 금속 표면의 광학현미경 이미지이고, 도 15는 이의 라만 스펙트럼이다. 도 14에서 보는 바와 같이 구리 표면에 구리의 결정이 그대로 노출되어 있으며 비교적 균일한 탄소 막이 형성되었음을 볼 수 있다. 도 15의 라만 스펙트럼은 구리 박막으로 인한 백그라운드에도 불구하고 탄소 박막의 특징적인 라만 피크가 1300 및 1750 에서 나타나는 것을 볼 수 있다. 즉, 구리 표면에 copper oxide와 copper hydroxide가 없어졌고, 얇은 탄소막이 형성되었다.FIG. 14 is an optical microscope image of a Cu metal surface on which a protective film is formed, and FIG. 15 is a Raman spectrum thereof. As shown in FIG. 14, it can be seen that the copper crystal is exposed on the copper surface as it is and a relatively uniform carbon film is formed. The Raman spectrum of FIG. 15 shows that the characteristic Raman peaks of the carbon thin film appear at 1300 and 1750 despite the background caused by the copper thin film. That is, copper oxide and copper hydroxide disappeared from the copper surface, and a thin carbon film was formed.
실험예Experimental Example 3: PMMA 기반 보호막이 형성된  3: PMMA based protective film formed 구리박막의Copper thin film 부식 안정성 확인시험 Corrosion stability test
구리식각 용액으로 Trannsene Co. Inc.,의 Copper Etchant CE-100를 사용하였으며, 조성은 Ferric Chloride 25~35 %, Hydrochloric Acid 3~4 %, in Water이다.As a copper etching solution, Trannsene Co. Inc., Copper Etchant CE-100 was used. The composition is Ferric Chloride 25 ~ 35%, Hydrochloric Acid 3 ~ 4%, in Water.
실시예 5과 같이 RTA 처리된 구리포일과 처리하지 않은 구리포일을 각각 구리 식각용액(transene 100)을 떨어뜨려 그 변화를 관찰하였다. 도 16에 도시된 바와 같이, 실시예 5의 경우 보호막이 완벽하지 않아 구리 포일에 형성된 탄소막은 구리의 식각을 막아주지는 못하지만 처리되지 않은 구리 포일 대비 식각속도가 달라짐을 확인할 수 있다.As in Example 5, the copper etching solution (transene 100) of the RTA treated copper foil and the untreated copper foil was dropped, respectively, and the change was observed. As shown in FIG. 16, in the case of Example 5, the carbon film formed on the copper foil because the protective film is not perfect does not prevent the etching of copper, but the etching rate is different from that of the untreated copper foil.
실시예Example 6 :  6: NiNi 금속 전극 상  Metal electrode phase 그래핀Graphene 보호막 형성 Protective film formation
6-1: 전극 디자인 및 6-1: electrode design and 패터닝Patterning
4 포인트 프로브 게이트 전도(conduction) 측정을 수행하도록 설계된, 하부 접촉 전극을 구비한 소자 구조(architecture)의 개념도를 도 17a에 나타내었다. 상부 게이트, 채널 길이 L = 50 ㎛(너비 W = 1000 ㎛)를 갖는 하부 접촉 트랜지스터를 형성하였다. L = 14.5 ㎛ 및 W = 2.5 ㎛를 갖는 2개의 얇은 전극(핑거)을 상기 채널에 전압 프로브로서 삽입하였다. 소스-드레인 전극 및 전압 프로브 전극은 포토-리소그래피로 형성하였다. 100 nm 두께의, Ni 및 Au/Ti(5 nm) 금속 필름을 500 nm의 열적으로 산화된 SiO2/p+-도핑된 Si 기판 상에 E-빔 증발(0.5 nm/s의 증착 속도)로 증착시켰으며 리프트-오프(lift-off) 공정으로 전극 회로를 제작하였다.A conceptual diagram of a device architecture with bottom contact electrodes, designed to perform four point probe gate conductance measurements, is shown in FIG. 17A. A bottom contact transistor with an upper gate, channel length L = 50 μm (width W = 1000 μm) was formed. Two thin electrodes (finger) with L = 14.5 μm and W = 2.5 μm were inserted into the channel as voltage probes. Source-drain electrodes and voltage probe electrodes were formed by photo-lithography. A 100 nm thick Ni and Au / Ti (5 nm) metal film was subjected to E-beam evaporation (deposition rate of 0.5 nm / s) on a 500 nm thermally oxidized SiO 2 / p + -doped Si substrate. The electrode circuit was fabricated by deposition and a lift-off process.
6-2: 전극 탄소 6-2: electrode carbon 패시베이션passivation
미리 패터닝된 니켈 전극을 탄소 박막으로 덮기 위해 2가지 접근법을 사용하였다. Two approaches were used to cover the previously patterned nickel electrode with a thin film of carbon.
첫 번째는 탄소-풍부 형성 기체와 이의 분해를 이용하여 탄소 박막을 생성시키는 CVD 기법에 의한 고온(850℃) 성장법을 사용하는 것이다. The first is to use the high temperature (850 ° C.) growth method by the CVD technique to produce a carbon thin film using a carbon-rich forming gas and its decomposition.
두 번째 접근법은 본 발명의 일 구체예에 따라 탄소-풍부 코팅층을 가진 촉매 금속으로 만든 고체 전구체를 사용하고, 더욱 낮은 온도, 즉 550℃를 초과하지 않는 온도에서 RTA 공정을 이용한 샘플을 가열하는 것이다. The second approach is to use a solid precursor made of a catalytic metal with a carbon-rich coating layer according to one embodiment of the invention, and to heat the sample using the RTA process at a lower temperature, i. .
상기 두 상향방식(bottom-up) 접근법의 경우, 먼저 원래 존재하는 패시베이션 산화물 층을 제거하기 위하여 수소-풍부 환원 가스에 Ni 필름을 노출시켰다.For both bottom-up approaches, the Ni film was first exposed to a hydrogen-rich reducing gas to remove the originally existing passivation oxide layer.
CVD 그래핀 성장법의 경우, UHV-성장된 니켈 샘플을 4-인치 용융 실리카 튜브로 이루어진 저압 CVD 벽 퍼니스(wall furnace) 안으로 공기 중에서 이동시켰다. 800 mTorr로 압력을 감소시키고, 진공 (1.5 내지 2 × 10-3 mbar의 압력) 중에서 750℃로 25분 동안 샘플들을 가열하였으며, 이로인해 입자들(grains)의 크기가 증가시켰으며, 이어서 100 sccm H2 흐름 하에 20분 동안 어닐링하여 세정하였다. 그 다음, 그래핀 합성을 위해 H2 30 sccm 및 C2H2 30 sccm의 전구체 혼합물을 30분 동안 상기 챔버 내로 도입하였다. 성장이 완료된 후, 퍼니스를 수시간 동안 100 sccm Ar 대기 하에 상온으로 냉각시켰다. 냉각 공정 동안, 탄소 원자들은 촉매 표면 및 침전물로부터 확산되어 나와 그래핀 필름을 형성하였다. For CVD graphene growth, UHV-grown nickel samples were transferred in air into a low pressure CVD wall furnace consisting of 4-inch fused silica tubes. The pressure was reduced to 800 mTorr and the samples were heated for 25 minutes at 750 ° C. in a vacuum (pressure of 1.5 to 2 × 10 −3 mbar), thereby increasing the size of the grains, followed by 100 sccm Washing by annealing for 20 minutes under H 2 flow. Then a precursor mixture of H 2 30 sccm and C 2 H 2 30 sccm was introduced into the chamber for 30 minutes for graphene synthesis. After the growth was complete, the furnace was cooled to room temperature under 100 sccm Ar atmosphere for several hours. During the cooling process, the carbon atoms diffused out of the catalyst surface and the precipitate to form a graphene film.
