WO2017051853A1 - Flight route, flight route calculation device, and flight route calculation method - Google Patents

Flight route, flight route calculation device, and flight route calculation method Download PDF

Info

Publication number
WO2017051853A1
WO2017051853A1 PCT/JP2016/077978 JP2016077978W WO2017051853A1 WO 2017051853 A1 WO2017051853 A1 WO 2017051853A1 JP 2016077978 W JP2016077978 W JP 2016077978W WO 2017051853 A1 WO2017051853 A1 WO 2017051853A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
airway
flight
width
power transmission
Prior art date
Application number
PCT/JP2016/077978
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 高木
真也 菱田
Original Assignee
東京電力ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力ホールディングス株式会社 filed Critical 東京電力ホールディングス株式会社
Publication of WO2017051853A1 publication Critical patent/WO2017051853A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to an air route, an air route calculation device, and an air route calculation method.
  • a technology that can easily steer a drone back and forth and right and left even when cargo is loaded on an unmanned aerial vehicle (hereinafter referred to as a drone) is known.
  • Patent Document 1 does not specifically describe what means can be used for orderly flight. In other words, according to the conventional technique described in Patent Document 1, when a plurality of drones fly, it is sometimes impossible to perform an orderly flight.
  • One embodiment of the present invention is a space vertically above an aerial ground line supported by a transmission line tower, and is an upper part determined based on the arrangement of the transmission line supported by the transmission line tower
  • the air route has a cross-sectional shape defined by a width and a lower width determined based on the arrangement of the overhead ground wire, and the unmanned air vehicle flies.
  • the placement of the overhead ground lines is indicated by at least the number of the overhead ground lines, and the lower width is determined based on the number of the overhead ground lines.
  • the cross-sectional shape is further determined based on a distribution of an electric field generated by a voltage applied to the power transmission line.
  • a predetermined height from the aerial ground wire determined based on a flight speed limit of the unmanned air vehicle that is predetermined in the airway among the cross-sectional shapes.
  • the flight prohibition area is included in the range.
  • a stage of accuracy of flight control of the unmanned air vehicle is determined in advance, and among the cross-sectional shapes, predetermined from the aerial ground wire according to the stage of accuracy.
  • the flight prohibition area is included in the height range.
  • one embodiment of the present invention is an airway calculation device that calculates the cross-sectional shape of the above-mentioned airway based on the arrangement of the power transmission line supported by the transmission line tower and the arrangement of the overhead ground wire. is there.
  • one embodiment of the present invention includes an aerial step that calculates the cross-sectional shape of the above-described airway based on the arrangement of the power transmission line supported by the transmission line tower and the arrangement of the overhead ground wire. This is a road calculation method.
  • FIG. 1 is a schematic diagram illustrating an example of an air route 1 in the first embodiment.
  • a transmission line tower ST shown in FIG. 1 is a steel tower that supports a transmission line laid to supply power. As shown in FIG. 1, in this example, the case where the transmission line tower ST supports six transmission lines PL that supply three-phase AC power will be described as an example.
  • the power transmission line tower ST includes a brace AR1, a brace AR2, and a brace AR3.
  • the arm metal AR1 supports the first line PL1 and the second line PL2.
  • the arm metal AR2 supports the third line PL3 and the fourth line PL4.
  • the arm metal AR3 supports the fifth line PL5 and the sixth line PL6.
  • the first line PL1, the third line PL3, and the fifth line PL5 are collectively referred to as a left power transmission line PLL.
  • the second line PL2, the fourth line PL4, and the sixth line PL6 are collectively referred to as a right power transmission line PLR.
  • the left power transmission line PLL and the right power transmission line PLR are not particularly distinguished, they are collectively referred to as a power transmission line PL.
  • a case will be described in which the first line PL1, the third line PL3, and the fifth line PL5 included in the left power transmission line PLL have the same length.
  • the transmission line tower ST supports an overhead ground wire OGW in addition to the left transmission line PLL and the right transmission line PLR.
  • the overhead ground wire OGW is a grounded electric wire and is installed at the upper end of the transmission line tower ST.
  • the Z axis of the XYZ orthogonal coordinate system is an axis perpendicular to the ground surface.
  • the Y axis is an axis parallel to the power transmission direction of the power transmission line.
  • the X axis is an axis in a direction orthogonal to the power transmission direction of the power transmission line. More specifically, the X axis is an axis parallel to a straight line connecting the transmission lines of the respective phases of the left transmission line PLL, on which the transmission line tower ST supports the transmission line, and the right transmission line PLR.
  • An XY plane formed by the X axis and the Y axis is a plane that is horizontal to the ground surface.
  • the power transmission line PL supported by the power transmission tower ST and the overhead ground wire OGW are laid in the positive direction of the Y axis and the negative direction. Specifically, the power transmission line PL and the overhead ground wire OGW are supported by another power transmission line tower ST adjacent to the positive direction of the Y axis and the negative direction.
  • the positive direction of the Z-axis is also referred to as upward or simply upward in the vertical direction.
  • the negative direction of the Z axis is also referred to as the downward direction.
  • the positive direction of the Y axis is also referred to as the rear.
  • the negative direction of the Y axis is also referred to as the front.
  • the positive direction of the X axis is also referred to as the right side or the right direction.
  • the negative direction of the X axis is also referred to as the left side or the left direction.
  • the transmission line tower ST has a height indicated by the transmission line tower height HT from the ground surface G.
  • the transmission line tower height HT varies depending on the voltage supplied by the transmission line PL.
  • the transmission line tower height HT is, for example, 80 m.
  • the transmission line tower height HT is, for example, 110 m.
  • the airway 1 of the present invention is above the overhead ground wire OGW included in the above-described transmission line tower ST, and its shape is determined based on the power transmission line PL and the overhead ground wire OGW.
  • the airway 1 of the present embodiment is set upward from the upper end of the transmission line tower ST.
  • the cross-sectional shape of the airway 1 has a width indicated by an upper width WU and a lower width WB.
  • Upper width WU is determined based on the arrangement of power transmission line PL.
  • the lower width WB is determined based on the arrangement of the overhead ground wire OGW.
  • specific examples of the upper width WU and the lower width WB will be described.
  • the upper width WU is determined based on the length of the brace AR that supports the transmission line PL, the sag SG, or the span SP of the adjacent transmission line tower ST. Hereinafter, details of the upper width WU will be described.
  • the upper width WU is determined based on the width of the armrest AR of the steel tower.
  • the upper width WU is determined based on the length of the arm metal AR in the X-axis direction. As shown in FIG. 1, the length of the arm metal AR in the X-axis direction is indicated by the arm metal width WAR. That is, the upper width WU is the brace width WAR.
  • Upper width WU is determined based on the width of power transmission line PL.
  • the first line PL1, the third line PL3, and the fifth line PL5 included in the left power transmission line PLL are supported by the power transmission line tower ST on the same Z axis.
  • the case will be described.
  • a case will be described in which the second line PL2, the fourth line PL4, and the sixth line PL6 included in the right power transmission line PLR are supported by the power transmission line tower ST on the same Z axis.
  • the state of the power transmission line PL differs depending on whether there is no wind or wind.
  • the width of the transmission line PL in the windless state and the width of the transmission line PL when there is wind will be described.
  • the width of the transmission line PL is a width from the position where the left transmission line PLL is supported by the transmission line tower ST to the position where the right transmission line PLR is supported by the transmission line tower ST.
  • the width from the position where the left transmission line PLL is supported by the transmission line tower ST to the position where the right transmission line PLR is supported by the transmission line tower ST is indicated by the transmission line width WLNnor.
  • the upper width WU is the transmission line width WLNnor.
  • the maximum value of the length that the power transmission line PL is suspended downward is referred to as a suspension length DL. More specifically, the maximum value of the length by which the left power transmission line PLL is suspended downward is described as a suspension length DL1. Moreover, the maximum value of the length with which the right power transmission line PLR is suspended downward is described as a suspension length DL2.
  • FIG. 2 is a schematic diagram illustrating an example of the position of the first line PL1 when there is wind.
  • the power transmission line PL is supported via a brace I on the brace AR.
  • the insulator I is a suspended SI is described.
  • the first line PL1 projects in the left direction from the arm bracket AR1 of the power transmission line tower ST when the wind in the left direction is blowing. Specifically, as shown in FIG.
  • the first line PL1 protrudes to the left by the length indicated by the overhang width OH1 from the left end point P1, which is the left end point of the arm metal AR1.
  • the length of the overhang width OH1 is determined based on the transmission line PL and the inclination of the suspension SI with respect to the Z axis, the length of the suspension SI, the sag SG, and the end point support point length PPD1.
  • the slackness SG is the distance between the position of the arm bracket AR of the transmission line tower ST and the position of the lowest point in the span SP of the transmission line PL when viewed in the Y-axis direction.
  • the end point support point length PPD1 is a length from the support point P2 to the left end point P1, which is a point where the power transmission line PL is supported by the arm metal AR, as shown in FIG.
  • the overhang width OH1 when the first line PL1 and the suspension SI are parallel to the X axis is referred to as an overhang width OHmax1.
  • the overhang width OHmax1 is a length obtained by subtracting the end point support point length PPD1 from the sum of the length of the suspension SI and the sag SG1 as the sag SG1 of the first line PL1.
  • the overhang width OHmax1 is a length obtained by subtracting the end point support point length PPD1 from the suspension length DL1.
  • the second line PL2 is a length indicated by the overhang width OH2 from the arm metal AR1 of the transmission line tower ST when the wind in the right direction is blowing. Just overhang to the right.
  • the overhang width OH2 when the second line PL2 and the suspension SI are parallel to the X axis is referred to as an overhang width OHmax2.
  • the overhang width OHmax1 and the overhang width OHmax2 are the same length will be described.
  • the width of the power transmission line PL when there is wind is the maximum transmission indicated by the sum of the length of the overhang width OHmax1, the length of the arm metal AR1 in the X-axis direction, and the length of the overhang width OHmax2.
  • the wire width is WLNmax.
  • the upper width WU is the maximum power transmission line width WLNmax.
  • FIG. 3 is a schematic diagram illustrating an example of the laying of the transmission line PL between the transmission line towers ST in the present embodiment.
  • the transmission line PL is supported by a transmission line tower ST.
  • the transmission line PL is supported by a transmission line tower ST1, a transmission line tower ST2, and a transmission line tower ST3.
  • the span SP1 indicating the region between the transmission line tower ST1 and the transmission line tower ST2 is a distance L1.
  • span SP2 which shows the area
  • the distance L2 is longer than the distance L1 will be described.
  • the left power transmission line PLL2 and the right power transmission line PLR2 are longer.
  • the sag SG22 and the sag SG22 are longer than the sag SG22.
  • the overhang width OHmax11 of the left power transmission line PLL1 and the overhang width OHmax21 of the right power transmission line PLR1 the overhang width OHmax12 of the left power transmission line PLL2, and the right power transmission line PLR2
  • the overhang width OHmax22 the overhang width OHmax12 and the overhang width OHmax22 are longer.
  • the case where the arm brackets AR included in the power transmission line tower ST have the same length has been described, but the present invention is not limited thereto.
  • the case where the arm brackets AR included in the power transmission tower ST are different in length will be described.
  • the upper width WU is determined based on the longest armrest AR. That is, in this example, the arm metal width WAR is determined based on the length of the arm metal AR2 in the X-axis direction.
  • the transmission line width WLNnor is determined based on the width from the position where the third line PL3 is supported by the arm metal AR2 to the position where the fourth line PL4 is supported by the arm metal AR2.
  • the maximum transmission line width WLNmax is such that the transmission line PL extends from the position where the third line PL3 protrudes in the left direction by the extension width OHmax1, and the fourth line PL4 extends in the right direction. It is determined on the basis of the width up to the position overhanging by the width OHmax2.
  • the insulator installed between the arm metal AR and the power transmission line PL supported by the arm metal AR is a V suspension insulator.
  • the V hanging insulator does not protrude in the direction in which the wind blows even when there is wind. That is, when the insulator installed between the arm metal AR and the transmission line PL supported by the arm metal AR is a V suspension insulator, the overhang width OH does not include the length of the V suspension insulator. .
  • the lower width WB is determined based on the arrangement of the overhead ground wire OGW. Specifically, the lower width WB is determined based on the length between the overhead ground lines OGW when there are a plurality of overhead ground lines OGW. Further, the lower width WB is set to 0 when there is one overhead ground wire OGW.
  • the airway 1 has a cross-sectional shape indicated by a lower width WB, an upper width WU, and an airway height H as shown in FIG.
  • the airway height H may be any height, and in this example, the case where the position of the upper width WU is 150 m or less from the ground surface G will be described.
  • the airway 1 on which the unmanned air vehicle D flies is set above the aerial ground wire OGW.
  • the airway 1 is determined based on the arrangement of the power transmission line PL and the overhead ground wire OGW.
  • the airway 1 is defined by an upper width WU that is determined based on the arrangement of the power transmission line PL supported by the transmission line tower ST and a lower width WB that is determined based on the arrangement of the overhead ground wire OGW. It has a sectional shape to be partitioned.
  • the airway 1 on which the unmanned air vehicle D flies can be defined based on the power transmission line PL. For example, when cargo is mounted on an unmanned air vehicle D flying on an air route 1 based on the transmission line PL, the cargo is transported to an area where the transmission line PL is laid by defining the air route 1 Can do.
  • a flight prohibited area FPA may be defined.
  • the flight prohibited area FPA is an area where the flight of the unmanned air vehicle D is restricted.
  • the flight prohibition area FPA is set in order to prevent the unmanned air vehicle D from contacting the power transmission line tower ST, the overhead ground line OGW, and the power transmission line PL when flying. Further, the flight prohibition area FPA is set in order to prevent the flight of the unmanned air vehicle D from being affected by an electric field generated by applying a voltage to the power transmission line PL. Further, the flight prohibition area FPA is set based on the flight accuracy of the unmanned air vehicle D flying on the air route 1. Further, the flight prohibition area FPA is set according to the flight speed of the unmanned air vehicle D flying on the air route 1.
  • FIG. 4 is a schematic diagram showing a flight prohibited area FPA in the present embodiment.
  • Flight prohibited area FPA1 Contact prevention
  • the flight prohibited area FPA1 has a cross-sectional shape indicated by a prohibited area lower width WPB, a prohibited area upper width WPU, and a separation distance CL.
  • the prohibited area lower width WPB is the lower width of the area indicated by the flight prohibited area FPA1.
  • the prohibited area upper width WPU is the upper width of the area indicated by the flight prohibited area FPA1.
  • the prohibited area upper width WPU is positioned above the prohibited area lower width WPB by a distance indicated by the separation distance CL.
  • a flight prohibited area FPA2 Electric field strength
  • An electric field strength curve E shown in FIG. 4 is an isoelectric field curve showing a distribution of a predetermined electric field strength.
  • the electric field strength curve E is an equal electric field curve indicating a distribution of a predetermined electric field strength among the maximum electric field strengths at a certain place.
  • a range of the airway 1 in which the electric field distribution is higher than a predetermined threshold is determined as the flight prohibited area FPA2.
  • the flight prohibition area FPA2 is an area connecting the lower width WB, the right end of the upper width WU, the lower width WB, and the left end of the upper width WU.
  • a flight prohibited area FPA 3 is set according to the flight accuracy of the unmanned air vehicle D flying in the air route 1.
  • the flight accuracy is an index based on a flight target path that is a target path for the unmanned air vehicle D to fly to a destination and a flight path that is a path on which the unmanned air vehicle D actually flies.
  • a case will be described in which the flight accuracy of the unmanned air vehicle D is indicated by a path difference length RD that is a difference between the flight target path and the flight path.
  • the path difference length RD is larger than a predetermined value
  • the flight accuracy of the unmanned air vehicle D is lowered.
  • the path difference length RD is smaller than a predetermined value, the flight accuracy of the unmanned air vehicle D is increased.
  • the flight prohibited area FPA3 according to the flight accuracy is an area based on authentication according to the performance of the unmanned air vehicle D, for example.
  • the authentication of the unmanned air vehicle D is an authentication based on whether or not the unmanned air vehicle D flying on the airway 1 satisfies the flight accuracy standard.
  • the unmanned air vehicle D with high flight accuracy is an A-approved unmanned air vehicle D.
  • the unmanned air vehicle D with low flight accuracy is a B-approved unmanned air vehicle D.
  • the A-approved unmanned air vehicle D may fly over the upper and lower portions when flying along the airway 1.
  • the B-approved unmanned air vehicle D flies along the air route 1
  • the lower part of the cross-sectional shape of the air route 1 is defined as the flight prohibited area FPA 3.
  • a flight prohibition area FPA 4 is set according to the flight speed of the unmanned air vehicle D flying in the air route 1. Specifically, the flight speed of the unmanned air vehicle D is set in the airway 1 according to the vertical position of the cross-sectional shape of the airway 1. More specifically, the upper part of the cross-sectional shape of the airway 1 is faster and the lower part is slower. The unmanned air vehicle D flies at a predetermined speed according to the vertical position of the cross-sectional shape of the airway 1.
  • the unmanned air vehicle D flies at an upper portion of the cross-sectional shape of the airway 1 at a high speed.
  • the unmanned air vehicle D flies at a low speed in the lower part of the cross-sectional shape of the airway 1. That is, in the unmanned air vehicle D that flies at high speed, the lower part of the cross-sectional shape of the airway 1 is defined as the flight prohibited area FPA4.
  • the unmanned air vehicle D that flies at a low speed has the upper portion of the cross-sectional shape of the airway 1 defined as a flight prohibited area FPA4.
  • the cross-sectional shape of the airway 1 is further determined based on the electric field distribution generated by the voltage applied to the transmission line PL.
  • the flight prohibited area FPA includes a range where the electric field distribution is higher than a predetermined threshold. Thereby, the flight of the unmanned air vehicle D in the airway 1 can be prevented from being hindered by the electric field. Thereby, the unmanned air vehicle D can fly more stably on the air route 1.
  • the flight speed of the unmanned air vehicle D is set in the airway 1 according to the vertical position of the cross-sectional shape of the airway 1.
  • the speed determined in advance according to the vertical position of the cross-sectional shape of the airway 1 is a higher speed at the upper part and a lower speed at the lower part.
  • the unmanned air vehicle D can fly more efficiently in the air route 1.
  • the unmanned air vehicle D can fly more efficiently, thereby enabling more efficient transportation.
  • the unmanned air vehicle D flies by the unmanned air vehicle D that has been certified according to the performance in the airway 1 in the first and second embodiments.
  • the unmanned air vehicle D is certified based on the flight accuracy of the unmanned air vehicle D.
  • the unmanned aerial vehicle D flies in the position of the cross-sectional shape of the airway 1 according to the certification in the airway 1.
  • the position of the cross-sectional shape of the airway 1 according to authorization of the unmanned air vehicle D among the airways 1 be the flight prohibition area
  • FIG. 5 is a schematic diagram showing an example of the air route 2 in the second embodiment.
  • the power transmission line tower ST supports two aerial ground lines OGW, that is, the aerial ground line OGWL and the aerial ground line OGWR will be described.
  • symbol is attached
  • the lower width WB of the airway 2 in the second embodiment is determined based on the length from the overhead ground wire OGWL to the overhead ground wire OGWR. Thereby, it has the cross-sectional shape divided by the upper width WU defined based on the arrangement of the transmission line PL supported by the transmission line tower ST and the lower width WB defined based on the arrangement of the overhead ground wire OGW. .
  • the placement of the overhead ground wire OGW is indicated by at least the number of the overhead ground wire OGW.
  • the lower width WB is set to zero.
  • the lower width WB is determined based on the length between the overhead ground wires OGW. That is, the span SP having a large number of overhead ground wires OGW can have a wide width of the airway 2.
  • more unmanned air vehicles D can fly through the airway 2. For example, when a cargo is mounted on the unmanned air vehicle D that flies on the air route 2 based on the power transmission line PL, more unmanned air vehicles D can fly, so that more stable transportation can be performed.
  • FIG. 6 is a schematic diagram showing an example of the shape of the airway 3.
  • the line connecting the lower width WB and the upper width WU of the airway 3 may be a curve.
  • the cross-sectional shape of the airway 3 may have a vertical width in a range having a width of the upper width WU according to the electric field strength curve E.
  • Example 1 and Example 2 the above-described airway 1, airway 2, and airway 3 are defined, so that the unmanned aerial vehicle that flies in the airway 1, the airway 2, and the airway 3 is used.
  • a specific example of the control of D will be described.
  • FIG. 7 is a schematic diagram showing an example of control of the unmanned air vehicle D flying on an air route.
  • Example 1 which adapts the airway 1, the airway 2, and the airway 3 set to the upper part of the transmission line tower ST to the flight of the unmanned air vehicle D is demonstrated.
  • the transmission line tower ST1 includes an antenna ANT1 at the upper end of the transmission line tower ST1.
  • the transmission line tower ST2 includes an antenna ANT2 at the upper end of the transmission line tower ST2.
  • the transmission line tower ST3 includes an antenna ANT3 at the upper end of the transmission line tower ST3.
  • data indicating the coordinates of the airway 1, the airway 2, and the airway 3 is stored in advance.
  • the unmanned air vehicle D that flies through the airway 1, the airway 2, and the airway 3 is guided by radio waves based on radio waves transmitted by the antenna ANT included in each power transmission line tower ST.
  • the antenna ANT1 radiates radio waves indicating the left-right direction and the up-down direction in the direction of the transmission line tower ST2.
  • the unmanned air vehicle D receives radio waves indicating the left-right direction and the up-down direction irradiated by the antenna ANT1.
  • the unmanned air vehicle D grasps the position based on the received radio wave and data indicating the coordinates of the air route 1, the air route 2, and the air route 3 stored in advance.
  • the unmanned air vehicle D flying in the span SP1 can correct the grasped position when it is deviated from the air route 1, the air route 2, and the air route 3 defined in the span SP1.
  • the air route 1, the air route 2, and the air route 3 can be flew.
  • the antenna ANT2 is in the span SP adjacent to the transmission line tower ST3 and the antenna ANT3.
  • the unmanned air vehicle D can continue to fly on the air route 1, the air route 2, and the air route 3.
  • radio waves may be radiated to the span SPs on both sides adjacent to the antenna ANT.
  • the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3 includes the GPS module included in each unmanned air vehicle D, the air route 1 stored in advance, the air route 2, And GPS guidance based on the coordinate data indicating the coordinates of the airway 3.
  • the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3 periodically grasps the position by using the GPS module.
  • the unmanned air vehicle D flying in the air route 1, the air route 2, and the air route 3 has the grasped position deviated from the determined air route 1, air route 2, and air route 3.
  • the air route 1, the air route 2, and the air route 3 can be corrected.
  • FIG. 8 is a schematic diagram showing an example of the airway calculation device 10 in a modified example.
  • the air route calculation device 10 includes a control unit 110 and a storage unit 120.
  • the storage unit 120 stores facility information EI.
  • the facility information EI includes the position of the transmission line tower ST, the type of the transmission line tower ST, the height of the transmission line tower ST, the thickness and the type of the transmission line PL that connects between the adjacent transmission line towers ST. , Mass and length, sag SG, etc., and information indicating the voltage supplied by the transmission line, etc.
  • the control unit 110 includes a calculation unit 111 as its function unit.
  • the calculation unit 111 reads the facility information EI from the storage unit 120.
  • the calculation unit 111 calculates the coordinates of the airway 1, the airway 2, and the airway 3 based on the read facility information EI.
  • the unmanned air vehicle D is set to the determined air route 1. , Air route 2 and air route 3.
  • the airway calculation device 10 includes the control unit 110 and the storage unit 120.
  • the storage unit 120 stores facility information EI.
  • the facility information EI includes the prohibited area lower width WPB, the prohibited area upper width WPU, the separation distance CL, the electric field strength curve E, the position of the transmission line tower ST, the type of the transmission line tower ST, and the height of the transmission line tower ST.
  • the thickness, type, mass, length, sag SG of the power transmission line PL connecting the adjacent power transmission towers ST, the voltage supplied by the power transmission line, the airway 1, the airway 2, and the airway 3 The information indicating the accuracy of the unmanned air vehicle D that flies, the flight speed of the unmanned air vehicle D, and the like is included.
  • the calculation unit 111 included in the control unit 110 performs processing according to the following procedure in the calculation step. That is, the calculation unit 111 reads the facility information EI from the storage unit 120. The calculation unit 111 calculates the coordinates of the airway 1, the airway 2, and the airway 3 based on the read facility information EI. Thereby, the air route calculation device 10 can calculate the coordinate data of the air route 1, the air route 2, and the air route 3.
  • the air route calculation device 10 may calculate the flight prohibited area FPA1. Specifically, the airline calculation device 10 may calculate the flight prohibited area FPA1 based on the prohibited area lower width WPB, the prohibited area upper width WPU, and the separation distance CL.
  • the facility information EI includes information indicating the prohibited area lower width WPB, the prohibited area upper width WPU, and the separation distance CL.
  • the air route calculation device 10 calculates the prohibited flight area FPA1 based on the prohibited area lower width WPB, the prohibited area upper width WPU, and the separation distance CL included in the facility information EI.
  • the airway calculation device 10 may calculate the flight prohibited area FPA2. Specifically, the airway calculation device 10 may calculate the flight prohibited area FPA2 based on the electric field strength curve E.
  • the facility information EI includes information indicating the electric field strength curve E.
  • the airway calculation device 10 calculates the flight prohibited area FPA2 based on the electric field strength curve E included in the facility information EI.
  • the airway calculation device 10 may calculate the flight prohibited area FPA3. Specifically, the airway calculation device 10 may calculate the flight prohibition area FPA3 based on the accuracy of the unmanned air vehicle D that flies over the airway 1, the airway 2, and the airway 3.
  • the facility information EI includes information indicating the flight accuracy of the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3.
  • the flight accuracy of the unmanned air vehicle D is indicated by a path difference length RD that is a difference between the flight target path and the flight path.
  • the air route calculation device 10 calculates the flight prohibited area FPA3 based on the flight accuracy of the unmanned air vehicle D included in the facility information EI.
  • the airway calculation device 10 may calculate the flight prohibited area FPA4. Specifically, the air route calculation device 10 may calculate the flight prohibition area FPA4 based on the flight speed of the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3.
  • the facility information EI includes information indicating the flight speed of the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3.
  • the air route calculation device 10 calculates the flight prohibited area FPA4 based on the flight speed of the unmanned air vehicle D included in the facility information EI.

