WO2017049546A1 - 一种发送和接收光传送网otn信号的方法、otn设备和系统 - Google Patents

一种发送和接收光传送网otn信号的方法、otn设备和系统 Download PDF

Info

Publication number
WO2017049546A1
WO2017049546A1 PCT/CN2015/090613 CN2015090613W WO2017049546A1 WO 2017049546 A1 WO2017049546 A1 WO 2017049546A1 CN 2015090613 W CN2015090613 W CN 2015090613W WO 2017049546 A1 WO2017049546 A1 WO 2017049546A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
otn
signal
deleted
otn signal
Prior art date
Application number
PCT/CN2015/090613
Other languages
English (en)
French (fr)
Inventor
苏伟
维塞斯马腾
吴秋游
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580082339.3A priority Critical patent/CN107925635A/zh
Priority to PCT/CN2015/090613 priority patent/WO2017049546A1/zh
Publication of WO2017049546A1 publication Critical patent/WO2017049546A1/zh
Priority to US15/934,067 priority patent/US10771178B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/07Synchronising arrangements using pulse stuffing for systems with different or fluctuating information rates or bit rates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for transmitting and receiving an OTN signal of an optical transport network, an OTN device and a system.
  • the current OTN Optical Transport Network
  • OAM Operaation Administration and Maintenance, operation, management and maintenance
  • TCM Tudem Connection
  • OTUCn Optical Channel Transport Unit-Cn
  • Gbit/s OTN C For the Roman numeral 100, n is a positive integer
  • the OTUCn interface provides electrical interface processing at a rate of n*100 Gbit/s, and the OTUCn signal contains 20*n 5 Gbit/s time slots.
  • the frame structure of the OTUCn frame defined by the OTUCn signal is as shown in FIG. 1.
  • the OTUCn frame is composed of n OTU subframes, and each OTU subframe is 4 rows and 3824 columns.
  • FA OH Framework Alignment Overhead
  • OTU OH is the OTUCn overhead byte, which manages and monitors OTUCn as a signal, and provides network management functions at the optical channel transmission unit level.
  • Most of the overhead information in the OTUCn overhead is carried by the OTU OH of the first OTU subframe (OTU subframe #1), and the remaining small portion of the overhead information is carried by the remaining multiple OTU subframes.
  • the OTUCn frame is formed by adding FA OH and OTUCn overhead on the ODUCn (Optical Channel Data Unit-Cn) frame.
  • the ODUCn frame is composed of n ODU subframes, and each ODU subframe is 4 rows and 3824 columns.
  • the ODUCn frame is formed by adding an ODUCn overhead to the OPUCn (Optical Channel Payload Unit-Cn).
  • the OPUCn frame is composed of n OPU subframes, and each OPU subframe is 4 rows and 3810 columns.
  • Each OPU subframe includes 2 columns of overhead regions and 3808 columns of payload regions, and each OPU subframe includes 20 5 Gbit/s slots for carrying low-order services.
  • the serial OTUCn bit stream is transmitted through the optical module of the corresponding rate.
  • the OTUCn interface can provide an optical module with a rate of n*100 Gbit/s, and can adapt to an optical module with an integer rate of 100 Gbit/s.
  • optical modules such as 150 Gbit/s and 250 Gbit/s, which are not 100 Gbit/s integer multiple times, may exist in the network.
  • the OTUCn signal will not be able to be adapted.
  • the embodiments of the present invention provide a method for transmitting and receiving an OTN signal of an optical transport network, an OTN device, and a system, which can solve the problem that the rate of the OTN signal and the rate of the optical module are not adapted.
  • an embodiment of the present invention provides a method for transmitting an OTN signal of an optical transport network, including: acquiring, by an OTN device, a first OTN signal, determining a time slot to be deleted in the first OTN signal, and deleting the first OTN
  • the time slot to be deleted in the signal forms a second OTN signal; the second OTN signal is sent by the optical module, and the transmission rate of the second OTN signal is matched with the transmission rate of the optical module.
  • the second OTN signal is constructed based on the slot-based granularity, and the second OTN signal is configured by the first OTN signal, so that the transmission rate of the second OTN signal is matched with the transmission rate of the optical module.
  • the method further includes: when adding the first OTN signal a slot deletion identifier, where the slot deletion identifier indicates a time slot to be deleted in the first OTN signal.