도 17b는 상기 공정 조건으로 예측된 바와 같은, 불균일 다층 타입 그래핀을 나타내는 콘트라스트(contrast)를 갖는, 얻어진 소자(이하 Ni/CVD 샘플이라 함)의 광학 현미경 이미지이다. FIG. 17B is an optical microscope image of a device obtained (hereinafter referred to as Ni / CVD sample) with contrast representing non-uniform multilayer type graphene as predicted by the above process conditions.
RTA 그래핀 성장의 경우, 먼저 탄화수소 물질을 그래핀으로 전환시키는 촉매로서 사용되는 Ni 표면의 상부 상에 고체 탄소원인 PMMA-A2 레지스트를 2000 rpm으로 30초 동안 스핀코팅하여 약 300 nm 두께의 스핀코팅된 필름을 얻었다. 그 다음, 상기 샘플을 RTA 시스템의 석영관 챔버 내부에 넣었다. 상기 챔버를 1 mbar의 압력으로 H2(4%)/N2 혼합물의 흐름 하에 어닐링 공정(탈기)을 위하여 550℃로 15분 동안 가열하여, Ni 표면을 패시베이션하는 산화물 및 수산화물을 제거하였다. 그 다음, 상기 샘플을 H2/N2 중에서 120분 동안 상온으로 냉각시켜 Ni/RTA으로 명명되는 샘플을 얻었다.In the case of RTA graphene growth, a spin coating of about 300 nm thickness was first spin-coated at 2000 rpm for 30 seconds with PMMA-A2 resist, a solid carbon source, on top of the Ni surface used as a catalyst to convert hydrocarbon materials into graphene. Obtained film. The sample was then placed inside the quartz tube chamber of the RTA system. The chamber was heated for 15 minutes at 550 ° C. for an annealing process (degassing) under a flow of H 2 (4%) / N 2 mixture at a pressure of 1 mbar to remove oxides and hydroxides that passivate the Ni surface. The sample was then cooled to room temperature in H 2 / N 2 for 120 minutes to obtain a sample named Ni / RTA.
6-3: 트랜지스터 제작 및 특성 분석6-3: Transistor Fabrication and Characterization
전극 회로에 기준 면내(in-plane) 게이트 금 전극을 스텐실 마스크를 통해 UHV 증착으로 부가하였다. 유기 활성 채널은, 용이한 가공성, 공기-안정성 및 높은 이동도 (>3 ㎠V-1s- 1)의 주요 장점을 갖는, p-타입 고분자 IIDDT-C3, (폴리[1,1'-비스(4-데실테트라데실)-6-메틸-6'-(5'-메틸-[2,2'-비티오펜]-5-일)-[3,3'-비인돌리닐리덴]-2,2'-디온])으로 제조하였다. IIDDT-C3은 1-머티리얼스 아이엔씨.(1-Materials Inc.)로부터 구입하였으며, 클로로포름 중에 희석(~0.25 gL- 1)시켜 1000 rpm으로 스핀코팅시켜 약 20 nm 두께의 필름을 얻었다. 그 다음, 칩을 50℃에서 30분 동안 핫플레이트 상에 두어 용매를 증발시켰다. 유기층을 제작하기 위한 모든 공정 단계들은 상온에서 질소 대기 하에 글로브 박스 내부에서 수행하였다. An in-plane gate gold electrode was added to the electrode circuit by UHV deposition through a stencil mask. The organic active channel is a p-type polymer IIDDT-C3, (poly [1,1'-bis), with the main advantages of easy processability, air-stability and high mobility (> 3 cm 2 V -1 s - 1 ). (4-decyltetradecyl) -6-methyl-6 '-(5'-methyl- [2,2'-bithiophene] -5-yl)-[3,3'-biindolinylidene] -2, 2'-dione]). . IIDDT-C3 are 1-Materials, child NC was obtained from (1-Materials Inc.), was diluted in chloroform (~ 0.25 gL - 1) by spin coating at 1000 rpm to obtain a film of about 20 nm thickness. The chips were then placed on a hotplate at 50 ° C. for 30 minutes to evaporate the solvent. All process steps for fabricating the organic layer were carried out inside the glove box under nitrogen atmosphere at room temperature.
독립된 이온 겔 유전체의 라미네이트를 사용하여 이를 IIDDT-C3 채널 및 사이드-게이트 전극 상에 쌓아 상부 게이트 구조를 갖는 소자를 완성하였다. 이러한 사이드-게이트 배열은 반도체 채널을 갖는 게이트 전극의 정밀한 정렬을 필요로 하지 않는다. 이온 겔은 고분자 P(VDF-HFP) 및 이온성 액체 [BMIM][PF6]를 아세톤에 각각 1:4:7의 중량비로 용해시켜 제조하였다. Using a laminate of independent ion gel dielectrics, they were stacked on the IIDDT-C3 channel and side-gate electrodes to complete the device with the top gate structure. This side-gate arrangement does not require precise alignment of the gate electrode with the semiconductor channel. Ion gel was prepared by dissolving polymer P (VDF-HFP) and ionic liquid [BMIM] [PF 6 ] in acetone at a weight ratio of 1: 4: 7, respectively.
접촉 저항 측정은 게이트 4 프로브 방법으로 수행하였다. 이동 곡선(transfer curve)은, 드레인 전류(ISD) 및 핑거들의 프로브 전위(V1, V2)를 모니터링하면서 -0.1 V의 상수 드레인 전압(constant drain voltage, VD)에서 게이트 전압(VG)을 스윕(sweep)하여 얻었다. Keithley 2612A 소스 미터(Source Meter)를 사용하여 ISD를 측정하면서 VD 및 VG를 가하였다. 제2 소스 미터를 사용하여 2 핑거의 전위 V1 및 V2를 모니터하였다. 유전체 게이트 이온의 느린 필드-유도 확산 과정으로 인하여, 0.001 V/s의 VG 스윕 속도를 사용하는 것이 이들의 이동에 충분한 시간을 허용하였다. 모든 측정들은 상온에서 N2-충진된 글로브 박스 내부에서 수행하였다.Contact resistance measurements were performed with the Gate 4 probe method. The transfer curve is a gate voltage V G at a constant drain voltage V D of −0.1 V while monitoring the drain current I SD and the probe potentials V 1 , V 2 of the fingers. ) Was obtained by sweeping. V D and V G were added while measuring I SD using a Keithley 2612A Source Meter. The potentials V 1 and V 2 of the two fingers were monitored using a second source meter. Due to the slow field-induced diffusion process of the dielectric gate ions, using a V G sweep speed of 0.001 V / s allowed sufficient time for their movement. All measurements were performed inside an N 2 -filled glove box at room temperature.
실험예Experimental Example 4:  4:
라만 분석Raman analysis
라만 스펙트럼은 514 nm 여기 레이저(E = 2.41 eV)가 장착된 Renishaw InVia micro-Raman 분광계를 사용하여 대기 조건 하에서 얻었다. 노출 시간은 10초였으며, 스팟 크기는 약 1.5 ㎛이었다.Raman spectra were obtained under atmospheric conditions using a Renishaw InVia micro-Raman spectrometer equipped with a 514 nm excitation laser (E = 2.41 eV). The exposure time was 10 seconds and the spot size was about 1.5 μm.
