WO2017049907A1 - 电力开关动作时间动态测量及交流过零点精确控制方法及应用 - Google Patents

电力开关动作时间动态测量及交流过零点精确控制方法及应用 Download PDF

Info

Publication number
WO2017049907A1
WO2017049907A1 PCT/CN2016/081383 CN2016081383W WO2017049907A1 WO 2017049907 A1 WO2017049907 A1 WO 2017049907A1 CN 2016081383 W CN2016081383 W CN 2016081383W WO 2017049907 A1 WO2017049907 A1 WO 2017049907A1
Authority
WO
WIPO (PCT)
Prior art keywords
power switch
time
switch
voltage
input
Prior art date
Application number
PCT/CN2016/081383
Other languages
English (en)
French (fr)
Inventor
郑贵林
Original Assignee
郑贵林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑贵林 filed Critical 郑贵林
Publication of WO2017049907A1 publication Critical patent/WO2017049907A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers

Definitions

  • the invention relates to a power switch operation time dynamic measurement method, and relates to a power switch operation time dynamic measurement system, and also relates to the application of the above method or system in precise control of a power switch AC zero-crossing point, and the power switch communication of the invention Zero-crossing precise control technology can be applied in the medium and high voltage field.
  • the power grid mainly uses AC power of 50hz or 60hz.
  • the characteristics of the alternating current are that the voltage and current periodically change according to the law of the sine wave according to the frequency.
  • Each cycle of the sine wave has two voltage zero-crossing points and two current zero-crossing points. For a century, it can be closed at the voltage zero-crossing point, and the current cross-zero is broken, which has been the pursuit of ideal switches.
  • AC power is cut at the zero crossing point, which will greatly reduce the impact of the switching operation on the power grid, load, and switch itself, and realize the arc-free break and break. It can effectively ensure the safety and stability of the power supply side and the power supply side, and extend the electrical The service life of the equipment.
  • the research direction mainly focuses on reducing the closing voltage shock, reducing or even eliminating the breaking current.
  • the cross arc-breaking switch, vacuum arc extinguishing switch, sulfur hexafluoride arc extinguishing switch and so on are born.
  • the low-voltage switch is mostly an air switch, the life of the air switch is generally short-lived as the type and capacity of the load increase. According to the certification specification, the full load can withstand 3,000 safe opening and closing. Compared with the increasing daily working density of the current industrial production process, this index is far from the current industrial electrical control demand, which greatly limits the industrial automation system.
  • the trouble-free operation cycle threatens the power consumption of industrial equipment, and it is also difficult to complete the energy saving and consumption reduction requirements that require more frequent start and stop of the switch and reduce the idling rate.
  • the switch since the zero-crossing can not be accurately performed, the switch will be burned by the arc every time the switch is broken, the contact resistance is continuously increased, the power consumption and temperature rise of the switch are continuously increased, and the load is due to non-zero voltage.
  • the overvoltage occurs in the inductive load due to the non-zero current, which affects the life of the electrical equipment.
  • the grid also generates harmonics due to continuous impact, which reduces the quality of the power supply.
  • the working principle of a power switch such as a switch or a circuit breaker is to give a pulse trigger signal to the power coil of the mechanical action component of the switch or the circuit breaker, and the power coil generates a torque to realize the input or cut action of the mechanical switch or the circuit breaker.
  • the zero-crossing switching of the switch or circuit breaker first needs to obtain the zero-crossing time of the voltage and current on the power supply side, and then according to the input or cut-off action time of the switch or circuit breaker, the input action time and cut-off
  • the action time is collectively referred to as the switching action time, and it is determined at what time the switching action command is issued to the switch or the circuit breaker in advance so that the switch or the circuit breaker can just complete the switching at the voltage or current zero crossing point.
  • the measurement of the switching action time of the switch or circuit breaker can be easily measured accurately when the switch or circuit breaker is not connected to the high-power system. Simply add a high level to the input side of the switch or circuit breaker, and then detect if there is a high level on the output side. When receiving the high level signal, the switch or circuit breaker is turned on. When this high level signal indicates that the switch or circuit breaker has been disconnected.
  • the switch or circuit breaker is connected to the power supply system, such as a power supply system that is connected to a 400Vac voltage or a medium-high voltage such as 10KV-1000KV
  • the switching operation time measuring method of directly adding a high-level signal to the input side of the switch or the circuit breaker Obviously it won't work. Therefore, all current zero-crossing mechanical switch control technologies use the off-line switch action time detection device to pre-measure the mechanical closing or breaking time of the switch, and input the measured parameters into the computer as each control switch or open circuit. The parameters of the zero-crossing switching. Due to the discrete and non-uniform switching time of different switches or circuit breakers, the action process is affected by the number of actions, etc.
  • An object of the present invention is to provide a power switch action time dynamic measurement method and a power switch action time dynamic measurement system, by which the switching operation time of the power switch can be accurately measured.
  • the object of the present invention is achieved by the following technical solution: a method for dynamically measuring the duration of a power switch, wherein the action time is a switching action time, which is required for the power switch to obtain a switching action command to change the state of the power switch output.
  • the time includes the time of the input action time, that is, the time of the switch closing mechanical action and the time of the cut operation time, that is, the action time of the switch to cut off the electrical circuit.
  • the dynamic measurement method of the power switch action time specifically includes the following steps:
  • the high frequency carrier refers to a carrier whose frequency is much higher than the power frequency, and the frequency should generally be more than 1000 times the power frequency;
  • Applying a high frequency carrier having an appropriate intensity as described above means that the strength of the carrier signal should enable the applied carrier signal to be clearly obtained on the output side of the power switch. Since the attenuation of the high-frequency carrier signal is affected by the transmission distance and the surrounding radio interference, the specific frequency and intensity of the carrier signal are different according to different voltage levels and different power switches through the capacity, and the power switch output side should be accepted.
  • the SNR of the high frequency carrier signal to the SNR is not less than 5 db.
  • the invention also discloses a power switch action time dynamic measurement system, which comprises an embedded microprocessor module, a high frequency carrier coupling circuit and a high frequency carrier analysis circuit;
  • the input end of the high frequency carrier coupling circuit is connected to the embedded microprocessor module, the output end is connected to the input side of the power switch, and the input end of the high frequency carrier analysis circuit is connected to the output side of the power switch.
  • the output end is connected to the embedded microprocessor module;
  • the embedded microprocessor module is configured to send an input or cut-off action command to the power switch, record an output time of the input or cut-off action command as a switch start action time, and send an input to the power switch or Outputting a high frequency carrier signal having an appropriate intensity to the high frequency carrier coupling circuit before cutting off the motion command;
  • the high frequency carrier coupling circuit is configured to couple the received high frequency carrier signal to an input side of the power switch
  • the high frequency carrier analysis circuit is configured to parse the high frequency carrier signal on the output side of the power switch and output the signal to the embedded microprocessor module;
  • the embedded microprocessor module is further configured to detect a high frequency carrier signal on an output side of the power switch, The time when the recording starts to detect the applied high-frequency carrier signal is the time when the switch completes the input operation, and the time when the detection of the lost high-frequency carrier signal is detected is the switch completion cutting operation time, and the input operation time of the power switch is determined. And cut off the action time.
  • the above detection process is not affected by the power frequency interference.
  • the power switch action time dynamic measurement system further includes a first isolation circuit and a second isolation circuit, wherein the isolation circuit is configured to isolate the high voltage and the weak current, and the first isolation circuit is connected to the Between the embedded microprocessor module and the high frequency carrier coupling circuit, the second isolation circuit is connected between the embedded microprocessor module and the high frequency carrier analysis circuit, and the embedded microprocessor module It is separated from the strong input of the power switch input and output sides, which is beneficial to the safe operation of the system.
  • the high frequency carrier coupling circuit and the high frequency carrier analysis circuit are each composed of a high voltage capacitor and a high pass filter, and the high pass filter is composed of a resistor And a capacitor connected in series, one end of the high voltage capacitor is connected to a series midpoint of a resistor and a capacitor in the high pass filter, and the other end of the high voltage capacitor is connected to the embedded microprocessor module, the high pass filter
  • the capacitance of the device is connected to the live line of the power switch input side or the output side, and the resistance of the high pass filter is connected to the neutral line of the power switch input side or the output side.
  • the first isolation circuit includes: a first photocoupler and a first triode
  • the second isolation circuit is composed of a second optical coupling
  • the high frequency carrier signal output by the embedded microprocessor module is isolated by the first optocoupler and output to the first triode, and the first triode is driven to output a signal to the high frequency carrier coupling And a signal output by the high frequency carrier analysis circuit is isolated by the second optocoupler and output to the embedded microprocessor module.
  • An output end of the second optocoupler is connected to an I/O port that is an on/off state detection pin of the embedded microprocessor module, and the embedded microprocessor module is configured to send an input action to the power switch Simultaneously, triggering a timer corresponding to the power switch, opening an external interrupt of the I/O port corresponding to the power switch, and receiving an external interrupt signal at an I/O port corresponding to the power switch Thereafter, reading a value of a timer corresponding to the power switch and turning off the timer and an external interrupt corresponding to the I/O port corresponding to the power switch, to read the value of the timer as the power When the switch is put into operation
  • the embedded microprocessor module is further configured to trigger a timer corresponding to the power switch while issuing a shutdown action command to the power switch, and set a timer to wait for a certain time T to enter a timing.
  • Interrupting simultaneously opening an external interrupt corresponding to the I/O port corresponding to the power switch, T is greater than the cut-off operation time of the power switch, and receiving an external interrupt every time the I/O port corresponding to the power switch
  • T is greater than the cut-off operation time of the power switch, and receiving an external interrupt every time the I/O port corresponding to the power switch
  • the interrupt is interrupted by the value of the timer read when the I/O port corresponding to the power switch receives the external interrupt signal for the last time.
  • the invention also provides an accurate control method for the AC zero-crossing point of the power switch and an accurate control device for the AC zero-crossing point of the power switch.
  • a method for controlling zero-crossing switching of a power switch includes the following steps:
  • the power switch After receiving the switch command, according to the closed delay parameter or the break delay parameter, at the set closing time point or the breaking time point, according to the closing delay parameter or the breaking delay parameter, the power switch is issued in advance. Inputting or cutting off the action command, so that the power switch completes the input or cut-off action just at the set closing time point or the breaking time point, and the set closing time point or the breaking time point is the power switch input.
  • closing delay parameter or the breaking delay parameter is obtained as follows:
  • the power switch switching action time online measuring method measures the switching action time of the power switch each time, and saves the history detection record
  • the closing delay parameter is the difference between the closing time point and the predicted value of the power switch input action time;
  • the breaking delay parameter is the predicted time value of the breaking time point and the power switch cutting action time difference.
  • the mathematical model is established based on a plurality of iterative detection sliding window methods and a KALMAN Kalman filtering method.
  • the closing time point and the breaking time point are set as follows:
  • detecting a state of the power switch After receiving the switch command, detecting a state of the power switch, if the power switch is currently in a closed state, detecting a current zero crossing point of the alternating current on the input side of the power switch, according to the current zero crossing point
  • the breaking time point is set at a time, and if the power switch is currently in an off state, detecting a voltage zero-crossing point of the alternating current power of the power switch input side, setting the closing time point according to the voltage zero-crossing point time.
  • the invention also discloses an accurate control device for the AC zero crossing of the power switch, comprising:
  • An alternating current voltage zero-crossing detecting circuit is connected to the power switch input side for detecting an alternating current voltage of the power switch input side, and arranging the alternating current voltage waveform, and outputting a waveform jump when the alternating current voltage crosses zero point signal;
  • An alternating current zero-crossing detecting circuit is connected to the power switch input side for detecting an alternating current current of the power switch input side, and arranging the alternating current current waveform, and outputting a waveform hopping at an alternating current current zero crossing point signal;
  • the power switch action time dynamic measurement system
  • the embedded microprocessor module in the power switch action time dynamic measurement system is further configured to receive a switch command, and after receiving the switch command, according to the closed delay parameter or the break delay parameter, the set closed At a time point or a break time point, an input or cut action command is issued to the power switch in advance according to the closed delay parameter or the break delay parameter, so that the power switch is just at the set closing time point or disconnection At the time point, the input action or the cut-off action is completed, and the set closing time point or the breaking time point is the nth zero-crossing time of the power switch input side alternating current, n ⁇ 1, the embedded microprocessor module And storing the switching operation time of the power switch each time as a history detection record, establishing a mathematical model based on the power switch switching action time history detection record, and predicting the power switch according to the established mathematical model.
  • the switching delay time is the closed time point and the predicted value of the power switch input action time
  • the difference is the difference between the breaking time point and the predicted value of the power switch cut-off time.
  • the embedded microprocessor module is further configured to detect the switch after receiving the switch command.
  • the state of the power switch is set according to the output of the alternating current voltage or the current zero-crossing detecting circuit to obtain a voltage or a current zero-crossing point, and the closing time point or the breaking time point is set according to the voltage or current zero-crossing time.
  • the mathematical model is established based on a plurality of iterative detection sliding window methods and a KALMAN Kalman filtering method.
  • the alternating current voltage zero crossing detecting circuit includes a third optical coupler and a second triode
