WO2017051958A1 - Thermoplastic spherical powder paint and method for forming same - Google Patents

Thermoplastic spherical powder paint and method for forming same Download PDF

Info

Publication number
WO2017051958A1
WO2017051958A1 PCT/KR2015/010194 KR2015010194W WO2017051958A1 WO 2017051958 A1 WO2017051958 A1 WO 2017051958A1 KR 2015010194 W KR2015010194 W KR 2015010194W WO 2017051958 A1 WO2017051958 A1 WO 2017051958A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
spherical
polyolefin
modified
thermoplastic
Prior art date
Application number
PCT/KR2015/010194
Other languages
French (fr)
Korean (ko)
Inventor
정화영
황석환
장래철
윤경준
김대인
노태준
Original Assignee
(주)투에이취켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)투에이취켐 filed Critical (주)투에이취켐
Publication of WO2017051958A1 publication Critical patent/WO2017051958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic spherical powder coating material and a method for forming the same.
  • the paint contains various solvents and diluents in liquid form.
  • the amount of powder coatings containing no toxic solvents and diluents is increasing rapidly every year, and among them, researches on thermoplastic powder coatings which are chemically stable and have excellent surface texture and feel of coating coatings have been actively conducted.
  • Such a thermoplastic powder coating agent has poor adhesion to a coating material due to the characteristics of the nonpolar polyolefin, and the durability of the coating film is poor.
  • steel pipes are widely used in various buildings, structures, and industrial facilities.
  • steel pipes are used as a pipeline for gas, oil, and the like.
  • the steel pipe is coated and used because it is easily damaged in an environment such as rust or cold due to contact with water or air.
  • a coating film was formed by painting a steel pipe using a paint containing an organic solvent or by adhering a film to the steel pipe surface.
  • the organic solvent is not only harmful to the human body and the environment, but its use is limited due to recent environmental regulations, and the film is properly formed in a section where the process is complicated and the surface gradient is severe by bolts or nuts. It's hard to be.
  • the present invention provides a thermoplastic spherical powder coating having a high sphericity.
  • the present invention provides a thermoplastic spherical powder coating having excellent physical properties.
  • the present invention provides a thermoplastic spherical powder coating which can improve the coating process efficiency.
  • the present invention provides a method for forming the thermoplastic spherical powder coating material.
  • thermoplastic spherical powder paint includes a spherical polyolefin powder having a sphericity of 0.8 or more.
  • the spherical polyolefin powder may have a sphericity of 0.9 or more.
  • the spherical polyolefin powder may include a modified polyolefin powder.
  • the modified polyolefin powder may include a modified polyethylene powder or a modified polypropylene powder.
  • the modified polyolefin powder may include a polyolefin powder modified with maleic acid.
  • the spherical polyolefin powder may be formed by surface heat treating the polyolefin powder.
  • the surface heat treatment may be performed by instantaneous heating of the polyolefin powder with a flame thrower.
  • the method for forming a thermoplastic spherical powder coating material may include forming a spherical polyolefin powder by surface heat treating the polyolefin powder and cooling the spherical polyolefin powder.
  • Forming the spherical polyolefin powder may include freely dropping the polyolefin powder and instantaneously heating the freely falling polyolefin powder with a flame thrower.
  • the flame temperature of the flame thrower may be 500 ⁇ 1,500 °C.
  • the flame discharge pressure of the flame thrower may be 0.1 ⁇ 0.5 MPa.
  • the spherical polyolefin powder may be naturally cooled while being transported from the cooling pipe by the air flow provided by a blower connected to the cooling pipe freely falling into the cooling pipe.
  • the polyolefin powder may include a modified polyolefin powder.
  • the modified polyolefin powder may include a modified polyethylene powder or a modified polypropylene powder.
  • the modified polyolefin powder may include a polyolefin powder modified with maleic acid.
  • the thermoplastic spherical coating material having a high sphericity may be formed by a simple process.
  • the thermoplastic spherical powder coating has a high sphericity, smooth surface of the powder particles, high bulk specific gravity and good particle flow, so that the coating film can be uniformly formed on the surface of the coating surface having a high surface gradient, such as surface roughness and bending property.
  • Excellent physical properties The thermoplastic spherical powder coating can form a coating film quickly, it is possible to improve the coating film processing efficiency. In addition, it is eco-friendly because no solvent or diluent is used.
  • thermoplastic spherical powder paint according to an embodiment of the present invention.
  • FIGS. 3 and 4 show spherical maleic acid modified polyethylene powder according to embodiments of the present invention.
  • spherical may refer to a particle shape having a sphericity of 0.8 or more.
  • thermoplastic spherical powder paint according to an embodiment of the present invention.
  • the polyolefin powder 12 is freely dropped into the flame 11 discharged by the flame thrower 10.
  • the flame thrower 10 may form and discharge a flame by using a heat source such as oxygen, acetylene, argon, butane, or propane.
  • the polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 from which the flame 11 is discharged, and is instantaneously heated by the flame 11 while being moved along the flame 11 to be surface heat-treated.
  • the temperature of the flame 11 discharged from the flame thrower 10 is preferably 500 to 1,500 ° C.
  • the flame temperature is less than 500 °C surface heat treatment may not be performed properly, if it is more than 1,500 °C polyolefin powder 12 may be overheated and melted may not form a spherical powder properly.
  • the flame discharge pressure of the flame thrower 10 is 0.1-0.5 Mpa.
  • the flame discharge pressure is less than 0.1MPa, the polyolefin powder 12 passes through the flame as it is and is heated by the flame for too short, so that the surface heat treatment may not be performed properly.
  • the heat treatment may not be performed properly due to the flame, or may not fall into the suction port 22 disposed on the cooling pipe 23, thereby decreasing productivity.
  • the polyolefin powder 12 may comprise a modified polyolefin.
  • the modified olefin for example, the modified polyolefin, for example, may include a polyolefin modified with maleic anhydride.
  • the modified polyolefin may be formed by, for example, reacting extrusion after adding maleic anhydride, a peroxide, and an antioxidant to the polyolefin.
  • the maleic anhydride may be added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyolefin to be modified. If the content of maleic anhydride is less than 0.1 part by weight, the graft ratio may be low, and thus, the adhesive force may be lowered.
  • the peroxide is dicumyl peroxide, benzoyl peroxide, t-butylperoxy-2-ethyl hexanoate, p-chlorobenzoyl peroxide, t-butylperoxy isobutyrate, t-butylperoxy isopropyl carbonate, 2 , 5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxy acetate, di-t-butyl diperoxy phthalate, t-butylperoxy maleic acid, cyclohexanone peroxide, t-butyl At least one selected from peroxy benzoate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butyl cumyl peroxide, t-butyl hydroperoxide and di-t-butyl peroxide It may include.
  • the antioxidant may include, for example,
  • the modified polyolefin may include maleic acid-modified polyethylene formed by adding maleic acid to high density polyethylene or maleic acid-modified polypropylene formed by adding maleic acid to polypropylene.
  • Melt flow index (190 °C, 2.16kg) of the modified polyolefin may be 5 ⁇ 40g / 10 minutes. If the melt flow index is less than 5g / 10min, the flowability of the powder coating melted during coating may be too low, and the coating may not be formed properly. If the meltflow index is more than 40g / 10min, the flowability of the powder coating is too high, so that the thickness of the coating film is uniform. You can't.
  • the polyolefin powder 12 may further include at least one resin selected from high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene vinyl acetate, and elastomers, and at least one additive selected from pigments, antioxidants, light stabilizers, and the like.
  • the polyolefin powder 12 may be formed by extruding and then grinding the modified polyolefin powder or may be formed by mixing and extruding by mixing the resin component and the additive component with the modified polyolefin powder, and the type or method of forming It is not limited.
  • the spherical polyolefin powder 13 may be formed from the polyolefin powder 12 by the surface heat treatment.
  • the spherical polyolefin powder 13 may have a sphericity of 0.8 or more, and preferably may have a sphericity of 0.9 or more.
  • the spherical polyolefin powder 13 may be formed so that its sphericity can be adjusted by adjusting the flame temperature and the flame discharge pressure, and a spherical degree of 0.8 or more may be formed to have a sphericity of 0.9 or more.
  • the polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 through which the flame 11 is discharged, and surface-treated by the flame 11 while moving along the flame 11. Is formed.
  • Spherical polyolefin powder 13 is sucked into the inlet 22 and collected in the hopper 30 through the cooling pipe 23. Thereby, manufacture of the thermoplastic spherical powder coating 14 can be completed.
  • the spherical polyolefin powder 13 introduced into the cooling pipe 23 through the inlet 22 is formed by the blower 20 connected to the cooling pipe 23 and is cooled by the air flow provided through the high speed air flow pipe 21. It can be naturally cooled while being conveyed at 23.
  • the spherical polyolefin powder 13 is conveyed to the hopper 30 through the cooling piping 23 by the said airflow.
  • thermoplastic spherical powder coating material 14 collected in the hopper 30 may be discharged and packaged through the discharge valve 31.
  • Maleic acid was added to the polyethylene resin for reaction extrusion, followed by pulverization to form a modified polyethylene powder having an average particle size of 120 ⁇ m.
  • the flame was set to be discharged at a discharge pressure of 0.2 MPa in a flame thrower having a nozzle size of 5 mm.
  • the modified polyethylene powder was freely dropped at the inlet of the flamethrower in which the flame was discharged and subjected to surface heat treatment to form spherical modified polyethylene powder, which was then cooled through a cooling pipe and collected.
  • a spherical modified polyethylene powder was formed and collected in the same manner as in Example 1 except that the flame discharge pressure was set to 0.1 MPa.
  • the physical properties of the spherical modified polyethylene powders of Examples 1 and 2 and the modified polyethylene powder (comparative example) not subjected to surface heat treatment were measured and shown in Table 1 below.
  • 2 shows the spherical modified polyethylene powder of Example 1
  • FIG. 3 shows the spherical modified polyethylene powder of Example 2
  • FIG. 4 shows the modified polyethylene powder of Comparative Example.
  • spherical may refer to a particle shape having a sphericity of 0.8 or more.
  • thermoplastic spherical powder paint according to an embodiment of the present invention.
  • the polyolefin powder 12 is freely dropped into the flame 11 discharged by the flame thrower 10.
  • the flame thrower 10 may form and discharge a flame by using a heat source such as oxygen, acetylene, argon, butane, or propane.
  • the polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 from which the flame 11 is discharged, and is instantaneously heated by the flame 11 while being moved along the flame 11 to be surface heat-treated.
  • the temperature of the flame 11 discharged from the flame thrower 10 is preferably 500 to 1,500 ° C.
  • the flame temperature is less than 500 °C surface heat treatment may not be performed properly, if it is more than 1,500 °C polyolefin powder 12 may be overheated and melted may not form a spherical powder properly.
  • the flame discharge pressure of the flame thrower 10 is 0.1-0.5 Mpa.
  • the flame discharge pressure is less than 0.1MPa, the polyolefin powder 12 passes through the flame as it is and is heated by the flame for too short, so that the surface heat treatment may not be performed properly.
  • the heat treatment may not be performed properly due to the flame, or may not fall into the suction port 22 disposed on the cooling pipe 23, thereby decreasing productivity.
  • the polyolefin powder 12 may comprise a modified polyolefin.
  • the modified olefin for example, the modified polyolefin, for example, may include a polyolefin modified with maleic anhydride.
  • the modified polyolefin may be formed by, for example, reacting extrusion after adding maleic anhydride, a peroxide, and an antioxidant to the polyolefin.
  • the maleic anhydride may be added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyolefin to be modified. If the content of maleic anhydride is less than 0.1 part by weight, the graft ratio may be low, and thus, the adhesive force may be lowered.
  • the peroxide is dicumyl peroxide, benzoyl peroxide, t-butylperoxy-2-ethyl hexanoate, p-chlorobenzoyl peroxide, t-butylperoxy isobutyrate, t-butylperoxy isopropyl carbonate, 2 , 5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxy acetate, di-t-butyl diperoxy phthalate, t-butylperoxy maleic acid, cyclohexanone peroxide, t-butyl At least one selected from peroxy benzoate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butyl cumyl peroxide, t-butyl hydroperoxide and di-t-butyl peroxide It may include.
  • the antioxidant may include, for example,
  • the modified polyolefin may include maleic acid-modified polyethylene formed by adding maleic acid to high density polyethylene or maleic acid-modified polypropylene formed by adding maleic acid to polypropylene.
  • Melt flow index (190 °C, 2.16kg) of the modified polyolefin may be 5 ⁇ 40g / 10 minutes. If the melt flow index is less than 5g / 10min, the flowability of the powder coating melted during coating may be too low, and the coating may not be formed properly. If the meltflow index is more than 40g / 10min, the flowability of the powder coating is too high, so that the thickness of the coating film is uniform. You can't.
  • the polyolefin powder 12 may further include at least one resin selected from high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene vinyl acetate, and elastomers, and at least one additive selected from pigments, antioxidants, light stabilizers, and the like.
  • the polyolefin powder 12 may be formed by extruding and then grinding the modified polyolefin powder or may be formed by mixing and extruding by mixing the resin component and the additive component with the modified polyolefin powder, and the type or method of forming It is not limited.
  • the spherical polyolefin powder 13 may be formed from the polyolefin powder 12 by the surface heat treatment.
  • the spherical polyolefin powder 13 may have a sphericity of 0.8 or more, and preferably may have a sphericity of 0.9 or more.
  • the spherical polyolefin powder 13 may be formed so that its sphericity can be adjusted by adjusting the flame temperature and the flame discharge pressure, and a spherical degree of 0.8 or more may be formed to have a sphericity of 0.9 or more.
  • the polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 through which the flame 11 is discharged, and surface-treated by the flame 11 while moving along the flame 11. Is formed.
  • Spherical polyolefin powder 13 is sucked into the inlet 22 and collected in the hopper 30 through the cooling pipe 23. Thereby, manufacture of the thermoplastic spherical powder coating 14 can be completed.
  • the spherical polyolefin powder 13 introduced into the cooling pipe 23 through the inlet 22 is formed by the blower 20 connected to the cooling pipe 23 and is cooled by the air flow provided through the high speed air flow pipe 21. It can be naturally cooled while being conveyed at 23.
  • the spherical polyolefin powder 13 is conveyed to the hopper 30 through the cooling piping 23 by the said airflow.
  • thermoplastic spherical powder coating material 14 collected in the hopper 30 may be discharged and packaged through the discharge valve 31.
  • Maleic acid was added to the polyethylene resin for reaction extrusion, followed by pulverization to form a modified polyethylene powder having an average particle size of 120 ⁇ m.
  • the flame was set to be discharged at a discharge pressure of 0.2 MPa in a flame thrower having a nozzle size of 5 mm.
  • the modified polyethylene powder was freely dropped at the inlet of the flamethrower in which the flame was discharged and subjected to surface heat treatment to form spherical modified polyethylene powder, which was then cooled through a cooling pipe and collected.
  • a spherical modified polyethylene powder was formed and collected in the same manner as in Example 1 except that the flame discharge pressure was set to 0.1 MPa.
  • the physical properties of the spherical modified polyethylene powders of Examples 1 and 2 and the modified polyethylene powder (comparative example) not subjected to surface heat treatment were measured and shown in Table 1 below.
  • 2 shows the spherical modified polyethylene powder of Example 1
  • FIG. 3 shows the spherical modified polyethylene powder of Example 2
  • FIG. 4 shows the modified polyethylene powder of Comparative Example.
  • Example 2 Comparative example Spherical diagram 0.9 0.8 0.6 Average particle size 103 ⁇ m 110 ⁇ m 120 ⁇ m Bulk specific gravity 0.46 0.44 0.39 Particle Flowability 4.2 4.0 3.2 Surface roughness of coating 0.2 0.2 2.3 Bending Good Good Bad
  • a spherical powder paint having excellent physical properties may be formed by a simple process of surface heat treatment.
  • the modified polyethylene powder of the comparative example has a rough surface and is not smooth, resulting in low bulk specific gravity, low melting rate of powder particles during thermal melting, and low particle flowability due to agglomeration between powder particles, resulting in uniform coating.
  • the surface roughness and the bendability were poor.
  • the spherical modified polyethylene powders of Examples 1 and 2 have high sphericity, smooth surface of powder particles, high bulk specific gravity and good particle flow, so that the coating film is uniformly formed on the surface of the coating material having a high surface gradient. It has been shown that the surface roughness and the bendability are excellent.
  • the spherical modified polyethylene powder of Examples 1 and 2 may form a coating film much faster than the modified polyethylene powder of the Comparative Example.
  • the thermoplastic spherical coating material having a high sphericity may be formed by a simple process.
  • the thermoplastic spherical powder coating has a high sphericity, smooth surface of the powder particles, high bulk specific gravity and good particle flow, so that the coating film can be uniformly formed on the surface of the coating surface having a high surface gradient, such as surface roughness and bending property.
  • Excellent physical properties The thermoplastic spherical powder coating can form a coating film quickly, it is possible to improve the coating film processing efficiency. In addition, it is eco-friendly because no solvent or diluent is used.