X-선 광전자 분광 분석(X-ray photoelectron spectroscopy ( XPSXPS ))
XPS 스펙트럼은 ~10-7 mbar의 진공 압력에서 작용하는 1486.6 eV (Al Kα)의 광자 에너지로 얻었다. 각각의 샘플에 대해, XPS 측정을 표면의 2 다른 영역에서 수행하고 결과적인 스펙트럼을 10번의 스캔 이후 얻었다. X-선의 스팟 크기는 400 ㎛이었으며 에너지 단계 크기는 0.1 eV이었다. 스펙트럼 분석을 Shirley 백그라운드 보정 이후 가우시안-로렌츠 피크 형태를 갖는 "XPSPEAK 41" 소프트웨어를 이용하여 수행하였다. XPS spectra were obtained with a photon energy of 1486.6 eV (Al K α ) operating at a vacuum pressure of ˜10 −7 mbar. For each sample, XPS measurements were performed on two different areas of the surface and the resulting spectra were obtained after 10 scans. The spot size of the X-ray was 400 μm and the energy step size was 0.1 eV. Spectral analysis was performed using "XPSPEAK 41" software with Gaussian-Lorentz peak form after Shirley background correction.
대기 광전자 수율 카운터(Ambient photoelectron yield counter)Ambient photoelectron yield counter
일함수 값을 대기 광전자 수율 카운터 분광계(모델 AC-2, RKI Instruments.)로 측정하였다. 측정은 100 nW의 세기에서 0.05 eV 단계로 4.00 내지 5.60 eV 사이의 에너지 범위 내에서 수행하였다. 각각의 샘플에 대하여, sqrt(광전자 수율) 대 E 곡선의 온셋을 결정함으로써 스펙트럼으로부터 WF를 계산하였다.Work function values were measured with an atmospheric photoelectron yield counter spectrometer (model AC-2, RKI Instruments.). Measurements were performed in an energy range between 4.00 and 5.60 eV in 0.05 eV steps at an intensity of 100 nW. For each sample, WF was calculated from the spectrum by determining the onset of sqrt (photoelectron yield) vs. E curve.
Time-of-Flight Time-of-flight 2차 이온 질량Secondary ion mass 분광 분석( Spectroscopic analysis ( ToFToF -- SIMSSIMS ))
ToF-SIMS 5 기기(ION-TOF GmbH)를 사용한 ToF-SIMS 화학적-분해 깊이 프로파일링을 통해 그래핀-, Ni-층 및 이들의 경계면을 조사하였다. 비월(interlaced) 1keV Cs+ 스퍼터링 이온(듀얼 빔)과 결합된 25 keV Bi1 + 1차 이온을 사용하는 고질량 분해 모드로 프로파일을 얻었다. 1-500 mu의 질량 범위의 음의 2차 이온을 상부 표면으로부터 ~200nm의 샘플 깊이까지 기록하였다. 대표적인 재현성있는 결과를 보장하기 위하여, 100x100 ㎛2의 무작위로 선택된 1 내지 3개의 스캔 영역을 각각의 샘플에 대해 고려하였다. Dektak XT 프로파일로미터를 사용하여 크레이터 깊이를 측정함으로써 깊이 보정을 수행하였다.Graphene-, Ni-layers and their interfaces were investigated via ToF-SIMS chemical-degradation depth profiling using a ToF-SIMS 5 instrument (ION-TOF GmbH). Interlace (interlaced) 1keV Cs + ion-sputtering (dual beam) and the combined 25 keV Bi + 1, to obtain a profile of a high mass degradation mode using primary ions. Negative secondary ions in the mass range of 1-500 mu were recorded from the top surface to a sample depth of ˜200 nm. To ensure representative reproducible results, randomly selected 1-3 scan areas of 100 × 100 μm 2 were considered for each sample. Depth calibration was performed by measuring crater depth using a Dektak XT profilometer.
원자간력Atomic force 현미경(Atomic Force Microscopy) Atomic Force Microscopy
AFM 지형 맵핑을 간헐적 접촉 모드로 안티모니 n-도핑된 실리콘 팁을 사용하여 Bruker Dimension Edge 기기로 수행하였다.AFM terrain mapping was performed with a Bruker Dimension Edge instrument using antimony n-doped silicon tips in intermittent contact mode.
[결과 분석][Result analysis]
1. 탄소 Carbon 흡착층(adlayer)의Of the adsorption layer 라만 분광 분석 및 표면 지형 분석 Raman spectroscopy and surface topography
도 18a는 실시예 6에서 제조된 CVD 및 RTA 그래핀의 라만 스펙트럼을 보여준다. CVD 그래핀의 스펙트럼은 매우 작은 D 피크와 관련된 낮은 결함 밀도를 갖는 표면 위의 그라파이트 육각형 격자 구조의 존재를 나타내는 우수한 결정 특성을 보여준다. 넓고 날카로운 2D 피크는 잘못배향된(misoriented) 그래핀 다층의 형성의 특징이다. 표면의 광학 현미경 이미지는 상이한 명암도를 갖는 그래핀 플레이크의 패치워크(patchwork)를 보여주며, 이는 더 두꺼운 영역에 대한 증거를 제공할 수 있다. RTA 그래핀의 라만 분석은 이러한 표면이 결함있는 물질의 지표가 되는 높고 넓은 D 피크를 갖는 탄소의 무질서하고 불연속적인 층으로 이루어짐을 보여준다. 매우 작은 2D 피크는 C 원자들의 육각형 구조화가 없음을 나타낸다. 그러나, 광학 이미지는 광택이 나는 균일한 표면을 보여준다. 18A shows Raman spectra of CVD and RTA graphene prepared in Example 6. FIG. The spectrum of CVD graphene shows good crystal properties indicating the presence of graphite hexagonal lattice structures on surfaces with low defect density associated with very small D peaks. Wide and sharp 2D peaks are characteristic of the formation of misoriented graphene multilayers. Optical microscopy images of the surface show patchwork of graphene flakes with different contrast, which can provide evidence for thicker areas. Raman analysis of RTA graphene shows that these surfaces consist of disordered and discontinuous layers of carbon with high and broad D peaks that are indicative of defective materials. Very small 2D peaks indicate no hexagonal structure of C atoms. However, the optical image shows a shiny, uniform surface.
Ni/CVD 및 Ni/RTA 표면의 표면 거칠기는 지형 AFM 이미지를 기록함으로써 조사하였다(도 18b). 이러한 분석으로 도 18b의 Ni/RTA 표면이 평균 측면 크기 d = 118 nm를 갖는 평평한 과립으로 이루어지며, 스캔된 5 x 5 ㎛2 영역을 가로질러 어림 평균 제곱(rough mean square, rms) 거칠기 Rrms = 1.3 nm를 가짐을 알 수 있었다. 그러나, 도 18b의 Ni/CVD 필름의 AFM 이미지는 평균 측면 크기 d = 1 ㎛를 갖는 훨씬 더 큰 과립의 형성을 보여주고 스캔된 5 x 5 ㎛2 영역을 가로질러, Rrms = 41 nm까지의 거칠기의 심한 증가를 보여준다. 후자는 CVD 공정의 마지막 단계 동안 필름을 냉각할 때 발생하는 재결정화로부터 비롯된다. 또한, 600℃를 초과하는 온도에서의 RTA 공정이 필름의 거칠기에 있어 상당한 증가로 이어져, CVD-공정의 샘플을 연상시키는 AFM 이미지를 가졌다. 따라서, 공정 온도가 결과적인 샘플의 모폴로지를 결정하는데 있어 핵심적인 역할을 한다.Surface roughness of the Ni / CVD and Ni / RTA surfaces was investigated by recording topographic AFM images (FIG. 18B). This analysis shows that the Ni / RTA surface of FIG. 18B consists of flat granules with mean lateral size d = 118 nm, rough mean square (rms) roughness R rms across the scanned 5 x 5 μm 2 region. = 1.3 nm. However, the AFM image of the Ni / CVD film of FIG. 18B shows the formation of much larger granules with average lateral size d = 1 μm and across the scanned 5 × 5 μm 2 region, up to R rms = 41 nm. Shows a severe increase in roughness. The latter results from the recrystallization that occurs when cooling the film during the last step of the CVD process. In addition, the RTA process at temperatures above 600 ° C. led to a significant increase in the roughness of the film, with AFM images reminiscent of samples of the CVD-process. Thus, process temperature plays a key role in determining the morphology of the resulting sample.