  • the two output ends of the third optocoupler are respectively connected to the base and the collector of the second triode, a collector of the second transistor is connected to the embedded microprocessor module;
  • the third optocoupler is configured to collect a voltage of the alternating current on the input side of the power switch, control the transistor to be turned off at a time when the alternating current voltage crosses zero, and output a high level jump signal to the embedded microprocessor module.
  • the alternating current voltage zero crossing detection circuit includes a first operational amplifier
  • the first operational amplifier collects a voltage difference on the input side of the power switch, and a voltage limiting component is connected in parallel between the same input terminal and the reverse input terminal for limiting the voltage between the differential input terminals of the operational amplifier
  • the voltage limiting component is composed of two diodes connected in anti-parallel.
  • the first operational amplifier takes an intermediate level of its two inputs as its reference ground, and the output of the first operational amplifier and the embedded microprocessor
  • the modules are connected to output a hopping signal to the embedded microprocessor module at a time when the alternating current voltage crosses zero.
  • the alternating current zero-crossing detecting circuit comprises a current inductor, a second operational amplifier, and a voltage comparator;
  • the two output ends of the current sensor are respectively connected to the two input ends of the second operational amplifier, and the output end of the second operational amplifier is connected to the same input terminal of the voltage comparator, the voltage comparator
  • the inverting input is grounded, and the output of the voltage comparator is connected to the embedded microprocessor module;
  • the current sensor is configured to detect a current signal on the input side of the power switch, and output a voltage signal corresponding to the detected current to the second operational amplifier;
  • the second operational amplifier is configured to amplify the input voltage signal
  • the voltage comparator is configured to compare a voltage signal output by the second operational amplifier with a size of a reference ground, and output a hopping signal to the embedded microprocessor when a voltage signal output by the second operational amplifier crosses zero Module.
  • the present invention has the following beneficial effects:
  • the method and system for dynamically measuring the operating time of the power switch of the present invention can realize the switching action time of the power switch on-line under the condition that the power switch has a strong power, and the measurement result is accurate, and the measurement error can be controlled when the carrier frequency is 300Khz.
  • the power switch action time dynamic measurement method and system of the present invention using the power switch action time dynamic measurement method and system of the present invention, the power switch AC zero-crossing precise control method and device for online measurement of the power switch switching action time is completed, and the power switch is turned on when the carrier frequency is 300Khz The error of zero switching is reduced to ⁇ Between 30us, and the error can be further reduced by increasing the carrier frequency.
  • the utility model relates to a stable, reliable and economical technical solution that the voltage zero-crossing point is closed and the alternating current cross-zero point is broken, and the power switch AC zero-crossing precise control method and device can control the power switch without voltage impact zero point closing and no arc zero point breaking;
  • the precise control method and device for the AC zero-crossing point of the power switch of the invention combines a mathematical model of statistical prediction accuracy embedded in the micro-unprocessed multiple iterative detection sliding window method and the KALMAN Kalman filter method, and a large number of experiments and practical applications prove that
  • the invention is a technical solution that the prediction accuracy is continuously increased and stabilized with the number of switching of the power switch, and the solution of the invention can realize the prediction accuracy of the zero-switching of the power switch by 10-50us.
  • FIG. 1 is a circuit schematic diagram of a specific embodiment of an alternating current voltage zero-crossing detecting circuit in an AC zero-crossing precise control device for a power switch according to the present invention
  • FIG. 2 is a waveform diagram of signals outputted by the collector of the second transistor Q404 of FIG. 1;
  • FIG. 3 is a circuit schematic diagram of another embodiment of an alternating current voltage zero-crossing detecting circuit in an AC zero-crossing precise control device for a power switch according to the present invention
  • FIG. 4 is a waveform diagram of the output end of the first operational amplifier LM358 of FIG. 3;
  • FIG. 5 is a circuit schematic diagram of a specific embodiment of an alternating current zero-crossing detecting circuit in an AC zero-crossing precise control device for a power switch according to the present invention
  • Figure 6 is a voltage waveform diagram of the input terminal of the voltage comparator LM393 of Figure 5;
  • Figure 7 is a voltage waveform diagram of the output terminal of the voltage comparator LM393 of Figure 5;
  • FIG. 8 is a circuit schematic diagram of a specific embodiment of a high frequency carrier coupling circuit and a high frequency carrier analysis circuit in a power switch operation time dynamic measurement system according to the present invention
  • FIG. 9 is a circuit schematic diagram of a specific embodiment of an isolation circuit in a power switch operation time dynamic measurement system according to the present invention.
  • Figure 10 is a waveform diagram of the input end of the second optocoupler OP402 of Figure 9;
  • FIG. 11 is a waveform diagram of the output end of the second optocoupler OP402 of FIG. 9.
  • AC zero-crossing switching technology There are two main types of AC zero-crossing switching technology.
  • One is to directly use the thyristor as a switching device for AC zero-crossing switching. This method has a fast response speed. When the AC zero crossing is detected, the thyristor is controlled immediately. The tube completes the switching action. This method can achieve accurate zero-crossing switching, but there is also a certain voltage drop when the thyristor is turned on.
  • the overvoltage resistance is much worse than that of mechanical switches, which is prone to breakdown, resulting in unstable or even faulty power supply systems.
  • the invention discloses a method and a system for dynamically measuring the action time of a power switch, so as to realize on-line measurement of the switching time of the power switch.
  • the present invention also discloses an application method and a system for dynamically measuring the action time of the power switch in the zero-switch switching control of the power switch, that is, a method and a device for accurately controlling the AC zero-crossing of the power switch, and the power switch of the present invention communicates
  • the zero-point precise control device can be set separately. After being connected to the power switch, one or more power switches can be controlled to complete the zero-cross switching, and can also be combined with the power switch to form a carrier-based detection technology to achieve zero over-mechanical A power switching device that controls one or more power supply lines.
  • the precise control method and device for the AC zero-crossing point of the power switch of the invention can control the zero-switching error of the power switch to be within 50us, and can be used for the control of the zero-crossing switching of the power switch in the medium-high voltage power supply system.
  • the power switch AC zero-crossing precise control device of the invention comprises an alternating current voltage zero-crossing detecting circuit, an alternating current current zero-crossing detecting circuit and a power switching action time dynamic measuring system.
  • the method for controlling the zero-crossing switching of the power switch of the power switch AC zero-crossing precise control device of the present invention is as follows:
  • a precise control method for a power switch AC zero-crossing point includes the following steps:
  • the power switch After receiving the switch command, according to the closing delay parameter or the breaking delay parameter, according to the closing delay parameter or the breaking delay parameter, the power switch is advanced in advance according to the set closing time point or the breaking time point. Sending or cutting off the action command, so that the power switch completes the input or cut-off action just at the set closing time point or the breaking time point, and the set closing time point or the breaking time point is the power switch.
  • the closing delay parameter or the breaking delay parameter is obtained as follows:
  • the closing delay parameter is the difference between the closing time point and the predicted value of the power switch input action time;
  • the breaking delay parameter is the predicted time value of the breaking time point and the power switch cutting action time Poor;
  • the mathematical model is established according to a plurality of iterative detection sliding window method and KALMAN Kalman filtering method.
  • An alternating current voltage zero-crossing detecting circuit is connected to the power switch input side for detecting an alternating current voltage of the power switch input side, and arranging the alternating current voltage waveform, and outputting a waveform jump when the alternating current voltage crosses zero point signal.
  • the first step in detecting the voltage zero-crossing point is to sense the voltage on the input side of the power switch.
  • the voltage transformer can be selected to sense the voltage, or the optical fiber or the photoelectric isolation sensor, that is, the optical coupling, can be used to sense the voltage.
  • the bidirectional optical coupling is used to sense the voltage of the alternating current on the input side of the power switch.
  • any other high voltage optocoupler can be selected.
  • the alternating current voltage zero-crossing detecting circuit of this embodiment mainly includes a third optocoupler OP3 and a second triode Q404.
  • the model of the third optocoupler OP3 selected in this embodiment is TLP280, which is a bidirectional linear optocoupler capable of linearly feeding back the signal of the input terminal to the output end, so that the waveform of the alternating current voltage can be reflected in real time.
  • the specific circuit structure of the AC voltage zero-crossing detection circuit in this embodiment is as follows: the input pin 1 of the third optocoupler OP3 is connected to the live line L of the power switch input side through the resistor R26, and the input terminal pin 2 is connected to the power switch input side.
  • the zero line N, the output pin 3 of the third optocoupler OP3 is connected to the base of the second transistor Q404 through the resistor R28, and the output pin 4 of the third optocoupler OP3 passes through the resistor R27 and the second three pole
  • the collector of the tube Q404 is connected, and the collector of the second transistor Q404 is used as the alternating current voltage zero-crossing detection
  • the output of the circuit outputs the RelaySamMain signal to the embedded microprocessor module.
  • the output pin 4 of the third optocoupler OP3 is also connected to the power supply VCC.
  • the output pin 3 of the third optocoupler OP3 is also connected to the ground GND through the resistor R29.
  • the emitter of the tertiary tube Q404 is also connected to the reference ground GND.
  • a large resistor R26 is connected in series with the input end of the third optocoupler OP3 for limiting the current flowing through the third optocoupler OP3, and the alternating current is optically isolated by the third optocoupler OP3 to output a similar alternating current after full-wave rectification.
  • the voltage waveform signal is output to the base of the second transistor Q404, and the second transistor Q404 is controlled to be turned on or off.
  • the collector and the emitter of the second transistor Q404 enter a conducting state, and the collector outputs a low level; when the second three poles When the base voltage of the tube Q404 is lower than 0.7V, the second transistor Q404 is in an off state, and the collector outputs a high level.
  • a certain value generally 0.7V
  • FIG. 2 is a waveform diagram of a signal outputted by the collector of the second transistor Q404.
  • the sine wave in FIG. 2 is a voltage waveform of the alternating current on the input side of the power switch, and the waveform of the pulse signal is a waveform of the collector output of the second transistor Q404.
  • a high-level transition signal is output as the voltage zero-crossing time notification signal. Therefore, the zero crossing time of the voltage can be identified by detecting the signal. For example, by detecting the rising edge of the pulse signal, the zero-crossing point of the voltage is identified, but the rising time should be a certain delay, which is half of the time that the pulse square wave is high.
  • the invention can also use an operational amplifier or a voltage comparator to shape the alternating current voltage waveform, so that the output signal becomes a square wave whose period coincides with the alternating current period, and then recognizes the alternating current by identifying the edge of the square wave, that is, the rising edge or the falling edge.
  • the zero-crossing time of the voltage in order to improve the measurement accuracy of the time point of the power switch state change.
  • FIG. 3 is a circuit schematic diagram of another specific embodiment of an alternating current voltage zero-crossing detecting circuit.
  • the AC voltage zero-crossing detection circuit of this embodiment mainly includes a first operational amplifier LM358 (LM358 is the model of the operational amplifier).
  • the first op amp, the LM358, is a dual op amp that includes two independent op amps for single-supply operation and dual-supply operation.
  • the specific circuit structure of the alternating current voltage zero-crossing detecting circuit is: the non-inverting input terminal IN1+ of the first operational amplifier LM358 is connected to the live line L of the power switch input side through the resistor RW2, and the inverting input terminal IN1- is connected through the resistor RW1 and The neutral line N of the power switch input side is connected, and the voltage difference on the input side of the power switch is collected.
  • a first voltage limiting component is connected in parallel between the first operational amplifier LM358 and the inverting input terminal IN11, and is used to limit the first operation.
  • Amp LM358 between the inverting input IN1+ and the inverting input IN1- The voltage, the voltage limiting element is composed of two diodes DW1, DW2 connected in anti-parallel. Resistors RW2, RW1 are used to limit the current flowing through the diode. The two diodes DW1, DW2 in anti-parallel are used to clamp the voltage at the differential input of the first operational amplifier LM358 within 0.7V.
  • the resistors RW3 and RW4 are connected in series and then connected in parallel with the voltage limiting element.
  • the intermediate point of the connection of the resistors RW3 and RW4 is connected to the ground terminal GND of the first operational amplifier LM358, and the ground of the first operational amplifier LM358 is connected to the ground.
  • the intermediate level of the first operational amplifier LM358 and the inverting input terminal IN1 is taken as the first operational amplifier LM358 reference ground, so that the differential signal input by the first operational amplifier LM358 has a reliable reference ground.
  • the output terminal OUT1 of the first operational amplifier LM358 serves as an output of the alternating current voltage zero-crossing detection circuit, and outputs a RelaySam0 signal.
  • the power supply terminal VCC of the first operational amplifier LM358 is connected to its output terminal OUT1 through the resistor RW5, and the power supply of the first operational amplifier LM358.
  • the terminal VCC is also connected to the reference ground via a capacitor CVG.
  • the first operational amplifier LM358 of the present embodiment has excellent common mode suppression characteristics and anti-interference characteristics, so that the timing of the voltage zero crossing of the alternating current can be accurately detected.
  • 4 is a waveform diagram of the output terminal OUT1 of the first operational amplifier LM358.
  • the sine wave is the voltage waveform of the alternating current on the input side of the power switch
  • the square wave is the waveform of the output of the operational amplifier.
  • the first operational amplifier LM358 outputs a standard square wave with a period of 20MS, which is consistent with the input 50Hz alternating current period (the same as the 60Hz principle), and the edge of the square wave is just at the zero crossing point of the alternating current voltage. Therefore, by detecting the edge of the square wave output from the first operational amplifier LM358, the zero-crossing time of the alternating current voltage can be accurately identified.
  • the method of detecting the zero crossing point of the AC voltage based on the third optocoupler OP3 is more convenient and economical, and is recommended.
  • An alternating current zero-crossing detecting circuit is connected to the power switch input side for detecting an alternating current current of the power switch input side, and arranging the alternating current current waveform, and outputting a waveform hopping at an alternating current current zero crossing point signal.