Abstract

Provided are a thermoplastic spherical powder paint and a method for forming same. The thermoplastic spherical powder paint comprises a spherical polyolefin powder having a sphericity of 0.8 or higher. The method for forming the thermoplastic spherical powder paint may comprise the steps of: forming a spherical polyolefin powder by heat-treating the surface of a polyolefin powder; and cooling the spherical polyolefin powder.

Description

열가소성 구형 분체 도료 및 그 형성 방법Thermoplastic Spherical Powder Paint and Formation Method
본 발명은 열가소성 구형 분체 도료 및 그 형성 방법에 관한 것이다.The present invention relates to a thermoplastic spherical powder coating material and a method for forming the same.
각종 산업 및 가정에서 심미적 효과와 제품의 마감을 향상시키기 위해 폭 넓게 사용되고 있는 도료는 액상으로 각종 용제 및 희석제를 포함하고 있다. 그러나 최근 국내외적으로 상기 용제 및 희석제에 의해 발생하는 환경오염에 대한 관심이 증가하고 있으며, 유독성을 가진 휘발성 유기화합물에 대한 규제가 법규화되어 친환경 제품에 대한 요구가 증가하고 있다. 이에 따라, 유독성 용제 및 희석제를 포함하지 않는 분말 코팅제의 사용량이 매년 급증하고 있으며, 그 중에서 화학적으로 안정하고 코팅 도막의 표면 질감 및 촉감이 우수한 열가소성계 분말 코팅제에 대한 연구가 활발히 수행되고 있다. 이러한 열가소성계 분말 코팅제는 비극성 폴리올레핀의 특성상 피도물과의 접착성이 좋지 못하고 코팅 도막의 내구성이 떨어진다.Widely used in various industries and homes to improve the aesthetic effect and finish of the product, the paint contains various solvents and diluents in liquid form. However, in recent years, there has been a growing interest in environmental pollution caused by the solvents and diluents at home and abroad, and the regulations on volatile organic compounds having toxicities are legalized to increase the demand for environmentally friendly products. Accordingly, the amount of powder coatings containing no toxic solvents and diluents is increasing rapidly every year, and among them, researches on thermoplastic powder coatings which are chemically stable and have excellent surface texture and feel of coating coatings have been actively conducted. Such a thermoplastic powder coating agent has poor adhesion to a coating material due to the characteristics of the nonpolar polyolefin, and the durability of the coating film is poor.
한편, 강관은 다양한 건축물, 구조물, 산업 시설 등에 널리 사용되고 있다. 특히 강관은 가스, 오일 등의 파이프 라인으로 많이 사용된다. 상기 강관은 물이나 대기와 접촉하여 녹이 슬거나 혹한 등의 환경에서 손상되기 쉽기 때문에 도장되어 사용되고 있다. 종래에는 유기 용제가 포함된 도료를 이용하여 강관을 도장하거나 강관 표면에 필름을 접착시켜 도막을 형성하였다. 그러나, 상기 유기 용제는 인체 및 환경에 해로울 뿐만 아니라 최근 환경 규제의 심화로 그 사용이 제한되고 있고, 상기 필름에 의한 도막은 공정이 복잡하고 볼트나 너트 등에 의해 표면 구배가 심한 구간에서는 도막이 제대로 형성되기 어렵다.Meanwhile, steel pipes are widely used in various buildings, structures, and industrial facilities. In particular, steel pipes are used as a pipeline for gas, oil, and the like. The steel pipe is coated and used because it is easily damaged in an environment such as rust or cold due to contact with water or air. Conventionally, a coating film was formed by painting a steel pipe using a paint containing an organic solvent or by adhering a film to the steel pipe surface. However, the organic solvent is not only harmful to the human body and the environment, but its use is limited due to recent environmental regulations, and the film is properly formed in a section where the process is complicated and the surface gradient is severe by bolts or nuts. It's hard to be.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 구형도가 높은 열가소성 구형 분체 도료를 제공한다.In order to solve the above problems, the present invention provides a thermoplastic spherical powder coating having a high sphericity.
본 발명은 물성이 우수한 열가소성 구형 분체 도료를 제공한다.The present invention provides a thermoplastic spherical powder coating having excellent physical properties.
본 발명은 도막 공정 효율을 향상시킬 수 있는 열가소성 구형 분체 도료를 제공한다.The present invention provides a thermoplastic spherical powder coating which can improve the coating process efficiency.
본 발명은 상기 열가소성 구형 분체 도료의 형성 방법을 제공한다.The present invention provides a method for forming the thermoplastic spherical powder coating material.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.Other objects of the present invention will become apparent from the following detailed description and the accompanying drawings.
본 발명의 실시예들에 따른 열가소성 구형 분체 도료는, 구형도가 0.8 이상인 구형 폴리올레핀 분말을 포함한다.The thermoplastic spherical powder paint according to the embodiments of the present invention includes a spherical polyolefin powder having a sphericity of 0.8 or more.
상기 구형 폴리올레핀 분말은 0.9 이상의 구형도를 가질 수 있다.The spherical polyolefin powder may have a sphericity of 0.9 or more.
상기 구형 폴리올레핀 분말은 변성 폴리올레핀 분말을 포함할 수 있다. 상기 변성 폴리올레핀 분말은 변성 폴리에틸렌 분말 또는 변성 폴리프로필렌 분말을 포함할 수 있다. 상기 변성 폴리올레핀 분말은 말레인산으로 변성된 폴리올레핀 분말을 포함할 수 있다.The spherical polyolefin powder may include a modified polyolefin powder. The modified polyolefin powder may include a modified polyethylene powder or a modified polypropylene powder. The modified polyolefin powder may include a polyolefin powder modified with maleic acid.
상기 구형 폴리올레핀 분말은 폴리올레핀 분말을 표면 열처리하는 것에 의해 형성될 수 있다. 상기 표면 열처리는 상기 폴리올레핀 분말을 화염 방사기로 순간 가열하는 것에 의해 수행될 수 있다.The spherical polyolefin powder may be formed by surface heat treating the polyolefin powder. The surface heat treatment may be performed by instantaneous heating of the polyolefin powder with a flame thrower.
본 발명의 실시예들에 따른 열가소성 구형 분체 도료의 형성 방법은, 폴리올레핀 분말을 표면 열처리하여 구형 폴리올레핀 분말을 형성하는 단계 및 상기 구형 폴리올레핀 분말을 냉각하는 단계를 포함할 수 있다.The method for forming a thermoplastic spherical powder coating material according to embodiments of the present invention may include forming a spherical polyolefin powder by surface heat treating the polyolefin powder and cooling the spherical polyolefin powder.
상기 구형 폴리올레핀 분말을 형성하는 단계는, 상기 폴리올레핀 분말을 자유낙하시키는 단계, 및 자유낙하하는 상기 폴리올레핀 분말을 화염 방사기로 순간 가열하는 단계를 포함할 수 있다. 상기 화염 방사기의 화염 온도는 500 ~ 1,500℃일 수 있다. 상기 화염 방사기의 화염 토출 압력은 0.1 ~ 0.5 MPa일 수 있다.Forming the spherical polyolefin powder may include freely dropping the polyolefin powder and instantaneously heating the freely falling polyolefin powder with a flame thrower. The flame temperature of the flame thrower may be 500 ~ 1,500 ℃. The flame discharge pressure of the flame thrower may be 0.1 ~ 0.5 MPa.
상기 구형 폴리올레핀 분말은, 냉각 배관으로 자유낙하하고 상기 냉각 배관에 연결된 블로워에 의해 제공되는 기류에 의해 상기 냉각 배관에서 이송되면서 자연 냉각될 수 있다.The spherical polyolefin powder may be naturally cooled while being transported from the cooling pipe by the air flow provided by a blower connected to the cooling pipe freely falling into the cooling pipe.
상기 폴리올레핀 분말은 변성 폴리올레핀 분말을 포함할 수 있다. 상기 변성 폴리올레핀 분말은 변성 폴리에틸렌 분말 또는 변성 폴리프로필렌 분말을 포함할 수 있다. 상기 변성 폴리올레핀 분말은 말레인산으로 변성된 폴리올레핀 분말을 포함할 수 있다.The polyolefin powder may include a modified polyolefin powder. The modified polyolefin powder may include a modified polyethylene powder or a modified polypropylene powder. The modified polyolefin powder may include a polyolefin powder modified with maleic acid.