2. 탄소/니켈 경계면의 2. Carbon / nickel interface XPSXPS 분광 분석 Spectroscopic analysis
그래핀 층 하부의 Ni 표면의 산화 상태를 결정하기 위하여, 노출된 Ni 필름을 기준 물질로서 사용하고, Ni/CVD 및 Ni/RTA 경계면을 XPS로 분석하였다. 각각에 대한
Figure PCTKR2016010546-appb-I000001
스펙트럼을 도 19a 내지 도 19c에 나타내었다. 예측된 대로, Ni에 대한 스펙트럼(도 19a)은 시편 이동 동안 공기 노출로 인한 산화된 Ni의 특징을 보여주었다.
Figure PCTKR2016010546-appb-I000002
은 각각 Ni 표면에서의 Ni3 + 이온의 형성 및 NiO 내 Ni2 + 이온의 형성과 관련된, 856.1 eV (3) 및 853.8 eV (2)의 결합 에너지의 세기를 갖는, Ni3 + (Ni2O3)와 Ni2 + (NiO) 산화 상태의 기여를 나타내었다. 852.6 eV (1)의 주요 피크는 순수 Ni 금속에 기인한다. 피크 (4) 및 (5)는 부수적인 피크이다. Ni/CVD에 대한
Figure PCTKR2016010546-appb-I000003
스펙트럼(도 19b)은 산화물이 없는 금속 Ni에 해당한다. 명확히 보여지는 바와 같이, Ni(도 19a)에 대해 나타나는 XPS 산화물 피크는 완전히 없으며 852.8 eV (1) 및 853.5 eV (2)에서의 우세한 피크는 각각 Ni 금속 및 Ni-C 고체 용액에 해당한다. 주요 선(main line)(852.8 eV에서의) 이상의 3.7 eV (minor) 및 6.0 eV (major) 근처의 B.E.를 갖는 피크 (3) 및 (4)는 각각 표면 및 벌크 플라즈몬에 해당하는 위성(satellite)을 나타낸다. Ni/RTA에 관한
Figure PCTKR2016010546-appb-I000004
스펙트럼에 대해서도 유사한 조사 결과를 얻을 수 있었다. 3개의 Ni-기초 샘플에 대한 비슷한 세기의 Ni의 상당히 큰 신호는 덧층이 얇고 수 nm 두께를 초과하지 않는다는 것을 나타낸다.
In order to determine the oxidation state of the Ni surface under the graphene layer, an exposed Ni film was used as reference material and the Ni / CVD and Ni / RTA interfaces were analyzed by XPS. For each
Figure PCTKR2016010546-appb-I000001
Spectra are shown in FIGS. 19A-19C. As expected, the spectrum for Ni (FIG. 19A) showed the characteristics of oxidized Ni due to air exposure during specimen movement.
Figure PCTKR2016010546-appb-I000002
Is, Ni 3 + (Ni 2 O having an intensity of the binding energy of the, 856.1 eV (3) and 853.8 eV (2) associated with the formation of the formed and NiO in Ni 2 + ions in Ni 3 + ions in the Ni surface, respectively 3 ) and the contribution of Ni 2 + (NiO) oxidation state. The main peak of 852.6 eV (1) is due to pure Ni metal. Peaks (4) and (5) are incidental peaks. For Ni / CVD
Figure PCTKR2016010546-appb-I000003
The spectrum (Fig. 19B) corresponds to the metal Ni without oxide. As can be seen clearly, the XPS oxide peaks appearing for Ni (FIG. 19A) are completely absent and the dominant peaks at 852.8 eV (1) and 853.5 eV (2) correspond to Ni metal and Ni-C solid solutions, respectively. Peaks (3) and (4) with BE near 3.7 eV (minor) and 6.0 eV (major) above the main line (at 852.8 eV) are satellites corresponding to surface and bulk plasmons, respectively. Indicates. Ni / RTA
Figure PCTKR2016010546-appb-I000004
Similar results were obtained for the spectra. A fairly large signal of Ni of similar intensity for three Ni-based samples indicates that the overlay is thin and does not exceed a few nm thickness.
따라서, CVD 및 RTA 가공된 샘플은 탄소-Ni 경계면에 산화물이 본질적으로 없는 Ni 필름을 나타낸다. 만일 노출된 Ni 상에는 패시베이션 산화물 필름이 nm 범위의 두께를 갖는다는 점을 상기한다면, Ni/CVD 및 Ni/RTA에 대한 데이터(도 19b 및 도 19c)와 Ni에 대한 데이터(도 19a)를 비교하였을 때 본 발명의 샘플 가공 이후에 단층 중 1-2 %을 초과하지 않는 표면 산화물이 존재한다는 점을 알 수 있을 것이다. Thus, CVD and RTA processed samples show Ni films that are essentially free of oxides at the carbon-Ni interface. If it is recalled that the passivation oxide film has a thickness in the nm range on the exposed Ni, the data for Ni / CVD and Ni / RTA (FIGS. 19B and 19C) were compared with the data for Ni (FIG. 19A). It will be appreciated that after the sample processing of the present invention there is a surface oxide not exceeding 1-2% of the monolayer.