  • the time slot to be deleted may be an unavailable time slot in the system, such as an idle time slot or a reserved time slot.
  • the time slot deletion identifier may be added to the overhead corresponding to the to-be-deleted time slot of the first OTN signal. Adding a time slot deletion identifier to the first OTN signal provides a basis for time slot deletion for constructing the second OTN signal.
  • the determining, in the first OTN signal, the time slot to be deleted includes: receiving, by the network management system, first time slot configuration information, where the first time slot configuration information indicates a time slot to be deleted in the first OTN signal; determining, according to the first time slot configuration information, The time slot to be deleted in the first OTN signal.
  • the determining the time slot to be deleted in the first OTN signal includes: determining, according to a preset policy, a time slot to be deleted in the first OTN signal.
  • the preset policy may be a free time slot or a reserved time slot set by the system.
  • the adding a time slot deletion to the first OTN signal After the identifying, the method includes: generating time slot deletion identifier information according to the to-be-deleted time slot in the first OTN signal, where the time slot deletion identifier information indicates a time slot to be deleted in the first OTN signal;
  • the slot deletion identification information is sent to the network management system.
  • the method further includes: receiving second time slot configuration information from the network management system, the second time slot configuration information indicating a time slot to be deleted in the first OTN signal; deleting the first OTN signal
  • the to-be-deleted time slot in the first OTN signal is deleted, and the second time slot configuration information and the time slot deletion identifier are verified.
  • the verification result is consistent, the to-be-deleted time slot in the first OTN signal is deleted.
  • the time slot deletion identifier and the second time slot configuration information are verified, and the accuracy of the time slot deletion can be ensured.
  • the first OTN signal is an OTUCn signal, an ODUCn signal, or an OPUCn signal.
  • the second OTN signal is an OTUCn-M signal, where C represents a Roman numeral 100, n is a positive integer, and M is the number of time slots in the OTUCn-M signal.
  • an embodiment of the present invention provides a method for receiving an OTN signal of an optical transport network, including: receiving, by an OTN device, a second OTN signal by using an optical module, and determining a time slot of the second OTN signal that has been deleted. Transmitting a transmission rate of the second OTN signal to a transmission rate of the optical module; filling a time slot in the time slot that has been deleted in the second OTN signal, and restoring the second OTN signal to the first An OTN signal; de-mapping the first OTN signal to obtain a client signal.
  • the second OTN signal is received by the optical module, and the transmission rate of the second OTN signal is matched with the transmission rate of the optical module.
  • the second OTN signal is restored to the second OTN signal, and the frame processing chip does not need to be redesigned, and the implementation complexity is low.
  • the determining, by the second OTN signal, the time slot that has been deleted specifically: acquiring the second OTN signal a time slot deletion identifier, the time slot deletion identifier indicating a time slot that has been deleted in the second OTN signal; determining, according to the time slot deletion identifier, a time slot that has been deleted in the second OTN signal.
  • the time slot that has been deleted may be an unavailable time slot in the system, such as an idle time slot or a reserved time slot.
  • the time slot deletion identifier may be carried in an overhead corresponding to the time slot in the second OTN signal that has been deleted.
  • the time slot in the time slot that has been deleted in the second OTN signal is filled
  • the method further includes: receiving second time slot configuration information from the network management system, the second time slot configuration information indicating a time slot that has been deleted in the second OTN signal; and the second OTN signal
  • the padding bit is deleted in the slot that has been deleted, and the second OTN signal is restored to the first OTN signal, which includes: verifying the second slot configuration information and the slot deletion identifier, when When the verification results are consistent, the bits are filled in the time slots that have been deleted in the second OTN signal. Before the bit is filled in the deleted time slot, the second time slot configuration information and the time slot deletion flag are verified, and the accuracy of data recovery can be ensured.
  • the determining that the second OTN signal has been deleted The time slot includes: receiving the first time slot configuration information from the network management system, where the first time slot configuration information indicates a time slot that has been deleted in the second OTN signal; configured according to the first time slot The information determines a time slot in the second OTN signal that has been deleted.
  • the first OTN signal is demapped and obtained
  • the client signal specifically includes: de-mapping a time slot other than the deleted time slot in the first OTN signal to acquire the client signal.