본 발명의 실시예들에 따르면, 구형도가 높은 열가소성 구형 분체 도료가 간단한 공정으로 형성될 수 있다. 상기 열가소성 구형 분체 도료는 구형도가 높고, 분체 입자의 표면이 매끄러워 벌크 비중이 높고 입자흐름성이 양호하여 표면 구배가 심한 피도물의 표면에도 도막이 균일하게 형성될 수 있고 표면 조도와 벤딩성 등의 물성이 우수하다. 상기 열가소성 구형 분체 도료는 도막을 빠르게 형성할 수 있어, 도막 공정 효율을 향상시킬 수 있다. 또, 용제나 희석제 등을 사용하지 않아 친환경적이다.According to embodiments of the present invention, the thermoplastic spherical coating material having a high sphericity may be formed by a simple process. The thermoplastic spherical powder coating has a high sphericity, smooth surface of the powder particles, high bulk specific gravity and good particle flow, so that the coating film can be uniformly formed on the surface of the coating surface having a high surface gradient, such as surface roughness and bending property. Excellent physical properties The thermoplastic spherical powder coating can form a coating film quickly, it is possible to improve the coating film processing efficiency. In addition, it is eco-friendly because no solvent or diluent is used.
도 1은 본 발명의 일 실시예에 따른 열가소성 구형 분체 도료의 형성 방법을 개략적으로 나타낸다.1 schematically shows a method of forming a thermoplastic spherical powder paint according to an embodiment of the present invention.
도 2는 말레인산 변성 폴리에틸렌 분말을 나타내고, 도 3 및 도 4는 본 발명의 실시예들에 따른 구형 말레인산 변성 폴리에틸렌 분말를 나타낸다. 2 shows maleic acid modified polyethylene powder, and FIGS. 3 and 4 show spherical maleic acid modified polyethylene powder according to embodiments of the present invention.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through examples. The objects, features and advantages of the present invention will be readily understood through the following examples. The invention is not limited to the embodiments described herein, but may be embodied in other forms. The embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and the spirit of the present invention may be sufficiently delivered to those skilled in the art. Therefore, the present invention should not be limited by the following examples.
본 명세서에서 사용된 용어인 "구형"은 구형도가 0.8 이상인 입자 형상을 의미할 수 있다.As used herein, the term “spherical” may refer to a particle shape having a sphericity of 0.8 or more.
도 1은 본 발명의 일 실시예에 따른 열가소성 구형 분체 도료의 형성 방법을 개략적으로 나타낸다.1 schematically shows a method of forming a thermoplastic spherical powder paint according to an embodiment of the present invention.
도 1을 참조하면, 폴리올레핀 분말(12)을 화염 방사기(10)에 의해 토출되는 화염(11)으로 자유낙하시킨다. 화염 방사기(10)는 산소, 아세틸렌, 아르곤, 부탄, 프로판 등의 열원을 이용하여 화염을 형성하여 토출할 수 있다. 폴리올레핀 분말(12)은 화염(11)이 토출되는 화염 방사기(10) 입구 쪽으로 자유낙하하고, 화염(11)을 따라 이동하면서 화염(11)에 의해 순간 가열되어 표면 열처리된다. 화염 방사기(10)에서 토출되는 화염(11)의 온도는 500 ~ 1,500℃인 것이 바람직하다. 상기 화염 온도가 500℃ 미만이면 표면 열처리가 제대로 이루어지지 않을 수 있고, 1,500℃ 초과이면 폴리올레핀 분말(12)이 과열되어 녹아서 구형 분말을 제대로 형성하지 못할 수 있다. 또, 화염 방사기(10)의 화염 토출 압력은 0.1 ~ 0.5 MPa인 것이 바람직하다. 상기 화염 토출 압력이 0.1MPa 미만이면 폴리올레핀 분말(12)이 상기 화염을 그대로 통과하여 상기 화염에 의해 가열되는 시간이 너무 짧아 표면 열처리가 제대로 이루어지지 않을 수 있고, 0.5MPa 초과이면 폴리올레핀 분말(12)이 상기 화염에 날려서 표면 열처리가 제대로 이루어지지 않거나, 냉각 배관(23) 위에 배치된 흡입구(22)로 낙하하지 못하여 생산성이 저하될 수 있다. 상기 화염 방사기가 배치되는 위치, 상기 화염 온도, 및 상기 화염 토출 압력을 적절하게 조절하는 것에 의해 상기 화염 위에 자유낙하한 폴리올레핀 분말(12)을 상기 화염을 따라 이동시키면서 표면 열처리를 최적화할 수 있다.Referring to FIG. 1, the polyolefin powder 12 is freely dropped into the flame 11 discharged by the flame thrower 10. The flame thrower 10 may form and discharge a flame by using a heat source such as oxygen, acetylene, argon, butane, or propane. The polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 from which the flame 11 is discharged, and is instantaneously heated by the flame 11 while being moved along the flame 11 to be surface heat-treated. The temperature of the flame 11 discharged from the flame thrower 10 is preferably 500 to 1,500 ° C. If the flame temperature is less than 500 ℃ surface heat treatment may not be performed properly, if it is more than 1,500 ℃ polyolefin powder 12 may be overheated and melted may not form a spherical powder properly. Moreover, it is preferable that the flame discharge pressure of the flame thrower 10 is 0.1-0.5 Mpa. When the flame discharge pressure is less than 0.1MPa, the polyolefin powder 12 passes through the flame as it is and is heated by the flame for too short, so that the surface heat treatment may not be performed properly. The heat treatment may not be performed properly due to the flame, or may not fall into the suction port 22 disposed on the cooling pipe 23, thereby decreasing productivity. By appropriately adjusting the position where the flame thrower is placed, the flame temperature, and the flame discharge pressure, the surface heat treatment can be optimized while moving the free falling polyolefin powder 12 over the flame along the flame.
폴리올레핀 분말(12)은 변성 폴리올레핀을 포함할 수 있다. 상기 변성 올레핀은, 예를 들어, 상기 변성 폴리올레핀은, 예를 들어, 무수말레인산으로 변성된 폴리올레핀을 포함할 수 있다. 상기 변성 폴리올레핀은, 예를 들어, 폴리올레핀에 무수말레인산, 과산화물, 및 산화방지제를 첨가한 후 반응 압출하여 형성될 수 있다. 상기 무수말레인산은 변성할 상기 폴리올레핀 100중량부에 대하여 0.1 ~ 10중량부로 첨가될 수 있다. 상기 무수말레인산의 함량이 0.1중량부 미만이면 그라프트율이 낮아 접착력이 저하될 수 있고, 10중량부 초과이면 미반응된 무수말레인산이 잔존할 수 있다. 상기 과산화물은 디큐밀 퍼옥사이드, 벤조일 퍼옥사이드, t-부틸퍼옥시-2-에틸 헥사노에이트, p-클로로벤조일 퍼옥사이드, t-부틸퍼옥시 이소부티레이트, t-부틸퍼옥시 이소프로필 카보네이트, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, t-부틸퍼옥시 아세테이트, 디-t-부틸 디퍼옥시 프탈레이트, t-부틸퍼옥시 말레산, 사이클로헥사논 퍼옥사이드, t-부틸퍼옥시 벤조에이트, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, t-부틸큐밀퍼옥사이드, t-부틸 하이드로퍼옥사이드 및 디-t-부틸 퍼옥사이드 중에서 선택된 하나 이상을 포함할 수 있다. 상기 산화방지제는 예를 들어, 알킬페놀, 알킬렌비스페놀, 알킬페놀티오에테르, 방향족 아민 등을 포함할 수 있다. The polyolefin powder 12 may comprise a modified polyolefin. The modified olefin, for example, the modified polyolefin, for example, may include a polyolefin modified with maleic anhydride. The modified polyolefin may be formed by, for example, reacting extrusion after adding maleic anhydride, a peroxide, and an antioxidant to the polyolefin. The maleic anhydride may be added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyolefin to be modified. If the content of maleic anhydride is less than 0.1 part by weight, the graft ratio may be low, and thus, the adhesive force may be lowered. The peroxide is dicumyl peroxide, benzoyl peroxide, t-butylperoxy-2-ethyl hexanoate, p-chlorobenzoyl peroxide, t-butylperoxy isobutyrate, t-butylperoxy isopropyl carbonate, 2 , 5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxy acetate, di-t-butyl diperoxy phthalate, t-butylperoxy maleic acid, cyclohexanone peroxide, t-butyl At least one selected from peroxy benzoate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butyl cumyl peroxide, t-butyl hydroperoxide and di-t-butyl peroxide It may include. The antioxidant may include, for example, alkylphenol, alkylene bisphenol, alkylphenol thioether, aromatic amine and the like.
예를 들어, 상기 변성 폴리올레핀은 고밀도 폴리에틸렌에 말레인산을 첨가하여 형성한 말레인산 변성 폴리에틸렌 또는 폴리프로필렌에 말레인산을 첨가하여 형성한 말레인산 변성 폴리프로필렌을 포함할 수 있다. For example, the modified polyolefin may include maleic acid-modified polyethylene formed by adding maleic acid to high density polyethylene or maleic acid-modified polypropylene formed by adding maleic acid to polypropylene.