2개월 동안 대기 환경에서 보관된 샘플에 대해 수행된 이러한 측정을 통해 탄소 필름이 산소 확산에 대한 효과적인 불침투성 막으로서 작용함을 확인하였다. 동일한 3개의 샘플에 대한 C 1s 스펙트럼을 도 19d 내지 도 19f에 나타내었다. Ni 필름의 경우(도 19d), 주요 피크가 관찰되었으며, 이는 각각 C-C (및 C-H 탄화수소) 및 C-O (및 C-OH)로서 해석되는 284.9 eV (1) 및 286.4 eV (2)에서의 2 성분으로 나뉠 수 있다. 288.7 eV (3)의 피크는 C-C=O 결합에 해당한다. Ni/CVD (도 19e) 및 Ni/RTA (도 19f)에 대한 C 1s 고해상도 XPS 스캔은 3 성분으로 분석된다. 284.3 eV (1) 및 284.6 eV (2) 피크가 가장 강한 피크이며 이들은 그래핀과 같은 방향족 네트워크 내 sp2 C-C 결합에 관한 것이다. 285.4 eV (3)에서의 세 번째 성분은 sp3 혼성화를 이룬 C=C 결합을 나타낸다. C 1s 스펙트럼으로부터 추론될 수 있는 또 다른 중요한 정보는 검출가능한 Ni 카바이드(Ni3C)의 부재에 관한 것이다. C 1s의 광전자방출 스펙트럼의 Ni3C의 특징은 284 eV 이하의 결합 에너지에서 나타나야 한다. 도 19e 및 도 19f의 스펙트럼은 이러한 위치에서의 어떠한 특징도 갖지 않는다.These measurements performed on samples stored in an atmospheric environment for two months confirmed that the carbon film acts as an effective impermeable membrane for oxygen diffusion. C 1s spectra for the same three samples are shown in FIGS. 19D-19F. For Ni films (FIG. 19D), the main peak was observed, with two components at 284.9 eV (1) and 286.4 eV (2), interpreted as CC (and CH hydrocarbons) and CO (and C-OH), respectively . Can be divided. The peak of 288.7 eV (3) corresponds to the CC = O bond. C 1s high resolution XPS scans for Ni / CVD (FIG. 19E) and Ni / RTA (FIG. 19F) were analyzed in three components. The 284.3 eV (1) and 284.6 eV (2) peaks are the strongest peaks and they relate to sp 2 CC bonds in aromatic networks such as graphene. The third component at 285.4 eV (3) shows a C = C bond with sp 3 hybridization. Another important piece of information that can be inferred from the C 1s spectrum is the absence of detectable Ni carbide (Ni 3 C). The characteristics of Ni 3 C in the photoelectron emission spectrum of C 1s should be shown at binding energies below 284 eV. The spectra of Figs. 19E and 19F do not have any features at this location.
3. 3. ToFToF -- SIMSSIMS 두께 및 조성 분석 Thickness and Composition Analysis
먼저 Ni/CVD, Ni/RTA 및 Ni 기준 샘플의 표면 및 벌크 니켈 필름 내에서의 니켈 산화물의 존재 및 형성을 평가하기 위해 ToF-SIMS를 사용하였다. ToF-SIMS was first used to assess the presence and formation of nickel oxide in the surfaces of the Ni / CVD, Ni / RTA and Ni reference samples and in the bulk nickel film.
도 20는 기준 샘플(공기에 노출된 Ni) 내 니켈, 산소 및 다양한 형태의 니켈 산화물에 대한 특징적인 단편의 깊이별(in-depth) 변화를 보여준다. 깊이는 샘플을 이온 충격에 노출시킨 후 두께측정기(profilometry)로 측정하였다. 주로 NiO, NiO2 및 Ni2O3로 이루어진 니켈 산화물의 뚜렷한 층이 관찰되었다. 이러한 산화물층은 ~2nm에 이르렀고, 그 이후 상부 함량의 7%까지 급격한 감소가 관찰되었다(NiOx/Ni 경계면). 이로부터, 모든 산화물들이 Ni 층의 깊이가 증가함에 따라 기하급수적으로 감소하는 것을 알 수 있다. 따라서, 상기에 기재된 바와 같이 제조된 금속성 층은, 그 자체로 상부 표면으로부터 확산하는 산화물의 적은 부분을 함유하는, Ni 층 상부의 2nm-두께 니켈 산화물층으로 이루어져 있음을 알 수 있다. FIG. 20 shows in-depth changes of characteristic fragments for nickel, oxygen and various forms of nickel oxide in a reference sample (Ni exposed to air). Depth was measured by profilometry after the sample was exposed to ion bombardment. A distinct layer of nickel oxide consisting mainly of NiO, NiO 2 and Ni 2 O 3 was observed. This oxide layer reached ˜2 nm, after which a sharp decrease was observed up to 7% of the top content (NiO x / Ni interface). From this, it can be seen that all the oxides decrease exponentially as the depth of the Ni layer increases. Thus, it can be seen that the metallic layer prepared as described above consists of a 2 nm-thick nickel oxide layer on top of the Ni layer, which itself contains a small fraction of the oxide diffusing from the top surface.
도 21는 기준 Ni 필름(검정색), Ni/CVD (적색) 및 Ni/RTA (청색) 내 NiO- 및 NiC2 -에 대한 깊이별 변화의 비교를 보여준다. 회색 영역은 증착된 그래핀층을 나타내며, 두께측정기로 보정된 깊이 스케일을 가지며, Ni/SiO2 계면 정렬 지점(alignment point)을 사용하였다. NiO- 프로파일에 따르면, XPS 표면 데이터와 같이, 두 증착 방법 모두가 니켈의 상부 상의 니켈 산화물층의 형성을 효과적으로 방지함을 보여준다. 상부 산화물층의 완전한 억제 이외에, Ni/RTA에서는 그래핀/Ni 계면에서 97.6% 감소가 관찰되었다. 니켈 층이 더 깊어질수록, Ni/RTA 내 산화물의 경향은 기준 Ni 필름의 경향과 비슷하며, Ni 층의 약 절반의 깊이에서 산화물 함량과 유사하였다. Ni/CVD에서, 상기 경향은 덜 명확하였다. 표면에서의 산화물의 초기 낮은 수준 이후에, 산화물 함량은 Ni 층의 깊이에 따라 증가하는 것 같았다. 이는 더욱 높은 가공 온도에 의해 촉발되는, 묻혀있는 Ni/Si 계면 유래의 산화물 확산으로 인한 것으로 설명 가능하다. 따라서, 더욱 낮은 온도의 RTA 가공은 효과적인 산화물 형성 및 확산 방지면에서 CVD 가공을 능가하는 것으로 나타났다. FIG. 21 shows a comparison of depth-by-depth changes for NiO - and NiC 2 - in reference Ni films (black), Ni / CVD (red) and Ni / RTA (blue). The gray area represents the deposited graphene layer, has a depth scale calibrated with a thickness meter, and used a Ni / SiO 2 interface alignment point. According to the NiO - profile, as with XPS surface data, both deposition methods effectively prevent the formation of a nickel oxide layer on top of nickel. In addition to complete inhibition of the top oxide layer, a 97.6% reduction in Ni / RTA was observed at the graphene / Ni interface. As the nickel layer became deeper, the tendency of the oxide in Ni / RTA was similar to that of the reference Ni film and similar to the oxide content at about half the depth of the Ni layer. In Ni / CVD, the trend was less clear. After the initial low level of oxide at the surface, the oxide content seemed to increase with the depth of the Ni layer. This can be explained by the oxide diffusion from the buried Ni / Si interface triggered by higher processing temperatures. Thus, lower temperature RTA processing has been shown to outperform CVD processing in terms of effective oxide formation and diffusion prevention.
또한, NiC2 - ToF-SIMS 프로파일은 탄소층 두께 및 탄소/Ni 필름 계면 품질에 대해 알려준다. Ni/RTA의 경우, 짧은 고원기(plateau) 이후 급격한 감소가 관찰되었다. 이는 ~5nm의 그래핀 층 두께를 나타내며 또한 Ni 층 내 탄소의 확산이 없거나 적음을 나타낸다(10nm 이후 <1%). 반면, Ni/CVD 샘플은 훨씬 더 두꺼운 탄소-풍부층(40nm 이상에 이름)과 전체 Ni 층 내 큰 확산을 보여주었다. 명확한 그래핀/Ni 경계면이 관찰되지 않았다. 기준 Ni 필름의 프로파일은 Ni 층 상부 또는 내부에 탄소가 없어 그래핀 증착이 없음을 보여주었다. CVD 샘플에 대한 도 21의 음의 두께 범위의 롱 테일은 AFM-기준 데이터와 같이 동일한 차수의 샘플의 거칠기를 정량화한다. 저온의 RTA 증착은 CVD 가공과 비교하여, 경계면 선명도 및 최소 탄소 확산 면에서 우수한 품질의 그래핀 층을 형성한다.In addition, the NiC 2 - ToF-SIMS profile informs about carbon layer thickness and carbon / Ni film interface quality. In the case of Ni / RTA, a sharp decrease was observed after a short plateau. This shows a graphene layer thickness of ˜5 nm and also shows no or little diffusion of carbon in the Ni layer (<1% after 10 nm). In contrast, Ni / CVD samples showed much thicker carbon-rich layers (named above 40 nm) and large diffusion in the entire Ni layer. No clear graphene / Ni interface was observed. The profile of the reference Ni film showed no graphene deposition as there was no carbon on or inside the Ni layer. The long tail in the negative thickness range of FIG. 21 for CVD samples quantifies the roughness of samples of the same order as the AFM-reference data. Low temperature RTA deposition forms a good quality graphene layer in terms of interface clarity and minimal carbon diffusion compared to CVD processing.