Abstract

A flight route according to the present invention is a space vertically above an overhead ground wire supported by a transmission-line tower, and has a cross-sectional shape partitioned by an upper width, which is determined on the basis of the arrangement of a power-transmission line supported by the transmission-line tower, and a lower width, which is determined on the basis of the arrangement of the power-transmission line. The flight route is flown by an unmanned air vehicle.

Description

航空路、航空路算出装置及び航空路算出方法Airway, airway calculation device and airway calculation method
 本発明は、航空路、航空路算出装置及び航空路算出方法に関する。 The present invention relates to an air route, an air route calculation device, and an air route calculation method.
 従来、無人航空機(以下、ドローン)に貨物を搭載した場合であってもドローンを前後左右に容易に操舵することができる技術が知られている。 Conventionally, a technology that can easily steer a drone back and forth and right and left even when cargo is loaded on an unmanned aerial vehicle (hereinafter referred to as a drone) is known.
特開2001-39397号公報JP 2001-39397 A
 ここで、複数のドローンが飛行する場合には、秩序だった飛行を行う手段が求められる。しかしながら、特許文献1には、どのような手段によれば秩序だった飛行を行うことができるのかということまでは、具体的に記載されていない。つまり、特許文献1に記載されるような従来技術によると、複数のドローンが飛行する場合に、秩序だった飛行を行うことができないことがあった。 Here, when multiple drones fly, a means of orderly flight is required. However, Patent Document 1 does not specifically describe what means can be used for orderly flight. In other words, according to the conventional technique described in Patent Document 1, when a plurality of drones fly, it is sometimes impossible to perform an orderly flight.
 本発明のいくつかの実施形態によれば、複数のドローンが飛行する場合に、秩序だった飛行を行うことができる技術を提供することを目的とする。 According to some embodiments of the present invention, it is an object of the present invention to provide a technique capable of performing an orderly flight when a plurality of drones fly.
 本発明の一実施形態は、送電線用鉄塔に支持される架空地線よりも鉛直方向に上方の空間であって、前記送電線用鉄塔に支持される送電線の配置に基づいて定められる上部幅と、前記架空地線の配置に基づいて定められる下部幅とによって区画される断面形状を有し、無人飛行体が飛行する航空路である。 One embodiment of the present invention is a space vertically above an aerial ground line supported by a transmission line tower, and is an upper part determined based on the arrangement of the transmission line supported by the transmission line tower The air route has a cross-sectional shape defined by a width and a lower width determined based on the arrangement of the overhead ground wire, and the unmanned air vehicle flies.
 また、本発明の一実施形態の航空路において、前記架空地線の配置は、少なくとも前記架空地線の本数によって示され、前記下部幅が、前記架空地線の本数に基づいて定められる。 In the air route according to an embodiment of the present invention, the placement of the overhead ground lines is indicated by at least the number of the overhead ground lines, and the lower width is determined based on the number of the overhead ground lines.
 また、本発明の一実施形態の航空路において、前記断面形状が、更に、前記送電線に印加される電圧によって生じる電界の分布に基づいて定められる。 In the air route according to an embodiment of the present invention, the cross-sectional shape is further determined based on a distribution of an electric field generated by a voltage applied to the power transmission line.
 また、本発明の一実施形態の航空路において、前記断面形状のうち、当該航空路に予め定められている前記無人飛行体の飛行制限速度に基づいて定められる前記架空地線から所定の高さの範囲に、飛行禁止領域を有する。 Further, in the airway according to an embodiment of the present invention, a predetermined height from the aerial ground wire determined based on a flight speed limit of the unmanned air vehicle that is predetermined in the airway among the cross-sectional shapes. The flight prohibition area is included in the range.
 また、本発明の一実施形態の航空路において、前記無人飛行体の飛行制御の精度の段階が予め定められており、前記断面形状のうち、前記精度の段階に応じた前記架空地線から所定の高さの範囲に、飛行禁止領域を有する。 Further, in the air route according to an embodiment of the present invention, a stage of accuracy of flight control of the unmanned air vehicle is determined in advance, and among the cross-sectional shapes, predetermined from the aerial ground wire according to the stage of accuracy. The flight prohibition area is included in the height range.
 また、本発明の一実施形態は、上述の航空路が有する断面形状を、送電線用鉄塔に支持される送電線の配置と、架空地線の配置とに基づいて算出する航空路算出装置である。 Moreover, one embodiment of the present invention is an airway calculation device that calculates the cross-sectional shape of the above-mentioned airway based on the arrangement of the power transmission line supported by the transmission line tower and the arrangement of the overhead ground wire. is there.
 また、本発明の一実施形態は、上述の航空路が有する断面形状を、送電線用鉄塔に支持される送電線の配置と、架空地線の配置とに基づいて算出する算出ステップを有する航空路算出方法である。 Moreover, one embodiment of the present invention includes an aerial step that calculates the cross-sectional shape of the above-described airway based on the arrangement of the power transmission line supported by the transmission line tower and the arrangement of the overhead ground wire. This is a road calculation method.
 本発明いくつかの実施形態によれば、無人飛行体が秩序だった飛行を行う航空路を提供することができる。 According to some embodiments of the present invention, it is possible to provide an air route on which an unmanned air vehicle performs an orderly flight.
第1実施形態における航空路の一例を示す模式図である。It is a schematic diagram which shows an example of the air route in 1st Embodiment. 風がある場合の第1線の位置の一例を示す模式図である。It is a schematic diagram which shows an example of the position of the 1st line when there is a wind. 第1実施形態における送電線用鉄塔間の送電線の敷設の一例を示す模式図である。It is a schematic diagram which shows an example of installation of the power transmission line between the towers for power transmission lines in 1st Embodiment. 第1実施形態における飛行禁止領域の一例を示す模式図である。It is a schematic diagram which shows an example of the flight prohibition area | region in 1st Embodiment. 第2実施形態における航空路の一例を示す模式図である。It is a schematic diagram which shows an example of the air route in 2nd Embodiment. 変形例における、航空路算出装置の一例を示す概要図である。It is a schematic diagram which shows an example of the air route calculation apparatus in a modification. 航空路を飛行する無人飛行体の制御の一例を示す模式図である。It is a schematic diagram which shows an example of control of the unmanned air vehicle which flies an air route. 変形例における、航空路算出装置の一例を示す概要図である。It is a schematic diagram which shows an example of the air route calculation apparatus in a modification.
[送電線用鉄塔について]
 以下、図を参照して送電線用鉄塔STの各部について説明する。図1は、第1実施形態における航空路1の一例を示す模式図である。図1に示される送電線用鉄塔STは、電力を供給するために敷設された送電線を支持する鉄塔である。図1に示す通り、この一例では、送電線用鉄塔STが3相交流電力を供給する6本の送電線PLを支持する場合を一例にして説明する。送電線用鉄塔STは、腕金AR1と、腕金AR2と、腕金AR3とを備える。腕金AR1には、第1線PL1と、第2線PL2とが支持される。腕金AR2には、第3線PL3と、第4線PL4とが支持される。腕金AR3には、第5線PL5と、第6線PL6とが支持される。ここで、第1線PL1と、第3線PL3と、第5線PL5とを総称して左送電線PLLと記載する。また、第2線PL2と、第4線PL4と、第6線PL6とを総称して右送電線PLRと記載する。以降、左送電線PLLと、右送電線PLRとを特に区別しない場合には、総称して送電線PLと記載する。この一例では、左送電線PLLに含まれる第1線PL1、第3線PL3、及び第5線PL5が、互いに同じ長さである場合について説明する。また、この一例では、右送電線PLRに含まれる第2線PL2、第4線PL4、及び第6線PL6が、互いに同じ長さである場合について説明する。
 また、図1に示す通り、送電線用鉄塔STは、左送電線PLL、及び右送電線PLRの他、架空地線OGWを支持する。架空地線OGWは、接地された電線であって、送電線用鉄塔STの上部端に設置される。
[About power transmission towers]
Hereinafter, each part of the transmission line tower ST will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of an air route 1 in the first embodiment. A transmission line tower ST shown in FIG. 1 is a steel tower that supports a transmission line laid to supply power. As shown in FIG. 1, in this example, the case where the transmission line tower ST supports six transmission lines PL that supply three-phase AC power will be described as an example. The power transmission line tower ST includes a brace AR1, a brace AR2, and a brace AR3. The arm metal AR1 supports the first line PL1 and the second line PL2. The arm metal AR2 supports the third line PL3 and the fourth line PL4. The arm metal AR3 supports the fifth line PL5 and the sixth line PL6. Here, the first line PL1, the third line PL3, and the fifth line PL5 are collectively referred to as a left power transmission line PLL. The second line PL2, the fourth line PL4, and the sixth line PL6 are collectively referred to as a right power transmission line PLR. Hereinafter, when the left power transmission line PLL and the right power transmission line PLR are not particularly distinguished, they are collectively referred to as a power transmission line PL. In this example, a case will be described in which the first line PL1, the third line PL3, and the fifth line PL5 included in the left power transmission line PLL have the same length. In this example, a case will be described in which the second line PL2, the fourth line PL4, and the sixth line PL6 included in the right power transmission line PLR have the same length.
Further, as shown in FIG. 1, the transmission line tower ST supports an overhead ground wire OGW in addition to the left transmission line PLL and the right transmission line PLR. The overhead ground wire OGW is a grounded electric wire and is installed at the upper end of the transmission line tower ST.
 以下において必要な場合には、XYZ直交座標系を参照して説明する。このXYZ直交座標系のZ軸とは、地表面に対して鉛直の軸である。Y軸とは、送電線の送電方向に平行な軸である。X軸とは、送電線の送電方向に直交する方向の軸である。より具体的にはX軸とは、送電線用鉄塔STが送電線を支持する左送電線PLLと、右送電線PLRとの各相の送電線を結んだ直線に平行な軸である。また、X軸と、Y軸とがなすX-Y平面は地表面と水平の平面である。 The following description will be made with reference to the XYZ rectangular coordinate system if necessary. The Z axis of the XYZ orthogonal coordinate system is an axis perpendicular to the ground surface. The Y axis is an axis parallel to the power transmission direction of the power transmission line. The X axis is an axis in a direction orthogonal to the power transmission direction of the power transmission line. More specifically, the X axis is an axis parallel to a straight line connecting the transmission lines of the respective phases of the left transmission line PLL, on which the transmission line tower ST supports the transmission line, and the right transmission line PLR. An XY plane formed by the X axis and the Y axis is a plane that is horizontal to the ground surface.
 送電線用鉄塔STが支持する送電線PLと、架空地線OGWとは、Y軸の正の方向と、負の方向とへ敷設される。具体的には、送電線PLと、架空地線OGWとは、Y軸の正の方向と、負の方向とに隣接する他の送電線用鉄塔STによって支持される。 The power transmission line PL supported by the power transmission tower ST and the overhead ground wire OGW are laid in the positive direction of the Y axis and the negative direction. Specifically, the power transmission line PL and the overhead ground wire OGW are supported by another power transmission line tower ST adjacent to the positive direction of the Y axis and the negative direction.
 ここで、Z軸の正の方向を鉛直方向に上方又は単に上方とも称する。また、Z軸の負の方向を下方とも称する。また、Y軸の正の方向を後方とも称する。また、Y軸の負の方向を前方とも称する。また、X軸の正の方向を右側、又は右の方向とも称する。また、X軸の負の方向を左側、又は左の方向とも称する。 Here, the positive direction of the Z-axis is also referred to as upward or simply upward in the vertical direction. Further, the negative direction of the Z axis is also referred to as the downward direction. The positive direction of the Y axis is also referred to as the rear. The negative direction of the Y axis is also referred to as the front. The positive direction of the X axis is also referred to as the right side or the right direction. The negative direction of the X axis is also referred to as the left side or the left direction.
 また、送電線用鉄塔STは、地表面Gから送電線用鉄塔高さHTによって示される高さを有する。送電線用鉄塔高さHTは、送電線PLが供給する電圧によって異なる。送電線PLが供給可能な電圧が50万ボルトである場合、送電線用鉄塔高さHTは、例えば、80mである。また、送電線PLが供給可能な電圧が100万ボルトである場合、送電線用鉄塔高さHTは、例えば、110mである。
 本発明の航空路1は、上述した送電線用鉄塔STが備える架空地線OGWより上方であって、その形状が送電線PLと、架空地線OGWとに基づいて定められる。以下、本発明の実施形態について説明する。