상기 변성 폴리올레핀의 용융흐름지수(190℃, 2.16kg)는 5 ~ 40g/10분일 수 있다. 상기 용융흐름지수가 5g/10분 미만이면 도장시 용융되는 분체 도료의 흐름성이 너무 낮아 도막이 제대로 형성되지 않을 수 있고, 40g/10분 초과이면 분체 도료의 흐름성이 너무 높아 도막의 두께가 균일하지 않을 수 있다.Melt flow index (190 ℃, 2.16kg) of the modified polyolefin may be 5 ~ 40g / 10 minutes. If the melt flow index is less than 5g / 10min, the flowability of the powder coating melted during coating may be too low, and the coating may not be formed properly. If the meltflow index is more than 40g / 10min, the flowability of the powder coating is too high, so that the thickness of the coating film is uniform. You can't.
폴리올레핀 분말(12)은 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 에틸렌비닐아세테이트, 및 엘라스토머 등에서 선택된 하나 이상의 수지와 안료, 산화방지제, 광안정제 등에서 선택된 하나 이상의 첨가제를 더 포함할 수 있다. The polyolefin powder 12 may further include at least one resin selected from high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene vinyl acetate, and elastomers, and at least one additive selected from pigments, antioxidants, light stabilizers, and the like.
폴리올레핀 분말(12)은 상기 변성 폴리올레핀 분말을 압출한 후 분쇄하여 형성되거나 상기 변성 폴리올레핀 분말에 상기 수지 성분 및 상기 첨가제 성분 등을 혼합하여 압출한 후 분쇄하여 형성될 수 있으며, 그 종류나 형성 방법에 한정되지 않는다.The polyolefin powder 12 may be formed by extruding and then grinding the modified polyolefin powder or may be formed by mixing and extruding by mixing the resin component and the additive component with the modified polyolefin powder, and the type or method of forming It is not limited.
상기 표면 열처리에 의해 폴리올레핀 분말(12)로부터 구형 폴리올레핀 분말(13)이 형성될 수 있다. 구형 폴리올레핀 분말(13)은 0.8 이상의 구형도를 가질 수 있고, 바람직하게는 0.9 이상의 구형도를 가질 수 있다. 구형 폴리올레핀 분말(13)은 상기 화염 온도 및 상기 화염 토출 압력을 조절하는 것에 의해 그 구형도가 조절될 수 있고, 0.8 이상의 구형도 바람직하게는 0.9 이상의 구형도를 갖도록 형성될 수 있다. The spherical polyolefin powder 13 may be formed from the polyolefin powder 12 by the surface heat treatment. The spherical polyolefin powder 13 may have a sphericity of 0.8 or more, and preferably may have a sphericity of 0.9 or more. The spherical polyolefin powder 13 may be formed so that its sphericity can be adjusted by adjusting the flame temperature and the flame discharge pressure, and a spherical degree of 0.8 or more may be formed to have a sphericity of 0.9 or more.
이와 같이, 폴리올레핀 분말(12)은 화염(11)이 토출되는 화염 방사기(10) 입구 쪽으로 자유낙하하고, 화염(11)을 따라 이동하면서 화염(11)에 의해 표면 열처리되 구형 폴리올레핀 분말(13)이 형성된다. In this way, the polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 through which the flame 11 is discharged, and surface-treated by the flame 11 while moving along the flame 11. Is formed.
구형 폴리올레핀 분말(13)은 흡입구(22)로 흡입된 후 냉각 배관(23)을 통하여 호퍼(30)에 포집된다. 이에 의해, 열가소성 구형 분체 도료(14)의 제조가 완료될 수 있다. 흡입구(22)를 통하여 냉각 배관(23)으로 들어온 구형 폴리올레핀 분말(13)은 냉각 배관(23)에 연결된 블로워(20)에 의해 형성되어 고속 기류관(21)을 통하여 제공되는 기류에 의해 냉각 배관(23)에서 이송되면서 자연 냉각될 수 있다. 구형 폴리올레핀 분말(13)은 상기 기류에 의해 냉각 배관(23)을 통하여 호퍼(30)로 이송된다. 구형 폴리올레핀 분말(13)은 그 표면만 용융된 상태이므로 상기 기류에 의해 급속도로 자연 냉각되기 때문에, 냉각 배관(23)의 내부 벽면과 접촉하여도 붙지 않고 원활하게 호퍼(30)로 이송될 수 있다. 호퍼(30)에 포집된 열가소성 구형 분체 도료(14)는 배출 밸브(31)를 통하여 배출되어 포장될 수 있다. Spherical polyolefin powder 13 is sucked into the inlet 22 and collected in the hopper 30 through the cooling pipe 23. Thereby, manufacture of the thermoplastic spherical powder coating 14 can be completed. The spherical polyolefin powder 13 introduced into the cooling pipe 23 through the inlet 22 is formed by the blower 20 connected to the cooling pipe 23 and is cooled by the air flow provided through the high speed air flow pipe 21. It can be naturally cooled while being conveyed at 23. The spherical polyolefin powder 13 is conveyed to the hopper 30 through the cooling piping 23 by the said airflow. Since the spherical polyolefin powder 13 is naturally melted only by its surface, the spherical polyolefin powder 13 can be smoothly transferred to the hopper 30 without contact with the inner wall surface of the cooling pipe 23 because it is naturally cooled by the airflow. . The thermoplastic spherical powder coating material 14 collected in the hopper 30 may be discharged and packaged through the discharge valve 31.
[실시예]EXAMPLE
실시예 1Example 1
폴리에틸렌 수지에 말레인산을 첨가하여 반응 압출한 후 분쇄하여 평균 입자 크기 120㎛의 변성 폴리에틸렌 분말을 형성하였다. 5mm의 노즐크기를 갖는 화염 방사기에서 0.2MPa의 토출 압력으로 화염이 토출되도록 설정하였다. 상기 변성 폴리에틸렌 분말을 상기 화염이 토출되는 상기 화염 방사기 입구에 자유낙하시켜서 표면 열처리하여 구형 변성 폴리에틸렌 분말을 형성한 후 냉각 배관을 통하여 냉각시킨 후 포집하였다. Maleic acid was added to the polyethylene resin for reaction extrusion, followed by pulverization to form a modified polyethylene powder having an average particle size of 120 μm. The flame was set to be discharged at a discharge pressure of 0.2 MPa in a flame thrower having a nozzle size of 5 mm. The modified polyethylene powder was freely dropped at the inlet of the flamethrower in which the flame was discharged and subjected to surface heat treatment to form spherical modified polyethylene powder, which was then cooled through a cooling pipe and collected.
실시예 2Example 2
화염 토출 압력을 0.1MPa로 설정한 것을 제외하고 실시예 1과 동일한 방법으로 구형 변성 폴리에틸렌 분말을 형성한 후 포집하였다.A spherical modified polyethylene powder was formed and collected in the same manner as in Example 1 except that the flame discharge pressure was set to 0.1 MPa.
상기 실시예 1 및 실시예 2의 구형 변성 폴리에틸렌 분말과 표면 열처리를 수행하지 않은 변성 폴리에틸렌 분말(비교예)의 물성을 측정하여 아래 표 1에 나타내었다. 그리고, 도 2는 상기 실시예 1의 구형 변성 폴리에틸렌 분말을 나타내고, 도 3은 상기 실시예 2의 구형 변성 폴리에틸렌 분말을 나타내며, 도 4는 비교예의 변성 폴리에틸렌 분말을 나타낸다.The physical properties of the spherical modified polyethylene powders of Examples 1 and 2 and the modified polyethylene powder (comparative example) not subjected to surface heat treatment were measured and shown in Table 1 below. 2 shows the spherical modified polyethylene powder of Example 1, FIG. 3 shows the spherical modified polyethylene powder of Example 2, and FIG. 4 shows the modified polyethylene powder of Comparative Example.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through examples. The objects, features and advantages of the present invention will be readily understood through the following examples. The invention is not limited to the embodiments described herein, but may be embodied in other forms. The embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and the spirit of the present invention may be sufficiently delivered to those skilled in the art. Therefore, the present invention should not be limited by the following examples.
본 명세서에서 사용된 용어인 "구형"은 구형도가 0.8 이상인 입자 형상을 의미할 수 있다.As used herein, the term “spherical” may refer to a particle shape having a sphericity of 0.8 or more.
도 1은 본 발명의 일 실시예에 따른 열가소성 구형 분체 도료의 형성 방법을 개략적으로 나타낸다.1 schematically shows a method of forming a thermoplastic spherical powder paint according to an embodiment of the present invention.