4. 4. 일함수Work function 측정 Measure
일함수(Work function, WF) 값은 전극/유기 전하 주입 확률에 영향을 줄 수 있다. 낮은 WF 값은 일반적으로 IIDDT-C3의 경우 5.52 eV에 놓이는 최고점유분자오비탈(HOMO)로의 정공의 주입에 대한 비교적 높은 장벽에 관한 것이다. Au, Ni 및 Ni/C에 대한 WF 측정을 0.05 eV의 단계로 4.00 내지 5.60 eV 사이의 에너지 범위에서 100 nW의 광원 세기로 상기 기재된 바와 같은 대기 광전자 수율 카운터를 통해 수행하였다. Au, Ni, Ni/RTA 및 Ni/CVD 필름에 대한 WF의 측정값은 각각 5.10 eV, 4.85 eV, 5.0 eV 및 5.11 eV이었다. 관찰된 Ni 값은 순수 Ni 표면의 값 이하이었다.Work function (WF) values can affect the electrode / organic charge injection probability. Low WF values relate to a relatively high barrier to the injection of holes into the highest occupancy molecule orbital (HOMO), which typically lies at 5.52 eV for IIDDT-C3. WF measurements for Au, Ni and Ni / C were performed through an atmospheric optoelectronic yield counter as described above with a light source intensity of 100 nW in an energy range between 4.00 and 5.60 eV in steps of 0.05 eV. The measurements of WF for Au, Ni, Ni / RTA and Ni / CVD films were 5.10 eV, 4.85 eV, 5.0 eV and 5.11 eV, respectively. The observed Ni value was below the value of the pure Ni surface.
5. 유기 전계효과 트랜지스터(5. Organic field effect transistor OFETOFET ) 특성 분석Characterization
도 22은 전해질 게이트 작동 원리를 나타낸 것이다. 고분자전해질 게이트는 107을 초과하는 비(ratio)로 OSC의 전도성을 매우 효과적으로 ON-OFF 제어할 수 있다. 매우 큰 ON 전도성 값 및 이동 곡선에서 명백하게 관찰되는 거대한 히스테리시스는 OSC의 전기화학적 도핑이 가장 큰 적용된 게이트 전압값에서 발생하는 것을 나타낸다. ISD 제곱근의 플롯(적색 곡선)은 2개의 뚜렷한 전압을 보여준다. 온셋 전압 V0 (도 22의 첫번째 경사)는 이온-겔/OSC 경계면에 음이온이 축적되기 시작하는 게이트 전압(소자 턴-온 전압)이고 소자의 큰 전기장 게이트로서 작용한다. 활성 채널 및 게이트 미디엄 간의 경계면에서의 처음 나노미터만이 전기장 도핑의 이러한 구간(regime)에서 전도성에 기여한다. 역치 전압(VTh)은 벌크의 OSC층의 전기화학적 도핑의 온셋에서 경사의 증가와 관련이 있다. 활성 채널이 OSC의 전체 두께에 관련될 수 있기 때문에, 이러한 전기화학적으로 도핑된 FET (EFET) 구간은 상당히 더욱 작은 계면 저항값으로 이어질 것으로 예측된다. 계면 저항은 일반적으로 단위 길이당 저항, 즉 RCW(여기서, W는 활성 OSC 채널의 너비에 관한 것임)로서 표현된다. 4가지 타입의 샘플을 비교하면, 도 23는 소스-드레인 전류 및 전기화학적 역치 전압값에서 차이가 관찰됨을 명백히 보여준다. Au 및 Ni/RTA 샘플은 가장 높은 전도성 값을 보여주는 반면, 음의 Ni 전극은 훨씬 더 작은 전류 및 더욱 큰 전기화학적 역치 전압을 명백히 나타낸다. 후자는 노출된(산화된) Ni에 대해 측정된 상당히 더욱 낮은 일함수로부터 비롯되는 것으로 예측된다.22 illustrates the principle of the electrolyte gate operation. The polyelectrolyte gate can control the OSC's conductivity very effectively on-off with a ratio exceeding 10 7 . The huge hysteresis apparently observed in very large ON conductivity values and shift curves indicates that electrochemical doping of the OSC occurs at the highest applied gate voltage value. The plot of the square root of I SD (red curve) shows two distinct voltages. The onset voltage V 0 (first slope in FIG. 22) is the gate voltage (device turn-on voltage) at which negative ions begin to accumulate at the ion-gel / OSC interface and acts as the large electric field gate of the device. Only the first nanometer at the interface between the active channel and the gate medium contributes to the conductivity in this regime of electric field doping. The threshold voltage (V Th ) is associated with an increase in slope at onset of electrochemical doping of the bulk OSC layer. Since the active channel can be related to the overall thickness of the OSC, this electrochemically doped FET (EFET) section is expected to lead to significantly smaller interfacial resistance values. Interfacial resistance is generally expressed as resistance per unit length, ie R C W, where W relates to the width of the active OSC channel. Comparing the four types of samples, FIG. 23 clearly shows that a difference is observed in the source-drain current and electrochemical threshold voltage values. Au and Ni / RTA samples show the highest conductivity values, while negative Ni electrodes clearly exhibit much smaller currents and larger electrochemical threshold voltages. The latter is expected to result from significantly lower work functions measured for exposed (oxidized) Ni.
4-프로브 배열의 이점을 취해, 도 24에서 보여주는 바와 같이 인가된 VG의 함수로 4개의 다른 금속 전극에 대해 너비-정규화된 전체 접촉 저항(RcW) 및 시트 저항(Rsheet)을 도출하였다. Taking the advantage of a four-probe arrangement, derive the width-normalized total contact resistance (R c W) and sheet resistance (R sheet ) for four different metal electrodes as a function of applied V G as shown in FIG. 24. It was.
모든 소자의 경우, 게이트 전압의 상승과 함께 RcW의 전형적인 하강이 관찰되었다. 높은 인가 VG(-3V 초과)의 범위에서, Ni/CVD 및 Ni/RTA 소자의 접촉 저항은 각각 Ni 소자에 관한 값보다 1차수 및 2차수 더 낮다. 이는 금속/OSC 계면을 향상시킴에 있어 Ni 표면의 탄소 패시베이션의 역할을 명백히 설명해준다.For all devices, a typical drop in R c W was observed with an increase in the gate voltage. In the range of high applied V G (> -3V), the contact resistance of Ni / CVD and Ni / RTA devices is 1st and 2nd lower than the values for Ni devices, respectively. This clearly illustrates the role of carbon passivation on the Ni surface in improving the metal / OSC interface.
