WO2017050687A1 - Optimal jet fuel composition with heat stability and improved oxidation - Google Patents

Optimal jet fuel composition with heat stability and improved oxidation Download PDF

Info

Publication number
WO2017050687A1
WO2017050687A1 PCT/EP2016/072146 EP2016072146W WO2017050687A1 WO 2017050687 A1 WO2017050687 A1 WO 2017050687A1 EP 2016072146 W EP2016072146 W EP 2016072146W WO 2017050687 A1 WO2017050687 A1 WO 2017050687A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
volume
fuel
relative
percentage
Prior art date
Application number
PCT/EP2016/072146
Other languages
French (fr)
Inventor
Arij BEN AMARA
Marie-Helene Klopffer
Maira ALVES FORTUNATO
Laurie STARCK
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2017050687A1 publication Critical patent/WO2017050687A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1608Well defined compounds, e.g. hexane, benzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0492Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation

Definitions

  • the present invention relates to the field of reactors and in particular, a new formulation, usable as a carburettor, having good thermal stability and oxidation, said composition comprising a fuel and at least one additive, in which the proportion by volume fuel relative to the total volume of the composition is higher than in the compositions of the prior art.
  • the molecules of the reactors are subject to autoxidation, polymerization and thermal cracking reactions. These reactions can lead to alterations in the physicochemical characteristics and change the interaction of jet fuel with its environment, in particular by the formation of sediments and / or deposits in tanks, fluid circuits and corrosion of surfaces.
  • the stability of a jet fuel depends among other things on these parameters.
  • Aromatic compounds play a major role in the quality of a jet fuel because they make it possible to ensure the compatibility of the jet fuel with the polymers used to seal the reactor fuel lines by caking, such as for example butadiene-based copolymers.
  • NBR Nitrile Butadiene Rubber
  • FVMQ fluorosilicones
  • FKM fluoroelastomers
  • the patent application CN 101 423 781 discloses an additive and fuel composition which allows the limitation of the formation of deposits.
  • the recommended additives are terpenes, 2-propanone, glycol ethers, dimethyl esters of carboxylic acid, nonylphenol ethoxylates and mineral oils.
  • US Pat. Nos. 7,683,224 and 7,560,603 disclose the use of phenylalkyls and / or alkylcyclohexyls having at least one alkyl chain having 5 to 25 carbon atoms as additives for kerosene and diesel type fuels. These additives improve the properties of synthetic slices (increase flash point, density, lubricity, aerobic degradability, oxidation stability and thermal stability).
  • US Pat. No. 7,683,224 and 7,560,603 disclose the use of phenylalkyls and / or alkylcyclohexyls having at least one alkyl chain having 5 to 25 carbon atoms as additives for kerosene and diesel type fuels. These additives improve the properties of synthetic slices (increase flash point, density, lubricity, aerobic degradability, oxidation stability and thermal stability).
  • 8,748,678 discloses a formulation based on a blend of a high density synthetic cut composed essentially of cycloalkanes and naphthenoaromatics, preferentially tetralin and decalin, and of a low density synthetic cut, composed essentially of paraffinic compounds (SPK ) mainly of the n-alkane type and additives, making it possible to improve, among other things, the thermal stability of the jet engines and diesel engines.
  • SPK paraffinic compounds
  • the patent application WO 2012/024193 discloses a thermally stable jet fuel formulation which respects several physicochemical properties (calorific value, boiling temperature) whose content of aromatic compounds (mono and diaromatic) is between 2-25% vol. in cycloparaffins of 22-35% vol, the n-paraffin content of 20-35% vol and the iso-paraffin content of 22-35% vol.
  • US Pat. No. 3,703,361 discloses the use of decahydroacenaphthene as a 100% jet fuel or in a mixture with a conventional jet fuel at a decahydroacenaphthene content of between 10 and 60% by weight so as to improve the physical properties and the stability of the jet fuel.
  • An object of the invention is a composition
  • n-methyl substituted benzenes n being an integer between 1 and 6, tetralin and decalin alone or as a mixture, the percentage the volume of said fuel being between 75% and 98% relative to the total volume of the composition and in which:
  • the percentage by volume of said substituted benzene when it is present in the composition is between 2 and 15% by volume relative to the total volume of the composition
  • the percentage by volume of tetralin when it is present in the composition is between 2 and 10% by volume relative to the total volume of the composition and
  • the percentage by volume of the decalin when it is present in the composition is between 5 and 25% by volume relative to the total volume of the composition
  • the sum of the volume percentages of the fuel (s) and the additive (s) being equal to 100%.
  • Another object of the invention is the use of said composition as a jet fuel.
  • An advantage of the present invention is to provide a novel jet fuel formulation whose oxidation stability, thermal stability and physical properties such as density and compatibility with materials, especially polymers, are improved.
  • Another advantage of the present invention is to allow the increase of the amount of synthetic fuel incorporated in a composition for use as a jet fuel with respect to the jet fuel compositions of the prior art.
  • the invention relates to a composition
  • a composition comprising at least one fuel and at least one additive chosen from n-methyl-substituted benzenes, n being an integer between 1 and 6, tetralin and decalin alone or as a mixture, the volume percentage of said fuel. being between 75% and 98% relative to the total volume of the composition and in which:
  • the percentage by volume of said substituted benzene when it is present in the composition is between 2 and 15% by volume relative to the total volume of the composition
  • the percentage by volume of tetralin when it is present in the composition is between 2 and 10% by volume relative to the total volume of the composition and
  • the percentage by volume of the decalin when it is present in the composition is between 5 and 25% by volume relative to the total volume of the composition
  • the sum of the volume percentages of the fuel (s) and the additive (s) being equal to 100%.
  • said fuel is selected from conventional kerosene and synthetic fuels.
  • Synthetic fuel is a fuel produced from non-petroleum feedstock compatible with ASTM D7566