  • the second OTN signal is an OTUCn-M
  • the first OTN signal is any one of an OTUCn signal, an ODUCn signal, and an OPUCn signal, where C represents a Roman numeral 100, n is a positive integer, and M is a number of time slots in the OTUCn-M signal.
  • an embodiment of the present invention provides an optical transport network OTN device, where the OTN device includes: an acquiring module, configured to acquire a first OTN signal; and a determining module, configured to determine the first OTN a time slot to be deleted in the signal; a deleting module, configured to delete a time slot to be deleted in the first OTN signal to form a second OTN signal; and a sending module, configured to send the second OTN signal by using an optical module, where The transmission rate of the second OTN signal is adapted to the transmission rate of the optical module.
  • the OTN device further includes an adding module, where the adding module is configured to add a time slot deletion identifier to the first OTN signal.
  • the time slot deletion identifier indicates a time slot to be deleted in the first OTN signal.
  • the determining module is specifically configured to: receive the first time slot configuration from the network management system Information, the first time slot configuration information indicates a time slot to be deleted in the first OTN signal; and the time slot to be deleted in the first OTN signal is determined according to the first time slot configuration information.
  • the determining module is specifically configured to: according to a preset policy Determining a time slot to be deleted in the first OTN signal.
  • the OTN device further includes: a time slot deletion identifier information generating unit, where the time slot deletion identifier information generating unit is configured to be configured according to the first OTN signal And deleting the time slot to generate the time slot deletion identifier information, where the time slot deletion identifier information indicates the time slot to be deleted in the first OTN signal; and sending the time slot deletion identifier information to the network management system.
  • the OTN device further includes a verification module, where the verification a module, configured to receive second time slot configuration information from a network management system, where the second time slot configuration information indicates a time slot to be deleted in the first OTN signal; and the second time slot configuration information and location The time slot deletion identifier is checked, and when the verification result is consistent, the time slot to be deleted in the first OTN signal is deleted.
  • the first OTN signal is an OTUCn signal, an ODUCn signal, or an OPUCn signal.
  • the second OTN signal is an OTUCn-M signal, where C represents a Roman numeral 100, n is a positive integer, and M is the number of time slots in the OTUCn-M signal.
  • an embodiment of the present invention provides an OTN device that receives an optical transmission network signal, where the OTN device includes: a receiving module, configured to receive a second OTN signal by using an optical module, the second OTN The transmission rate of the signal is adapted to the transmission rate of the optical module; the determining module is configured to determine a time slot that has been deleted in the second OTN signal; and the recovery module is configured to be in the second OTN signal Filling a bit in the deleted time slot, restoring the second OTN signal to a first OTN signal; using a demapping module Decoding the first OTN signal to obtain a client signal.
  • the determining module is configured to: obtain a time slot deletion identifier, the time slot deletion identifier, in the second OTN signal And indicating a time slot that has been deleted in the second OTN signal; determining, according to the time slot deletion identifier, a time slot that has been deleted in the second OTN signal.
  • the OTN device further includes a verification module, where the verification module is configured to receive a second time slot configuration information of the network management system, the second time slot configuration information indicating a time slot that has been deleted in the second OTN signal; deleting the second time slot configuration information and the time slot deletion identifier A check is performed, and when the check results are consistent, the bits are filled in the time slots that have been deleted in the second OTN signal.
  • the verification module is configured to receive a second time slot configuration information of the network management system, the second time slot configuration information indicating a time slot that has been deleted in the second OTN signal; deleting the second time slot configuration information and the time slot deletion identifier A check is performed, and when the check results are consistent, the bits are filled in the time slots that have been deleted in the second OTN signal.
  • the determining module is specifically configured to: receive the network management system The first time slot configuration information, the first time slot configuration information indicating a time slot that has been deleted in the second OTN signal; determining, according to the first time slot configuration information, that the second OTN signal has been Deleted time slot.
  • the demapping module is specifically configured to: A time slot other than the deleted time slot is demapped in an OTN signal to acquire the client signal.
  • the second OTN signal is an OTUCn-M
  • the first OTN signal is any one of an OTUCn signal, an ODUCn signal, and an OPUCn signal, where C represents a Roman numeral 100, n is a positive integer, and M is a number of time slots in the OTUCn-M signal.
