WO2017051826A1 - Laminate, production method therefor, film set, and photosensitive conductive film - Google Patents

Laminate, production method therefor, film set, and photosensitive conductive film Download PDF

Info

Publication number
WO2017051826A1
WO2017051826A1 PCT/JP2016/077863 JP2016077863W WO2017051826A1 WO 2017051826 A1 WO2017051826 A1 WO 2017051826A1 JP 2016077863 W JP2016077863 W JP 2016077863W WO 2017051826 A1 WO2017051826 A1 WO 2017051826A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
photosensitive
film
transparent substrate
Prior art date
Application number
PCT/JP2016/077863
Other languages
French (fr)
Japanese (ja)
Inventor
豪 鈴木
征志 南
絵美子 太田
山崎 宏
泰洋 瀬里
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2017051826A1 publication Critical patent/WO2017051826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a laminate and a method for producing the same, a film set, and a photosensitive conductive film, and more particularly, a laminate used for a flat panel display such as a liquid crystal display element, a touch panel (touch screen), a solar cell, and the production thereof.
  • the present invention relates to a method, a film set, and a photosensitive conductive film.
  • Liquid crystal display elements or touch panels are used in large electronic devices (such as personal computers and televisions), small electronic devices (such as car navigation systems, mobile phones, and electronic dictionaries), and display devices (such as OA / FA devices).
  • capacitive touch panel when a fingertip (conductor) contacts the touch input surface, the fingertip and the conductive film are capacitively coupled to form a capacitor. For this reason, the capacitive touch panel detects the coordinates by capturing the change in the charge at the contact position of the fingertip.
  • the projected capacitive touch panel can detect multiple points on the fingertip, and thus has a good operability of giving a complicated instruction. Utilization is progressing as an input device on a display surface in a device (such as a mobile phone or a portable music player).
  • a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes.
  • a transparent conductive film material is used for the electrode.
  • Patent Documents 1 and 2 below propose a method for forming a conductive pattern using a photosensitive conductive film having a conductive layer containing conductive fibers. If this technique is used, a conductive pattern can be easily formed directly on various substrates by a photolithography process.
  • a conductive layer conductive pattern or the like
  • the conductive material tends to have a yellowish color, and a problem in appearance tends to occur.
  • an object of the present invention is to provide a laminate that can suppress an increase in yellowishness while using a conductive layer containing a conductive material, and a method for manufacturing the same. Moreover, an object of this invention is to provide the film set and photosensitive conductive film for obtaining such a laminated body.
  • the present inventors have used conductive materials (conductive fibers, etc.) by using at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments. It was found that it is possible to suppress an increase in yellowness in a laminate having a conductive layer containing).
  • a black dye or a gray dye without using a blue dye, a blue pigment, a violet dye or a violet pigment, a silver paste (for example, silver The knowledge that yellowishness rose after the drying process (drying conditions: 145 degreeC / 70min) of the paste containing a fiber was acquired.
  • the present invention comprises a transparent substrate, a conductive layer, and a light transmissive layer, and the conductive layer is provided on the transparent substrate and contains a conductive material, and the light transmissive layer comprises: Provided is a laminate that is provided on the transparent substrate and contains at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment.
  • the laminated body according to the present invention it is possible to suppress the yellowness from increasing (b * increases) while using a conductive layer containing a conductive material (conductive fiber or the like). It is possible to prevent yellowishness from increasing (for example, b * increases) in a process (for example, after a process such as a silver paste drying process). Moreover, according to the laminated body which concerns on this invention, a high transmittance
  • the conductive layer may be provided on the light transmission layer, and the light transmission layer is provided on the side of the conductive layer opposite to the transparent substrate. It may be an embodiment.
  • the conductive layer may be a conductive pattern.
  • the content of the coloring material is preferably more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
  • the conductive material preferably contains at least one type of conductor selected from the group consisting of inorganic conductors and organic conductors.
  • the conductive material preferably contains conductive fibers.
  • the conductive fiber is preferably silver fiber.
  • the present invention comprises a light transmissive layer forming step of providing a light transmissive layer and a conductive layer on a transparent substrate, the conductive layer is provided on the light transmissive layer and contains a conductive material, Provided is a method for producing a laminate, wherein the light transmission layer contains at least one color material selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment. According to the manufacturing method of the laminated body which concerns on this invention, the said effect similar to the laminated body which concerns on this invention can be acquired.
  • the light transmitting layer forming step includes a light transmitting layer forming composition layer and a conductive layer provided on the light transmitting layer forming composition layer.
  • a step of forming a layer on the transparent substrate, and an exposure step of irradiating the photosensitive layer with actinic rays wherein the composition layer for forming a light transmission layer comprises a binder polymer, a photopolymerizable compound,
  • the aspect which contains a photoinitiator and at least 1 type of color material selected from the group which consists of a blue dye, a blue pigment, a purple dye, and a purple pigment may be sufficient.
  • a photosensitive conductive film having a structure in which a support film, a conductive layer, and a photosensitive resin composition layer are laminated in this order is used as the photosensitive resin composition.
  • the photosensitive layer is formed on the transparent substrate by laminating so that the layer is in contact with the transparent substrate, and the photosensitive resin composition layer includes a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. And at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments.
  • the conductive layer is a conductive pattern
  • the exposure step is a step of irradiating the photosensitive layer with an actinic ray in a pattern
  • the light transmission layer forming step is performed as described above.
  • the aspect which further includes the image development process which develops the said photosensitive layer after an exposure process may be sufficient.
  • the light transmission layer forming step may further include a step of irradiating at least a part or all of an unexposed portion of the photosensitive layer in the exposure step with an actinic ray in the presence of oxygen before the development step. Good.
  • the content of the coloring material is preferably more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
  • the present invention provides a photosensitive film having a first support film and a first photosensitive resin composition layer provided on the first support film, and a second support film, Including a photosensitive conductive film having a structure in which a conductive layer containing a conductive material and a second photosensitive resin composition layer are laminated in this order, the first photosensitive resin composition layer, Containing a binder polymer, a photopolymerizable compound, a photopolymerization initiator, and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a violet dye and a violet pigment;
  • a film set is provided in which the photosensitive resin composition layer contains a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. According to the film set concerning the present invention, the same effect as the layered product concerning the present invention can be acquired.
  • the film set according to the present invention may be used in the method for manufacturing the laminate.
  • the present invention is selected from the group consisting of a support film, a conductive layer containing a conductive material, a binder polymer, a photopolymerizable compound, a photopolymerization initiator, a blue dye, a blue pigment, a purple dye, and a purple pigment.
  • a photosensitive conductive film having a structure in which a photosensitive resin composition layer containing at least one colorant is laminated in this order is provided. According to the photosensitive conductive film which concerns on this invention, the said effect similar to the laminated body which concerns on this invention can be acquired.
  • a conductive layer containing a conductive material conductive fiber or the like
  • permeability can be achieved, suppressing the raise of yellowishness. According to the present invention as described above, good visibility can be obtained.
  • FIG. 7A is a schematic plan view (FIG. 7A) showing an embodiment of an electronic component according to the present invention, and a partially cutaway perspective view of FIG. 7A (FIG. 7B).
  • (meth) acrylic acid means acrylic acid or methacrylic acid corresponding to it
  • (meth) acrylate means acrylate or methacrylate corresponding thereto.
  • a or B only needs to include either A or B, and may include both.
  • the materials exemplified below may be used alone or in combination of two or more unless otherwise specified.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
  • the “conductive pattern” has a predetermined shape and includes a conductor.
  • a substrate having a conductive pattern has a portion including a conductor and a portion not including a conductor, and the conductive pattern is configured by the portion including the conductor.
  • the boundary between the conductive layer (conductive pattern and the like) and the photosensitive resin composition layer is not necessarily clear.
  • the aspect with which the conductive layer and the photosensitive resin composition layer were mixed may be sufficient.
  • the composition constituting the photosensitive resin composition layer may be impregnated in the conductive layer, or the composition constituting the photosensitive resin composition layer may be present on the surface of the conductive layer.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the laminate according to the present embodiment (for example, the laminate according to the first embodiment and the second embodiment) includes a transparent substrate, a conductive layer, and a light transmission layer, and the conductive layer is transparent.
  • the conductive layer is provided on the base material, and the light transmission layer is provided on the transparent base material, and is selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment. Containing at least one kind of coloring material.
  • the conductive layer may be patterned (conductive pattern) or may not be patterned.
  • the conductive layer is provided on the light transmission layer, and the light transmission layer is provided between the transparent substrate and the conductive layer.
  • the light transmission layer is provided on the side opposite to the transparent base material of the conductive layer.
  • the laminate according to the second embodiment includes a transparent substrate and a substrate with a conductive layer (such as a substrate with a conductive pattern) having a conductive layer (such as a conductive pattern) provided on the transparent substrate.
  • a light-transmitting layer provided on the side of the conductive layer opposite to the transparent substrate, the conductive layer containing a conductive material, and the light-transmitting layer is a blue dye, a blue pigment, a purple dye, and a purple pigment.
  • the aspect containing at least 1 type of color material selected from the group which consists of may be sufficient.
  • the light transmission layer contains at least one color material selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment, so that a conductive material (conductive fiber or the like) is contained. It can suppress that yellowishness rises (b * rises), using the conductive layer containing this.
  • the total light transmittance is 86.0% or more even after a severe condition such as after a heating step such as a drying step (145 ° C./70 min) of the silver paste, and the transmission.
  • b * is 0.4 or less.
  • the light transmission layer contains at least one color material selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments, the total light transmittance and transmission b * can be maintained even after the light resistance test. Change can be suppressed.
  • the laminated body which concerns on 2nd Embodiment since the light transmissive layer is provided on the conductive layer, it is easy to obtain excellent total light transmittance and transmission b *.
  • FIG. 1 is a schematic cross-sectional view showing the laminate according to the first embodiment.
  • the laminated bodies 40a, 40b, and 40c according to the first embodiment include a transparent substrate 20, a transparent conductive pattern (conductive layer) 2a provided on the transparent substrate 20, and a light transmission layer. 3e, 3f, 3g.
  • the transparent base material 20, the conductive pattern 2a, and the light transmission layers 3e, 3f, 3g constitute a transparent base material with a conductive pattern (a base material with a conductive pattern).
  • the conductive pattern 2a is provided on the light transmission layers 3e, 3f, and 3g.
  • the conductive pattern 2a contains a conductive material.
  • the light transmission layers 3e, 3f, and 3g are made of a cured resin material containing the color material 9, and the color material 9 is dispersed in the cured resin material.
  • the color material 9 is at least one color material selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment.
  • the laminated body 40a shown in FIG. 1A may further include a cured resin (not shown) that covers the conductive pattern 2a and the light transmission layer 3e. In the laminates 40b and 40c shown in FIGS.
  • the light transmission layers 3f and 3g are resin cured patterns.
  • the transparent substrate 20, the conductive pattern 2a, and the light transmission layer 3g are covered with a cured resin 8a.
  • the light transmission layer may locally cover the transparent substrate without covering the entire transparent substrate.
  • FIG. 2 is a schematic cross-sectional view showing a laminate according to the second embodiment.
  • the laminated body 50 which concerns on 2nd Embodiment is provided with the transparent base material with a conductive pattern (base material with a conductive pattern) 30, and the light transmissive layer 7a.
  • the transparent substrate 30 with a conductive pattern has a transparent substrate 20, a transparent conductive pattern 2a provided on the transparent substrate 20, and a resin layer (resin cured layer) 3a.
  • the conductive pattern 2a is provided on the resin layer 3a.
  • the conductive pattern 2a contains a conductive material.
  • the light transmission layer 7a has a cured resin 8a and a color material 9 dispersed in the cured resin 8a.
  • the color material 9 is at least one color material selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment.
  • FIG. 3 is a schematic cross-sectional view showing another aspect of the laminate according to the second embodiment.
  • the laminated body shown in FIG. 3A is a light transmissive material containing a transparent substrate with a conductive pattern (substrate with conductive pattern) 31 in which a conductive pattern 2a is directly provided on a transparent substrate 20, and a color material 9.
  • the laminated body shown by FIG.3 (b) is a transparent base material with a conductive pattern (resin layer (resin hardening pattern) 3b and the conductive pattern 2a are arrange
  • the laminate shown in FIG. 3C is a transparent substrate with a conductive pattern in which a conductive pattern 2a and a resin layer (resin cured pattern) 3c are arranged in this order from the transparent substrate 20 side on a transparent substrate 20.
  • the laminate shown in FIG. 3D has a conductive pattern in which a conductive pattern 2a and a resin layer (light transmissive layer, resin cured pattern) 3d are arranged in this order from the transparent substrate 20 side on a transparent substrate 20.
  • a transparent substrate (substrate with a conductive pattern) 34 and a resin layer 7b made of a cured resin 8a are provided.
  • the light transmission layer may cover only the conductive pattern 2a locally without covering the entire transparent substrate with the conductive pattern.
  • the color material is contained in the cured resin.
  • a color material is shown.
  • the color material is a dye
  • a blue dye or a violet dye may be dissolved in a medium constituting the light transmission layer.
  • the light transmission layer may be A state in which a blue pigment or a violet pigment is dispersed in the medium to be formed may be used.
  • the laminate according to this embodiment includes a light transmission layer (light transmission layers 3e, 3f, 3g, 7a, a resin layer 3d, and the like), so that a conductive layer is formed, and other portions (for example, In FIG. 2, the haze difference from the resin layer 3a) where the conductive pattern 2a is not formed can be reduced.
  • the haze difference is preferably 1.0 or less, more preferably 0.7 or less, and further preferably 0.5 or less. In order to obtain such a haze difference, it is preferable to adjust the type and content of the color material in the light transmission layer, the thickness of the layer, and the like.
  • the laminate according to the present embodiment has a haze of 1.5 or less in the portion where the conductive layer is formed from the viewpoint of further improving the visibility of an electronic component including the laminate (for example, the sensing region portion of the touch sensor). Preferably there is. Moreover, it is preferable that the haze of the part in which the electroconductive layer is not formed is 2.0 or less from a viewpoint which is further excellent in the visibility of the electronic component (for example, sensing region part of a touch sensor) provided with a laminated body.
  • the transparent substrate with a conductive pattern 30 shown in FIG. 2 can be produced, for example, by the method described in International Publication No. 2013/051516. it can.
  • a transparent substrate 31 with a conductive pattern shown in FIG. 3A is obtained by forming an ITO film or a tin oxide film on a transparent substrate by the method described in JP-A-2007-257963, for example, or by sputtering. It can be produced by a method of patterning by etching or the like.
  • the transparent substrate 32 with a conductive pattern shown in FIG. 3B can be produced by, for example, the method described in Patent Document 1 (International Publication No. 2010/021224).
  • the transparent substrates 33 and 34 with conductive patterns shown in FIG. 3C and FIG. 3D can be produced by, for example, the method described in US Patent Application Publication No. 2007/0074316.
  • the transparent substrate 20 examples include glass substrates; plastic substrates such as polyethylene terephthalate, polycarbonate, cycloolefin polymer, and triacetyl cellulose.
  • the transparent substrate preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm. From the viewpoint of reducing the weight of the electronic component to be manufactured, a plastic substrate is preferable, and a plastic substrate of polyethylene terephthalate, polycarbonate, cycloolefin polymer, or triacetyl cellulose is more preferable.
  • the conductive material contained in the conductive layer may be any material that can ensure the conductivity of the conductive layer. From the viewpoint of ensuring high conductivity, from the inorganic conductor and the organic conductor. At least one electric conductor selected from the group consisting of
  • inorganic conductors include metal oxide particles such as indium tin oxide (ITO), indium oxide, and tin oxide; metal fibers such as gold, silver, copper, and platinum, metal particles, or metal mesh. Can be mentioned.
  • organic conductor include carbon fibers such as vapor grown carbon fiber (VGCF) and carbon nanotube; carbon powder such as carbon black, and the like.
  • the form of the conductive material is not particularly limited, but is preferably fibrous, and more preferably conductive fiber.
  • the conductive layer contains conductive fibers, both conductivity and transparency can be achieved at a high level.
  • the conductive pattern shown in FIG. 1, FIG. 2 or FIG. 3B is formed using a transfer type photosensitive conductive film, which will be described later, by using conductive fibers as a conductive material, developability is achieved. Can be further improved, and a conductive pattern with excellent resolution can be formed.
  • the conductive fibers contained in the conductive layer include metal fibers such as gold, silver, copper, and platinum; carbon fibers such as vapor grown carbon fibers (VGCF) and carbon nanotubes. From the viewpoint of excellent conductivity, it is preferable to use gold fiber or silver fiber. From the viewpoint of easily adjusting the conductivity of the formed conductive layer, silver fiber is more preferable. From the viewpoint of easily suppressing the phenomenon in which light is reflected on the surface of the conductive fiber in the conductive layer containing the conductive fiber and the conductive layer (conductive pattern portion or the like) appears white, the conductive layer is made of conductive fiber (silver fiber). Etc.), the component (D) described later is preferably used in the light transmission layer.
  • the metal fiber can be produced by a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method.
  • a reducing agent such as NaBH 4 or a polyol method.
  • the carbon nanotube commercially available products such as Unipym's Hipco single-walled carbon nanotubes can be used.
  • the fiber diameter of the conductive fiber is preferably 1 nm or more, more preferably 2 nm or more, further preferably 3 nm or more, and particularly preferably 10 nm or more from the viewpoint of obtaining excellent electrostatic resistance. Preferably, it is very preferably 20 nm or more.
  • the fiber diameter of the conductive fiber is preferably 50 nm or less, more preferably 45 nm or less, and still more preferably 40 nm or less, from the viewpoint of easily obtaining excellent visibility. From these viewpoints, the fiber diameter of the conductive fiber is preferably 1 to 50 nm, more preferably 2 to 45 nm, still more preferably 3 to 40 nm, and particularly preferably 10 to 40 nm. A thickness of 20 to 40 nm is particularly preferable.
  • the fiber length of the conductive fiber is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more from the viewpoint of easily reducing the amount of the conductive fiber used for obtaining sufficient visibility. More preferably.
  • the fiber length of the conductive fiber is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less, from the viewpoint of easily suppressing aggregation of the conductive fibers. It is particularly preferred. From these viewpoints, the fiber length of the conductive fiber is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 10 ⁇ m, and particularly preferably 3 to 5 ⁇ m. preferable.
  • the fiber diameter and fiber length can be measured with a scanning electron microscope.
  • the thickness of the conductive layer (conductive pattern 2a and the like) varies depending on the conductivity and transparency required for the conductive layer, but is preferably in the following range.
  • the thickness of the conductive layer is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, from the viewpoint of high light transmittance in a wavelength region of 450 to 650 nm, particularly suitable for a transparent electrode. More preferably, it is 0.1 ⁇ m or less.
  • the thickness of the conductive layer is preferably 1 nm or more, more preferably 5 nm or more, further preferably 10 nm or more, and particularly preferably 50 nm or more, from the viewpoint of ensuring uniform conductivity. preferable.
  • the thickness of the conductive layer is preferably 1 ⁇ m or less, more preferably 1 nm to 0.5 ⁇ m, further preferably 5 nm to 0.1 ⁇ m, and more preferably 10 nm to 0.1 ⁇ m. Particularly preferred is 50 nm to 0.1 ⁇ m.
  • the thickness of a conductive layer points out the value measured with a scanning electron microscope.
  • the conductive layer preferably has a network structure in which conductive fibers are in contact with each other. If the conductive fiber having such a network structure has conductivity in the surface direction on the surface exposed when the conductive layer is formed, the surface layer portion in the layer in contact with the conductive layer (for example, the conductive pattern 2a And the resin layers 3a, 3b, 3c, 3d and the light transmission layers 3e, 3f, 3g on the conductive pattern 2a side) may be present.
  • the resin layers 3a, 3b and the light transmission layers 3e, 3f, 3g may be any material that can hold the conductive pattern 2a on the transparent substrate 20 by bonding the transparent substrate 20 and the conductive pattern 2a.
  • the resin layers 3c and 3d only need to be able to be held on the conductive pattern 2a.
  • the resin layers 3a, 3b, 3c, 3d and the light transmission layers 3e, 3f, 3g are, for example, resins that are cured products of a layer made of a photosensitive resin composition (hereinafter also referred to as a photosensitive resin composition layer).
  • a photosensitive resin composition layer a photosensitive resin composition layer
  • the resin layer and the conductive pattern can be collectively formed using a transfer type photosensitive conductive film described later.
  • the photosensitive resin composition examples include (A) a binder polymer (hereinafter sometimes referred to as “component (A)”), (B) a photopolymerizable compound (hereinafter sometimes referred to as “component (B)”), And the composition containing (C) photoinitiator (henceforth "(C) component” depending on the case) is mentioned.
  • component (A) a binder polymer
  • component (B) a photopolymerizable compound
  • component (C) component the composition containing (C) photoinitiator
  • acrylic resins are preferred.
  • the acrylic resin can be produced, for example, by radical polymerization of at least one selected from the group consisting of (meth) acrylic acid and (meth) acrylic acid ester. That is, the acrylic resin can have at least one selected from the group consisting of structural units derived from (meth) acrylic acid and structural units derived from (meth) acrylic acid esters.
  • acrylic acid ester As (meth) acrylic acid ester, (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid Examples include diethylaminoethyl ester, (meth) acrylic acid glycidyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, and the like.
  • (meth) acrylic acid alkyl esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like.
  • examples of the (meth) acrylic acid aryl ester include benzyl (meth) acrylate.
  • the acrylic resin may include a structural unit based on styrene (a structural unit derived from styrene).
  • the binder polymer preferably has a carboxyl group from the viewpoint of improving alkali developability.
  • Examples of the polymerizable monomer having a carboxyl group for obtaining such a binder polymer include (meth) acrylic acid as described above.
  • the ratio of the polymerizable monomer having a carboxyl group is based on the total amount of the polymerizable monomer used to obtain the (A) binder polymer, as described below. A range is preferable.
  • the ratio of the polymerizable monomer having a carboxyl group is preferably 10% by mass or more, more preferably 12% by mass or more, and more preferably 15% by mass or more from the viewpoint of excellent alkali developability. Further preferred.
  • the proportion of the polymerizable monomer having a carboxyl group is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of excellent alkali resistance.
  • the proportion of the polymerizable monomer having a carboxyl group is preferably 10 to 50% by mass, more preferably 12 to 40% by mass, and 15 to 30% by mass. Further preferred is 15 to 25% by mass.
  • the content of the structural unit derived from the polymerizable monomer having a carboxyl group is preferably within these ranges based on the total amount of the (A) binder polymer.
  • the weight average molecular weight of the binder polymer is preferably 10,000 or more, more preferably 15000 or more, from the viewpoint that adhesion is likely to be suppressed due to low alkali resistance of the cured film during development. Preferably, it is more preferably 30000 or more, and particularly preferably 50000 or more.
  • the weight average molecular weight of the binder polymer is preferably 200000 or less, and preferably 150,000 or less, from the viewpoint that it is easy to suppress the difficulty of obtaining a good pattern due to low developability of the unexposed area during development. It is more preferable that it is 100000 or less.
  • the weight average molecular weight of the (A) binder polymer is preferably 10,000 to 200,000, more preferably 15,000 to 150,000, still more preferably 30,000 to 150,000, and more preferably 30,000 to 100,000. Particularly preferred is 50,000 to 100,000.
  • the weight average molecular weight of the binder polymer is preferably 15000 to 150,000, more preferably 30000 to 150,000, still more preferably 30,000 to 100,000, and more preferably 50,000 to 100,000 from the viewpoint of excellent resolution. It is particularly preferred.
  • a weight average molecular weight can be measured with reference to the measuring method of the Example mentioned later.
  • a photopolymerizable compound having an ethylenically unsaturated group can be used as the photopolymerizable compound as component (B). Thereby, the resolution of the conductive pattern 2a and the adhesiveness with the transparent base material 20 can be made more highly compatible.
  • Examples of the photopolymerizable compound having an ethylenically unsaturated group include a monofunctional vinyl monomer, a bifunctional vinyl monomer, and a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups.
  • Examples of the monofunctional vinyl monomer include (meth) acrylic acid, (meth) acrylic acid alkyl ester and monomers copolymerizable therewith.
  • Bifunctional vinyl monomers include polyethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, polypropylene glycol di (meth) acrylate, and 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane ), Bisphenol A diglycidyl ether di (meth) acrylate, and the like.
  • Examples of the polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, and dipentaerythritol.
  • the content of the component (A) is preferably in the following range with respect to 100 parts by mass of the total amount of the component (A) and the component (B).
  • the component (A) content is excellent in coating properties and prevents edge fusion (resin oozes out from the film end) when the transfer type photosensitive conductive film described later is formed and rolled up. From an easy viewpoint, it is preferable that it is 40 mass parts or more, It is more preferable that it is 50 mass parts or more, It is further more preferable that it is 60 mass parts or more.
  • the content of the component (A) is high sensitivity, and is preferably 80 parts by mass or less, and more preferably 70 parts by mass or less from the viewpoint of improving the mechanical strength of the cured film. From these viewpoints, the content of the component (A) is preferably 40 to 80 parts by mass, more preferably 50 to 70 parts by mass, and further preferably 60 to 70 parts by mass.
  • the content of the component (B) is preferably in the following range with respect to 100 parts by mass of the total amount of the component (A) and the component (B).
  • the content of the component (B) is high sensitivity, and is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, from the viewpoint that the mechanical strength of the cured film can be increased. More preferably, it is at least part.
  • the content of the component (B) is excellent in coating properties, forms a transfer-type photosensitive conductive film described later, and is easy to prevent edge fusion from occurring when wound into a roll, and is 60 parts by mass or less. It is preferable that it is 50 mass parts or less. From these viewpoints, the content of component (B) is preferably 20 to 60 parts by mass, more preferably 30 to 50 parts by mass, and even more preferably 40 to 50 parts by mass.
  • the photopolymerization initiator which is the component (C) conventionally known photopolymerization initiators can be used without particular limitation.
  • Specific examples of the component (C) include aromatic ketones, oxime ester compounds, phosphine oxide compounds, benzyl derivatives, 2,4,5-triarylimidazole dimers, acridine derivatives, N-phenylglycine, N- Examples thereof include phenylglycine derivatives, coumarin compounds, and oxazole compounds.
  • oxime ester compounds examples include 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime)], 1- [9-ethyl-6- (2-methylbenzoyl) -9H -Carbazol-3-yl] ethanone 1- (O-acetyloxime) and the like.
  • phosphine oxide compound examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the content of the component (C) is preferably in the following range with respect to 100 parts by mass of the total amount of the component (A) and the component (B).
  • the content of the component (C) is preferably 0.1 parts by mass or more, more preferably 2 parts by mass or more, and 6 parts by mass or more from the viewpoint of sufficiently increasing sensitivity. Is more preferable.
  • the content of the component (C) is preferably 15 parts by mass or less from the viewpoint of easily preventing absorption at the surface of the composition from increasing during photoexposure and insufficient photocuring inside.
  • the amount is more preferably 12 parts by mass or less, and further preferably 10 parts by mass or less. From these viewpoints, the content of the component (C) is preferably 0.1 to 15 parts by mass, more preferably 2 to 12 parts by mass, and further preferably 6 to 10 parts by mass. .
  • the photosensitive resin composition is, if necessary, (D) at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye and a purple pigment (hereinafter referred to as “component (D)” in some cases). ) May be further contained.
  • component (D) a blue dye, a blue pigment, a purple dye and a purple pigment
  • ) May be further contained.
  • component (D) a blue dye, a blue pigment, a purple dye and a purple pigment
  • the blue dye refers to a dye having similar absorption in the entire range of 400 to 500 nm in the visible light region.
  • the blue dye is preferably a dye having an absorption intensity in the entire range of 400 to 500 nm within a range of 0.7 to 1.3 when the absorption intensity at 450 nm is 1, and the absorption intensity is 0.8 to More preferred are dyes within the range of 1.2.
  • VALIFAST BLUE 2606 manufactured by Orient Chemical Industry Co., Ltd.
  • VALIFAST BLUE 2606 manufactured by Orient Chemical Industry Co., Ltd.
  • Purple dye means a dye having the same level of absorption in the entire visible light range of 380 to 430 nm.
  • the purple dye is preferably a dye having an absorption intensity in the range of 380 to 430 nm within a range of 0.7 to 1.3, assuming that the absorption intensity at 400 nm is 1, and the absorption intensity is 0.8 to More preferred are dyes within the range of 1.2.
  • OPLAS VIOLET 730 manufactured by Orient Chemical Co., Ltd.
  • the absorption intensity can be measured using a UV spectrophotometer (trade name “U-3310” manufactured by Hitachi, Ltd.).
  • the dye it is preferable not to select a thiol group-containing compound whose surface resistivity tends to increase under high temperature and high humidity, or a colored compound which easily causes discoloration and precipitation under high temperature and high humidity. Furthermore, when the light transmission layer is a photosensitive resin layer, it is preferable that the dye does not have strong absorption in the ultraviolet region in order to suppress a decrease in photosensitive characteristics.
  • Blue pigment refers to a pigment having the same degree of absorption in the entire visible light range of 400 to 500 nm.
  • the blue pigment is preferably a pigment having an absorption intensity in the entire range of 400 to 500 nm within a range of 0.7 to 1.3 when the absorption intensity at 450 nm is 1, and the absorption intensity is 0.8 to More preferred are pigments in the range of 1.2.
  • commercially available products such as NX-051 and NX-053 (manufactured by Dainichi Seika Kogyo Co., Ltd.) can be used.
  • Purple pigment means a pigment having the same level of absorption in the entire visible light range of 380 to 430 nm.
  • the purple pigment is preferably a pigment having an absorption intensity in the range of 380 to 430 nm within the range of 0.7 to 1.3 when the absorption intensity at 400 nm is 1, and the absorption intensity is 0.8 to More preferred are pigments in the range of 1.2.
  • NX-043 manufactured by Dainichi Seika Kogyo Co., Ltd.
  • NX-043 manufactured by Dainichi Seika Kogyo Co., Ltd.
  • the pigment it is preferable not to select a thiol group-containing compound whose surface resistivity tends to increase under high temperature and high humidity, or a colored compound which easily causes discoloration and precipitation under high temperature and high humidity. Furthermore, when the light transmission layer is a photosensitive resin layer, it is preferable that the pigment does not have strong absorption in the ultraviolet region in order to suppress a decrease in photosensitive characteristics.
  • At least one selected from the group consisting of blue pigments and purple pigments is preferable.
  • yellowness peculiar to conductive material for example, conductive fibers, such as silver fiber, can further be controlled.
  • the content of the component (D) is 0 on the basis of the total amount of the component (A) and the component (B) from the viewpoint of easily obtaining high transparency. It is preferably 2% by mass or less, more preferably 0.18% by mass or less, further preferably 0.15% by mass or less, and particularly preferably 0.1% by mass or less.
  • the content of the component (D) exceeds 0% by mass on the basis of the total amount of the components (A) and (B) from the viewpoint of easily suppressing the increase in yellowness, and the conductive material (conductive 0.05 mass% or more is preferable from the viewpoint of further suppressing the phenomenon of appearing white due to reflection of the conductive layer (conductive pattern or the like) by the fiber or the like, and further suppressing the appearance of the pattern.
  • the conductive pattern 2a and the light transmission layer 3e shown in FIG. 1A are, for example, a photosensitive resin composition layer (layer for obtaining the light transmission layer 3e) provided on the transparent substrate 20, and a photosensitive property.
  • a first exposure step of irradiating a photosensitive layer including a conductive layer provided on the surface of the resin composition layer opposite to the transparent substrate 20 with actinic rays in a pattern; and in the presence of oxygen, the photosensitive layer A conductive pattern 2a is formed by developing a photosensitive layer after a second exposure step of irradiating at least a part or all of the unexposed portion in the first exposure step with actinic rays, and after the second exposure step. It can be obtained through a development step. According to such a method for forming a conductive pattern, a region having a conductive pattern and a region where a part of the conductive layer is removed and the cured resin layer is exposed can be formed in a lump.