  • the current signal of the input side of the power switch is first obtained by using the current transformer isolation, and then the current signal is converted into a voltage signal by the power electronic circuit, and then the zero-crossing point of the voltage signal is detected.
  • the zero-crossing point of the AC current can be obtained.
  • the specific circuit is shown in Figure 5.
  • the alternating current zero-crossing detecting circuit of this embodiment includes a current sensor and a second operational amplifier AD623 (AD623 is the model of the op amp, here it is used as a code to distinguish other op amps), voltage comparator LM393 (LM393 is the model of the op amp, here at the same time as a code to distinguish the other Comparator).
  • AD623 is the model of the op amp, here it is used as a code to distinguish other op amps
  • LM393 is the model of the op amp, here at the same time as a code to distinguish the other Comparator.
  • the specific circuit structure is: the current inductor is composed of a standard current transformer I202 according to the voltage level (current transformer with a ratio of 2500:1 in this embodiment) and a high precision resistor R213 of 100 ⁇ , and the high precision resistor R213 Connected in series between the two output pins of the standard current transformer I202 to convert the current signal into a voltage signal.
  • the two input terminals of the second operational amplifier AD623 are respectively connected to both ends of the high-precision resistor.
  • CT1 and CT2 are input pins of a voltage signal converted by a current transformer by a current transformer.
  • the two input terminals 2, 3 of the second operational amplifier AD623 are also connected to the reference ground through equal-value resistors R203, R204, respectively, for pulling down the voltage signal at the input end of the second operational amplifier AD623 to the second operational amplifier AD623.
  • the ground level allows the input voltage signal to have a stable reference ground.
  • the second operational amplifier AD623 is powered by dual power supplies. Pins 7 and 4 are connected to power supplies 3V3 and -3V3, respectively, and pin 7 is connected to the reference ground through capacitor C201 to achieve decoupling.
  • a resistor Rg201 is connected between the pins 1 and 8 of the second operational amplifier AD623 for setting the gain of the second operational amplifier AD623. Pin 5 of the second operational amplifier AD623 is connected to ground.
  • the output terminal 6 of the second operational amplifier AD623 is connected to the non-inverting input terminal IN1+ of the voltage comparator LM393 via a resistor R208.
  • the voltage comparator LM393 is a dual voltage comparator integrated chip. Its non-inverting input terminal IN1+ is also connected to the ground through the Zener diode D203 to prevent the voltage at the differential input of the voltage comparator LM393 from being too high.
  • the inverting input terminal of the voltage comparator LM393 is connected to the reference ground, and the voltage comparator LM393 is used to compare the output voltage of the second operational amplifier AD623 with the magnitude of the reference ground voltage. When the output voltage of the second operational amplifier AD623 is greater than the reference ground voltage, The output is high.
  • the ground terminal GND of the voltage comparator LM393 is connected to the reference ground, the power terminal is connected to the power supply 3V3, the output terminal OUT1 is the output of the alternating current current zero-crossing detection circuit, and the RelaySam1 signal is output, and the output terminal OUT1 is also connected to the power source 3V3 through the pull-up resistor R209.
  • the input and output terminals of the other channel in the voltage comparator LM393 are connected to the reference ground.
  • One is to use the high-impedance input characteristic of the op amp to minimize the influence on the output signal of the second operational amplifier AD623.
  • the second is to use the second operational amplifier AD623 to properly signal the signal. Amplification ensures that the zero current of the AC current is accurately detected when the current is small.
  • the signal waveform of the input voltage comparator LM393 is shown in Figure 6.
  • the signal waveform shown in Figure 6 is the AC current signal converted and placed.
  • the signal is input to the non-inverting input terminal IN1+ of the voltage comparator LM393, and compared with the grounding level of the inverting input terminal IN1- of the voltage comparator LM393, thereby obtaining a jump at the current zero-crossing point.
  • the square wave, the square wave waveform structure is shown in Fig. 7. As can be seen from Fig. 7, the period of the square wave outputted by the voltage comparator LM393 coincides with the period corresponding to the alternating current frequency of the input side of the power switch of 20 ms.
  • the zero-crossing time of the AC voltage and current of the input side of the power switch can be accurately monitored. Due to the complete use of power electronics technology, the detection accuracy is in the microsecond level, which is highly accurate compared to the operating time of the relay or circuit breaker or the AC cycle of 50Hz or 60Hz.
  • the power switch action time dynamic measurement system includes an embedded microprocessor module, a high frequency carrier coupling circuit and a high frequency carrier analysis circuit.
  • the method for measuring the switching time of the power switch by the power switch action time dynamic measuring system of the invention that is, the dynamic measuring method of the power switch action time, the specific steps are as follows:
  • the embedded microprocessor module MCU generates a high frequency carrier signal of 100 kHz to 5 MHz, which is coupled to the input side of the power switch through a high frequency carrier coupling circuit, and the high frequency carrier coupling circuit can select a high voltage capacitor or other carrier capacitor, etc.
  • the frequency carrier analysis circuit such as a high voltage capacitor, parses the high frequency carrier signal on the output side of the power switch, and finally recognizes the power switch state change signal through the embedded microprocessor module MCU, thereby realizing high precision time measurement accurate to one cycle of the high frequency carrier.
  • the invention can send a high frequency carrier to the input side of the power switch before issuing the switching action command to the power switch, and can analyze the high frequency carrier on the output side of the power switch, and the carrier signal is specific Waveforms are not specifically required.
  • a high frequency carrier coupled circuit is coupled to the input side of the power switch for coupling the received high frequency carrier signal to an input side of the power switch.
  • the high frequency carrier analysis circuit is connected to the output side of the power switch for analyzing the high frequency carrier signal of the power switch output side and outputting to the embedded microprocessor module.
  • the high frequency carrier coupling circuit and the high frequency carrier analysis circuit are both composed of a high voltage capacitor C2 or C4 and a high pass filter.
  • the high pass filter is formed by a resistor and a capacitor connected in series to form C1 and R1 or C3 and R2.
  • One end of the high voltage capacitor C2 or C4 is connected to a series midpoint of the resistor and capacitor C1 and R1 or C3 and R2 in the high pass filter, and the other end of the high voltage capacitor C2 or C4 is connected to the embedded microprocessor a module, a capacitor C1 or C3 of the high-pass filter connected to a live line L or L' of the power switch input side or output side, a resistance of the high-pass filter and a zero of an input side or an output side of the power switch Line N is connected.
  • the capacitor C1 and the resistor R1, the capacitor C3 and the resistor R2 constitute two high-pass filters, which are equivalent to an open circuit for an alternating current having a frequency of only 50 Hz to 60 Hz, and a high frequency carrier such as a frequency of 300 kHz for the present invention.
  • Wave can be set to 100KHz-5MHz or higher as needed), which is equivalent to a short circuit.
  • the high frequency carrier signal output by the microprocessor MCU is output to one end of the capacitor C1 via the capacitor C2, and then coupled to the input side of the power switch via the capacitor C1. If the power switch is initially in the closed state, the high frequency carrier signal is output through the closed power switch. Capacitor C3 is reached, then coupled to capacitor C4 via capacitor C3, and coupled to the input port of the embedded microprocessor module MCU via capacitor C4. After the power switch is turned off, the high frequency carrier signal will not reach the output side of the power switch, and the embedded microprocessor module MCU can identify the state of the power switch output by recognizing the time when the high frequency carrier signal is not detected. The moment of change.
  • the above-mentioned high-frequency carrier capacitors C1, C3, C2, and C4 are key components for carrier measurement. Each capacitor not only realizes outputting a high-frequency carrier signal to a switching loop or acquiring a high-frequency carrier signal from a switching loop, but also bears a power switch.
  • the voltage of the over-voltage, therefore, the withstand voltage level of each capacitor is related to the voltage level of the power line controlled by the power switch (must be significantly higher than the AC peak value of the voltage of the power line controlled by the power switch), the capacity It is related to the frequency of the high-frequency carrier applied to the input side of the power switch. If the frequency is high, the required capacity of the capacitor is small to achieve a suitable signal-to-noise ratio as a parameter configuration basis.
  • the circuit shown in Figure 8 does not completely isolate the high voltage from the weak current.
  • an isolation circuit can be added to the output and input terminals of the high frequency carrier signal of the embedded microprocessor module MCU. As shown in FIG. 9, in this embodiment, an optocoupler isolation circuit is added.
  • a first isolation circuit is coupled between the embedded microprocessor module and the high frequency carrier coupled circuit.
  • a second isolation circuit is coupled between the embedded microprocessor module and the high frequency carrier analysis circuit.
  • the first isolation circuit mainly includes a first photocoupler OP401 and a first transistor Q101.
  • the second isolation circuit is mainly composed of a second optocoupler OP402.
  • the selected first optocoupler OP 401 and second optocoupler OP 402 are all 6N137, which has 8 pins.
  • the positive input pin 2 of the first optocoupler OP401 is connected to the power supply 3V3, and the reverse input pin 3 is connected to the embedded microprocessor module MCU through the resistor R401, and receives the Pulseout signal output by the embedded microprocessor module MCU, and the Pulseout signal is low. Turn on when level.
  • the ground pin 5 of the first optocoupler OP401 is grounded, and the output pin 6 is connected to the power source 5VDD through the pull-up resistor R402.
  • the power pin 8 and the enable pin 7 of the first optocoupler OP401 are also connected to the power source 5VDD, and also pass through the capacitor C401. Connect to DGND.
  • the first optocoupler OP401 pins 1, 4 are vacant.
  • the output pin 6 of the first optocoupler OP401 is connected to the base of the first transistor Q101, the emitter of the first transistor Q101 is connected to DGND, the collector is connected to the power source 5VDDC through the resistor R1101, and the collector is also used as an output.
  • the terminal outputs Pulse_out to the high frequency carrier coupling circuit.
  • the inverting input pin 3 of the second optocoupler OP402 is connected to the high frequency carrier analysis circuit, and is connected to the power source 5VDD through the resistor R403.
  • the forward input pin 2 of the second optocoupler OP402 is connected to the power source 5VDD, and the ground pin 5 is connected with reference. Ground, the output pin 6 is connected to the power supply 3V3 through the pull-up resistor R404, and is output to the embedded microprocessor module MCU.
  • the power pin 8 and the enable pin 7 are connected to the power supply 3V3, and the capacitor C402 is decoupled by reference. 1, 4 is vacant.
  • the embedded microprocessor module MCU emits a high frequency carrier signal in the form of a square wave
  • the square wave is optically isolated by the first optocoupler OP401 and output, driving the first transistor Q101 to apply the signal to the high frequency carrier coupling circuit coupled to the power The input side of the switch.
  • the waveform shown in FIG. 10 is the waveform on the input side of the second optocoupler OP402.
  • the lower jump edge in the waveform is about 2V.
  • the lower jump edge is sufficient to drive the diode of the second optocoupler OP402. Therefore, the second optocoupler OP402 can The output of the edge is shown in Figure 11.
  • the embedded microprocessor module MCU only needs to detect the first lower edge to judge the on/off state of the power switch.
  • the embedded microprocessor module MCU sends a high frequency carrier to the input side of the power switch. If the embedded microprocessor module MCU issues an input action command to the power switch, the embedded microprocessor module MCU detects the low frequency of the high frequency carrier after the delay.
  • the embedded microprocessor module MCU can also identify the current state of the power switch by detecting the reception condition of the high frequency carrier on the output side of the power switch before the switching action command is issued.
  • the current sensing device can also be disposed on the output side of the power switch, and the embedded microprocessor module MCU determines the current state of the power switch by detecting whether there is current on the output side of the power switch.
  • an independent timer should be configured for each power switch to ensure that each power switch operates independently of each other.
  • the measurement of the switching time of the multi-channel independent power switch in order to ensure that the embedded microprocessor module MCU can accurately record the time when the state changes when the state of the power switch output changes, during programming, in the embedded microprocessor module MCU
  • an independent on/off state detection pin is configured for each power switch, and the on/off state detection pin is connected to each power switch output side through a separate interrupt line.
  • the programming description of the MCU is as follows: the output of the second optocoupler OP402 is connected to the I/O port which is the on/off state detection pin of the embedded microprocessor module MCU, and the I/O port corresponding to an external interrupt instruction is set in the program. And set the way the edge triggers the interrupt. Assuming that the state of the power switch is off at the beginning, then the output of the second optocoupler Q101 is a high level, without any jumps and jumps, and the embedded microprocessor module MCU sends an input to the power switch. In the action command, the timer starts to count the operation time of the power switch, and opens the external interrupt command of the second optocoupler OP402 corresponding to the I ⁇ O port.
  • the high-frequency carrier signal When the power switch is closed, the high-frequency carrier signal will be input to the corresponding I ⁇ O port through the power switch, the high-frequency carrier analysis circuit, and the second isolation circuit. The first edge of the high-frequency carrier signal will trigger the embedded microprocessor module.
  • the MCU external interrupt the MCU enters the interrupt service routine, reads the timer value in the interrupt service routine, and turns off the timer and I ⁇ O external interrupt.
  • the value of the read timer is the power switch input action time.
  • the MCU issues a cut-off action command to the power switch, triggers the timer and sets the timer to expire after 10MS, and then enters the timer interrupt, and simultaneously opens the second optocoupler OP402 corresponding to the external interrupt of the I ⁇ O port. And each time the external interrupt service routine is entered, the value of the timer is read.
  • the power switch is turned off, the output of the second optocoupler OP402 will become a high level, and then the external portion of the I ⁇ O port will not be triggered.
  • Interrupt wait for the timing time to arrive, trigger the timer interrupt. In the timer interrupt service routine, the timer is turned off and the external interrupt is turned off. Then the value of the timer read by the external interrupt triggered by the last edge is the power switch cut-off action time.
  • the dynamic measuring method of the power switch action time of the invention has high precision, and the period of the two high frequency carrier carrier signals is at most different, that is, 7 microseconds/300 Khz.
  • This error is in this patent, even if it is no longer filtered and corrected, 7um has passed.
  • the zero-time error means that even with a voltage of 35KV, the zero-crossing voltage error is only 70V, and the deviation is very small.
  • the voltage between the switches is only 0.7V, so the accuracy can be satisfied.
  • the carrier signal frequency needs to be higher than 2Mhz.
  • the dynamic measurement method of the power switch action time and the application thereof are a very reliable and very effective solution for the zero-crossing problem of the power switch in the medium and high voltage field.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