  • Conventional kerosene means a fuel derived from conventional petroleum refining processes compatible with the ASTM D1 655 or DEFSTAN 91 -91 specification.
  • said synthetic fuel is advantageously a synthetic paraffinic kerosene (SPK) derived from a hydrotreatment of esters and fatty acids (SPK-HEFA) or from a Fischer Tropsch process (SPK-FT) or a synthetic Iso-Paraffin (S / P), also called Farnesane.
  • SPK synthetic paraffinic kerosene
  • SPK-HEFA hydrotreatment of esters and fatty acids
  • SPK-FT Fischer Tropsch process
  • S / P synthetic Iso-Paraffin
  • the additive is advantageously chosen from toluene, dimethylbenzenes and trimethylbenzenes alone or as a mixture.
  • the volume percentage of said additive is advantageously between 3% and 12% relative to the total volume of the composition and preferably between 4% and 10% relative to the volume total of the composition.
  • the volume percentage of said additive is advantageously between 3% and 9% relative to the total volume of the composition and preferably between 4% and 8% relative to the total volume of the composition.
  • the volume percentage of said additive is advantageously between 5% and 20% relative to the total volume of the composition and preferably between 10% and 15% relative to the total volume of the composition.
  • the total volume percentage of said additives is between 2% and 10% relative to the total volume of the composition, preferably between 3% and 9% relative to the total volume of the composition. the composition and even more preferably between 4% and 8% relative to the total volume of the composition.
  • Another object of the invention is the use of said composition as a carburetor reactor. To be certified a reactor carburetor must meet different criteria and physico-chemical properties such as oxidation stability, thermal stability, density and its ability to swell the polymers ensuring the sealing of the circuits.
  • the oxidation stability of a jet fuel is defined by the induction period (IP) of said jet fuel, the higher the induction period, the higher the oxidation stability.
  • IP The induction period
  • the thermal stability of a jet fuel is measured by the standardized test ASTM D-3241 "Standard test method for thermal oxidation stability of aviation turbine fuels". This test method makes it possible to measure the stability of high temperature reactor carburetors.
  • the device requires a volume of 450 ml of jet fuel for a test that lasts 2h30min.
  • the jet fuel is pumped at a fixed volumetric flow rate through a heater and then passed through a 17 micrometer nominal porosity filter made of stainless steel where the jet fuel degradation products can be trapped.
  • the density of a jet fuel is a decisive physico-chemical parameter and must be included in a precise range because the density impacts on the amount of energy on board. If a jet fuel has a density that is too low, it is possible to have, for example, Steam plugs in the jet fuel circuit If, on the contrary, a jet fuel with too high a density, it is possible that the vaporization is not carried out optimally and therefore impacts combustion. Density is measured by ASTM methods D4052, IP365, ASTM D1298, IP1 60. Polymers such as butadiene-acrylonitrile copolymers (NBR: Nitrile)
  • Butadiene Rubber fluorosilicones (FVMQ) and fluoroelastomers (FKM) are commonly used in aeronautics as a seal.
  • FVMQ fluorosilicones
  • FKM fluoroelastomers
  • the swelling rate of the polymers is measured by laboratory methods. Their principle is to immerse the polymer in the jet fuel for a certain time. During this immersion phase, the polymer is regularly characterized to define its swelling through measurements of weight, and dimensions.
  • Synthetic paraffinic kerosene type synthetic fuel derived from the hydrotreatment of esters and fatty acids SPK-HEFA
  • SPK-HEFA synthetic paraffinic kerosene type synthetic fuel derived from the hydrotreatment of esters and fatty acids
  • Example 2 Stability and Physicochemical Properties of the Compositions
  • the compositions obtained in Example 1 are analyzed according to the methods described above to determine their oxidation stability, their thermal stability, their density and their ability to set a copolymer-type butadiene-acrylonitrile copolymer (NBR). : Nitrile Butadiene Rubber), fluorosilicone (FVMQ) and fluoroelastomers (FKM). The results are listed in Tables 2 and 3.
  • Blends having a visual rating value greater than or equal to 3 are incompatible with ASTM 7566.
  • xylene can not be used as an additive with a 25% by volume amount because of too much deposition.
  • Tetralin can not be used as an additive with 15% by volume due to poor thermal stability.
  • Decalin can be used at 25% by volume, the induction period experiencing a peak with a quantity of 15% by volume of decalin. Thus, beyond 25% by volume of decalin, the induction period becomes too low for the desired oxidation stability.
  • 1-Methylnaphthalene can not be used as an additive given the poor thermal stability of the jet fuel regardless of the concentration of 1-methylnaphthalene.
  • the additives that can be used according to the invention have been tested with regard to their capacity to induce a mass variation of various polymers (butadiene-acrylonitrile copolymer (NBR: Nitrile Butadiene Rubber), fluorosilicone (FVMQ) and fluoroelastomer (FKM), the results are listed in Table 3.
  • NBR Nitrile Butadiene Rubber
  • FVMQ fluorosilicone
  • FKM fluoroelastomer
  • the additives according to the invention therefore make it possible both to increase the oxidation stability and the thermal stability of a jet fuel while improving the physicochemical properties.
  • the additives according to the invention also allow to increase the proportion of synthetic fuel in a carburetor reactor composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The invention relates to a composition comprising at least one fuel and at least one additive chosen from benzenes substituted with n methyls, n being an integer between 1 and 6, tetralin and decalin, alone or as a mixture, the volume percentage of said fuel being between 75% and 98% relative to the total volume of the composition and in which: - the volume percentage of said substituted benzene, when it is present in the composition, is between 2% and 15% by volume relative to the total volume of the composition, - the volume percentage of the tetralin, when it is present in the composition, is between 2% and 10% by volume relative to the total volume of the composition and - the volume percentage of the decalin, when it is present in the composition, is between 5% and 25% by volume relative to the total volume of the composition, the sum of the volume percentages of the fuel(s) and of the additive(s) being equal to 100%.