  • the conductive pattern 2a and the light transmission layers 3f and 3g shown in FIGS. 1B and 1C are, for example, a photosensitive resin composition layer (light transmission layer 3f) provided on the transparent substrate 20. , 3 g) and a photosensitive layer including a conductive layer provided on the surface of the photosensitive resin composition layer on the side opposite to the transparent substrate 20 is irradiated with actinic rays in a pattern. And a developing process for forming the conductive pattern 2a by developing the exposed photosensitive layer.
  • the conductive pattern 2a and the resin layer 3a shown in FIG. 2 are, for example, a photosensitive resin composition layer (layer for obtaining the resin layer 3a) provided on the transparent substrate 20, as will be described later with reference to FIG. And a photosensitive layer including a conductive layer provided on the surface of the photosensitive resin composition layer on the side opposite to the transparent substrate 20, and actinic rays are irradiated in a pattern, and in the presence of oxygen.
  • the conductive pattern It can be obtained through a development step for forming 2a. According to such a method for forming a conductive pattern, a region having a conductive pattern and a region where a part of the conductive layer is removed and the cured resin layer is exposed can be formed in a lump.
  • the conductive pattern 2a and the resin layer 3b shown in FIG. 3B are, for example, a photosensitive resin composition layer (layer for obtaining the resin layer 3b) provided on the transparent substrate 20, and a photosensitive property.
  • a photosensitive layer including a conductive layer provided on the surface opposite to the transparent substrate 20 of the resin composition layer is exposed to an actinic ray in a pattern, and the exposed photosensitive layer is developed to develop the conductive layer. It can be obtained through a development step for forming the pattern 2a.
  • the conductive pattern 2a and the resin layers 3c and 3d shown in FIG. 3C and FIG. 3D include, for example, a conductive layer provided on the transparent substrate 20, and a transparent substrate 20 of the conductive layer.
  • a photosensitive layer including a photosensitive resin composition layer (layer for obtaining the resin layers 3c and 3d) provided on the opposite surface, an exposure step of irradiating actinic rays in a pattern, and an exposed photosensitive layer Can be obtained through a developing process for forming the conductive pattern 2a (see FIG. 6 described later).
  • the photosensitive layer (photosensitive resin composition layer and conductive layer) may be directly provided on the transparent substrate 20 by a method such as coating, or separately, a support and a photosensitive layer provided on the support.
  • the photosensitive resin composition layer or the conductive layer may be laminated so as to be in contact with the transparent substrate 20.
  • a transfer type photosensitive conductive film By using such a transfer type photosensitive conductive film, a conductive pattern can be easily formed on a substrate with sufficient resolution. In addition, it is possible to easily connect a connection terminal or the like provided on the substrate surface and the conductive pattern.
  • FIG. 4 is a schematic cross-sectional view for explaining the photosensitive conductive film according to the present embodiment.
  • the photosensitive conductive film 10 includes a support film 1 and a photosensitive layer 4 provided on the support film 1.
  • the photosensitive layer 4 includes a conductive layer 2 containing a conductive material and a photosensitive resin composition layer 3 provided on the surface of the conductive layer 2 opposite to the support film 1. That is, the photosensitive conductive film 10 has a structure in which the support film 1, the conductive layer 2, and the photosensitive resin composition layer 3 are laminated in this order.
  • a polymer film having heat resistance and solvent resistance can be used as the support film 1.
  • the polymer film include a polyethylene terephthalate film, a polyethylene film, a polypropylene film, and a polycarbonate film.
  • a polyethylene terephthalate film a polyethylene film
  • a polypropylene film a polypropylene film
  • a polycarbonate film a polycarbonate film.
  • at least one selected from the group consisting of a polyethylene terephthalate film and a polypropylene film is preferable.
  • the support film 1 a polymer film having gas (especially oxygen) permeability may be used.
  • gas especially oxygen
  • the support film 1 is not peeled off by adjusting the oxygen concentration of the atmosphere in the second exposure step. Even in the presence of oxygen, the second exposure step can be performed.
  • the conductive layer 2 is prepared, for example, by preparing a conductive material dispersion liquid containing the above-described conductive material and water, an organic solvent, a dispersion stabilizer (surfactant, etc.), and the conductive material dispersion liquid on the support film 1. After coating, it can be formed by drying. After drying, the conductive layer 2 formed on the support film 1 may be laminated as necessary.
  • the photosensitive resin composition layer 3 contains, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond) and a photopolymerization initiator, and, if necessary, a blue dye, It further contains at least one colorant selected from the group consisting of blue pigments, purple dyes and purple pigments.
  • These components include (A) a binder polymer, (B) a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), and (C) a photopolymerization initiator in the photosensitive resin composition.
  • a binder polymer for example, a polystyrene-butadiene-styrene-styrene-styrenethacrylate, and (C) a photopolymerization initiator in the photosensitive resin composition.
  • a photopolymerizable compound for example, a photopolymerizable compound having an ethylenically unsaturated bond
  • C a photopolymerization initiator in the photosensitive resin composition.
  • the above-described components can be used as the component (D) in the light-transmitting layers 3e, 3f, 3g, and 7a.
  • the photosensitive resin composition layer 3 is prepared by preparing a solution of the photosensitive resin composition (which may contain a solid content such as a pigment. The same applies hereinafter) on the conductive layer 2 formed on the support film 1. After coating the solution, it can be formed by drying.
  • the photosensitive resin composition solution is obtained by dissolving the components of the photosensitive resin composition in a solvent such as methanol, acetone, methyl ethyl ketone, methyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether, or a mixed solvent thereof. Alternatively, it may be dispersed.
  • the solid content concentration of the photosensitive resin composition solution can be about 10 to 60% by mass.
  • the thickness of the photosensitive resin composition layer 3 varies depending on the application, but is preferably the following range in terms of the thickness after drying.
  • the thickness of the photosensitive resin composition layer 3 is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more from the viewpoint of easy application. Is more preferable and 1 ⁇ m or more is particularly preferable.
  • the thickness of the photosensitive resin composition layer 3 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less, from the viewpoint of easily preventing a decrease in sensitivity. Particularly preferred is 5 ⁇ m or less.
  • the thickness of the photosensitive resin composition layer 3 is preferably 0.05 to 20 ⁇ m, more preferably 0.05 to 15 ⁇ m, and further preferably 0.1 to 10 ⁇ m.
  • 0.1 to 8 ⁇ m is particularly preferable, 0.1 to 5 ⁇ m is very preferable, 0.5 to 5 ⁇ m is very preferable, and 1 to 5 ⁇ m is even more preferable.
  • the thickness of the layer (resin layers 3a, 3b, 3c, 3d, light transmission layers 3e, 3f, 3g, etc.) obtained by curing the photosensitive resin composition layer 3 is also in these ranges.
  • the coating can be performed by a known method such as a roll coating method.
  • the drying can be performed at 30 to 150 ° C. for about 1 to 30 minutes with a hot air convection dryer or the like.
  • the conductive material may coexist with a surfactant or a dispersion stabilizer.
  • the photosensitive conductive film 10 may have a protective film 5 as necessary (see FIG. 6 described later).
  • the protective film the film exemplified by the support film 1 can be used. In this case, it is preferable to adjust the thickness or surface treatment of the support film 1 and the protective film so that the peel strength of the protective film is smaller than the peel strength of the support film 1.
  • the thickness of the protective film is preferably 10 to 200 ⁇ m, more preferably 15 to 150 ⁇ m, and still more preferably 15 to 100 ⁇ m.
  • the minimum light transmittance in the wavelength region of 450 to 650 nm is 80% or more when the total thickness of both layers is 1 to 10 ⁇ m. Is preferable, and it is more preferable that it is 85% or more.
  • the conductive layer 2 and the photosensitive resin composition layer 3 satisfy such conditions, visibility is further improved when the laminate is applied to an electronic component such as a touch panel.
  • the light transmissive layers 3e, 3f, 3g, 7a and the resin layer (light transmissive layer) 3d are at least selected from the group consisting of component (D) (blue dye, blue pigment, violet dye, and violet pigment) as the color material 9. A kind of coloring material).
  • the light transmissive layers 3e, 3f, 3g, and 7a and the resin layer (light transmissive layer) 3d are layers for suppressing an increase in yellow tint, and conductive materials (conductive layers) of the conductive layer (conductive pattern 2a and the like). This is a layer capable of absorbing the reflected light from the conductive fiber and the like and suppressing the phenomenon that the conductive layer looks white due to the reflection of the light on the surface of the conductive material.
  • the light transmissive layers 3e, 3f, 3g, 7a and the resin layer (light transmissive layer) 3d are preferably a photosensitive resin composition layer or a cured product thereof from the viewpoint of ease of formation.
  • the same component as the component (D) in the photosensitive resin composition can be used.
  • the medium containing the component (D) may be a resin cured product, a resin composition layer before curing, an organic glass, or the like.
  • Examples of the cured resin include a cured product of a photosensitive resin composition.
  • Examples of the photosensitive resin composition include a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator and a component (D), and other components as necessary.
  • a composition containing can be used.
  • Examples of the binder polymer, photopolymerizable compound (for example, photopolymerizable compound having an ethylenically unsaturated bond), photopolymerization initiator, and other components include the resin layers 3a, 3b, 3c, 3d and the light transmitting layer 3e described above. , 3f, and 3g are the same materials.
  • the light-transmitting layers 3e, 3f, and 3g may be formed by applying the photosensitive resin composition on the transparent substrate 20 and then drying it, and layering the photosensitive resin composition on the support film. It is also possible to prepare a photosensitive film on which is formed and transfer the layer of the photosensitive resin composition.
  • the light transmissive layer 7a may be formed by applying the photosensitive resin composition on the transparent substrate with conductive pattern 30, 31, 32, 33 and then drying, and may be formed on the support film. You may provide the photosensitive film in which the layer of the resin composition was formed, and may provide by transferring the layer of the photosensitive resin composition.
  • the resin layer 3d may be formed by applying the photosensitive resin composition on the conductive pattern 2a and then drying, or a photosensitive film having a layer of the photosensitive resin composition formed on a support film. May be prepared and exposed and developed after transferring the layer of the photosensitive resin composition.
  • the content of the component (D) in the light-transmitting layers 3e, 3f, 3g, 7a and the resin layer (light-transmitting layer) 3d is 0. 0% based on the total amount of the light-transmitting layer from the viewpoint that high transparency is easily obtained. It is preferably 2% by mass or less, more preferably 0.18% by mass or less, and further preferably 0.15% by mass or less. On the other hand, the content of the component (D) exceeds 0% by mass on the basis of the total amount of the light transmission layer from the viewpoint of easily suppressing an increase in yellowness, and on the surface of the conductive material (conductive fiber, etc.).
  • the content of the component (D) is, for example, more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
  • the thicknesses of the light transmissive layers 3e, 3f, 3g, 7a and the resin layer (light transmissive layer) 3d are preferably in the following ranges from the viewpoint of obtaining further excellent light transmittance and haze value.
  • the thicknesses of the light transmission layers 3e, 3f, 3g, 7a and the resin layer 3d are preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 2 ⁇ m or more, and 2.5 ⁇ m or more.
  • the thicknesses of the light transmission layers 3e, 3f, 3g, 7a and the resin layer 3d are preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 8 ⁇ m or less, and preferably 5 ⁇ m or less. Particularly preferred. From these viewpoints, the thicknesses of the light transmission layers 3e, 3f, 3g, 7a and the resin layer 3d are preferably 0.5 to 25 ⁇ m, more preferably 1 to 15 ⁇ m, and 2 to 8 ⁇ m. Is more preferably 2.5 to 8 ⁇ m, and most preferably 2.5 to 5 ⁇ m.
  • the minimum light transmittance in the wavelength region of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more.
  • the transparent substrate with a conductive layer is obtained by the method for forming a conductive layer (conductive pattern, etc.) described above.
  • the surface resistivity of the conductive layer (conductive pattern 2a, etc.) is preferably 400 ⁇ / ⁇ or less, more preferably 300 ⁇ / ⁇ or less, from the viewpoint that it can be effectively used as wiring, electrodes (transparent electrodes, etc.). Preferably, it is 150 ⁇ / ⁇ or less.
  • the surface resistivity of the conductive layer in such a range, it is possible to easily ensure good electrical connection with a connection terminal or the like provided on the surface of the base material.
  • the surface resistivity can be adjusted by, for example, the concentration of the conductive material dispersion (conductive fiber dispersion or the like), the coating amount, or the like.
  • the surface resistivity of the conductive pattern obtained by patterning the conductive layer can be measured as the surface resistivity of the conductive layer.
  • the total light transmittance of the transparent substrate with a conductive layer is preferably 86.0% or more, and more preferably 88.0% or more.
  • a transparent substrate with a conductive pattern is preferably 86.0% or more, and more preferably 88.0% or more.
  • the total light transmittance of the laminate according to this embodiment is preferably 86.0% or more, more preferably 87.0% or more, further preferably 88.0% or more, 90 It is especially preferable that it is 0.0% or more.
  • the manufacturing method of the laminated body which concerns on this embodiment (For example, the manufacturing method of the laminated body which concerns on 1st Embodiment and 2nd Embodiment) is demonstrated.
  • the manufacturing method of the laminated body which concerns on this embodiment is equipped with the light transmissive layer formation process which provides a light transmissive layer and a conductive layer on a transparent base material, a conductive layer contains a conductive material, a light transmissive layer is a blue dye, It contains at least one colorant selected from the group consisting of blue pigments, purple dyes and purple pigments.
  • the conductive layer is provided on the light transmission layer.
  • the conductive layer and the light transmission layer may be simultaneously formed on the transparent substrate, or may be separately formed on the transparent substrate.
  • the light transmission layer is provided on the side opposite to the transparent base material of the conductive layer.
  • the manufacturing method of the laminated body which concerns on 2nd Embodiment is a transparent base material (for example, with a conductive pattern) which has a transparent base material and a conductive layer (conductive pattern etc.) provided on the transparent base material.
  • the light transmissive layer is provided on the side where the conductive layer of the transparent base material and the transparent base material with a conductive layer having the conductive layer provided on the transparent base material is provided.
  • the light transmitting layer forming step in the method for manufacturing the laminate according to the first embodiment includes, for example, a light transmitting layer forming composition layer and a conductive layer (conductive material) provided on the light transmitting layer forming composition layer. And a light-sensitive layer-forming composition layer comprising a binder polymer, a step of forming a photosensitive layer comprising a transparent substrate on the transparent substrate, and an exposure step of irradiating the photosensitive layer with actinic rays.
  • Photopolymerizable compound for example, photopolymerizable compound having an ethylenically unsaturated bond
  • photopolymerization initiator for example, photopolymerization initiator, and at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments Containing.
  • the photosensitive layer comprises a photosensitive conductive film having a structure in which a support film, a conductive layer (a layer containing a conductive material), and a photosensitive resin composition layer are laminated in this order. It may be formed on the transparent substrate by laminating so that the layer contacts the transparent substrate.
  • the light-transmitting layer forming step in the method for producing a laminate according to the second embodiment includes, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator, and
  • the transparent base material of the conductive layer is a composition layer for forming a light transmission layer containing at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments Forming the light transmitting layer by irradiating the composition layer for forming the light transmitting layer with actinic rays.
  • the composition layer for forming a light transmission layer is a photosensitive film having a support film and a photosensitive resin composition layer provided on the support film, and the photosensitive resin composition layer is a transparent substrate with a conductive layer. It may be formed by laminating so as to be in contact with (a transparent substrate with a conductive pattern or the like).
  • the composition layer for forming a light transmission layer is a composition layer for forming a light transmission layer.
  • a binder polymer for example, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), light It contains a polymerization initiator and at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments.
  • the said photosensitive resin composition layer of a photosensitive conductive film or a photosensitive film is a layer used as the light transmission layer forming composition layer.
  • the photosensitive resin composition layer contains the same constituents as the light transmission layer forming composition layer, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond). ), A photopolymerization initiator, and at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments.
  • the conductive layer is a conductive pattern
  • the exposure step is a step of irradiating the photosensitive layer with actinic rays in a pattern
  • the light transmission layer forming step is a step of the exposure step.
  • the aspect which further includes the image development process which develops a photosensitive layer later may be sufficient.
  • the light transmitting layer forming step is a step of irradiating at least a part or all of the unexposed portion in the exposure step (first exposure step) of the photosensitive layer with oxygen in the presence of oxygen before the development step. (Second exposure step) may further be included.
  • FIG. 5 is a schematic cross-sectional view for explaining the manufacturing method of the laminated body according to the second embodiment.
  • a conductive pattern 2a is formed on a transparent substrate 20 to produce a transparent substrate with a conductive pattern (substrate with a conductive pattern) 30 (FIGS. 5A to 5D). reference).
  • the photosensitive resin composition layer 3 and the resin layer 3a of FIG. 5 contain the coloring material 9, it replaces with the transparent base material 30 with a conductive pattern, and is a laminated body which is a laminated body which concerns on 1st Embodiment. 40a (FIG. 1 (a)) can be obtained.
  • the transparent substrate with a conductive pattern 30 is a photosensitive layer forming step (FIG. 5A) in which the photosensitive layer 4 is provided on the transparent substrate 20, and a first exposure that irradiates the photosensitive layer 4 with an actinic ray L in a pattern.
  • the photosensitive layer 4 includes the photosensitive resin composition layer 3 on the transparent substrate 20 and the conductive layer 2 provided on the surface of the photosensitive resin composition layer 3 opposite to the transparent substrate 20.
  • the photosensitive layer forming step may include a laminating step of providing the photosensitive layer 4 by laminating the photosensitive conductive film 10.
  • the photosensitive layer 4 may be provided by laminating the photosensitive conductive film 10 described above so that the photosensitive resin composition layer 3 is in contact with the transparent substrate 20.
  • the support film 1 in the first exposure step, may be disposed on the photosensitive layer 4, and the support film 1 may be peeled off before the second exposure step.
  • the first exposure step is preferably performed in a vacuum or in an inert gas atmosphere.
  • the laminating step is performed by, for example, a method of laminating the photosensitive resin composition layer 3 on the transparent substrate 20 while heating the photosensitive conductive film 10. In addition, it is preferable to perform this operation under reduced pressure from the viewpoint of adhesion and followability.
  • the conductive layer 2 and the photosensitive resin composition layer 3 or the transparent substrate 20 are preferably heated to 70 to 130 ° C., and the pressure bonding pressure is 0.1 to 1.0 MPa. Although it is preferable to set it to a level (about 1 to 10 kgf / cm 2 ), these conditions are not particularly limited. Further, if the conductive layer 2 or the photosensitive resin composition layer 3 is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the transparent substrate 20 in advance, but in order to further improve the laminating property. In addition, the transparent substrate 20 can be preheated.
  • the photosensitive resin composition layer 3 is cured by irradiation with actinic rays.
  • the conductive layer 2 is fixed by the cured product, whereby the conductive pattern 2a and the resin layer (resin cured layer) 3a are formed on the transparent substrate 20.
  • an exposure method in the exposure step for example, there is a method (mask exposure method) of irradiating an actinic ray L in an image form through a mask pattern 6 called an artwork (FIG. 5B).
  • the active light source a known light source, for example, a light source that effectively emits ultraviolet light, visible light, or the like, such as a high-pressure mercury lamp or a xenon lamp, is used.
  • a light source that effectively emits ultraviolet light, visible light, or the like, such as an Ar ion laser or a semiconductor laser is also used.
  • a light source that effectively emits visible light such as a photographic flood bulb or a solar lamp, is also used.
  • a method of irradiating actinic rays in an image shape by a direct drawing method using a laser exposure method or the like may be employed.
  • the support film 1 may be peeled off before the second exposure step, a gas permeable film is used as the support film, and the first exposure step is performed under vacuum, under an inert gas atmosphere, or under reduced oxygen pressure.
  • the target conductive pattern can be obtained without peeling off the support film 1 by adjusting the atmosphere during exposure, such as by performing the second exposure step in the presence of oxygen in the air (preferably under high-pressure oxygen). Can be formed.
  • portions other than the exposed portion of the photosensitive layer 4 are removed. Specifically, when the transparent support film 1 is present on the photosensitive layer 4, the support film 1 is first removed, and then the portions other than the exposed portions of the photosensitive layer 4 are removed by wet development. . Thereby, the part containing a conductive material remains on the resin layer (resin cured layer) 3a having a predetermined pattern, and the conductive pattern 2a is formed.
  • the wet development is performed by a known method such as spraying, rocking dipping, brushing, scraping, or the like using a developer corresponding to the photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer.
  • a developer corresponding to the photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer.
  • alkaline aqueous solution As the developer, it is preferable to use an alkaline aqueous solution or the like that is safe and stable and has good operability.
  • the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium or potassium hydroxide; alkali carbonates such as lithium, sodium, potassium or ammonium carbonate or bicarbonate.
  • Examples of the alkaline aqueous solution used for development include 0.1 to 5% by weight sodium carbonate aqueous solution, 0.1 to 5% by weight potassium carbonate aqueous solution, 0.1 to 5% by weight sodium hydroxide aqueous solution, and 0.1 to 5% by weight four.
  • a sodium borate aqueous solution or the like is preferable.
  • the pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted according to the developability of the photosensitive resin composition layer.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • an aqueous developer composed of water or an aqueous alkali solution and one or more organic solvents may be used.
  • the resin layer may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development.
  • a light transmitting layer forming composition layer 7 having a photosensitive resin composition layer 8 and a color material 9 dispersed in the photosensitive resin composition layer 8 is formed.
  • a light transmissive layer forming step is carried out to obtain a light transmissive layer 7a by exposure (FIGS. 5E and 5F).
  • the light transmitting layer forming step includes, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond) on the side where the conductive pattern 2a of the transparent substrate with a conductive pattern 30 is provided,
  • a light transmission layer forming composition layer 7 for forming a light transmission layer containing a photopolymerization initiator and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye and a purple pigment A composition layer forming step (FIG. 5 (e)) and an exposure step of irradiating the composition layer 7 for forming a light transmitting layer with an actinic ray to obtain the light transmitting layer 7a may be included.
  • the light transmission layer forming composition layer forming step includes at least one selected from the group consisting of a support film and a color material (blue dye, blue pigment, purple dye, and purple pigment provided on the support film)
  • the photosensitive film having the light-transmitting layer-forming composition layer 7 containing 9 is prepared in advance, and the conductive pattern 2a of the transparent substrate 30 with the conductive pattern and the conductive pattern 2a are not formed. It can also be set as the process of laminating
  • the exposure process and the lamination process can be performed under the same conditions as described above.
  • the photosensitive film can also be laminated to the transparent substrate with a conductive pattern under the same conditions.
  • the laminated body 50 can be manufactured by the above (FIG.5 (f)).
  • the laminated body 50 can further be provided with a layer such as a visibility improving film or a hard coat layer. After providing these layers in the laminate of FIG. 5 (e), the light transmission layer may be cured.
  • the above-mentioned photosensitive film (film having no conductive layer) can be provided as a film set together with the photosensitive conductive film (film having a conductive layer). That is, a photosensitive film having a first support film and a first photosensitive resin composition layer provided on the first support film, a second support film, and a conductive material Including a photosensitive conductive film having a structure in which a conductive layer and a second photosensitive resin composition layer are laminated in this order, and the first photosensitive resin composition layer includes a binder polymer, a light A polymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator, and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment; And the second photosensitive resin composition layer contains a binder polymer, a photopolymerizable compound (for example, a photopolymerizable
  • the laminate 40c in FIG. 1C can be obtained by producing the conductive pattern 2a and the light transmission layer 3g using a photosensitive conductive film and producing the cured resin 8a using the photosensitive film. it can.
  • the laminated body 50 of FIG. 2 can be obtained by producing the transparent substrate 30 with a conductive pattern using a photosensitive conductive film and producing the light transmission layer 7a using the photosensitive film.
  • the photosensitive conductive film includes a support film, a conductive layer containing a conductive material, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator, and blue.
  • the light transmission layers 3e, 3f, 3g and the conductive pattern 2a provided on the light transmission layers 3e, 3f, 3g are collectively shown in FIG. Can be formed.
  • the conductive pattern 2a and the resin layer (light transmission layer) 3d provided on the conductive pattern 2a can be formed in a lump.
  • the form is not limited, but it is preferable to further form a light transmission layer to eliminate surface irregularities.
  • the photosensitive resin composition layer of the photosensitive conductive film may be an embodiment that does not contain a color material.
  • the transparent substrate with a conductive pattern of the laminate shown in FIG. 3C is obtained by the procedure shown in FIG. 6 using a photosensitive conductive film having a photosensitive resin composition layer not containing a colorant. be able to.
  • a photosensitive conductive film having a structure in which the support film 1, the photosensitive layer 4 (the conductive layer 2 and the photosensitive resin composition layer 3), and the protective film 5 are laminated in this order is prepared. While peeling off the support film 1, the photosensitive layer 4 and the protective film 5 are laminated on the transparent substrate 20 (FIGS. 6A and 6B).
  • a transparent substrate with a conductive pattern of the laminate shown in FIG. 3C can be obtained by irradiating actinic rays L in an image form through the mask pattern 6 (FIG. 6C) and developing. (FIG. 6 (d)).
  • the support film 1, the photosensitive resin composition layer 3, and the conductive layer 2 are formed by laminating the photosensitive layer 4 and the support film 1 on the transparent substrate 20 while peeling the protective film 5 using the laminate roll 60. Can be obtained in this order.
  • the electronic component according to the present embodiment includes the laminate according to the present embodiment.
  • the laminated body which concerns on this embodiment can be used for electronic components, such as a touch panel, a liquid crystal display, a solar cell, and illumination.
  • FIG. 7A is a schematic plan view showing a touch panel as an electronic component according to the present embodiment.
  • FIG. 7B is a partially cutaway perspective view of FIG.
  • the touch panel (capacitance type touch panel) shown in FIG. 7 has a transparent electrode 103 and a transparent electrode 104 for detecting a change in capacitance on a transparent base material (transparent base material, touch panel base material) 100.
  • the transparent electrodes 103 and 104 have a light transmission layer 102 containing a color material on the surface opposite to the transparent substrate 100.
  • the transparent electrode 103 detects an X position coordinate signal.
  • the transparent electrode 104 detects a signal of the Y position coordinate.
  • the transparent electrode 103 and the transparent electrode 104 exist on the resin layer 101. These electrodes and the resin layer can be provided by the conductive pattern forming method described above.
  • the transparent electrodes 103 and 104 are connected to a lead-out wiring 105a and a lead-out wiring 105b for connection to a control circuit of a driver element circuit (not shown) that controls an electrical signal as a touch panel.
  • An insulating film 124 is disposed between the transparent electrode 103 and the transparent electrode 104 at a portion where the transparent electrode 103 and the transparent electrode 104 intersect (see FIG. 7B).
  • a light transmission layer 102 is laminated on the transparent electrode and the resin layer.
  • the reaction solution was allowed to stand at 30 ° C. or lower and then diluted 10 times with acetone. Next, centrifugation was performed at 2000 rpm for 20 minutes using a centrifuge, and the supernatant was decanted. Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice similarly using distilled water, and obtained the silver fiber. When the obtained silver fiber was observed with an optical microscope, the fiber diameter (diameter) was about 40 nm, and the fiber length was about 4 ⁇ m.
  • solution a a solution in which 100 g of methacrylic acid, 250 g of methyl methacrylate, 100 g of ethyl acrylate and 50 g of styrene are mixed with 0.8 g of azobisisobutyronitrile as an initiator (hereinafter referred to as “solution a”).
  • solution a a solution in which 100 g of methacrylic acid, 250 g of methyl methacrylate, 100 g of ethyl acrylate and 50 g of styrene are mixed with 0.8 g of azobisisobutyronitrile as an initiator.
  • solution a was added dropwise to the solution s heated to 80 ° C. over 4 hours, and then kept at 80 ° C. with stirring for 2 hours.
  • the solution after dripping was heat-retained at 80 degreeC for 3 hours, stirring, Then, it heated at 90 degreeC over 30 minutes. The mixture was kept at 90 ° C. for 2 hours and then cooled to obtain a binder polymer solution. Acetone was added to the binder polymer solution to adjust the non-volatile component (solid content) to 50% by mass to obtain a binder polymer solution as the component (A).
  • the weight average molecular weight of the obtained binder polymer was 80000 in terms of standard polystyrene conversion by GPC. This was designated as acrylic polymer (A1).
  • the measurement conditions of GPC which measured the weight average molecular weight are as follows.
  • TMPTA trimethylolpropane triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD TMPTA)
  • T-1420 Dipentaerythritol tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD T-1420)
  • Component (C) TPO 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (manufactured by BASF, LUCIRIN TPO)
  • VALIFAST BLUE 2606 alpha-Bis [4- (diethylamino) phenyl] -4- (ethylamino) naphthalene-1-methylol (blue dye, product name, manufactured by Orient Chemical Co., Ltd.)
  • OPLAS VIOLET 730 1-hydroxy-4- (p-tolyamino) anthracene-9,10-dione (purple dye, trade name, manufactured by Orient Chemical Co., Ltd.)
  • NX-051 Phthalocyanine Blue (blue pigment, manufactured by Dainichi Seika Kogyo Co., Ltd., NX-051 Blue)
  • NX-053 Chromofne Blue (blue pigment, manufactured by Dainichi Seika Kogyo Co., Ltd., NX-053 Blue)
  • NX-043 Dioxazine violet (purple pigment, manufactured by Dainichi Seika Kogyo Co., Ltd., NX-043 Violet)
  • OIL BLACK 860 Solvent Black 3 (black dye, manufactured by Orient Chemical Industry Co., Ltd., OIL BLACK 860)
  • SZ-6030 ⁇ -methacryloyloxypropyltrimethoxy silane (SZ-6030, manufactured by Toray Dow Corning Co., Ltd., SZ-6030)
  • the conductive fiber dispersion 1 was uniformly applied at 26 g / m 2 onto a 50 ⁇ m-thick polyethylene terephthalate film (PET film, manufactured by Teijin Ltd., trade name: G2-50) as a support film, and then 100 ° C.
  • PET film polyethylene terephthalate film
  • a hot air convection dryer was used for 10 minutes, and pressurization was performed at a linear pressure of 1 MPa at room temperature (25 ° C.) to form a conductive layer containing conductive fibers on the support film.
  • the film thickness after drying of the conductive layer was about 0.1 ⁇ m.
  • the photosensitive resin composition solutions X1 to X11 are uniformly applied on the conductive layer formed on the support film, and dried for 10 minutes in a hot air convection dryer at 100 ° C. to form a photosensitive resin layer. Formed. In addition, when measured with the scanning electron micrograph, the film thickness after drying of the photosensitive resin layer was 5 ⁇ m. Next, the photosensitive resin layer was covered with a protective film made of polyethylene (cover film, manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain photosensitive conductive films E1 to E11.
  • a protective film made of polyethylene cover film, manufactured by Tamapoly Co., Ltd., trade name “NF-13”
  • the conductive pattern shown in FIG. 1A was formed on the PET film.
  • Photosensitive conductive films E1 to E11 were laminated by the above method on a SiO 2 sputtered glass substrate having a thickness of 0.1 mmt cut into an arbitrary size. After the lamination, when the temperature of the glass substrate reaches 23 ° C., 1000 mJ / cm 2 is used from the support film side using an exposure machine having a high-pressure mercury lamp (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.). It was irradiated with light at an exposure amount of. After light irradiation, the support film was peeled off to obtain a substrate for evaluation.
  • a high-pressure mercury lamp trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.
  • transmission b * and total light transmittance T.I. T. T. et al. were measured.
  • the transmission b * of the evaluation substrate was measured by the SCE method from the surface opposite to the substrate using a spectrocolorimeter (manufactured by Konica Minolta, trade name “CM-5”).
  • Total light transmittance of substrate for evaluation T. T. et al. was measured using a haze meter (trade name “NDH-5000” manufactured by Nippon Denka Kogyo Co., Ltd.). The results are shown in Tables 3 and 4.
  • the unit of total light transmittance is “%”.
  • the evaluation substrate (Examples 3 to 7) after the above heat treatment (145 ° C./70 min treatment) was irradiated with a sun test XLS + (manufactured by Toyo Seiki Co., Ltd.) with an irradiation intensity of 60 W / m 2 (300 to 400 nm).
  • the test was conducted under the conditions of a black panel temperature of 60 ° C. and a time of 500 hours. After the test, the transmission b * and the total light transmittance T.sub. T. T. et al. was measured.
  • the film set and photosensitive conductive film for obtaining such a laminated body can be provided.
  • Transparent base material with a conductive pattern base material with a conductive pattern
  • 40a, 40b, 40c 50 ... Laminated body, 60 ... Laminate roll
  • 103 Transparent electrode (X position coordinate)
  • 104 Transparent electrode (Y position coordinate)
  • 105a, 105b ... Lead-out wiring
  • 124 ... Insulating film, L ... Actinic ray.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)