电力开关(S1)动作时间动态测量及交流过零点精确控制方法及应用,所述电力开关(S1)动作时间动态测量方法包括如下步骤:1)在向电力开关(S1)发出投入或切断动作命令前,在电力开关(S1)的输入侧施加高频载波作为检测信号源,同时在电力开关(S1)的输出侧检测所施加的高频载波;2)向电力开关(S1)发出投入或切断动作命令,以投入或切断动作命令的发出时间为开关起始动作时间,以开始在电力开关(S1)的输出侧检测到所施加的高频载波信号的时间为开关完成投入动作的时间或以在电力开关(S1)输出侧检测到失去所施加的高频载波信号的时间为开关完成切断动作的时间,计算电力开关(S1)的投入或切断动作时间,可精确测量电力开关(S1)的投切动作时间。

Description

电力开关动作时间动态测量及交流过零点精确控制方法及应用 技术领域
本发明涉及一种电力开关动作时间动态测量方法,还涉及一种电力开关动作时间动态测量系统,另外,还涉及上述方法或系统在电力开关交流过零点精确控制方面的应用,本发明电力开关交流过零点精确控制技术可应用在中高压领域。
背景技术
目前世界上几乎所有的用电设备都是通过开关类设备连接到供电电网中的,目前电网主要采用50hz或者60hz的交流电,交流电的特征是电压、电流按照频率根据正弦波的规律周期性变化。正弦波的每个周期有两次电压过零点和两次电流过零点,一个世纪以来,能够在电压过零点闭合,电流过零点分断,一直是理想开关的追求。交流电在过零点时刻完成投切,将大大减小投切操作对电网、负载、及开关本身的冲击,实现无电弧分、断,能有效保障供电侧和用电侧的安全、稳定,延长电气设备的使用寿命。
对于机械式电气开关,研究方向主要围绕减小闭合电压冲击、减少乃至杜绝分断电流开展,诞生了交叉断弧式开关、真空灭弧开关、六氟化硫灭弧开关等。低压开关虽然多为空气开关,随着负载种类、容量的增加,空气开关的寿命普遍较为短暂。根据认证规范,满负载能承受3000次安全开闭就合格,相比于目前工业生产过程日益增长的日工作密度,这一指标离目前工业电气控制需求差距甚远,极大地限制了工业自动化系统的无故障运行周期,威胁到工业设备的用电安全,也难以完成要求开关更加频繁启停而减少空转率的节能降耗需求。另外,由于无法精确的完成过零投切,开关每次分断都会受到电弧的烧灼,接触电阻不断增大,开关的功耗和温升都在不断的升高,所带的负载由于非零电压闭合时的电压冲击和分断时在感性负载中由于电流不为零而产生过电压,影响电气设备的寿命,电网也由于不断的冲击,产生谐波,降低了供电质量。
开关或断路器等电力开关的工作原理是给开关或断路器的机械动作部件的动力线圈一个脉冲触发信号,动力线圈产生扭力,实现机械开关或断路器的投入动作或切断动作。开关或断路器的过零投切,首先要获取供电侧电压、电流的过零点时刻,再根据开关或断路器的投入或切断动作时间,所述投入动作时间和切断 动作时间合称为投切动作时间,确定在什么时刻向开关或断路器提前发出投切动作命令,以使开关或断路器刚好能在电压或电流过零点时刻完成投切。
对于开关或断路器投切动作时间的测量,就是要检测开关或断路器在获得投切动作命令后,到开关或断路器输出端状态发生变化所需要的时间。
开关或断路器投切动作时间的测量,在开关或断路器没有接入强电系统时,很容易就能精确测量出来。只需在开关或断路器的输入侧加上一个高电平,然后在输出侧检测是否存在该高电平,当接收到该高电平信号时说明开关或断路器接通,当接收不到该高电平信号时,则说明开关或断路器已断开。
但当开关或断路器接入供电系统,如接入400Vac电压或中高压如10KV-1000KV电压的供电系统时,直接在开关或断路器的输入侧加高电平信号的投切动作时间测量方法显然行不通。所以,目前所有的过零点机械开关控制技术,都是通过离线的开关动作时间检测装置,预先测量开关的机械闭合或分断时间,将所测参数输入到计算机中,作为每次控制各开关或断路器过零投切的参数。由于不同开关或断路器投切动作时间具有离散性、非一致性,动作过程受动作次数影响等原因,实践证明,上述预先在计算机中设置好过零投切的参数的控制技术,不能保证使所述开关或断路器进行准确地过零投切,而且会因为预想的过零投切设计,而事实上又无法真正实现过零投切,带来新的电气故障。特别对于中高压供电系统中的开关或断路器等,这种方法完全无法应用,因为中高压供电系统中的电力开关一旦出现拉弧现象,后果非常严重(会导致爆炸或燃烧),所以根本无法接收这种不稳定性带来的不确定性。
发明内容
本发明的发明目的是提供一种电力开关动作时间动态测量方法和一种电力开关动作时间动态测量系统,利用该方法或系统,可精确测量电力开关的投切动作时间。
本发明的发明目的通过如下技术方案实现:一种电力开关动作时间动态测量方法,所述动作时间即投切动作时间,指电力开关获得投切动作命令到电力开关输出端状态发生变化所需要的时间,包括投入动作时间即开关闭合机械动作的时间和切断动作时间即开关切断电气回路的动作时间,所述电力开关动作时间动态测量方法具体包括如下步骤:
1)在向所述电力开关发出投入或切断动作命令前,在所述电力开关的输入侧施加具有适当强度的高频载波作为检测信号源,同时在所述电力开关的输出侧检测所施加的高频载波,所述高频载波指频率远高于工频的载波,频率一般应是工频的1000倍以上;
2)向所述电力开关发出投入动作命令,以所述投入动作命令的发出时间为开关起始动作时间,以开始在所述电力开关的输出侧检测到所施加的高频载波信号的时间为开关完成投入动作的时间,计算所述电力开关的投入动作时间;或
3)向所述电力开关发出切断动作命令,以所述切断动作命令的发出时间为开关起始动作时间,以在所述电力开关输出侧检测到失去所施加的高频载波信号的时间为开关完成切断动作的时间,计算所述电力开关的切断动作时间。
上述施加具有适当强度的高频载波,指载波信号的强度应该使在电力开关的输出侧能够清晰获得所施加的载波信号。由于高频载波信号的衰减受传输距离和周边无线电干扰的影响,因此,载波信号的具体频率和强度,根据不同电压等级、不同通过容量的电力开关有所不同,具体应该使电力开关输出侧接受到的高频载波信号信噪比SNR不低于5db。
本发明还公开了一种电力开关动作时间动态测量系统,包括嵌入式微处理器模块、高频载波耦合电路和高频载波解析电路;
所述高频载波耦合电路输入端与所述嵌入式微处理器模块相连,输出端与所述电力开关的输入侧相连,所述高频载波解析电路输入端与所述电力开关的输出侧相连,输出端与所述嵌入式微处理器模块相连;
所述嵌入式微处理器模块,用于向所述电力开关发送投入或切断动作命令,记录所述投入或切断动作命令的发出时间为开关起始动作时间,并在向所述电力开关发出投入或切断动作命令前,输出具有适当强度的高频载波信号到所述高频载波耦合电路;
所述高频载波耦合电路,用于将接收到的高频载波信号耦合到所述电力开关的输入侧;
所述高频载波解析电路,用于解析所述电力开关输出侧的高频载波信号并输出到所述嵌入式微处理器模块;
所述嵌入式微处理器模块,还用于检测所述电力开关输出侧的高频载波信号, 记录开始检测到所施加的高频载波信号的时间为开关完成投入动作的时间,记录检测到失去所施加的高频载波信号的时间为开关完成切断动作时间,确定所述电力开关的投入动作时间和切断动作时间。
由于高频载波信号频率远远高于工频,因此,上述检测过程不受工频干扰。
作为一种优选实施方式,所述电力开关动作时间动态测量系统还包括第一隔离电路和第二隔离电路,所述隔离电路用于隔离强电和弱电,所述第一隔离电路连于所述嵌入式微处理器模块和所述高频载波耦合电路之间,所述第二隔离电路连于所述嵌入式微处理器模块和所述高频载波解析电路之间,将所述嵌入式微处理器模块与所述电力开关输入、输出侧的强电隔开,有利于系统的安全运行。
作为高频载波耦合电路、高频载波解析电路的优选实施方式:所述高频载波耦合电路和所述高频载波解析电路均由高压电容和高通滤波器组成,所述高通滤波器由一电阻和一电容串联而成,所述高压电容的一端与所述高通滤波器中电阻和电容的串联中点相连,所述高压电容的另一端连向所述嵌入式微处理器模块,所述高通滤波器的电容与所述电力开关输入侧或输出侧的火线相连,所述高通滤波器的电阻与所述电力开关输入侧或输出侧的零线相连。
作为所述隔离电路的优选实施方式:
所述第一隔离电路包括:第一光耦和第一三极管;
所述第二隔离电路由第二光耦构成;
所述嵌入式微处理器模块输出的高频载波信号经所述第一光耦隔离后输出到所述第一三极管,驱动所述第一三极管将信号输出到所述高频载波耦合电路,所述高频载波解析电路输出的信号经所述第二光耦隔离后输出到所述嵌入式微处理器模块。
所述第二光耦的输出端与作为所述嵌入式微处理器模块通断状态检测引脚的I/O口相连,所述嵌入式微处理器模块:用于在向所述电力开关发出投入动作命令的同时,触发与所述电力开关对应的定时器计时、开放与所述电力开关对应的I/O口的外部中断,并在与所述电力开关对应的I/O口收到外部中断信号后,读取与所述电力开关对应的定时器的值并关闭该定时器和与所述电力开关对应的I/O口对应的外部中断,以读取到的定时器的值作为所述电力开关的投入动作时 间;所述嵌入式微处理器模块:还用于在向所述电力开关发出切断动作命令的同时,触发与所述电力开关对应的定时器计时,并设置定时器计时满一定时间T后进入定时中断,同时开放与所述电力开关对应的I/O口对应的外部中断,T大于所述电力开关的切断动作时间,并在与所述电力开关对应的I/O口每次收到外部中断信号时,读取与所述电力开关对应的定时器的值,在与所述电力开关对应的定时器定时中断后,关闭该定时器和与所述电力开关对应的I/O口对应的外部中断,以与所述电力开关对应的I/O口最后一次收到外部中断信号时读取到的定时器的值作为所述电力开关的切断动作时间。
本发明还提供一种电力开关交流过零点精确控制方法和一种电力开关交流过零点精确控制装置。
一种控制电力开关过零投切的方法,包括如下步骤:
在接到开关命令后,依据闭合延时参数或分断延时参数,在设定的闭合时间点或分断时间点,按照所述闭合延时参数或分断延时参数,提前向所述电力开关发出投入或切断动作命令,以便所述电力开关刚好在所述设定的闭合时间点或分断时间点完成投入或切断动作,所述设定的闭合时间点或分断时间点即为所述电力开关输入侧交流电后续的第n个过零点时刻,n≥1;
其特征在于,所述闭合延时参数或分断延时参数通过如下方式获得:
通过权利要求1所述的电力开关投切动作时间在线测量方法测量所述电力开关每次的投切动作时间,并保存为历史检测记录;
根据建立在所述电力开关投切动作时间历史检测记录基础上的数学模型预测所述电力开关下次的投切动作时间;
所述闭合延时参数即为所述闭合时间点与所述电力开关投入动作时间预测值之差;所述分断延时参数即为所述分断时间点与所述电力开关切断动作时间预测值之差。
所述数学模型根据多次迭代检测滑动窗口法和KALMAN卡尔曼滤波方法建立。
所述闭合时间点和分断时间点通过如下方式设定:
在接到开关命令后,检测所述电力开关的状态,若所述电力开关当前为闭合状态,检测所述电力开关输入侧交流电的电流过零点时刻,根据所述电流过零点 时刻设定所述分断时间点,若所述电力开关当前为断开状态,检测所述电力开关输入侧交流电的电压过零点时刻,根据所述电压过零点时刻设定所述闭合时间点。
本发明还公开了一种电力开关交流过零点精确控制装置,包括:
交流电电压过零检测电路,与所述电力开关输入侧相连,用于检测所述电力开关输入侧交流电电压,并对所述交流电电压波形进行整理,输出在交流电电压过零点时刻波形产生跳变的信号;
交流电电流过零检测电路,与所述电力开关输入侧相连,用于检测所述电力开关输入侧交流电电流,并对所述交流电电流波形进行整理,输出在交流电电流过零点时刻波形产生跳变的信号;
所述电力开关动作时间动态测量系统;
所述电力开关动作时间动态测量系统中的嵌入式微处理器模块,还用于接收开关命令,并在接到所述开关命令后,依据闭合延时参数或分断延时参数,在设定的闭合时间点或分断时间点,按照所述闭合延时参数或分断延时参数,提前向所述电力开关发出投入或切断动作命令,以便所述电力开关刚好在所述设定的闭合时间点或分断时间点完成投入动作或切断动作,所述设定的闭合时间点或分断时间点即为所述电力开关输入侧交流电后续的第n个过零点时刻,n≥1,所述嵌入式微处理器模块,还用于保存所述电力开关每次的投切动作时间作为历史检测记录,基于所述电力开关投切动作时间历史检测记录建立数学模型,并根据建立的数学模型预测所述电力开关下次的投切动作时间,所述闭合延时参数即为所述闭合时间点与所述电力开关投入动作时间预测值之差;所述分断延时参数即为所述分断时间点与所述电力开关切断动作时间预测值之差,所述嵌入式微处理器模块,还用于在接到所述开关命令后,检测所述电力开关的状态,根据所述交流电电压或电流过零检测电路的输出获取电压或电流过零点时刻,根据所述电压或电流过零点时刻设定所述闭合时间点或分断时间点。
所述数学模型根据多次迭代检测滑动窗口法和KALMAN卡尔曼滤波方法建立。
