WO2017050289A1 - 具有t形微结构的高分子材料表面及其制备方法和应用 - Google Patents

具有t形微结构的高分子材料表面及其制备方法和应用 Download PDF

Info

Publication number
WO2017050289A1
WO2017050289A1 PCT/CN2016/100032 CN2016100032W WO2017050289A1 WO 2017050289 A1 WO2017050289 A1 WO 2017050289A1 CN 2016100032 W CN2016100032 W CN 2016100032W WO 2017050289 A1 WO2017050289 A1 WO 2017050289A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
polymer material
microstructure
microcolumn
cross
Prior art date
Application number
PCT/CN2016/100032
Other languages
English (en)
French (fr)
Inventor
黄汉雄
陈安伏
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/763,161 priority Critical patent/US11110415B2/en
Publication of WO2017050289A1 publication Critical patent/WO2017050289A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3022Micromixers the materials to be mixed flowing in the form of droplets the components being formed by independent droplets which are alternated, the mixing of the components being achieved by diffusion between droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • B29C45/4478Removing or ejecting moulded articles for undercut articles using non-rigid undercut forming elements, e.g. elastic or resilient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/04Networks or arrays of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00214Processes for the simultaneaous manufacturing of a network or an array of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0094Geometrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/051Micromixers, microreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/03Processes for manufacturing substrate-free structures
    • B81C2201/034Moulding