Abstract

Laminates 40a, 40b, 40c comprising a transparent base material 20, a conductive pattern 2a, and light-transmitting layers 3e, 3f, 3g. The conductive pattern 2a is provided upon the transparent base material 20 and contains a conductive material. The light-transmitting layers 3e, 3f, 3g are provided upon the transparent base material 20 and contain at least one type of colorant 9 selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment.

Description

積層体及びその製造方法、フィルムセット、並びに、感光性導電フィルムLAMINATE, ITS MANUFACTURING METHOD, FILM SET, AND PHOTOSENSITIVE CONDUCTIVE FILM
 本発明は、積層体及びその製造方法、フィルムセット、並びに、感光性導電フィルムに関し、特に、液晶表示素子等のフラットパネルディスプレイ、タッチパネル(タッチスクリーン)、太陽電池などに用いられる積層体及びその製造方法、フィルムセット、並びに、感光性導電フィルムに関する。 The present invention relates to a laminate and a method for producing the same, a film set, and a photosensitive conductive film, and more particularly, a laminate used for a flat panel display such as a liquid crystal display element, a touch panel (touch screen), a solar cell, and the production thereof. The present invention relates to a method, a film set, and a photosensitive conductive film.
 大型電子機器(パソコン、テレビ等)、小型電子機器(カーナビゲーション、携帯電話、電子辞書等)、及び、表示機器(OA・FA機器等)には、液晶表示素子又はタッチパネルが用いられている。 Liquid crystal display elements or touch panels are used in large electronic devices (such as personal computers and televisions), small electronic devices (such as car navigation systems, mobile phones, and electronic dictionaries), and display devices (such as OA / FA devices).
 タッチパネルとしては、すでに各種の方式が実用化されているが、近年、静電容量方式のタッチパネルの利用が進んでいる。静電容量方式のタッチパネルでは、指先(導電体)がタッチ入力面に接触すると、指先と導電膜との間が静電容量結合し、コンデンサを形成する。このため、静電容量方式のタッチパネルは、指先の接触位置における電荷の変化を捉えることによってその座標を検出している。 Various types of touch panels have already been put into practical use, but in recent years, the use of capacitive touch panels has progressed. In a capacitive touch panel, when a fingertip (conductor) contacts the touch input surface, the fingertip and the conductive film are capacitively coupled to form a capacitor. For this reason, the capacitive touch panel detects the coordinates by capturing the change in the charge at the contact position of the fingertip.
 特に、投影型静電容量方式のタッチパネルは、指先の多点検出が可能なため、複雑な指示を行うことができるという良好な操作性を備え、その操作性の良さから、小型の表示装置を有する機器(携帯電話、携帯型音楽プレーヤ等)における表示面上の入力装置として利用が進んでいる。 In particular, the projected capacitive touch panel can detect multiple points on the fingertip, and thus has a good operability of giving a complicated instruction. Utilization is progressing as an input device on a display surface in a device (such as a mobile phone or a portable music player).
 一般に、投影型静電容量方式のタッチパネルでは、X軸及びY軸による2次元座標を表現するために、複数のX電極と、当該X電極に直交する複数のY電極とが、2層構造を形成している。電極には透明導電膜用材料が用いられる。 In general, in a projected capacitive touch panel, a plurality of X electrodes and a plurality of Y electrodes orthogonal to the X electrodes have a two-layer structure in order to express two-dimensional coordinates based on the X and Y axes. Forming. A transparent conductive film material is used for the electrode.
 従来、透明導電膜用材料には、可視光に対して高い透過率を示すことから、酸化インジウムスズ(Indium-Tin-Oxide:ITO)、酸化インジウム、酸化スズ等が用いられているが、これらに替わる材料を用いて透明な導電パターンを形成する試みがなされている。例えば、下記特許文献1及び2には、導電性繊維を含有する導電層を有する感光性導電フィルムによる導電パターンの形成方法が提案されている。本技術を用いれば、種々の基板上にフォトリソグラフィー工程で直接導電パターンを簡便に形成できる。 Conventionally, indium tin oxide (Indium-Tin-Oxide: ITO), indium oxide, tin oxide, and the like have been used as transparent conductive film materials because of their high transmittance to visible light. Attempts have been made to form transparent conductive patterns using alternative materials. For example, Patent Documents 1 and 2 below propose a method for forming a conductive pattern using a photosensitive conductive film having a conductive layer containing conductive fibers. If this technique is used, a conductive pattern can be easily formed directly on various substrates by a photolithography process.
国際公開第2010/021224号International Publication No. 2010/021224 国際公開第2014/196154号International Publication No. 2014/196154
 ところで、導電性繊維等の導電材料を含有する導電層(導電パターン等)では、導電材料が黄色味を有する傾向があり、外観上の問題がおき易い。 By the way, in a conductive layer (conductive pattern or the like) containing a conductive material such as conductive fiber, the conductive material tends to have a yellowish color, and a problem in appearance tends to occur.
 そこで、本発明は、導電材料を含有する導電層を用いつつ、黄色味が上昇することを抑制することが可能な積層体及びその製造方法を提供することを目的とする。また、本発明は、このような積層体を得るためのフィルムセット及び感光性導電フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a laminate that can suppress an increase in yellowishness while using a conductive layer containing a conductive material, and a method for manufacturing the same. Moreover, an object of this invention is to provide the film set and photosensitive conductive film for obtaining such a laminated body.
 本発明者らは、上記問題を詳細に調べた結果、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を用いることにより、導電材料(導電性繊維等)を含有する導電層を有する積層体において黄色味が上昇することを抑制することが可能であるという知見を得た。また、本発明者らは、青色染料、青色顔料、紫色染料又は紫色顔料を用いることなく黒色染料又は灰色染料を用いた際には、タッチパネル作製工程で引き廻し回路に用いる銀ペースト(例えば、銀繊維を含有するペースト)の乾燥工程(乾燥条件:145℃/70min)後において黄色味が上昇するという知見を得た。 As a result of examining the above problems in detail, the present inventors have used conductive materials (conductive fibers, etc.) by using at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments. It was found that it is possible to suppress an increase in yellowness in a laminate having a conductive layer containing). In addition, when the present invention uses a black dye or a gray dye without using a blue dye, a blue pigment, a violet dye or a violet pigment, a silver paste (for example, silver The knowledge that yellowishness rose after the drying process (drying conditions: 145 degreeC / 70min) of the paste containing a fiber was acquired.
 本発明は、透明基材と、導電層と、光透過層と、を備え、前記導電層が、前記透明基材上に設けられていると共に、導電材料を含有し、前記光透過層が、前記透明基材上に設けられていると共に、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する、積層体を提供する。 The present invention comprises a transparent substrate, a conductive layer, and a light transmissive layer, and the conductive layer is provided on the transparent substrate and contains a conductive material, and the light transmissive layer comprises: Provided is a laminate that is provided on the transparent substrate and contains at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment.
 本発明に係る積層体によれば、導電材料(導電性繊維等)を含有する導電層を用いつつ、黄色味が上昇する(b*が上昇する)ことを抑制可能であり、特に、加熱後(例えば、銀ペーストの乾燥工程等の工程後)において黄色味が上昇する(b*が上昇する)ことを抑制することができる。また、本発明に係る積層体によれば、黄色味の上昇を抑制しつつ、高い透過率を達成することができる。 According to the laminated body according to the present invention, it is possible to suppress the yellowness from increasing (b * increases) while using a conductive layer containing a conductive material (conductive fiber or the like). It is possible to prevent yellowishness from increasing (for example, b * increases) in a process (for example, after a process such as a silver paste drying process). Moreover, according to the laminated body which concerns on this invention, a high transmittance | permeability can be achieved, suppressing the raise of yellowishness.
 ところで、導電材料(導電性繊維等)を含有する導電層を有する積層体に対し、信頼性試験に用いられる耐光性試験を施した場合に、従来の色材が退色しb*が上昇することが問題となることがある。一方、本発明に係る積層体によれば、当該積層体に対し耐光性試験を施した場合であっても、b*が上昇することを抑制することができる。 By the way, when a light resistance test used for a reliability test is performed on a laminate having a conductive layer containing a conductive material (conductive fiber, etc.), the conventional color material fades and b * increases. May be a problem. On the other hand, according to the laminated body which concerns on this invention, even if it is a case where the light resistance test is given with respect to the said laminated body, it can suppress that b * raises.
 本発明に係る積層体は、前記導電層が、前記光透過層上に設けられている態様であってもよく、前記光透過層が、前記導電層の前記透明基材とは反対側に設けられている態様であってもよい。前記導電層は、導電パターンであってもよい。 In the laminate according to the present invention, the conductive layer may be provided on the light transmission layer, and the light transmission layer is provided on the side of the conductive layer opposite to the transparent substrate. It may be an embodiment. The conductive layer may be a conductive pattern.
 前記色材の含有量は、光透過層の全量を基準として0質量%を超え0.2質量%以下であることが好ましい。 The content of the coloring material is preferably more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
 前記導電材料は、無機導電体及び有機導電体からなる群より選択される少なくとも一種の導電体を含むことが好ましい。 The conductive material preferably contains at least one type of conductor selected from the group consisting of inorganic conductors and organic conductors.
 前記導電材料は、導電性繊維を含むことが好ましい。 The conductive material preferably contains conductive fibers.
 前記導電性繊維は、銀繊維であることが好ましい。 The conductive fiber is preferably silver fiber.
 また、本発明は、光透過層及び導電層を透明基材上に設ける光透過層形成工程を備え、前記導電層が、前記光透過層上に設けられていると共に、導電材料を含有し、前記光透過層が、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する、積層体の製造方法を提供する。本発明に係る積層体の製造方法によれば、本発明に係る積層体と同様の上記効果を得ることができる。 Further, the present invention comprises a light transmissive layer forming step of providing a light transmissive layer and a conductive layer on a transparent substrate, the conductive layer is provided on the light transmissive layer and contains a conductive material, Provided is a method for producing a laminate, wherein the light transmission layer contains at least one color material selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment. According to the manufacturing method of the laminated body which concerns on this invention, the said effect similar to the laminated body which concerns on this invention can be acquired.
 本発明に係る積層体の製造方法は、前記光透過層形成工程が、光透過層形成用組成物層と、当該光透過層形成用組成物層上に設けられた導電層と、を含む感光層を前記透明基材上に形成する工程と、前記感光層に活性光線を照射する露光工程と、を含み、前記光透過層形成用組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有する態様であってもよい。 In the method for producing a laminate according to the present invention, the light transmitting layer forming step includes a light transmitting layer forming composition layer and a conductive layer provided on the light transmitting layer forming composition layer. Including a step of forming a layer on the transparent substrate, and an exposure step of irradiating the photosensitive layer with actinic rays, wherein the composition layer for forming a light transmission layer comprises a binder polymer, a photopolymerizable compound, The aspect which contains a photoinitiator and at least 1 type of color material selected from the group which consists of a blue dye, a blue pigment, a purple dye, and a purple pigment may be sufficient.
 本発明に係る積層体の製造方法は、支持フィルムと、導電層と、感光性樹脂組成物層と、がこの順で積層されている構造を有する感光性導電フィルムを、前記感光性樹脂組成物層が前記透明基材に接するようにラミネートすることによって前記感光層が前記透明基材上に形成され、前記感光性樹脂組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有する態様であってもよい。 In the method for producing a laminate according to the present invention, a photosensitive conductive film having a structure in which a support film, a conductive layer, and a photosensitive resin composition layer are laminated in this order is used as the photosensitive resin composition. The photosensitive layer is formed on the transparent substrate by laminating so that the layer is in contact with the transparent substrate, and the photosensitive resin composition layer includes a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. And at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments.
 本発明に係る積層体の製造方法は、前記導電層が導電パターンであり、前記露光工程が、前記感光層にパターン状に活性光線を照射する工程であり、前記光透過層形成工程が、前記露光工程の後に前記感光層を現像する現像工程を更に含む態様であってもよい。 In the method for producing a laminate according to the present invention, the conductive layer is a conductive pattern, the exposure step is a step of irradiating the photosensitive layer with an actinic ray in a pattern, and the light transmission layer forming step is performed as described above. The aspect which further includes the image development process which develops the said photosensitive layer after an exposure process may be sufficient.
 前記光透過層形成工程は、前記現像工程の前に、酸素存在下で、前記感光層の少なくとも前記露光工程における未露光部の一部又は全部に活性光線を照射する工程を更に含んでいてもよい。 The light transmission layer forming step may further include a step of irradiating at least a part or all of an unexposed portion of the photosensitive layer in the exposure step with an actinic ray in the presence of oxygen before the development step. Good.
 本発明に係る積層体の製造方法において前記色材の含有量は、前記光透過層の全量を基準として0質量%を超え0.2質量%以下であることが好ましい。 In the method for manufacturing a laminate according to the present invention, the content of the coloring material is preferably more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
 さらに、本発明は、第1の支持フィルムと、当該第1の支持フィルム上に設けられた第1の感光性樹脂組成物層と、を有する感光性フィルム、及び、第2の支持フィルムと、導電材料を含有する導電層と、第2の感光性樹脂組成物層と、がこの順で積層されている構造を有する感光性導電フィルムを含み、前記第1の感光性樹脂組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有し、前記第2の感光性樹脂組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、を含有する、フィルムセットを提供する。本発明に係るフィルムセットによれば、本発明に係る積層体と同様の上記効果を得ることができる。 Furthermore, the present invention provides a photosensitive film having a first support film and a first photosensitive resin composition layer provided on the first support film, and a second support film, Including a photosensitive conductive film having a structure in which a conductive layer containing a conductive material and a second photosensitive resin composition layer are laminated in this order, the first photosensitive resin composition layer, Containing a binder polymer, a photopolymerizable compound, a photopolymerization initiator, and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a violet dye and a violet pigment; A film set is provided in which the photosensitive resin composition layer contains a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. According to the film set concerning the present invention, the same effect as the layered product concerning the present invention can be acquired.
 本発明に係るフィルムセットは、前記積層体の製造方法に用いられてもよい。 The film set according to the present invention may be used in the method for manufacturing the laminate.
 本発明は、支持フィルム、導電材料を含有する導電層、及び、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有する感光性樹脂組成物層、がこの順で積層されている構造を有する、感光性導電フィルムを提供する。本発明に係る感光性導電フィルムによれば、本発明に係る積層体と同様の上記効果を得ることができる。 The present invention is selected from the group consisting of a support film, a conductive layer containing a conductive material, a binder polymer, a photopolymerizable compound, a photopolymerization initiator, a blue dye, a blue pigment, a purple dye, and a purple pigment. A photosensitive conductive film having a structure in which a photosensitive resin composition layer containing at least one colorant is laminated in this order is provided. According to the photosensitive conductive film which concerns on this invention, the said effect similar to the laminated body which concerns on this invention can be acquired.
 本発明によれば、導電材料(導電性繊維等)を含有する導電層を用いつつ、黄色味が上昇する(b*が上昇する)ことを抑制可能であり、特に、加熱後(例えば、銀ペーストの乾燥工程等の工程後)において黄色味が上昇する(b*が上昇する)ことを抑制することができる。また、本発明によれば、黄色味の上昇を抑制しつつ、高い透過率を達成することができる。このような本発明によれば、良好な視認性を得ることができる。 According to the present invention, while using a conductive layer containing a conductive material (conductive fiber or the like), it is possible to suppress yellowness (b * increases), particularly after heating (for example, silver It is possible to suppress the yellowness from increasing (b * increases) after the paste drying step or the like. Moreover, according to this invention, a high transmittance | permeability can be achieved, suppressing the raise of yellowishness. According to the present invention as described above, good visibility can be obtained.
本発明に係る積層体の実施形態を示す模式断面図である。It is a schematic cross section which shows embodiment of the laminated body which concerns on this invention. 本発明に係る積層体の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the laminated body which concerns on this invention. 本発明に係る積層体の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the laminated body which concerns on this invention. 本発明に係る感光性導電フィルムの一実施形態を説明するための模式断面図である。It is a schematic cross section for demonstrating one Embodiment of the photosensitive conductive film which concerns on this invention. 本発明に係る積層体の製造方法の一実施形態を説明するための模式断面図である。It is a schematic cross section for explaining one embodiment of a manufacturing method of a layered product concerning the present invention. 図3(c)の積層体の製造方法の一部を説明するための模式断面図である。It is a schematic cross section for demonstrating a part of manufacturing method of the laminated body of FIG.3 (c). 本発明に係る電子部品の一実施形態を示す模式平面図(図7(a))と、図7(a)の一部切欠き斜視図(図7(b))である。8 is a schematic plan view (FIG. 7A) showing an embodiment of an electronic component according to the present invention, and a partially cutaway perspective view of FIG. 7A (FIG. 7B).
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はそれに対応するメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。また、「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。さらに、以下に例示する材料等は、特に断らない限り、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid corresponding to it, and “(meth) acrylate” means acrylate or methacrylate corresponding thereto. Further, “A or B” only needs to include either A or B, and may include both. Furthermore, the materials exemplified below may be used alone or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. Means.
 本明細書において、「導電パターン」とは、所定の形状を有すると共に導体を含んで構成されるものである。例えば、導電パターンを有する基材は、導体を含む部分と、導体を含まない部分とを有し、導体を含む部分によって導電パターンが構成される。 In the present specification, the “conductive pattern” has a predetermined shape and includes a conductor. For example, a substrate having a conductive pattern has a portion including a conductor and a portion not including a conductor, and the conductive pattern is configured by the portion including the conductor.
 本明細書において、導電層(導電パターン等)と、感光性樹脂組成物層との境界は必ずしも明確になっている必要はない。導電層と、感光性樹脂組成物層とが混じり合った態様であってもよい。例えば、感光性樹脂組成物層を構成する組成物が導電層中に含浸されていたり、感光性樹脂組成物層を構成する組成物が導電層の表面に存在していたりしてもよい。 In this specification, the boundary between the conductive layer (conductive pattern and the like) and the photosensitive resin composition layer is not necessarily clear. The aspect with which the conductive layer and the photosensitive resin composition layer were mixed may be sufficient. For example, the composition constituting the photosensitive resin composition layer may be impregnated in the conductive layer, or the composition constituting the photosensitive resin composition layer may be present on the surface of the conductive layer.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In this specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value of a numerical range in a certain step may be replaced with the upper limit value or the lower limit value of a numerical range in another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
<積層体>
 本実施形態に係る積層体(例えば、第1実施形態及び第2実施形態に係る積層体)は、透明基材と、導電層と、光透過層と、を備え、前記導電層が、前記透明基材上に設けられていると共に、導電材料を含有し、前記光透過層が、前記透明基材上に設けられていると共に、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する。導電層は、パターン状(導電パターン)であってもよく、パターン状でなくてもよい。
<Laminate>
The laminate according to the present embodiment (for example, the laminate according to the first embodiment and the second embodiment) includes a transparent substrate, a conductive layer, and a light transmission layer, and the conductive layer is transparent. The conductive layer is provided on the base material, and the light transmission layer is provided on the transparent base material, and is selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment. Containing at least one kind of coloring material. The conductive layer may be patterned (conductive pattern) or may not be patterned.
 第1実施形態に係る積層体では、導電層が光透過層上に設けられており、光透過層が透明基材と導電層との間に設けられている。 In the laminate according to the first embodiment, the conductive layer is provided on the light transmission layer, and the light transmission layer is provided between the transparent substrate and the conductive layer.
 第2実施形態に係る積層体では、光透過層が、導電層の透明基材とは反対側に設けられている。第2実施形態に係る積層体は、透明基材、及び、当該透明基材上に設けられた導電層(導電パターン等)を有する導電層付基材(導電パターン付基材等)と、前記導電層の前記透明基材とは反対側に設けられた光透過層と、を備え、前記導電層が導電材料を含有し、前記光透過層が、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する態様であってもよい。 In the laminate according to the second embodiment, the light transmission layer is provided on the side opposite to the transparent base material of the conductive layer. The laminate according to the second embodiment includes a transparent substrate and a substrate with a conductive layer (such as a substrate with a conductive pattern) having a conductive layer (such as a conductive pattern) provided on the transparent substrate. A light-transmitting layer provided on the side of the conductive layer opposite to the transparent substrate, the conductive layer containing a conductive material, and the light-transmitting layer is a blue dye, a blue pigment, a purple dye, and a purple pigment. The aspect containing at least 1 type of color material selected from the group which consists of may be sufficient.
 本実施形態に係る積層体では、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を光透過層が含有することで、導電材料(導電性繊維等)を含有する導電層を用いつつ、黄色味が上昇する(b*が上昇する)ことを抑制できる。例えば、本実施形態に係る積層体では、銀ペーストの乾燥工程(145℃/70min)等の加熱工程後という過酷な条件後においても全光線透過率が86.0%以上であり、且つ、透過b*が0.4以下である。さらに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を光透過層が含有することで、耐光性試験後においても全光線透過率及び透過b*の変化を抑えることができる。第2実施形態に係る積層体によれば、導電層上に光透過層が設けられているため、優れた全光線透過率及び透過b*が得られ易い。 In the laminate according to this embodiment, the light transmission layer contains at least one color material selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment, so that a conductive material (conductive fiber or the like) is contained. It can suppress that yellowishness rises (b * rises), using the conductive layer containing this. For example, in the laminated body according to the present embodiment, the total light transmittance is 86.0% or more even after a severe condition such as after a heating step such as a drying step (145 ° C./70 min) of the silver paste, and the transmission. b * is 0.4 or less. Furthermore, since the light transmission layer contains at least one color material selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments, the total light transmittance and transmission b * can be maintained even after the light resistance test. Change can be suppressed. According to the laminated body which concerns on 2nd Embodiment, since the light transmissive layer is provided on the conductive layer, it is easy to obtain excellent total light transmittance and transmission b *.
 図1は、第1実施形態に係る積層体を示す模式断面図である。図1に示すように、第1実施形態に係る積層体40a,40b,40cは、透明基材20と、透明基材20上に設けられた透明な導電パターン(導電層)2a及び光透過層3e,3f,3gと、を有している。透明基材20、導電パターン2a及び光透過層3e,3f,3gは、導電パターン付透明基材(導電パターン付基材)を構成している。 FIG. 1 is a schematic cross-sectional view showing the laminate according to the first embodiment. As shown in FIG. 1, the laminated bodies 40a, 40b, and 40c according to the first embodiment include a transparent substrate 20, a transparent conductive pattern (conductive layer) 2a provided on the transparent substrate 20, and a light transmission layer. 3e, 3f, 3g. The transparent base material 20, the conductive pattern 2a, and the light transmission layers 3e, 3f, 3g constitute a transparent base material with a conductive pattern (a base material with a conductive pattern).
 導電パターン2aは、光透過層3e,3f,3g上に設けられている。導電パターン2aは、導電材料を含有している。光透過層3e,3f,3gは、色材9を含有する樹脂硬化物から構成されており、色材9は樹脂硬化物中に分散している。色材9は、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材である。図1(a)に示される積層体40aは、導電パターン2a及び光透過層3eを覆う樹脂硬化物(図示せず)を更に有していてもよい。図1(b)及び図1(c)に示される積層体40b,40cにおいて光透過層3f,3gは、樹脂硬化パターンである。図1(c)に示される積層体40cにおいて透明基材20、導電パターン2a及び光透過層3gは、樹脂硬化物8aに覆われている。光透過層は、図1(b)及び図1(c)に示すように、透明基材の全体を覆うことなく局所的に透明基材を覆っていてもよい。 The conductive pattern 2a is provided on the light transmission layers 3e, 3f, and 3g. The conductive pattern 2a contains a conductive material. The light transmission layers 3e, 3f, and 3g are made of a cured resin material containing the color material 9, and the color material 9 is dispersed in the cured resin material. The color material 9 is at least one color material selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment. The laminated body 40a shown in FIG. 1A may further include a cured resin (not shown) that covers the conductive pattern 2a and the light transmission layer 3e. In the laminates 40b and 40c shown in FIGS. 1B and 1C, the light transmission layers 3f and 3g are resin cured patterns. In the laminated body 40c shown in FIG. 1C, the transparent substrate 20, the conductive pattern 2a, and the light transmission layer 3g are covered with a cured resin 8a. As shown in FIGS. 1B and 1C, the light transmission layer may locally cover the transparent substrate without covering the entire transparent substrate.
 図2は、第2実施形態に係る積層体を示す模式断面図である。図2に示すように、第2実施形態に係る積層体50は、導電パターン付透明基材(導電パターン付基材)30と、光透過層7aとを備えている。導電パターン付透明基材30は、透明基材20と、透明基材20上に設けられた透明な導電パターン2a及び樹脂層(樹脂硬化層)3aと、を有している。導電パターン2aは、樹脂層3a上に設けられている。導電パターン2aは、導電材料を含有している。光透過層7aは、樹脂硬化物8aと、樹脂硬化物8a中に分散している色材9と、を有している。色材9は、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材である。 FIG. 2 is a schematic cross-sectional view showing a laminate according to the second embodiment. As shown in FIG. 2, the laminated body 50 which concerns on 2nd Embodiment is provided with the transparent base material with a conductive pattern (base material with a conductive pattern) 30, and the light transmissive layer 7a. The transparent substrate 30 with a conductive pattern has a transparent substrate 20, a transparent conductive pattern 2a provided on the transparent substrate 20, and a resin layer (resin cured layer) 3a. The conductive pattern 2a is provided on the resin layer 3a. The conductive pattern 2a contains a conductive material. The light transmission layer 7a has a cured resin 8a and a color material 9 dispersed in the cured resin 8a. The color material 9 is at least one color material selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment.
 図3は、第2実施形態に係る積層体の他の態様を示す模式断面図である。図3(a)に示される積層体は、透明基材20上に導電パターン2aが直接設けられた導電パターン付透明基材(導電パターン付基材)31と、色材9を含有する光透過層7aとを備える。図3(b)に示される積層体は、透明基材20上に樹脂層(樹脂硬化パターン)3b及び導電パターン2aが透明基材20側からこの順に配置されてなる導電パターン付透明基材(導電パターン付基材)32と、色材9を含有する光透過層7aとを備える。図3(c)に示される積層体は、透明基材20上に導電パターン2a及び樹脂層(樹脂硬化パターン)3cが透明基材20側からこの順に配置されてなる導電パターン付透明基材(導電パターン付基材)33と、色材9を含有する光透過層7aとを備える。図3(d)に示される積層体は、透明基材20上に導電パターン2a及び樹脂層(光透過層、樹脂硬化パターン)3dが透明基材20側からこの順に配置されてなる導電パターン付透明基材(導電パターン付基材)34と、樹脂硬化物8aからなる樹脂層7bとを備える。光透過層は、図3(d)に示すように、導電パターン付透明基材の全体を覆うことなく局所的に導電パターン2aのみを覆っていてもよい。 FIG. 3 is a schematic cross-sectional view showing another aspect of the laminate according to the second embodiment. The laminated body shown in FIG. 3A is a light transmissive material containing a transparent substrate with a conductive pattern (substrate with conductive pattern) 31 in which a conductive pattern 2a is directly provided on a transparent substrate 20, and a color material 9. A layer 7a. The laminated body shown by FIG.3 (b) is a transparent base material with a conductive pattern (resin layer (resin hardening pattern) 3b and the conductive pattern 2a are arrange | positioned in this order from the transparent base material 20 side on the transparent base material 20). (Substrate with conductive pattern) 32 and a light transmission layer 7 a containing the color material 9. The laminate shown in FIG. 3C is a transparent substrate with a conductive pattern in which a conductive pattern 2a and a resin layer (resin cured pattern) 3c are arranged in this order from the transparent substrate 20 side on a transparent substrate 20. (Substrate with conductive pattern) 33 and a light transmission layer 7 a containing the color material 9. The laminate shown in FIG. 3D has a conductive pattern in which a conductive pattern 2a and a resin layer (light transmissive layer, resin cured pattern) 3d are arranged in this order from the transparent substrate 20 side on a transparent substrate 20. A transparent substrate (substrate with a conductive pattern) 34 and a resin layer 7b made of a cured resin 8a are provided. As shown in FIG. 3D, the light transmission layer may cover only the conductive pattern 2a locally without covering the entire transparent substrate with the conductive pattern.
 なお、図1~3に示される光透過層(光透過層3e,3f,3g,7a、樹脂層3d等)では、樹脂硬化物中に色材が含まれていることが分かるように、便宜的に色材が図示されている。例えば、色材が染料である場合には、光透過層を構成する媒体中に青色染料又は紫色染料が溶解した状態であってもよく、色材が顔料である場合には、光透過層を構成する媒体中に青色顔料又は紫色顔料が分散した状態であってもよい。 It should be noted that in the light transmissive layers ( light transmissive layers 3e, 3f, 3g, 7a, resin layer 3d, etc.) shown in FIGS. 1 to 3, for convenience, it can be seen that the color material is contained in the cured resin. In particular, a color material is shown. For example, when the color material is a dye, a blue dye or a violet dye may be dissolved in a medium constituting the light transmission layer. When the color material is a pigment, the light transmission layer may be A state in which a blue pigment or a violet pigment is dispersed in the medium to be formed may be used.
 本実施形態に係る積層体は、光透過層(光透過層3e,3f,3g,7a、樹脂層3d等)を備えることにより、導電層が形成されている部分と、それ以外の部分(例えば、図2において、導電パターン2aが形成されていない樹脂層3a)とのヘーズ差を小さくすることができる。ヘーズ差は、1.0以下であることが好ましく、0.7以下であることがより好ましく、0.5以下であることがさらに好ましい。このようなヘーズ差が得られるように、光透過層における色材の種類及びその含有量、並びに、層の厚み等を調整することが好ましい。 The laminate according to this embodiment includes a light transmission layer ( light transmission layers 3e, 3f, 3g, 7a, a resin layer 3d, and the like), so that a conductive layer is formed, and other portions (for example, In FIG. 2, the haze difference from the resin layer 3a) where the conductive pattern 2a is not formed can be reduced. The haze difference is preferably 1.0 or less, more preferably 0.7 or less, and further preferably 0.5 or less. In order to obtain such a haze difference, it is preferable to adjust the type and content of the color material in the light transmission layer, the thickness of the layer, and the like.
 本実施形態に係る積層体は、積層体を備える電子部品(例えば、タッチセンサーのセンシング領域部分)の視認性にさらに優れる観点から、導電層が形成されている部分のヘーズが1.5以下であることが好ましい。また、積層体を備える電子部品(例えば、タッチセンサーのセンシング領域部分)の視認性にさらに優れる観点から、導電層が形成されていない部分のヘーズが2.0以下であることが好ましい。 The laminate according to the present embodiment has a haze of 1.5 or less in the portion where the conductive layer is formed from the viewpoint of further improving the visibility of an electronic component including the laminate (for example, the sensing region portion of the touch sensor). Preferably there is. Moreover, it is preferable that the haze of the part in which the electroconductive layer is not formed is 2.0 or less from a viewpoint which is further excellent in the visibility of the electronic component (for example, sensing region part of a touch sensor) provided with a laminated body.
 本実施形態に係る積層体の製造方法の詳細については後述するが、図2に示される導電パターン付透明基材30は、例えば、国際公開第2013/051516号に記載の方法によって作製することができる。
 図3(a)に示される導電パターン付透明基材31は、例えば、特開2007-257963号公報に記載の方法、又は、透明基材上にスパッタ法によりITO膜又は酸化スズ膜を形成し、エッチングによりパターニングする方法等によって作製することができる。
 図3(b)に示される導電パターン付透明基材32は、例えば、上記特許文献1(国際公開第2010/021224号)に記載の方法によって作製することができる。
 図3(c)及び図3(d)に示される導電パターン付透明基材33,34は、例えば、米国特許出願公開第2007/0074316号明細書に記載の方法により作製することができる。
The details of the method for manufacturing the laminate according to this embodiment will be described later, but the transparent substrate with a conductive pattern 30 shown in FIG. 2 can be produced, for example, by the method described in International Publication No. 2013/051516. it can.
A transparent substrate 31 with a conductive pattern shown in FIG. 3A is obtained by forming an ITO film or a tin oxide film on a transparent substrate by the method described in JP-A-2007-257963, for example, or by sputtering. It can be produced by a method of patterning by etching or the like.
The transparent substrate 32 with a conductive pattern shown in FIG. 3B can be produced by, for example, the method described in Patent Document 1 (International Publication No. 2010/021224).
The transparent substrates 33 and 34 with conductive patterns shown in FIG. 3C and FIG. 3D can be produced by, for example, the method described in US Patent Application Publication No. 2007/0074316.
 透明基材20としては、例えば、ガラス基材;ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマー、トリアセチルセルロース等のプラスチック基材が挙げられる。透明基材は、450~650nmの波長域における最小光透過率が80%以上であるものが好ましい。作製する電子部品の軽量化の観点からは、プラスチック基材が好ましく、ポリエチレンテレフタレート、ポリカーボネート、シクロオレフィンポリマー又はトリアセチルセルロースのプラスチック基材がより好ましい。 Examples of the transparent substrate 20 include glass substrates; plastic substrates such as polyethylene terephthalate, polycarbonate, cycloolefin polymer, and triacetyl cellulose. The transparent substrate preferably has a minimum light transmittance of 80% or more in a wavelength region of 450 to 650 nm. From the viewpoint of reducing the weight of the electronic component to be manufactured, a plastic substrate is preferable, and a plastic substrate of polyethylene terephthalate, polycarbonate, cycloolefin polymer, or triacetyl cellulose is more preferable.
 導電層(導電パターン2a等)が含有する導電材料としては、導電層の導電性を確保することができる材料であればよく、高い導電性を確保する観点から、無機導電体及び有機導電体からなる群より選択される少なくとも一種の導電体が好ましい。 The conductive material contained in the conductive layer (conductive pattern 2a and the like) may be any material that can ensure the conductivity of the conductive layer. From the viewpoint of ensuring high conductivity, from the inorganic conductor and the organic conductor. At least one electric conductor selected from the group consisting of