作为所述交流电电压过零检测电路的一种实施方式:
所述交流电电压过零检测电路包括第三光耦和第二三极管;
所述第三光耦的两输出端分别与所述第二三极管的基极和集电极相连,所述 第二三极管的集电极与所述嵌入式微处理器模块相连;
所述第三光耦用于采集所述电力开关输入侧交流电的电压,在交流电电压过零点时刻控制所述三极管截止,输出高电平跳变信号至所述嵌入式微处理器模块。
作为所述交流电电压过零检测电路的另一种实施方式:
所述交流电电压过零检测电路包括第一运算放大器;
所述第一运算放大器采集所述电力开关输入侧的电压差,并在其同向输入端和反向输入端之间并联一限压元件,用于限制运算放大器两差分输入端之间的电压,所述限压元件由反向并联的两二极管构成,所述第一运算放大器取其两输入端的中间电平作为其参考地,所述第一运算放大器的输出端与所述嵌入式微处理器模块相连,在交流电电压过零点时刻,输出跳变信号至所述嵌入式微处理器模块。
作为所述交流电电流过零检测电路的一种实施方式:
所述交流电电流过零检测电路包括电流感应器、第二运算放大器、电压比较器;
所述电流感应器的两输出端与所述第二运算放大器的两输入端分别相连,所述第二运算放大器的输出端与所述电压比较器的同向输入端相连,所述电压比较器的反向输入端接地,所述电压比较器的输出端与所述嵌入式微处理器模块相连;
所述电流感应器,用于检测所述电力开关输入侧的电流信号,并输出与检测到的电流相应的电压信号至所述第二运算放大器;
所述第二运算放大器,用于对输入的电压信号进行放大;
所述电压比较器,用于比较所述第二运算放大器输出的电压信号与参考地的大小,当所述第二运算放大器输出的电压信号过零时输出跳变信号至所述嵌入式微处理器模块。
相对于现有技术,本发明具有如下有益效果:
1)本发明电力开关动作时间动态测量方法和系统,能实现在电力开关带强电情况下在线测量电力开关的投切动作时间,而且测量结果精确,在载波频率在300Khz时,测量误差可控制在±10us内;利用本发明电力开关动作时间动态测量方法和系统,完成电力开关投切动作时间在线测量的电力开关交流过零点精确控制方法和装置,在载波频率在300Khz时,使电力开关过零投切的误差缩小到± 30us之间,而且该误差还可通过提高载波频率进一步缩小,大量实验证明,本发明电力开关交流过零点精确控制方法和装置是一种用于解决低压、中高压电力开关,自然状态下实现交流电压过零点闭合、交流电流过零点分断的稳定、可靠、经济的技术方案,利用本发明电力开关交流过零点精确控制方法和装置能控制电力开关无电压冲击零点闭合和无电弧零点分断;
2)本发明电力开关交流过零点精确控制方法和装置,融合了嵌入微未处理的多次迭代检测滑动窗口法和KALMAN卡尔曼滤波方法统计预测精度的数学模型,大量试验和实际应用证明,本发明是一种预测精度随电力开关投切次数不断提高直至稳定的技术方案,本发明方案能实现电力开关过零投切预测精度达10-50us。
附图说明
图1为本发明电力开关交流过零点精确控制装置中的交流电电压过零检测电路的具体实施例的电路原理图;
图2为图1中第二三极管Q404集电极输出的信号的波形图;
图3为本发明电力开关交流过零点精确控制装置中的交流电电压过零检测电路另一具体实施例的电路原理图;
图4为图3中第一运算放大器LM358输出端的波形图;
图5为本发明电力开关交流过零点精确控制装置中的交流电电流过零检测电路的具体实施例的电路原理图;
图6为图5中电压比较器LM393输入端的电压波形图;
图7为图5中电压比较器LM393输出端的电压波形图;
图8为本发明电力开关动作时间动态测量系统中高频载波耦合电路、高频载波解析电路具体实施例的电路原理图;
图9为本发明电力开关动作时间动态测量系统中隔离电路具体实施例的电路原理图;
图10为图9中第二光耦OP402输入端的波形图;
图11为图9中第二光耦OP402输出端的波形图。
具体实施方式
交流过零投切技术目前主要有两种,一是直接使用晶闸管作为交流过零投切的开关器件,这种方法的响应速度很快,在检测到交流过零点时,立刻控制晶闸 管完成投切动作,这种方法能做到精确过零投切,但是晶闸管导通时也有一定的压降,当流过的电流较大时,晶闸管的功耗很大,发热严重,且晶闸管由于耐压值有限,抗过电压能力较机械式开关差很多,容易发生击穿,造成供电系统不稳定甚至故障;二是使用并联的晶闸管和开关或断路器作为交流过零投切的开关器件,这种方法的响应速度较慢,控制策略也比较复杂,控制开关或断路器闭合前,先控制晶闸管在电压为零时导通,在晶闸管导通后再让所述开关或断路器闭合;控制开关或断路器分断前,先将开关或断路器分断,开关或断路器分断完成后,当电流过零点时,再将晶闸管关闭。这种投切器件在供电系统工作状态稳定时,由于开关或断路器与晶闸管并联,绝大部分的电流由开关或断路器分流,所以在晶闸管上的损耗极低,但由于同样使用了晶闸管,所以也同样存在着晶闸管耐压有限的问题,晶闸管被击穿也会影响这种开关器件的正常工作。另外,还需要特别说明的是,上述两种利用晶闸管实现交流过零投切的方法,都无法在中高压的供电系统中应用。
本发明公开了一种电力开关动作时间动态测量方法和系统,以便实现电力开关投切动作时间的在线测量。另外,本发明还公开了所述电力开关动作时间动态测量方法和系统在电力开关过零投切控制方面的应用,即一种电力开关交流过零点精确控制方法和装置,本发明电力开关交流过零点精确控制装置可单独设置,在与电力开关相连后,可控制一个或两个以上的电力开关完成过零投切,还可与电力开关组合在一起,形成载波法检测技术实现零过度机械式电力开关装置,控制一条或两条以上的供电线路。
本发明电力开关交流过零点精确控制方法和装置,能将电力开关过零投切误差控制在50us以内,可用于中高压供电系统中电力开关过零投切的控制。
本发明的电力开关交流过零点精确控制装置包括交流电电压过零检测电路、交流电电流过零检测电路和电力开关动作时间动态测量系统。
本发明电力开关交流过零点精确控制装置控制电力开关过零投切的方法如下:
一种电力开关交流过零点精确控制方法,包括如下步骤:
在接到开关命令后,依据闭合延时参数或分断延时参数,在设定的闭合时间点或分断时间点,按照所述闭合延时参数或分断延时参数,提前向所述电力开关 发出投入或切断动作命令,以便所述电力开关刚好在所述设定的闭合时间点或分断时间点完成投入或切断动作,所述设定的闭合时间点或分断时间点即为所述电力开关输入侧交流电后续的第n个过零点时刻,n≥1;
所述闭合延时参数或分断延时参数通过如下方式获得:
通过电力开关动作时间动态测量方法(将在下文中讲到)测量所述电力开关每次的投切动作时间,并保存为历史检测记录;
根据建立在所述电力开关投切动作时间历史检测记录基础上的数学模型预测所述电力开关下次的投切动作时间;
所述闭合延时参数即为所述闭合时间点与所述电力开关投入动作时间预测值之差;所述分断延时参数即为所述分断时间点与所述电力开关切断动作时间预测值之差;所述数学模型根据多次迭代检测滑动窗口法和KALMAN卡尔曼滤波方法建立。
交流电电压过零检测电路
交流电电压过零检测电路,与所述电力开关输入侧相连,用于检测所述电力开关输入侧交流电电压,并对所述交流电电压波形进行整理,输出在交流电电压过零点时刻波形产生跳变的信号。
检测电压过零点时刻的第一环节是感知电力开关输入侧的电压,一般可选择电压互感器感知电压,也可以采用光纤或光电隔离传感器也即光耦感知电压。本实施例中采用双向光耦感知电力开关输入侧交流电的电压,当然,也可以选择其它任意耐高压的光耦。
图1为交流电电压过零检测电路的具体实施例的电路原理图,如图所示,本实施例的交流电电压过零检测电路主要包括第三光耦OP3和第二三极管Q404。本实施例中选择的第三光耦OP3的型号为TLP280,它是一款双向线性光耦,能够将输入端的信号线性地反馈到输出端,因此可以实时地反映交流电电压的波形。
本实施例中交流电电压过零检测电路的具体电路结构如下:第三光耦OP3的输入端引脚1通过电阻R26与电力开关输入侧的火线L相连,输入端引脚2接电力开关输入侧的零线N,第三光耦OP3的输出端引脚3通过电阻R28与第二三极管Q404的基极相连,第三光耦OP3的输出端引脚4通过电阻R27与第二三极管Q404的集电极相连,并以第二三极管Q404的集电极作为交流电电压过零检测电 路的输出,输出RelaySamMain信号到嵌入式微处理器模块,第三光耦OP3的输出端引脚4还与电源VCC相连,第三光耦OP3的输出端引脚3还通过电阻R29接参考地GND,三级管Q404的发射极也与参考地GND相连。
在第三光耦OP3的输入端串联一个大电阻R26,用于限制流过第三光耦OP3的电流,交流电经第三光耦OP3光电隔离,输出一个类似于进行了全波整流后的交流电压波形信号,该信号输出到第二三极管Q404的基极,控制第二三极管Q404导通或截止。当第二三极管Q404基极电压高于一定值(一般是0.7V)时,第二三极管Q404集电极、发射极进入导通状态,集电极输出低电平;当第二三极管Q404基极电压低于0.7V时,第二三极管Q404处于截止状态,集电极输出高电平。
图2为第二三极管Q404集电极输出的信号的波形图,图2中正弦波为电力开关输入侧交流电的电压波形,脉冲信号波形为第二三极管Q404集电极输出的波形,可见:本实施例中交流电电压过零检测电路在检测到电力开关输入侧电压过零点时,就会输出一个高电平跳变信号作为电压过零点时刻通知信号。因此,可通过检测该信号识别电压的过零点时刻。如通过检测上述脉冲信号的上升沿,识别电压的过零点时刻,不过这个上升延时刻应进行一定的延时,这个延时为脉冲方波高电平持续的时间的一半。
本发明还可使用运算放大器或电压比较器对交流电电压波形进行整形,使输出信号变成周期与交流电周期一致的方波,再通过识别该方波的边沿即上升沿或下降沿,识别出交流电电压的过零点时刻,以便提升电力开关状态变化时间点的测量精度。
如图3所示,图3为交流电电压过零检测电路另一具体实施例的电路原理图。该实施例的交流电电压过零检测电路主要包括第一运算放大器LM358(LM358为该运算放大器的型号)。第一运算放大器LM358是一个双运算放大器,内部包括有两个独立的运算放大器,适合于单电源工作模式,也适用于双电源工作模式。
该实施例中,交流电电压过零检测电路具体电路结构为:第一运算放大器LM358的同向输入端IN1+通过电阻RW2与电力开关输入侧的火线L相连,反向输入端IN1-通过电阻RW1与电力开关输入侧的零线N相连,采集电力开关输入侧的电压差,第一运算放大器LM358同向输入端IN1+、反向输入端IN1-之间并联一限压元件,用于限制第一运算放大器LM358同向输入端IN1+、反向输入端IN1-之间 的电压,限压元件由反向并联的两二极管DW1、DW2构成。电阻RW2、RW1用于限制流过二极管的电流。反向并联的两二极管DW1、DW2用于将第一运算放大器LM358差分输入端的电压钳制在0.7V以内。电阻RW3和RW4串联后再与限压元件并联,电阻RW3和RW4连接的中间点与第一运算放大器LM358接地端GND相连,第一运算放大器LM358接地端GND接参考地。本实施例中取第一运算放大器LM358同向输入端IN1+、反向输入端IN1-的中间电平作为第一运算放大器LM358参考地,使第一运算放大器LM358输入的差分信号有可靠的参考地。第一运算放大器LM358的输出端OUT1作为交流电电压过零检测电路的输出,输出RelaySam0信号,第一运算放大器LM358的电源端VCC通过电阻RW5与其输出端OUT1相连,同时,第一运算放大器LM358的电源端VCC还通电容CVG与参考地相连。
在交流电的电压过零点时,本实施例的第一运算放大器LM358具有很好的共模抑制特性和抗干扰特性,从而可以精确地检测到交流电的电压过零点的时刻。图4是第一运算放大器LM358输出端OUT1的波形图。图4中正弦波为电力开关输入侧交流电的电压波形,方波为运算放大器输出的波形。从图中可以看出第一运算放大器LM358输出的是标准的方波,且周期为20MS,与输入的50Hz交流电的周期一致(60Hz原理类同),方波的边沿正好处于交流电电压过零点处,因此通过检测第一运算放大器LM358输出的方波的边沿就可以精确地识别交流电电压的过零点时刻。
经过试验和综合分析比较,基于第三光耦OP3来检测交流电电压过零点时刻的方法更为简便经济,较为推荐。
交流电电流过零检测电路
交流电电流过零检测电路,与所述电力开关输入侧相连,用于检测所述电力开关输入侧交流电电流,并对所述交流电电流波形进行整理,输出在交流电电流过零点时刻波形产生跳变的信号。
对于交流电电流过零点时刻的检测,先使用电流互感器隔离获得电力开关输入侧的电流信号,再通过电力电子电路将该电流信号转化成电压信号,然后,检测该电压信号的过零点时刻,便可得到交流电电流的过零点时刻了,具体的电路如图5所示。