  • an embodiment of the present invention provides a system for transmitting and receiving an OTN signal of an optical transport network, including: a first OTN device and a second OTN device, where the first OTN device is configured to acquire a first OTN signal, Determining a time slot to be deleted in the first OTN signal; deleting a time slot to be deleted in the first OTN signal to form a second OTN signal; and transmitting the second OTN signal by using an optical module of the first OTN device
  • the transmission rate of the second OTN signal is matched with the transmission rate of the optical module of the first OTN device, and the second OTN device is configured to receive the second OTN by using the optical module of the second OTN device.
  • a signal determining a time slot of the second OTN signal that has been deleted, the transmission rate of the second OTN signal is adapted to a transmission rate of the optical module of the second OTN device; and the second OTN signal Filling a bit in the slot that has been deleted, restoring the second OTN signal to a first OTN signal; de-mapping the first OTN signal to obtain a client signal.
  • an embodiment of the present invention provides a system for transmitting and receiving an OTN signal of an optical transport network, including: a first OTN device, a second OTN device, and a third OTN device, where the third OTN device is a first OTN An intermediate node between the device and the second OTN device; the first OTN device is configured to acquire a first OTN signal, determine a time slot to be deleted in the first OTN signal, and send the first OTN signal to the a third OTN device, configured to receive a first OTN signal, delete a to-be-deleted time slot in the first OTN signal, form a second OTN signal, and pass the light of the third OTN device Mode Transmitting, by the block, the second OTN signal, the transmission rate of the second OTN signal is matched with the transmission rate of the optical module of the third OTN device; and the second OTN device is configured to pass the second OTN The optical module of the device receives the second OTN signal, determines a time slot that has been
  • an embodiment of the present invention provides an OTN device, including: a framing processing module, an ODSP chip, and an optical module; a framing processing module, configured to generate an OTN signal, and the ODSP chip is used to generate an OTN for the framing processing module.
  • the signal is modulated and processed; the optical module is used for photoelectric conversion of the OTN signal modulated by the ODSP chip and transmitted.
  • the OTN device can perform the method as described in the first aspect and any one of the possible implementations of the first aspect.
  • the eighth aspect of the present invention provides an OTN device, including: a framing processing module, an ODSP chip, and an optical module; an optical module for performing photoelectric conversion on the received OTN signal; and an ODSP chip for the optical module
  • the photoelectrically converted OTN signal is subjected to demodulation processing; the framing processing module is configured to demap the OTN signal after the ODSP chip is demodulated and processed.
  • the OTN is provided with a method as described in any one of the second aspect and the second aspect.
  • the technical solution provided by the embodiment of the present invention can be applied to an application scenario in which the transmission rate of the OTN signal is not adapted to the transmission rate of the optical module that transmits the OTN signal.
  • the time slot to be deleted may be deleted in the first OTN signal (eg, OTUCn signal) and configured as a second OTN signal (eg, OTUCn-M signal).
  • Time based The gap granularity constructs the second OTN signal with high flexibility.
  • the transmission rate of the second OTN signal is adapted to the transmission rate of the optical module. Therefore, the second OTN signal can be transmitted through the optical module.
  • the transmission rate of the second OTN signal is adapted to the transmission rate of the optical module, and therefore, the first OTN signal can be received by the optical module.
  • the bit is filled in a time slot in which the second OTN signal has been deleted, and the second OTN signal is restored to the first OTN signal.
  • the first OTN signal is demapped to obtain a client signal.
  • the second OTN signal is restored to the first OTN signal, and the frame processing chip does not need to be redesigned, and the implementation complexity is low.
  • the problem that the rate of the OTN signal and the rate of the optical module are not adapted is solved.
  • FIG. 1 is a schematic diagram of a frame structure of ODUCn and OTUCn in the prior art
  • FIG. 2 is a schematic diagram of a transmission process of a client signal in the prior art
  • FIG. 3 is a schematic structural diagram of a transmission device 300 according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another transmission device 400 according to an embodiment of the present invention.
  • FIG. 5 is a partial frame structure of an OTUCn-M frame according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of converting an OTUCn frame into an OTUCn-M frame according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of time slot available overhead according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of time slot available overhead according to an embodiment of the present invention.
  • FIG. 9 is an exemplary flowchart of a method for transmitting an OTN signal according to an embodiment of the present invention.
  • FIG. 10 is an exemplary flowchart of a method for receiving an OTN signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an OTN device 1100 according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an OTN device 1200 according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a system for transmitting and receiving an OTN signal according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a system for transmitting and receiving an OTN signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a transmission device 300 according to an embodiment of the present invention.