 無機導電体としては、酸化インジウムスズ(Indium-Tin-Oxide:ITO)、酸化インジウム、酸化スズ等の金属酸化物粒子;金、銀、銅、白金等の金属繊維、金属粒子又は金属メッシュなどが挙げられる。有機導電体としては、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維;カーボンブラック等の炭素粉末などが挙げられる。 Examples of inorganic conductors include metal oxide particles such as indium tin oxide (ITO), indium oxide, and tin oxide; metal fibers such as gold, silver, copper, and platinum, metal particles, or metal mesh. Can be mentioned. Examples of the organic conductor include carbon fibers such as vapor grown carbon fiber (VGCF) and carbon nanotube; carbon powder such as carbon black, and the like.
 導電材料の形態は、特に制限されるものではないが、繊維状が好ましく、導電性繊維がより好ましい。導電層(導電パターン2a等)が導電性繊維を含有することで、導電性と透明性とを高水準で両立することができる。また、図1、図2又は図3(b)に示される導電パターンを、後述する転写形感光性導電フィルムを用いて形成する場合には、導電材料として導電性繊維を用いることで、現像性がさらに向上して、解像度に優れた導電パターンを形成することができる。 The form of the conductive material is not particularly limited, but is preferably fibrous, and more preferably conductive fiber. When the conductive layer (conductive pattern 2a and the like) contains conductive fibers, both conductivity and transparency can be achieved at a high level. In addition, when the conductive pattern shown in FIG. 1, FIG. 2 or FIG. 3B is formed using a transfer type photosensitive conductive film, which will be described later, by using conductive fibers as a conductive material, developability is achieved. Can be further improved, and a conductive pattern with excellent resolution can be formed.
 導電層が含有する導電性繊維としては、金、銀、銅、白金等の金属繊維;気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維などが挙げられる。導電性に優れる観点からは、金繊維又は銀繊維を用いることが好ましい。形成される導電層の導電性を容易に調整できる観点からは、銀繊維がより好ましい。導電性繊維を含有する導電層において導電性繊維の表面で光が反射して導電層(導電パターン部等)が白く見えてしまう現象を抑制し易い観点から、導電層が導電性繊維(銀繊維等)を含む場合には、後述する(D)成分を光透過層において用いることが好ましい。 Examples of the conductive fibers contained in the conductive layer include metal fibers such as gold, silver, copper, and platinum; carbon fibers such as vapor grown carbon fibers (VGCF) and carbon nanotubes. From the viewpoint of excellent conductivity, it is preferable to use gold fiber or silver fiber. From the viewpoint of easily adjusting the conductivity of the formed conductive layer, silver fiber is more preferable. From the viewpoint of easily suppressing the phenomenon in which light is reflected on the surface of the conductive fiber in the conductive layer containing the conductive fiber and the conductive layer (conductive pattern portion or the like) appears white, the conductive layer is made of conductive fiber (silver fiber). Etc.), the component (D) described later is preferably used in the light transmission layer.
 金属繊維は、金属イオンをNaBH等の還元剤で還元する方法、ポリオール法などにより作製することができる。また、カーボンナノチューブは、Unidym社のHipco単層カーボンナノチューブ等の市販品などを用いることができる。 The metal fiber can be produced by a method of reducing metal ions with a reducing agent such as NaBH 4 or a polyol method. As the carbon nanotube, commercially available products such as Unipym's Hipco single-walled carbon nanotubes can be used.
 導電性繊維の繊維径は、優れた静電気耐性を得る観点から、1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることがさらに好ましく、10nm以上であることが特に好ましく、20nm以上であることが極めて好ましい。導電性繊維の繊維径は、優れた視認性が得られ易い観点から、50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることがさらに好ましい。これらの観点から、導電性繊維の繊維径は、1~50nmであることが好ましく、2~45nmであることがより好ましく、3~40nmであることがさらに好ましく、10~40nmであることが特に好ましく、20~40nmであることが極めて好ましい。 The fiber diameter of the conductive fiber is preferably 1 nm or more, more preferably 2 nm or more, further preferably 3 nm or more, and particularly preferably 10 nm or more from the viewpoint of obtaining excellent electrostatic resistance. Preferably, it is very preferably 20 nm or more. The fiber diameter of the conductive fiber is preferably 50 nm or less, more preferably 45 nm or less, and still more preferably 40 nm or less, from the viewpoint of easily obtaining excellent visibility. From these viewpoints, the fiber diameter of the conductive fiber is preferably 1 to 50 nm, more preferably 2 to 45 nm, still more preferably 3 to 40 nm, and particularly preferably 10 to 40 nm. A thickness of 20 to 40 nm is particularly preferable.
 導電性繊維の繊維長は、充分な視認性を得るための導電性繊維の使用量を低減し易い観点から、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。導電性繊維の繊維長は、導電性繊維の凝集を抑制し易い観点から、100μm以下であることが好ましく、50μm以下であることがより好ましく、10μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。これらの観点から、導電性繊維の繊維長は、1~100μmであることが好ましく、2~50μmであることがより好ましく、3~10μmであることがさらに好ましく、3~5μmであることが特に好ましい。 The fiber length of the conductive fiber is preferably 1 μm or more, more preferably 2 μm or more, and more preferably 3 μm or more from the viewpoint of easily reducing the amount of the conductive fiber used for obtaining sufficient visibility. More preferably. The fiber length of the conductive fiber is preferably 100 μm or less, more preferably 50 μm or less, further preferably 10 μm or less, and more preferably 5 μm or less, from the viewpoint of easily suppressing aggregation of the conductive fibers. It is particularly preferred. From these viewpoints, the fiber length of the conductive fiber is preferably 1 to 100 μm, more preferably 2 to 50 μm, still more preferably 3 to 10 μm, and particularly preferably 3 to 5 μm. preferable.
 繊維径及び繊維長は、走査型電子顕微鏡により測定することができる。 The fiber diameter and fiber length can be measured with a scanning electron microscope.
 導電層(導電パターン2a等)の厚みは、導電層に求められる導電性及び透明性等によっても異なるが、下記の範囲であることが好ましい。導電層の厚みは、450~650nmの波長域における光透過率が高く、特に透明電極に好適なものとなる観点から、1μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.1μm以下であることがさらに好ましい。導電層の厚みは、均一な導電性を確保し易い観点から、1nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることがさらに好ましく、50nm以上であることが特に好ましい。これらの観点から、導電層の厚みは、1μm以下であることが好ましく、1nm~0.5μmであることがより好ましく、5nm~0.1μmであることがさらに好ましく、10nm~0.1μmであることが特に好ましく、50nm~0.1μmであることが極めて好ましい。なお、導電層の厚みは、走査型電子顕微鏡によって測定される値を指す。 The thickness of the conductive layer (conductive pattern 2a and the like) varies depending on the conductivity and transparency required for the conductive layer, but is preferably in the following range. The thickness of the conductive layer is preferably 1 μm or less, more preferably 0.5 μm or less, from the viewpoint of high light transmittance in a wavelength region of 450 to 650 nm, particularly suitable for a transparent electrode. More preferably, it is 0.1 μm or less. The thickness of the conductive layer is preferably 1 nm or more, more preferably 5 nm or more, further preferably 10 nm or more, and particularly preferably 50 nm or more, from the viewpoint of ensuring uniform conductivity. preferable. From these viewpoints, the thickness of the conductive layer is preferably 1 μm or less, more preferably 1 nm to 0.5 μm, further preferably 5 nm to 0.1 μm, and more preferably 10 nm to 0.1 μm. Particularly preferred is 50 nm to 0.1 μm. In addition, the thickness of a conductive layer points out the value measured with a scanning electron microscope.
 導電層は、導電性繊維同士が接触してなる網目構造を有することが好ましい。このような網目構造を有する導電性繊維は、導電層を形成した際に露出する表面においてその面方向に導電性が得られるのであれば、導電層と接する層における表層部(例えば、導電パターン2aと接する樹脂層3a,3b,3c,3d及び光透過層3e,3f,3gにおける導電パターン2a側の表層部)に含まれる形態で存在していてもよい。 The conductive layer preferably has a network structure in which conductive fibers are in contact with each other. If the conductive fiber having such a network structure has conductivity in the surface direction on the surface exposed when the conductive layer is formed, the surface layer portion in the layer in contact with the conductive layer (for example, the conductive pattern 2a And the resin layers 3a, 3b, 3c, 3d and the light transmission layers 3e, 3f, 3g on the conductive pattern 2a side) may be present.
 樹脂層3a,3b及び光透過層3e,3f,3gは、透明基材20と導電パターン2aとを接着し、透明基材20上に導電パターン2aを保持できるものであればよい。樹脂層3c,3dは、導電パターン2a上に保持できるものであればよい。また、樹脂層3a,3b,3c,3d及び光透過層3e,3f,3gは、例えば、感光性樹脂組成物からなる層(以下、感光性樹脂組成物層ともいう)の硬化物である樹脂硬化層であり、この場合、後述する転写形感光性導電フィルムを用いて樹脂層と導電パターンを一括で形成することができる。 The resin layers 3a, 3b and the light transmission layers 3e, 3f, 3g may be any material that can hold the conductive pattern 2a on the transparent substrate 20 by bonding the transparent substrate 20 and the conductive pattern 2a. The resin layers 3c and 3d only need to be able to be held on the conductive pattern 2a. The resin layers 3a, 3b, 3c, 3d and the light transmission layers 3e, 3f, 3g are, for example, resins that are cured products of a layer made of a photosensitive resin composition (hereinafter also referred to as a photosensitive resin composition layer). In this case, the resin layer and the conductive pattern can be collectively formed using a transfer type photosensitive conductive film described later.
 感光性樹脂組成物としては、例えば、(A)バインダーポリマー(以下、場合により「(A)成分」という)、(B)光重合性化合物(以下、場合により「(B)成分」という)、及び、(C)光重合開始剤(以下、場合により「(C)成分」という)を含有する組成物が挙げられる。このような組成物を用いることで、導電パターン2aの解像度、及び、透明基材20との接着性を両立することができる。 Examples of the photosensitive resin composition include (A) a binder polymer (hereinafter sometimes referred to as “component (A)”), (B) a photopolymerizable compound (hereinafter sometimes referred to as “component (B)”), And the composition containing (C) photoinitiator (henceforth "(C) component" depending on the case) is mentioned. By using such a composition, both the resolution of the conductive pattern 2a and the adhesiveness with the transparent substrate 20 can be achieved.
 (A)バインダーポリマーとしては、従来公知のものが特に制限無く使用できるが、アクリル樹脂が好ましい。アクリル樹脂は、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステルからなる群より選択される少なくとも一種をラジカル重合させることにより製造することができる。すなわち、アクリル樹脂は、(メタ)アクリル酸に由来する構造単位、及び、(メタ)アクリル酸エステルに由来する構造単位からなる群より選択される少なくとも一種を有することができる。 (A) As the binder polymer, conventionally known ones can be used without particular limitation, but acrylic resins are preferred. The acrylic resin can be produced, for example, by radical polymerization of at least one selected from the group consisting of (meth) acrylic acid and (meth) acrylic acid ester. That is, the acrylic resin can have at least one selected from the group consisting of structural units derived from (meth) acrylic acid and structural units derived from (meth) acrylic acid esters.
 (メタ)アクリル酸エステルとしては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アリールエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート等が挙げられる。 As (meth) acrylic acid ester, (meth) acrylic acid alkyl ester, (meth) acrylic acid aryl ester, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid Examples include diethylaminoethyl ester, (meth) acrylic acid glycidyl ester, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, and the like.
 (メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ジシクロペンタニル等が挙げられる。(メタ)アクリル酸アリールエステルとしては、(メタ)アクリル酸ベンジル等が挙げられる。また、上記アクリル樹脂は、スチレンに基づく構造単位(スチレンに由来する構造単位)を含んでもよい。 Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and the like. Examples of the (meth) acrylic acid aryl ester include benzyl (meth) acrylate. The acrylic resin may include a structural unit based on styrene (a structural unit derived from styrene).
 (A)バインダーポリマーは、アルカリ現像性をより良好にする観点から、カルボキシル基を有することが好ましい。このようなバインダーポリマーを得るための、カルボキシル基を有する重合性単量体としては、上述したような(メタ)アクリル酸等が挙げられる。 (A) The binder polymer preferably has a carboxyl group from the viewpoint of improving alkali developability. Examples of the polymerizable monomer having a carboxyl group for obtaining such a binder polymer include (meth) acrylic acid as described above.
 (A)バインダーポリマーが有するカルボキシル基の比率に関して、カルボキシル基を有する重合性単量体の割合は、(A)バインダーポリマーを得るために使用する重合性単量体の全量を基準として、下記の範囲であることが好ましい。カルボキシル基を有する重合性単量体の割合は、アルカリ現像性に優れる観点から、10質量%以上であることが好ましく、12質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。カルボキシル基を有する重合性単量体の割合は、アルカリ耐性に優れる観点から、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましく、25質量%以下であることが特に好ましい。これらの観点から、カルボキシル基を有する重合性単量体の割合は、10~50質量%であることが好ましく、12~40質量%であることがより好ましく、15~30質量%であることがさらに好ましく、15~25質量%であることが特に好ましい。同様に、カルボキシル基を有する重合性単量体に由来する構造単位の含有量は、(A)バインダーポリマーの全量を基準としてこれらの範囲であることが好ましい。 (A) Regarding the ratio of the carboxyl group that the binder polymer has, the ratio of the polymerizable monomer having a carboxyl group is based on the total amount of the polymerizable monomer used to obtain the (A) binder polymer, as described below. A range is preferable. The ratio of the polymerizable monomer having a carboxyl group is preferably 10% by mass or more, more preferably 12% by mass or more, and more preferably 15% by mass or more from the viewpoint of excellent alkali developability. Further preferred. The proportion of the polymerizable monomer having a carboxyl group is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less from the viewpoint of excellent alkali resistance. It is preferably 25% by mass or less. From these viewpoints, the proportion of the polymerizable monomer having a carboxyl group is preferably 10 to 50% by mass, more preferably 12 to 40% by mass, and 15 to 30% by mass. Further preferred is 15 to 25% by mass. Similarly, the content of the structural unit derived from the polymerizable monomer having a carboxyl group is preferably within these ranges based on the total amount of the (A) binder polymer.
 (A)バインダーポリマーの重量平均分子量は、現像時に硬化膜のアルカリ耐性が低いことにより密着性が低下することが抑制され易い観点から、10000以上であることが好ましく、15000以上であることがより好ましく、30000以上であることがさらに好ましく、50000以上であることが特に好ましい。(A)バインダーポリマーの重量平均分子量は、現像時に未露光部の現像性が低くなることにより良好なパターンが得られづらくなることが抑制され易い観点から、200000以下であることが好ましく、150000以下であることがより好ましく、100000以下であることがさらに好ましい。これらの観点から、(A)バインダーポリマーの重量平均分子量は、10000~200000であることが好ましく、15000~150000であることがより好ましく、30000~150000であることがさらに好ましく、30000~100000であることが特に好ましく、50000~100000であることが極めて好ましい。(A)バインダーポリマーの重量平均分子量は、解像度に優れる観点から、15000~150000であることが好ましく、30000~150000であることがより好ましく、30000~100000であることがさらに好ましく、50000~100000であることが特に好ましい。なお、重量平均分子量は、後述する実施例の測定方法を参考に測定することができる。 (A) The weight average molecular weight of the binder polymer is preferably 10,000 or more, more preferably 15000 or more, from the viewpoint that adhesion is likely to be suppressed due to low alkali resistance of the cured film during development. Preferably, it is more preferably 30000 or more, and particularly preferably 50000 or more. (A) The weight average molecular weight of the binder polymer is preferably 200000 or less, and preferably 150,000 or less, from the viewpoint that it is easy to suppress the difficulty of obtaining a good pattern due to low developability of the unexposed area during development. It is more preferable that it is 100000 or less. From these viewpoints, the weight average molecular weight of the (A) binder polymer is preferably 10,000 to 200,000, more preferably 15,000 to 150,000, still more preferably 30,000 to 150,000, and more preferably 30,000 to 100,000. Particularly preferred is 50,000 to 100,000. (A) The weight average molecular weight of the binder polymer is preferably 15000 to 150,000, more preferably 30000 to 150,000, still more preferably 30,000 to 100,000, and more preferably 50,000 to 100,000 from the viewpoint of excellent resolution. It is particularly preferred. In addition, a weight average molecular weight can be measured with reference to the measuring method of the Example mentioned later.
 (B)成分である光重合性化合物としては、エチレン性不飽和基を有する光重合性化合物を用いることができる。これにより、導電パターン2aの解像度、及び、透明基材20との接着性をさらに高度に両立することができる。 As the photopolymerizable compound as component (B), a photopolymerizable compound having an ethylenically unsaturated group can be used. Thereby, the resolution of the conductive pattern 2a and the adhesiveness with the transparent base material 20 can be made more highly compatible.
 エチレン性不飽和基を有する光重合性化合物としては、例えば、一官能ビニルモノマー、二官能ビニルモノマー、及び、少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーが挙げられる。 Examples of the photopolymerizable compound having an ethylenically unsaturated group include a monofunctional vinyl monomer, a bifunctional vinyl monomer, and a polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups.
 一官能ビニルモノマーとしては、上記した(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、それらと共重合可能なモノマー等が挙げられる。 Examples of the monofunctional vinyl monomer include (meth) acrylic acid, (meth) acrylic acid alkyl ester and monomers copolymerizable therewith.
 二官能ビニルモノマーとしては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン)、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート等が挙げられる。 Bifunctional vinyl monomers include polyethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, polypropylene glycol di (meth) acrylate, and 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane ), Bisphenol A diglycidyl ether di (meth) acrylate, and the like.
 少なくとも3つの重合可能なエチレン性不飽和基を有する多官能ビニルモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物;トリメチロールプロパントリグリシジルエーテルトリアクリレート等の、グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物などが挙げられる。 Examples of the polyfunctional vinyl monomer having at least three polymerizable ethylenically unsaturated groups include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, and dipentaerythritol. Compounds obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid, such as tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate; Examples thereof include compounds obtained by adding an α, β-unsaturated carboxylic acid to a glycidyl group-containing compound such as glycidyl ether triacrylate.
 (A)成分の含有量は、(A)成分及び(B)成分の総量100質量部に対して、下記の範囲であることが好ましい。(A)成分の含有量は、塗膜性に優れ、後述する転写形感光性導電フィルムを形成し、ロール状に巻き取った際にエッジフュージョン(樹脂がフィルム端部から染み出すこと)を防ぎ易い観点から、40質量部以上であることが好ましく、50質量部以上であることがより好ましく、60質量部以上であることがさらに好ましい。(A)成分の含有量は、高感度となり、硬化膜の機械強度を向上させることができる観点から、80質量部以下であることが好ましく、70質量部以下であることがより好ましい。これらの観点から、(A)成分の含有量は、40~80質量部であることが好ましく、50~70質量部であることがより好ましく、60~70質量部であることがさらに好ましい。 The content of the component (A) is preferably in the following range with respect to 100 parts by mass of the total amount of the component (A) and the component (B). The component (A) content is excellent in coating properties and prevents edge fusion (resin oozes out from the film end) when the transfer type photosensitive conductive film described later is formed and rolled up. From an easy viewpoint, it is preferable that it is 40 mass parts or more, It is more preferable that it is 50 mass parts or more, It is further more preferable that it is 60 mass parts or more. The content of the component (A) is high sensitivity, and is preferably 80 parts by mass or less, and more preferably 70 parts by mass or less from the viewpoint of improving the mechanical strength of the cured film. From these viewpoints, the content of the component (A) is preferably 40 to 80 parts by mass, more preferably 50 to 70 parts by mass, and further preferably 60 to 70 parts by mass.
 (B)成分の含有量は、(A)成分及び(B)成分の総量100質量部に対して、下記の範囲であることが好ましい。(B)成分の含有量は、高感度となり、硬化膜の機械強度を強くすることができる観点から、20質量部以上であることが好ましく、30質量部以上であることがより好ましく、40質量部以上であることがさらに好ましい。(B)成分の含有量は、塗膜性に優れ、後述する転写形感光性導電フィルムを形成し、ロール状に巻き取った際にエッジフュージョンが起こることを防ぎ易い観点から、60質量部以下であることが好ましく、50質量部以下であることがより好ましい。これらの観点から、(B)成分の含有量は、20~60質量部であることが好ましく、30~50質量部であることがより好ましく、40~50質量部であることがさらに好ましい。 The content of the component (B) is preferably in the following range with respect to 100 parts by mass of the total amount of the component (A) and the component (B). The content of the component (B) is high sensitivity, and is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, from the viewpoint that the mechanical strength of the cured film can be increased. More preferably, it is at least part. The content of the component (B) is excellent in coating properties, forms a transfer-type photosensitive conductive film described later, and is easy to prevent edge fusion from occurring when wound into a roll, and is 60 parts by mass or less. It is preferable that it is 50 mass parts or less. From these viewpoints, the content of component (B) is preferably 20 to 60 parts by mass, more preferably 30 to 50 parts by mass, and even more preferably 40 to 50 parts by mass.
 (C)成分である光重合開始剤としては、従来公知のものを特に制限無く用いることができる。(C)成分としては、具体的には、芳香族ケトン、オキシムエステル化合物、ホスフィンオキサイド化合物、ベンジル誘導体、2,4,5-トリアリールイミダゾール二量体、アクリジン誘導体、N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物等が挙げられる。 As the photopolymerization initiator which is the component (C), conventionally known photopolymerization initiators can be used without particular limitation. Specific examples of the component (C) include aromatic ketones, oxime ester compounds, phosphine oxide compounds, benzyl derivatives, 2,4,5-triarylimidazole dimers, acridine derivatives, N-phenylglycine, N- Examples thereof include phenylglycine derivatives, coumarin compounds, and oxazole compounds.
 これらの中でも、薄膜(例えば、10μm以下の厚みの膜)としたときのパターン形成能に優れ、透明性に優れた導電パターンを形成し易い点で、オキシムエステル化合物及びホスフィンオキサイド化合物からなる群より選択される少なくとも一種が好ましい。 Among these, from the group which consists of an oxime ester compound and a phosphine oxide compound at the point which is excellent in the pattern formation ability when it is set as a thin film (for example, film | membrane of thickness of 10 micrometers or less), and is easy to form the conductive pattern excellent in transparency. At least one selected is preferred.
 オキシムエステル化合物としては、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン2-(O-ベンゾイルオキシム)]、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)等が挙げられる。ホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等が挙げられる。 Examples of oxime ester compounds include 1- [4- (phenylthio) phenyl] -1,2-octanedione 2- (O-benzoyloxime)], 1- [9-ethyl-6- (2-methylbenzoyl) -9H -Carbazol-3-yl] ethanone 1- (O-acetyloxime) and the like. Examples of the phosphine oxide compound include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
 (C)成分の含有量は、(A)成分及び(B)成分の総量100質量部に対して、下記の範囲であることが好ましい。(C)成分の含有量は、感度を充分に高めることができる観点から、0.1質量部以上であることが好ましく、2質量部以上であることがより好ましく、6質量部以上であることがさらに好ましい。(C)成分の含有量は、露光の際に組成物の表面での吸収が増大して内部の光硬化が不充分となることを防ぎ易い観点から、15質量部以下であることが好ましく、12質量部以下であることがより好ましく、10質量部以下であることがさらに好ましい。これらの観点から、(C)成分の含有量は、0.1~15質量部であることが好ましく、2~12質量部であることがより好ましく、6~10質量部であることがさらに好ましい。 The content of the component (C) is preferably in the following range with respect to 100 parts by mass of the total amount of the component (A) and the component (B). The content of the component (C) is preferably 0.1 parts by mass or more, more preferably 2 parts by mass or more, and 6 parts by mass or more from the viewpoint of sufficiently increasing sensitivity. Is more preferable. The content of the component (C) is preferably 15 parts by mass or less from the viewpoint of easily preventing absorption at the surface of the composition from increasing during photoexposure and insufficient photocuring inside. The amount is more preferably 12 parts by mass or less, and further preferably 10 parts by mass or less. From these viewpoints, the content of the component (C) is preferably 0.1 to 15 parts by mass, more preferably 2 to 12 parts by mass, and further preferably 6 to 10 parts by mass. .
 感光性樹脂組成物は、必要に応じて、(D)青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材(以下、場合により「(D)成分」という)をさらに含有していてもよい。例えば、図3(d)に示すように、導電パターン2aの透明基材20とは反対側の面に樹脂層3dが配置され、樹脂層3dが(D)成分を含有する態様とする場合には、感光性樹脂組成物に(D)成分を配合させてもよい。これにより、透明性の大幅な低下、及び、色相が大きく変わることを容易に抑制することができる。 The photosensitive resin composition is, if necessary, (D) at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye and a purple pigment (hereinafter referred to as “component (D)” in some cases). ) May be further contained. For example, as shown in FIG. 3D, when the resin layer 3d is disposed on the surface of the conductive pattern 2a opposite to the transparent substrate 20, and the resin layer 3d contains the component (D). May mix | blend (D) component with the photosensitive resin composition. Thereby, it is possible to easily suppress a significant decrease in transparency and a significant change in hue.
 青色染料とは、可視光領域の400~500nmの全範囲において同程度の吸収を持つ染料を指す。青色染料としては、450nmの吸収強度を1としたときに、400~500nmの全範囲における吸収強度が0.7~1.3の範囲内である染料が好ましく、前記吸収強度が0.8~1.2の範囲内である染料がより好ましい。青色染料としては、市販品では、VALIFAST BLUE 2606(オリエント化学工業株式会社製)を用いることができる。 The blue dye refers to a dye having similar absorption in the entire range of 400 to 500 nm in the visible light region. The blue dye is preferably a dye having an absorption intensity in the entire range of 400 to 500 nm within a range of 0.7 to 1.3 when the absorption intensity at 450 nm is 1, and the absorption intensity is 0.8 to More preferred are dyes within the range of 1.2. As a blue dye, VALIFAST BLUE 2606 (manufactured by Orient Chemical Industry Co., Ltd.) can be used as a commercially available product.
 紫色染料とは、可視光領域の380~430nmの全範囲において同程度の吸収を持つ染料を指す。紫色染料としては、400nmの吸収強度を1としたときに、380~430nmの全範囲における吸収強度が0.7~1.3の範囲内である染料が好ましく、前記吸収強度が0.8~1.2の範囲内である染料がより好ましい。紫色染料としては、市販品では、OPLAS VIOLET 730(オリエント化学工業株式会社製)を用いることができる。 Purple dye means a dye having the same level of absorption in the entire visible light range of 380 to 430 nm. The purple dye is preferably a dye having an absorption intensity in the range of 380 to 430 nm within a range of 0.7 to 1.3, assuming that the absorption intensity at 400 nm is 1, and the absorption intensity is 0.8 to More preferred are dyes within the range of 1.2. As a purple dye, OPLAS VIOLET 730 (manufactured by Orient Chemical Co., Ltd.) can be used as a commercially available product.
 なお、上記吸収強度(吸光度)は、UV分光光度計(株式会社日立製作所製、商品名「U-3310」)を用いて測定できる。 The absorption intensity (absorbance) can be measured using a UV spectrophotometer (trade name “U-3310” manufactured by Hitachi, Ltd.).
 染料としては、高温高湿下で表面抵抗率が上昇し易いチオール基含有化合物、又は、高温高湿下で退色及び析出が生じ易い有色化合物は選択しないことが好ましい。さらに、光透過層が感光性樹脂層である場合は、感光特性の低下を抑制するために、染料が紫外領域に強い吸収を持たないことが好ましい。 As the dye, it is preferable not to select a thiol group-containing compound whose surface resistivity tends to increase under high temperature and high humidity, or a colored compound which easily causes discoloration and precipitation under high temperature and high humidity. Furthermore, when the light transmission layer is a photosensitive resin layer, it is preferable that the dye does not have strong absorption in the ultraviolet region in order to suppress a decrease in photosensitive characteristics.
 青色顔料とは、可視光領域の400~500nmの全範囲において同程度の吸収を持つ顔料を指す。青色顔料としては、450nmの吸収強度を1としたときに、400~500nmの全範囲における吸収強度が0.7~1.3の範囲内である顔料が好ましく、前記吸収強度が0.8~1.2の範囲内である顔料がより好ましい。青色顔料としては、市販品では、NX-051、NX-053(大日精化工業株式会社製)を用いることができる。 Blue pigment refers to a pigment having the same degree of absorption in the entire visible light range of 400 to 500 nm. The blue pigment is preferably a pigment having an absorption intensity in the entire range of 400 to 500 nm within a range of 0.7 to 1.3 when the absorption intensity at 450 nm is 1, and the absorption intensity is 0.8 to More preferred are pigments in the range of 1.2. As the blue pigment, commercially available products such as NX-051 and NX-053 (manufactured by Dainichi Seika Kogyo Co., Ltd.) can be used.
 紫色顔料とは、可視光領域の380~430nmの全範囲において同程度の吸収を持つ顔料を指す。紫色顔料としては、400nmの吸収強度を1としたときに、380~430nmの全範囲における吸収強度が0.7~1.3の範囲内である顔料が好ましく、前記吸収強度が0.8~1.2の範囲内である顔料がより好ましい。紫色顔料としては、市販品では、NX-043(大日精化工業株式会社製)を用いることができる。 Purple pigment means a pigment having the same level of absorption in the entire visible light range of 380 to 430 nm. The purple pigment is preferably a pigment having an absorption intensity in the range of 380 to 430 nm within the range of 0.7 to 1.3 when the absorption intensity at 400 nm is 1, and the absorption intensity is 0.8 to More preferred are pigments in the range of 1.2. As the purple pigment, NX-043 (manufactured by Dainichi Seika Kogyo Co., Ltd.) can be used as a commercial product.
 顔料としては、高温高湿下で表面抵抗率が上昇し易いチオール基含有化合物、又は、高温高湿下で退色及び析出が生じ易い有色化合物は選択しないことが好ましい。さらに、光透過層が感光性樹脂層である場合は、感光特性の低下を抑制するために、顔料が紫外領域に強い吸収を持たないことが好ましい。 As the pigment, it is preferable not to select a thiol group-containing compound whose surface resistivity tends to increase under high temperature and high humidity, or a colored compound which easily causes discoloration and precipitation under high temperature and high humidity. Furthermore, when the light transmission layer is a photosensitive resin layer, it is preferable that the pigment does not have strong absorption in the ultraviolet region in order to suppress a decrease in photosensitive characteristics.
 (D)成分の中でも、青色顔料及び紫色顔料からなる群より選択される少なくとも一種が好ましい。これにより、導電材料(例えば、銀繊維等の導電性繊維)に固有の黄色味をさらに抑制することができる。 Among the components (D), at least one selected from the group consisting of blue pigments and purple pigments is preferable. Thereby, yellowness peculiar to conductive material (for example, conductive fibers, such as silver fiber), can further be controlled.
 感光性樹脂組成物が(D)成分を含有する場合、(D)成分の含有量は、高い透明性が得られ易い観点から、(A)成分及び(B)成分の総量を基準として、0.2質量%以下であることが好ましく、0.18質量%以下であることがより好ましく、0.15質量%以下であることがさらに好ましく、0.1質量%以下であることが特に好ましい。一方、(D)成分の含有量は、黄色味が上昇することを抑制し易い観点から、(A)成分及び(B)成分の総量を基準として、0質量%を超え、導電材料(導電性繊維等)による導電層(導電パターン等)の反射で白く見える現象をさらに抑制し、且つ、パターン見えをさらに抑制する観点からは、0.05質量%以上が好ましい。 When the photosensitive resin composition contains the component (D), the content of the component (D) is 0 on the basis of the total amount of the component (A) and the component (B) from the viewpoint of easily obtaining high transparency. It is preferably 2% by mass or less, more preferably 0.18% by mass or less, further preferably 0.15% by mass or less, and particularly preferably 0.1% by mass or less. On the other hand, the content of the component (D) exceeds 0% by mass on the basis of the total amount of the components (A) and (B) from the viewpoint of easily suppressing the increase in yellowness, and the conductive material (conductive 0.05 mass% or more is preferable from the viewpoint of further suppressing the phenomenon of appearing white due to reflection of the conductive layer (conductive pattern or the like) by the fiber or the like, and further suppressing the appearance of the pattern.
 図1(a)に示される導電パターン2a及び光透過層3eは、例えば、透明基材20上に設けられた感光性樹脂組成物層(光透過層3eを得るための層)と、感光性樹脂組成物層の透明基材20とは反対側の面に設けられた導電層とを含む感光層に、パターン状に活性光線を照射する第1の露光工程と、酸素存在下で、感光層の少なくとも第1の露光工程での未露光部の一部又は全部に活性光線を照射する第2の露光工程と、第2の露光工程の後に感光層を現像することにより導電パターン2aを形成する現像工程とを経て得ることができる。このような導電パターンの形成方法によれば、導電パターンを有する領域と、導電層の一部が除去され樹脂硬化層が露出した領域と、を一括して形成することができる。 The conductive pattern 2a and the light transmission layer 3e shown in FIG. 1A are, for example, a photosensitive resin composition layer (layer for obtaining the light transmission layer 3e) provided on the transparent substrate 20, and a photosensitive property. A first exposure step of irradiating a photosensitive layer including a conductive layer provided on the surface of the resin composition layer opposite to the transparent substrate 20 with actinic rays in a pattern; and in the presence of oxygen, the photosensitive layer A conductive pattern 2a is formed by developing a photosensitive layer after a second exposure step of irradiating at least a part or all of the unexposed portion in the first exposure step with actinic rays, and after the second exposure step. It can be obtained through a development step. According to such a method for forming a conductive pattern, a region having a conductive pattern and a region where a part of the conductive layer is removed and the cured resin layer is exposed can be formed in a lump.
 また、図1(b)及び図1(c)に示される導電パターン2a及び光透過層3f,3gは、例えば、透明基材20上に設けられた感光性樹脂組成物層(光透過層3f,3gを得るための層)と、感光性樹脂組成物層の透明基材20とは反対側の面に設けられた導電層とを含む感光層に、パターン状に活性光線を照射する露光工程と、露光した感光層を現像することにより導電パターン2aを形成する現像工程とを経て得ることができる。 Moreover, the conductive pattern 2a and the light transmission layers 3f and 3g shown in FIGS. 1B and 1C are, for example, a photosensitive resin composition layer (light transmission layer 3f) provided on the transparent substrate 20. , 3 g) and a photosensitive layer including a conductive layer provided on the surface of the photosensitive resin composition layer on the side opposite to the transparent substrate 20 is irradiated with actinic rays in a pattern. And a developing process for forming the conductive pattern 2a by developing the exposed photosensitive layer.
 図2に示される導電パターン2a及び樹脂層3aは、例えば、図5に基づき後述するように、透明基材20上に設けられた感光性樹脂組成物層(樹脂層3aを得るための層)と、感光性樹脂組成物層の透明基材20とは反対側の面に設けられた導電層とを含む感光層に、パターン状に活性光線を照射する第1の露光工程と、酸素存在下で、感光層の少なくとも第1の露光工程での未露光部の一部又は全部に活性光線を照射する第2の露光工程と、第2の露光工程の後に感光層を現像することにより導電パターン2aを形成する現像工程とを経て得ることができる。このような導電パターンの形成方法によれば、導電パターンを有する領域と、導電層の一部が除去され樹脂硬化層が露出した領域と、を一括して形成することができる。 The conductive pattern 2a and the resin layer 3a shown in FIG. 2 are, for example, a photosensitive resin composition layer (layer for obtaining the resin layer 3a) provided on the transparent substrate 20, as will be described later with reference to FIG. And a photosensitive layer including a conductive layer provided on the surface of the photosensitive resin composition layer on the side opposite to the transparent substrate 20, and actinic rays are irradiated in a pattern, and in the presence of oxygen. In the second exposure step of irradiating at least a part or all of the unexposed portion in the first exposure step of the photosensitive layer with active light, and developing the photosensitive layer after the second exposure step, the conductive pattern It can be obtained through a development step for forming 2a. According to such a method for forming a conductive pattern, a region having a conductive pattern and a region where a part of the conductive layer is removed and the cured resin layer is exposed can be formed in a lump.
 また、図3(b)に示される導電パターン2a及び樹脂層3bは、例えば、透明基材20上に設けられた感光性樹脂組成物層(樹脂層3bを得るための層)と、感光性樹脂組成物層の透明基材20とは反対側の面に設けられた導電層とを含む感光層に、パターン状に活性光線を照射する露光工程と、露光した感光層を現像することにより導電パターン2aを形成する現像工程とを経て得ることができる。 Moreover, the conductive pattern 2a and the resin layer 3b shown in FIG. 3B are, for example, a photosensitive resin composition layer (layer for obtaining the resin layer 3b) provided on the transparent substrate 20, and a photosensitive property. A photosensitive layer including a conductive layer provided on the surface opposite to the transparent substrate 20 of the resin composition layer is exposed to an actinic ray in a pattern, and the exposed photosensitive layer is developed to develop the conductive layer. It can be obtained through a development step for forming the pattern 2a.