Further, the transmission line tower ST has a height indicated by the transmission line tower height HT from the ground surface G. The transmission line tower height HT varies depending on the voltage supplied by the transmission line PL. When the voltage that can be supplied by the transmission line PL is 500,000 volts, the transmission line tower height HT is, for example, 80 m. When the voltage that can be supplied by the transmission line PL is 1 million volts, the transmission line tower height HT is, for example, 110 m.
The airway 1 of the present invention is above the overhead ground wire OGW included in the above-described transmission line tower ST, and its shape is determined based on the power transmission line PL and the overhead ground wire OGW. Hereinafter, embodiments of the present invention will be described.
[第1実施形態]
 図1に示す通り、本実施形態の航空路1は、送電線用鉄塔STの上部端から上方に設定される。また、航空路1の断面形状は、上幅WU、下幅WBによって示される幅を有する。上幅WUは、送電線PLの配置に基づいて定められる。下幅WBは、架空地線OGWの配置に基づいて定められる。以下、上幅WUと、下幅WBとの具体例について説明する。
[First Embodiment]
As shown in FIG. 1, the airway 1 of the present embodiment is set upward from the upper end of the transmission line tower ST. The cross-sectional shape of the airway 1 has a width indicated by an upper width WU and a lower width WB. Upper width WU is determined based on the arrangement of power transmission line PL. The lower width WB is determined based on the arrangement of the overhead ground wire OGW. Hereinafter, specific examples of the upper width WU and the lower width WB will be described.
[上幅WUについて]
 上幅WUは、送電線PLを支持する腕金ARの長さ、弛度SG、又は隣接する送電線用鉄塔STの径間SPに基づいて定められる。以下、上幅WUの詳細について説明する。
[About upper width WU]
The upper width WU is determined based on the length of the brace AR that supports the transmission line PL, the sag SG, or the span SP of the adjacent transmission line tower ST. Hereinafter, details of the upper width WU will be described.
[上幅WUが鉄塔の腕金ARの幅に基づいて定められる場合]
 上幅WUは、鉄塔の腕金ARの幅に基づいて定められる。この一例では、腕金AR1と、腕金AR2と、腕金AR3とがいずれも同じ長さである場合について説明する。具体的には、上幅WUは、腕金ARのX軸方向の長さに基づいて定められる。図1に示す通り、腕金ARのX軸方向の長さは、腕金幅WARによって示される。すなわち、上幅WUとは、腕金幅WARである。
[When the upper width WU is determined based on the width of the armrest AR of the steel tower]
The upper width WU is determined based on the width of the armrest AR of the steel tower. In this example, the case where the arm metal AR1, the arm metal AR2, and the arm metal AR3 are all the same length will be described. Specifically, the upper width WU is determined based on the length of the arm metal AR in the X-axis direction. As shown in FIG. 1, the length of the arm metal AR in the X-axis direction is indicated by the arm metal width WAR. That is, the upper width WU is the brace width WAR.
[上幅WUが送電線PLの幅に基づいて定められる場合]
 上幅WUは、送電線PLの幅に基づいて定められる。この一例では、図1に示す通り、左送電線PLLに含まれる第1線PL1と、第3線PL3と、第5線PL5とが、同一Z軸上において送電線用鉄塔STに支持される場合について説明する。また、右送電線PLRに含まれる第2線PL2と、第4線PL4と、第6線PL6とが、同一Z軸上において送電線用鉄塔STに支持される場合について説明する。
 ここで、送電線PLは、無風の場合と、風がある場合とでその状態が異なる。以下、無風状態の送電線PLの幅と、風がある場合の送電線PLの幅とについて説明する。
[When upper width WU is determined based on the width of power transmission line PL]
Upper width WU is determined based on the width of power transmission line PL. In this example, as shown in FIG. 1, the first line PL1, the third line PL3, and the fifth line PL5 included in the left power transmission line PLL are supported by the power transmission line tower ST on the same Z axis. The case will be described. A case will be described in which the second line PL2, the fourth line PL4, and the sixth line PL6 included in the right power transmission line PLR are supported by the power transmission line tower ST on the same Z axis.
Here, the state of the power transmission line PL differs depending on whether there is no wind or wind. Hereinafter, the width of the transmission line PL in the windless state and the width of the transmission line PL when there is wind will be described.
[無風状態の幅に基づいて定められる場合]
 無風状態の場合、左送電線PLL、及び右送電線PLRは、下方に懸垂する。この場合、送電線PLの幅は、送電線用鉄塔STに左送電線PLLが支持される位置から、送電線用鉄塔STに右送電線PLRが支持される位置までの幅である。図1に示す通り、送電線用鉄塔STに左送電線PLLが支持される位置から、送電線用鉄塔STに右送電線PLRが支持される位置までの幅は、送電線幅WLNnorによって示される。すなわち、上幅WUは、送電線幅WLNnorである。また、以降の説明において、図1に示す通り、送電線PLが下方に懸垂する長さの最大値を懸垂長DLと記載する。より具体的には、左送電線PLLが下方に懸垂する長さの最大値を懸垂長DL1と記載する。また、右送電線PLRが下方に懸垂する長さの最大値を懸垂長DL2と記載する。
[When determined based on the width of the windless state]
In a windless state, the left power transmission line PLL and the right power transmission line PLR are suspended downward. In this case, the width of the transmission line PL is a width from the position where the left transmission line PLL is supported by the transmission line tower ST to the position where the right transmission line PLR is supported by the transmission line tower ST. As shown in FIG. 1, the width from the position where the left transmission line PLL is supported by the transmission line tower ST to the position where the right transmission line PLR is supported by the transmission line tower ST is indicated by the transmission line width WLNnor. . That is, the upper width WU is the transmission line width WLNnor. Moreover, in the following description, as shown in FIG. 1, the maximum value of the length that the power transmission line PL is suspended downward is referred to as a suspension length DL. More specifically, the maximum value of the length by which the left power transmission line PLL is suspended downward is described as a suspension length DL1. Moreover, the maximum value of the length with which the right power transmission line PLR is suspended downward is described as a suspension length DL2.
[風がある場合の幅に基づいて定められる場合]
 以下、図2を参照して、風がある場合の第1線PL1の位置を一例にして説明する。図2は、風がある場合の第1線PL1の位置の一例を示す模式図である。
 図2に示す通り、送電線PLは、腕金ARにがいしIを介して支持される。この一例では、がいしIが懸垂がいしSIである場合について説明する。図2に示す通り、第1線PL1は、左の方向の風向きの風が吹いている場合、送電線用鉄塔STの腕金AR1から左の方向に張り出す。具体的には、図2に示す通り、第1線PL1は、腕金AR1の左側の端点である左側端点P1から張出幅OH1が示す長さだけ左に張り出す。張出幅OH1の長さとは、送電線PL、及び懸垂がいしSIのZ軸に対する傾きと、懸垂がいしSIの長さと、弛度SGと、端点支持点間長PPD1とに基づいて定められる。弛度SGとは、Y軸方向に見通した場合に、送電線用鉄塔STの腕金ARの位置と、送電線PLの径間SPにおける最下点の位置との距離である。また、端点支持点間長PPD1とは、図2に示す通り、腕金ARに送電線PLが支持される点である支持点P2から左側端点P1までの長さである。
[When determined based on the width when there is wind]
Hereinafter, the position of the first line PL1 when there is wind will be described as an example with reference to FIG. FIG. 2 is a schematic diagram illustrating an example of the position of the first line PL1 when there is wind.
As shown in FIG. 2, the power transmission line PL is supported via a brace I on the brace AR. In this example, the case where the insulator I is a suspended SI is described. As shown in FIG. 2, the first line PL1 projects in the left direction from the arm bracket AR1 of the power transmission line tower ST when the wind in the left direction is blowing. Specifically, as shown in FIG. 2, the first line PL1 protrudes to the left by the length indicated by the overhang width OH1 from the left end point P1, which is the left end point of the arm metal AR1. The length of the overhang width OH1 is determined based on the transmission line PL and the inclination of the suspension SI with respect to the Z axis, the length of the suspension SI, the sag SG, and the end point support point length PPD1. The slackness SG is the distance between the position of the arm bracket AR of the transmission line tower ST and the position of the lowest point in the span SP of the transmission line PL when viewed in the Y-axis direction. Further, the end point support point length PPD1 is a length from the support point P2 to the left end point P1, which is a point where the power transmission line PL is supported by the arm metal AR, as shown in FIG.
 ここで、第1線PL1と、懸垂がいしSIとがX軸と水平である場合の張出幅OH1を張出幅OHmax1と称する。この一例では、張出幅OHmax1が、懸垂がいしSIの長さと、第1線PL1の弛度SGである弛度SG1との和から端点支持点間長PPD1を引いた長さである場合について説明する。つまり、張出幅OHmax1とは、懸垂長DL1から端点支持点間長PPD1を引いた長さである。
 また、上述した第1線PL1の例と同様に、第2線PL2は、右の方向の風向きの風が吹いている場合、送電線用鉄塔STの腕金AR1から張出幅OH2が示す長さだけ右に張り出す。ここで、第2線PL2と、懸垂がいしSIとがX軸と水平である場合の張出幅OH2を張出幅OHmax2と称する。この一例では、張出幅OHmax1と、張出幅OHmax2とが同じ長さである場合について説明する。
Here, the overhang width OH1 when the first line PL1 and the suspension SI are parallel to the X axis is referred to as an overhang width OHmax1. In this example, the overhang width OHmax1 is a length obtained by subtracting the end point support point length PPD1 from the sum of the length of the suspension SI and the sag SG1 as the sag SG1 of the first line PL1. To do. That is, the overhang width OHmax1 is a length obtained by subtracting the end point support point length PPD1 from the suspension length DL1.
Similarly to the example of the first line PL1 described above, the second line PL2 is a length indicated by the overhang width OH2 from the arm metal AR1 of the transmission line tower ST when the wind in the right direction is blowing. Just overhang to the right. Here, the overhang width OH2 when the second line PL2 and the suspension SI are parallel to the X axis is referred to as an overhang width OHmax2. In this example, a case where the overhang width OHmax1 and the overhang width OHmax2 are the same length will be described.
 図1に戻り、風がある場合の送電線PLの幅は、張出幅OHmax1の長さと、腕金AR1のX軸方向の長さと、張出幅OHmax2の長さとの和によって示される最大送電線幅WLNmaxである。上幅WUとは、最大送電線幅WLNmaxである。 Returning to FIG. 1, the width of the power transmission line PL when there is wind is the maximum transmission indicated by the sum of the length of the overhang width OHmax1, the length of the arm metal AR1 in the X-axis direction, and the length of the overhang width OHmax2. The wire width is WLNmax. The upper width WU is the maximum power transmission line width WLNmax.
 また、弛度SGは、隣接する送電線用鉄塔STの径間SPに応じて変化する。以下、図3を参照して径間SPに基づく弛度SG、及び張出幅OHの変化について説明する。
 図3は、本実施形態における送電線用鉄塔ST間の送電線PLの敷設の一例を示す模式図である。図3に示す通り、送電線PLは、送電線用鉄塔STによって支持される。この一例の場合、図3に示す通り、送電線PLは、送電線用鉄塔ST1と、送電線用鉄塔ST2と、送電線用鉄塔ST3とによって支持される。
Further, the sag SG changes in accordance with the span SP between adjacent transmission line towers ST. Hereinafter, changes in the sag SG and the overhang width OH based on the span SP will be described with reference to FIG.
FIG. 3 is a schematic diagram illustrating an example of the laying of the transmission line PL between the transmission line towers ST in the present embodiment. As shown in FIG. 3, the transmission line PL is supported by a transmission line tower ST. In the case of this example, as shown in FIG. 3, the transmission line PL is supported by a transmission line tower ST1, a transmission line tower ST2, and a transmission line tower ST3.