Definitions

  • the invention relates to the field of functional structure surfaces, in particular to a surface of a polymer material having a T-shaped microstructure and a preparation method and application thereof.
  • the functional surface with "Lotus Effect” has broad application prospects in new energy technologies, green engineering, underwater decontamination, optics, cell culture, microfluidics and dust prevention, while the functional surface with "petal effect” is simultaneously presented.
  • Superhydrophobic properties and high adhesion properties have broad application prospects in the non-destructive transport of microdroplets and the analysis of microdroplet samples.
  • the microstructure on the surface of the functional structure is generally a shape of a cylinder, a truncated cone, a rectangular parallelepiped, a cone, etc. In actual use, the Cassie wet state on the surface of the microstructure having these shapes is less stable and subjected to external pressure. Or the surface is more easily wetted under water.
  • the T-shaped microstructure gives the surface a contact angle of greater than 150° and low adhesion characteristics, giving the surface a robust Cassie wetting state.
  • the surface needs to have certain adhesion characteristics and allow droplets of different volumes to roll when the surface is tilted at different angles. Therefore, in order to improve the adhesion of the surface droplets, a nanostructure having a small aspect ratio is disposed on the top surface of the T-shaped microcolumn to increase the solid-liquid contact area.
  • a nanostructure having a small aspect ratio is disposed on the top surface of the T-shaped microcolumn to increase the solid-liquid contact area.
  • Another object of the present invention is to provide a method for producing the above surface of a polymer material having a T-shaped microstructure.
  • the technical solution of the present invention is: a surface of a polymer material having a T-shaped microstructure, on which an ordered array of T-shaped microcolumns is distributed, and a top surface of the T-shaped microcolumn head is distributed with nano-trench.
  • the cross section of the T-shaped microcolumn is circular, elliptical, polygonal, arcuate or multi-arc, and the multi-arc is a closed shape composed of a plurality of arcs end to end.
  • the cross section of the head has a cross-sectional dimension of 20-80 ⁇ m and a height of 20-80 ⁇ m, and the cross-sectional dimension of the cylinder is 5-35 ⁇ m and the height is 20-80 ⁇ m, and two adjacent T-shaped microcolumns The center distance is 50 to 100 ⁇ m.
  • the nano-trench on the top surface of the microcolumn head has a polygonal or arcuate cross section with a cross-sectional dimension of 10 to 900 nm.
  • nano-trench is evenly distributed on the bottom surface of the T-shaped microstructure.
  • the preparation method of the above surface of the polymer material having the T-shaped microstructure includes the following steps:
  • a corresponding flexible template is fabricated, and a microstructure for forming a T-shaped microcolumn is distributed in the flexible template, according to the structure of the top surface of the T-shaped microcolumn head nano-groove, in the injection mold Processing a corresponding groove structure on the cavity;
  • the flexible template is mounted on the cavity of the injection mold, and the injection mold is heated to 60-120 ° C.
  • the polymer material is melted by the injection molding machine and injected into the mold cavity, and the polymer melt fills the mold flow path and the flexibility.
  • the polymer melt is kept under pressure and cooled, and the polymer material having the T-shaped microstructure on the molding surface is taken out, and the flexibility of the template can prevent the T-shaped microcolumn from being damaged when it is pulled out.
  • the cross-sectional dimension of the head for forming the T-shaped microcolumn in the flexible template is 20-80 ⁇ m, and the cross-sectional dimension of the microstructure of the shaped T-shaped microcolumn cylinder is 5-35 ⁇ m, the injection mold
  • the groove structure on the cavity has a cross-sectional dimension of 10 to 900 nm.
  • the polymer material is polypropylene, polyethylene, polycarbonate, polystyrene, polymethyl methacrylate, cyclic olefin copolymer or polyurethane.
  • the contact angle of water on the surface of the formed polymer material having a T-shaped microstructure is greater than 150°, rolling The moving angle is 0 to 180°.
  • the principle of droplet adhesion on the surface of the above-mentioned polymer material having a T-shaped microstructure is as follows.
  • a robust Cassie wetting state can be formed on the surface of the polymer material with T-shaped microstructure to prevent the droplets from infiltrating the gap between the T-shaped microcolumns and exhibit superhydrophobic properties; the top surface of the T-shaped microcolumn head
  • the groove structure is more easily infiltrated by the droplets, increasing the solid-liquid contact area, so that the surface exhibits moderate water adhesion characteristics.
  • This moderate water-adhesive property allows different volumes of droplets to roll on surfaces that are inclined at different angles, enabling quantitative collection and non-destructive transport of droplets.
  • Microfluidic devices with T-shaped microstructures disposed on the surface of the flow channel can be used for quantitative collection, non-destructive transport or micro-mixing of droplets.
  • the principle for the micro-mixing of droplets is as follows.