 また、図3(c)及び図3(d)に示される導電パターン2a及び樹脂層3c,3dは、例えば、透明基材20上に設けられた導電層と、導電層の透明基材20とは反対側の面に設けられた感光性樹脂組成物層(樹脂層3c,3dを得るための層)とを含む感光層に、パターン状に活性光線を照射する露光工程と、露光した感光層を現像することにより導電パターン2aを形成する現像工程とを経て得ることができる(後述する図6参照)。 Moreover, the conductive pattern 2a and the resin layers 3c and 3d shown in FIG. 3C and FIG. 3D include, for example, a conductive layer provided on the transparent substrate 20, and a transparent substrate 20 of the conductive layer. Is a photosensitive layer including a photosensitive resin composition layer (layer for obtaining the resin layers 3c and 3d) provided on the opposite surface, an exposure step of irradiating actinic rays in a pattern, and an exposed photosensitive layer Can be obtained through a developing process for forming the conductive pattern 2a (see FIG. 6 described later).
 上記の感光層(感光性樹脂組成物層及び導電層)は、透明基材20上に塗布等の方法により直接設けてもよく、別途、支持体と、当該支持体上に設けられた感光層とを有する転写形感光性導電フィルムを作製し、透明基材20に対して感光性樹脂組成物層又は導電層が接するようにラミネートすることで設けてもよい。このような転写形感光性導電フィルムを用いることにより、基材上に、導電パターンを充分な解像度で簡便に形成することができる。また、基板表面に設けられる接続端子等と導電パターンとを簡便に接続することが可能となる。 The photosensitive layer (photosensitive resin composition layer and conductive layer) may be directly provided on the transparent substrate 20 by a method such as coating, or separately, a support and a photosensitive layer provided on the support. The photosensitive resin composition layer or the conductive layer may be laminated so as to be in contact with the transparent substrate 20. By using such a transfer type photosensitive conductive film, a conductive pattern can be easily formed on a substrate with sufficient resolution. In addition, it is possible to easily connect a connection terminal or the like provided on the substrate surface and the conductive pattern.
 図4は、本実施形態に係る感光性導電フィルムを説明するための模式断面図である。図4に示すように感光性導電フィルム10は、支持フィルム1と、支持フィルム1上に設けられた感光層4とを有する。感光層4は、導電材料を含有する導電層2と、導電層2の支持フィルム1とは反対側の面に設けられた感光性樹脂組成物層3とを含む。すなわち、感光性導電フィルム10は、支持フィルム1と、導電層2と、感光性樹脂組成物層3とがこの順で積層されている構造を有する。 FIG. 4 is a schematic cross-sectional view for explaining the photosensitive conductive film according to the present embodiment. As shown in FIG. 4, the photosensitive conductive film 10 includes a support film 1 and a photosensitive layer 4 provided on the support film 1. The photosensitive layer 4 includes a conductive layer 2 containing a conductive material and a photosensitive resin composition layer 3 provided on the surface of the conductive layer 2 opposite to the support film 1. That is, the photosensitive conductive film 10 has a structure in which the support film 1, the conductive layer 2, and the photosensitive resin composition layer 3 are laminated in this order.
 支持フィルム1としては、耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。重合体フィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム等が挙げられる。これらのうち、透明性及び耐熱性に優れる観点からは、ポリエチレンテレフタレートフィルム及びポリプロピレンフィルムからなる群より選択される少なくとも一種が好ましい。 As the support film 1, a polymer film having heat resistance and solvent resistance can be used. Examples of the polymer film include a polyethylene terephthalate film, a polyethylene film, a polypropylene film, and a polycarbonate film. Among these, from the viewpoint of excellent transparency and heat resistance, at least one selected from the group consisting of a polyethylene terephthalate film and a polypropylene film is preferable.
 支持フィルム1として、ガス(特に酸素)透過性を有する重合体フィルムを用いてもよい。この場合、例えば、上記した第1の露光工程及び第2の露光工程を有する導電パターンの形成方法において、第2の露光工程における雰囲気の酸素濃度を調整することにより、支持フィルム1を剥離しなくても酸素存在下で第2の露光工程を行うことができる。 As the support film 1, a polymer film having gas (especially oxygen) permeability may be used. In this case, for example, in the conductive pattern forming method having the first exposure step and the second exposure step, the support film 1 is not peeled off by adjusting the oxygen concentration of the atmosphere in the second exposure step. Even in the presence of oxygen, the second exposure step can be performed.
 導電層2に含まれる成分等については、上記導電パターン2aについて記載した成分等を用いることができる。導電層2は、例えば、上述した導電材料と、水、有機溶剤、分散安定剤(界面活性剤等)などとを含む導電材料分散液を調製し、この導電材料分散液を支持フィルム1上に塗工した後、乾燥することにより形成することができる。乾燥後、支持フィルム1上に形成した導電層2は、必要に応じてラミネートされてもよい。 For the components contained in the conductive layer 2, the components described for the conductive pattern 2a can be used. The conductive layer 2 is prepared, for example, by preparing a conductive material dispersion liquid containing the above-described conductive material and water, an organic solvent, a dispersion stabilizer (surfactant, etc.), and the conductive material dispersion liquid on the support film 1. After coating, it can be formed by drying. After drying, the conductive layer 2 formed on the support film 1 may be laminated as necessary.
 感光性樹脂組成物層3に含まれる成分等については、上記感光性樹脂組成物について記載した成分等を用いることができる。感光性樹脂組成物層3は、例えば、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)及び光重合開始剤を含有し、必要に応じて、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材をさらに含有する。これらの成分としては、感光性樹脂組成物における(A)バインダーポリマー、(B)光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、及び、(C)光重合開始剤として上述した成分、並びに、光透過層3e,3f,3g,7aにおける(D)成分として上述した成分を用いることができる。 For the components contained in the photosensitive resin composition layer 3, the components described for the photosensitive resin composition can be used. The photosensitive resin composition layer 3 contains, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond) and a photopolymerization initiator, and, if necessary, a blue dye, It further contains at least one colorant selected from the group consisting of blue pigments, purple dyes and purple pigments. These components include (A) a binder polymer, (B) a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), and (C) a photopolymerization initiator in the photosensitive resin composition. And the above-described components can be used as the component (D) in the light-transmitting layers 3e, 3f, 3g, and 7a.
 感光性樹脂組成物層3は、感光性樹脂組成物の溶液(顔料等の固形分を含んでいてもよい。以下同様)を調製し、支持フィルム1上に形成された導電層2上に前記溶液を塗工した後、乾燥することにより形成することができる。感光性樹脂組成物の溶液は、メタノール、アセトン、メチルエチルケトン、メチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル等の溶剤又はこれらの混合溶剤に感光性樹脂組成物の構成成分を溶解又は分散したものであってもよい。感光性樹脂組成物の溶液の固形分濃度は、10~60質量%程度とすることができる。 The photosensitive resin composition layer 3 is prepared by preparing a solution of the photosensitive resin composition (which may contain a solid content such as a pigment. The same applies hereinafter) on the conductive layer 2 formed on the support film 1. After coating the solution, it can be formed by drying. The photosensitive resin composition solution is obtained by dissolving the components of the photosensitive resin composition in a solvent such as methanol, acetone, methyl ethyl ketone, methyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether, or a mixed solvent thereof. Alternatively, it may be dispersed. The solid content concentration of the photosensitive resin composition solution can be about 10 to 60% by mass.
 感光性樹脂組成物層3の厚みは、用途により異なるが、乾燥後の厚みで、下記の範囲であることが好ましい。感光性樹脂組成物層3の厚みは、塗工し易くなる傾向がある観点から、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.5μm以上であることがさらに好ましく、1μm以上であることが特に好ましい。感光性樹脂組成物層3の厚みは、感度の低下を防ぎ易い観点から、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがさらに好ましく、8μm以下であることが特に好ましく、5μm以下であることが極めて好ましい。これらの観点から、感光性樹脂組成物層3の厚みは、0.05~20μmであることが好ましく、0.05~15μmであることがより好ましく、0.1~10μmであることがさらに好ましく、0.1~8μmであることが特に好ましく、0.1~5μmであることが極めて好ましく、0.5~5μmであることが非常に好ましく、1~5μmであることがより一層好ましい。なお、感光性樹脂組成物層3を硬化した層(樹脂層3a,3b,3c,3d、光透過層3e,3f,3g等)の厚みについてもこれらの範囲であることが好ましい。 The thickness of the photosensitive resin composition layer 3 varies depending on the application, but is preferably the following range in terms of the thickness after drying. The thickness of the photosensitive resin composition layer 3 is preferably 0.05 μm or more, more preferably 0.1 μm or more, and more preferably 0.5 μm or more from the viewpoint of easy application. Is more preferable and 1 μm or more is particularly preferable. The thickness of the photosensitive resin composition layer 3 is preferably 20 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, and more preferably 8 μm or less, from the viewpoint of easily preventing a decrease in sensitivity. Particularly preferred is 5 μm or less. From these viewpoints, the thickness of the photosensitive resin composition layer 3 is preferably 0.05 to 20 μm, more preferably 0.05 to 15 μm, and further preferably 0.1 to 10 μm. 0.1 to 8 μm is particularly preferable, 0.1 to 5 μm is very preferable, 0.5 to 5 μm is very preferable, and 1 to 5 μm is even more preferable. In addition, it is preferable that the thickness of the layer ( resin layers 3a, 3b, 3c, 3d, light transmission layers 3e, 3f, 3g, etc.) obtained by curing the photosensitive resin composition layer 3 is also in these ranges.
 上記塗工は、ロールコート法等の公知の方法で行うことができる。また、乾燥は、30~150℃で1~30分間程度、熱風対流式乾燥機等で行うことができる。導電層2において、導電材料は、界面活性剤又は分散安定剤と共存していてもかまわない。 The coating can be performed by a known method such as a roll coating method. The drying can be performed at 30 to 150 ° C. for about 1 to 30 minutes with a hot air convection dryer or the like. In the conductive layer 2, the conductive material may coexist with a surfactant or a dispersion stabilizer.
 感光性導電フィルム10は、必要に応じて、保護フィルム5を有していてもよい(後述する図6参照)。保護フィルムとしては、支持フィルム1で例示されたフィルムを用いることができる。この場合、保護フィルムの剥離強度が支持フィルム1の剥離強度よりも小さくなるように、支持フィルム1及び保護フィルムの厚み又は表面処理を調節することが好ましい。 The photosensitive conductive film 10 may have a protective film 5 as necessary (see FIG. 6 described later). As the protective film, the film exemplified by the support film 1 can be used. In this case, it is preferable to adjust the thickness or surface treatment of the support film 1 and the protective film so that the peel strength of the protective film is smaller than the peel strength of the support film 1.
 保護フィルムの厚みは、10~200μmであることが好ましく、15~150μmであることがより好ましく、15~100μmであることがさらに好ましい。 The thickness of the protective film is preferably 10 to 200 μm, more preferably 15 to 150 μm, and still more preferably 15 to 100 μm.
 感光層4(導電層2及び感光性樹脂組成物層3)において、両層の合計厚みを1~10μmとしたときに450~650nmの波長域における最小光透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。導電層2及び感光性樹脂組成物層3がこのような条件を満たすと、積層体をタッチパネル等の電子部品に適用した場合に、視認性がより向上する。 In the photosensitive layer 4 (the conductive layer 2 and the photosensitive resin composition layer 3), the minimum light transmittance in the wavelength region of 450 to 650 nm is 80% or more when the total thickness of both layers is 1 to 10 μm. Is preferable, and it is more preferable that it is 85% or more. When the conductive layer 2 and the photosensitive resin composition layer 3 satisfy such conditions, visibility is further improved when the laminate is applied to an electronic component such as a touch panel.
 光透過層3e,3f,3g,7a及び樹脂層(光透過層)3dは、色材9として、(D)成分(青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材)を含有している。光透過層3e,3f,3g,7a及び樹脂層(光透過層)3dは、黄色味が上昇することを抑制するための層であると共に、導電層(導電パターン2a等)の導電材料(導電性繊維等)からの反射光を吸収し、導電材料の表面で光が反射して導電層が白く見える現象の抑制が可能な層である。光透過層3e,3f,3g,7a及び樹脂層(光透過層)3dは、形成の簡便さから、感光性樹脂組成物層又はその硬化物であることが好ましい。 The light transmissive layers 3e, 3f, 3g, 7a and the resin layer (light transmissive layer) 3d are at least selected from the group consisting of component (D) (blue dye, blue pigment, violet dye, and violet pigment) as the color material 9. A kind of coloring material). The light transmissive layers 3e, 3f, 3g, and 7a and the resin layer (light transmissive layer) 3d are layers for suppressing an increase in yellow tint, and conductive materials (conductive layers) of the conductive layer (conductive pattern 2a and the like). This is a layer capable of absorbing the reflected light from the conductive fiber and the like and suppressing the phenomenon that the conductive layer looks white due to the reflection of the light on the surface of the conductive material. The light transmissive layers 3e, 3f, 3g, 7a and the resin layer (light transmissive layer) 3d are preferably a photosensitive resin composition layer or a cured product thereof from the viewpoint of ease of formation.
 光透過層に含まれる(D)成分としては、上記感光性樹脂組成物における(D)成分と同様のものを用いることができる。 As the component (D) contained in the light transmission layer, the same component as the component (D) in the photosensitive resin composition can be used.
 (D)成分を含有する媒体は、樹脂硬化物であってもよく、硬化前の樹脂組成物層、有機ガラス等であってもよい。 The medium containing the component (D) may be a resin cured product, a resin composition layer before curing, an organic glass, or the like.
 樹脂硬化物としては、例えば、感光性樹脂組成物の硬化物が挙げられる。感光性樹脂組成物としては、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤及び(D)成分、並びに、必要に応じてその他の成分を含有する組成物を用いることができる。バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤及びその他の成分としては、上述した樹脂層3a,3b,3c,3d及び光透過層3e,3f,3gを構成する材料と同様のものが挙げられる。 Examples of the cured resin include a cured product of a photosensitive resin composition. Examples of the photosensitive resin composition include a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator and a component (D), and other components as necessary. A composition containing can be used. Examples of the binder polymer, photopolymerizable compound (for example, photopolymerizable compound having an ethylenically unsaturated bond), photopolymerization initiator, and other components include the resin layers 3a, 3b, 3c, 3d and the light transmitting layer 3e described above. , 3f, and 3g are the same materials.
 光透過層3e,3f,3gは、上記の感光性樹脂組成物を透明基材20上に塗布した後に乾燥することにより形成してもよく、支持フィルム上に上記の感光性樹脂組成物の層を形成した感光性フィルムを用意し、感光性樹脂組成物の層を転写することで設けてもよい。光透過層7aは、上記の感光性樹脂組成物を導電パターン付透明基材30,31,32,33上に塗布した後に乾燥することにより形成してもよく、支持フィルム上に上記の感光性樹脂組成物の層を形成した感光性フィルムを用意し、感光性樹脂組成物の層を転写することで設けてもよい。樹脂層3dは、上記の感光性樹脂組成物を導電パターン2a上に塗布した後に乾燥することにより形成してもよく、支持フィルム上に上記の感光性樹脂組成物の層を形成した感光性フィルムを用意し、感光性樹脂組成物の層を転写した後に露光及び現像することで設けてもよい。 The light-transmitting layers 3e, 3f, and 3g may be formed by applying the photosensitive resin composition on the transparent substrate 20 and then drying it, and layering the photosensitive resin composition on the support film. It is also possible to prepare a photosensitive film on which is formed and transfer the layer of the photosensitive resin composition. The light transmissive layer 7a may be formed by applying the photosensitive resin composition on the transparent substrate with conductive pattern 30, 31, 32, 33 and then drying, and may be formed on the support film. You may provide the photosensitive film in which the layer of the resin composition was formed, and may provide by transferring the layer of the photosensitive resin composition. The resin layer 3d may be formed by applying the photosensitive resin composition on the conductive pattern 2a and then drying, or a photosensitive film having a layer of the photosensitive resin composition formed on a support film. May be prepared and exposed and developed after transferring the layer of the photosensitive resin composition.
 光透過層3e,3f,3g,7a及び樹脂層(光透過層)3dにおける(D)成分の含有量は、高い透明性が得られ易い観点から、光透過層の全量を基準として、0.2質量%以下であることが好ましく、0.18質量%以下であることがより好ましく、0.15質量%以下であることがさらに好ましい。一方、(D)成分の含有量は、黄色味が上昇することを抑制し易い観点から、光透過層の全量を基準として、0質量%を超え、導電材料(導電性繊維等)の表面で光が反射して導電層(導電パターン等)が白く見える現象をさらに抑制する観点、及び、パターン見えを抑制する観点から、0.05質量%以上が好ましい。(D)成分の含有量は、例えば、光透過層の全量を基準として0質量%を超え0.2質量%以下である。 The content of the component (D) in the light-transmitting layers 3e, 3f, 3g, 7a and the resin layer (light-transmitting layer) 3d is 0. 0% based on the total amount of the light-transmitting layer from the viewpoint that high transparency is easily obtained. It is preferably 2% by mass or less, more preferably 0.18% by mass or less, and further preferably 0.15% by mass or less. On the other hand, the content of the component (D) exceeds 0% by mass on the basis of the total amount of the light transmission layer from the viewpoint of easily suppressing an increase in yellowness, and on the surface of the conductive material (conductive fiber, etc.). 0.05 mass% or more is preferable from the viewpoint of further suppressing the phenomenon in which light is reflected and the conductive layer (conductive pattern or the like) appears white and the pattern appearance is suppressed. The content of the component (D) is, for example, more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
 光透過層3e,3f,3g,7a及び樹脂層(光透過層)3dの厚みは、さらに優れた光透過率及びヘーズ値を得る観点から、下記の範囲であることが好ましい。光透過層3e,3f,3g,7a及び樹脂層3dの厚みは、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましく、2.5μm以上であることが特に好ましい。光透過層3e,3f,3g,7a及び樹脂層3dの厚みは、25μm以下であることが好ましく、15μm以下であることがより好ましく、8μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。これらの観点から、光透過層3e,3f,3g,7a及び樹脂層3dの厚みは、0.5~25μmであることが好ましく、1~15μmであることがより好ましく、2~8μmであることがさらに好ましく、2.5~8μmであることが特に好ましく、2.5~5μmであることが極めて好ましい。 The thicknesses of the light transmissive layers 3e, 3f, 3g, 7a and the resin layer (light transmissive layer) 3d are preferably in the following ranges from the viewpoint of obtaining further excellent light transmittance and haze value. The thicknesses of the light transmission layers 3e, 3f, 3g, 7a and the resin layer 3d are preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 2 μm or more, and 2.5 μm or more. It is particularly preferred that The thicknesses of the light transmission layers 3e, 3f, 3g, 7a and the resin layer 3d are preferably 25 μm or less, more preferably 15 μm or less, further preferably 8 μm or less, and preferably 5 μm or less. Particularly preferred. From these viewpoints, the thicknesses of the light transmission layers 3e, 3f, 3g, 7a and the resin layer 3d are preferably 0.5 to 25 μm, more preferably 1 to 15 μm, and 2 to 8 μm. Is more preferably 2.5 to 8 μm, and most preferably 2.5 to 5 μm.
 導電層付透明基材(導電パターン付透明基材等)において、450~650nmの波長域における最小光透過率は、80%以上であることが好ましく、85%以上であることがより好ましい。 In a transparent substrate with a conductive layer (such as a transparent substrate with a conductive pattern), the minimum light transmittance in the wavelength region of 450 to 650 nm is preferably 80% or more, and more preferably 85% or more.
 導電層付透明基材(導電パターン付透明基材等)は、上述した導電層(導電パターン等)の形成方法により得られる。導電層(導電パターン2a等)の表面抵抗率は、配線、電極(透明電極等)などとして有効に利用できる観点から、400Ω/□以下であることが好ましく、300Ω/□以下であることがより好ましく、150Ω/□以下であることがさらに好ましい。また、導電層の表面抵抗率をこのような範囲とすることで、基材表面に設けられる接続端子等と良好な電気的接続を容易に確保することができる。表面抵抗率は、例えば、導電材料分散液(導電性繊維分散液等)の濃度、塗工量等によって調整することができる。なお、導電層をパターニングして得られる導電パターンの表面抵抗率は、前記導電層の表面抵抗率として測定することができる。 The transparent substrate with a conductive layer (transparent substrate with a conductive pattern, etc.) is obtained by the method for forming a conductive layer (conductive pattern, etc.) described above. The surface resistivity of the conductive layer (conductive pattern 2a, etc.) is preferably 400Ω / □ or less, more preferably 300Ω / □ or less, from the viewpoint that it can be effectively used as wiring, electrodes (transparent electrodes, etc.). Preferably, it is 150Ω / □ or less. In addition, by setting the surface resistivity of the conductive layer in such a range, it is possible to easily ensure good electrical connection with a connection terminal or the like provided on the surface of the base material. The surface resistivity can be adjusted by, for example, the concentration of the conductive material dispersion (conductive fiber dispersion or the like), the coating amount, or the like. In addition, the surface resistivity of the conductive pattern obtained by patterning the conductive layer can be measured as the surface resistivity of the conductive layer.
 導電層付透明基材(導電パターン付透明基材等)の全光線透過率は、86.0%以上であることが好ましく、88.0%以上であることがより好ましい。導電層付透明基材がこのような条件を満たす場合、ディスプレイパネル等での視認性がさらに向上する。 The total light transmittance of the transparent substrate with a conductive layer (such as a transparent substrate with a conductive pattern) is preferably 86.0% or more, and more preferably 88.0% or more. When the transparent substrate with a conductive layer satisfies such conditions, the visibility on a display panel or the like is further improved.
 本実施形態に係る積層体の全光線透過率は、86.0%以上であることが好ましく、87.0%以上であることがより好ましく、88.0%以上であることがさらに好ましく、90.0%以上であることが特に好ましい。上記積層体がこのような条件を満たす場合、充分な透明性を確保し易く、ディスプレイパネル等での視認性がさらに向上する。 The total light transmittance of the laminate according to this embodiment is preferably 86.0% or more, more preferably 87.0% or more, further preferably 88.0% or more, 90 It is especially preferable that it is 0.0% or more. When the said laminated body satisfy | fills such conditions, it is easy to ensure sufficient transparency and the visibility in a display panel etc. further improves.
<積層体の製造方法>
 本実施形態に係る積層体の製造方法(例えば、第1実施形態及び第2実施形態に係る積層体の製造方法)について説明する。本実施形態に係る積層体の製造方法は、光透過層及び導電層を透明基材上に設ける光透過層形成工程を備え、導電層が導電材料を含有し、光透過層が、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する。
<Method for producing laminate>
The manufacturing method of the laminated body which concerns on this embodiment (For example, the manufacturing method of the laminated body which concerns on 1st Embodiment and 2nd Embodiment) is demonstrated. The manufacturing method of the laminated body which concerns on this embodiment is equipped with the light transmissive layer formation process which provides a light transmissive layer and a conductive layer on a transparent base material, a conductive layer contains a conductive material, a light transmissive layer is a blue dye, It contains at least one colorant selected from the group consisting of blue pigments, purple dyes and purple pigments.
 第1実施形態に係る積層体の製造方法では、導電層が光透過層上に設けられる。導電層及び光透過層は、透明基材上に同時に形成されてもよく、透明基材上に別々に形成されてもよい。 In the method for manufacturing a laminate according to the first embodiment, the conductive layer is provided on the light transmission layer. The conductive layer and the light transmission layer may be simultaneously formed on the transparent substrate, or may be separately formed on the transparent substrate.
 第2実施形態に係る積層体の製造方法では、光透過層が導電層の透明基材とは反対側に設けられる。例えば、第2実施形態に係る積層体の製造方法は、透明基材、及び、透明基材上に設けられた導電層(導電パターン等)を有する導電層付透明基材(例えば、導電パターン付透明基材等の導電パターン付基材)の前記導電層の前記透明基材とは反対側に光透過層を形成する光透過層形成工程を備える。換言すれば、光透過層形成工程では、透明基材、及び、透明基材上に設けられた導電層を有する導電層付透明基材の前記導電層が設けられている側に光透過層を形成する。 In the method for manufacturing a laminated body according to the second embodiment, the light transmission layer is provided on the side opposite to the transparent base material of the conductive layer. For example, the manufacturing method of the laminated body which concerns on 2nd Embodiment is a transparent base material (for example, with a conductive pattern) which has a transparent base material and a conductive layer (conductive pattern etc.) provided on the transparent base material. A light-transmitting layer forming step of forming a light-transmitting layer on the opposite side of the conductive layer of the conductive layer of a conductive pattern such as a transparent substrate). In other words, in the light transmissive layer forming step, the light transmissive layer is provided on the side where the conductive layer of the transparent base material and the transparent base material with a conductive layer having the conductive layer provided on the transparent base material is provided. Form.
 第1実施形態に係る積層体の製造方法における光透過層形成工程は、例えば、光透過層形成用組成物層と、当該光透過層形成用組成物層上に設けられた導電層(導電材料を含有する層)と、を含む感光層を透明基材上に形成する工程と、感光層に活性光線を照射する露光工程と、を含み、光透過層形成用組成物層が、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する。感光層は、支持フィルムと、導電層(導電材料を含有する層)と、感光性樹脂組成物層と、がこの順で積層されている構造を有する感光性導電フィルムを、感光性樹脂組成物層が透明基材に接するようにラミネートすることによって透明基材上に形成されてもよい。 The light transmitting layer forming step in the method for manufacturing the laminate according to the first embodiment includes, for example, a light transmitting layer forming composition layer and a conductive layer (conductive material) provided on the light transmitting layer forming composition layer. And a light-sensitive layer-forming composition layer comprising a binder polymer, a step of forming a photosensitive layer comprising a transparent substrate on the transparent substrate, and an exposure step of irradiating the photosensitive layer with actinic rays. Photopolymerizable compound (for example, photopolymerizable compound having an ethylenically unsaturated bond), photopolymerization initiator, and at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments Containing. The photosensitive layer comprises a photosensitive conductive film having a structure in which a support film, a conductive layer (a layer containing a conductive material), and a photosensitive resin composition layer are laminated in this order. It may be formed on the transparent substrate by laminating so that the layer contacts the transparent substrate.
 第2実施形態に係る積層体の製造方法における光透過層形成工程は、例えば、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する光透過層形成用組成物層を導電層(導電パターン等)の前記透明基材とは反対側に形成する工程と、光透過層形成用組成物層に活性光線を照射して光透過層を得る工程と、を含む。光透過層形成用組成物層は、支持フィルムと、当該支持フィルム上に設けられた感光性樹脂組成物層と、を有する感光性フィルムを、感光性樹脂組成物層が導電層付透明基材(導電パターン付透明基材等)に接するようにラミネートすることによって形成されてもよい。 The light-transmitting layer forming step in the method for producing a laminate according to the second embodiment includes, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator, and The transparent base material of the conductive layer (conductive pattern etc.) is a composition layer for forming a light transmission layer containing at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments Forming the light transmitting layer by irradiating the composition layer for forming the light transmitting layer with actinic rays. The composition layer for forming a light transmission layer is a photosensitive film having a support film and a photosensitive resin composition layer provided on the support film, and the photosensitive resin composition layer is a transparent substrate with a conductive layer. It may be formed by laminating so as to be in contact with (a transparent substrate with a conductive pattern or the like).
 光透過層形成用組成物層は、光透過層を形成するための組成物層であり、例えば、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する。感光性導電フィルム又は感光性フィルムの前記感光性樹脂組成物層は、光透過層形成用組成物層となる層である。感光性樹脂組成物層は、光透過層形成用組成物層と同様の構成成分を含有しており、例えば、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有している。 The composition layer for forming a light transmission layer is a composition layer for forming a light transmission layer. For example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), light It contains a polymerization initiator and at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments. The said photosensitive resin composition layer of a photosensitive conductive film or a photosensitive film is a layer used as the light transmission layer forming composition layer. The photosensitive resin composition layer contains the same constituents as the light transmission layer forming composition layer, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond). ), A photopolymerization initiator, and at least one colorant selected from the group consisting of blue dyes, blue pigments, purple dyes and purple pigments.
 第1実施形態に係る積層体の製造方法は、導電層が導電パターンであり、露光工程が、感光層にパターン状に活性光線を照射する工程であり、光透過層形成工程が、露光工程の後に感光層を現像する現像工程を更に含む態様であってもよい。また、光透過層形成工程は、現像工程の前に、酸素存在下で、感光層の少なくとも前記露光工程(第1の露光工程)における未露光部の一部又は全部に活性光線を照射する工程(第2の露光工程)を更に含んでいてもよい。 In the laminate manufacturing method according to the first embodiment, the conductive layer is a conductive pattern, the exposure step is a step of irradiating the photosensitive layer with actinic rays in a pattern, and the light transmission layer forming step is a step of the exposure step. The aspect which further includes the image development process which develops a photosensitive layer later may be sufficient. The light transmitting layer forming step is a step of irradiating at least a part or all of the unexposed portion in the exposure step (first exposure step) of the photosensitive layer with oxygen in the presence of oxygen before the development step. (Second exposure step) may further be included.
 図5は、第2実施形態に係る積層体の製造方法を説明するための模式断面図である。図5に示される方法では、まず、透明基材20上に導電パターン2aを形成して導電パターン付透明基材(導電パターン付基材)30を作製する(図5(a)~(d)参照)。なお、図5の感光性樹脂組成物層3及び樹脂層3aが色材9を含有する場合には、導電パターン付透明基材30に代えて、第1実施形態に係る積層体である積層体40a(図1(a))を得ることができる。 FIG. 5 is a schematic cross-sectional view for explaining the manufacturing method of the laminated body according to the second embodiment. In the method shown in FIG. 5, first, a conductive pattern 2a is formed on a transparent substrate 20 to produce a transparent substrate with a conductive pattern (substrate with a conductive pattern) 30 (FIGS. 5A to 5D). reference). In addition, when the photosensitive resin composition layer 3 and the resin layer 3a of FIG. 5 contain the coloring material 9, it replaces with the transparent base material 30 with a conductive pattern, and is a laminated body which is a laminated body which concerns on 1st Embodiment. 40a (FIG. 1 (a)) can be obtained.
 導電パターン付透明基材30は、透明基材20上に感光層4を設ける感光層形成工程(図5(a))と、感光層4にパターン状に活性光線Lを照射する第1の露光工程(図5(b))と、酸素存在下で、感光層4の少なくとも第1の露光工程における未露光部の一部又は全部に活性光線Lを照射する第2の露光工程(図5(c))と、第2の露光工程の後に感光層4を現像することにより導電パターン2aを形成する現像工程(図5(d))と、を経て得られる。感光層4は、透明基材20上の感光性樹脂組成物層3と、感光性樹脂組成物層3の透明基材20とは反対側の面に設けられた導電層2と、を含む。 The transparent substrate with a conductive pattern 30 is a photosensitive layer forming step (FIG. 5A) in which the photosensitive layer 4 is provided on the transparent substrate 20, and a first exposure that irradiates the photosensitive layer 4 with an actinic ray L in a pattern. Step (FIG. 5B) and a second exposure step (FIG. 5B) in which a part or all of the unexposed portion of at least the first exposure step of the photosensitive layer 4 is irradiated with actinic rays L in the presence of oxygen c)) and a developing step (FIG. 5D) for forming the conductive pattern 2a by developing the photosensitive layer 4 after the second exposure step. The photosensitive layer 4 includes the photosensitive resin composition layer 3 on the transparent substrate 20 and the conductive layer 2 provided on the surface of the photosensitive resin composition layer 3 opposite to the transparent substrate 20.
 上記感光層形成工程では、感光性導電フィルム10をラミネートすることによって感光層4を設けるラミネート工程を有していてもよい。ラミネート工程では、上述した感光性導電フィルム10を、感光性樹脂組成物層3が透明基材20に接するようにラミネートすることによって感光層4を設けてもよい。この場合、第1の露光工程では、感光層4上に支持フィルム1が配置されていてもよく、第2の露光工程の前に支持フィルム1を剥離してもよい。第1の露光工程は、真空下又は不活性ガス雰囲気下で行うことが好ましい。 The photosensitive layer forming step may include a laminating step of providing the photosensitive layer 4 by laminating the photosensitive conductive film 10. In the laminating step, the photosensitive layer 4 may be provided by laminating the photosensitive conductive film 10 described above so that the photosensitive resin composition layer 3 is in contact with the transparent substrate 20. In this case, in the first exposure step, the support film 1 may be disposed on the photosensitive layer 4, and the support film 1 may be peeled off before the second exposure step. The first exposure step is preferably performed in a vacuum or in an inert gas atmosphere.
 ラミネート工程は、例えば、感光性導電フィルム10を加熱しながら感光性樹脂組成物層3を透明基材20に圧着して積層する方法により行われる。なお、この作業は、密着性及び追従性の見地から減圧下で行われることが好ましい。感光性導電フィルム10の積層は、導電層2と、感光性樹脂組成物層3又は透明基材20とを70~130℃に加熱することが好ましく、圧着圧力は、0.1~1.0MPa程度(1~10kgf/cm程度)とすることが好ましいが、これらの条件には特に制限はない。また、導電層2又は感光性樹脂組成物層3を上記のように70~130℃に加熱すれば、予め透明基材20を予熱処理することは必要ではないが、積層性をさらに向上させるために透明基材20の予熱処理を行うこともできる。 The laminating step is performed by, for example, a method of laminating the photosensitive resin composition layer 3 on the transparent substrate 20 while heating the photosensitive conductive film 10. In addition, it is preferable to perform this operation under reduced pressure from the viewpoint of adhesion and followability. In the lamination of the photosensitive conductive film 10, the conductive layer 2 and the photosensitive resin composition layer 3 or the transparent substrate 20 are preferably heated to 70 to 130 ° C., and the pressure bonding pressure is 0.1 to 1.0 MPa. Although it is preferable to set it to a level (about 1 to 10 kgf / cm 2 ), these conditions are not particularly limited. Further, if the conductive layer 2 or the photosensitive resin composition layer 3 is heated to 70 to 130 ° C. as described above, it is not necessary to pre-heat the transparent substrate 20 in advance, but in order to further improve the laminating property. In addition, the transparent substrate 20 can be preheated.
 第1及び第2の露光工程では、活性光線を照射することによって感光性樹脂組成物層3が硬化される。導電パターンの形成方法においては、この硬化物によって導電層2が固定されることで、透明基材20上に導電パターン2a及び樹脂層(樹脂硬化層)3aが形成される。 In the first and second exposure steps, the photosensitive resin composition layer 3 is cured by irradiation with actinic rays. In the method for forming a conductive pattern, the conductive layer 2 is fixed by the cured product, whereby the conductive pattern 2a and the resin layer (resin cured layer) 3a are formed on the transparent substrate 20.
 露光工程における露光方法としては、例えば、アートワークと呼ばれるマスクパターン6(図5(b))を通して活性光線Lを画像状に照射する方法(マスク露光法)が挙げられる。活性光線の光源としては、公知の光源、例えば、高圧水銀灯、キセノンランプ等の、紫外線、可視光等を有効に放射する光源が用いられる。また、Arイオンレーザ、半導体レーザ等の、紫外線、可視光等を有効に放射する光源も用いられる。さらに、写真用フラッド電球、太陽ランプ等の、可視光を有効に放射する光源も用いられる。また、レーザ露光法等を用いた直接描画法により活性光線を画像状に照射する方法を採用してもよい。 As an exposure method in the exposure step, for example, there is a method (mask exposure method) of irradiating an actinic ray L in an image form through a mask pattern 6 called an artwork (FIG. 5B). As the active light source, a known light source, for example, a light source that effectively emits ultraviolet light, visible light, or the like, such as a high-pressure mercury lamp or a xenon lamp, is used. A light source that effectively emits ultraviolet light, visible light, or the like, such as an Ar ion laser or a semiconductor laser, is also used. Furthermore, a light source that effectively emits visible light, such as a photographic flood bulb or a solar lamp, is also used. Alternatively, a method of irradiating actinic rays in an image shape by a direct drawing method using a laser exposure method or the like may be employed.