 図3に示す通り、送電線用鉄塔ST1と、送電線用鉄塔ST2との間の領域を示す径間SP1は、距離L1である。また、送電線用鉄塔ST2と、送電線用鉄塔ST3との間の領域を示す径間SP2は、距離L2である。この一例では、距離L2が距離L1よりも長い場合について説明する。距離L1が、距離L2よりも長い場合、径間SP1に敷設される左送電線PLL1、及び右送電線PLR1と、径間SP2に敷設される左送電線PLL2、及び右送電線PLR2とでは、左送電線PLL2、及び右送電線PLR2の方が長くなる。すなわち、距離L2が、距離L1よりも長い場合、左送電線PLL1に生じる弛度SG11、及び右送電線PLR1に生じる弛度SG21と、左送電線PLL2に生じる弛度SG12、及び右送電線PLR2に生じる弛度SG22とでは、弛度SG12、及び弛度SG22の方が長くなる。すなわち、距離L2が距離L1よりも長い場合、左送電線PLL1の張出幅OHmax11、及び右送電線PLR1の張出幅OHmax21と、左送電線PLL2の張出幅OHmax12、及び右送電線PLR2の張出幅OHmax22とでは、張出幅OHmax12、及び張出幅OHmax22の方が長くなる。 As shown in FIG. 3, the span SP1 indicating the region between the transmission line tower ST1 and the transmission line tower ST2 is a distance L1. Moreover, span SP2 which shows the area | region between power transmission tower ST2 and power transmission tower ST3 is distance L2. In this example, a case where the distance L2 is longer than the distance L1 will be described. When the distance L1 is longer than the distance L2, the left power line PLL1 and the right power line PLR1 laid in the span SP1, and the left power line PLL2 and the right power line PLR2 laid in the span SP2 The left power transmission line PLL2 and the right power transmission line PLR2 are longer. That is, when the distance L2 is longer than the distance L1, the sag SG11 generated in the left power transmission line PLL1, the sag SG21 generated in the right power transmission line PLR1, the sag SG12 generated in the left power transmission line PLL2, and the right power transmission line PLR2. The sag SG22 and the sag SG22 are longer than the sag SG22. That is, when the distance L2 is longer than the distance L1, the overhang width OHmax11 of the left power transmission line PLL1 and the overhang width OHmax21 of the right power transmission line PLR1, the overhang width OHmax12 of the left power transmission line PLL2, and the right power transmission line PLR2 With the overhang width OHmax22, the overhang width OHmax12 and the overhang width OHmax22 are longer.
 なお、上述では送電線用鉄塔STが備える腕金ARがいずれも同じ長さである場合について説明したが、これに限られない。以下、送電線用鉄塔STが備える腕金ARが異なる長さである場合について説明する。
 この一例では、腕金AR2が、腕金AR1、及び腕金AR3よりも長い場合について説明する。上幅WUは、最も長い腕金ARを基準として定められる。すなわち、この一例では、腕金幅WARは、腕金AR2のX軸方向の長さに基づいて定められる。また、この一例では、送電線幅WLNnorは、腕金AR2に第3線PL3が支持される位置から、腕金AR2に第4線PL4が支持される位置までの幅に基づいて定められる。また、この一例では、最大送電線幅WLNmaxは、送電線PLの幅は、第3線PL3が左の方向に張出幅OHmax1だけ張り出した位置から、第4線PL4が右の方向に張出幅OHmax2だけ張り出した位置までの幅に基づいて定められる。
In the above description, the case where the arm brackets AR included in the power transmission line tower ST have the same length has been described, but the present invention is not limited thereto. Hereinafter, the case where the arm brackets AR included in the power transmission tower ST are different in length will be described.
In this example, a case where the arm metal AR2 is longer than the arm metal AR1 and the arm metal AR3 will be described. The upper width WU is determined based on the longest armrest AR. That is, in this example, the arm metal width WAR is determined based on the length of the arm metal AR2 in the X-axis direction. In this example, the transmission line width WLNnor is determined based on the width from the position where the third line PL3 is supported by the arm metal AR2 to the position where the fourth line PL4 is supported by the arm metal AR2. In this example, the maximum transmission line width WLNmax is such that the transmission line PL extends from the position where the third line PL3 protrudes in the left direction by the extension width OHmax1, and the fourth line PL4 extends in the right direction. It is determined on the basis of the width up to the position overhanging by the width OHmax2.
 また、上述では、腕金ARと、腕金ARに支持される送電線PLとの間にZ軸方向にがいしが設置される場合について説明したが、これに限られない。例えば、腕金ARと、腕金ARに支持される送電線PLとの間に設置されるがいしは、V吊がいしである。この場合、V吊がいしは、風がある場合であっても、風が吹く方向に張り出さない。すなわち、腕金ARと、腕金ARに支持される送電線PLとの間に設置されるがいしがV吊がいしである場合、張出幅OHには、V吊がいしの長さが含まれない。 In the above description, the case where the insulator is installed in the Z-axis direction between the brace AR and the transmission line PL supported by the brace AR has been described, but the present invention is not limited to this. For example, the insulator installed between the arm metal AR and the power transmission line PL supported by the arm metal AR is a V suspension insulator. In this case, the V hanging insulator does not protrude in the direction in which the wind blows even when there is wind. That is, when the insulator installed between the arm metal AR and the transmission line PL supported by the arm metal AR is a V suspension insulator, the overhang width OH does not include the length of the V suspension insulator. .
[下幅WBについて]
 次に、下幅WBについて説明する。上述したように、下幅WBは、架空地線OGWの配置に基づいて定められる。具体的には、下幅WBは、架空地線OGWが複数ある場合、架空地線OGW間の長さに基づいて定められる。また、下幅WBは、架空地線OGWが1本の場合、0に定められる。
[About the lower width WB]
Next, the lower width WB will be described. As described above, the lower width WB is determined based on the arrangement of the overhead ground wire OGW. Specifically, the lower width WB is determined based on the length between the overhead ground lines OGW when there are a plurality of overhead ground lines OGW. Further, the lower width WB is set to 0 when there is one overhead ground wire OGW.
 航空路1は、図1に示す通り、下幅WBと、上幅WUと、航空路高さHとによって示される断面形状を有する。航空路高さHとは、いずれの高さであってもよく、この一例では、上幅WUの位置が地表面Gから150m以下である場合について説明する。 The airway 1 has a cross-sectional shape indicated by a lower width WB, an upper width WU, and an airway height H as shown in FIG. The airway height H may be any height, and in this example, the case where the position of the upper width WU is 150 m or less from the ground surface G will be described.
 以上説明したように、無人飛行体Dが飛行する航空路1は、架空地線OGWより上方に設定される。航空路1は、送電線PLと、架空地線OGWとの配置に基づいて定められる。具体的には、航空路1は、送電線用鉄塔STに支持される送電線PLの配置に基づいて定められる上幅WUと、架空地線OGWの配置に基づいて定められる下幅WBとによって区画される断面形状を有する。
 これにより、送電線PLに基づいて無人飛行体Dが飛行する航空路1を定義することができる。例えば、送電線PLに基づく航空路1において飛行する無人飛行体Dに貨物が搭載される場合、航空路1が定義されることにより、送電線PLが敷設されている地域に貨物を輸送することができる。
As described above, the airway 1 on which the unmanned air vehicle D flies is set above the aerial ground wire OGW. The airway 1 is determined based on the arrangement of the power transmission line PL and the overhead ground wire OGW. Specifically, the airway 1 is defined by an upper width WU that is determined based on the arrangement of the power transmission line PL supported by the transmission line tower ST and a lower width WB that is determined based on the arrangement of the overhead ground wire OGW. It has a sectional shape to be partitioned.
Thereby, the airway 1 on which the unmanned air vehicle D flies can be defined based on the power transmission line PL. For example, when cargo is mounted on an unmanned air vehicle D flying on an air route 1 based on the transmission line PL, the cargo is transported to an area where the transmission line PL is laid by defining the air route 1 Can do.
 なお、航空路1には、飛行禁止領域FPAが定められていてもよい。飛行禁止領域FPAとは、無人飛行体Dの飛行が制限される領域である。飛行禁止領域FPAは、無人飛行体Dが飛行に際して送電線用鉄塔ST、架空地線OGW、及び送電線PLとの接触を防ぐために設定される。また、飛行禁止領域FPAは、送電線PLに電圧が印加されることにより生じる電界によって無人飛行体Dの飛行が影響されることを防ぐために設定される。
また、飛行禁止領域FPAは、航空路1を飛行する無人飛行体Dの飛行精度に基づいて設定される。また、飛行禁止領域FPAは、航空路1を飛行する無人飛行体Dの飛行速度に応じて設定される。
 以下、図4を参照して飛行禁止領域FPAの具体例について説明する。図4は、本実施形態における飛行禁止領域FPAを示す模式図である。
In the airway 1, a flight prohibited area FPA may be defined. The flight prohibited area FPA is an area where the flight of the unmanned air vehicle D is restricted. The flight prohibition area FPA is set in order to prevent the unmanned air vehicle D from contacting the power transmission line tower ST, the overhead ground line OGW, and the power transmission line PL when flying. Further, the flight prohibition area FPA is set in order to prevent the flight of the unmanned air vehicle D from being affected by an electric field generated by applying a voltage to the power transmission line PL.
Further, the flight prohibition area FPA is set based on the flight accuracy of the unmanned air vehicle D flying on the air route 1. Further, the flight prohibition area FPA is set according to the flight speed of the unmanned air vehicle D flying on the air route 1.
Hereinafter, a specific example of the flight prohibited area FPA will be described with reference to FIG. FIG. 4 is a schematic diagram showing a flight prohibited area FPA in the present embodiment.
[飛行禁止領域FPA1:接触防止]
 図4に示す通り、航空路1には、航空路1を飛行する無人飛行体Dが送電線用鉄塔ST、架空地線OGW、及び送電線PLと、接触することを防ぐため、飛行禁止領域FPA1が設定される。飛行禁止領域FPA1は、禁止領域下幅WPBと、禁止領域上幅WPUと、離隔距離CLとによって示される断面形状を有する。禁止領域下幅WPBとは、飛行禁止領域FPA1によって示される領域の下幅である。また、禁止領域上幅WPUとは、飛行禁止領域FPA1によって示される領域の上幅である。禁止領域上幅WPUは、禁止領域下幅WPBから離隔距離CLが示す距離だけ、上方に位置する。
[Flight prohibited area FPA1: Contact prevention]
As shown in FIG. 4, in the airway 1, in order to prevent the unmanned air vehicle D flying in the airway 1 from coming into contact with the power transmission line tower ST, the overhead ground wire OGW, and the power transmission line PL, a flight prohibited area FPA1 is set. The flight prohibited area FPA1 has a cross-sectional shape indicated by a prohibited area lower width WPB, a prohibited area upper width WPU, and a separation distance CL. The prohibited area lower width WPB is the lower width of the area indicated by the flight prohibited area FPA1. The prohibited area upper width WPU is the upper width of the area indicated by the flight prohibited area FPA1. The prohibited area upper width WPU is positioned above the prohibited area lower width WPB by a distance indicated by the separation distance CL.
[飛行禁止領域FPA2:電界強度]
 図4に示す通り、航空路1には、航空路1を飛行する無人飛行体Dが送電線PLに電圧が印加されることにより生じる電界に影響を受けることを防ぐため、飛行禁止領域FPA2が設定される。図4に示す電界強度曲線Eは、所定の電界強度の分布を示す等電界曲線である。具体的には、電界強度曲線Eは、ある場所における最大電界強度のうち、所定の電界強度の分布を示す等電界曲線である。航空路1のうち、電界の分布が所定の閾値より高い範囲が飛行禁止領域FPA2に定められる。この一例の場合、飛行禁止領域FPA2は、図4に示す通り、下幅WBと、上幅WUの右端を結んだ領域と、下幅WBと、上幅WUの左端を結んだ領域である。
[Flight prohibited area FPA2: Electric field strength]
As shown in FIG. 4, in the airway 1, in order to prevent the unmanned air vehicle D flying in the airway 1 from being affected by the electric field generated when a voltage is applied to the power transmission line PL, a flight prohibited area FPA2 is provided. Is set. An electric field strength curve E shown in FIG. 4 is an isoelectric field curve showing a distribution of a predetermined electric field strength. Specifically, the electric field strength curve E is an equal electric field curve indicating a distribution of a predetermined electric field strength among the maximum electric field strengths at a certain place. A range of the airway 1 in which the electric field distribution is higher than a predetermined threshold is determined as the flight prohibited area FPA2. In the case of this example, as shown in FIG. 4, the flight prohibition area FPA2 is an area connecting the lower width WB, the right end of the upper width WU, the lower width WB, and the left end of the upper width WU.
 [飛行禁止領域FPA3:飛行精度]
 航空路1には、航空路1を飛行する無人飛行体Dの飛行精度に応じて飛行禁止領域FPA3が設定される。飛行精度とは、無人飛行体Dが目的地まで飛行する目標の経路である飛行目標経路と、無人飛行体Dが実際に飛行する経路である飛行経路とに基づく指標である。この一例では、無人飛行体Dの飛行精度が、飛行目標経路と、飛行経路との差である経路差分長RDによって示される場合について説明する。この一例では、経路差分長RDが所定の値より大きい場合、無人飛行体Dの飛行精度は低くなる。また、経路差分長RDが所定の値より小さい場合、無人飛行体Dの飛行精度は高くなる。
[Flight prohibited area FPA3: Flight accuracy]
In the air route 1, a flight prohibited area FPA 3 is set according to the flight accuracy of the unmanned air vehicle D flying in the air route 1. The flight accuracy is an index based on a flight target path that is a target path for the unmanned air vehicle D to fly to a destination and a flight path that is a path on which the unmanned air vehicle D actually flies. In this example, a case will be described in which the flight accuracy of the unmanned air vehicle D is indicated by a path difference length RD that is a difference between the flight target path and the flight path. In this example, when the path difference length RD is larger than a predetermined value, the flight accuracy of the unmanned air vehicle D is lowered. Further, when the path difference length RD is smaller than a predetermined value, the flight accuracy of the unmanned air vehicle D is increased.