  • the plurality of flow channels in the microfluidic device are arranged at different angles from the horizontal plane; the microfluids are used to extrude the same volume of the plurality of micro-droplets at the same rate and fall on the surface of each flow channel, respectively, because the respective flow channels are inclined at different angles.
  • the droplets dropped on the surface of each channel gather together to form droplets of different volumes and roll to the end of the channel to achieve different Micromixing of different ratios of droplets.
  • the method can effectively prepare a polymer material product with moderate adhesion characteristics on the surface, and can be applied to dust prevention, anti-icing, drag reduction, micro-droplet quantitative collection, non-destructive transportation, drug release control and the like.
  • the present invention has the following advantageous effects as compared with the prior art.
  • the nano-trench distributed on the top surface of the T-shaped microcolumn can increase the adhesion to the droplets, and the surface of the polymer material having the T-shaped microstructure is inclined at a certain angle and then suspended thereon.
  • the droplets will not roll until they accumulate in the critical volume and can be used to make a quantitative collection device for microdroplets.
  • Figure 1a is a scanning electron micrograph (top view) of a T-shaped microstructure array, corresponding to Example 1.
  • Figure 1b is a schematic diagram of a T-shaped microstructure array, corresponding to Example 1.
  • Embodiment 2 is a cross-sectional view of an injection mold and a flexible template mounted on a cavity thereof, corresponding to Embodiment 1.
  • 3a and 3b are photographs of the wet state of the surface of the polymer material having the T-shaped microstructure which are placed horizontally and vertically, respectively, corresponding to Example 1.
  • Example 4 is a graph showing the relationship between the critical rolling angle and the volume of a droplet on a surface having a T-shaped microstructure, corresponding to Example 1.
  • 5a, 5b, 5c, and 5d are photographs before and after the droplets are pressed by the surface of the polymer material having the same T-shaped microstructure on the surface of the polymer material having the T-shaped microstructure, corresponding to Example 1. Arrows indicate the direction of movement of the surface.
  • Fig. 6a and Fig. 6b are photographs showing the droplets on the surface of the polymer material having a T-shaped microstructure without loss, corresponding to Example 1.
  • Figure 7a is a front elevational view of a microfluidic device having a T-shaped microstructure disposed on the surface of the flow channel.
  • Figure 7b is a side elevational view of a microfluidic device having a T-shaped microstructure disposed on the surface of the flow channel.
  • Fig. 8 is a schematic view showing the wetting state of the surface of a polymer material having a T-shaped microstructure, corresponding to Example 2.
  • Fig. 9 is a schematic view showing the droplet rolling when the surface of the polymer material having a T-shaped microstructure is inclined by 20°, corresponding to Example 2.
  • Figure 10 is a schematic illustration of a T-shaped microstructure array, corresponding to Example 4.
  • Figure 11 is a cross-sectional view of an injection mold and a flexible template mounted on its cavity, corresponding to Example 4.
  • Figure 12 is a schematic view showing the state of wetting of a droplet when it is pressed by a flat plate on a surface having a T-shaped microstructure, corresponding to Example 4.
  • a surface 1 of a polymer material having a T-shaped microstructure is arranged, and an T-shaped microcolumn 2 having an ordered arrangement is arranged on the surface, and a nano-groove 4 is disposed on a top surface of the head 3-1, as shown in FIG. Shown.
  • the cross section of the T-shaped microcolumn 2 is rectangular.
  • the head 3-1 has a cross-sectional width of 45 ⁇ m and a height of 12 ⁇ m
  • the cylindrical body 3-2 has a cross-sectional width of 30 ⁇ m and a height of 70 ⁇ m, and the center distance of two adjacent T-shaped micro-pillars 2 It is 55 ⁇ m.
  • the cross section of the top surface nanogroove 4 of the microcolumn head 3-1 is arcuate with a cross-sectional dimension of 900 nm.
  • the preparation method of the surface 1 of the polymer material having the T-shaped microstructure described above comprises the following steps:
  • a corresponding flexible template 5 is produced, on which the microstructure for forming the T-shaped microcolumn 2 is distributed, according to the structure of the top surface of the microcolumn head 3-1 , processing the corresponding groove structure on the cavity of the injection mold 6, as shown in FIG. 2;
  • the flexible template 5 is mounted on the cavity of the injection mold 6, and the injection mold 6 is heated to 120 ° C, and the polymer material is melted by an injection molding machine and injected into the mold cavity, and the polymer melt fills the mold flow path and The microstructure in the flexible template 5 and the groove structure on the cavity of the injection mold 6 to form a T-shaped microcolumn 2 on the top surface of which the nano-trench 4 is distributed;
  • the cross-sectional width of the microstructure of the flexible template 5 for forming the T-shaped microcolumn head 3-1 is 45 ⁇ m, and the cross-sectional width of the microstructure of the formed T-shaped microcolumn cylinder 3-2 is 30 ⁇ m, injection molding.
  • the cross-sectional dimension of the groove structure on the mold 6 cavity is 900 nm.
  • the polymer material is polypropylene.
  • 3a and 3b respectively show that the water contact angle on the surface 1 of the formed polymer material having a T-shaped microstructure is 151° and the rolling angle is more than 90°.