 第2の露光工程の前に支持フィルム1を剥離してもよいが、支持フィルムとしてガス透過性のフィルムを用い、第1の露光工程を真空下、不活性ガス雰囲気下又は酸素減圧下で行い、第2の露光工程を空気中等の酸素存在下(好ましくは高圧酸素下)で行う等のように、露光時の雰囲気を調整することにより、支持フィルム1を剥離することなく、目的の導電パターンを形成することができる。 Although the support film 1 may be peeled off before the second exposure step, a gas permeable film is used as the support film, and the first exposure step is performed under vacuum, under an inert gas atmosphere, or under reduced oxygen pressure. The target conductive pattern can be obtained without peeling off the support film 1 by adjusting the atmosphere during exposure, such as by performing the second exposure step in the presence of oxygen in the air (preferably under high-pressure oxygen). Can be formed.
 現像工程では、感光層4の露光部以外の部分が除去される。具体的には、感光層4上に透明な支持フィルム1が存在している場合には、まず、支持フィルム1を除去し、その後、ウェット現像により感光層4の露光部以外の部分を除去する。これにより、所定のパターンを有する樹脂層(樹脂硬化層)3a上に、導電材料を含有する部分が残り、導電パターン2aが形成される。 In the developing process, portions other than the exposed portion of the photosensitive layer 4 are removed. Specifically, when the transparent support film 1 is present on the photosensitive layer 4, the support film 1 is first removed, and then the portions other than the exposed portions of the photosensitive layer 4 are removed by wet development. . Thereby, the part containing a conductive material remains on the resin layer (resin cured layer) 3a having a predetermined pattern, and the conductive pattern 2a is formed.
 ウェット現像は、アルカリ性水溶液、水系現像液、有機溶剤系現像液等の、感光性樹脂に対応した現像液を用いて、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により行われる。 The wet development is performed by a known method such as spraying, rocking dipping, brushing, scraping, or the like using a developer corresponding to the photosensitive resin such as an alkaline aqueous solution, an aqueous developer, or an organic solvent developer.
 現像液としては、安全且つ安定であり、操作性が良好なアルカリ性水溶液等を用いることが好ましい。上記アルカリ性水溶液の塩基としては、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリなどが用いられる。 As the developer, it is preferable to use an alkaline aqueous solution or the like that is safe and stable and has good operability. Examples of the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium or potassium hydroxide; alkali carbonates such as lithium, sodium, potassium or ammonium carbonate or bicarbonate.
 現像に用いるアルカリ性水溶液としては、0.1~5質量%炭酸ナトリウム水溶液、0.1~5質量%炭酸カリウム水溶液、0.1~5質量%水酸化ナトリウム水溶液、0.1~5質量%四ホウ酸ナトリウム水溶液等が好ましい。また、現像に用いるアルカリ性水溶液のpHは9~11の範囲とすることが好ましく、その温度は、感光性樹脂組成物層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。また、水又はアルカリ水溶液と一種以上の有機溶剤とからなる水系現像液を用いてもよい。 Examples of the alkaline aqueous solution used for development include 0.1 to 5% by weight sodium carbonate aqueous solution, 0.1 to 5% by weight potassium carbonate aqueous solution, 0.1 to 5% by weight sodium hydroxide aqueous solution, and 0.1 to 5% by weight four. A sodium borate aqueous solution or the like is preferable. The pH of the alkaline aqueous solution used for development is preferably in the range of 9 to 11, and the temperature is adjusted according to the developability of the photosensitive resin composition layer. In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed. Further, an aqueous developer composed of water or an aqueous alkali solution and one or more organic solvents may be used.
 本実施形態においては、現像後に必要に応じて、60~250℃程度の加熱又は0.2~10J/cm程度の露光を行うことにより樹脂層をさらに硬化してもよい。 In this embodiment, the resin layer may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.2 to 10 J / cm 2 as necessary after development.
 次に、透明基材20と、透明基材20上に設けられた樹脂層(樹脂硬化層)3aと、樹脂層3a上に設けられた導電パターン2aとを有する導電パターン付透明基材30の導電パターン2aが設けられた側に、感光性樹脂組成物層8と、感光性樹脂組成物層8中に分散している色材9と、を有する光透過層形成用組成物層7を形成した後に露光して光透過層7aを得る光透過層形成工程が行われる(図5(e)及び図5(f))。 Next, the transparent substrate 30 with a conductive pattern having a transparent substrate 20, a resin layer (resin cured layer) 3a provided on the transparent substrate 20, and a conductive pattern 2a provided on the resin layer 3a. On the side where the conductive pattern 2a is provided, a light transmitting layer forming composition layer 7 having a photosensitive resin composition layer 8 and a color material 9 dispersed in the photosensitive resin composition layer 8 is formed. Then, a light transmissive layer forming step is carried out to obtain a light transmissive layer 7a by exposure (FIGS. 5E and 5F).
 光透過層形成工程は、例えば、導電パターン付透明基材30の導電パターン2aが設けられた側に、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する光透過層形成用組成物層7を形成する光透過層形成用組成物層形成工程(図5(e))と、光透過層形成用組成物層7に活性光線を照射して光透過層7aを得る露光工程と、を含んでもよい。 The light transmitting layer forming step includes, for example, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond) on the side where the conductive pattern 2a of the transparent substrate with a conductive pattern 30 is provided, For forming a light transmission layer forming composition layer 7 for forming a light transmission layer containing a photopolymerization initiator and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye and a purple pigment A composition layer forming step (FIG. 5 (e)) and an exposure step of irradiating the composition layer 7 for forming a light transmitting layer with an actinic ray to obtain the light transmitting layer 7a may be included.
 例えば、上記光透過層形成用組成物層形成工程は、支持フィルムと、支持フィルム上に設けられた、色材(青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材)9を含有する光透過層形成用組成物層7とを有する感光性フィルムをあらかじめ作製し、導電パターン付透明基材30の導電パターン2a、及び、導電パターン2aが形成されていない樹脂層(樹脂硬化層)3aに上記光透過層形成用組成物層7が接するように感光性フィルムをラミネートする工程とすることもできる。 For example, the light transmission layer forming composition layer forming step includes at least one selected from the group consisting of a support film and a color material (blue dye, blue pigment, purple dye, and purple pigment provided on the support film) The photosensitive film having the light-transmitting layer-forming composition layer 7 containing 9 is prepared in advance, and the conductive pattern 2a of the transparent substrate 30 with the conductive pattern and the conductive pattern 2a are not formed. It can also be set as the process of laminating | stacking a photosensitive film so that the said composition layer 7 for light transmissive layer formation may contact | connect the resin layer (resin cured layer) 3a.
 露光工程及びラミネート工程については、上記と同様の条件で行うことができる。感光性フィルムについても同様の条件により、導電パターン付透明基材に対してラミネートを行うことができる。 The exposure process and the lamination process can be performed under the same conditions as described above. The photosensitive film can also be laminated to the transparent substrate with a conductive pattern under the same conditions.
 以上により、積層体50を製造することができる(図5(f))。積層体50には、視認性向上フィルム、又は、ハードコート層等の層をさらに設けることができる。図5(e)の積層体にこれらの層を設けた後、光透過層の硬化を行ってもよい。 The laminated body 50 can be manufactured by the above (FIG.5 (f)). The laminated body 50 can further be provided with a layer such as a visibility improving film or a hard coat layer. After providing these layers in the laminate of FIG. 5 (e), the light transmission layer may be cured.
 上述した感光性フィルム(導電層を有さないフィルム)は、感光性導電フィルム(導電層を有するフィルム)とあわせてフィルムセットとして提供することもできる。すなわち、第1の支持フィルムと、当該第1の支持フィルム上に設けられた第1の感光性樹脂組成物層と、を有する感光性フィルム、及び、第2の支持フィルムと、導電材料を含有する導電層と、第2の感光性樹脂組成物層と、がこの順で積層されている構造を有する感光性導電フィルムを含み、前記第1の感光性樹脂組成物層が、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有し、前記第2の感光性樹脂組成物層が、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、及び、光重合開始剤を含有する、フィルムセットを提供してもよい。フィルムセットは、上述した積層体の製造方法に用いることができる。 The above-mentioned photosensitive film (film having no conductive layer) can be provided as a film set together with the photosensitive conductive film (film having a conductive layer). That is, a photosensitive film having a first support film and a first photosensitive resin composition layer provided on the first support film, a second support film, and a conductive material Including a photosensitive conductive film having a structure in which a conductive layer and a second photosensitive resin composition layer are laminated in this order, and the first photosensitive resin composition layer includes a binder polymer, a light A polymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator, and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment; And the second photosensitive resin composition layer contains a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), and a photopolymerization initiator. It may provide a door. A film set can be used for the manufacturing method of the laminated body mentioned above.
 上記のフィルムセットを用いて、透明基材及び導電層(導電パターン等)を有する積層体を製造することで、導電層の表面抵抗率の上昇及び光透過性の低下を抑制しつつ、導電材料(導電性繊維等)の表面で光が反射して導電層が白く見える現象が充分に抑制された積層体を提供することが可能である。フィルムセットを用いた積層体の製造方法としては、例えば上述した方法が挙げられる。例えば、図1(c)の積層体40cは、感光性導電フィルムを用いて導電パターン2a及び光透過層3gを作製し、感光性フィルムを用いて樹脂硬化物8aを作製することにより得ることができる。図2の積層体50は、感光性導電フィルムを用いて導電パターン付透明基材30を作製し、感光性フィルムを用いて光透過層7aを作製することにより得ることができる。 By using the above film set to produce a laminate having a transparent substrate and a conductive layer (such as a conductive pattern), a conductive material while suppressing an increase in surface resistivity and a decrease in light transmittance of the conductive layer It is possible to provide a laminate in which light is reflected on the surface of (conductive fibers or the like) and the phenomenon that the conductive layer looks white is sufficiently suppressed. As a manufacturing method of the laminated body using a film set, the method mentioned above is mentioned, for example. For example, the laminate 40c in FIG. 1C can be obtained by producing the conductive pattern 2a and the light transmission layer 3g using a photosensitive conductive film and producing the cured resin 8a using the photosensitive film. it can. The laminated body 50 of FIG. 2 can be obtained by producing the transparent substrate 30 with a conductive pattern using a photosensitive conductive film and producing the light transmission layer 7a using the photosensitive film.
 感光性導電フィルムは、支持フィルムと、導電材料を含有する導電層と、バインダーポリマー、光重合性化合物(例えば、エチレン性不飽和結合を有する光重合性化合物)、光重合開始剤、並びに、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する感光性樹脂組成物層と、がこの順で積層されている構造を有する、感光性導電フィルムであってもよい。このような感光性導電フィルムを用いると、図1に示すように、光透過層3e,3f,3gと、光透過層3e,3f,3g上に設けられた導電パターン2aと、を一括して形成できる。また、感光性導電フィルムを用いると、図3(d)に示すように、導電パターン2aと、導電パターン2a上に設けられた樹脂層(光透過層)3dと、を一括して形成できる。この場合、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含む光透過層を導電パターン2a及び/又は樹脂層3d上にさらに形成する必要はない。ただし、この導電パターン2aは、表面の段差が見え易いので、形式は問わないが、光透過層をさらに形成して表面凹凸を無くすことが好ましい。 The photosensitive conductive film includes a support film, a conductive layer containing a conductive material, a binder polymer, a photopolymerizable compound (for example, a photopolymerizable compound having an ethylenically unsaturated bond), a photopolymerization initiator, and blue. A photosensitive conductive film having a structure in which a photosensitive resin composition layer containing at least one colorant selected from the group consisting of a dye, a blue pigment, a purple dye, and a purple pigment is laminated in this order. There may be. When such a photosensitive conductive film is used, the light transmission layers 3e, 3f, 3g and the conductive pattern 2a provided on the light transmission layers 3e, 3f, 3g are collectively shown in FIG. Can be formed. Further, when a photosensitive conductive film is used, as shown in FIG. 3D, the conductive pattern 2a and the resin layer (light transmission layer) 3d provided on the conductive pattern 2a can be formed in a lump. In this case, it is not necessary to further form a light transmission layer containing at least one color material selected from the group consisting of a blue dye, a blue pigment, a purple dye and a purple pigment on the conductive pattern 2a and / or the resin layer 3d. However, since the conductive pattern 2a is easy to see a step on the surface, the form is not limited, but it is preferable to further form a light transmission layer to eliminate surface irregularities.
 感光性導電フィルムの感光性樹脂組成物層は、色材を含有していない態様であってもよい。例えば、図3(c)に示す積層体の導電パターン付透明基材は、色材を含有していない感光性樹脂組成物層を有する感光性導電フィルムを用いて、図6に示す手順により得ることができる。まず、支持フィルム1、感光層4(導電層2及び感光性樹脂組成物層3)並びに保護フィルム5がこの順に積層された構造を有する感光性導電フィルムを準備し、ラミネートロール60を用いて、支持フィルム1を剥離しつつ感光層4及び保護フィルム5を透明基材20上に積層する(図6(a)及び図6(b))。次に、マスクパターン6を通して活性光線Lを画像状に照射(図6(c))した後に現像することにより、図3(c)に示す積層体の導電パターン付透明基材を得ることができる(図6(d))。なお、ラミネートロール60を用いて、保護フィルム5を剥離しつつ感光層4及び支持フィルム1を透明基材20上に積層することにより、支持フィルム1、感光性樹脂組成物層3及び導電層2がこの順に積層された構造を得ることができる。 The photosensitive resin composition layer of the photosensitive conductive film may be an embodiment that does not contain a color material. For example, the transparent substrate with a conductive pattern of the laminate shown in FIG. 3C is obtained by the procedure shown in FIG. 6 using a photosensitive conductive film having a photosensitive resin composition layer not containing a colorant. be able to. First, a photosensitive conductive film having a structure in which the support film 1, the photosensitive layer 4 (the conductive layer 2 and the photosensitive resin composition layer 3), and the protective film 5 are laminated in this order is prepared. While peeling off the support film 1, the photosensitive layer 4 and the protective film 5 are laminated on the transparent substrate 20 (FIGS. 6A and 6B). Next, a transparent substrate with a conductive pattern of the laminate shown in FIG. 3C can be obtained by irradiating actinic rays L in an image form through the mask pattern 6 (FIG. 6C) and developing. (FIG. 6 (d)). The support film 1, the photosensitive resin composition layer 3, and the conductive layer 2 are formed by laminating the photosensitive layer 4 and the support film 1 on the transparent substrate 20 while peeling the protective film 5 using the laminate roll 60. Can be obtained in this order.
<電子部品>
 本実施形態に係る電子部品は、本実施形態に係る積層体を備えている。本実施形態に係る積層体は、タッチパネル、液晶ディスプレイ、太陽電池、照明等の電子部品に用いることができる。
<Electronic parts>
The electronic component according to the present embodiment includes the laminate according to the present embodiment. The laminated body which concerns on this embodiment can be used for electronic components, such as a touch panel, a liquid crystal display, a solar cell, and illumination.
 図7(a)は、本実施形態に係る電子部品としてのタッチパネルを示す模式平面図である。図7(b)は、図7(a)の一部切欠き斜視図である。 FIG. 7A is a schematic plan view showing a touch panel as an electronic component according to the present embodiment. FIG. 7B is a partially cutaway perspective view of FIG.
 図7に示すタッチパネル(静電容量式タッチパネル)は、透明基材(透明基材、タッチパネル用基材)100上に、静電容量変化を検出する透明電極103及び透明電極104を有しており、透明電極103,104の透明基材100とは反対側の面に、色材を含有する光透過層102を有している。透明電極103は、X位置座標の信号を検出する。透明電極104は、Y位置座標の信号を検出する。透明電極103及び透明電極104は、樹脂層101上に存在している。これらの電極及び樹脂層は、上述した導電パターンの形成方法により設けることができる。透明電極103,104には、タッチパネルとしての電気信号を制御するドライバ素子回路(図示せず)の制御回路に接続するための引き出し配線105a及び引き出し配線105bが接続されている。透明電極103と透明電極104とが交差する部分において透明電極103と透明電極104との間には、絶縁膜124が配置されている(図7(b)参照)。これらの透明電極及び樹脂層上に光透過層102が積層されている。 The touch panel (capacitance type touch panel) shown in FIG. 7 has a transparent electrode 103 and a transparent electrode 104 for detecting a change in capacitance on a transparent base material (transparent base material, touch panel base material) 100. The transparent electrodes 103 and 104 have a light transmission layer 102 containing a color material on the surface opposite to the transparent substrate 100. The transparent electrode 103 detects an X position coordinate signal. The transparent electrode 104 detects a signal of the Y position coordinate. The transparent electrode 103 and the transparent electrode 104 exist on the resin layer 101. These electrodes and the resin layer can be provided by the conductive pattern forming method described above. The transparent electrodes 103 and 104 are connected to a lead-out wiring 105a and a lead-out wiring 105b for connection to a control circuit of a driver element circuit (not shown) that controls an electrical signal as a touch panel. An insulating film 124 is disposed between the transparent electrode 103 and the transparent electrode 104 at a portion where the transparent electrode 103 and the transparent electrode 104 intersect (see FIG. 7B). A light transmission layer 102 is laminated on the transparent electrode and the resin layer.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
<導電性繊維分散液(銀繊維分散液)の調製>
[ポリオール法による銀繊維の調製]
 2000mLの3口フラスコに、エチレングリコール500mLを入れ、窒素雰囲気下、マグネチックスターラーで撹拌しながらオイルバスにより160℃まで加熱した。ここに、別途用意した、PtCl2mgを50mLのエチレングリコールに溶解した溶液を滴下した。4~5分後、AgNO5gをエチレングリコール300mLに溶解した溶液と、重量平均分子量が8万のポリビニルピロリドン(和光純薬工業株式会社製)5gをエチレングリコール150mLに溶解した溶液とを、それぞれの滴下漏斗から1分間で滴下し、その後160℃で60分間撹拌した。
<Preparation of conductive fiber dispersion (silver fiber dispersion)>
[Preparation of silver fiber by polyol method]
In a 2000 mL three-necked flask, 500 mL of ethylene glycol was added and heated to 160 ° C. with an oil bath while stirring with a magnetic stirrer under a nitrogen atmosphere. A separately prepared solution prepared by dissolving 2 mg of PtCl 2 in 50 mL of ethylene glycol was added dropwise thereto. After 4 to 5 minutes, a solution in which 5 g of AgNO 3 was dissolved in 300 mL of ethylene glycol and a solution in which 5 g of polyvinylpyrrolidone having a weight average molecular weight of 80,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 150 mL of ethylene glycol were respectively obtained. From the dropping funnel in 1 minute, and then stirred at 160 ° C. for 60 minutes.
 上記反応溶液が30℃以下になるまで放置してから、アセトンで10倍に希釈した。次に、遠心分離機により2000回転で20分間遠心分離し、上澄み液をデカンテーションした。沈殿物にアセトンを加え、撹拌後、上記と同様の条件で遠心分離し、アセトンをデカンテーションした。その後、蒸留水を用いて同様に2回遠心分離して、銀繊維を得た。得られた銀繊維を光学顕微鏡で観察したところ、繊維径(直径)は約40nmで、繊維長は約4μmであった。 The reaction solution was allowed to stand at 30 ° C. or lower and then diluted 10 times with acetone. Next, centrifugation was performed at 2000 rpm for 20 minutes using a centrifuge, and the supernatant was decanted. Acetone was added to the precipitate, and after stirring, the mixture was centrifuged under the same conditions as described above, and acetone was decanted. Then, it centrifuged twice similarly using distilled water, and obtained the silver fiber. When the obtained silver fiber was observed with an optical microscope, the fiber diameter (diameter) was about 40 nm, and the fiber length was about 4 μm.
[銀繊維分散液の調製]
 純水に、上記で得られた銀繊維を0.2質量%、及び、ドデシル-ペンタエチレングリコールを0.1質量%の含有量となるように分散し、導電性繊維分散液1を得た。
[Preparation of silver fiber dispersion]
The silver fiber obtained above was dispersed in pure water so that the content was 0.2% by mass and dodecyl-pentaethylene glycol was 0.1% by mass to obtain a conductive fiber dispersion 1. .
<アクリル樹脂の合成>
 撹拌機、還流冷却器、温度計、滴下漏斗及び窒素ガス導入管を備えたフラスコに、メチルセロソルブとトルエンとの混合液(メチルセロソルブ/トルエン=3/2(質量比)、以下、「溶液s」という)400gを加え、窒素ガスを吹き込みながら撹拌して、80℃まで加熱した。一方、単量体としてメタクリル酸100g、メタクリル酸メチル250g、アクリル酸エチル100g及びスチレン50gと、開始剤としてアゾビスイソブチロニトリル0.8gとを混合した溶液(以下、「溶液a」という)を用意した。次に、80℃に加熱された溶液sに、溶液aを4時間かけて滴下した後、80℃で撹拌しながら2時間保温した。さらに、100gの溶液sにアゾビスイソブチロニトリル1.2gを溶解した溶液を、10分かけてフラスコ内に滴下した。そして、滴下後の溶液を撹拌しながら80℃で3時間保温した後、30分間かけて90℃に加熱した。90℃で2時間保温した後、冷却してバインダーポリマー溶液を得た。このバインダーポリマー溶液に、アセトンを加えて不揮発成分(固形分)が50質量%になるように調整し、(A)成分としてのバインダーポリマー溶液を得た。得られたバインダーポリマーの重量平均分子量はGPCによる標準ポリスチレン換算で80000であった。これをアクリルポリマー(A1)とした。なお、重量平均分子量を測定したGPCの測定条件は下記のとおりである。
<Synthesis of acrylic resin>
In a flask equipped with a stirrer, reflux condenser, thermometer, dropping funnel and nitrogen gas introduction tube, a mixture of methyl cellosolve and toluene (methyl cellosolve / toluene = 3/2 (mass ratio), hereinafter, “solution s 400 g) was added, stirred while blowing nitrogen gas, and heated to 80 ° C. On the other hand, a solution in which 100 g of methacrylic acid, 250 g of methyl methacrylate, 100 g of ethyl acrylate and 50 g of styrene are mixed with 0.8 g of azobisisobutyronitrile as an initiator (hereinafter referred to as “solution a”). Prepared. Next, the solution a was added dropwise to the solution s heated to 80 ° C. over 4 hours, and then kept at 80 ° C. with stirring for 2 hours. Further, a solution obtained by dissolving 1.2 g of azobisisobutyronitrile in 100 g of the solution s was dropped into the flask over 10 minutes. And the solution after dripping was heat-retained at 80 degreeC for 3 hours, stirring, Then, it heated at 90 degreeC over 30 minutes. The mixture was kept at 90 ° C. for 2 hours and then cooled to obtain a binder polymer solution. Acetone was added to the binder polymer solution to adjust the non-volatile component (solid content) to 50% by mass to obtain a binder polymer solution as the component (A). The weight average molecular weight of the obtained binder polymer was 80000 in terms of standard polystyrene conversion by GPC. This was designated as acrylic polymer (A1). In addition, the measurement conditions of GPC which measured the weight average molecular weight are as follows.
[GPC測定条件]
 機種:日立L6000(株式会社日立製作所製)
 検出:L3300RI(株式会社日立製作所製)
 カラム:Gelpack GL-R440 + GL-R450 + GL-R400M(日立化成株式会社製)
 カラム仕様:直径10.7mm×300mm
 溶媒:THF(テトラヒドロフラン)
 試料濃度:NV(不揮発分濃度)50質量%の樹脂溶液を120mg採取、5mLのTHFに溶解
 注入量:200μL
 圧力:4.9MPa
 流量:2.05mL/min
[GPC measurement conditions]
Model: Hitachi L6000 (manufactured by Hitachi, Ltd.)
Detection: L3300RI (manufactured by Hitachi, Ltd.)
Column: Gelpack GL-R440 + GL-R450 + GL-R400M (manufactured by Hitachi Chemical Co., Ltd.)
Column specifications: Diameter 10.7mm x 300mm
Solvent: THF (tetrahydrofuran)
Sample concentration: 120 mg of NV (non-volatile content) 50% by mass resin solution was collected and dissolved in 5 mL of THF Injection amount: 200 μL
Pressure: 4.9 MPa
Flow rate: 2.05 mL / min
<感光性樹脂組成物の溶液の調製>
 表1及び表2に示す材料を、同表に示す配合量(単位:質量部)で配合し、感光性樹脂組成物の溶液X1~X11を調製した。
<Preparation of solution of photosensitive resin composition>
The materials shown in Table 1 and Table 2 were blended in the blending amounts (unit: parts by mass) shown in the same table to prepare photosensitive resin composition solutions X1 to X11.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す材料の詳細は下記のとおりである。 Details of the materials shown in Tables 1 and 2 are as follows.
(A)成分
 (A1):上記アクリルポリマー(A1)
(A) Component (A1): The above acrylic polymer (A1)
(B)成分
 TMPTA:トリメチロールプロパントリアクリレート(日本化薬株式会社製、KAYARAD TMPTA)
 T-1420:ジペンタエリスリトールテトラアクリレート(日本化薬株式会社製、KAYARAD T-1420)
Component (B) TMPTA: trimethylolpropane triacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD TMPTA)
T-1420: Dipentaerythritol tetraacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD T-1420)
(C)成分
 TPO:2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASF社製、LUCIRIN TPO)
Component (C) TPO: 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (manufactured by BASF, LUCIRIN TPO)
(D)成分
 VALIFAST BLUE 2606:alpha-Bis[4-(diethylamino)phenyl]-4-(ethylamino)naphthalene-1-methanol(青色染料、オリエント化学工業株式会社製、商品名)
 OPLAS VIOLET 730:1-hydroxy-4-(p-tolylamino) anthracene-9,10-dione(紫色染料、オリエント化学工業株式会社製、商品名)
 NX-051:Phthalocyanine Blue(青色顔料、大日精化工業株式会社製、NX-051ブルー)
 NX-053:Chromofne Blue(青色顔料、大日精化工業株式会社製、NX-053ブルー)
 NX-043:Dioxazine violet(紫色顔料、大日精化工業株式会社製、NX-043バイオレット)
Component (D) VALIFAST BLUE 2606: alpha-Bis [4- (diethylamino) phenyl] -4- (ethylamino) naphthalene-1-methylol (blue dye, product name, manufactured by Orient Chemical Co., Ltd.)
OPLAS VIOLET 730: 1-hydroxy-4- (p-tolyamino) anthracene-9,10-dione (purple dye, trade name, manufactured by Orient Chemical Co., Ltd.)
NX-051: Phthalocyanine Blue (blue pigment, manufactured by Dainichi Seika Kogyo Co., Ltd., NX-051 Blue)
NX-053: Chromofne Blue (blue pigment, manufactured by Dainichi Seika Kogyo Co., Ltd., NX-053 Blue)
NX-043: Dioxazine violet (purple pigment, manufactured by Dainichi Seika Kogyo Co., Ltd., NX-043 Violet)
(その他)
 OIL BLACK 860:Solvent Black 3(黒色染料、オリエント化学工業株式会社製、OIL BLACK 860)
 SZ-6030:γ-メタクリロイルオキシプロピルトリメトキシ・シラン(SZ-6030、東レ・ダウコーニング株式会社製、SZ-6030)
(Other)
OIL BLACK 860: Solvent Black 3 (black dye, manufactured by Orient Chemical Industry Co., Ltd., OIL BLACK 860)
SZ-6030: γ-methacryloyloxypropyltrimethoxy silane (SZ-6030, manufactured by Toray Dow Corning Co., Ltd., SZ-6030)
<感光性導電フィルムの作製>
 上記導電性繊維分散液1を、支持フィルムである厚み50μmのポリエチレンテレフタレートフィルム(PETフィルム、帝人株式会社製、商品名:G2-50)上に26g/mで均一に塗布した後、100℃の熱風対流式乾燥機で10分間乾燥し、室温(25℃)において1MPaの線圧で加圧することにより、導電性繊維を含有する導電層を支持フィルム上に形成した。なお、走査型電子顕微鏡写真により測定したところ、導電層の乾燥後の膜厚は、約0.1μmであった。
<Preparation of photosensitive conductive film>
The conductive fiber dispersion 1 was uniformly applied at 26 g / m 2 onto a 50 μm-thick polyethylene terephthalate film (PET film, manufactured by Teijin Ltd., trade name: G2-50) as a support film, and then 100 ° C. A hot air convection dryer was used for 10 minutes, and pressurization was performed at a linear pressure of 1 MPa at room temperature (25 ° C.) to form a conductive layer containing conductive fibers on the support film. In addition, when measured by a scanning electron micrograph, the film thickness after drying of the conductive layer was about 0.1 μm.
 次に、支持フィルム上に形成された導電層上に上記感光性樹脂組成物の溶液X1~X11を均一に塗布し、100℃の熱風対流式乾燥機で10分間乾燥して感光性樹脂層を形成した。なお、走査型電子顕微鏡写真により測定したところ、感光性樹脂層の乾燥後の膜厚は5μmであった。次に、感光性樹脂層をポリエチレン製の保護フィルム(カバーフィルム、タマポリ株式会社製、商品名「NF-13」)で覆い、感光性導電フィルムE1~E11を得た。 Next, the photosensitive resin composition solutions X1 to X11 are uniformly applied on the conductive layer formed on the support film, and dried for 10 minutes in a hot air convection dryer at 100 ° C. to form a photosensitive resin layer. Formed. In addition, when measured with the scanning electron micrograph, the film thickness after drying of the photosensitive resin layer was 5 μm. Next, the photosensitive resin layer was covered with a protective film made of polyethylene (cover film, manufactured by Tamapoly Co., Ltd., trade name “NF-13”) to obtain photosensitive conductive films E1 to E11.
<感光特性(抜け解像度)の評価>
 厚み125μmのPETフィルム(東洋紡株式会社製、商品名「コスモシャイン-A300」)の表面上に、前記で得られた感光性導電フィルムE1~E11の保護フィルムを剥離しながら、感光性樹脂層をPETフィルムに対向させて、110℃、0.6m/min、0.4MPaの条件でラミネートした。
<Evaluation of photosensitivity (missing resolution)>
While peeling off the protective films of the photosensitive conductive films E1 to E11 obtained above on the surface of a 125 μm thick PET film (trade name “Cosmo Shine-A300” manufactured by Toyobo Co., Ltd.), the photosensitive resin layer was formed. It was made to oppose a PET film, and it laminated on the conditions of 110 degreeC, 0.6 m / min, and 0.4 MPa.
 ラミネート後、PETフィルムを冷却し、基板の温度が23℃になった時点で、感光特性調査用ステップタブレット(S/T;L/S=x/400、x=6~47)マスクを被せ、支持フィルム側から、高圧水銀灯を有する露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて、20mJ/cmの露光量で光照射した。光照射後、支持フィルムを剥離し、50mJ/cmの露光量で光照射した。 After lamination, the PET film is cooled, and when the temperature of the substrate reaches 23 ° C., a step tablet for photosensitive property investigation (S / T; L / S = x / 400, x = 6 to 47) is covered, Light was irradiated from the support film side with an exposure amount of 20 mJ / cm 2 using an exposure machine having a high-pressure mercury lamp (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.). After light irradiation, the support film was peeled off and irradiated with light at an exposure amount of 50 mJ / cm 2 .
 次に、30℃で1質量%炭酸ナトリウム水溶液を40秒間スプレーすることにより現像した。さらに、UV露光機により、1J/cmの露光量を光照射した。 Next, development was performed by spraying a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 40 seconds. Furthermore, the UV exposure machine irradiated light with the exposure amount of 1 J / cm < 2 >.
 以上の操作により、PETフィルム上に、図1(a)に示す導電パターンを形成した。 By the above operation, the conductive pattern shown in FIG. 1A was formed on the PET film.
 抜け解像度の評価として、ライン/スペース(L/400μm)パターンのライン幅L(単位:μm)を測定した。ライン幅が細いほど抜け解像性が高いことを意味する。結果を表3及び表4に示す。 As an evaluation of missing resolution, the line width L (unit: μm) of a line / space (L / 400 μm) pattern was measured. The narrower the line width, the higher the resolution. The results are shown in Tables 3 and 4.
<透過b*及び全光線透過率T.T.の測定>
 任意の大きさに切り出した厚み0.1mmtのSiOスパッタガラス基板上に上記方法で感光性導電フィルムE1~E11をラミネートした。ラミネート後、ガラス基板の温度が23℃になった時点で、支持フィルム側から、高圧水銀灯を有する露光機(株式会社オーク製作所製、商品名「EXM-1201」)を用いて、1000mJ/cmの露光量で光照射した。光照射後、支持フィルムを剥離して評価用基板とした。この評価用基板を用いて透過b*及び全光線透過率T.T.を測定した。評価用基板の透過b*は、分光測色計(コニカミノルタ株式会社製、商品名「CM-5」)を用いて、基板と反対面からSCE方式で測定した。評価用基板の全光線透過率T.T.は、ヘーズメータ(日本電飾工業株式会社製、商品名「NDH-5000」)を用いて測定した。結果を表3及び表4に示す。なお、全光線透過率の単位は「%」である。
<Transmission b * and total light transmittance T.I. T. T. et al. Measurement>
Photosensitive conductive films E1 to E11 were laminated by the above method on a SiO 2 sputtered glass substrate having a thickness of 0.1 mmt cut into an arbitrary size. After the lamination, when the temperature of the glass substrate reaches 23 ° C., 1000 mJ / cm 2 is used from the support film side using an exposure machine having a high-pressure mercury lamp (trade name “EXM-1201” manufactured by Oak Manufacturing Co., Ltd.). It was irradiated with light at an exposure amount of. After light irradiation, the support film was peeled off to obtain a substrate for evaluation. Using this evaluation substrate, transmission b * and total light transmittance T.I. T. T. et al. Was measured. The transmission b * of the evaluation substrate was measured by the SCE method from the surface opposite to the substrate using a spectrocolorimeter (manufactured by Konica Minolta, trade name “CM-5”). Total light transmittance of substrate for evaluation T. T. et al. Was measured using a haze meter (trade name “NDH-5000” manufactured by Nippon Denka Kogyo Co., Ltd.). The results are shown in Tables 3 and 4. The unit of total light transmittance is “%”.
 銀ペースト塗布後の乾燥工程(例えば、乾燥条件:145℃/70min)を想定して、145℃の熱風対流式乾燥機で70分間温度をかけた後、上記と同様の方法により評価用基板の透過b*及び全光線透過率T.T.を測定した。 Assuming a drying step after the silver paste application (for example, drying conditions: 145 ° C./70 min), after applying the temperature for 70 minutes with a 145 ° C. hot air convection dryer, Transmission b * and total light transmittance T.I. T.A. Was measured.
 耐光性試験として、上記加熱処理(145℃/70minの処理)後の評価基板(実施例3~7)をサンテストXLS+(株式会社東洋精機製)で照射強度60W/m(300~400nm)、ブラックパネル温度60℃、時間500hの条件で試験した。試験後、上記と同様の方法により評価用基板の透過b*及び全光線透過率T.T.を測定した。 As a light resistance test, the evaluation substrate (Examples 3 to 7) after the above heat treatment (145 ° C./70 min treatment) was irradiated with a sun test XLS + (manufactured by Toyo Seiki Co., Ltd.) with an irradiation intensity of 60 W / m 2 (300 to 400 nm). The test was conducted under the conditions of a black panel temperature of 60 ° C. and a time of 500 hours. After the test, the transmission b * and the total light transmittance T.sub. T. T. et al. Was measured.
<評価結果の判定>
 以下を判定基準とし、「A」、「B」又は「C」と評価した。判定結果を表3及び表4に示す。
1)初期判定(145℃/70min)
  A:初期値      b*≦0.4、T.T.≧88.0%、且つ、
    初期値からの変動 b*≦±0.4、T.T.≦±0.4%
  B:初期値      b*≦0.4、88.0%>T.T.≧86.0%、且つ、
    初期値からの変動 b*≦±0.8、T.T.≦±0.8%
  C:上記以外
2)信頼性判定(145℃/70min+耐光性試験:500h)
  A:初期値      b*≦0.4、T.T.≧88.0%、且つ、
    初期値からの変動 b*≦±0.4、T.T.≦±0.4%
  B:初期値      b*≦0.4、88.0%>T.T.≧86.0%、且つ、
    初期値からの変動 b*≦±0.8、T.T.≦±0.8%
  C:上記以外
<Determination of evaluation results>
The following criteria were used, and “A”, “B” or “C” was evaluated. The determination results are shown in Tables 3 and 4.
1) Initial determination (145 ° C./70 min)
A: Initial value b * ≦ 0.4, T.I. T. T. et al. ≧ 88.0%, and
Fluctuation from initial value b * ≦ ± 0.4, T.P. T. T. et al. ≤ ± 0.4%
B: Initial value b * ≦ 0.4, 88.0%> T. T. T. et al. ≧ 86.0%, and
Fluctuation from initial value b * ≦ ± 0.8, T.P. T. T. et al. ≦ ± 0.8%
C: Other than the above 2) Reliability determination (145 ° C./70 min + light resistance test: 500 h)
A: Initial value b * ≦ 0.4, T.I. T. T. et al. ≧ 88.0%, and
Fluctuation from initial value b * ≦ ± 0.4, T.P. T. T. et al. ≤ ± 0.4%
B: Initial value b * ≦ 0.4, 88.0%> T. T. T. et al. ≧ 86.0%, and
Fluctuation from initial value b * ≦ ± 0.8, T.P. T. T. et al. ≦ ± 0.8%
C: Other than the above
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、導電材料(導電性繊維等)を含有する導電層を用いつつ、黄色味の上昇を抑制することができる。また、本発明によれば、このような積層体を得るためのフィルムセット及び感光性導電フィルムを提供することができる。 According to the present invention, it is possible to suppress a yellowish increase while using a conductive layer containing a conductive material (conductive fiber or the like). Moreover, according to this invention, the film set and photosensitive conductive film for obtaining such a laminated body can be provided.
 1…支持フィルム、2…導電層、2a…導電パターン、3,8…感光性樹脂組成物層、3a,3b,3c,7b,101…樹脂層、3d…樹脂層(光透過層)、4…感光層、5…保護フィルム、6…マスクパターン、7…光透過層形成用組成物層、3e,3f,3g,7a,102…光透過層、8a…樹脂硬化物、9…色材、10…感光性導電フィルム、20,100…透明基材、30,31,32,33,34…導電パターン付透明基材(導電パターン付基材)、40a,40b,40c,50…積層体、60…ラミネートロール、103…透明電極(X位置座標)、104…透明電極(Y位置座標)、105a,105b…引き出し配線、124…絶縁膜、L…活性光線。 DESCRIPTION OF SYMBOLS 1 ... Support film, 2 ... Conductive layer, 2a ... Conductive pattern, 3, 8 ... Photosensitive resin composition layer, 3a, 3b, 3c, 7b, 101 ... Resin layer, 3d ... Resin layer (light transmission layer), 4 DESCRIPTION OF SYMBOLS ... Photosensitive layer, 5 ... Protective film, 6 ... Mask pattern, 7 ... Composition layer for light transmission layer formation, 3e, 3f, 3g, 7a, 102 ... Light transmission layer, 8a ... Resin hardened material, 9 ... Color material, DESCRIPTION OF SYMBOLS 10 ... Photosensitive electrically conductive film 20,100 ... Transparent base material, 30, 31, 32, 33, 34 ... Transparent base material with a conductive pattern (base material with a conductive pattern), 40a, 40b, 40c, 50 ... Laminated body, 60 ... Laminate roll, 103 ... Transparent electrode (X position coordinate), 104 ... Transparent electrode (Y position coordinate), 105a, 105b ... Lead-out wiring, 124 ... Insulating film, L ... Actinic ray.