  • the transmitting device 300 may be a SWXC (Sub-Wavelength Cross Connector).
  • SWXC has a sub-wavelength crossing function, which can perform sub-wavelength exchange on different optical paths, that is, has an electric layer OTN small particle cross function.
  • the so-called crossover refers to the exchange of signals between different paths.
  • the SWXC can map and encapsulate the intersected client signals into OTU signals for transmission to the Fibre Channel.
  • SWXC can also terminate the signals of OPU, ODU, OTU, etc., that is, de-map the client signals from these signals, and then cross-transfer the client signals through the paths selected after the crossover.
  • the transmitting device 300 can include a framing processing module 31 and a light processing module 32.
  • the optical processing module 32 includes an ODSP (Optical Digital Signal Processor) chip 321 and an optical module 322.
  • the ODSP chip 321 can be a separate functional module or integrated into the optical module 322.
  • the framing processing module 31 may be a chip for implementing data framing.
  • the framing processing module 31 may map, encapsulate, and encapsulate the client signal into an OTN bearer signal (eg, an ODU), add an OTU overhead byte, and a FA overhead byte to form an OTU signal (eg, an OTU).
  • the framing processing module 31 can also demap the client signal from the OTU signal received by the optical module 322.
  • the ODSP chip 321 is used to perform modulation and demodulation processing of signals transmitted by the framing processing module 31 or signals received from the optical module 322, and related processing for enhancing line error tolerance capability and the like.
  • the optical module 322 is configured to perform photoelectric conversion. Specifically, the electrical signal may be converted into an optical signal before the OTU signal is transmitted, and the optical signal may be converted into an electrical signal after receiving the OTU signal.
  • FIG. 4 is a schematic structural diagram of another transmission device 400 according to an embodiment of the present invention.
  • the transmitting device 400 may be a WXC (Wavelength Cross Connect) or a 3R (Reamplification, Reshaping and Retiming).
  • WXC or 3R has a wavelength crossing function, can perform wavelength exchange on different optical paths, and can perform electric layer signal regeneration processing. That is to say, WXC or 3R terminates the received OTU signal, parses out the ODU signal, and encapsulates the ODU signal into the regenerated OTU signal for transmission.
  • the transmitting device 400 includes a framing processing module 41 and an optical processing module 42/43.
  • the transmitting device 400 can be an intermediate network element in the network, thus having one more optical processing module than the transmitting device 300.
  • the OTU signal can be received by the optical module 431 or 421. After the ODU signal is parsed by the framing processing module 41, the ODU signal is encapsulated into the reproduced OTU signal and transmitted through the optical module 421 or 431.
  • the functions of the ODSP chip 321 are similar and will not be described here.
  • ITU-T is developing an OTUCn (n is a positive integer) signal that can provide n*100 Gbit/s rates.
  • the OTUCn signal contains 20*n time slots, and the rate of each time slot is 5 Gbit/s.
  • there are currently optical modules in the network that cannot match the rate of the above OTN signals. In the OTN device shown in FIG. 3 or FIG.
  • the OTN signal generated by the framing processing module and the rate of the optical module are not adapted, or the OTN signal and the optical module receive the rate of the optical module are not adapted.
  • Case. For example, for OTUCn signals, 150 Gbit/s, Optical modules other than 100 Gbit/s integer rate of 250 Gbit/s cannot be adapted.
  • the embodiment of the invention solves the problem that the rate of the OTN signal and the rate of the optical module are not adapted, and can be applied to the adaptation of any OTN signal rate and rate to the optical module that does not match the transmission of the OTN signal.
  • an OTUCn signal having an integer multiple of 100 Gbit/s and an OTN signal of another rate (OTUk signal) are included.
  • Embodiments of the present invention can implement adaptation between an OTUCn signal (for example, an OTUC2 signal) and an optical module that is not 100 Gbit/s integer multiple (for example, 150 Gbit/s), and can also implement other rates of OTN signals (such as OTU4 signals) and rates. Adaptation between optical modules that do not match the transmission of the OTN signal (eg, 75 Gbit/s).
  • the OTUCn signal is mainly taken as an example for description.
  • the OTN device constructs an OTUCn-M (M is a positive integer and M is less than 20*n) frames by deleting the unavailable time slots in all slots of the OTUCn frame.