  • Figure 4 shows the relationship between the critical rolling angle and the volume of the droplet on the surface 1 of the formed polymer material having a T-shaped microstructure.
  • the curve is fitted by a quadratic polynomial to obtain the critical rolling of the droplet.
  • the surface exhibits moderate water adhesion characteristics and can be used for quantitative collection of droplets.
  • the spherical shape can still be restored, as shown in Figures 5a, 5b, 5c and 5d, indicating that the surface exhibits a robust Cassie wetting property.
  • the droplets on the surface are squeezed and restored to a spherical shape, they can still be completely sucked away by the filter paper to achieve non-destructive transport of the droplets, as shown in Figures 6a and 6b.
  • the above-mentioned moderate water adhesion characteristics can be used for micro-mixing of droplets in a microfluidic device, as shown in Figures 7a and 7b.
  • the flow path 9 in the microfluidic device 8 is arranged at 60° to the horizontal
  • the flow path 10 is arranged at 45° to the horizontal
  • the flow path 11 is arranged at 30° to the horizontal
  • the T-shaped are arranged on the surface of the flow path.
  • the micropump to extrude the same volume of three microdroplets at the same rate, respectively, on the surface of the three flow channels, since the three flow channels are inclined at different angles, according to the critical rolling angle and volume of the droplets established above In the quantitative relationship, the microdroplets dropped on the surface of the three flow channels are rolled up to the end of the flow channel when they are gathered into different volume droplets, thereby achieving micro-mixing of different ratios of different droplets.
  • a surface 1 of a polymer material having a T-shaped microstructure has the following differences compared with Embodiment 1:
  • the T-shaped microcolumn 2 has a circular cross section.
  • the head 3-1 has a cross-sectional diameter of 60 ⁇ m and a height of 30 ⁇ m
  • the cylindrical body 3-2 has a cross-sectional diameter of 15 ⁇ m and a height of 40 ⁇ m, and the center distance of two adjacent T-shaped micropillars 2 It is 90 ⁇ m.
  • the top surface of the microcolumn head 3-1 has a trapezoidal cross section with a cross section of 500 nm.
  • the cross-sectional diameter of the flexible template 5 used for forming the T-shaped microcolumn head 3-1 is 60 ⁇ m.
  • the microstructure of the formed T-shaped microcolumn cylinder 3-2 has a cross-sectional diameter of 15 ⁇ m, and the groove structure of the injection mold 6 cavity has a cross-sectional dimension of 500 nm.
  • the polymer material used is polyethylene.
  • Figure 8 is a schematic view showing the state of wetting of the droplets 7 on the surface 1 of the formed polymer material having a T-shaped microstructure, the water having a contact angle of 155° and a rolling angle of more than 90°.
  • Fig. 9 is a schematic view showing the rolling of the droplets when the surface 1 of the formed polymer material having the T-shaped microstructure is inclined by 20°.
  • the surface exhibits moderate water adhesion characteristics and can be used for quantitative collection of droplets.
  • a surface 1 of a polymer material having a T-shaped microstructure has the following differences compared with Embodiment 1:
  • the cross section of the T-shaped microcolumn 2 is a regular hexagon.
  • the head 3-1 has a cross-sectional width of 30 ⁇ m and a height of 10 ⁇ m
  • the cylindrical body 3-2 has a cross-sectional width of 10 ⁇ m and a height of 30 ⁇ m, and the center distance of two adjacent T-shaped micro-pillars 2 It is 45 ⁇ m.
  • the cross section of the top surface nanogroove 4 of the microcolumn head 3-1 is an equilateral triangle having a section width of 300 nm.
  • the cross-sectional diameter of the microstructure of the flexible template 5 used for forming the T-shaped microcolumn head 3-1 is 30 ⁇ m
  • the microstructure of the molded T-shaped microcolumn cylinder 3-2 has a cross-sectional diameter of 10 ⁇ m
  • the injection mold type 6 The cross-sectional dimension of the trench structure on the cavity is 300 nm.
  • the polymer material used is polycarbonate.
  • the surface of the polymer material having the T-shaped microstructure having a T-shaped microstructure has a contact angle of 153° and a rolling angle of more than 90°.
  • a surface 1 of a polymer material having a T-shaped microstructure has the following differences compared with Embodiment 1:
  • the head 3-1 has a cross-sectional width of 60 ⁇ m and a height of 30 ⁇ m
  • the column 3-2 has a cross-sectional width of 12 ⁇ m and a height of 40 ⁇ m, and the center distance of two adjacent T-shaped micro-pillars 2 It is 90 ⁇ m.
  • Nano-trench 12 is evenly distributed on the bottom surface of the T-shaped microstructure, as shown in FIG.
  • the nanogroove 12 has a triangular cross section with a cross-sectional width of 100 nm and a depth of 200 nm.
  • a corresponding nano-trench structure is processed on the surface of the flexible template 5, as shown in FIG. 11;
  • the cross-sectional width of the flexible template 5 used for molding the T-shaped microcolumn head 3-1 was 60 ⁇ m, and the microstructure of the shaped T-shaped microcolumn cylinder 3-2 was 12 ⁇ m.
  • Fig. 12 is a view showing the state of wetting of the droplets when subjected to external pressure on the surface 1 of the formed polymer material having a T-shaped microstructure. It can be seen that the droplets 7 may infiltrate into the gap between the T-shaped microcolumns when pressed by the flat plate 13 or immersed deep in the water, but the nano-grooves 12 can prevent the droplets 7 from infiltrating the T-shaped microstructures. Bottom surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