Claims (17)

  1.  透明基材と、導電層と、光透過層と、を備え、
     前記導電層が、前記透明基材上に設けられていると共に、導電材料を含有し、
     前記光透過層が、前記透明基材上に設けられていると共に、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する、積層体。
    A transparent substrate, a conductive layer, and a light transmission layer;
    The conductive layer is provided on the transparent substrate and contains a conductive material,
    The light-transmitting layer is provided on the transparent substrate, and includes at least one color material selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment.
  2.  前記導電層が、前記光透過層上に設けられている、請求項1に記載の積層体。 The laminate according to claim 1, wherein the conductive layer is provided on the light transmission layer.
  3.  前記光透過層が、前記導電層の前記透明基材とは反対側に設けられている、請求項1に記載の積層体。 The laminate according to claim 1, wherein the light transmission layer is provided on the side of the conductive layer opposite to the transparent substrate.
  4.  前記導電層が導電パターンである、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the conductive layer is a conductive pattern.
  5.  前記色材の含有量が、前記光透過層の全量を基準として0質量%を超え0.2質量%以下である、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the content of the coloring material is more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
  6.  前記導電材料が、無機導電体及び有機導電体からなる群より選択される少なくとも一種の導電体を含む、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the conductive material includes at least one type of conductor selected from the group consisting of inorganic conductors and organic conductors.
  7.  前記導電材料が導電性繊維を含む、請求項1~6のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the conductive material contains conductive fibers.
  8.  前記導電性繊維が銀繊維である、請求項7に記載の積層体。 The laminate according to claim 7, wherein the conductive fiber is a silver fiber.
  9.  光透過層及び導電層を透明基材上に設ける光透過層形成工程を備え、
     前記導電層が、前記光透過層上に設けられていると共に、導電材料を含有し、
     前記光透過層が、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材を含有する、積層体の製造方法。
    A light transmissive layer forming step of providing a light transmissive layer and a conductive layer on a transparent substrate;
    The conductive layer is provided on the light transmission layer and contains a conductive material,
    The manufacturing method of a laminated body in which the said light transmissive layer contains at least 1 type of color material selected from the group which consists of a blue dye, a blue pigment, a purple dye, and a purple pigment.
  10.  前記光透過層形成工程が、
     光透過層形成用組成物層と、当該光透過層形成用組成物層上に設けられた導電層と、を含む感光層を前記透明基材上に形成する工程と、
     前記感光層に活性光線を照射する露光工程と、を含み、
     前記光透過層形成用組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有する、請求項9に記載の積層体の製造方法。
    The light transmission layer forming step includes
    Forming a light-sensitive layer forming composition layer and a conductive layer provided on the light-transmitting layer forming composition layer on the transparent substrate;
    Exposure step of irradiating the photosensitive layer with actinic rays,
    The light transmitting layer forming composition layer is at least one colorant selected from the group consisting of a binder polymer, a photopolymerizable compound, a photopolymerization initiator, a blue dye, a blue pigment, a purple dye, and a purple pigment. The manufacturing method of the laminated body of Claim 9 containing these.
  11.  支持フィルムと、導電層と、感光性樹脂組成物層と、がこの順で積層されている構造を有する感光性導電フィルムを、前記感光性樹脂組成物層が前記透明基材に接するようにラミネートすることによって前記感光層が前記透明基材上に形成され、
     前記感光性樹脂組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有する、請求項10に記載の積層体の製造方法。
    A photosensitive conductive film having a structure in which a support film, a conductive layer, and a photosensitive resin composition layer are laminated in this order is laminated so that the photosensitive resin composition layer is in contact with the transparent substrate. The photosensitive layer is formed on the transparent substrate by
    The photosensitive resin composition layer is a binder polymer, a photopolymerizable compound, a photopolymerization initiator, and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a purple dye, and a purple pigment; The manufacturing method of the laminated body of Claim 10 containing this.
  12.  前記導電層が導電パターンであり、
     前記露光工程が、前記感光層にパターン状に活性光線を照射する工程であり、
     前記光透過層形成工程が、前記露光工程の後に前記感光層を現像する現像工程を更に含む、請求項10又は11に記載の積層体の製造方法。
    The conductive layer is a conductive pattern;
    The exposure step is a step of irradiating the photosensitive layer with actinic rays in a pattern,
    The manufacturing method of the laminated body of Claim 10 or 11 with which the said light transmissive layer formation process further includes the image development process which develops the said photosensitive layer after the said exposure process.
  13.  前記光透過層形成工程が、前記現像工程の前に、酸素存在下で、前記感光層の少なくとも前記露光工程における未露光部の一部又は全部に活性光線を照射する工程を更に含む、請求項12に記載の積層体の製造方法。 The light transmissive layer forming step further includes a step of irradiating at least a part or all of an unexposed portion in the exposure step of the photosensitive layer with an actinic ray in the presence of oxygen before the developing step. The manufacturing method of the laminated body of 12.
  14.  前記色材の含有量が、前記光透過層の全量を基準として0質量%を超え0.2質量%以下である、請求項9~13のいずれか一項に記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 9 to 13, wherein the content of the coloring material is more than 0% by mass and 0.2% by mass or less based on the total amount of the light transmission layer.
  15.  第1の支持フィルムと、当該第1の支持フィルム上に設けられた第1の感光性樹脂組成物層と、を有する感光性フィルム、及び、
     第2の支持フィルムと、導電材料を含有する導電層と、第2の感光性樹脂組成物層と、がこの順で積層されている構造を有する感光性導電フィルムを含み、
     前記第1の感光性樹脂組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有し、
     前記第2の感光性樹脂組成物層が、バインダーポリマーと、光重合性化合物と、光重合開始剤と、を含有する、フィルムセット。
    A photosensitive film having a first support film and a first photosensitive resin composition layer provided on the first support film; and
    Including a photosensitive conductive film having a structure in which a second support film, a conductive layer containing a conductive material, and a second photosensitive resin composition layer are laminated in this order;
    The first photosensitive resin composition layer is at least one color selected from the group consisting of a binder polymer, a photopolymerizable compound, a photopolymerization initiator, a blue dye, a blue pigment, a purple dye, and a purple pigment. Containing, and
    The film set in which a said 2nd photosensitive resin composition layer contains a binder polymer, a photopolymerizable compound, and a photoinitiator.
  16.  請求項9~14のいずれか一項に記載の積層体の製造方法に用いられる、請求項15に記載のフィルムセット。 The film set according to claim 15, which is used in the method for producing a laminate according to any one of claims 9 to 14.
  17.  支持フィルム、
     導電材料を含有する導電層、及び、
     バインダーポリマーと、光重合性化合物と、光重合開始剤と、青色染料、青色顔料、紫色染料及び紫色顔料からなる群より選択される少なくとも一種の色材と、を含有する感光性樹脂組成物層、がこの順で積層されている構造を有する、感光性導電フィルム。
    Support film,
    A conductive layer containing a conductive material, and
    Photosensitive resin composition layer containing a binder polymer, a photopolymerizable compound, a photopolymerization initiator, and at least one colorant selected from the group consisting of a blue dye, a blue pigment, a violet dye, and a violet pigment. The photosensitive conductive film which has the structure laminated | stacked in this order.
PCT/JP2016/077863 2015-09-24 2016-09-21 Laminate, production method therefor, film set, and photosensitive conductive film WO2017051826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015186860A JP2018183878A (en) 2015-09-24 2015-09-24 Laminate, production method therefor, film set, and photosensitive conductive film
JP2015-186860 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051826A1 true WO2017051826A1 (en) 2017-03-30