Description

COMPOSITION OPTIMALE DE CARBUREACTEUR A STABILITE THERMIQUE  OPTIMAL CARBUREACTOR COMPOSITION WITH THERMAL STABILITY
ET A L'OXYDATION AMELIOREE  AND IMPROVED OXIDATION
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
Les contraintes environnementales, économiques et énergétiques ont encouragé la diversification des ressources énergétiques et le développement de nouvelles technologies dans le domaine des transports et en particulier le transport aéronautique. Environmental, economic and energy constraints have encouraged the diversification of energy resources and the development of new technologies in the field of transport and in particular aeronautical transport.
La présente invention concerne le domaine des carbu réacteurs et en particulier, une nouvelle formulation, utilisable comme carbu réacteur, ayant une bonne stabilité thermique et à l'oxydation, ladite composition comprenant un carburant et au moins un additif, dans laquelle la proportion en volume du carburant par rapport au volume total de la composition est plus élevée que dans les compositions de l'art antérieur. En effet, les molécules des carbu réacteurs sont sujettes à des réactions d'autoxydation, de polymérisation et de craquage thermique. Ces réactions peuvent entraîner des altérations des caractéristiques physico-chimiques et modifier l'interaction du carburéacteur avec son environnement, en particulier de par la formation de sédiments et/ou de dépôts dans les réservoirs, les circuits fluides et par la corrosion des surfaces. Ainsi la stabilité d'un carburéacteur dépend entre autres de ces paramètres. The present invention relates to the field of reactors and in particular, a new formulation, usable as a carburettor, having good thermal stability and oxidation, said composition comprising a fuel and at least one additive, in which the proportion by volume fuel relative to the total volume of the composition is higher than in the compositions of the prior art. Indeed, the molecules of the reactors are subject to autoxidation, polymerization and thermal cracking reactions. These reactions can lead to alterations in the physicochemical characteristics and change the interaction of jet fuel with its environment, in particular by the formation of sediments and / or deposits in tanks, fluid circuits and corrosion of surfaces. Thus, the stability of a jet fuel depends among other things on these parameters.
La diversification des sources de carburant a été nécessaire et a conduit à l'utilisation de carburant dit de synthèse tels que les bio-carburants, les kérosènes paraffiniques synthétiques (SPK), issus de procédés tels que le procédé Fischer Tropsch (SPK-FT) ou l'hydrotraitement d'esters et d'acides gras (SPK-HEFA). Actuellement, lesdits carburants dit de synthèse ne peuvent pas être utilisés seuls en raison de leur faible stabilité à l'oxydation, leur faible stabilité thermique et dans certains cas leur faible teneur en composé aromatiques. The diversification of fuel sources was necessary and led to the use of so-called synthetic fuel such as bio-fuels, synthetic paraffinic kerosenes (SPK), resulting from processes such as the Fischer Tropsch process (SPK-FT) or the hydrotreatment of esters and fatty acids (SPK-HEFA). Currently, said synthetic fuels can not be used alone because of their low oxidation stability, their low thermal stability and in some cases their low content of aromatic compounds.
En effet, une teneur minimale en composés aromatique dans les carbu réacteurs est fixée à 8% en poids par la spécification ASTM D-7655. Les composés aromatiques jouent un rôle prépondérant dans la qualité d'un carburéacteur car ils permettent d'assurer la compatibilité du carburéacteur avec les polymères utilisés pour assurer l'étanchéité des lignes carbu réacteurs par leur prise en masse, tels que par exemple les copolymères butadiène-acrylonitrile (NBR : Nitrile Butadiene Rubber), les fluorosilicones (FVMQ) et les fluoroélastomères (FKM). Indeed, a minimum content of aromatic compounds in the carburetors is set at 8% by weight by the ASTM specification D-7655. The Aromatic compounds play a major role in the quality of a jet fuel because they make it possible to ensure the compatibility of the jet fuel with the polymers used to seal the reactor fuel lines by caking, such as for example butadiene-based copolymers. acrylonitrile (NBR: Nitrile Butadiene Rubber), fluorosilicones (FVMQ) and fluoroelastomers (FKM).
Ainsi, pour permettre l'utilisation desdits carburants dit de synthèse en tant que carburateur, le recours à des additifs et en particulier des additifs aromatiques a souvent été envisagé. Thus, to allow the use of said synthetic fuels as a carburetor, the use of additives and in particular aromatic additives has often been considered.
ART ANTÉRIEUR PRIOR ART
La demande de brevet CN 101 423 781 divulgue une composition d'additifs et de carburant qui permet la limitation de la formation de dépôts. Les additifs préconisés sont les terpènes, la 2-propanone, les éthers de glycol, les esters diméthyliques d'acide carboxylique, les éthoxylates de nonylphénol et les huiles minérales.  The patent application CN 101 423 781 discloses an additive and fuel composition which allows the limitation of the formation of deposits. The recommended additives are terpenes, 2-propanone, glycol ethers, dimethyl esters of carboxylic acid, nonylphenol ethoxylates and mineral oils.
Les brevets US 7,683,224 et US 7,560,603 divulguent l'utilisation de phénylalkyles et/ou de alkylcyclohexyles ayant au moins une chaîne alkyl comportant entre 5 et 25 atomes de carbone comme additifs pour des carburants de type kérosène et diesel. Ces additifs permettent d'améliorer les propriétés des coupes synthétiques (augmenter le point éclair, la densité, le pouvoir lubrifiant, la dégradabilité aérobique, la stabilité à l'oxydation et la stabilité thermique). Le brevet US 8,748,678 divulgue une formulation basée sur un mélange d'une coupe synthétique de haute densité, composée essentiellement de cycloalcanes et de naphthenoaromatiques, préférentiellement tétraline et décaline, et d'une coupe synthétique de faible densité, composée essentiellement de composés paraffiniques (SPK) principalement de type n-alkanes et des additifs, permettant d'améliorer entre autre la stabilité thermique des carbu réacteurs et des diesel. US Pat. Nos. 7,683,224 and 7,560,603 disclose the use of phenylalkyls and / or alkylcyclohexyls having at least one alkyl chain having 5 to 25 carbon atoms as additives for kerosene and diesel type fuels. These additives improve the properties of synthetic slices (increase flash point, density, lubricity, aerobic degradability, oxidation stability and thermal stability). US Pat. No. 8,748,678 discloses a formulation based on a blend of a high density synthetic cut composed essentially of cycloalkanes and naphthenoaromatics, preferentially tetralin and decalin, and of a low density synthetic cut, composed essentially of paraffinic compounds (SPK ) mainly of the n-alkane type and additives, making it possible to improve, among other things, the thermal stability of the jet engines and diesel engines.
La demande de brevet WO 2012/024193 divulgue une formulation de carburéacteur stable thermiquement qui respecte plusieurs propriétés physicochimiques (pouvoir calorifique, température d'ébullition) dont la teneur en composés aromatiques (mono et diaromatiques) est entre 2-25% vol, la teneur en cycloparaffines de 22-35%vol, la teneur en n-paraffines de 20-35%vol et la teneur en iso-paraffines de 22-35%vol. The patent application WO 2012/024193 discloses a thermally stable jet fuel formulation which respects several physicochemical properties (calorific value, boiling temperature) whose content of aromatic compounds (mono and diaromatic) is between 2-25% vol. in cycloparaffins of 22-35% vol, the n-paraffin content of 20-35% vol and the iso-paraffin content of 22-35% vol.
Le brevet US 3,703,361 divulgue l'utilisation de la décahydroacenaphtène comme carburéacteur à 100% ou en mélange avec un carburéacteur conventionnel à une teneur en décahydroacenaphtène compris entre 10 et 60% en poids de manière à améliorer les propriétés physiques et la stabilité du carburéacteur. US Pat. No. 3,703,361 discloses the use of decahydroacenaphthene as a 100% jet fuel or in a mixture with a conventional jet fuel at a decahydroacenaphthene content of between 10 and 60% by weight so as to improve the physical properties and the stability of the jet fuel.