一种具有T形微结构的高分子材料表面(1)及其制备方法和应用,高分子材料表面(1)上分布有有序排列的T形微柱(2),T形微柱头部(3-1)的顶面分布有纳米沟槽(4)。根据T形微柱(2)的结构,制造相应的柔性模板(5);根据T形微柱头部(3-1)顶面纳米沟槽(4)的结构,在注塑模具(6)型腔上加工相应的沟槽结构;将柔性模板(5)安装于注塑模具(6)型腔上;将高分子材料熔融后注入模具型腔中,熔体填充模具流道以及柔性模板(5)中的微结构和注塑模具(6)型腔上的沟槽结构,从而成型表面上具有T形微结构的高分子材料制品。具有T形微结构的高分子材料表面(1)呈现稳健的润湿特性和适度的水粘附特性,可用于制作微流控器件,实现微液滴的定量体积收集、无损输送或混合。

Description

具有T形微结构的高分子材料表面及其制备方法和应用 技术领域
本发明涉及功能结构表面领域,特别涉及一种具有T形微结构的高分子材料表面及其制备方法和应用。
背景技术
具有“荷叶效应”的功能表面在新能源技术、绿色工程、水下除污、光学、细胞培养、微流控和防尘等方面应用前景广阔,而具有“花瓣效应”的功能表面同时呈现超疏水特性和高粘附特性(滚动角大于90°),在微液滴的无损输送和微量液滴样本的分析等方面有广阔的应用前景。目前,功能结构表面上的微结构一般为圆柱、圆台、长方体、锥体等形状,实际使用中,具有这些形状的微结构的表面上的Cassie润湿状态稳定性较差,且在受到外部压力或在水下时表面较易被润湿。
T形微结构使表面呈现大于150°的接触角和低的粘附特性,使表面呈现稳健的Cassie润湿状态。要实现液滴的定量收集和无损输送,表面需要具有一定的粘附特性,并且使不同体积的液滴在表面倾斜不同角度时可滚动。因此,为提高表面液滴粘附力,要在T形微柱的顶面布置较小深宽比的纳米结构,以增加固-液接触面积。目前,并未见采用注塑技术在高分子材料表面成型T形微结构的相关报道。
发明内容
本发明的目的在于克服现有技术的不足,提供一种具有T形微结构的高分子材料表面,其对水的粘附程度适中。
本发明的另一目的在于提供一种上述具有T形微结构的高分子材料表面的制备方法。
本发明的又一目的在于提供一种上述具有T形微结构的高分子材料表面的应用。
本发明的技术方案为:一种具有T形微结构的高分子材料表面,该表面上分布有有序排列的T形微柱,T形微柱头部顶面分布有纳米沟槽。
所述T形微柱的横截面为圆形、椭圆形、多边形、弓形或多弧形,所述多弧形为多段弧线首尾相接组成的闭合形状。
所述T形微柱中,头部的横截面尺寸为20~80μm、高度为20~80μm,柱体的横截面尺寸为5~35μm、高度为20~80μm,两相邻T形微柱的中心距离为50~100μm。
所述微柱头部顶面的纳米沟槽的横截面为多边形或弓形,横截面尺寸为10~900nm。
优选地,在T形微结构的底面上均匀分布有纳米沟槽。
上述具有T形微结构的高分子材料表面的制备方法,包括以下步骤:
(1)根据T形微柱的结构,制造相应的柔性模板,柔性模板中分布有用于成型T形微柱的微结构,根据T形微柱头部顶面纳米沟槽的结构,在注塑模具型腔上加工相应的沟槽结构;
(2)将柔性模板安装于注塑模具型腔上,并将注塑模具加热至60~120℃,采用注塑机将高分子材料熔融后注入模具型腔中,高分子熔体填充模具流道以及柔性模板中的微结构和注塑模具型腔上的沟槽结构,从而成型顶面分布有纳米沟槽的T形微柱;
(3)对高分子熔体进行保压和冷却,成型表面上具有T形微结构的高分子材料制品后取出,模板的柔性可使T形微柱被拔出时不会被破坏。
所述步骤(1)中,柔性模板中用于成型T形微柱头部的横截面尺寸为20~80μm、成型T形微柱柱体的微结构的横截面尺寸为5~35μm,注塑模具型腔上沟槽结构的横截面尺寸为10~900nm。
所述步骤(2)中,高分子材料为聚丙烯、聚乙烯、聚碳酸酯、聚苯乙烯、聚甲基丙烯酸甲脂、环烯烃共聚物或聚氨酯。
所成型的具有T形微结构的高分子材料表面上水的接触角大于150°、滚 动角为0~180°。
上述具有T形微结构的高分子材料表面上液滴粘附原理如下所述。在具有T形微结构的高分子材料表面上可形成稳健的Cassie润湿状态,防止液滴浸润T形微柱之间的间隙,并呈现超疏水特性;T形微柱头部顶面的纳米沟槽结构较易被液滴浸润,增加固-液接触面积,从而使表面呈现适度的水粘附特性。这种适度的水粘附特性可使不同体积的液滴在倾斜不同角度的表面上滚动,实现液滴的定量收集和无损输送等功能。
根据液滴在所成型的具有T形微结构的高分子材料表面上的临界滚动角与体积之间的关系数据,通过Origin软件拟合获得两者之间的定量关系方程式:y=ax2+bx+c,其中,y为液滴的临界滚动角(单位为°),x为液滴体积(单位为μL),a、b和c是通过拟合获得的相关常数。在建立这两者之间的定量关系式后,即可计算获得不同液滴体积下对应的临界滚动角。
流道表面布置有T形微结构的微流控器件可用于液滴的定量收集、无损输送或微混合。其中用于液滴微混合时的原理如下所述。微流控器件中的多个流道与水平面成不同角度布置;采用微泵以相同的速率挤出相同体积的多种微液滴分别落在各个流道表面,由于各个流道倾斜不同的角度,根据上述建立的液滴的临界滚动角与体积之间的定量关系式,滴落在各个流道表面的微液滴聚集成不同体积的液滴时滚落到流道的末端,从而实现不同液滴的不同配比的微混合。
本方法可有效制备表面上呈现适度粘附特性的高分子材料制品,可应用于防尘、防结冰、减阻、微液滴定量收集、无损输送、药物释放控制等方面。
本发明相对于现有技术,具有以下有益效果。
(1)具有T形微结构的高分子材料表面的制备方法工序简单易操作,所采用的设备为工业生产中较为普遍的连续型加工设备(注塑机),可实现连续、批量制备,微结构复制精度高,易于在工业中推广,应用前景广阔。
(2)具有T形微结构的高分子材料表面呈现稳健的Cassie润湿状态,对悬浮其上的液滴施加一定的压力或将整个表面浸润至水面以下时,可防止T形微柱之间的间隙被液滴浸润。
(3)分布于T形微柱的头部顶面的纳米沟槽可增大对液滴的粘附力,将具有T形微结构的高分子材料表面倾斜一定的角度后,悬浮其上的液滴累积到临界体积后才会滚动,可用于制作微液滴的定量收集装置。
(4)当流道表面布置有T形微结构的微流控器件用于液滴的微混合时,滴落在各个流道表面的微液滴聚集成不同体积的液滴时滚落到流道的末端,从而实现不同液滴的不同配比的微混合。
附图说明
图1a为T形微结构阵列的扫描电子显微镜照片(俯视方向),对应实施例1。
图1b为T形微结构阵列的示意图,对应实施例1。
图2为注塑模具和安装于其型腔上的柔性模板的剖视图,对应实施例1。
图3a和图3b分别为液滴在水平和垂直放置的具有T形微结构的高分子材料表面的润湿状态照片,对应实施例1。
图4为液滴在具有T形微结构的表面上的临界滚动角与体积之间的关系图,对应实施例1。
图5a、图5b、图5c和图5d为液滴在具有T形微结构的高分子材料表面上受到具有相同T形微结构的高分子材料表面挤压前后的照片,对应实施例1。箭头表示表面的移动方向。
图6a和图6b为液滴在具有T形微结构的高分子材料表面上无损转移时的照片,对应实施例1。
图7a为流道表面布置有T形微结构的微流控器件的主视图。
图7b为流道表面布置有T形微结构的微流控器件的侧视图。
图8为具有T形微结构的高分子材料表面的润湿状态示意图,对应实施例2。
图9为具有T形微结构的高分子材料表面倾斜20°时液滴滚动示意图,对应实施例2。
图10为T形微结构阵列的示意图,对应实施例4。
图11为注塑模具和安装于其型腔上的柔性模板的剖视图,对应实施例4。
图12为液滴在具有T形微结构的表面上受到平板挤压时的润湿状态示意图,对应实施例4。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1
本实施例一种具有T形微结构的高分子材料表面1,该表面上分布有有序排列的T形微柱2,其头部3-1顶面分布有纳米沟槽4,如图1所示。
T形微柱2的横截面为矩形。
T形微柱2中,头部3-1的横截面宽度为45μm、高度为12μm,柱体3-2的横截面宽度为30μm、高度为70μm,两相邻T形微柱2的中心距离为55μm。
微柱头部3-1顶面纳米沟槽4的横截面为弓形,截面尺寸为900nm。
上述具有T形微结构的高分子材料表面1的制备方法,包括以下步骤:
(1)根据T形微柱2的结构,制造相应的柔性模板5,其上分布有用于成型T形微柱2的微结构,根据微柱头部3-1顶面纳米沟槽4的结构,在注塑模具6型腔上加工相应的沟槽结构,如图2所示;
(2)将柔性模板5安装于注塑模具6型腔上,并将注塑模具6加热至120℃,采用注塑机将高分子材料熔融后注入模具型腔中,高分子熔体填充模具流道以及柔性模板5中的微结构和注塑模具6型腔上的沟槽结构,从而成型顶面上分布有纳米沟槽4的T形微柱2;
(3)对高分子熔体进行保压和冷却,成型表面上具有T形微结构的高分子材料制品后取出。
步骤(1)中,柔性模板5中用于成型T形微柱头部3-1的横截面宽度为45μm、成型T形微柱柱体3-2的微结构的横截面宽度为30μm,注塑模具6型腔上沟槽结构的横截面尺寸为900nm。
步骤(2)中,高分子材料为聚丙烯。
图3a和图3b分别显示了所成型的具有T形微结构的高分子材料表面1上的水接触角为151°和滚动角大于90°。
图4显示了液滴在所成型的具有T形微结构的高分子材料表面1上的临界滚动角与体积之间的关系,采用二次多项式对该曲线进行拟合,获得液滴的临界滚动角与体积之间的关系方程式为:y=0.17x2-7.8x+120.9,其中y为液滴的临界滚动角(单位为°),x为液滴体积(单位为μL)。该表面呈现适度的水粘附特性,可被用于液滴的定量收集。液滴在经过两个具有相同T形微结构的高分子材料表面1挤压之后,仍能恢复球形,如图5a、5b、5c和5d所示,表明该表面呈现稳健的Cassie润湿性能,同时,该表面上的液滴经过挤压并恢复球形之后,仍能被滤纸完全吸走,实现液滴的无损输送,如图6a和6b所示。
上述适度的水粘附特性,可用于微流控器件中液滴微混合,如图7a和图7b所示。微流控器件8中的流道9与水平面成60°布置,流道10与水平面成45°布置,流道11与水平面成30°布置,流道表面上均布置有有序排列的T形微柱2。采用微泵以相同的速率挤出相同体积的三种微液滴分别落在三个流道表面,由于三个流道倾斜不同的角度,根据上述建立的液滴的临界滚动角与体积之间的定量关系式,滴落在三个流道表面的微液滴聚集成不同体积的液滴时滚落到流道的末端,从而实现不同液滴的不同配比的微混合。
实施例2
本实施例一种具有T形微结构的高分子材料表面1,与实施例1相比,有以下不同之处:
T形微柱2的横截面为圆形。
T形微柱2中,头部3-1的横截面直径为60μm、高度为30μm,柱体3-2的横截面直径为15μm、高度为40μm,两相邻T形微柱2的中心距离为90μm。
微柱头部3-1顶面纳米沟槽4的横截面为梯形,截面尺寸为500nm。
所采用的柔性模板5中用于成型T形微柱头部3-1的横截面直径为60μm、 成型T形微柱柱体3-2的微结构的横截面直径为15μm,注塑模具6型腔上沟槽结构的横截面尺寸为500nm。
所采用的高分子材料为聚乙烯。
图8为液滴7在所成型的具有T形微结构的高分子材料表面1上的润湿状态示意图,该表面上水的接触角为155°、滚动角大于90°。
图9显示了液滴在所成型的具有T形微结构的高分子材料表面1倾斜20°时的滚动示意图。该表面呈现适度的水粘附特性,可用于液滴的定量收集。
实施例3
本实施例一种具有T形微结构的高分子材料表面1,与实施例1相比,有以下不同之处:
T形微柱2的横截面为正六边形。
T形微柱2中,头部3-1的横截面宽度为30μm、高度为10μm,柱体3-2的横截面宽度为10μm、高度为30μm,两相邻T形微柱2的中心距离为45μm。
微柱头部3-1顶面纳米沟槽4的横截面为正三角形,截面宽度为300nm。
所采用的柔性模板5中用于成型T形微柱头部3-1的横截面直径为30μm、成型T形微柱柱体3-2的微结构的横截面直径为10μm,注塑模具6型腔上沟槽结构的横截面尺寸为300nm。
所采用的高分子材料为聚碳酸酯。
所成型的具有T形微结构的高分子材料表面1上水的接触角为153°、滚动角大于90°。
实施例4
本实施例一种具有T形微结构的高分子材料表面1,与实施例1相比,有以下不同之处:
T形微柱2中,头部3-1的横截面宽度为60μm、高度为30μm,柱体3-2的横截面宽度为12μm、高度为40μm,两相邻T形微柱2的中心距离为90μm。
在T形微结构的底面上均匀分布有纳米沟槽12,如图10所示。
纳米沟槽12的截面为三角形,截面宽度为100nm、深度为200nm。
根据纳米沟槽12的结构,在柔性模板5的表面加工相应的纳米沟槽结构,如图11所示;
所采用的柔性模板5中用于成型T形微柱头部3-1的横截面宽度为60μm、成型T形微柱柱体3-2的微结构的横截面宽度为12μm。
图12显示了液滴在所成型的具有T形微结构的高分子材料表面1上受到外部压力时的润湿状态示意图。可见,液滴7在受到平板13挤压或沉浸在水下较深时,可能会浸润至T形微柱之间的间隙中,但纳米沟槽12可阻止液滴7浸润T形微结构的底面。
如上所述,便可较好地实现本发明,上述实施例仅为本发明的较佳实施例,并非用来限定本发明的实施范围;即凡依本发明内容所作的均等变化与修饰,都为本发明权利要求所要求保护的范围所涵盖。

Claims (10)

  1. 具有T形微结构的高分子材料表面,其特征在于,该表面上分布有有序排列的T形微柱,T形微柱头部的顶面分布有纳米沟槽。
  2. 根据权利要求1所述具有T形微结构的高分子材料表面,其特征在于,所述T形微柱的横截面为圆形、椭圆形、多边形、弓形或多弧形,所述微柱头部顶面的纳米沟槽的横截面为多边形或弓形。
  3. 根据权利要求1所述具有T形微结构的高分子材料表面,其特征在于,所述T形微柱中,头部的横截面尺寸为20~80μm,高度为20~80μm,柱体的横截面尺寸为5~35μm,高度为20~80μm,两个相邻T形微柱的中心距离为50~100μm,纳米沟槽的横截面尺寸为10~900nm。
  4. 根据权利要求1所述具有T形微结构的高分子材料表面,其特征在于,在T形微柱的底面上均匀分布有纳米沟槽。
  5. 权利要求1~3中任一项所述具有T形微结构的高分子材料表面的制备方法,其特征在于,包括以下步骤:
    (1)根据T形微柱的结构,制造相应的柔性模板,柔性模板中分布有用于成型T形微柱的微结构,根据T形微柱头部顶面纳米沟槽的结构,在注塑模具型腔上加工相应的沟槽结构;
    (2)将柔性模板安装于注塑模具型腔上,并将注塑模具加热至60~120℃,采用注塑机将高分子材料熔融后注入模具型腔中,高分子熔体填充模具流道以及柔性模板中的微结构和注塑模具型腔上的沟槽结构,从而成型顶面分布有纳米沟槽的T形微柱;
    (3)对高分子熔体进行保压和冷却,成型具有T形微结构的高分子材料制品后取出。
  6. 根据权利要求5所述具有T形微结构的高分子材料表面的制备方法,其特征在于,所述步骤(1)中,柔性模板中用于成型T形微柱头部的横截面尺寸为20~80μm,成型T形微柱柱体的微结构的横截面尺寸为5~35μm,注塑模具型腔上沟槽结构的横截面尺寸为10~900nm。
  7. 根据权利要求5所述具有T形微结构的高分子材料表面的制备方法,其特征在于,所成型的具有T形微结构的高分子材料表面上水的接触角大于150°,滚动角为0~180°。
  8. 根据权利要求5所述具有T形微结构的高分子材料表面的制备方法,其特征在于,液滴在所成型的具有T形微结构的高分子材料表面上的临界滚动角与体积之间的定量关系方程式为:y=ax2+bx+c,其中,y为液滴的临界滚动角,y的单位为°;x为液滴体积,x的单位为μL;a、b和c是通过拟合获得的相关常数。
  9. 权利要求1~4中任一项所述具有T形微结构的高分子材料表面的应用,其特征在于,流道表面布置有T形微结构的微流控器件用于液滴的定量收集和无损输送。
  10. 权利要求1~4中任一项所述具有T形微结构的高分子材料表面的应用,其特征在于,微流控器件中的多个流道均布置有T形微结构,且与水平面成不同角度布置,以实现不同液滴的不同配比的微混合。
PCT/CN2016/100032 2015-09-25 2016-09-25 具有t形微结构的高分子材料表面及其制备方法和应用 WO2017050289A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/763,161 US11110415B2 (en) 2015-09-25 2016-09-25 Polymer surface with t-shaped microstructure and fabrication method therefor and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510623594.6 2015-09-25
CN201510623594.6A CN105345984A (zh) 2015-09-25 2015-09-25 具有t形微结构的高分子材料表面及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017050289A1 true WO2017050289A1 (zh) 2017-03-30

Family

ID=55322117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100032 WO2017050289A1 (zh) 2015-09-25 2016-09-25 具有t形微结构的高分子材料表面及其制备方法和应用

Country Status (3)

Country Link
US (1) US11110415B2 (zh)
CN (1) CN105345984A (zh)
WO (1) WO2017050289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427783A (zh) * 2021-06-16 2021-09-24 杭州电子科技大学 一种高温作用下制备pmma内部微通道的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105345984A (zh) 2015-09-25 2016-02-24 华南理工大学 具有t形微结构的高分子材料表面及其制备方法和应用
CN109395790B (zh) * 2018-12-11 2024-03-29 福州大学 一种纸基复合三维微/纳电路及其加工方法
CN111883692B (zh) * 2019-09-24 2023-02-03 广东聚华印刷显示技术有限公司 墨滴捕获薄膜、发光器件及其桥连缺陷的修复方法和制作方法
CN114589883B (zh) * 2022-03-30 2022-10-28 深圳技术大学 一种注塑模具及其制备方法
CN116093506A (zh) * 2023-03-07 2023-05-09 荣耀终端有限公司 膜材、壳体、电池盖、终端设备及膜材的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101147A (zh) * 2012-12-20 2013-05-15 华南理工大学 一种具有复合微结构的超疏水表面的制备方法及其应用
CN104002474A (zh) * 2014-05-12 2014-08-27 华南理工大学 具有微纳复合结构的超疏水且粘附可调表面的制备方法及其应用
CN105345984A (zh) * 2015-09-25 2016-02-24 华南理工大学 具有t形微结构的高分子材料表面及其制备方法和应用
CN205201976U (zh) * 2015-09-25 2016-05-04 华南理工大学 制备具有t形微结构的高分子材料表面产品的注塑模具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427083A (zh) * 2011-11-10 2012-04-25 中山大学 一种疏水疏油表面微结构及其制备方法
CN103466539A (zh) * 2013-08-29 2013-12-25 中国科学院深圳先进技术研究院 一种超疏液表面的制备方法及超疏液表面
CN103569950A (zh) * 2013-10-11 2014-02-12 中国科学院深圳先进技术研究院 一种超疏液表面的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101147A (zh) * 2012-12-20 2013-05-15 华南理工大学 一种具有复合微结构的超疏水表面的制备方法及其应用
CN104002474A (zh) * 2014-05-12 2014-08-27 华南理工大学 具有微纳复合结构的超疏水且粘附可调表面的制备方法及其应用
CN105345984A (zh) * 2015-09-25 2016-02-24 华南理工大学 具有t形微结构的高分子材料表面及其制备方法和应用
CN205201976U (zh) * 2015-09-25 2016-05-04 华南理工大学 制备具有t形微结构的高分子材料表面产品的注塑模具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427783A (zh) * 2021-06-16 2021-09-24 杭州电子科技大学 一种高温作用下制备pmma内部微通道的方法

Also Published As

Publication number Publication date
US20180280904A1 (en) 2018-10-04
US11110415B2 (en) 2021-09-07
CN105345984A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2017050289A1 (zh) 具有t形微结构的高分子材料表面及其制备方法和应用
Mijangos et al. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates
US11518123B2 (en) Fabrication method for micro-/nanostructured compound-eye arrays with hydrophobicity and light trapping and applications thereof
US20240198562A1 (en) Moulding apparatus for forming a fastening device
Si et al. Wetting and spreading: Fundamental theories to cutting-edge applications
Zhou et al. Magnetoresponsive surfaces for manipulation of nonmagnetic liquids: design and applications
CN104002474B (zh) 具有微纳复合结构的超疏水且粘附可调表面的制备方法及其应用
JP2019517808A5 (zh)
Sharifi et al. Mechanical and physical properties of poly (vinyl alcohol) microfibers fabricated by a microfluidic approach
Tottori et al. Separation of main and satellite droplets in a deterministic lateral displacement microfluidic device
TWI635041B (zh) 微流道晶片及其製作方法
WO2013141695A1 (en) Apparatus and method for mass producing a monodisperse microbubble agent
Dersoir et al. Clogging transition induced by self filtration in a slit pore
WO2018123663A1 (ja) 細胞培養基材及びその製造方法
CN205201976U (zh) 制备具有t形微结构的高分子材料表面产品的注塑模具
Vandadi et al. Resistant energy analysis of self-pulling process during dropwise condensation on superhydrophobic surfaces
Lu et al. Droplet directional movement on the homogeneously structured superhydrophobic surface with the gradient non-wettability
KR101647095B1 (ko) 마이크로플루이딕 장치, 장치의 제조방법 및 하이드로젤에 세포를 담지하는 방법
CN103101147A (zh) 一种具有复合微结构的超疏水表面的制备方法及其应用
WO2017177058A4 (en) Fluid pouch with inner microstructure
Park et al. 3D printing-assisted and magnetically-actuated superhydrophobic surfaces for droplet control
KR101358831B1 (ko) 초소수성 코팅이 이루어진 마그네틱 엘라스토머를 이용한 액적 제어 방법
WO2024078496A1 (zh) 一种热塑性聚合物及其制备方法和应用
US20150097317A1 (en) Method of fabricating magnetically actuated artificial cilia
RU2718365C1 (ru) Поверхность для направленного переноса текучей среды, в частности против внешнего давления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16848170

Country of ref document: EP

Kind code of ref document: A1