도 1을 참조하면, 폴리올레핀 분말(12)을 화염 방사기(10)에 의해 토출되는 화염(11)으로 자유낙하시킨다. 화염 방사기(10)는 산소, 아세틸렌, 아르곤, 부탄, 프로판 등의 열원을 이용하여 화염을 형성하여 토출할 수 있다. 폴리올레핀 분말(12)은 화염(11)이 토출되는 화염 방사기(10) 입구 쪽으로 자유낙하하고, 화염(11)을 따라 이동하면서 화염(11)에 의해 순간 가열되어 표면 열처리된다. 화염 방사기(10)에서 토출되는 화염(11)의 온도는 500 ~ 1,500℃인 것이 바람직하다. 상기 화염 온도가 500℃ 미만이면 표면 열처리가 제대로 이루어지지 않을 수 있고, 1,500℃ 초과이면 폴리올레핀 분말(12)이 과열되어 녹아서 구형 분말을 제대로 형성하지 못할 수 있다. 또, 화염 방사기(10)의 화염 토출 압력은 0.1 ~ 0.5 MPa인 것이 바람직하다. 상기 화염 토출 압력이 0.1MPa 미만이면 폴리올레핀 분말(12)이 상기 화염을 그대로 통과하여 상기 화염에 의해 가열되는 시간이 너무 짧아 표면 열처리가 제대로 이루어지지 않을 수 있고, 0.5MPa 초과이면 폴리올레핀 분말(12)이 상기 화염에 날려서 표면 열처리가 제대로 이루어지지 않거나, 냉각 배관(23) 위에 배치된 흡입구(22)로 낙하하지 못하여 생산성이 저하될 수 있다. 상기 화염 방사기가 배치되는 위치, 상기 화염 온도, 및 상기 화염 토출 압력을 적절하게 조절하는 것에 의해 상기 화염 위에 자유낙하한 폴리올레핀 분말(12)을 상기 화염을 따라 이동시키면서 표면 열처리를 최적화할 수 있다.Referring to FIG. 1, the polyolefin powder 12 is freely dropped into the flame 11 discharged by the flame thrower 10. The flame thrower 10 may form and discharge a flame by using a heat source such as oxygen, acetylene, argon, butane, or propane. The polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 from which the flame 11 is discharged, and is instantaneously heated by the flame 11 while being moved along the flame 11 to be surface heat-treated. The temperature of the flame 11 discharged from the flame thrower 10 is preferably 500 to 1,500 ° C. If the flame temperature is less than 500 ℃ surface heat treatment may not be performed properly, if it is more than 1,500 ℃ polyolefin powder 12 may be overheated and melted may not form a spherical powder properly. Moreover, it is preferable that the flame discharge pressure of the flame thrower 10 is 0.1-0.5 Mpa. When the flame discharge pressure is less than 0.1MPa, the polyolefin powder 12 passes through the flame as it is and is heated by the flame for too short, so that the surface heat treatment may not be performed properly. The heat treatment may not be performed properly due to the flame, or may not fall into the suction port 22 disposed on the cooling pipe 23, thereby decreasing productivity. By appropriately adjusting the position where the flame thrower is placed, the flame temperature, and the flame discharge pressure, the surface heat treatment can be optimized while moving the free falling polyolefin powder 12 over the flame along the flame.
폴리올레핀 분말(12)은 변성 폴리올레핀을 포함할 수 있다. 상기 변성 올레핀은, 예를 들어, 상기 변성 폴리올레핀은, 예를 들어, 무수말레인산으로 변성된 폴리올레핀을 포함할 수 있다. 상기 변성 폴리올레핀은, 예를 들어, 폴리올레핀에 무수말레인산, 과산화물, 및 산화방지제를 첨가한 후 반응 압출하여 형성될 수 있다. 상기 무수말레인산은 변성할 상기 폴리올레핀 100중량부에 대하여 0.1 ~ 10중량부로 첨가될 수 있다. 상기 무수말레인산의 함량이 0.1중량부 미만이면 그라프트율이 낮아 접착력이 저하될 수 있고, 10중량부 초과이면 미반응된 무수말레인산이 잔존할 수 있다. 상기 과산화물은 디큐밀 퍼옥사이드, 벤조일 퍼옥사이드, t-부틸퍼옥시-2-에틸 헥사노에이트, p-클로로벤조일 퍼옥사이드, t-부틸퍼옥시 이소부티레이트, t-부틸퍼옥시 이소프로필 카보네이트, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, t-부틸퍼옥시 아세테이트, 디-t-부틸 디퍼옥시 프탈레이트, t-부틸퍼옥시 말레산, 사이클로헥사논 퍼옥사이드, t-부틸퍼옥시 벤조에이트, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, t-부틸큐밀퍼옥사이드, t-부틸 하이드로퍼옥사이드 및 디-t-부틸 퍼옥사이드 중에서 선택된 하나 이상을 포함할 수 있다. 상기 산화방지제는 예를 들어, 알킬페놀, 알킬렌비스페놀, 알킬페놀티오에테르, 방향족 아민 등을 포함할 수 있다. The polyolefin powder 12 may comprise a modified polyolefin. The modified olefin, for example, the modified polyolefin, for example, may include a polyolefin modified with maleic anhydride. The modified polyolefin may be formed by, for example, reacting extrusion after adding maleic anhydride, a peroxide, and an antioxidant to the polyolefin. The maleic anhydride may be added in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyolefin to be modified. If the content of maleic anhydride is less than 0.1 part by weight, the graft ratio may be low, and thus, the adhesive force may be lowered. The peroxide is dicumyl peroxide, benzoyl peroxide, t-butylperoxy-2-ethyl hexanoate, p-chlorobenzoyl peroxide, t-butylperoxy isobutyrate, t-butylperoxy isopropyl carbonate, 2 , 5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxy acetate, di-t-butyl diperoxy phthalate, t-butylperoxy maleic acid, cyclohexanone peroxide, t-butyl At least one selected from peroxy benzoate, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butyl cumyl peroxide, t-butyl hydroperoxide and di-t-butyl peroxide It may include. The antioxidant may include, for example, alkylphenol, alkylene bisphenol, alkylphenol thioether, aromatic amine and the like.
예를 들어, 상기 변성 폴리올레핀은 고밀도 폴리에틸렌에 말레인산을 첨가하여 형성한 말레인산 변성 폴리에틸렌 또는 폴리프로필렌에 말레인산을 첨가하여 형성한 말레인산 변성 폴리프로필렌을 포함할 수 있다. For example, the modified polyolefin may include maleic acid-modified polyethylene formed by adding maleic acid to high density polyethylene or maleic acid-modified polypropylene formed by adding maleic acid to polypropylene.
상기 변성 폴리올레핀의 용융흐름지수(190℃, 2.16kg)는 5 ~ 40g/10분일 수 있다. 상기 용융흐름지수가 5g/10분 미만이면 도장시 용융되는 분체 도료의 흐름성이 너무 낮아 도막이 제대로 형성되지 않을 수 있고, 40g/10분 초과이면 분체 도료의 흐름성이 너무 높아 도막의 두께가 균일하지 않을 수 있다.Melt flow index (190 ℃, 2.16kg) of the modified polyolefin may be 5 ~ 40g / 10 minutes. If the melt flow index is less than 5g / 10min, the flowability of the powder coating melted during coating may be too low, and the coating may not be formed properly. If the meltflow index is more than 40g / 10min, the flowability of the powder coating is too high, so that the thickness of the coating film is uniform. You can't.
폴리올레핀 분말(12)은 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 에틸렌비닐아세테이트, 및 엘라스토머 등에서 선택된 하나 이상의 수지와 안료, 산화방지제, 광안정제 등에서 선택된 하나 이상의 첨가제를 더 포함할 수 있다. The polyolefin powder 12 may further include at least one resin selected from high density polyethylene, low density polyethylene, linear low density polyethylene, ethylene vinyl acetate, and elastomers, and at least one additive selected from pigments, antioxidants, light stabilizers, and the like.
폴리올레핀 분말(12)은 상기 변성 폴리올레핀 분말을 압출한 후 분쇄하여 형성되거나 상기 변성 폴리올레핀 분말에 상기 수지 성분 및 상기 첨가제 성분 등을 혼합하여 압출한 후 분쇄하여 형성될 수 있으며, 그 종류나 형성 방법에 한정되지 않는다.The polyolefin powder 12 may be formed by extruding and then grinding the modified polyolefin powder or may be formed by mixing and extruding by mixing the resin component and the additive component with the modified polyolefin powder, and the type or method of forming It is not limited.
상기 표면 열처리에 의해 폴리올레핀 분말(12)로부터 구형 폴리올레핀 분말(13)이 형성될 수 있다. 구형 폴리올레핀 분말(13)은 0.8 이상의 구형도를 가질 수 있고, 바람직하게는 0.9 이상의 구형도를 가질 수 있다. 구형 폴리올레핀 분말(13)은 상기 화염 온도 및 상기 화염 토출 압력을 조절하는 것에 의해 그 구형도가 조절될 수 있고, 0.8 이상의 구형도 바람직하게는 0.9 이상의 구형도를 갖도록 형성될 수 있다. The spherical polyolefin powder 13 may be formed from the polyolefin powder 12 by the surface heat treatment. The spherical polyolefin powder 13 may have a sphericity of 0.8 or more, and preferably may have a sphericity of 0.9 or more. The spherical polyolefin powder 13 may be formed so that its sphericity can be adjusted by adjusting the flame temperature and the flame discharge pressure, and a spherical degree of 0.8 or more may be formed to have a sphericity of 0.9 or more.
이와 같이, 폴리올레핀 분말(12)은 화염(11)이 토출되는 화염 방사기(10) 입구 쪽으로 자유낙하하고, 화염(11)을 따라 이동하면서 화염(11)에 의해 표면 열처리되 구형 폴리올레핀 분말(13)이 형성된다. In this way, the polyolefin powder 12 is free-falled toward the inlet of the flame thrower 10 through which the flame 11 is discharged, and surface-treated by the flame 11 while moving along the flame 11. Is formed.