Il existe donc un réel besoin de développement de nouvelles formulations à base de carburant et d'additif présentant une bonne stabilité thermique et à l'oxydation, et permettant également de maximiser la quantité de carburant pouvant être incorporée à ladite formulation utilisable en tant que carburéacteur. There is therefore a real need for the development of new fuel-based and additive formulations having good thermal stability and oxidation, and also making it possible to maximize the amount of fuel that can be incorporated into the said formulation that can be used as jet fuel. .
OBJET DE L'INVENTION OBJECT OF THE INVENTION
Un objet de l'invention est une composition comprenant au moins un carburant et au moins un additif choisi parmi les benzènes substitués par n méthyles, n étant un entier compris entre 1 et 6, la tétraline et la décaline seuls ou en mélange, le pourcentage volumique dudit carburant étant compris entre 75 % et 98 % par rapport au volume total de la composition et dans laquelle :  An object of the invention is a composition comprising at least one fuel and at least one additive chosen from n-methyl substituted benzenes, n being an integer between 1 and 6, tetralin and decalin alone or as a mixture, the percentage the volume of said fuel being between 75% and 98% relative to the total volume of the composition and in which:
- le pourcentage volumique dudit benzène substitué lorsque celui-ci est présent dans la composition, est compris entre 2 et 15 % en volume par rapport au volume total de la composition,  the percentage by volume of said substituted benzene when it is present in the composition is between 2 and 15% by volume relative to the total volume of the composition,
- le pourcentage volumique de la tétraline lorsque celle-ci est présente dans la composition, est compris entre 2 et 10 % en volume par rapport au volume total de la composition et  the percentage by volume of tetralin when it is present in the composition is between 2 and 10% by volume relative to the total volume of the composition and
- le pourcentage volumique de la décaline lorsque celle-ci est présente dans la composition, est compris entre 5 et 25 % en volume par rapport au volume total de la composition,  the percentage by volume of the decalin when it is present in the composition is between 5 and 25% by volume relative to the total volume of the composition,
la somme des pourcentages volumiques du ou des carburants et du ou des additifs étant égale à 100%.  the sum of the volume percentages of the fuel (s) and the additive (s) being equal to 100%.
Un autre objet de l'invention est l'utilisation de ladite composition en tant que carburéacteur. Un avantage de la présente invention est de fournir une formulation nouvelle de carburéacteur dont la stabilité à l'oxydation, la stabilité thermique et les propriétés physiques comme la densité et la compatibilité avec les matériaux, notamment les polymères, sont améliorées. Another object of the invention is the use of said composition as a jet fuel. An advantage of the present invention is to provide a novel jet fuel formulation whose oxidation stability, thermal stability and physical properties such as density and compatibility with materials, especially polymers, are improved.
Un autre avantage de la présente invention est de permettre l'augmentation de la quantité de carburant de synthèse incorporable dans une composition pour une utilisation comme carburéacteur par rapport aux compositions de carburéacteur de l'art antérieur. Another advantage of the present invention is to allow the increase of the amount of synthetic fuel incorporated in a composition for use as a jet fuel with respect to the jet fuel compositions of the prior art.
DESCRIPTION DÉTAILLÉE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
L'invention concerne une composition comprenant au moins un carburant et au moins un additif choisi parmi les benzènes substitués par n méthyles, n étant un entier compris entre 1 et 6, la tétraline et la décaline seuls ou en mélange, le pourcentage volumique dudit carburant étant compris entre 75 % et 98 % par rapport au volume total de la composition et dans laquelle :  The invention relates to a composition comprising at least one fuel and at least one additive chosen from n-methyl-substituted benzenes, n being an integer between 1 and 6, tetralin and decalin alone or as a mixture, the volume percentage of said fuel. being between 75% and 98% relative to the total volume of the composition and in which:
- le pourcentage volumique dudit benzène substitué lorsque celui-ci est présent dans la composition, est compris entre 2 et 15 % en volume par rapport au volume total de la composition,  the percentage by volume of said substituted benzene when it is present in the composition is between 2 and 15% by volume relative to the total volume of the composition,
- le pourcentage volumique de la tétraline lorsque celle-ci est présente dans la composition, est compris entre 2 et 10 % en volume par rapport au volume total de la composition et  the percentage by volume of tetralin when it is present in the composition is between 2 and 10% by volume relative to the total volume of the composition and
- le pourcentage volumique de la décaline lorsque celle-ci est présente dans la composition, est compris entre 5 et 25 % en volume par rapport au volume total de la composition,  the percentage by volume of the decalin when it is present in the composition is between 5 and 25% by volume relative to the total volume of the composition,
la somme des pourcentages volumiques du ou des carburants et du ou des additifs étant égale à 100%.  the sum of the volume percentages of the fuel (s) and the additive (s) being equal to 100%.
De manière préférée ledit carburant est choisi parmi les kérosènes conventionnels et les carburants synthétiques. Preferably said fuel is selected from conventional kerosene and synthetic fuels.
On entend par carburant synthétique un carburant produit à partir de matière première d'origine non pétrolière compatible avec la spécification ASTM D7566 On entend par kérosène conventionnel un carburant issus des procédés conventionnels de raffinage de pétrole compatible avec la spécification ASTM D1 655 ou DEFSTAN 91 -91 . Dans le cas où ledit carburant est un carburant synthétique compatible avec la spécification ASTM D7566, ledit carburant synthétique est avantageusement un kérosène paraffinique synthétique (SPK) issu d'un hydrotraitement d'esters et d'acides gras (SPK-HEFA) ou issu d'un procédé Fischer Tropsch (SPK-FT) ou une Iso-Paraffine Synthétique (S/P), aussi appelé, Farnesane. Synthetic fuel is a fuel produced from non-petroleum feedstock compatible with ASTM D7566 Conventional kerosene means a fuel derived from conventional petroleum refining processes compatible with the ASTM D1 655 or DEFSTAN 91 -91 specification. In the case where said fuel is a synthetic fuel compatible with the ASTM D7566 specification, said synthetic fuel is advantageously a synthetic paraffinic kerosene (SPK) derived from a hydrotreatment of esters and fatty acids (SPK-HEFA) or from a Fischer Tropsch process (SPK-FT) or a synthetic Iso-Paraffin (S / P), also called Farnesane.
Dans le cas où l'additif est choisi parmi lesdits benzènes substitués, ledit additif est avantageusement choisi parmi le toluène, les diméthylbenzènes et les triméthylbenzènes seuls ou en mélange. Dans le cas où l'additif est choisi parmi lesdits benzènes substitués, le pourcentage volumique dudit additif est avantageusement compris entre 3% et 12% par rapport au volume total de la composition et de manière préférée entre 4% et 10% par rapport au volume total de la composition. Dans le cas où l'additif est la tétraline, le pourcentage volumique dudit additif est avantageusement compris entre 3% et 9% par rapport au volume total de la composition et de manière préférée entre 4% et 8% par rapport au volume total de la composition. Dans le cas où l'additif est la décaline, le pourcentage volumique dudit additif est avantageusement compris entre 5% et 20% par rapport au volume total de la composition et de manière préférée entre 10% et 15% par rapport au volume total de la composition. Dans le cas où les additifs sont utilisés en mélange, le pourcentage volumique total desdits additifs est compris entre 2% et 10% par rapport au volume total de la composition, de manière préférée compris entre 3% et 9% par rapport au volume total de la composition et de manière encore plus préférée entre 4% et 8% par rapport au volume total de la composition. Un autre objet de l'invention est l'utilisation de ladite composition en tant que carbu réacteur. Pour pouvoir être certifié un carbu réacteur doit satisfaire différents critères et propriétés physico-chimique tel que la stabilité à l'oxydation, la stabilité thermique, la densité et sa capacité à faire gonfler les polymères