 飛行精度に応じた飛行禁止領域FPA3とは、例えば、無人飛行体Dの性能に応じた認証に基づく領域である。無人飛行体Dの認証とは、航空路1を飛行する無人飛行体Dに対して行われ、飛行精度の基準を満足しているか否かに基づく認定である。例えば、飛行精度が高い無人飛行体Dは、A認定の無人飛行体Dである。また、飛行精度が低い無人飛行体Dは、B認定の無人飛行体Dである。航空路1の断面形状を上部と、下部との領域が定められた場合、A認定の無人飛行体Dは、航空路1を飛行するに際して、上部と、下部とを飛行してもよい。また、B認定の無人飛行体Dには、航空路1を飛行するに際して、航空路1の断面形状のうち、下部が飛行禁止領域FPA3に定められる。 The flight prohibited area FPA3 according to the flight accuracy is an area based on authentication according to the performance of the unmanned air vehicle D, for example. The authentication of the unmanned air vehicle D is an authentication based on whether or not the unmanned air vehicle D flying on the airway 1 satisfies the flight accuracy standard. For example, the unmanned air vehicle D with high flight accuracy is an A-approved unmanned air vehicle D. The unmanned air vehicle D with low flight accuracy is a B-approved unmanned air vehicle D. When the upper and lower regions of the cross-sectional shape of the airway 1 are determined, the A-approved unmanned air vehicle D may fly over the upper and lower portions when flying along the airway 1. In addition, when the B-approved unmanned air vehicle D flies along the air route 1, the lower part of the cross-sectional shape of the air route 1 is defined as the flight prohibited area FPA 3.
 [飛行禁止領域FPA4:飛行速度]
 航空路1には、航空路1を飛行する無人飛行体Dの飛行速度に応じて飛行禁止領域FPA4が設定される。具体的には、航空路1には、航空路1の断面形状の上下方向の位置に応じて無人飛行体Dの飛行速度が設定される。より具体的には、航空路1の断面形状のうち、上部であるほど速い速度であって、下部であるほど遅い速度である。
 無人飛行体Dは、航空路1の断面形状の上下方向の位置に応じて予め定められた速度で飛行する。例えば、航空路1の断面形状を上部と、下部との領域が定められた場合、無人飛行体Dは、航空路1の断面形状の上部を高速で飛行する。また、無人飛行体Dは、航空路1の断面形状の下部を低速で飛行する。すなわち、高速で飛行する無人飛行体Dは、航空路1の断面形状の下部が飛行禁止領域FPA4に定められる。また、低速で飛行する無人飛行体Dは、航空路1の断面形状の上部が飛行禁止領域FPA4に定められる。
[Flight prohibited area FPA4: Flight speed]
In the air route 1, a flight prohibition area FPA 4 is set according to the flight speed of the unmanned air vehicle D flying in the air route 1. Specifically, the flight speed of the unmanned air vehicle D is set in the airway 1 according to the vertical position of the cross-sectional shape of the airway 1. More specifically, the upper part of the cross-sectional shape of the airway 1 is faster and the lower part is slower.
The unmanned air vehicle D flies at a predetermined speed according to the vertical position of the cross-sectional shape of the airway 1. For example, when the upper and lower regions of the cross-sectional shape of the airway 1 are determined, the unmanned air vehicle D flies at an upper portion of the cross-sectional shape of the airway 1 at a high speed. The unmanned air vehicle D flies at a low speed in the lower part of the cross-sectional shape of the airway 1. That is, in the unmanned air vehicle D that flies at high speed, the lower part of the cross-sectional shape of the airway 1 is defined as the flight prohibited area FPA4. In addition, the unmanned air vehicle D that flies at a low speed has the upper portion of the cross-sectional shape of the airway 1 defined as a flight prohibited area FPA4.
 以上説明したように、航空路1の断面形状は、更に、送電線PLに印加される電圧によって生じる電界の分布に基づいて定められる。飛行禁止領域FPAには、電界の分布が所定の閾値より高い範囲が含まれる。これにより、航空路1における無人飛行体Dの飛行が電界によって妨げられることを防止することができる。これにより、無人飛行体Dは、航空路1においてより安定した飛行をすることができる。 As described above, the cross-sectional shape of the airway 1 is further determined based on the electric field distribution generated by the voltage applied to the transmission line PL. The flight prohibited area FPA includes a range where the electric field distribution is higher than a predetermined threshold. Thereby, the flight of the unmanned air vehicle D in the airway 1 can be prevented from being hindered by the electric field. Thereby, the unmanned air vehicle D can fly more stably on the air route 1.
 また、航空路1には、航空路1の断面形状の上下方向の位置に応じて無人飛行体Dの飛行速度が設定される。航空路1の断面形状の上下方向の位置に応じて予め定められる速度とは、上部であるほど速い速度であって、下部であるほど遅い速度である。無人飛行体Dが予め定められた一定の速度で航空路1を飛行する場合、低速で飛行する無人飛行体Dは、航空路1の断面形状のうち、上部を飛行禁止領域FPAとする。また、高速で飛行する無人飛行体Dは、航空路1の断面形状のうち、下部を飛行禁止領域FPAとする。これにより、無人飛行体Dは、航空路1においてより効率的に飛行することができる。例えば、送電線PLに基づく航空路1において飛行する無人飛行体Dに貨物が搭載される場合、無人飛行体Dが効率的に飛行することにより、より効率的な輸送を行うことができる。 Further, the flight speed of the unmanned air vehicle D is set in the airway 1 according to the vertical position of the cross-sectional shape of the airway 1. The speed determined in advance according to the vertical position of the cross-sectional shape of the airway 1 is a higher speed at the upper part and a lower speed at the lower part. When the unmanned aerial vehicle D flies through the airway 1 at a predetermined constant speed, the unmanned aerial vehicle D that flies at a low speed has the upper part of the cross-sectional shape of the airway 1 as a flight prohibited area FPA. Further, the unmanned air vehicle D flying at a high speed has a lower part of the cross-sectional shape of the airway 1 as a flight prohibited area FPA. Thereby, the unmanned air vehicle D can fly more efficiently in the air route 1. For example, when cargo is mounted on the unmanned air vehicle D that flies on the airline 1 based on the power transmission line PL, the unmanned air vehicle D can fly more efficiently, thereby enabling more efficient transportation.
 また、無人飛行体Dは、第1、及び第2実施形態における航空路1において、性能に応じた認定を受けた無人飛行体Dが飛行する。無人飛行体Dは、当該無人飛行体Dの飛行精度に基づいて認定される。無人飛行体Dは、航空路1のうち、認定に応じた航空路1の断面形状の位置を飛行する。また、航空路1のうち、無人飛行体Dの認定に応じた航空路1の断面形状の位置を飛行禁止領域FPAとする。これにより、航空路1においてより効率的に飛行することができる。 In addition, the unmanned air vehicle D flies by the unmanned air vehicle D that has been certified according to the performance in the airway 1 in the first and second embodiments. The unmanned air vehicle D is certified based on the flight accuracy of the unmanned air vehicle D. The unmanned aerial vehicle D flies in the position of the cross-sectional shape of the airway 1 according to the certification in the airway 1. Moreover, let the position of the cross-sectional shape of the airway 1 according to authorization of the unmanned air vehicle D among the airways 1 be the flight prohibition area | region FPA. Thereby, it is possible to fly more efficiently in the air route 1.
[第2実施形態]
 次に、図5を参照して本発明の第2の実施形態について説明する。図5は、第2実施形態における航空路2の一例を示す模式図である。第2実施形態では、送電線用鉄塔STが、架空地線OGWLと、架空地線OGWRとの2つの架空地線OGWを支持する場合について説明する。なお、上述した第1実施形態と同様の構成及び動作については、同一の符号を付してその説明を省略する。図5に示す通り、第2実施形態における航空路2の下幅WBは、架空地線OGWLから架空地線OGWRまでの長さに基づいて定められる。これにより、送電線用鉄塔STに支持される送電線PLの配置に基づいて定められる上幅WUと、架空地線OGWの配置に基づいて定められる下幅WBとによって区画される断面形状を有する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic diagram showing an example of the air route 2 in the second embodiment. In the second embodiment, a case where the power transmission line tower ST supports two aerial ground lines OGW, that is, the aerial ground line OGWL and the aerial ground line OGWR will be described. In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 5, the lower width WB of the airway 2 in the second embodiment is determined based on the length from the overhead ground wire OGWL to the overhead ground wire OGWR. Thereby, it has the cross-sectional shape divided by the upper width WU defined based on the arrangement of the transmission line PL supported by the transmission line tower ST and the lower width WB defined based on the arrangement of the overhead ground wire OGW. .
 以上説明したように、架空地線OGWの配置は、少なくとも架空地線OGWの本数によって示される。具体的には、送電線用鉄塔STが架空地線OGWを1本支持する場合、下幅WBは0に定められる。また、送電線用鉄塔STが架空地線OGWを2本支持する場合、下幅WBは、架空地線OGW間の長さに基づいて定められる。すなわち、架空地線OGWの本数が多い径間SPは、航空路2の幅を広く取ることができる。これにより、より多くの無人飛行体Dが航空路2を飛行することができる。例えば、送電線PLに基づく航空路2において飛行する無人飛行体Dに貨物が搭載される場合、多くの無人飛行体Dが飛行することで、より安定した輸送を行うことができる。 As described above, the placement of the overhead ground wire OGW is indicated by at least the number of the overhead ground wire OGW. Specifically, when the power transmission tower ST supports one overhead ground wire OGW, the lower width WB is set to zero. Further, when the transmission line tower ST supports two overhead ground wires OGW, the lower width WB is determined based on the length between the overhead ground wires OGW. That is, the span SP having a large number of overhead ground wires OGW can have a wide width of the airway 2. Thereby, more unmanned air vehicles D can fly through the airway 2. For example, when a cargo is mounted on the unmanned air vehicle D that flies on the air route 2 based on the power transmission line PL, more unmanned air vehicles D can fly, so that more stable transportation can be performed.
 なお、この一例では、航空路1が、下幅WBと、上幅WUとを直線で結んだ断面形状を有する場合について説明したが、これに限られない。図6は、航空路3の形状の一例を示す模式図である。図6に示す通り、航空路3の下幅WBと、上幅WUとを結ぶ線は、曲線であってもよい。また、図6に示す通り、航空路3の断面形状は、電界強度曲線Eに応じて、上幅WUの幅を持つ範囲に上下方向の幅があってもよい。 In this example, the case where the airway 1 has a cross-sectional shape obtained by connecting the lower width WB and the upper width WU with a straight line has been described, but the present invention is not limited thereto. FIG. 6 is a schematic diagram showing an example of the shape of the airway 3. As shown in FIG. 6, the line connecting the lower width WB and the upper width WU of the airway 3 may be a curve. Further, as shown in FIG. 6, the cross-sectional shape of the airway 3 may have a vertical width in a range having a width of the upper width WU according to the electric field strength curve E.
 以下、実施例1、及び実施例2において、上述した航空路1、航空路2、及び航空路3が定められることにより、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dの制御の具体例について説明する。 Hereinafter, in Example 1 and Example 2, the above-described airway 1, airway 2, and airway 3 are defined, so that the unmanned aerial vehicle that flies in the airway 1, the airway 2, and the airway 3 is used. A specific example of the control of D will be described.
 [実施例1:電波誘導]
 次に、第1、及び第2実施形態における実施例1について説明する。図7は、航空路を飛行する無人飛行体Dの制御の一例を示す模式図である。以下、図7を参照して、送電線用鉄塔STの上部に設定された航空路1、航空路2、及び航空路3を無人飛行体Dの飛行に適応する実施例1について説明する。
 図7に示す通り、この一例の場合、送電線用鉄塔ST1は、送電線用鉄塔ST1の上部端にアンテナANT1を備える。また、送電線用鉄塔ST2は、送電線用鉄塔ST2の上部端にアンテナANT2を備える。また、送電線用鉄塔ST3は、送電線用鉄塔ST3の上部端にアンテナANT3を備える。また、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dには、航空路1、航空路2、及び航空路3の座標を示すデータが予め記憶されている。
[Example 1: Radio wave induction]
Next, Example 1 in the first and second embodiments will be described. FIG. 7 is a schematic diagram showing an example of control of the unmanned air vehicle D flying on an air route. Hereinafter, with reference to FIG. 7, Example 1 which adapts the airway 1, the airway 2, and the airway 3 set to the upper part of the transmission line tower ST to the flight of the unmanned air vehicle D is demonstrated.
As shown in FIG. 7, in this example, the transmission line tower ST1 includes an antenna ANT1 at the upper end of the transmission line tower ST1. The transmission line tower ST2 includes an antenna ANT2 at the upper end of the transmission line tower ST2. The transmission line tower ST3 includes an antenna ANT3 at the upper end of the transmission line tower ST3. In addition, in the unmanned air vehicle D that flies through the airway 1, the airway 2, and the airway 3, data indicating the coordinates of the airway 1, the airway 2, and the airway 3 is stored in advance.
 実施例1では、航空路1、航空路2、及び航空路3、を飛行する無人飛行体Dは、各送電線用鉄塔STが備えるアンテナANTが発信する電波に基づいて、電波誘導される。具体的には、図7に示す通り、アンテナANT1は、送電線用鉄塔ST2方向に左右方向と、上下方向とを示す電波を照射する。無人飛行体Dは、アンテナANT1が照射する左右方向と、上下方向とを示す電波を受信する。無人飛行体Dは、受信した電波と、予め記憶されている航空路1、航空路2、及び航空路3の座標を示すデータとに基づいて、当該位置を把握する。