该实施例的交流电电流过零检测电路包括电流感应器、第二运算放大器 AD623(AD623为该运算放大器的型号,此处同时以它作为代号,以区别其它的运算放大器)、电压比较器LM393(LM393为该运算放大器的型号,此处同时以它作为代号,以区别其它的比较器)。
具体的电路结构为:电流感应器由依据电压等级的标准电流互感器I202(本实施例中采用变比为2500:1的电流互感器)和一个100Ω的高精度电阻R213组成,高精度电阻R213串联在标准电流互感器I202的两输出引脚之间,将电流信号转化成电压信号。第二运算放大器AD623的两输入端分别与所述高精度电阻的两端相连,图5中,CT1、CT2是电流互感器感应到的电流经高精度电阻转化后的电压信号的输入引脚。第二运算放大器AD623的两输入端管脚2、3还分别通过等值电阻R203、R204与参考地相连,该结构用于将第二运算放大器AD623输入端的电压信号下拉到第二运算放大器AD623的地电平,使输入的电压信号有一个稳定的参考地。第二运算放大器AD623采用双电源供电,其管脚7、4分别与电源3V3、-3V3相连,管脚7同时通过电容C201与参考地相连,以实现去耦。第二运算放大器AD623的管脚1、8之间连接一电阻Rg201,用于设置第二运算放大器AD623的增益。第二运算放大器AD623的管脚5接参考地。第二运算放大器AD623的输出端管脚6通过电阻R208与电压比较器LM393的同向输入端IN1+相连。电压比较器LM393是一种双电压比较器集成芯片,它的同向输入端IN1+还通过稳压管D203接参考地,用于防止电压比较器LM393差分输入端的电压过高。电压比较器LM393的反向输入端接参考地,电压比较器LM393用于比较第二运算放大器AD623的输出电压与参考地电压的大小,在第二运算放大器AD623的输出电压大于参考地电压时,输出高电平。电压比较器LM393的接地端GND接参考地,电源端接电源3V3,输出端OUT1即为交流电电流过零检测电路的输出,输出RelaySam1信号,输出端OUT1还通过上拉电阻R209与电源3V3相连。电压比较器LM393中另一通道的输入、输出端都与参考地相连。
在电压比较器LM393前加入一个第二运算放大器AD623,一是利用了运放的高阻抗输入特性,尽量减少对第二运算放大器AD623输出信号的影响,二是利用第二运算放大器AD623将信号适当放大,从而确保在电流较小时也能精确地检测到交流电电流过零点时刻。当接一个纯电阻负载时,得到的电压比较器LM393输入端的信号波形如图6所示,图6所示的信号波形是交流电电流信号经转化、放 大后的信号,将该信号输入到电压比较器LM393的同向输入端IN1+,与电压比较器LM393的反向输入端IN1-的接地电平进行比较,从而得到在电流过零点时刻跳变的方波,该方波波形结构如图7所示,从图7可以看出,电压比较器LM393输出的方波的周期与电力开关输入侧的交流电频率对应的周期20ms一致。
通过上述交流电电压过零检测电路、交流电电流过零检测电路可以精确的监测电力开关输入侧交流电电压、电流的过零点时刻。由于完全采用电力电子技术,检测精度均在微秒等级,相对于继电器或者断路器的动作时间或50Hz或60Hz的交流电周期,可谓精确度很高。
电力开关动作时间动态测量系统
电力开关动作时间动态测量系统包括嵌入式微处理器模块、高频载波耦合电路和高频载波解析电路。
本发明电力开关动作时间动态测量系统测量电力开关投切动作时间的方法,即电力开关动作时间动态测量方法,具体步骤如下:
1)在向所述电力开关发出投入或切断动作命令前,在所述电力开关的输入侧施加具有适当强度的高频载波作为检测信号源,同时在所述电力开关的输出侧检测所施加的高频载波;
2)向所述电力开关发出投入动作命令,以所述投入动作命令的发出时间为开关起始动作时间,以开始在所述电力开关的输出侧检测到所施加的高频载波信号的时间为开关完成投入动作的时间,计算所述电力开关的投入动作时间;或
3)向所述电力开关发出切断动作命令,以所述切断动作命令的发出时间为开关起始动作时间,以在所述电力开关输出侧检测到失去所施加的高频载波信号的时间为开关完成切断动作的时间,计算所述电力开关的切断动作时间。
嵌入式微处理器模块MCU产生100kHz-5MHz的高频载波信号,通过高频载波耦合电路将其耦合到电力开关的输入侧,高频载波耦合电路可选用高压电容或其它载波电容等,再通过高频载波解析电路如高压电容解析出电力开关输出侧的高频载波信号,最后通过嵌入式微处理器模块MCU识别电力开关状态变化信号,实现精确到高频载波一个周期的高精度时间测量。
本发明能在向电力开关发出投切动作命令前,向电力开关的输入侧发出高频载波,并在电力开关的输出侧可以解析出所述高频载波即可,对载波信号的具体 波形无特别要求。
高频载波耦合电路
高频载波耦合电路与所述电力开关的输入侧相连,用于将接收到的高频载波信号耦合到所述电力开关的输入侧。
高频载波解析电路
高频载波解析电路与所述电力开关的输出侧相连,用于解析所述电力开关输出侧的高频载波信号并输出到所述嵌入式微处理器模块。
作为本发明高频载波耦合电路与高频载波解析电路的具体实施例,如图8所示:
所述高频载波耦合电路和所述高频载波解析电路均由高压电容C2或C4和高通滤波器组成,所述高通滤波器由一电阻和一电容串联而成C1和R1或C3和R2,所述高压电容C2或C4的一端与所述高通滤波器中电阻和电容C1和R1或C3和R2的串联中点相连,所述高压电容C2或C4的另一端连向所述嵌入式微处理器模块,所述高通滤波器的电容C1或C3与所述电力开关输入侧或输出侧的火线L或L′相连,所述高通滤波器的电阻与所述电力开关的输入侧或输出侧的零线N相连。
图8中,电容C1和电阻R1、电容C3和电阻R2构成两个高通滤波器,对于频率只有50Hz~60Hz的交流电来说,相当于开路,对于本发明的高频载波如频率为300KHz的方波(根据需要可设置为100KHz-5MHz甚至更高),相当于短路。
微处理器MCU输出的高频载波信号经电容C2输出到电容C1的一端,然后经电容C1耦合到电力开关的输入侧,若电力开关起先处于闭合状态,高频载波信号经闭合的电力开关输出到达电容C3,然后经电容C3耦合到电容C4,再经电容C4耦合到嵌入式微处理器模块MCU的输入端口。电力开关断开后,该高频载波信号将无法到达电力开关的输出侧,那么嵌入式微处理器模块MCU即可通过识别开始检测不到所述高频载波信号的时间识别电力开关输出端状态发生变化的时刻。上述高频载波电容C1、C3、C2、C4是载波测量的关键器件,每个电容除了实现将高频载波信号输出到开关回路或从开关回路上获取高频载波信号,同时要承受电力开关所过电力的电压,因此,每个电容的耐压等级与电力开关控制的电力线路的电压等级相关(必须显著高于电力开关控制的电力线路的电压的交流峰值),容量 与施加在电力开关输入侧的高频载波的频率有关,频率高,则所需的电容的容量就小,以达到合适的信噪比为参数配置基础。
图8所示的电路并没有将强电与弱电完全隔离,为了使系统能安全稳定运行,可在嵌入式微处理器模块MCU高频载波信号的输出、输入端均加入隔离电路。如图9所示,该实施例中,加入了光耦隔离电路。
第一隔离电路连于所述嵌入式微处理器模块和所述高频载波耦合电路之间。第二隔离电路连于所述嵌入式微处理器模块和所述高频载波解析电路之间。
所述第一隔离电路主要包括第一光耦OP401和第一三极管Q101。
所述第二隔离电路主要由第二光耦OP402构成。
该实施例中,选择的第一光耦OP401、第二光耦OP402的型号都为6N137,其具有8个针脚。
第一光耦OP401的正向输入针脚2接电源3V3,反向输入针脚3通过电阻R401与嵌入式微处理器模块MCU相连,接收嵌入式微处理器模块MCU输出的Pulseout信号,并在Pulseout信号为低电平时导通。第一光耦OP401的接地针脚5接地,输出针脚6通过上拉电阻R402与电源5VDD相连,第一光耦OP401的电源针脚8和使能针脚7也都与电源5VDD相连,同时还通过电容C401与DGND相连。第一光耦OP401针脚1、4空置。第一光耦OP401的输出针脚6与第一三极管Q101的基极相连,第一三极管Q101的发射极与DGND相连,集电极通过电阻R1101与电源5VDDC相连,同时集电极还作为输出端输出Pulse_out到高频载波耦合电路。
第二光耦OP402的反向输入针脚3与高频载波解析电路相连,同时通过电阻R403与电源5VDD相连,第二光耦OP402的正向输入针脚2与电源5VDD相连,其接地针脚5接参考地,输出针脚6通过上拉电阻R404与电源3V3相连,同时输出到嵌入式微处理器模块MCU,其电源针脚8和使能针脚7接电源3V3,同时通过电容C402接参考地去耦,其针脚1、4空置。
若嵌入式微处理器模块MCU发出方波形式的高频载波信号,方波经第一光耦OP401光电隔离后输出,驱动第一三极管Q101将该信号施加到高频载波耦合电路耦合到电力开关的输入侧。图10所示波形为第二光耦OP402输入侧的波形,波形中的下跳沿大约2V,该下跳沿足够驱动第二光耦OP402的二极管,因此,第二光耦OP402能够将该下跳沿输出,波形表现见图11。所以,嵌入式微处理器模 块MCU只需检测到第一个下跳沿,便可判断电力开关的的通断状态。嵌入式微处理器模块MCU向电力开关输入侧发出高频载波,若嵌入式微处理器模块MCU向电力开关发出投入动作命令后,经延时,嵌入式微处理器模块MCU检测到高频载波的下跳沿,此时即可判断电力开关已经闭合,记录投入动作命令的发出时间和嵌入式微处理器模块MCU检测到高频载波下跳沿的时间,电力开关投入动作时间就可精确获得;嵌入式微处理器模块MCU发出切断动作命令前,先向电力开关输入侧发出高频载波,输出侧能检测到所施加的高频载波,当嵌入式微处理器模块MCU检测不到所述高频载波时,记录的切断动作命令发出时间与开始收不到所述高频载波信号的时间的间隔,即为电力开关切断动作时间。
嵌入式微处理器模块MCU还可通过检测投切动作命令发出前电力开关输出侧高频载波的接收情况,识别电力开关的当前状态。当然,也可以在电力开关输出侧设置电流感应器件,嵌入式微处理器模块MCU通过检测电力开关输出侧是否存在电流,判断电力开关的当前状态。
若利用本发明嵌入式微处理器模块MCU控制多路相互独立的电力开关的投切动作时,应为每个电力开关配置独立的定时器,以保证各个电力开关之间相互独立的工作。多路独立电力开关投切动作时间的测量,为了保证嵌入式微处理器模块MCU能在电力开关输出端状态发生改变的瞬间准确记录状态发生改变的时间,程序设计时,在嵌入式微处理器模块MCU上,为每路电力开关配置独立的通断状态检测引脚,该通断状态检测引脚通过独立的中断线与各电力开关输出侧相连。
MCU的程序设计描述如下:第二光耦OP402的输出端与作为嵌入式微处理器模块MCU通断状态检测引脚的I/O口相连,在程序里设置该I\O口对应一条外部中断指令,并设置成边沿触发中断的方式。假设开始时电力开关的状态是断开的,那么这时第二光耦Q101的输出端是一个高电平,没有任何的上跳、下跳边沿,嵌入式微处理器模块MCU向电力开关发出投入动作命令,定时器开始对电力开关投入动作时间计时,并开放第二光耦OP402对应I\O口的外部中断指令。电力开关闭合完成瞬间,高频载波信号将通过电力开关、高频载波解析电路、第二隔离电路输入到对应的I\O口,高频载波信号的第一个边沿将触发嵌入式微处理器模块MCU的外部中断,MCU进入中断服务程序,在中断服务程序中读取定时器的值,并关闭定时器和I\O外部中断,读取到的定时器的值就是电力开关投入动作时间。 当开始时电力开关处于闭合状态,MCU发出向电力开关发出切断动作命令,触发定时器并设置定时器计时满10MS后进入定时中断,同时开放第二光耦OP402对应I\O口的外部中断,并在每次进入外部中断服务程序时,读取定时器的值,当电力开关断开后,第二光耦OP402输出端将变成高电平,之后将不会触发I\O口的外部中断,等定时时间到,触发定时中断,在定时中断服务程序中,关闭定时器,关闭外部中断,那么最后一个边沿触发的外部中断读取到的定时器的值就是电力开关切断动作时间。
由上述分析可知,高频载波信号的频率越高,测量得到的电力开关的投切动作时间就越准确。本发明电力开关动作时间动态测量方法精度高,最多相差两个高频载波载波信号的周期,也就是7微秒/300Khz,这个误差在本专利中,即使不再经过滤波和校正,7um的过零点时间误差,意味着即使是35KV的电压,其过零点电压误差也仅仅只有70V,偏差非常小,而对于400Vac的市电,开关设触头间电压仅仅只有0.7V,因此,精度完全可以满足实际要求。对于500KVac电压等级,载波信号频率需要高于2Mhz,此时由于检测误差仅为1um,此偏差使得开关设触头间电压不超过140V,通过滤波,该电压完全可以进一步减少和控制。由此可见本发明电力开关动作时间动态测量方法及其应用是一种十分可靠也十分有效的中高压领域电力开关过零透切问题解决方案。