assurant l'étanchéité des circuits. In the case where the additive is chosen from said substituted benzenes, said additive is advantageously chosen from toluene, dimethylbenzenes and trimethylbenzenes alone or as a mixture. In the case where the additive is chosen from said substituted benzenes, the volume percentage of said additive is advantageously between 3% and 12% relative to the total volume of the composition and preferably between 4% and 10% relative to the volume total of the composition. In the case where the additive is tetralin, the volume percentage of said additive is advantageously between 3% and 9% relative to the total volume of the composition and preferably between 4% and 8% relative to the total volume of the composition. In the case where the additive is decalin, the volume percentage of said additive is advantageously between 5% and 20% relative to the total volume of the composition and preferably between 10% and 15% relative to the total volume of the composition. In the case where the additives are used in a mixture, the total volume percentage of said additives is between 2% and 10% relative to the total volume of the composition, preferably between 3% and 9% relative to the total volume of the composition. the composition and even more preferably between 4% and 8% relative to the total volume of the composition. Another object of the invention is the use of said composition as a carburetor reactor. To be certified a reactor carburetor must meet different criteria and physico-chemical properties such as oxidation stability, thermal stability, density and its ability to swell the polymers ensuring the sealing of the circuits.
La stabilité à l'oxydation d'un carburéacteur est défini par la période d'induction (IP) dudit carburéacteur, plus la période d'induction est grande, plus la stabilité à l'oxydation est élevée. The oxidation stability of a jet fuel is defined by the induction period (IP) of said jet fuel, the higher the induction period, the higher the oxidation stability.
La période d'induction, ou IP est le temps nécessaire au carburéacteur pour atteindre un état d'oxydation défini. Les carbu réacteurs, selon leur destination et leur territoire d'utilisation doivent présenter une IP supérieure à une certaine durée pour respecter les spécifications minimales requises. The induction period, or IP, is the time required for the jet fuel to reach a defined oxidation state. Reactors, depending on their destination and territory of use must have an IP longer than a certain time to meet the minimum required specifications.
Dans la méthode standard PetroOxy ASTM D7545, EN1 6091 , IP595, 5mL de l'échantillon de carburéacteur sont introduits dans une cellule fermée, de l'oxygène pur est injecté à 0,7 MPa. La cellule est chauffée jusqu'à 140°C. La pression au sein de la cellule baisse au cours de l'oxydation de l'échantillon. Cette pression est notée à intervalles de temps de 1 s, jusqu'à ce que les relevés de pression indiquent une chute de 10 % par rapport à la pression maximale observée (point de rupture). L'appareillage arrête l'essai et enregistre le temps écoulé entre le départ de l'essai et ce point de rupture. Ce temps représente la période d'induction du carburéacteur (IP) qui est considérée comme une indication de la résistance à l'oxydation des distillats moyens, des esters méthylique d'acide gras (EMAG) et de leurs mélanges. Plus la période d'induction est élevée plus le carburéacteur est théoriquement stable à l'oxydation. In the standard PetroOxy method ASTM D7545, EN16091, IP595, 5mL of the jet fuel sample is introduced into a closed cell, pure oxygen is injected at 0.7 MPa. The cell is heated up to 140 ° C. The pressure within the cell decreases during the oxidation of the sample. This pressure is noted at intervals of 1 s, until the pressure readings indicate a drop of 10% compared to the maximum pressure observed (breaking point). The equipment stops the test and records the time elapsed between the start of the test and this breakpoint. This time represents the jet fuel induction period (IP) which is considered an indication of the oxidation resistance of middle distillates, fatty acid methyl esters (FAMEs) and mixtures thereof. The higher the induction period, the more the jet fuel is theoretically stable to oxidation.
La stabilité thermique d'un carburéacteur est mesurée par le test normalisé ASTM D-3241 « Standard test method for thermal oxidation stability of aviation turbine fuels ». Cette méthode d'essai permet de mesurer la stabilité des carbu réacteurs à haute température. L'appareil nécessite un volume de 450 ml de carburéacteur pour un essai qui dure 2h30min. Le carburéacteur est pompé à un débit volumétrique fixe à travers un dispositif de chauffage, ensuite il passe à travers un filtre de porosité nominale d'une précision de 17 micromètres en acier inoxydable où les produits de dégradation de carburéacteur peuvent être piégés. Ce test indique, d'une part, la formation de dépôts solides sur un tube métallique chauffé, celle-ci est mesurée par cotation visuelle (trad : visual rating) et, d'autre part, les dépôts insolubles formés en phase liquide mesurés par la variation de gradient de pression à travers un filtre (dP filter). La température du test définie par la spécification ASTM D-3241 varie en fonction du carburéacteur testé. The thermal stability of a jet fuel is measured by the standardized test ASTM D-3241 "Standard test method for thermal oxidation stability of aviation turbine fuels". This test method makes it possible to measure the stability of high temperature reactor carburetors. The device requires a volume of 450 ml of jet fuel for a test that lasts 2h30min. The jet fuel is pumped at a fixed volumetric flow rate through a heater and then passed through a 17 micrometer nominal porosity filter made of stainless steel where the jet fuel degradation products can be trapped. This is indicates, on the one hand, the formation of solid deposits on a heated metal tube, this is measured by visual quotation (trad: visual rating) and, on the other hand, the insoluble deposits formed in the liquid phase measured by the variation pressure gradient through a filter (dP filter). The test temperature defined by ASTM Specification D-3241 varies depending on the jet fuel tested.
La densité d'un carburéacteur est un paramètre physico-chimique déterminant et doit être comprise dans une gamme précise car la densité impacte la quantité d'énergie embarquée, si un carburéacteur à une densité trop faible, il est possible d'avoir par exemple des « bouchons » de vapeur dans le circuit carburéacteur si au contraire un carburéacteur à un densité trop importante, il est possible que la vaporisation ne se fasse pas de manière optimale et donc impacte la combustion. La densité est mesurée par les méthodes ASTM D4052, IP365, ASTM D1298, IP1 60. Les polymères tels que les copolymères butadiène-acrylonitrile (NBR : NitrileThe density of a jet fuel is a decisive physico-chemical parameter and must be included in a precise range because the density impacts on the amount of energy on board. If a jet fuel has a density that is too low, it is possible to have, for example, Steam plugs in the jet fuel circuit If, on the contrary, a jet fuel with too high a density, it is possible that the vaporization is not carried out optimally and therefore impacts combustion. Density is measured by ASTM methods D4052, IP365, ASTM D1298, IP1 60. Polymers such as butadiene-acrylonitrile copolymers (NBR: Nitrile)
Butadiene Rubber), les fluorosilicones (FVMQ) et les fluoroélastomères (FKM) sont couramment utilisés en aéronautique comme joint d'étanchéité. La mise en contact avec un carburéacteur entraine une prise en masse desdits polymères. Le taux de gonflement massique des polymères en contact avec le carburéacteur indique la capacité desdits polymères à assurer l'étanchéité. Butadiene Rubber), fluorosilicones (FVMQ) and fluoroelastomers (FKM) are commonly used in aeronautics as a seal. The placing in contact with a jet fuel causes a setting of said polymers. The mass swelling rate of the polymers in contact with the jet fuel indicates the ability of said polymers to seal.
Le taux de gonflement des polymères est mesuré par des méthodes de laboratoire. Leur principe est d'immerger le polymère dans le carburéacteur pendant une certaine durée. Au cours de cette phase d'immersion, le polymère est régulièrement caractériser pour définir son gonflement à travers des mesures de poids, et de dimensions.  The swelling rate of the polymers is measured by laboratory methods. Their principle is to immerse the polymer in the jet fuel for a certain time. During this immersion phase, the polymer is regularly characterized to define its swelling through measurements of weight, and dimensions.
Un compromis doit être trouvé entre les différentes propriétés nécessaires aux bonnes performances d'un carburéacteur pour obtenir une composition optimale. La période d'induction devrait être maximisée pour obtenir la meilleure stabilité à l'oxydation possible, cependant les autres paramètres doivent répondre à certaines normes. Ainsi, concernant la stabilité thermique, selon la spécification ASTM 7566 la cotation visuelle ne doit pas dépasser 3 (niveau sur une échelle de cotation visuelle, plus le chiffre est important plus la quantité de dépôt sur le tube est conséquente) et la différence de pression sur le filtre positionné après le tube ne doit pas dépasser 25 mm Hg. Selon la spécification ASTM D 7655 la densité du carburéacteur doit être comprise dans la plage allant de 775 à 840 g.L"1. Il n'y a pas de spécification relative à la capacité d'un carburéacteur à induire une variation de masse des polymères l'étanchéité doit cependant être assurée par les différents joints. A compromise must be found between the different properties necessary for the good performance of a jet fuel to obtain an optimal composition. The induction period should be maximized to obtain the best oxidation stability possible, however the other parameters must meet certain standards. Thus, for thermal stability, according to ASTM Specification 7566 the visual quotation should not exceed 3 (level on a visual rating scale, the larger the figure is, the greater the amount of deposit on the tube is consistent) and the pressure difference the filter positioned after the tube shall not exceed 25 mm Hg. According to ASTM Specification D 7655, the density of the jet fuel shall be in the range of 775 to 840 gL "1. There is no relevant specification the ability of a jet fuel to induce polymer mass variation, however, the seal must be provided by the various seals.
Les exemples ci-dessous illustrent l'invention sans pour autant en limiter la portée. The examples below illustrate the invention without limiting its scope.
EXEMPLES EXAMPLES
Exemple 1 : préparation des compositions Example 1: Preparation of the compositions
Du carburant synthétique de type kérosène paraffinique synthétique issu de l'hydrotraitement d'esters et d'acides gras (SPK-HEFA) est mélangé avec un additif de manière à obtenir les pourcentages volumiques désirés et agité à 25°C de manière à obtenir une solution homogène. Les compositions obtenues sont listées dans le tableau 1 ci-dessous. Synthetic paraffinic kerosene type synthetic fuel derived from the hydrotreatment of esters and fatty acids (SPK-HEFA) is mixed with an additive so as to obtain the desired percentages by volume and stirred at 25.degree. homogeneous solution. The compositions obtained are listed in Table 1 below.
Figure imgf000009_0001
Figure imgf000009_0001
Tableau 1  Table 1
Exemple 2 : stabilité et propriétés physico-chimique des compositions Les compositions obtenues à l'exemple 1 sont analysées selon les méthodes décrites ci-dessus pour déterminer leur stabilité à l'oxydation, leur stabilité thermique, leur densité et leur capacité à faire prendre en masse un polymère de type copolymères butadiène-acrylonitrile (NBR : Nitrile Butadiene Rubber), fluorosilicone (FVMQ) et fluoroélastomères (FKM). Les résultats sont répertoriés dans les tableaux 2 et 3. Example 2: Stability and Physicochemical Properties of the Compositions The compositions obtained in Example 1 are analyzed according to the methods described above to determine their oxidation stability, their thermal stability, their density and their ability to set a copolymer-type butadiene-acrylonitrile copolymer (NBR). : Nitrile Butadiene Rubber), fluorosilicone (FVMQ) and fluoroelastomers (FKM). The results are listed in Tables 2 and 3.
Figure imgf000010_0001
Figure imgf000010_0001
Tableau 2  Table 2
Les analyses effectuées montrent que le choix des additifs est prépondérant puisque le 1 -méthylnaphtalène ne permet pas d'obtenir une bonne stabilité thermique notamment quel que soit la quantité ajoutée. The analyzes carried out show that the choice of additives is preponderant since 1-methylnaphthalene does not make it possible to obtain a good thermal stability, in particular regardless of the quantity added.
Un compromis doit être trouvé entre les différentes propriétés nécessaires aux bonnes performances d'un carbu réacteur. A compromise must be found between the different properties necessary for the good performance of a carburetor reactor.
Les mélanges ayant une valeur de cotation visuelle supérieure ou égale à 3 sont incompatibles avec la spécification ASTM 7566. Ainsi, Le xylène ne peut pas être utilisé comme additif avec une quantité de 25% en volume en raison du dépôt trop important. La tétraline ne peut pas être utilisée comme additif avec une quantité de 15% en volume en raison d'une mauvaise stabilité thermique. La décaline peut être utilisé à 25 % en volume, la période d'induction connaissant un pic avec une quantité de 15% en volume de décaline. Ainsi, au-delà de 25% en volume de décaline la période d'induction devient trop faible pour la stabilité à l'oxydation recherchée. Le 1 -méthylnaphtalène ne peut être utilisé comme additif compte tenu de la mauvaise stabilité thermique du carburéacteur quel que soit la concentration en 1 -méthylnaphtalène. Blends having a visual rating value greater than or equal to 3 are incompatible with ASTM 7566. Thus, xylene can not be used as an additive with a 25% by volume amount because of too much deposition. Tetralin can not be used as an additive with 15% by volume due to poor thermal stability. Decalin can be used at 25% by volume, the induction period experiencing a peak with a quantity of 15% by volume of decalin. Thus, beyond 25% by volume of decalin, the induction period becomes too low for the desired oxidation stability. 1-Methylnaphthalene can not be used as an additive given the poor thermal stability of the jet fuel regardless of the concentration of 1-methylnaphthalene.
Les additifs pouvant être utilisés selon l'invention ont été testés vis à vis de leur capacité à induire une variation de masse de différents polymères (copolymère butadiène-acrylonitrile (NBR : Nitrile Butadiene Rubber), fluorosilicone (FVMQ) et fluoroélastomère (FKM), les résultats sont répertoriés dans le tableau 3. En augmentant la concentration des additifs, la variation de masse desdits polymères ne peut qu"être plus importante et comme il n'existe pas de limite supérieure, seul les tests à 5% en volume ont été réalisés. Il n'y a actuellement pas de normes concernant la variation de masse des polymères, cependant les résultats peuvent être comparés à un carburéacteur spécifié qui est le carburéacteur appelé « 50% JETA-1 » dans le tableau ci-dessous. The additives that can be used according to the invention have been tested with regard to their capacity to induce a mass variation of various polymers (butadiene-acrylonitrile copolymer (NBR: Nitrile Butadiene Rubber), fluorosilicone (FVMQ) and fluoroelastomer (FKM), the results are listed in Table 3. By increasing the concentration of the additives, the mass variation of said polymers can only be greater and since there is no upper limit, only the 5% by volume There are currently no standards for polymer mass variation, however the results can be compared to a specified jet fuel which is jet fuel called "50% JETA-1" in the table below.
Figure imgf000011_0001
Figure imgf000011_0001
Tableau 3  Table 3
Il apparaît donc que l'ajout des additifs préconisés selon l'invention permet d'atteindre ou de se rapprocher sensiblement des propriétés du carburéacteur autorisé 50% JETA-1 d'induction de variation de masse de polymères. It therefore appears that the addition of the additives recommended according to the invention makes it possible to achieve or approach substantially the properties of the approved jet fuel 50% JETA-1 for the induction of polymer mass variation.
Les additifs selon l'invention permettent donc, à la fois, d'augmenter la stabilité à l'oxydation et la stabilité thermique d'un carburéacteur tout en améliorant les propriétés physico-chimiques. Les additifs selon l'invention permettent également d'augmenter la proportion de carburant synthétique dans une composition de carbu réacteur. The additives according to the invention therefore make it possible both to increase the oxidation stability and the thermal stability of a jet fuel while improving the physicochemical properties. The additives according to the invention also allow to increase the proportion of synthetic fuel in a carburetor reactor composition.

Claims

REVENDICATIONS
Composition comprenant au moins un carburant et au moins un additif choisi parmi les benzènes substitués par n méthyles, n étant un entier compris entre 1 et 6, la tétraline et la décaline seuls ou en mélange, le pourcentage volumique dudit carburant étant compris entre 75 % et 98 % par rapport au volume total de la composition et dans laquelle : Composition comprising at least one fuel and at least one additive chosen from n-methyl-substituted benzenes, n being an integer between 1 and 6, tetralin and decalin alone or as a mixture, the volume percentage of said fuel being between 75% and 98% based on the total volume of the composition and wherein:
- le pourcentage volumique dudit benzène substitué lorsque celui-ci est présent dans la composition, est compris entre 2 et 15 % en volume par rapport au volume total de la composition, the percentage by volume of said substituted benzene when it is present in the composition is between 2 and 15% by volume relative to the total volume of the composition,
- le pourcentage volumique de la tétraline lorsque celle-ci est présente dans la composition, est compris entre 2 et 10 % en volume par rapport au volume total de la composition et the percentage by volume of tetralin when it is present in the composition is between 2 and 10% by volume relative to the total volume of the composition and
- le pourcentage volumique de la décaline lorsque celle-ci est présente dans la composition, est compris entre 5 et 25 % en volume par rapport au volume total de la composition, la somme des pourcentages volumiques du ou des carburants et du ou des additifs étant égale à 100%. the percentage by volume of the decalin when it is present in the composition is between 5 and 25% by volume relative to the total volume of the composition, the sum of the volume percentages of the fuel (s) and the additive (s) being equal to 100%.
Composition selon la revendication 1 , dans laquelle le ou lesdits carburant est choisi parmi les kérosènes conventionnels et les carburants synthétiques. The composition of claim 1, wherein said fuel or fuels are selected from conventional kerosene and synthetic fuels.
Composition selon la revendication 2 dans laquelle, ledit carburant synthétique est un kérozène paraffinique synthétique issus d'un hydrotraitement d'esters et d'acides gras ou issus d'un procédé Fischer Tropsch ou une iso-paraffine synthétique. The composition of claim 2 wherein said synthetic fuel is a synthetic paraffinic kerosene derived from a hydrotreatment of esters and fatty acids or from a Fischer Tropsch process or synthetic iso-paraffin.
4. Composition selon les revendications 1 à 3, dans laquelle ledit benzène substitué est choisi parmi le toluène, les diméthylbenzènes et les triméthylbenzènes seuls ou en mélange. 4. Composition according to claims 1 to 3, wherein said substituted benzene is selected from toluene, dimethylbenzenes and trimethylbenzenes alone or in admixture.
5. Composition selon les revendications 1 à 4 dans laquelle, ledit benzène substitué est présent à un pourcentage volumique compris entre 3% et 12 % par rapport au volume total de la composition. 5. Composition according to claims 1 to 4 wherein said substituted benzene is present at a volume percentage of between 3% and 12% relative to the total volume of the composition.
6. Composition selon les revendications 1 à 3 dans laquelle, ladite tétraline est présente à un pourcentage volumique compris entre 3% et 9 % par rapport au volume total de la composition. 7. Composition selon les revendications 1 à 3 dans laquelle, ladite décaline est présente à un pourcentage volumique compris entre 5% et 20 % par rapport au volume total de la composition. 6. Composition according to claims 1 to 3 wherein said tetralin is present at a volume percentage of between 3% and 9% relative to the total volume of the composition. 7. Composition according to claims 1 to 3 wherein said decalin is present at a volume percentage of between 5% and 20% relative to the total volume of the composition.
8. Composition selon les revendications 1 à 3, dans laquelle lesdits additifs sont utilisés en mélange, le pourcentage volumique total desdits additifs étant compris entre 2% et 10% par rapport au volume total de la composition. 8. Composition according to claims 1 to 3, wherein said additives are used in a mixture, the total volume percentage of said additives being between 2% and 10% relative to the total volume of the composition.
9. Utilisation de la composition selon l'une des revendications 1 à 7 comme carbu réacteur. 9. Use of the composition according to one of claims 1 to 7 as a reactor fuel.
PCT/EP2016/072146 2015-09-22 2016-09-19 Optimal jet fuel composition with heat stability and improved oxidation WO2017050687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1558941 2015-09-22
FR1558941A FR3041360B1 (en) 2015-09-22 2015-09-22 OPTIMAL COMPOSITION OF CARBUREACTOR WITH THERMAL STABILITY AND IMPROVED OXIDATION

Publications (1)

Publication Number Publication Date
WO2017050687A1 true WO2017050687A1 (en) 2017-03-30

Family

ID=54545328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/072146 WO2017050687A1 (en) 2015-09-22 2016-09-19 Optimal jet fuel composition with heat stability and improved oxidation

Country Status (2)

Country Link
FR (1) FR3041360B1 (en)
WO (1) WO2017050687A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307707B6 (en) * 2017-10-09 2019-02-27 Unipetrol výzkumně vzdělávací centrum, a.s. An additive increasing colloidal fuel stability
US11111448B1 (en) 2018-01-18 2021-09-07 Reaction Systems Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles
US11697780B1 (en) 2018-01-18 2023-07-11 Reaction Systems, Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4148103A1 (en) 2021-09-13 2023-03-15 TotalEnergies OneTech Renewable jet fuel composition

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1942414A1 (en) * 1969-06-11 1970-12-17 Ratlec Srl Compound liquid to eliminate scale in the cylinders of - internal combustion engines
US3703361A (en) 1968-10-23 1972-11-21 Exxon Research Engineering Co Decahydroacenaphthene as a high energy fuel
US4682984A (en) * 1983-09-02 1987-07-28 Epler Alan H Diesel fuel additive
FR2894976A1 (en) * 2005-12-16 2007-06-22 Total France Sa Composition of lead free aviation gasoline, comprises Avgas based fuel and two compounds e.g. of carboxylic acid esters and alcohols, carboxylic acid anhydrides and/or aromatic ethers and ketones
CN101423781A (en) 2007-10-31 2009-05-06 先进(精细)化工有限公司 Highly effective fuel additives for igniting internal combustion engines, diesel engines and jet propulsion engines
US7560603B2 (en) 2003-08-01 2009-07-14 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US7683224B2 (en) 2003-08-01 2010-03-23 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
WO2012024193A2 (en) 2010-08-16 2012-02-23 Chevron U.S.A. Inc. Jet fuels having superior thermal stability
CN102977949A (en) * 2012-12-18 2013-03-20 山西华顿实业有限公司 Low-proportion methanol gasoline compound additive
US8748678B2 (en) 2010-10-26 2014-06-10 Roy Cameron Knight Formula for joint synthetic jet, rocket, and diesel fuel
CN104031695A (en) * 2013-03-09 2014-09-10 谢家传 Synthetic diesel oil
US20140250772A1 (en) * 2011-10-17 2014-09-11 Sasol Technology (Pty) Ltd. Distillate fuel with improved seal swell properties

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703361A (en) 1968-10-23 1972-11-21 Exxon Research Engineering Co Decahydroacenaphthene as a high energy fuel
DE1942414A1 (en) * 1969-06-11 1970-12-17 Ratlec Srl Compound liquid to eliminate scale in the cylinders of - internal combustion engines
US4682984A (en) * 1983-09-02 1987-07-28 Epler Alan H Diesel fuel additive
US7560603B2 (en) 2003-08-01 2009-07-14 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
US7683224B2 (en) 2003-08-01 2010-03-23 The Procter & Gamble Company Fuel for jet, gas turbine, rocket and diesel engines
FR2894976A1 (en) * 2005-12-16 2007-06-22 Total France Sa Composition of lead free aviation gasoline, comprises Avgas based fuel and two compounds e.g. of carboxylic acid esters and alcohols, carboxylic acid anhydrides and/or aromatic ethers and ketones
CN101423781A (en) 2007-10-31 2009-05-06 先进(精细)化工有限公司 Highly effective fuel additives for igniting internal combustion engines, diesel engines and jet propulsion engines
WO2012024193A2 (en) 2010-08-16 2012-02-23 Chevron U.S.A. Inc. Jet fuels having superior thermal stability
US8748678B2 (en) 2010-10-26 2014-06-10 Roy Cameron Knight Formula for joint synthetic jet, rocket, and diesel fuel
US20140250772A1 (en) * 2011-10-17 2014-09-11 Sasol Technology (Pty) Ltd. Distillate fuel with improved seal swell properties
CN102977949A (en) * 2012-12-18 2013-03-20 山西华顿实业有限公司 Low-proportion methanol gasoline compound additive
CN104031695A (en) * 2013-03-09 2014-09-10 谢家传 Synthetic diesel oil

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201361, Derwent World Patents Index; AN 2013-K32290, XP002759569 *
DATABASE WPI Week 201480, Derwent World Patents Index; AN 2014-V82920, XP002759568 *
GRAHAM J L ET AL: "Swelling of nitrile rubber by selected aromatics blended in a synthetic jet fuel", ENERGY & FUELS, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, vol. 20, no. 2, 15 March 2006 (2006-03-15), pages 759 - 765, XP002693233, ISSN: 0887-0624, [retrieved on 20060131], DOI: 10.1021/EF050191X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307707B6 (en) * 2017-10-09 2019-02-27 Unipetrol výzkumně vzdělávací centrum, a.s. An additive increasing colloidal fuel stability
US11111448B1 (en) 2018-01-18 2021-09-07 Reaction Systems Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles
US11697780B1 (en) 2018-01-18 2023-07-11 Reaction Systems, Inc. Decahydronaphthalene as an endothermic fuel for hypersonic vehicles

Also Published As

Publication number Publication date
FR3041360B1 (en) 2019-07-12
FR3041360A1 (en) 2017-03-24

Similar Documents

Publication Publication Date Title
Verma et al. Evaluation and enhancement of cold flow properties of palm oil and its biodiesel
FR3041360B1 (en) OPTIMAL COMPOSITION OF CARBUREACTOR WITH THERMAL STABILITY AND IMPROVED OXIDATION
Laza et al. Basic fuel properties of rapeseed oil-higher alcohols blends
Oasmaa et al. Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses
Dwivedi et al. Cold flow behavior of biodiesel-A review
EP2449063B1 (en) Ethylene/vinyl acetate/unsaturated esters terpolymer as an additive for improving the resistance to cold of liquid hydrocarbons such as middle distillates and fuels
BR112015026918B1 (en) additive to improve oxidation and / or storage stability of motor fuels or fuels containing liquid hydrocarbons
KR20090105931A (en) Novel single phase hydrous hydrocarbon?based fuel, methods for producing the same and compositions for use in such method
BR112014022491B1 (en) use of a viscosity-improving additive
Barabás et al. Key fuel properties of biodiesel-diesel fuel-ethanol blends
Geacai et al. Effect of n-butanol addition on density and viscosity of biodiesel
JP6174962B2 (en) Diesel fuel oil composition
WO2010073233A2 (en) Diesel fuel for a diesel engine with high carbon from renewable sources and oxygen contents
JP2021522358A (en) Diesel fuel with improved ignition characteristics
FR3000101A1 (en) GELIFIED COMPOSITION OF FUEL OR HYDROCARBON FUEL AND PROCESS FOR PREPARING SUCH A COMPOSITION
Azaria et al. The influence of sorbitan monooleate as a surfactant and octanol as a co-surfactant to restore biodiesel’s flow properties at the cold temperatures
JP6751396B2 (en) Fuel blend
JP5072031B2 (en) A heavy oil composition
Yalçın et al. Pyrolysis of sour cherry kernels: physicochemical characterization of pyrolysis oil in blends of diesel and n-butanol
JP5046696B2 (en) A heavy oil composition
JP6917345B2 (en) Fuel oil composition for internal combustion engine and its manufacturing method
Selim et al. Physical-Chemical Properties of Water-in-Diesel Fuel Emulsions
JP5154982B2 (en) A heavy oil composition
JP5072035B2 (en) A heavy oil composition
Abbasov et al. Heats of combustion of oil shale, bitumen, and their mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16775512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16775512

Country of ref document: EP

Kind code of ref document: A1