 これにより、径間SP1を飛行する無人飛行体Dは、把握した当該位置が径間SP1に定められた航空路1、航空路2、及び航空路3と乖離している場合、補正することができ、定められた航空路1、航空路2、及び航空路3を飛行することができる。
 同様に、アンテナANT2が送電線用鉄塔ST3方向に、アンテナANT3が隣接する径間SPであって、径間SP2とは逆の方向に左右方向と、上下方向とを示す電波を照射することにより、無人飛行体Dは、継続して航空路1、航空路2、及び航空路3を飛行することができる。
 また、例えば、径間SPが広く、アンテナANTが1台のみでは径間SP全域に電波を照射できない場合、アンテナANTが隣接する両側の径間SPに電波を照射してもよい。
In the first embodiment, the unmanned air vehicle D that flies through the airway 1, the airway 2, and the airway 3 is guided by radio waves based on radio waves transmitted by the antenna ANT included in each power transmission line tower ST. Specifically, as shown in FIG. 7, the antenna ANT1 radiates radio waves indicating the left-right direction and the up-down direction in the direction of the transmission line tower ST2. The unmanned air vehicle D receives radio waves indicating the left-right direction and the up-down direction irradiated by the antenna ANT1. The unmanned air vehicle D grasps the position based on the received radio wave and data indicating the coordinates of the air route 1, the air route 2, and the air route 3 stored in advance.
As a result, the unmanned air vehicle D flying in the span SP1 can correct the grasped position when it is deviated from the air route 1, the air route 2, and the air route 3 defined in the span SP1. The air route 1, the air route 2, and the air route 3 can be flew.
Similarly, by radiating radio waves indicating the left-right direction and the up-down direction in the direction opposite to the span SP2, the antenna ANT2 is in the span SP adjacent to the transmission line tower ST3 and the antenna ANT3. The unmanned air vehicle D can continue to fly on the air route 1, the air route 2, and the air route 3.
In addition, for example, when the span SP is wide and it is not possible to radiate radio waves to the entire span SP with only one antenna ANT, radio waves may be radiated to the span SPs on both sides adjacent to the antenna ANT.
 [実施例2:GPS誘導]
 次に、第1、及び第2実施形態における実施例2について説明する。実施例2では、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dは、各無人飛行体Dが備えるGPSモジュールと、予め記憶されている航空路1、航空路2、及び航空路3の座標を示す座標データとに基づいて、GPS誘導される。具体的には、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dは、GPSモジュールを用いることより、定期的に当該位置を把握する。
 これにより、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dは、把握した当該位置が、定められた航空路1、航空路2、及び航空路3と乖離している場合、補正することができ、定められた航空路1、航空路2、及び航空路3を飛行することができる。
[Example 2: GPS guidance]
Next, Example 2 in the first and second embodiments will be described. In the second embodiment, the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3 includes the GPS module included in each unmanned air vehicle D, the air route 1 stored in advance, the air route 2, And GPS guidance based on the coordinate data indicating the coordinates of the airway 3. Specifically, the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3 periodically grasps the position by using the GPS module.
As a result, the unmanned air vehicle D flying in the air route 1, the air route 2, and the air route 3 has the grasped position deviated from the determined air route 1, air route 2, and air route 3. The air route 1, the air route 2, and the air route 3 can be corrected.
[変形例]
 次に、第1及び第2実施形態における変形例について説明する。変形例では、図8を参照して航空路1、航空路2、及び航空路3を算出する航空路算出装置10について説明する。図8は、変形例における、航空路算出装置10の一例を示す概要図である。
 航空路算出装置10は、制御部110と、記憶部120とを備える。記憶部120には、設備情報EIが記憶される。設備情報EIには、送電線用鉄塔STの位置、送電線用鉄塔STの種類、送電線用鉄塔STの高さ、隣接する送電線用鉄塔ST間を接続する送電線PLの太さ、種類、質量、及び長さ、弛度SG等、及び送電線が供給する電圧等を示す情報が含まれる。
 制御部110は、その機能部として算出部111を備える。算出部111は、記憶部120から設備情報EIを読み出す。算出部111は、読み出した設備情報EIに基づいて、航空路1、航空路2、及び航空路3の座標を算出する。
 航空路算出装置10が算出した航空路1、航空路2、及び航空路3の座標データを、無人飛行体Dの飛行の制御に用いることにより、無人飛行体Dは、定められた航空路1、航空路2、及び航空路3を飛行することができる。
[Modification]
Next, modifications of the first and second embodiments will be described. In the modification, an air route calculation device 10 that calculates the air route 1, the air route 2, and the air route 3 will be described with reference to FIG. FIG. 8 is a schematic diagram showing an example of the airway calculation device 10 in a modified example.
The air route calculation device 10 includes a control unit 110 and a storage unit 120. The storage unit 120 stores facility information EI. The facility information EI includes the position of the transmission line tower ST, the type of the transmission line tower ST, the height of the transmission line tower ST, the thickness and the type of the transmission line PL that connects between the adjacent transmission line towers ST. , Mass and length, sag SG, etc., and information indicating the voltage supplied by the transmission line, etc. are included.
The control unit 110 includes a calculation unit 111 as its function unit. The calculation unit 111 reads the facility information EI from the storage unit 120. The calculation unit 111 calculates the coordinates of the airway 1, the airway 2, and the airway 3 based on the read facility information EI.
By using the coordinate data of the air route 1, the air route 2, and the air route 3 calculated by the air route calculation device 10 for controlling the flight of the unmanned air vehicle D, the unmanned air vehicle D is set to the determined air route 1. , Air route 2 and air route 3.
 以上説明したように、航空路算出装置10は、制御部110と、記憶部120とを備える。記憶部120には、設備情報EIが記憶される。設備情報EIには、禁止領域下幅WPB、禁止領域上幅WPU、離隔距離CL、電界強度曲線E、送電線用鉄塔STの位置、送電線用鉄塔STの種類、送電線用鉄塔STの高さ、隣接する送電線用鉄塔ST間を接続する送電線PLの太さ、種類、質量、長さ、弛度SG、送電線が供給する電圧、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dの精度、無人飛行体Dの飛行速度等を示す情報が含まれる。制御部110が備える算出部111は、算出ステップにおいて、次の手順により処理を行う。すなわち算出部111は、記憶部120から設備情報EIを読み出す。算出部111は、読み出した設備情報EIに基づいて、航空路1、航空路2、及び航空路3の座標を算出する。これにより、航空路算出装置10は、航空路1、航空路2、及び航空路3の座標データを算出することができる。 As described above, the airway calculation device 10 includes the control unit 110 and the storage unit 120. The storage unit 120 stores facility information EI. The facility information EI includes the prohibited area lower width WPB, the prohibited area upper width WPU, the separation distance CL, the electric field strength curve E, the position of the transmission line tower ST, the type of the transmission line tower ST, and the height of the transmission line tower ST. The thickness, type, mass, length, sag SG of the power transmission line PL connecting the adjacent power transmission towers ST, the voltage supplied by the power transmission line, the airway 1, the airway 2, and the airway 3 The information indicating the accuracy of the unmanned air vehicle D that flies, the flight speed of the unmanned air vehicle D, and the like is included. The calculation unit 111 included in the control unit 110 performs processing according to the following procedure in the calculation step. That is, the calculation unit 111 reads the facility information EI from the storage unit 120. The calculation unit 111 calculates the coordinates of the airway 1, the airway 2, and the airway 3 based on the read facility information EI. Thereby, the air route calculation device 10 can calculate the coordinate data of the air route 1, the air route 2, and the air route 3.
 なお、航空路算出装置10は、飛行禁止領域FPA1を算出してもよい。具体的には、航空路算出装置10は、禁止領域下幅WPB、禁止領域上幅WPU、及び離隔距離CLに基づいて、飛行禁止領域FPA1を算出してもよい。
 この場合、設備情報EIには、禁止領域下幅WPB、禁止領域上幅WPU、及び離隔距離CLを示す情報が含まれる。航空路算出装置10は、設備情報EIに含まれる禁止領域下幅WPB、禁止領域上幅WPU、及び離隔距離CLに基づいて、飛行禁止領域FPA1を算出する。
The air route calculation device 10 may calculate the flight prohibited area FPA1. Specifically, the airline calculation device 10 may calculate the flight prohibited area FPA1 based on the prohibited area lower width WPB, the prohibited area upper width WPU, and the separation distance CL.
In this case, the facility information EI includes information indicating the prohibited area lower width WPB, the prohibited area upper width WPU, and the separation distance CL. The air route calculation device 10 calculates the prohibited flight area FPA1 based on the prohibited area lower width WPB, the prohibited area upper width WPU, and the separation distance CL included in the facility information EI.
 また、航空路算出装置10は、飛行禁止領域FPA2を算出してもよい。具体的には、航空路算出装置10は、電界強度曲線Eに基づいて、飛行禁止領域FPA2を算出してもよい。
 この場合、設備情報EIには、電界強度曲線Eを示す情報が含まれる。航空路算出装置10は、設備情報EIに含まれる電界強度曲線Eに基づいて、飛行禁止領域FPA2を算出する。
Further, the airway calculation device 10 may calculate the flight prohibited area FPA2. Specifically, the airway calculation device 10 may calculate the flight prohibited area FPA2 based on the electric field strength curve E.
In this case, the facility information EI includes information indicating the electric field strength curve E. The airway calculation device 10 calculates the flight prohibited area FPA2 based on the electric field strength curve E included in the facility information EI.
 また、航空路算出装置10は、飛行禁止領域FPA3を算出してもよい。具体的には、航空路算出装置10は、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dの精度に基づいて、飛行禁止領域FPA3を算出してもよい。
 この場合、設備情報EIには、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dの飛行精度を示す情報が含まれる。この一例では、無人飛行体Dの飛行精度が、飛行目標経路と、飛行経路との差である経路差分長RDによって示される場合について説明する。航空路算出装置10は、設備情報EIに含まれる無人飛行体Dの飛行精度に基づいて、飛行禁止領域FPA3を算出する。
Further, the airway calculation device 10 may calculate the flight prohibited area FPA3. Specifically, the airway calculation device 10 may calculate the flight prohibition area FPA3 based on the accuracy of the unmanned air vehicle D that flies over the airway 1, the airway 2, and the airway 3.
In this case, the facility information EI includes information indicating the flight accuracy of the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3. In this example, a case will be described in which the flight accuracy of the unmanned air vehicle D is indicated by a path difference length RD that is a difference between the flight target path and the flight path. The air route calculation device 10 calculates the flight prohibited area FPA3 based on the flight accuracy of the unmanned air vehicle D included in the facility information EI.
 また、航空路算出装置10は、飛行禁止領域FPA4を算出してもよい。具体的には、航空路算出装置10は、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dの飛行速度に基づいて、飛行禁止領域FPA4を算出してもよい。
 この場合、設備情報EIには、航空路1、航空路2、及び航空路3を飛行する無人飛行体Dの飛行速度を示す情報が含まれる。航空路算出装置10は、設備情報EIに含まれる無人飛行体Dの飛行速度に基づいて、飛行禁止領域FPA4を算出する。
Further, the airway calculation device 10 may calculate the flight prohibited area FPA4. Specifically, the air route calculation device 10 may calculate the flight prohibition area FPA4 based on the flight speed of the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3.
In this case, the facility information EI includes information indicating the flight speed of the unmanned air vehicle D flying on the air route 1, the air route 2, and the air route 3. The air route calculation device 10 calculates the flight prohibited area FPA4 based on the flight speed of the unmanned air vehicle D included in the facility information EI.
1,2,3…航空路、WLNnor…送電線幅、WAR…腕金幅、WLNmax…最大送電線幅、PLL…左送電線、PLR…右送電線、SG…弛度、OH,OHmax…張出幅、DL…懸垂長、H…航空路高さ、HT…送電線用鉄塔高さ、FPA…飛行禁止領域、E…電界強度曲線、CL…離隔距離 1, 2, 3 ... Airway, WLNnor ... Transmission line width, WAR ... Arm width, WLNmax ... Maximum transmission line width, PLL ... Left transmission line, PLR ... Right transmission line, SG ... Sag, OH, OHmax ... Zhang Output width, DL ... Suspension length, H ... Airway height, HT ... Transmission line tower height, FPA ... Flight prohibition area, E ... Electric field strength curve, CL ... Separation distance