도 25는 Au (적색 선) 및 Ni/RTA (검은색 선) 전극을 갖는 소자에 대한 VG 함수로서 소스 및 드레인에서의 접촉 저항(RS 및 RD)의 비교를 보여준다. 이는 우수한 성능의 Au 전극에 비해 Ni/RTA이 얼마나 유리한지를 보여준다. 두 소자의 경우, RS 및 RD는 동일한 차수를 가지고 동일한 거동을 나타내며, Au가 Ni/RTA보다 단지 조금만(marginally) 더욱 우수하게 작동한다. 낮은 VG에서, 소스 및 드레인의 접촉 저항 모두는 다소 큰 값을 나타내며, RD는 RS보다 상당히 더욱 컸다. VG가 감소함에 따라, RS는 약하게 감소하나, RD는 상당히 감소하여 결국 선 밖으로 벗어났다. 또한, 도 25는 큰 게이트 바이어스가 RS를 RD와 유사하게 만들었음을 보여주며, 이는 전하 주입이 완전히 최적화되었음을 나타낸다. 하기 표 1은 4개의 조사된 샘플의 주요 관찰된 전도성/저항 값을 나타낸다. 이는 Au 및 Ni/RTA 전극이 다른 2 타입의 샘플을 얼마나 능가하는지 정량적으로 명백히 보여준다.FIG. 25 shows a comparison of contact resistances R S and R D at the source and drain as a V G function for devices with Au (red line) and Ni / RTA (black line) electrodes. This shows how advantageous Ni / RTA is in comparison to a good Au electrode. For both devices, R S and R D have the same order and exhibit the same behavior, and Au works marginally better than Ni / RTA. At low V G , both the contact resistances of the source and drain exhibit somewhat larger values, and R D is significantly larger than R S. As V G decreases, R S decreases slightly, but R D decreases significantly and eventually falls off the line. In addition, FIG. 25 shows that a large gate bias made R S similar to R D , indicating that charge injection is fully optimized. Table 1 below shows the main observed conductivity / resistance values of the four irradiated samples. This quantitatively shows how Au and Ni / RTA electrodes outperform the other two types of samples.
전극electrode WF [eV]WF [eV] RC[Ω·cm](Vg= -3.2V)R C [Ωcm] (Vg = -3.2V) RC[Ω·cm]최대 VgR C [Ωcm] Max Vg RSheet [KΩ]R Sheet [KΩ] VTh [V]V Th [V]
AuAu 5.15.1 4.94.9 3.73.7 1.91.9 -2.71-2.71
Ni/RTANi / RTA 5.05.0 9.39.3 8.48.4 1.61.6 -2.79-2.79
Ni/CVDNi / CVD 5.115.11 129.4129.4 129.4129.4 4.64.6 -2.75-2.75
NiNi 4.854.85 6.6×103 6.6 × 10 3 1.6×103 1.6 × 10 3 48.748.7 -3.12-3.12

Claims (18)

  1. 금속 산화물 및/또는 금속 수산화물 함유 금속층과의 계면에서 금속 산화물 및/또는 금속 수산화물 함량을 저감시키면서 탄소계 패시베이션막을 형성시키는 방법으로서,A method of forming a carbon-based passivation film while reducing the content of metal oxides and / or metal hydroxides at an interface with a metal oxide and / or metal hydroxide-containing metal layer,
    금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하는 제1단계; 및 Applying a carbon-providing precursor on part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer; And
    금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하는 제2단계A second step of annealing under a reducing atmosphere and temperature capable of reducing the metal oxides and / or metal hydroxides to pure metals and decomposing the carbon providing precursors
    를 포함하는 것이 특징인 탄소계 패시베이션막 형성 방법.Carbon-based passivation film forming method comprising a.
  2. 제1항에 있어서, 환원 분위기는 수소 함유 분위기인 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the reducing atmosphere is a hydrogen-containing atmosphere.
  3. 제1항에 있어서, 탄소 제공 전구체는 C, O 및 H를 포함하는 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the carbon providing precursor comprises C, O, and H. 6.
  4. 제1항에 있어서, 탄소 제공 전구체는 합성고분자, 그래핀, 그래핀 옥사이드, 유기저분자 자기조립층, carbonate, 탄화수소, 당류, 전분, glycol, diol, polyol 및 음식물로 구성된 군에서 선택된 것이 특징인 탄소계 패시베이션막 형성 방법.The carbon providing precursor of claim 1, wherein the carbon providing precursor is selected from the group consisting of synthetic polymers, graphene, graphene oxide, organic low molecular weight self-assembled layer, carbonate, hydrocarbons, sugars, starch, glycol, diol, polyol and foods. Method of forming a passivation film.
  5. 제1항에 있어서, 탄소계 패시베이션막의 결정성을 탄소 제공 전구체 선택에 따라 조절하는 것이 특징인 탄소계 패시베이션막 형성 방법.The method according to claim 1, wherein the crystallinity of the carbon-based passivation film is adjusted according to the selection of the carbon donor precursor.
  6. 제1항에 있어서, 제1단계 및 제2단계는 동시에 수행되는 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the first and second steps are performed simultaneously.
  7. 제1항에 있어서, 금속은 Ni, Cu, Fe, Al, Stainless steel, Cr, Si 및 반도체로 구성된 군에서 1이상 선택된 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the metal is at least one selected from the group consisting of Ni, Cu, Fe, Al, Stainless steel, Cr, Si, and semiconductors.
  8. 제1항에 있어서, 제2단계에서 어닐링 방법은 rapid thermal annealing (RTA)인 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the annealing method in the second step is rapid thermal annealing (RTA).
  9. 제1항에 있어서, 제2단계에서 어닐링 방법은 저압 퍼니스 (low pressure furnace)에서 열처리하는 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the annealing method in the second step is a heat treatment in a low pressure furnace.
  10. 제1항에 있어서, 제2단계에서 어닐링시 온도는 탄소 제공 전구체가 열분해되면서 탄소가 금속 안으로 스며들 수 있는 온도이고, 어닐링시 시간은 탄소 제공 전구체에서 제공되는 탄소가 금속과 결합을 유지하여 금속 표면을 덮을 수 있는 탄소의 양을 함유할 수 있는 시간인 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the annealing temperature in the second step is a temperature at which carbon may penetrate into the metal as the carbon providing precursor is pyrolyzed, and the time of the annealing is such that the carbon provided in the carbon providing precursor maintains a bond with the metal. A method of forming a carbon-based passivation film, characterized in that it is time to contain an amount of carbon that can cover the surface.
  11. 제1항에 있어서, 제2단계에서 어닐링시 온도는 350 ~ 650 ℃이고 시간은 5 ~ 60 분인 것이 특징인 탄소계 패시베이션막 형성 방법.The method of claim 1, wherein the annealing in the second step is performed at a temperature of 350 to 650 ° C. and a time of 5 to 60 minutes.
  12. 금속층 및 상기 금속층 상에 형성된 탄소계 패시베이션막을 구비한 금속 전극에 있어서,In a metal electrode having a metal layer and a carbon-based passivation film formed on the metal layer,
    금속 산화물 및/또는 금속 수산화물 함유 금속층 표면 일부 또는 전부 상(上)에 탄소 제공 전구체를 적용하고, 금속 산화물 및/또는 금속 수산화물 함유 금속층을 금속 산화물 및/또는 금속 수산화물을 순수 금속으로 환원시킬 수 있고 탄소 제공 전구체를 분해할 수 있는 환원 분위기 및 온도 하에서 어닐링(annealing)하여, 금속층과 탄소계 패시베이션막의 계면에서 금속 산화물 및/또는 금속 수산화물이 감소 또는 제거된 것이 특징인 금속 전극.Applying a carbon donor precursor onto part or all of the surface of the metal oxide and / or metal hydroxide-containing metal layer and reducing the metal oxide and / or metal hydroxide-containing metal layer to pure metal and A metal electrode characterized by annealing under a reducing atmosphere and temperature capable of decomposing a carbon donor precursor, thereby reducing or eliminating metal oxides and / or metal hydroxides at the interface between the metal layer and the carbon-based passivation film.