Claims (13)

  1. 一种电力开关动作时间动态测量方法,所述动作时间即投切动作时间,指电力开关获得投切动作命令到电力开关输出端状态发生变化所需要的时间,包括投入动作时间即开关闭合机械动作的时间和切断动作时间即开关切断电气回路的动作时间,所述电力开关动作时间动态测量方法具体包括如下步骤:
    1)在向所述电力开关发出投入或切断动作命令前,在所述电力开关的输入侧施加高频载波作为检测信号源,同时在所述电力开关的输出侧检测所施加的高频载波;
    2)向所述电力开关发出投入动作命令,以所述投入动作命令的发出时间为开关起始动作时间,以开始在所述电力开关的输出侧检测到所施加的高频载波信号的时间为开关完成投入动作的时间,计算所述电力开关的投入动作时间;或
    3)向所述电力开关发出切断动作命令,以所述切断动作命令的发出时间为开关起始动作时间,以在所述电力开关输出侧检测到失去所施加的高频载波信号的时间为开关完成切断动作的时间,计算所述电力开关的切断动作时间。
  2. 一种电力开关动作时间动态测量系统,其特征在于,包括嵌入式微处理器模块、高频载波耦合电路和高频载波解析电路;
    所述高频载波耦合电路输入端与所述嵌入式微处理器模块相连,输出端与所述电力开关的输入侧相连,所述高频载波解析电路输入端与所述电力开关的输出侧相连,输出端与所述嵌入式微处理器模块相连;
    所述嵌入式微处理器模块,用于向所述电力开关发送投入或切断动作命令,记录所述投入或切断动作命令的发出时间为开关起始动作时间,并在向所述电力开关发出投入或切断动作命令前,输出具有适当强度的高频载波信号到所述高频载波耦合电路;
    所述高频载波耦合电路,用于将接收到的高频载波信号耦合到所述电力开关的输入侧;
    所述高频载波解析电路,用于解析所述电力开关输出侧的高频载波信号并输出到所述嵌入式微处理器模块;
    所述嵌入式微处理器模块,还用于检测所述电力开关输出侧的高频载波信号,记录开始检测到所施加的高频载波信号的时间为开关完成投入动作的时间, 记录检测到失去所施加的高频载波信号的时间为开关完成切断动作时间,确定所述电力开关的投入动作时间和切断动作时间。
  3. 根据权利要求2所述的电力开关动作时间动态测量系统,其特征在于,所述电力开关动作时间动态测量系统还包括第一隔离电路和第二隔离电路,所述隔离电路用于隔离强电和弱电,所述第一隔离电路连于所述嵌入式微处理器模块和所述高频载波耦合电路之间,所述第二隔离电路连于所述嵌入式微处理器模块和所述高频载波解析电路之间。
  4. 根据权利要求3所述的电力开关动作时间动态测量系统,其特征在于,所述高频载波耦合电路和所述高频载波解析电路均由高压电容(C2或C4)和高通滤波器组成,所述高通滤波器由一电阻和一电容串联而成(C1和R1或C3和R2),所述高压电容(C2或C4)的一端与所述高通滤波器中电阻和电容(C1和R1或C3和R2)的串联中点相连,所述高压电容(C2或C4)的另一端连向所述嵌入式微处理器模块,所述高通滤波器的电容(C1或C3)与所述电力开关输入侧或输出侧的火线(L或L′)相连,所述高通滤波器的电阻与所述电力开关输入侧或输出侧的零线(N)相连。
  5. 根据权利要求4所述的电力开关动作时间动态测量系统,其特征在于,
    所述第一隔离电路包括:第一光耦(OP401)和第一三极管(Q101);
    所述第二隔离电路由第二光耦(OP402)构成;
    所述嵌入式微处理器模块输出的高频载波信号经所述第一光耦(OP401)隔离后输出到所述第一三极管(Q101),驱动所述第一三极管(Q101)将信号输出到所述高频载波耦合电路,所述高频载波解析电路输出的信号经所述第二光耦(OP402)隔离后输出到所述嵌入式微处理器模块。
  6. 根据权利要求2~5任一项权利要求所述的电力开关动作时间动态测量系统,其特征在于,所述第二光耦(OP402)的输出端与作为所述嵌入式微处理器模块通断状态检测引脚的I/O口相连,所述嵌入式微处理器模块:用于在向所述电力开关发出投入动作命令的同时,触发与所述电力开关对应的定时器计时、开放与所述电力开关对应的I/O口的外部中断,并在与所述电力开关对应的I/O口收到外部中断信号后,读取与所述电力开关对应的定时器的值并关闭该定时器和与所述电力开关对应的I/O口对应的外部中断,以读取到的定时器的值作为所述 电力开关的投入动作时间;所述嵌入式微处理器模块:还用于在向所述电力开关发出切断动作命令的同时,触发与所述电力开关对应的定时器计时,并设置定时器计时满一定时间T后进入定时中断,同时开放与所述电力开关对应的I/O口对应的外部中断,T大于所述电力开关的切断动作时间,并在与所述电力开关对应的I/O口每次收到外部中断信号时,读取与所述电力开关对应的定时器的值,在与所述电力开关对应的定时器定时中断后,关闭该定时器和与所述电力开关对应的I/O口对应的外部中断,以与所述电力开关对应的I/O口最后一次收到外部中断信号时读取到的定时器的值作为所述电力开关的切断动作时间。
  7. 一种电力开关交流过零点精确控制方法,包括如下步骤:
    在接到开关命令后,依据闭合延时参数或分断延时参数,在设定的闭合时间点或分断时间点,按照所述闭合延时参数或分断延时参数,提前向所述电力开关发出投入或切断动作命令,以便所述电力开关刚好在所述设定的闭合时间点或分断时间点完成投入或切断动作,所述设定的闭合时间点或分断时间点即为所述电力开关输入侧交流电后续的第n个过零点时刻,n≥1;
    其特征在于,所述闭合延时参数或分断延时参数通过如下方式获得:
    通过权利要求1所述的电力开关动作时间动态测量方法测量所述电力开关每次的投切动作时间,并保存为历史检测记录;
    根据建立在所述电力开关投切动作时间历史检测记录基础上的数学模型预测所述电力开关下次的投切动作时间;
    所述闭合延时参数即为所述闭合时间点与所述电力开关投入动作时间预测值之差;所述分断延时参数即为所述分断时间点与所述电力开关切断动作时间预测值之差。
  8. 根据权利要求7所述的电力开关交流过零点精确控制方法,其特征在于,所述数学模型根据多次迭代检测滑动窗口法和KALMAN卡尔曼滤波方法建立。
  9. 一种电力开关交流过零点精确控制装置,其特征在于,包括:
    交流电电压过零检测电路,与所述电力开关输入侧相连,用于检测所述电力开关输入侧交流电电压,并对所述交流电电压波形进行整理,输出在交流电电压过零点时刻波形产生跳变的信号;
    交流电电流过零检测电路,与所述电力开关输入侧相连,用于检测所述电力 开关输入侧交流电电流,并对所述交流电电流波形进行整理,输出在交流电电流过零点时刻波形产生跳变的信号;
    权利要求2~6任一项权利要求所述的电力开关动作时间动态测量系统;
    所述电力开关动作时间动态测量系统中的嵌入式微处理器模块,还用于接收开关命令,并在接到所述开关命令后,依据闭合延时参数或分断延时参数,在设定的闭合时间点或分断时间点,按照所述闭合延时参数或分断延时参数,提前向所述电力开关发出投入或切断动作命令,以便所述电力开关刚好在所述设定的闭合时间点或分断时间点完成投入动作或切断动作,所述设定的闭合时间点或分断时间点即为所述电力开关输入侧交流电后续的第n个过零点时刻,n≥1,所述嵌入式微处理器模块,还用于保存所述电力开关每次的投切动作时间作为历史检测记录,基于所述电力开关投切动作时间历史检测记录建立数学模型,并根据建立的数学模型预测所述电力开关下次的投切动作时间,所述闭合延时参数即为所述闭合时间点与所述电力开关投入动作时间预测值之差;所述分断延时参数即为所述分断时间点与所述电力开关切断动作时间预测值之差,所述嵌入式微处理器模块,还用于在接到所述开关命令后,检测所述电力开关的状态,根据所述交流电电压或电流过零检测电路的输出获取电压或电流过零点时刻,根据所述电压或电流过零点时刻设定所述闭合时间点或分断时间点。
  10. 根据权利要求9所述的电力开关交流过零点精确控制装置,其特征在于,所述交流电电压过零检测电路包括第三光耦(OP3)和第二三极管(Q404);
    所述第三光耦(OP3)的两输出端分别与所述第二三极管(Q404)的基极和集电极相连,所述第二三极管(Q404)的集电极与所述嵌入式微处理器模块相连;
    所述第三光耦(OP3)用于采集所述电力开关输入侧交流电的电压,在交流电电压过零点时刻控制所述三极管(Q404)截止,输出高电平跳变信号至所述嵌入式微处理器模块。
  11. 根据权利要求9所述的电力开关交流过零点精确控制装置,其特征在于,
    所述交流电电压过零检测电路包括第一运算放大器(LM358);
    所述第一运算放大器(LM358)采集所述电力开关输入侧的电压差,并在其同向输入端和反向输入端之间并联一限压元件,用于限制运算放大器两差分输入端之间的电压,所述限压元件由反向并联的两二极管构成,所述第一运算放大器 (LM358)取其两输入端的中间电平作为其参考地,所述第一运算放大器(LM358)的输出端与所述嵌入式微处理器模块相连,在交流电电压过零点时刻,输出跳变信号至所述嵌入式微处理器模块。
  12. 根据权利要求9所述的电力开关交流过零点精确控制装置,其特征在于,所述交流电电流过零检测电路包括电流感应器、第二运算放大器(AD623)、电压比较器(LM393);
    所述电流感应器的两输出端与所述第二运算放大器(AD623)的两输入端分别相连,所述第二运算放大器(AD623)的输出端与所述电压比较器(LM393)的同向输入端相连,所述电压比较器(LM393)的反向输入端接地,所述电压比较器(LM393)的输出端与所述嵌入式微处理器模块相连;
    所述电流感应器,用于检测所述电力开关输入侧的电流信号,并输出与检测到的电流相应的电压信号至所述第二运算放大器(AD623);
    所述第二运算放大器(AD623),用于对输入的电压信号进行放大;
    所述电压比较器(LM393),用于比较所述第二运算放大器(AD623)输出的电压信号与参考地的大小,当所述第二运算放大器(AD623)输出的电压信号过零时输出跳变信号至所述嵌入式微处理器模块。
  13. 一种载波法检测技术实现零过度机械式电力开关装置,其特征在于,所述机械式电力开关装置包括权利要求9~12任一项权利要求所述的电力开关交流过零点精确控制装置。
PCT/CN2016/081383 2015-09-22 2016-05-09 电力开关动作时间动态测量及交流过零点精确控制方法及应用 WO2017049907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510607734.0A CN105182229B (zh) 2015-09-22 2015-09-22 电力开关动作时间动态测量及交流过零点精确控制方法及应用
CN201510607734.0 2015-09-22