구형 폴리올레핀 분말(13)은 흡입구(22)로 흡입된 후 냉각 배관(23)을 통하여 호퍼(30)에 포집된다. 이에 의해, 열가소성 구형 분체 도료(14)의 제조가 완료될 수 있다. 흡입구(22)를 통하여 냉각 배관(23)으로 들어온 구형 폴리올레핀 분말(13)은 냉각 배관(23)에 연결된 블로워(20)에 의해 형성되어 고속 기류관(21)을 통하여 제공되는 기류에 의해 냉각 배관(23)에서 이송되면서 자연 냉각될 수 있다. 구형 폴리올레핀 분말(13)은 상기 기류에 의해 냉각 배관(23)을 통하여 호퍼(30)로 이송된다. 구형 폴리올레핀 분말(13)은 그 표면만 용융된 상태이므로 상기 기류에 의해 급속도로 자연 냉각되기 때문에, 냉각 배관(23)의 내부 벽면과 접촉하여도 붙지 않고 원활하게 호퍼(30)로 이송될 수 있다. 호퍼(30)에 포집된 열가소성 구형 분체 도료(14)는 배출 밸브(31)를 통하여 배출되어 포장될 수 있다. Spherical polyolefin powder 13 is sucked into the inlet 22 and collected in the hopper 30 through the cooling pipe 23. Thereby, manufacture of the thermoplastic spherical powder coating 14 can be completed. The spherical polyolefin powder 13 introduced into the cooling pipe 23 through the inlet 22 is formed by the blower 20 connected to the cooling pipe 23 and is cooled by the air flow provided through the high speed air flow pipe 21. It can be naturally cooled while being conveyed at 23. The spherical polyolefin powder 13 is conveyed to the hopper 30 through the cooling piping 23 by the said airflow. Since the spherical polyolefin powder 13 is naturally melted only by its surface, the spherical polyolefin powder 13 can be smoothly transferred to the hopper 30 without contact with the inner wall surface of the cooling pipe 23 because it is naturally cooled by the airflow. . The thermoplastic spherical powder coating material 14 collected in the hopper 30 may be discharged and packaged through the discharge valve 31.
[실시예]EXAMPLE
실시예 1Example 1
폴리에틸렌 수지에 말레인산을 첨가하여 반응 압출한 후 분쇄하여 평균 입자 크기 120㎛의 변성 폴리에틸렌 분말을 형성하였다. 5mm의 노즐크기를 갖는 화염 방사기에서 0.2MPa의 토출 압력으로 화염이 토출되도록 설정하였다. 상기 변성 폴리에틸렌 분말을 상기 화염이 토출되는 상기 화염 방사기 입구에 자유낙하시켜서 표면 열처리하여 구형 변성 폴리에틸렌 분말을 형성한 후 냉각 배관을 통하여 냉각시킨 후 포집하였다. Maleic acid was added to the polyethylene resin for reaction extrusion, followed by pulverization to form a modified polyethylene powder having an average particle size of 120 μm. The flame was set to be discharged at a discharge pressure of 0.2 MPa in a flame thrower having a nozzle size of 5 mm. The modified polyethylene powder was freely dropped at the inlet of the flamethrower in which the flame was discharged and subjected to surface heat treatment to form spherical modified polyethylene powder, which was then cooled through a cooling pipe and collected.
실시예 2Example 2
화염 토출 압력을 0.1MPa로 설정한 것을 제외하고 실시예 1과 동일한 방법으로 구형 변성 폴리에틸렌 분말을 형성한 후 포집하였다.A spherical modified polyethylene powder was formed and collected in the same manner as in Example 1 except that the flame discharge pressure was set to 0.1 MPa.
상기 실시예 1 및 실시예 2의 구형 변성 폴리에틸렌 분말과 표면 열처리를 수행하지 않은 변성 폴리에틸렌 분말(비교예)의 물성을 측정하여 아래 표 1에 나타내었다. 그리고, 도 2는 상기 실시예 1의 구형 변성 폴리에틸렌 분말을 나타내고, 도 3은 상기 실시예 2의 구형 변성 폴리에틸렌 분말을 나타내며, 도 4는 비교예의 변성 폴리에틸렌 분말을 나타낸다.The physical properties of the spherical modified polyethylene powders of Examples 1 and 2 and the modified polyethylene powder (comparative example) not subjected to surface heat treatment were measured and shown in Table 1 below. 2 shows the spherical modified polyethylene powder of Example 1, FIG. 3 shows the spherical modified polyethylene powder of Example 2, and FIG. 4 shows the modified polyethylene powder of Comparative Example.
측정항목Metric 실시예 1Example 1 실시예 2Example 2 비교예Comparative example
구형도Spherical diagram 0.90.9 0.80.8 0.60.6
평균 입자 크기Average particle size 103㎛103㎛ 110㎛110 ㎛ 120㎛120 μm
벌크 비중Bulk specific gravity 0.460.46 0.440.44 0.390.39
입자흐름성Particle Flowability 4.24.2 4.04.0 3.23.2
도막표면조도Surface roughness of coating 0.20.2 0.20.2 2.32.3
벤딩(bending)성Bending 양호Good 양호Good 불량Bad
상기 표 1과 도 2 내지 도 4를 참조하면, 표면 열처리의 간단한 공정으로 물성이 우수한 구형 분체 도료가 형성될 수 있다. 상기 비교예의 변성 폴리에틸렌 분말은 분쇄에 의해 얻어지는 입자의 표면이 거칠고 매끈하지 못하여 벌크 비중이 낮고 열 용융시 분체 입자의 용융 속도가 저하되고 분체 입자간 뭉침 현상으로 입자흐름성이 저하되어 도막이 균일하게 형성되지 못하고 표면 조도와 벤딩성이 좋지 않게 나타났다. 그러나, 상기 실시예 1 및 실시예 2의 구형 변성 폴리에틸렌 분말은 구형도가 높고, 분체 입자의 표면이 매끄러워 벌크 비중이 높고 입자흐름성이 양호하여 표면 구배가 심한 피도물의 표면에도 도막이 균일하게 형성될 수 있고 표면 조도와 벤딩성이 우수한 것으로 나타났다. 또, 상기 비교예의 변성 폴리에틸렌 분말을 이용하여 도막을 형성하는 경우 200℃에서 1분 이상 소요된 반면, 상기 실시예 1 및 실시예 2의 구형 변성 폴리에틸렌 분말을 이용하여 도막을 형성하는 경우 200℃에서 10초 밖에 소요되지 않았다. 즉, 상기 실시예 1 및 실시예 2의 구형 변성 폴리에틸렌 분말이 상기 비교예의 변성 폴리에틸렌 분말보다 매우 빠르게 도막을 형성할 수 있다. Referring to Table 1 and FIGS. 2 to 4, a spherical powder paint having excellent physical properties may be formed by a simple process of surface heat treatment. The modified polyethylene powder of the comparative example has a rough surface and is not smooth, resulting in low bulk specific gravity, low melting rate of powder particles during thermal melting, and low particle flowability due to agglomeration between powder particles, resulting in uniform coating. The surface roughness and the bendability were poor. However, the spherical modified polyethylene powders of Examples 1 and 2 have high sphericity, smooth surface of powder particles, high bulk specific gravity and good particle flow, so that the coating film is uniformly formed on the surface of the coating material having a high surface gradient. It has been shown that the surface roughness and the bendability are excellent. In addition, when forming the coating film using the modified polyethylene powder of the comparative example it takes at least 1 minute at 200 ℃, whereas when forming a coating film using the spherical modified polyethylene powder of Examples 1 and 2 at 200 ℃ It only took 10 seconds. That is, the spherical modified polyethylene powder of Examples 1 and 2 may form a coating film much faster than the modified polyethylene powder of the Comparative Example.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, specific embodiments of the present invention have been described. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.
본 발명의 실시예들에 따르면, 구형도가 높은 열가소성 구형 분체 도료가 간단한 공정으로 형성될 수 있다. 상기 열가소성 구형 분체 도료는 구형도가 높고, 분체 입자의 표면이 매끄러워 벌크 비중이 높고 입자흐름성이 양호하여 표면 구배가 심한 피도물의 표면에도 도막이 균일하게 형성될 수 있고 표면 조도와 벤딩성 등의 물성이 우수하다. 상기 열가소성 구형 분체 도료는 도막을 빠르게 형성할 수 있어, 도막 공정 효율을 향상시킬 수 있다. 또, 용제나 희석제 등을 사용하지 않아 친환경적이다.According to embodiments of the present invention, the thermoplastic spherical coating material having a high sphericity may be formed by a simple process. The thermoplastic spherical powder coating has a high sphericity, smooth surface of the powder particles, high bulk specific gravity and good particle flow, so that the coating film can be uniformly formed on the surface of the coating surface having a high surface gradient, such as surface roughness and bending property. Excellent physical properties The thermoplastic spherical powder coating can form a coating film quickly, it is possible to improve the coating film processing efficiency. In addition, it is eco-friendly because no solvent or diluent is used.