Claims (7)

  1.  送電線用鉄塔に支持される架空地線よりも鉛直方向に上方の空間であって、前記送電線用鉄塔に支持される送電線の配置に基づいて定められる上部幅と、前記架空地線の配置に基づいて定められる下部幅とによって区画される断面形状を有し、無人飛行体が飛行する
     ことを特徴とする航空路。
    A space vertically above the overhead ground wire supported by the transmission line tower, the upper width determined based on the arrangement of the transmission line supported by the transmission line tower, and the overhead ground line An airway characterized in that it has a cross-sectional shape defined by a lower width determined on the basis of an arrangement, and an unmanned air vehicle flies.
  2.  前記架空地線の配置は、少なくとも前記架空地線の本数によって示され、
     前記下部幅が、前記架空地線の本数に基づいて定められる
     ことを特徴とする請求項1に記載の航空路。
    The arrangement of the overhead ground wire is indicated by at least the number of the overhead ground wire,
    The airway according to claim 1, wherein the lower width is determined based on the number of the overhead ground wires.
  3.  前記断面形状が、更に、前記送電線に印加される電圧によって生じる電界の分布に基づいて定められる
     ことを特徴とする請求項1または請求項2に記載の航空路。
    The air route according to claim 1 or 2, wherein the cross-sectional shape is further determined based on a distribution of an electric field generated by a voltage applied to the power transmission line.
  4.  前記断面形状のうち、当該航空路に予め定められている前記無人飛行体の飛行制限速度に基づいて定められる前記架空地線から所定の高さの範囲に、飛行禁止領域を有する
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の航空路。
    Of the cross-sectional shape, a flight prohibition region is provided in a predetermined height range from the aerial ground line determined based on a flight speed limit of the unmanned air vehicle determined in advance on the air route. The airway according to any one of claims 1 to 3.
  5.  前記無人飛行体の飛行制御の精度の段階が予め定められており、
     前記断面形状のうち、前記精度の段階に応じた前記架空地線から所定の高さの範囲に、飛行禁止領域を有する
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の航空路。
    The stage of accuracy of the flight control of the unmanned air vehicle is predetermined,
    5. The flight prohibition region is included in a predetermined height range from the aerial ground wire corresponding to the stage of accuracy in the cross-sectional shape. 6. Air routes.
  6.  請求項1から請求項5のいずれかに記載の航空路が有する断面形状を、送電線用鉄塔に支持される送電線の配置と、架空地線の配置とに基づいて算出する
     ことを特徴とする航空路算出装置。
    The cross-sectional shape of the airway according to any one of claims 1 to 5 is calculated based on an arrangement of a power transmission line supported by a transmission line tower and an arrangement of an overhead ground line. Airway calculation device.
  7.  請求項1から請求項5のいずれかに記載の航空路が有する断面形状を、送電線用鉄塔に支持される送電線の配置と、架空地線の配置とに基づいて算出する算出ステップ
     を有することを特徴とする航空路算出方法。
    A calculation step of calculating the cross-sectional shape of the airway according to any one of claims 1 to 5 based on an arrangement of a transmission line supported by a transmission line tower and an arrangement of an overhead ground line. An air route calculation method characterized by the above.
PCT/JP2016/077978 2015-09-25 2016-09-23 Flight route, flight route calculation device, and flight route calculation method WO2017051853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015188525A JP6668654B2 (en) 2015-09-25 2015-09-25 Air route calculation device and air route calculation method
JP2015-188525 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051853A1 true WO2017051853A1 (en) 2017-03-30

Family

ID=58386141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077978 WO2017051853A1 (en) 2015-09-25 2016-09-23 Flight route, flight route calculation device, and flight route calculation method

Country Status (2)

Country Link
JP (1) JP6668654B2 (en)
WO (1) WO2017051853A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297624B1 (en) * 2017-06-21 2021-09-06 한국전력공사 Apparatus and method for setting up flight path of unmanned aerial vehicle for monitoring transmission structure
US20220229449A1 (en) * 2021-01-15 2022-07-21 Wing Aviation Llc Managing a fleet of autonomous vehicles based on collected information
JP6934646B1 (en) * 2021-05-28 2021-09-15 株式会社センシンロボティクス Flight restriction area setting method, waypoint setting method and management server, information processing system, program
JP6978026B1 (en) * 2021-07-07 2021-12-08 株式会社センシンロボティクス Waypoint setting method and waypoint correction method, management server, information processing system, program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087394A (en) * 2000-09-19 2002-03-27 Toshiba Corp Obstacle warning device and obstacle warning method
US9087451B1 (en) * 2014-07-14 2015-07-21 John A. Jarrell Unmanned aerial vehicle communication, monitoring, and traffic management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087394A (en) * 2000-09-19 2002-03-27 Toshiba Corp Obstacle warning device and obstacle warning method
US9087451B1 (en) * 2014-07-14 2015-07-21 John A. Jarrell Unmanned aerial vehicle communication, monitoring, and traffic management

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEIGO IWAMOTO: "Drones to Laws and Regulations", DEFENSE TECHNOLOGY JOURNAL, vol. 35, no. 7, 1 July 2015 (2015-07-01), pages 17 - 19 *
YASUO ISHII: "Kogata Mujinki no Anzen Rule ni Tsuite", KENKYU KAIHATSU READER, vol. 12, no. 5, 20 August 2015 (2015-08-20), pages 4 - 6 *

Also Published As

Publication number Publication date
JP2017062723A (en) 2017-03-30
JP6668654B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2017051855A1 (en) Flight route, flight route calculation device, and flight route calculation method
WO2017051853A1 (en) Flight route, flight route calculation device, and flight route calculation method
US10770926B2 (en) Vehicle having a remote device powered by an energy beam
US8751060B2 (en) Traveling vehicle system and method for controlling traveling by traveling vehicle system
US9845192B2 (en) Transport vehicle system and transport method
KR20180128703A (en) Apparatus of controlling drone and method of controlling formation flight using the same
JP2019161787A (en) On-vehicle device, ground device and wireless communication method
JP6125673B2 (en) Antenna device having variable directivity characteristics
JP6493267B2 (en) Wind state determination device and flying object
JP2019536697A (en) Unmanned aerial vehicle obstacle avoidance control method and unmanned aerial vehicle
JP2019116251A (en) Vehicle control device, and vehicle control system
US11320532B2 (en) Coordinated detecting of objects in an airspace
CN107204822A (en) A kind of unmanned boat detected with electromagnetic interference and reply electromagnetic interference method
US20190013585A1 (en) Antenna and vehicle
JP2022045357A (en) On-vehicle cabinet, autonomous operation device and vehicle
JP2009178001A (en) Power transmission device, power receiving device, and energy transmission system
KR20200038673A (en) Method and system for guiding long-range flight of unmanned aerial vehicle
KR20190056942A (en) Apparatus and method for determining a flight path of a drone
KR101634771B1 (en) Position detecting apparatus and control method of rfid reader for position detecting
CN105551311A (en) Method and apparatus for determining whether aircraft passes through object route point
US20180202832A1 (en) Flight-path determination device and flight-path determination method
KR101682571B1 (en) Supporting apparatus for unmanned aerial vehicle and method of controlling the same
KR101602311B1 (en) Terminal homing method for flight vehicle and apparatus thereof
JP2020518212A (en) Vehicle path correction for planned magnetic flight path
US20220327940A1 (en) Methods and systems for modifying a flight plan based on focus boom detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848641

Country of ref document: EP

Kind code of ref document: A1