Publications (1)

Publication Number Publication Date
WO2017049907A1 true WO2017049907A1 (zh) 2017-03-30

Family

ID=54904436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081383 WO2017049907A1 (zh) 2015-09-22 2016-05-09 电力开关动作时间动态测量及交流过零点精确控制方法及应用

Country Status (2)

Country Link
CN (1) CN105182229B (zh)
WO (1) WO2017049907A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008294A (zh) * 2017-12-29 2018-05-08 川铁电气(天津)股份有限公司 一种智能隔离开关及断路器的实验装置及实验方法
CN108333506A (zh) * 2018-04-08 2018-07-27 杭州欣美成套电器制造有限公司 一种近零信号提取与交流开关位置检测电路
CN108469551A (zh) * 2018-05-25 2018-08-31 河北工业大学 一种多路微小电容信号采集处理电路
CN108761329A (zh) * 2018-08-25 2018-11-06 东莞市迅迪电子有限公司 一种单火线开关负载检测电路及方法
CN109270387A (zh) * 2018-12-03 2019-01-25 河北工业大学 基于交流固态模拟负载的低压电器电寿命试验装置
CN111146933A (zh) * 2020-01-20 2020-05-12 广州智光电气技术有限公司 一种在线维护装置、级联型变流系统及其在线维护方法
CN111400981A (zh) * 2020-03-05 2020-07-10 上海科梁信息工程股份有限公司 仿真电路控制系统、方法、电子设备、存储介质
CN112595951A (zh) * 2020-10-29 2021-04-02 华帝股份有限公司 兼容检测电路及其过零检测、门检测和掉电记忆检测方法
CN113009248A (zh) * 2021-02-08 2021-06-22 天津云遥宇航科技有限公司 测试方法、测试设备和测试系统
CN113126547A (zh) * 2021-04-20 2021-07-16 江西仪能新能源微电网协同创新有限公司 一种开关智能灭弧控制器分合闸控制方法
CN113504406A (zh) * 2021-06-22 2021-10-15 昇辉控股有限公司 一种过零检测方法及具有过零检测功能的智能开关
CN114038715A (zh) * 2021-09-16 2022-02-11 深圳微羽智能科技有限公司 一种合闸力自动校准的断路器
CN114966385A (zh) * 2022-05-09 2022-08-30 浙江方圆电气设备检测有限公司 一种控制多种试验电流的方法
CN115407118A (zh) * 2022-09-03 2022-11-29 迈思普电子股份有限公司 一种隔离型输出方波的ac过零检测线路
CN116861203A (zh) * 2023-09-05 2023-10-10 青岛鼎信通讯科技有限公司 一种基于单频信号的微电流信号识别方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182229B (zh) * 2015-09-22 2018-06-29 郑贵林 电力开关动作时间动态测量及交流过零点精确控制方法及应用
CN105652769A (zh) * 2016-01-20 2016-06-08 苏州英纳索智能科技有限公司 一种继电器防粘连电路及其控制方法
CN106124977A (zh) * 2016-06-29 2016-11-16 南京国电南自电网自动化有限公司 一种基于虚拟仪器的继电器测试方法
CN106291349B (zh) * 2016-08-17 2018-09-25 中国电子科技集团公司第四十一研究所 基于变频方波信号的微波组件开关响应时间的测试方法
CN106451767A (zh) * 2016-09-18 2017-02-22 国网河南伊川县供电公司 一种用于电力变电站二次供电系统在线检测的方法及系统
CN106443502B (zh) * 2016-12-06 2019-02-15 江苏理工学院 一种高精度电源浮地端口的电流检测与保护电路
CN107085181B (zh) * 2017-04-12 2019-08-16 武汉世纪金桥安全技术有限公司 直流背向光光纤开关检测系统
CN109031106B (zh) * 2018-07-10 2021-09-21 北京平高清大科技发展有限公司 一种混合式直流断路器开断试验装置
EP3629041A1 (de) 2018-09-28 2020-04-01 FRONIUS INTERNATIONAL GmbH Verfahren und anordnung zum durchführen eines abschalttests an einem wechselrichter
CN109709480A (zh) * 2019-01-10 2019-05-03 江苏金智科技股份有限公司 一种换相开关的继电器闭环自校核方法
CN109655745A (zh) * 2019-01-17 2019-04-19 武汉黎赛科技有限责任公司 一种主断路器时间参数的测试装置及测试方法
CN110988445B (zh) * 2019-12-31 2021-11-30 国网河南省电力公司信息通信公司 一种电网运行数据采集系统
CN111474414A (zh) * 2020-03-18 2020-07-31 南方电网科学研究院有限责任公司 一种柔性直流控制系统的链路延时测试方法及系统
CN111474461B (zh) * 2020-03-31 2022-08-23 南京优倍电气技术有限公司 一种用于功能安全产品检测开关失效的电路装置
CN113933699B (zh) * 2021-10-18 2023-09-26 杭州优恩捷科技有限公司 一种高可靠性无源开关通断状态检测电路
CN114035416B (zh) * 2021-10-21 2023-01-13 山东省计量科学研究院 一种消防应急照明灯具检测仪应急时间的计量校准方法
CN114625051A (zh) * 2022-03-22 2022-06-14 康体佳智能科技(深圳)有限公司 目标开关控制方法、装置、用电管理器与可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481473A (en) * 1981-11-13 1984-11-06 International Business Machines Corporation Electromagnet drop time detection method
CN202563065U (zh) * 2012-02-18 2012-11-28 山西省电力公司晋城供电分公司 电力开关柜断路器分合闸周期在线检测装置
CN103389407A (zh) * 2013-07-29 2013-11-13 Tcl空调器(中山)有限公司 市电检测装置
CN104101832A (zh) * 2014-06-18 2014-10-15 国家电网公司 一种高压断路器动作特性测试方法
CN204575811U (zh) * 2015-04-07 2015-08-19 石家庄汉迪电子仪器有限公司 一种高压开关触头的测试系统
CN105182229A (zh) * 2015-09-22 2015-12-23 郑贵林 电力开关动作时间动态测量及交流过零点精确控制方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890184A (zh) * 2012-10-25 2013-01-23 德讯科技股份有限公司 一种基于光耦的过零检测电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481473A (en) * 1981-11-13 1984-11-06 International Business Machines Corporation Electromagnet drop time detection method
CN202563065U (zh) * 2012-02-18 2012-11-28 山西省电力公司晋城供电分公司 电力开关柜断路器分合闸周期在线检测装置
CN103389407A (zh) * 2013-07-29 2013-11-13 Tcl空调器(中山)有限公司 市电检测装置
CN104101832A (zh) * 2014-06-18 2014-10-15 国家电网公司 一种高压断路器动作特性测试方法
CN204575811U (zh) * 2015-04-07 2015-08-19 石家庄汉迪电子仪器有限公司 一种高压开关触头的测试系统
CN105182229A (zh) * 2015-09-22 2015-12-23 郑贵林 电力开关动作时间动态测量及交流过零点精确控制方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENG, GUILIN ET AL.: "Dynamic Prediction of Smart Switch Acting Time Based on Slide Window Method", AUTOMATION AND INSTRUMENTATION, 31 December 2014 (2014-12-31), pages 61 - 64, ISSN: 1001-9944 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008294A (zh) * 2017-12-29 2018-05-08 川铁电气(天津)股份有限公司 一种智能隔离开关及断路器的实验装置及实验方法
CN108333506A (zh) * 2018-04-08 2018-07-27 杭州欣美成套电器制造有限公司 一种近零信号提取与交流开关位置检测电路
CN108469551B (zh) * 2018-05-25 2023-08-01 河北工业大学 一种多路微小电容信号采集处理电路
CN108469551A (zh) * 2018-05-25 2018-08-31 河北工业大学 一种多路微小电容信号采集处理电路
CN108761329A (zh) * 2018-08-25 2018-11-06 东莞市迅迪电子有限公司 一种单火线开关负载检测电路及方法
CN108761329B (zh) * 2018-08-25 2023-11-03 东莞市迅迪电子有限公司 一种单火线开关负载检测电路及方法
CN109270387A (zh) * 2018-12-03 2019-01-25 河北工业大学 基于交流固态模拟负载的低压电器电寿命试验装置
CN109270387B (zh) * 2018-12-03 2023-08-18 河北工业大学 基于交流固态模拟负载的低压电器电寿命试验装置
CN111146933A (zh) * 2020-01-20 2020-05-12 广州智光电气技术有限公司 一种在线维护装置、级联型变流系统及其在线维护方法
CN111146933B (zh) * 2020-01-20 2024-05-10 广州智光电气技术有限公司 一种在线维护装置、级联型变流系统及其在线维护方法
CN111400981A (zh) * 2020-03-05 2020-07-10 上海科梁信息工程股份有限公司 仿真电路控制系统、方法、电子设备、存储介质
CN111400981B (zh) * 2020-03-05 2024-03-08 上海科梁信息科技股份有限公司 仿真电路控制系统、方法、电子设备、存储介质
CN112595951A (zh) * 2020-10-29 2021-04-02 华帝股份有限公司 兼容检测电路及其过零检测、门检测和掉电记忆检测方法
CN113009248A (zh) * 2021-02-08 2021-06-22 天津云遥宇航科技有限公司 测试方法、测试设备和测试系统
CN113126547B (zh) * 2021-04-20 2022-07-12 江西仪能新能源微电网协同创新有限公司 一种开关智能灭弧控制器分合闸控制方法
CN113126547A (zh) * 2021-04-20 2021-07-16 江西仪能新能源微电网协同创新有限公司 一种开关智能灭弧控制器分合闸控制方法
CN113504406A (zh) * 2021-06-22 2021-10-15 昇辉控股有限公司 一种过零检测方法及具有过零检测功能的智能开关
CN113504406B (zh) * 2021-06-22 2024-01-02 昇辉控股有限公司 一种过零检测方法及具有过零检测功能的智能开关
CN114038715A (zh) * 2021-09-16 2022-02-11 深圳微羽智能科技有限公司 一种合闸力自动校准的断路器
CN114966385A (zh) * 2022-05-09 2022-08-30 浙江方圆电气设备检测有限公司 一种控制多种试验电流的方法
CN114966385B (zh) * 2022-05-09 2024-02-27 浙江方圆电气设备检测有限公司 一种控制多种试验电流的方法
CN115407118A (zh) * 2022-09-03 2022-11-29 迈思普电子股份有限公司 一种隔离型输出方波的ac过零检测线路
CN116861203A (zh) * 2023-09-05 2023-10-10 青岛鼎信通讯科技有限公司 一种基于单频信号的微电流信号识别方法
CN116861203B (zh) * 2023-09-05 2024-01-09 青岛鼎信通讯科技有限公司 一种基于单频信号的微电流信号识别方法

Also Published As

Publication number Publication date
CN105182229B (zh) 2018-06-29
CN105182229A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2017049907A1 (zh) 电力开关动作时间动态测量及交流过零点精确控制方法及应用
CN103346578B (zh) 智能选相开关控制器
CN103630833B (zh) 塑料外壳式断路器寿命测试方法
CN102662104A (zh) 过零检测方法及电路
CN102411124B (zh) 特种断路器机械特性测试装置
CN101900771A (zh) Rcd检测装置和检测方法
CN106526474B (zh) 一种电能表用负荷开关过零操作测试系统及方法
CN203352193U (zh) 真空断路器选相操作智能控制器
CN104959721A (zh) 等离子切割机引导弧控制电路及其控制方法
CN100370664C (zh) 电弧及漏电保护器
CN107238750B (zh) 一种基于运放电路的电网波形侦测方法
CN204992521U (zh) 单相电能表拉闸控制电路和用该电路制成的电能表
CN208955659U (zh) 一种相控断路器基波信号提取装置
CN207036947U (zh) 一种基于plc控制的试验电流瞬时切换及监控装置
CN103560484B (zh) 三电流互感器在线监测变压器夹件多点接地电流控制装置
CN205158598U (zh) 一种具有故障检测电路的电气火灾监控探测器
CN112881946B (zh) 双芯电流互感器断线检测方法、装置及一种断路器
CN115128449A (zh) 一种熔断器弧前时间—电流特性试验系统
CN203365596U (zh) 一种智能微机继电保护快速测试装置
CN102508453B (zh) 一种交直流数字量输入电路
CN103558451B (zh) 双电流互感器在线监测变压器夹件多点接地电流控制装置
CN203630208U (zh) 双电流互感器在线监测变压器夹件多点接地电流控制装置
CN204843229U (zh) 等离子切割机引导弧控制电路
CN215988594U (zh) 智能电容过零点投切装置
CN206618797U (zh) 一种电力线载波过零检测电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847789

Country of ref document: EP

Kind code of ref document: A1