Claims (15)

  1. 구형도가 0.8 이상인 구형 폴리올레핀 분말을 포함하는 열가소성 구형 분체 도료.A thermoplastic spherical powder coating comprising a spherical polyolefin powder having a sphericity of 0.8 or more.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 구형 폴리올레핀 분말은 0.9 이상의 구형도를 갖는 것을 특징으로 하는 열가소성 구형 분체 도료.The spherical polyolefin powder has a spherical degree of 0.9 or more, the thermoplastic spherical powder coating.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 구형 폴리올레핀 분말은 변성 폴리올레핀 분말을 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료.The spherical polyolefin powder is a thermoplastic spherical powder coating, characterized in that it comprises a modified polyolefin powder.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 변성 폴리올레핀 분말은 변성 폴리에틸렌 분말 또는 변성 폴리프로필렌 분말을 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료.The modified polyolefin powder is a thermoplastic spherical powder coating comprising a modified polyethylene powder or a modified polypropylene powder.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 변성 폴리올레핀 분말은 말레인산으로 변성된 폴리올레핀 분말을 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료.The modified polyolefin powder is a thermoplastic spherical powder coating, characterized in that it comprises a polyolefin powder modified with maleic acid.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 구형 폴리올레핀 분말은 폴리올레핀 분말을 표면 열처리하는 것에 의해 형성된 것을 특징으로 하는 열가소성 구형 분체 도료.The spherical polyolefin powder is a thermoplastic spherical powder coating, characterized in that formed by surface heat treatment of the polyolefin powder.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 표면 열처리는 상기 폴리올레핀 분말을 화염 방사기로 순간 가열하는 것에 의해 수행되는 것을 특징으로 하는 열가소성 구형 분체 도료.The surface heat treatment is carried out by instantaneous heating of the polyolefin powder with a flame thrower thermoplastic spherical powder coating.
  8. 폴리올레핀 분말을 표면 열처리하여 구형 폴리올레핀 분말을 형성하는 단계; 및Surface heat treating the polyolefin powder to form spherical polyolefin powder; And
    상기 구형 폴리올레핀 분말을 냉각하는 단계를 포함하는 열가소성 구형 분체 도료의 형성 방법.Method for forming a thermoplastic spherical powder coating comprising the step of cooling the spherical polyolefin powder.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 구형 폴리올레핀 분말을 형성하는 단계는,Forming the spherical polyolefin powder,
    상기 폴리올레핀 분말을 자유낙하시키는 단계, 및Freely dropping the polyolefin powder, and
    자유낙하하는 상기 폴리올레핀 분말을 화염 방사기로 순간 가열하는 단계를 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.A method of forming a thermoplastic spherical powder coating comprising the step of heating the polyolefin powder free-falling with a flame thrower.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 화염 방사기의 화염 온도는 500 ~ 1,500℃인 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.The flame temperature of the flame thrower is a method of forming a thermoplastic spherical powder coating, characterized in that 500 ~ 1,500 ℃.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 화염 방사기의 화염 토출 압력은 0.1 ~ 0.5 MPa인 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.The flame discharge pressure of the flame thrower is 0.1 ~ 0.5 MPa, the method of forming a thermoplastic spherical powder paint.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 구형 폴리올레핀 분말은, 냉각 배관으로 자유낙하하고 상기 냉각 배관에 연결된 블로워에 의해 제공되는 기류에 의해 상기 냉각 배관에서 이송되면서 자연 냉각되는 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.The spherical polyolefin powder is freely dropped into a cooling pipe and naturally cooled while being transferred from the cooling pipe by an airflow provided by a blower connected to the cooling pipe.
  13. 제 8 항에 있어서,The method of claim 8,
    상기 폴리올레핀 분말은 변성 폴리올레핀 분말을 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.The polyolefin powder is a method of forming a thermoplastic spherical powder coating, characterized in that it comprises a modified polyolefin powder.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 변성 폴리올레핀 분말은 변성 폴리에틸렌 분말 또는 변성 폴리프로필렌 분말을 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.The modified polyolefin powder is a method of forming a thermoplastic spherical powder coating, characterized in that the modified polyethylene powder or modified polypropylene powder.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 변성 폴리올레핀 분말은 말레인산으로 변성된 폴리올레핀 분말을 포함하는 것을 특징으로 하는 열가소성 구형 분체 도료의 형성 방법.The modified polyolefin powder is a method of forming a thermoplastic spherical powder coating, characterized in that it comprises a polyolefin powder modified with maleic acid.
PCT/KR2015/010194 2015-09-24 2015-09-25 Thermoplastic spherical powder paint and method for forming same WO2017051958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0135367 2015-09-24
KR1020150135367A KR101648406B1 (en) 2015-09-24 2015-09-24 Thermoplastic spherical powder coating material and method for forming the same

Publications (1)

Publication Number Publication Date
WO2017051958A1 true WO2017051958A1 (en) 2017-03-30

Family

ID=56854607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010194 WO2017051958A1 (en) 2015-09-24 2015-09-25 Thermoplastic spherical powder paint and method for forming same

Country Status (2)

Country Link
KR (1) KR101648406B1 (en)
WO (1) WO2017051958A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018569A1 (en) * 1996-10-28 1998-05-07 Minnesota Mining And Manufacturing Company Method of forming a thermoplastic layer on a flexible two-dimensional substrate and powder for preparing same
JPH11140348A (en) * 1997-11-06 1999-05-25 Tomoegawa Paper Co Ltd Powder coating material and method for coating therewith
JP2003040680A (en) * 2001-07-27 2003-02-13 Tdk Corp Method and apparatus for manufacturing spherical oxide powder
JP2005015303A (en) * 2003-06-27 2005-01-20 Tdk Corp Method of manufacturing spherical powder, spherical oxide powder and oxide powder
KR20120058606A (en) * 2009-09-04 2012-06-07 스미또모 세이까 가부시키가이샤 Polyolefin-based composite resin spherical particles, coating composition and coated object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791343B2 (en) * 1987-07-17 1995-10-04 三井石油化学工業株式会社 Method for producing ultra high molecular weight modified polyolefin
JPH0525406A (en) * 1991-07-19 1993-02-02 Tokyo Ink Kk Resin composition for non-slip powder coating
JP4606806B2 (en) * 2004-08-03 2011-01-05 住友精化株式会社 Method for producing polyolefin resin particles
KR20150034572A (en) * 2013-09-26 2015-04-03 주식회사 투에이취켐 Powder coating composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018569A1 (en) * 1996-10-28 1998-05-07 Minnesota Mining And Manufacturing Company Method of forming a thermoplastic layer on a flexible two-dimensional substrate and powder for preparing same
JPH11140348A (en) * 1997-11-06 1999-05-25 Tomoegawa Paper Co Ltd Powder coating material and method for coating therewith
JP2003040680A (en) * 2001-07-27 2003-02-13 Tdk Corp Method and apparatus for manufacturing spherical oxide powder
JP2005015303A (en) * 2003-06-27 2005-01-20 Tdk Corp Method of manufacturing spherical powder, spherical oxide powder and oxide powder
KR20120058606A (en) * 2009-09-04 2012-06-07 스미또모 세이까 가부시키가이샤 Polyolefin-based composite resin spherical particles, coating composition and coated object

Also Published As

Publication number Publication date
KR101648406B1 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
CN105820405B (en) A kind of oil-resistant low-smoke halogen-free flame-retardant cable material of polyolefin and preparation method thereof
CN105670109A (en) Polypropylene composition, preparation method thereof, and polypropylene material prepared therethrough
CN100374497C (en) Smokeless and halogen-free expanding fire-retardant electric wire materials with thermoplastic elastomer and production thereof
WO2021107426A1 (en) Anti-slip conductive resin composition and molded product comprising same
CN1276043C (en) High temperature resistance anticorrosive polyolefin composition and its use
CN105400062A (en) Low friction coefficient and low smoke halogen-free cable material for optical cables, and preparation method thereof
CN100363415C (en) Low smoke non-halogen fire retarding expansive polyolefins electronic wire material and preparation process thereof
CN105504482B (en) Halogen-free flame-retardant linear low-density polyethylene material
HU226792B1 (en) Crosslinkable polyethylene composition
CN111763377A (en) Krah pipe and preparation process thereof
CN110724343A (en) High-wear-resistance flame-retardant modified polypropylene cable protection pipe and preparation method thereof
CN111607162B (en) Marine plastic pipe and preparation method thereof
CN103042796A (en) Antistatic polyethylene film and preparation method thereof
WO2017051958A1 (en) Thermoplastic spherical powder paint and method for forming same
WO2016047833A1 (en) Powder coating for steel pipe coating, coated steel pipe, and steel pipe coating method
CN111442140A (en) Nano-antibacterial PE water supply pipeline and manufacturing process thereof
TW201412855A (en) Dynamic crosslinked modified heat-proof polyethylene material and preparation method and application thereof
CN106750866A (en) A kind of high-elastic type low smoke halogen-free fire retardant polyolefin cable material and preparation method thereof
CN110003643B (en) Anti-aging PPA composite material and preparation method thereof
JP7137113B1 (en) Meltable fluororesin primer
CN115636995B (en) Polyethylene resin composition, modified high-density polyethylene composite material and preparation method thereof
CN110373026B (en) Polyimide resin composition, method for producing the same, and film
CN112111097A (en) Formula, preparation method and application of heat-shrinkable tubing
RU2792564C1 (en) Polyethylene powder composition for protection against ice and corrosion of ships' hulls and steel pipelines and method for its production
WO2014171775A1 (en) Polyethylene with controlled wax content, chlorinated polyethylene thereof, and molded product prepared therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904769

Country of ref document: EP

Kind code of ref document: A1