  13. 제12항에 있어서, 제1항 내지 제11항 중 어느 한 항에 기재된 방법에 의해 제조된 것이 특징인 금속 전극.The metal electrode of Claim 12 manufactured by the method of any one of Claims 1-11.
  14. 제12항에 있어서, 금속층과 탄소계 패시베이션막의 계면에서 XPS에 의해서는 금속 산화물이 검출가능하지 않는 것이 특징인 금속전극.13. The metal electrode according to claim 12, wherein the metal oxide is not detectable by XPS at the interface between the metal layer and the carbon-based passivation film.
  15. 제12항에 있어서, 금속층과 탄소계 패시베이션막의 계면에서 XPS에 의해서는 금속 카바이드가 검출가능하지 않는 것이 특징인 금속전극.13. The metal electrode according to claim 12, wherein metal carbide is not detectable by XPS at the interface between the metal layer and the carbon-based passivation film.
  16. 제12항에 있어서, 금속층과 탄소계 패시베이션막 사이의 접촉저항이 1 ~ 90 옴 (ohm) 인 것이 특징인 금속 전극.The metal electrode according to claim 12, wherein the contact resistance between the metal layer and the carbon-based passivation film is 1 to 90 ohms.
  17. 제12항에 있어서, 탄소계 패시베이션막은 그래핀인 것이 특징인 금속 전극.The metal electrode according to claim 12, wherein the carbon-based passivation film is graphene.
  18. 제1항 내지 제11항 중 어느 한 항에 기재된 방법에 의해 탄소계 패시베이션막이 형성된 금속전극을 준비하는 a단계; 및A step of preparing a metal electrode on which a carbon-based passivation film is formed by the method according to any one of claims 1 to 11; And
    금속전극의 탄소계 패시베이션막 상에 용액공정으로 유기층을 형성시키는 b단계Step b of forming an organic layer by a solution process on the carbon-based passivation film of the metal electrode
    를 포함하는 것이 특징인 유기소자 제조방법.Organic device manufacturing method characterized in that it comprises a.
PCT/KR2016/010546 2015-09-21 2016-09-21 Method for forming carbon-based passivation film while reducing content of metal oxide on metal oxide-containing metal layer WO2017052202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150133303 2015-09-21
KR10-2015-0133303 2015-09-21

Publications (1)

Publication Number Publication Date
WO2017052202A1 true WO2017052202A1 (en) 2017-03-30

Family

ID=58386464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010546 WO2017052202A1 (en) 2015-09-21 2016-09-21 Method for forming carbon-based passivation film while reducing content of metal oxide on metal oxide-containing metal layer

Country Status (2)

Country Link
KR (1) KR20170034780A (en)
WO (1) WO2017052202A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040078450A (en) * 2003-03-04 2004-09-10 주식회사 엘리아테크 An Organic Electro-Luminescence Display Panel To be Build Up Light-transmission Layer And Light-absorption Layer And Fabrication Method Thereof
JP2010532300A (en) * 2007-04-20 2010-10-07 マックスプランク−ゲセルシャフト・ツール・フェーデルング・デル・ヴィッセンシャフテン・エー・ファウ High conductivity transparent carbon film for electrode material
KR20110000954A (en) * 2009-06-29 2011-01-06 주식회사 기승금속 Flush valve for a bedpan
JP2012236745A (en) * 2011-05-12 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Method for producing carbon thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040078450A (en) * 2003-03-04 2004-09-10 주식회사 엘리아테크 An Organic Electro-Luminescence Display Panel To be Build Up Light-transmission Layer And Light-absorption Layer And Fabrication Method Thereof
JP2010532300A (en) * 2007-04-20 2010-10-07 マックスプランク−ゲセルシャフト・ツール・フェーデルング・デル・ヴィッセンシャフテン・エー・ファウ High conductivity transparent carbon film for electrode material
KR20110000954A (en) * 2009-06-29 2011-01-06 주식회사 기승금속 Flush valve for a bedpan
JP2012236745A (en) * 2011-05-12 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Method for producing carbon thin film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VERDUCI, TIDARA ET AL.: "Carbon-Passivated Ni Electrodes for Charge Injection in Organic Semiconductors .", ADVANCED MATERIALS INTERFACES, vol. 3, no. 6, 18 January 2016 (2016-01-18), pages 2 - 8 *

Also Published As

Publication number Publication date
KR20170034780A (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US8502217B2 (en) Oxide semiconductor device including insulating layer and display apparatus using the same
US20150236169A1 (en) Semiconductor device and method of manufacturing the same
CN107026246B (en) Graphene-based thin film laminate and method for producing same
WO2018124390A1 (en) Perovskite solar cell using graphene electrode, and manufacturing method therefor
Zeng et al. Processing and encapsulation of silver patterns by using reactive ion etch and ammonia anneal
CN108023016B (en) Preparation method of thin film transistor
Milano et al. Ionic modulation of electrical conductivity of ZnO due to ambient moisture
Ball et al. Soluble fullerene derivatives: The effect of electronic structure on transistor performance and air stability
CN102379042A (en) Field effect transistor, method for manufacturing same, and electronic device using same
Wilke et al. Electronic properties of Cu-phthalocyanine/fullerene planar and bulk hetereojunctions on PEDOT: PSS
KR101877500B1 (en) Method for in-situ Preparation of Graphene Thin Film
WO2014137180A1 (en) Carbon based electronic device using partial reduction of graphene oxide and method for manufacturing same
Tigau et al. The influence of heat treatment on the electrical conductivity of antimony trioxide thin films
WO2017052202A1 (en) Method for forming carbon-based passivation film while reducing content of metal oxide on metal oxide-containing metal layer
JP2010212436A (en) Field effect transistor
CN110061124B (en) Robust graphene quantum Hall device and preparation method thereof
WO2016182118A1 (en) Method for doping support layer-based graphene through ion injection
JP5557595B2 (en) Electronic device manufacturing method, thin film transistor, electro-optical device, and sensor
EP4300548A1 (en) Encapsulant for compound having non-stoichiometric composition and method for producing same
Seo et al. Demonstration of PdSe2 CMOS Using Same Metal Contact in PdSe2 n‐/p‐MOSFETs through Thickness‐Dependent Phase Transition
Ang Titanium nitride films with high oxygen concentration
WO2018174514A1 (en) Nonvolatile memory element having multilevel resistance and capacitance memory characteristics and method for manufacturing same
WO2019045202A1 (en) Nano-stratified encapsulation structure, manufacturing method therefor, and flexible organic light emitting diode device comprising same
Sánchez-Vergara et al. Preparation of hybrid devices containing nylon/M (II) Pc-TTF (M= Cu, Zn) films with potential optical and electrical applications
WO2023146229A1 (en) Resistive hydrogen sensor comprising sensing layer having semiconducting single-walled carbon nanotubes, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848927

Country of ref document: EP

Kind code of ref document: A1