  • the unavailable time slot may be an idle time slot or a reserved time slot set by the system.
  • the time slot configuration information of the network management system may indicate which time slots are unavailable time slots, and the OTN device determines the unavailable time slots according to the time slot configuration information of the network management system. Alternatively, the OTN device determines which are unavailable time slots according to a preset policy, and reports information about which time slots are unavailable to the network management system.
  • the OTUCn-M frame contains M time slots, each of which has a rate of 5 Gbit/s, wherein M time slots are available time slots in the OTUCn frame.
  • M time slots are available time slots in the OTUCn frame.
  • FIG. 5 is a partial frame structure of an OTUCn-M frame according to an embodiment of the present invention.
  • An OTUC#A subframe can be 4 rows * 3824 columns.
  • the OTUCn-M frame may rearrange new frame structure patterns in units of OTUC#A subframes of the OTUCn frame, and select M available time slots. Specifically, there are 2.5 rows and 4,384 columns per 2.5 OTUC#A subframes, forming one super row *2390 columns.
  • 20 OTUC#A sub-frames constitute 8 super-rows * 2390 columns with 16 bytes per column.
  • the gray portion is the overhead area and the rest is the payload area.
  • the payload area of the OTUCn frame is sequentially divided into 20 slots, TS#A.1, TS#A.2, ...TS#A.20.
  • the area of TS#A.20 is marked with a hatching, indicating that TS#A.20 is the deleted time slot in the OTUCn frame constituting the OTUCn-M frame, and may be, for example, an unavailable time slot, that is, an OTUCn-M frame. Does not include the TS#A.20 time slot.
  • the OTUCn-M frame is composed of 8 super**(10*n+119*M) columns, where 10*n columns are the overhead areas in the OTUCn frames constituting the OTUCn-M frame, and 119*M columns constitute the OTUCn-M frames.
  • the available slot area in the OTUCn frame Only the frame structure of the OTUCn-M frame portion composed of 20 OTUC#A subframes is shown in FIG. 5. In fact, a complete OTUCn-M frame can be formed by 20*n OTUC#A subframes. In the OTUCn frame, (20*n-M) time slots are deleted, and the remaining M time slots constitute an OTUCn-M frame.
  • FIG. 6 is a schematic diagram of converting an OTUCn frame into an OTUCn-M frame according to an embodiment of the present invention.
  • the TS#1.2 time slot and the TS#1.3 time slot (20*nM) time slots in the OTUCn may be deleted, and the overhead area and the remaining time slots in the OTUCn frame constitute an OTUCn-M frame, where M represents The number of slots in the OTUCn-M frame.
  • the value indicates that the above embodiment is only a frame structure pattern of an OTUCn-M frame.
  • a division method, the division manner thereof is not limited to this.
  • other slot granularity may be used for partitioning.
  • the bit rate of the OTUCn-M frame is: (10n + 119 * M) / (10n + 119 * 20 * n) * The bit rate of the OTUCn frame constituting the OTUCn-M frame.
  • (10n+119*M) is the number of columns in the OTUCn-M frame
  • (10n+119*20*n) is the number of columns in the OTUCn frame constituting the OTUCn-M frame
  • the bit rate is (n ⁇ 239 / 226 ⁇ 99 532 800) kbit / s.
  • Table 1 The details are shown in Table 1:
  • FIG. 7 is a schematic structural diagram of time slot available overhead according to an embodiment of the present invention.
  • the available time slot and the unavailable time slot in the OTUCn frame are identified by the "Availability" bit, the available time slot is reserved according to the "Availability” bit, and the unavailable time slot is deleted, thereby constructing an OTUCn-M frame.
  • the MSI (Multiplex Structure Identifier) of the OPUCn frame can be used as a slot available overhead. Each slot is assigned a bit "Availability" field in the MSI to indicate whether the slot is available or not available.
  • OPUCn can be regarded as composed of n OPUC#A multiframes, and each OPUC#A multiframe consists of 20 OPUC#A subframes. There is a one-to-one correspondence between the OPUC#A subframe and the OTUC#A subframe. In the OTUCn-M frame structure shown in FIG. 5, 20 OPUC#A subframes are divided into 20 slots, which are TS#A.1, TS#A.2, ..., TS#A.20, respectively.
  • Each time slot corresponds to two PSI (Payload Structure Identifier) bytes, and is the first in PSI [A.2], PSI [A.4], ..., PSI [A.40].
  • the bits are TS#A.1, TS#A.2, ..., and TS#A.20 allocates a 1-bit time slot available overhead, specifically the "Availability" field.
  • FIG. 8 is a schematic structural diagram of time slot available overhead according to an embodiment of the present invention.
  • "Availability" indicates whether the time slot is available, for example, 1 means available, 0 means unavailable;
  • "Occupation” indicates whether the time slot is occupied, for example, 1 means occupied, 0 Indicates that it is not occupied.
  • the field “Occupation” is meaningful only when the time slot is available, that is, "Availability” is 1, and "Tributary Port#" indicates the branch port number corresponding to when the time slot is occupied.
  • FIG. 9 is an exemplary flowchart of a method for transmitting an OTN signal according to an embodiment of the present invention.
  • the method may be performed by any network element in the network, for example, NE1 (Network Element 1), and NE1 may be SWXC or WXC.
  • NE1 Network Element 1
  • NE1 may be SWXC or WXC.
  • an OTUC2 signal (at a rate of 200 Gbit/s) is converted into an OTUC2-30 signal (the rate is 150 Gbit/s) as an example.
  • the OTUCn mentioned in the above embodiment may be OTUC2, and the OTUCn-M may be OTUC2-30.
  • the method may include the following steps:
  • S901 Acquire a first OTN signal, and determine a time slot to be deleted in the first OTN signal.
  • the first OTN signal may be an OTUC2 signal, and the OTUC2 signal is common. There are 40 5Gbit/s time slots. In the transmitting device NE1, the OTUC2 signal is converted into an OTUC2-30 signal, and the time slot to be deleted is 10, that is, 30 5 Gbit/s time slots are reserved.
  • the first OTN signal may also be any one of an ODUC2 signal and an OPUC2 signal.
  • Determining the to-be-deleted time slot in the first OTN signal may include the following two methods:
  • the NE1 receives the first time slot configuration information from the network management system, where the first time slot configuration information indicates the time slot to be deleted in the first OTN signal; and the first OTN signal is determined according to the first time slot configuration information. Delete the time slot.
  • the NE1 determines the to-be-deleted time slot in the first OTN signal according to the preset policy, where the preset policy may be an idle time slot or a reserved time slot set by the system.
  • the time slot deletion identifier may be added to the first OTN signal, and the time slot deletion identifier is used to indicate the to-be-deleted time slot in the first OTN signal.
  • the slot deletion identifier indicates which 10 slots need to be deleted, or the slot deletion identifier indicates which 30 slots need not be deleted, or the slot deletion identifier indicates which 10 slots need to be deleted. And which 30 slots do not need to be deleted.
  • the slot deletion identifier can be implemented by one bit "Availability" of the slot available overhead shown in FIG. 7 or 8.
  • the slot deletion identifier may also adopt a plurality of bits, and the type of the slot deletion identifier is not limited thereto.
  • the NE1 may obtain the time slot configuration information from the external (for example, the network management system) as the basis for adding the time slot deletion identifier. Specifically, the NE1 receives the first time slot configuration information from the network management system, where the first time slot configuration information indicates the time slot to be deleted in the first OTN signal; and the NE1 configures the first OTN signal in the first time slot configuration information. A slot deletion identifier is added to the to-be-deleted slot in the medium.
  • the external for example, the network management system
  • the NE1 receives the first time slot configuration information from the network management system, where the first time slot configuration information indicates the time slot to be deleted in the first OTN signal; and the NE1 configures the first OTN signal in the first time slot configuration information.
  • a slot deletion identifier is added to the to-be-deleted slot in the medium.
  • the first time slot configuration information obtained by the NE1 from the network management system may be a TxMSI (Transmitted Multiplex Structure Identifier).
  • the TxMSI may include four types of configuration information, such as a slot number, a slot available indication, a slot occupancy indication, and a bearer service number.
  • the specific format of TxMSI is shown in Table 2:
  • the NE1 may select a time slot to be deleted according to a preset policy, add a time slot deletion identifier, and then report the time slot deletion identification information to the network management system to notify the network management system which time slots are to be deleted.
  • NE1 selects a time slot to be deleted according to a preset policy, it may select an idle time slot, or a time slot set by the system, or a reserved time slot.