Family

ID=58386658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077863 WO2017051826A1 (en) 2015-09-24 2016-09-21 Laminate, production method therefor, film set, and photosensitive conductive film

Country Status (2)

Country Link
JP (1) JP2018183878A (en)
WO (1) WO2017051826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917950A (en) * 2019-01-09 2019-06-21 苏州诺菲纳米科技有限公司 Conductive film, the preparation method of conductive film and touch device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113168094B (en) * 2018-12-18 2024-06-11 三菱化学株式会社 Photosensitive coloring resin composition, cured product, coloring spacer and image display device
JPWO2021039187A1 (en) * 2019-08-27 2021-03-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171984A (en) * 2011-02-17 2012-09-10 Gunze Ltd Color tone correction film and functional film using the same
JP2012181392A (en) * 2011-03-02 2012-09-20 Toppan Printing Co Ltd Color filter substrate and display device having the same
JP2013159099A (en) * 2012-02-08 2013-08-19 Kuraray Co Ltd Method of manufacturing optical member
WO2015056445A1 (en) * 2013-10-16 2015-04-23 日立化成株式会社 Laminate containig conductive fiber, photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171984A (en) * 2011-02-17 2012-09-10 Gunze Ltd Color tone correction film and functional film using the same
JP2012181392A (en) * 2011-03-02 2012-09-20 Toppan Printing Co Ltd Color filter substrate and display device having the same
JP2013159099A (en) * 2012-02-08 2013-08-19 Kuraray Co Ltd Method of manufacturing optical member
WO2015056445A1 (en) * 2013-10-16 2015-04-23 日立化成株式会社 Laminate containig conductive fiber, photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate, and touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917950A (en) * 2019-01-09 2019-06-21 苏州诺菲纳米科技有限公司 Conductive film, the preparation method of conductive film and touch device

Also Published As

Publication number Publication date
JP2018183878A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
CN105244081B (en) Degradation inhibiting method, film and its manufacturing method and laminated body
TWI592994B (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
JP6176295B2 (en) Method for forming conductive pattern
CN104122755B (en) Photosensitive element, photosensitive element roll, method for producing resist pattern, and electronic component
JP2016097595A (en) Laminate and method for producing the same, film set, photosensitive conductive film, and electronic component
WO2016167228A1 (en) Photosensitive conductive film, method for forming conductive pattern, substrate having conductive pattern, and touch panel sensor
WO2017051826A1 (en) Laminate, production method therefor, film set, and photosensitive conductive film
JP2016046031A (en) Laminate, method for producing laminate, film set and electronic component
WO2015049939A1 (en) Photosensitive conductive film, conductive pattern formation method using same, and conductive pattern substrate
JP2017207536A (en) Photosensitive conductive film, film set, and method for producing laminate
JP2017198878A (en) Photosensitive conductive film and conductive pattern comprising the same, conductive pattern substrate, and method for producing touch panel sensor
TW201502704A (en) Photosensitive conductive film, fabricating method of conductive pattern using the same and conductive pattern substrate
WO2016006024A1 (en) Photosensitive conductive film, conductive film set and method of manufacturing surface protection film and base film having conductive pattern using same, and method of manufacturing base film having conductive pattern
WO2018138879A1 (en) Photosensitive conductive film, conductive pattern formation method, conductive pattern substrate production method, conductive pattern substrate, and touch panel sensor
JP2017068158A (en) Photosensitive conductive film and method for forming conductive pattern using the same
JP2017068734A (en) Photosensitive conductive film, forming method for conductive pattern using the same
JP2017072679A (en) Photosensitive conductive film, and method of forming conductive pattern
JP2016070973A (en) Photosensitive conductive film, method for forming conductive pattern, and conductive film substrate
WO2018087816A1 (en) Photosensitive conductive film, method for forming conductive pattern, and method for manufacturing conductive pattern base
JP2018097576A (en) Wiring for connection and forming method of wiring for connection
WO2018008599A1 (en) Photosensitive conductive film, method for manufacturing conductive pattern, conductive pattern substrate, and touch panel sensor
JP2017201344A (en) Photosensitive conductive film, method for producing conductive pattern, conductive pattern substrate and touch panel sensor
JP2018139076A (en) Photosensitive conductive film and method for manufacturing the same, method for manufacturing conductive pattern, conductive pattern base material, and touch panel sensor
JP2018049055A (en) Photosensitive conductive film, method for forming conductive pattern and method for forming conductive pattern substrate
JP2017072756A (en) Method of forming resin cured film pattern and base material with resin cured film pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP