WO2017050301A1 - 印刷电路板和用户设备 - Google Patents

印刷电路板和用户设备 Download PDF

Info

Publication number
WO2017050301A1
WO2017050301A1 PCT/CN2016/900077 CN2016900077W WO2017050301A1 WO 2017050301 A1 WO2017050301 A1 WO 2017050301A1 CN 2016900077 W CN2016900077 W CN 2016900077W WO 2017050301 A1 WO2017050301 A1 WO 2017050301A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
area
antenna
circuit area
point
Prior art date
Application number
PCT/CN2016/900077
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017050301A1 publication Critical patent/WO2017050301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the field of communications, and in particular to a printed circuit board and user equipment.
  • antenna not only directly affects the transceiver performance of wireless terminal equipment, but also affects the overall size and aesthetics of wireless terminals. Therefore, the design can meet the structural requirements, customer requirements, and antenna performance indicators. The required antennas have become a problem currently facing the industry.
  • the product includes multiple antennas, and multiple antennas are used for receiving and transmitting at the transmitting end and the receiving end at the same time.
  • the existing terminal antenna system will inevitably cause mutual coupling between multiple antennas, resulting in an antenna between the antennas.
  • the correlation is reduced, thereby reducing the communication capacity and also reducing the radiation efficiency of the antenna.
  • it is required to increase the distance between the antennas, and the limited space of the mobile terminal cannot meet the requirement, especially in the frequency band of about 700 MHz, the electrical distance between several antennas is usually only the wavelength.
  • One tenth of a degree is more about the degree of coupling.
  • the product has strict requirements on the size of the whole machine. How to realize multi-antenna technology in ensuring a small space is currently a technical difficulty.
  • a method of reducing antenna correlation in the related art is to make sacrifices in antenna headroom and layout.
  • This method such as reducing the clearance area, has the disadvantage that the finite size causes the low frequency (698-960 MHz) to be difficult to achieve; if the clearance area is not reduced, in order to achieve the low frequency, the distance between the antennas needs to be increased as much as possible. This is also not conducive to the miniaturization of the end product, in order to increase the performance of the antenna has to increase the size of the whole machine.
  • Embodiments of the present invention provide a printed circuit board and user equipment to solve at least the problem of large user equipment due to antenna design requirements.
  • a printed circuit board including: a circuit area 1, a first clearance area 2, a first feed point 3, and the first clearance area 2 is located in the circuit area.
  • a first feeding point 3 which is taken out from the circuit area 1 and extends into the first clearance area 2, the PCB further comprising: a first microstrip line 4, wherein the first The microstrip line 4 is led out from the ground point of the circuit area 1 to the first clear area 2, and is associated with the circuit area 1 Another ground point is connected.
  • the first microstrip line 4 is a microstrip line of a predetermined shape, and two end points of the microstrip line of the predetermined shape are respectively connected to a ground point of the circuit area 1.
  • the first microstrip line 4 is composed of a plurality of microstrip lines of a predetermined shape, and the two end points of each of the predetermined shape microstrip lines are respectively Connected to the ground point of the circuit area 1.
  • the plurality of microstrip lines of a predetermined shape are sequentially connected by a microstrip connection line.
  • the first microstrip line 4 is not in the plane in which the circuit area 1 is located.
  • the first microstrip line 4 is fixed on the bracket, and an end point of the first microstrip line 4 is connected to a grounding point of the circuit area 1 through a connection point.
  • the first microstrip line 4 is on a plane in which the circuit area 1 is located.
  • a distance between two end points of the plurality of end points of the first microstrip line 4 connected to the ground point of the circuit area 1 is according to an antenna corresponding to the first feed point 3.
  • the working wavelength is determined.
  • a distance between two end points of the plurality of end points of the first microstrip line 4 connected to the ground point of the circuit area 1 is: corresponding to the first feed point 3
  • the antenna operates at 1/4 of the wavelength.
  • the height of the first microstrip line 4 to the first clearance area 2 is less than or equal to 1/3 of the height of the first clearance area 2.
  • the predetermined shape comprises at least one of the following: a U shape, a V shape, and an arc shape.
  • the PCB further includes: a second clearance area 5, a second feed point 6 and a second microstrip line 7, wherein the second clearance area 5 is located in the circuit area 1 and the first clearance area 2 opposite the other side, the second feed point 6 is drawn from the circuit area 1 and extends into the second clearance area 5; wherein the second microstrip line 7 is from the circuit area 1 A grounding point is drawn to the second clearing area 5 and connected to another grounding point of the circuit area 1.
  • a user equipment comprising: the above printed circuit board PCB, and a first antenna, wherein the first antenna is connected to the first feed point 3.
  • the user equipment further includes: a first antenna bracket disposed in the first clearance area 2, wherein the first antenna bracket is used to fix the first antenna.
  • the printed circuit board PCB comprises: a circuit area 1, a first clearance area 2, a first feed point 3, the first clearance area 2 is located on one side of the circuit area 1, and the first feed point 3 is from the circuit.
  • the area 1 is taken out and extended into the first clearance area 2, and the PCB further includes: a first microstrip line 4, wherein the first microstrip line 4 is taken from a ground point of the circuit area 1 to the first clearance area 2, and The other grounding point of the circuit area 1 is connected, which solves the problem that the user equipment is bulky due to the antenna design requirement, and reduces the volume of the user equipment.
  • FIG. 1 is a schematic structural view of a PCB according to an embodiment of the present invention.
  • FIG. 2 is a first schematic structural view of a PCB according to a preferred embodiment of the present invention.
  • FIG. 3 is a second schematic view of a PCB according to a preferred embodiment of the present invention.
  • FIG. 4 is a third schematic structural view of a PCB according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic diagram 4 of an alternative structure of a PCB according to a preferred embodiment of the present invention.
  • a printed circuit board PCB is provided.
  • the PCB includes: a circuit area 1, a first clearance area 2, and a first feed point 3.
  • the first clearance area 2 is located at one side of the circuit area 1, and the first feed Point 3 is taken out from the circuit area 1 and extends into the first clearance area 2, and the PCB further includes: a first microstrip line 4, wherein the first microstrip line 4 is from a ground point of the circuit area 1 to the first clearance area 2 It is taken out and connected to another ground point of circuit area 1.
  • the grounded first microstrip line is disposed in the clearance area of the antenna, thereby extending the ground; the extension of the ground can increase the equivalent current electrical length of the antenna, so that the equivalent electrical length of the antenna is actually And the equivalent electrical length of all the copper of the first closed structure surrounded by the first microstrip line 4 and the circuit area 1 is identical.
  • the first microstrip line drawn is not an integral ground, its influence on the entire antenna is limited. In particular, the effect of using a bracket antenna is minimal. It can be seen that, through the above embodiments of the present invention, the problem that the user equipment is bulky due to the antenna design requirement is solved, and the volume of the user equipment is reduced.
  • the above PCB can be used in a device that requires an antenna, such as a mobile communication device; the feed point 3 described above is used to connect an antenna.
  • the above circuit area 1 refers to a printed circuit area in which a metal medium is laid on one side or both sides, such as a copper printed circuit area; the clear area refers to an insulating area on which no metal medium is disposed on both sides of the PCB.
  • antennas may be separately disposed on both sides of the PCB.
  • the PCB further includes: a second clearance area 5, a second feed point 6 and a second microstrip line 7, the second clearance area 5 being located on the other side of the circuit area 1 opposite to the first clearance area 2, the second feed Point 6 is taken from circuit area 1 and extends into second clearing area 5, wherein second microstrip line 7 is taken from a ground point of circuit area 1 to second clearing area 5 and is connected to another of circuit area 1 Location connection.
  • two antennas can be placed on one PCB.
  • the ground can be extended in the above manner.
  • the feed point 6 described above is used to connect an antenna.
  • the shape of the first microstrip line 4 and/or the second microstrip line 7 described above may be in various ways and variations thereof, for example, U-shaped (inverted U-shaped), V-shaped (inverted V-shaped), curved, And variations and combinations of these shapes.
  • the first microstrip line 4 is a U-shaped microstrip line, and the two end points of the U-shaped microstrip line are respectively connected to the ground point of the circuit area 1.
  • the second microstrip line 7 is a U-shaped microstrip line, and the two end points of the U-shaped microstrip line are respectively connected to the ground point of the circuit area 1.
  • the first microstrip line 4 is composed of a plurality of U-shaped microstrip lines, and both ends of each U-shaped microstrip line are connected to the ground point of the circuit area 1.
  • the plurality of U-shaped microstrip lines are sequentially connected at the end points of the microstrip lines to form a first microstrip line 4 composed of a series of U-shaped microstrip lines.
  • the end points of each of the two U-shaped microstrip lines are not directly connected, but the adjacent U-shaped microstrip lines are adjacent
  • the two U-shaped microstrip lines are connected to each other by a microstrip connection.
  • the second microstrip line 7 is composed of a plurality of U-shaped microstrip lines, and both end points of each U-shaped microstrip line are connected to the ground point of the circuit area 1.
  • the plurality of U-shaped microstrip lines are sequentially connected at the end points of the microstrip lines to form a second microstrip line 7 composed of a series of U-shaped microstrip lines.
  • the end points of each of the two U-shaped microstrip lines are not directly connected, but the adjacent U-shaped microstrip lines are adjacent
  • the two U-shaped microstrip lines are connected to each other by a microstrip connection.
  • first microstrip line 4 and/or the second microstrip line 7 may be located on the same plane as the plane on which the PCB board (circuit area 1) is located; the first microstrip line 4 and/or the second microstrip line 7 It is also possible not to be on the same plane as the plane on which the PCB board (circuit area 1) is located.
  • a plurality of active connection points to the ground point of the circuit area 1 may be provided, and the active connection points are respectively used to connect the plurality of end points of the U-shaped microstrip line, so that the U-shaped microstrip line can be fixed to the outer casing of the user equipment. Or on the antenna bracket, and through the movable electrical connection point to achieve a detachable electrical connection.
  • the distance between the two end points of the plurality of end points of the first microstrip line 4 connected to the ground point of the circuit area 1 is determined according to the operating wavelength of the antenna corresponding to the first feed point 3.
  • the distance between the two end points of the plurality of end points of the first microstrip line 4 connected to the ground point of the circuit area 1 is: the operation of the antenna corresponding to the first feed point 3 1/4 of the wavelength.
  • the distance between the two end points of the plurality of end points of the second microstrip line 7 connected to the ground point of the circuit area 1 is determined according to the operating wavelength of the antenna corresponding to the second feed point 6.
  • the distance between the two end points of the plurality of end points of the second microstrip line 7 connected to the ground point of the circuit area 1 is: 1/4 of the operating wavelength of the antenna corresponding to the second feed point 6.
  • the height of the first microstrip line 4 to the first clearance area 2 is preferably about 1/3 of the height of the first clearance area 2
  • the height of the second microstrip line 7 to the second clearance area 5 is preferably The value is about 1/3 of the height of the second clearance area 5.
  • the height value of the microstrip line leading to the clearance area is not limited to 1/3, and in some cases, when the antenna performance permits, it is also possible to be larger or smaller than 1/3 of the height of the clearance area.
  • the embodiment of the invention further provides a user equipment, comprising: the above printed circuit board (PCB), and a first antenna, wherein the first antenna is connected to the first feed point 3.
  • PCB printed circuit board
  • the user equipment further includes a second antenna, and the second antenna is connected to the second feed point 6.
  • the user equipment further includes: a first antenna bracket, wherein the first antenna bracket is used to fix the first antenna.
  • the user equipment further includes: a second antenna bracket, wherein the second antenna bracket is used to fix the second antenna.
  • the preferred embodiment of the present invention utilizes the mirroring principle and the theory of relativity to provide a technique for extending the ground, which broadens the length of the antenna in a limited physical size, and can effectively reduce the radiation efficiency of the antenna while reducing the antenna and the antenna.
  • MIMO multi-input multiple-output
  • PCB ie, main board
  • 60 mm*98 mm a multi-input multiple-output system with two antennas and a PCB (ie, main board) size of 60 mm*98 mm
  • LTE long-term evolution system
  • 698-960MHZ 698-960MHZ
  • the main antenna supports 698-960MHz, and the diversity must also support 698-960MHz.
  • the antenna low frequency has strict requirements on the ground size provided by the whole machine.
  • the low frequency of the antenna has a requirement on the length of the ground, that is, the longitudinal dimension of the entire motherboard is required. Because of its insufficient return path length, if its return path length can be increased, the ground length requirement is met. By adding a return path to the diversity antenna, the length of the antenna is effectively extended.
  • this technique can be used to reduce the vertical dimension of the motherboard, that is, in the above layout, the size of the motherboard is shortened, and the extended ground technology is adopted. Increase the equivalent current length of the antenna so that the equivalent electrical length of the antenna is substantially the same as the equivalent length before the motherboard size is shortened.
  • a U-shaped structure is used to extend the longitudinal electric current length of the antenna.
  • the current flows along the outer edge of the U-shaped structure, and the current length in the longitudinal dimension is equivalent to the theoretical size before the main board is not shrunk.
  • the U-shaped area is not a whole ground, so its influence on the entire primary and secondary antennas is limited. In particular, the effect of using a bracket antenna is minimal.
  • the size of the main board is 60*90mm.
  • the two antennas are located at the two ends of the PCB 1. Both antennas are in the form of a bracket and a flexible circuit board (FPC).
  • the main antenna has a clearance size of 15*60mm and the diversity antenna has a headroom size of 12*60mm.
  • a similar "U-shaped" is taken, as shown in Figure 2.
  • the antenna is attached to the bracket as shown in FIG.
  • the microstrip line of the closed structure has a height of 3 mm for the "U-shaped structure" of the top main antenna, and a "U-shaped structure” with a height of 5 mm extending from the clearance area of the diversity antenna.
  • U-shaped structure trace width can be close to 1/4 wavelength.
  • the beginning and ending position of the U shape can be adjusted according to actual needs.
  • the average efficiency of the main antenna is about 45%, and the diversity antenna efficiency is 40%.
  • the antenna efficiency is consistent with the performance of the antenna under the condition of 60*98mm. Another way of thinking, as can be seen from this design, can reduce the size of the motherboard. Very beneficial to the miniaturization of end products.
  • the U-shaped structure can be modified into a plurality of alignment modes. As shown in FIG. 4, the original U-shaped structure is cut into three small U-shaped structures to form an array U-shaped structure. For optimum performance, each structure is connected by a microstrip line.
  • connection manner of the U-shaped structure is changed, that is, the U-shaped structure and the motherboard connection position are replaced by a spring piece or a feed point structure (referred to as a doubly-fed U-shaped structure) on the main board, and the U-shaped
  • the microstrip line is designed on the antenna support and a single microstrip surface line is used.
  • the length of the microstrip line can be adjusted according to actual needs. Conducive to the actual product debugging.
  • the position of the MIMO antenna system may be arranged in any direction on the PCB of the terminal, and may be adjusted according to the needs of the layout;
  • the wiring form of the bracket antenna and the ratio of the two in the clearance area can be adjusted according to actual conditions
  • the U-shaped structure can be placed at one end of the main antenna or the diversity antenna. Or just use one.
  • the line width and shape of the U-shaped structure surrounding structure can be adjusted as needed.
  • the size of the entire machine can be shortened.
  • the motherboard size can be shortened by about 8mm, which is a big technical improvement. It is especially suitable for use in LTE terminal products where multiple antennas are used for transmitting and receiving at the transmitting end and the receiving end.
  • the printed circuit board PCB comprises: a circuit area 1, a first clearance area 2, a first feed point 3, the first clearance area 2 is located on one side of the circuit area 1, and the first feed point 3 is from the circuit.
  • the area 1 is taken out and extended into the first clearance area 2, and the PCB further includes: a first microstrip line 4, wherein the first microstrip line 4 is taken from a ground point of the circuit area 1 to the first clearance area 2, and The other grounding point of the circuit area 1 is connected, which solves the problem that the user equipment is bulky due to the antenna design requirement, and reduces the volume of the user equipment.

Abstract

本发明提供了一种印刷电路板和用户设备。其中,该印刷电路板(PCB)包括:电路区1、第一净空区2、第一馈点3,第一净空区2位于电路区1的一侧,第一馈点3从电路区1引出并延伸至第一净空区2中,PCB还包括:第一微带线4,其中,第一微带线4从电路区1的一个接地点向第一净空区2引出,并与电路区1的另一个接地点连接。通过本发明,解决了由于天线设计需求而导致的用户设备体积大的问题,减少了用户设备的体积。

Description

印刷电路板和用户设备 技术领域
本发明涉及通信领域,具体而言,涉及一种印刷电路板和用户设备。
背景技术
当今随着无线技术的飞速发展,对终端产品小型化的要求也越来越高,低成本,超薄时尚的外观,高性能,低辐射的无线终端产品已经成为了各个终端通讯设备制造商重点研究的对象。
天线作为无线终端产品的重要组成部分,不仅直接影响无线终端设备的收发性能,也影响着无线终端的整体尺寸和美观,因此设计一款既可以满足结构要求,客户要求,也可以满足天线性能指标要求的天线成为业界目前面临的难题。
目前产品中都包含多个天线,在发射端和接收端同时使用多个天线进行接收和发射,现有的终端天线系统将不可避免地引起多个天线之间的相互耦合,导致天线之间的相关性减小,从而降低通信容量,而且也会降低天线的辐射效率。通常为了降低天线之间的耦合,要求增大天线之间的距离,而移动终端有限的空间又不能满足此要求,尤其是在700MHz左右的频段,几个天线之间的电气距离通常只有波长的十几分之一这就更加剧了耦合程度。目前产品对整机尺寸有严格的要求,如何在保证较小的空间上实现多天线技术是目前一个技术难点。
相关技术中减小天线相关性的方法是在天线净空和布局上做出牺牲。这种方法,例如减少净空区,带来的弊端是有限尺寸导致低频(698-960MHz)难以实现;若在保证净空区不减少而为了实现低频则需要将天线之间的距离尽可能增大,这样也不利于终端产品的小型化设计,为了增加天线的性能不得不加大整机尺寸。
针对相关技术中由于天线设计需求而导致的用户设备体积大的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种印刷电路板和用户设备,以至少解决由于天线设计需求而导致的用户设备体积大的问题。
根据本发明实施例的一个方面,提供了一种印刷电路板(PCB),包括:电路区1、第一净空区2、第一馈点3,所述第一净空区2位于所述电路区1的一侧,所述第一馈点3从所述电路区1引出并延伸至所述第一净空区2中,所述PCB还包括:第一微带线4,其中,所述第一微带线4从所述电路区1的一个接地点向所述第一净空区2引出,并与所述电路区1的 另一个接地点连接。
可选地,所述第一微带线4为一条预定形状的微带线,所述预定形状的微带线的两个端点分别与所述电路区1的接地点连接。
可选地,所述第一微带线4由多条预定形状的微带线组合而成,所述多条预定形状的微带线中每条预定形状的微带线的两个端点均分别与所述电路区1的接地点连接。
可选地,所述多条预定形状的微带线依次通过微带连接线连接。
可选地,所述第一微带线4不在所述电路区1所在的平面上。
可选地,所述第一微带线4固定在支架上,所述第一微带线4的端点通过连接点与所述电路区1的接地点连接。
可选地,所述第一微带线4在所述电路区1所在的平面上。
可选地,所述第一微带线4与所述电路区1的接地点连接的多个端点中相距最远的两个端点之间的距离根据与所述第一馈点3对应的天线的工作波长确定。
可选地,所述第一微带线4与所述电路区1的接地点连接的多个端点中相距最远的两个端点之间的距离为:与所述第一馈点3对应的天线的工作波长的1/4。
可选地,所述第一微带线4向所述第一净空区2引出的高度小于或等于所述第一净空区2高度的1/3。
可选地,所述预定形状包括以下至少之一:U形、V形、弧形。
可选地,所述PCB还包括:第二净空区5、第二馈点6和第二微带线7,所述第二净空区5位于所述电路区1的与所述第一净空区2相对的另一侧,所述第二馈点6从所述电路区1引出并延伸至所述第二净空区5中;其中,所述第二微带线7从所述电路区1的一个接地点向所述第二净空区5引出,并与所述电路区1的另一个接地点连接。
根据本发明实施例的另一个方面,还提供了一种用户设备,包括:上述的印刷电路板PCB,以及第一天线,其中,所述第一天线与所述第一馈点3连接。
可选地,所述用户设备还包括:设置在第一净空区2内的第一天线支架,其中,所述第一天线支架用于固定所述第一天线。
通过本发明实施例,采用的印刷电路板PCB包括:电路区1、第一净空区2、第一馈点3,第一净空区2位于电路区1的一侧,第一馈点3从电路区1引出并延伸至第一净空区2中,PCB还包括:第一微带线4,其中,第一微带线4从电路区1的一个接地点向第一净空区2引出,并与电路区1的另一个接地点连接,解决了由于天线设计需求而导致的用户设备体积大的问题,减少了用户设备的体积。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的PCB结构示意图;
图2是根据本发明优选实施例的PCB可选结构示意图一;
图3是根据本发明优选实施例的PCB可选结构示意图二;
图4是根据本发明优选实施例的PCB可选结构示意图三;
图5是根据本发明优选实施例的PCB可选结构示意图四;
其中,1——电路区;2——第一净空区;3——第一馈点;4——第一微带线;5——第二净空区;6——第二馈点;7——第二微带线;8——主天线阵列式U形结构;9——分集天线阵列式U形结构;10——主天线双馈式U形结构;11——分集天线双馈式U形结构;12——主天线支架;13——分集天线支架。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种印刷电路板PCB,该PCB包括:电路区1、第一净空区2、第一馈点3,第一净空区2位于电路区1的一侧,第一馈点3从电路区1引出并延伸至第一净空区2中,PCB还包括:第一微带线4,其中,第一微带线4从电路区1的一个接地点向第一净空区2引出,并与电路区1的另一个接地点连接。
通过上述的结构,在天线的净空区中设置接地的第一微带线,从而将地进行了延长;地的延长,可以增加天线的等效电流电长度,这样天线的等效电长度实际上和将第一微带线4与电路区1围成的第一封闭结构全部敷铜的等效电长度一致。同时由于引出的第一微带线不是一个整体的地,因此它对整个天线的影响有限。尤其是采用支架式天线的影响微乎其微。可见,通过本发明的上述实施例,解决了由于天线设计需求而导致的用户设备体积大的问题,减少了用户设备的体积。
上述的PCB可以用于需要天线的设备中,例如移动通讯设备中;上述的馈点3用于连接天线。
上述的电路区1是指单面或者双面敷设金属介质的印刷电路区,例如敷铜印刷电路区;净空区是指PCB板上双面均不敷设金属介质的绝缘区域。
可选地,在采用多入多出天线的用户设备中,可以在PCB的两侧分别布置天线。例如,PCB还包括:第二净空区5、第二馈点6和第二微带线7,第二净空区5位于电路区1的与第一净空区2相对的另一侧,第二馈点6从电路区1引出并延伸至第二净空区5中,其中,第二微带线7从电路区1的一个接地点向第二净空区5引出,并与电路区1的另一个接地点连接。这样,在一个PCB上可以设置两个天线。另外,如果需要设置更多的天线,只要天线之间的干扰满足实际需求,则对于每个天线,可以采用上述的方式对地进行延长。上述的馈点6用于连接天线。
上述的第一微带线4和/或第二微带线7的形状可以有多种方式及其变形方式,例如,U形(倒U形)、V形(倒V形)、弧形,以及这些形状的变形及组合形式。
在本实施例中,以U形的第一微带线4、U形的第二微带线7进行描述,例如:
第一微带线4为一个U形微带线,U形微带线的两个端点分别与电路区1的接地点连接。
或者,第二微带线7为一个U形微带线,U形微带线的两个端点分别与电路区1的接地点连接。
或者,第一微带线4由多个U形微带线组合而成,每个U形微带线的两个端点都与电路区1的接地点连接。较优的,这些多个U形微带线在微带线的端点处依次连接,形成由一串U形微带线构成的第一微带线4。
或者,上述由多个U形微带线组合而成的第一微带线4中,每两个U形微带线的端点都不直接连接,但这一串U形微带线中相邻的两个U形微带线通过微带连接线相互连接。
或者,第二微带线7由多个U形微带线组合而成,每个U形微带线的两个端点都与电路区1的接地点连接。较优的,这些多个U形微带线在微带线的端点处依次连接,形成由一串U形微带线构成的第二微带线7。
或者,上述由多个U形微带线组合而成的第二微带线7中,每两个U形微带线的端点都不直接连接,但这一串U形微带线中相邻的两个U形微带线通过微带连接线相互连接。
另外,第一微带线4和/或第二微带线7可以与PCB板(电路区1)所在的平面位于同一个平面上;第一微带线4和/或第二微带线7也可以不与PCB板(电路区1)所在的平面位于同一个平面上。例如,可以设置多个与电路区1的接地点的活动连接点,这些活动连接点分别用于连接U形微带线的多个端点,从而使得U形微带线可以固定在用户设备的外壳或者天线支架上,并通过活动电连接点实现可以拆卸的电连接。
可选地,第一微带线4与电路区1的接地点连接的多个端点中相距最远的两个端点之间的距离根据与第一馈点3对应的天线的工作波长确定。例如,第一微带线4与电路区1的接地点连接的多个端点中距离最远的两个端点之间的距离为:与第一馈点3对应的天线的工作 波长的1/4。
可选地,第二微带线7与电路区1的接地点连接的多个端点中相距最远的两个端点之间的距离根据与第二馈点6对应的天线的工作波长确定。例如,第二微带线7与电路区1的接地点连接的多个端点中距离最远的两个端点之间的距离为:与第二馈点6对应的天线的工作波长的1/4。
可选地,第一微带线4向第一净空区2引出的高度优选值为第一净空区2高度的1/3左右,第二微带线7向第二净空区5引出的高度优选值为第二净空区5高度的1/3左右。对天线性能要求越高,则微带线向净空区引出的高度越小,对天线性能要求越低,则微带线向净空区引出的高度越大。因此,微带线向净空区引出的高度值并不限于1/3,在某些情况下天线性能允许时,大于或者小于净空区高度的1/3也是可以的。
本发明实施例还提供了一种用户设备,包括:上述的印刷电路板(PCB),以及第一天线,其中,第一天线与第一馈点3连接。
可选地,上述的用户设备还包括第二天线,第二天线与第二馈点6连接。
可选地,用户设备还包括:第一天线支架,其中,第一天线支架用于固定第一天线。
可选地,用户设备还包括:第二天线支架,其中,第二天线支架用于固定第二天线。
为了使本发明实施例的描述更加清楚,下面结合优选实施例进行描述和说明。
本发明优选实施例利用镜像原理以及相对论,提供一种延展地技术,在有限的物理尺寸上,性能上拓宽了天线的地长度,可以有效在保证天线辐射效率的同时,降低天线与天线之间物理距离的要求,从而可以缩短它所需要的物理尺寸。
在本优选实施例中,将以两个天线的多入多出(MIMO)系统、PCB(即主板)尺寸为60mm*98mm为例进行说明。在有限物理空间下实现长期演进系统(LTE)低频(698-960MHZ)兼顾是天线调试的难点,同时天线与天线之间的互扰非常严重。
主天线支持698-960MHz,分集也必须支持698-960MHz,天线低频对整机提供的地尺寸有严格的要求。
采用常规的支架天线,此时实际测试出主天线和分集天线的效率分别是45%和40%左右,如表1所示:
表1
Figure PCTCN2016900077-appb-000001
经过研究发现,天线的低频对地长度有要求,也就是整个主板的纵向尺寸有要求。因为它的回流路径长度不够,如果可以增加它的回流路径长度,就满足了地长度要求。通过在分集天线上也增加一条回流路径,有效的延展了天线的地长度。
运用相对理论和镜像原理,可以将这一技术用在缩小主板纵向尺寸上,即在上面的布局中,将主板的尺寸缩短,采用延展地技术。增加天线的等效电流电长度,这样天线的等效电长度实际上和主板尺寸未缩短之前的等效长度一致。这里采用U形结构进行延展天线纵向电流电长度技术。在本结构中,电流的流向会沿着U形结构的外缘,其电流长度在纵向尺寸等效于主板未缩小之前的理论尺寸。同时U形区域不是一个整体的地,因此它对整个主辅天线的影响有限。尤其是采用支架式天线后的影响基本微乎其微。
实施例一
整机主板尺寸60*90mm,两个天线位于PCB板1的两端,两个天线均采用支架加柔性电路板(FPC)形式,主天线净空尺寸15*60mm,分集天线净空尺寸12*60mm,在主天线净空区域,分集天线的净空上,分别走上一条类似“U形”,如图2所示。
在本优选实施例中,天线固定在支架上,如图3所示。
封闭结构的微带线,顶端主天线的“U形结构”的高度为3mm,分集天线净空区域延伸出来的“U形结构”高度为5mm。
U形结构走线宽度可以采用接近1/4波长。U形的始末位置可以根据实际需要可以进行调整。
经过实际测试,此时主天线平均效率为45%左右,分集天线效率为40%,图表2所示,天线效率和之前主板尺寸60*98mm条件下天线能达到的性能一致。换一种思维,从本设计中可以看出,能将主板尺寸缩短。非常有利于终端产品的小型化。
表2
Figure PCTCN2016900077-appb-000002
以上所述仅为本发明实施例应用于无线接入产品多天线系统的一个实施例而已,凡在本 方法的精神和原则之内,不同天线结构、不同天线形式相结合,以及天线走线形式等方面所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例二
U形结构改进,可以修改成多个整列方式,如图4所示,将原来整个U形结构切割成3个小的U形结构,形成一个阵列式U形结构。为了达到最佳的性能,每个结构之间用微带线连接。
实施例三
如图5所示,将U形结构的连接方式上做改变,即在主板上将U形结构与主板连接位置换成弹片或者馈点结构(称为双馈式U形结构),将U形微带线设计在天线支架上,单独走上一根微带表层线。同时在实际中,可以根据实际需要,对微带线的长度进行调整。有利于实际产品调试。
在本发明的上述实施例中,MIMO天线系统的位置,可以布置在终端的PCB板上的任意一个方向,可以根据布局的需要,进行调整;
支架天线的走线形式以及两者在净空区中所处比例可以根据实际情况进行调整;
U形结构可以放置于主天线或分集天线中的一端。或者只采用一个。
U形结构包围结构的线宽和形状可以根据需要调整。
通过本发明的上述实施例和优选实施例,可以缩短整机的尺寸。例如,对于主板尺寸60*98mm的设备,可以将主板尺寸缩短8mm左右,是一个很大的技术改进。尤其适用于在发射端和接收端同时使用多个天线进行收发的LTE终端产品中。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,采用的印刷电路板PCB包括:电路区1、第一净空区2、第一馈点3,第一净空区2位于电路区1的一侧,第一馈点3从电路区1引出并延伸至第一净空区2中,PCB还包括:第一微带线4,其中,第一微带线4从电路区1的一个接地点向第一净空区2引出,并与电路区1的另一个接地点连接,解决了由于天线设计需求而导致的用户设备体积大的问题,减少了用户设备的体积。

Claims (14)

  1. 一种印刷电路板PCB,包括:电路区(1)、第一净空区(2)、第一馈点(3),所述第一净空区(2)位于所述电路区(1)的一侧,所述第一馈点(3)从所述电路区(1)引出并延伸至所述第一净空区(2)中,所述PCB还包括:第一微带线(4),其中,
    所述第一微带线(4)从所述电路区(1)的一个接地点向所述第一净空区(2)引出,并与所述电路区(1)的另一个接地点连接。
  2. 根据权利要求1所述的PCB,其中,
    所述第一微带线(4)为一条预定形状的微带线,所述预定形状的微带线的两个端点分别与所述电路区(1)的接地点连接。
  3. 根据权利要求1所述的PCB,其中,
    所述第一微带线(4)由多条预定形状的微带线组合而成,所述多条预定形状的微带线中每条预定形状的微带线的两个端点均分别与所述电路区(1)的接地点连接。
  4. 根据权利要求3所述的PCB,其中,
    所述多条预定形状的微带线依次通过微带连接线连接。
  5. 根据权利要求1所述的PCB,其中,
    所述第一微带线(4)不在所述电路区(1)所在的平面上。
  6. 根据权利要求5所述的PCB,其中,
    所述第一微带线(4)固定在支架上,所述第一微带线(4)的端点通过连接点与所述电路区(1)的接地点连接。
  7. 根据权利要求1所述的PCB,其中,
    所述第一微带线(4)在所述电路区(1)所在的平面上。
  8. 根据权利要求1所述的PCB,其中,
    所述第一微带线(4)与所述电路区(1)的接地点连接的多个端点中相距最远的两个端点之间的距离根据与所述第一馈点(3)对应的天线的工作波长确定。
  9. 根据权利要求8所述的PCB,其中,
    所述第一微带线(4)与所述电路区(1)的接地点连接的多个端点中相距最远的两个端点之间的距离为:与所述第一馈点(3)对应的天线的工作波长的1/4。
  10. 根据权利要求1所述的PCB,其中,
    所述第一微带线(4)向所述第一净空区(2)引出的高度小于或等于所述第一净空区(2)高度的1/3。
  11. 根据权利要求2至4中任一项所述的PCB,其中,所述预定形状包括以下至少之一:
    U形、V形、弧形。
  12. 根据权利要求1至10中任一项所述的PCB,其中,所述PCB还包括:
    第二净空区(5)、第二馈点(6)和第二微带线(7),所述第二净空区(5)位于所述电路区(1)的与所述第一净空区(2)相对的另一侧,所述第二馈点(6)从所述电路区(1)引出并延伸至所述第二净空区(5)中;
    其中,所述第二微带线(7)从所述电路区(1)的一个接地点向所述第二净空区(5)引出,并与所述电路区(1)的另一个接地点连接。
  13. 一种用户设备,包括:如权利要求1至12中任一项所述的印刷电路板PCB,以及第一天线,其中,
    所述第一天线与所述第一馈点(3)连接。
  14. 根据权利要求13所述的用户设备,其中,所述用户设备还包括:设置在第一净空区(2)内的第一天线支架,其中,
    所述第一天线支架用于固定所述第一天线。
PCT/CN2016/900077 2015-09-23 2016-09-10 印刷电路板和用户设备 WO2017050301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510613603.3A CN106549222B (zh) 2015-09-23 2015-09-23 印刷电路板和用户设备
CN201510613603.3 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017050301A1 true WO2017050301A1 (zh) 2017-03-30

Family

ID=58365135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/900077 WO2017050301A1 (zh) 2015-09-23 2016-09-10 印刷电路板和用户设备

Country Status (2)

Country Link
CN (1) CN106549222B (zh)
WO (1) WO2017050301A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696078B (zh) * 2020-12-31 2023-09-29 华为技术有限公司 天线装置和电子设备
CN116419509A (zh) * 2021-12-30 2023-07-11 中兴通讯股份有限公司 一种终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809010A (en) * 1981-10-02 1989-02-28 Canon Kabushiki Kaisha Low profile wireless communication system and method
CN102696146A (zh) * 2010-02-11 2012-09-26 拉迪娜股份有限公司 使用电容的地线辐射体
CN104112905A (zh) * 2013-04-19 2014-10-22 耀登电通科技(昆山)有限公司 多天线结构
CN104733835A (zh) * 2013-12-19 2015-06-24 中兴通讯股份有限公司 Pifa天线及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809010A (en) * 1981-10-02 1989-02-28 Canon Kabushiki Kaisha Low profile wireless communication system and method
CN102696146A (zh) * 2010-02-11 2012-09-26 拉迪娜股份有限公司 使用电容的地线辐射体
CN104112905A (zh) * 2013-04-19 2014-10-22 耀登电通科技(昆山)有限公司 多天线结构
CN104733835A (zh) * 2013-12-19 2015-06-24 中兴通讯股份有限公司 Pifa天线及电子设备

Also Published As

Publication number Publication date
CN106549222B (zh) 2020-03-17
CN106549222A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
KR101467196B1 (ko) 전도성 테두리를 이용한 다중 대역 안테나를 포함하는 단말기
TWI624999B (zh) 天線結構及具有該天線結構的無線通訊裝置
US9774071B2 (en) Antenna structure
US9647320B2 (en) Antenna assembly and electronic device using the antenna assembly
US9583835B2 (en) Multiband antenna and wireless communication device employing same
TWI622230B (zh) 天線結構及具有該天線結構的無線通訊裝置
TWI469441B (zh) 立體天線
CN103296385A (zh) 一种可调式多频天线系统
CN103682630A (zh) 通信装置
JP2016136711A (ja) アンテナ構造及びこのアンテナ構造を備える無線通信装置
JP6608135B2 (ja) アンテナモジュール及びこれを備えた無線通信装置
TWI556508B (zh) 天線裝置
US20160087667A1 (en) Wireless Communications Device
JP2015106919A (ja) 多周波アンテナモジュール
WO2016061997A1 (zh) 一种天线结构
WO2017050301A1 (zh) 印刷电路板和用户设备
TWI619309B (zh) 天線結構及應用該天線結構的無線通訊裝置
TWI502815B (zh) 雙頻天線
WO2017107057A1 (zh) 一种移动终端
TWI581502B (zh) 天線結構及具有該天線結構的無線通訊裝置
JP2011160405A (ja) 双極アンテナ
JP2014239438A (ja) アンテナアセンブリ
US9385417B2 (en) Broadband antenna and wireless communication device employing same
TWI596831B (zh) 無線通訊裝置
TWI566472B (zh) 天線結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848182

Country of ref document: EP

Kind code of ref document: A1