  • the NE1 determines the to-be-deleted time slot in the first OTN signal, and adds a time slot deletion identifier to the to-be-deleted time slot in the first OTN signal. Then, the NE1 generates a time slot deletion according to the to-be-deleted time slot in the first OTN signal.
  • the identification information is sent to the network management system by the time slot deletion identification information.
  • S902 Delete the to-be-deleted time slot in the first OTN signal to form a second OTN signal.
  • the first OTN signal may be any one of an OTUC2 signal, an ODUC2 signal, and an OPUC2 signal.
  • the to-be-deleted time slot in the first OTN signal may be deleted based on any of the above signal types.
  • the second OTN signal may be an OTUC2-30 signal.
  • the first OTN signal is an ODUC2 signal
  • the second OTN signal may be an ODUC2-30 signal or an OTUC2-30 signal.
  • the first OTN signal is an OPUC2 signal
  • the second OTN signal may be any one of an OTUC2-30 signal, an ODUC2-30 signal, and an OPUC2-30 signal.
  • the number of times to be deleted may be 10, and the remaining time slots are 30.
  • the overhead in the second OTN signal may be all the overhead in the first OTN signal, and may also be a partial overhead in the first OTN signal.
  • the overhead in the first OTN signal may include an OTU overhead, an FA overhead, an ODU overhead, and the like, and may also include a slot available overhead.
  • the time slot available in the first OTN signal is an overhead, that is, “Availability” in the first OTN signal.
  • the to-be-deleted in the first OTN signal may be deleted according to the time slot configuration information obtained from the external (for example, the network management system).
  • the time slot is verified.
  • the NE1 receives the second time slot configuration information from the network management system, where the second time slot configuration information indicates the to-be-deleted time slot in the first OTN signal. .
  • the second time slot configuration information and the time slot deletion identifier are verified, and when the verification result is consistent, the to-be-deleted time slot in the first OTN signal is deleted.
  • a multiplexing structure indication mismatch alarm MSI_MISMATCH is generated and reported to the network management system.
  • the second time slot configuration information of the NE1 receiving network management system may be an ExMSI (Expected Multiplex Structure Identifier).
  • the ExMSI may include four types of configuration information, such as a slot number, an available indication status expected by the time slot, an occupied indication status expected by the time slot, and a branch service number that the time slot is expected to carry.
  • the specific format of ExMSI is shown in Table 3:
  • the time slot deletion identifier may not be added to the first OTN signal, directly according to the second time slot configuration information or the first time slot configuration information of the network management system. Delete the time slot to be deleted.
  • the NE1 does not add the time slot deletion identifier, but directly deletes the time slot to be deleted.
  • S903 Send the second OTN signal by using an optical module, where a transmission rate of the second OTN signal is matched with a transmission rate of the optical module.
  • the second OTN signal may be an OTUC2-30 signal.
  • the second OTN is an ODUC2-30 signal or an OPUC2-30 signal in S901
  • it may be converted into an OTUC2-30 signal and then transmitted through the optical module.
  • the frame structure of OTUC2-30 can be as shown in FIG. 5, and the rate is calculated according to Table 1 as 158.1074 Gbit/s, which is about 150 Gbit/s.
  • the transmission rate of the optical module in NE1 is 150 Gbit/s, which is compatible with the rate of the OTUC2-30 signal.
  • the NE1 acquires the first OTN signal, and determines the first OTN signal.
  • the time slot to be deleted is deleted; the time slot to be deleted in the first OTN signal is deleted to form a second OTN signal; and the second OTN signal is sent by the optical module, wherein the transmission rate of the second OTN signal is matched with the transmission rate of the optical module.
  • the embodiment of the present invention constructs the second OTN signal based on the slot granularity, and has high flexibility, and solves the problem that the rate of the OTN signal and the rate of the optical module are not adapted.
  • FIG. 10 is an exemplary flowchart of a method for receiving an OTN signal according to an embodiment of the present invention.
  • the method can be performed by any network element in the network, for example, NE2, and NE2 can be SWXC or WXC.
  • an OTUC2-30 signal (rate of 150 Gbit/s) is converted into an OTUC2 signal (the rate is 200 Gbit/s) as an example.
  • the OTUCn mentioned in the above embodiment may be OTUC2, and the OTUCn-M may be OTUC2-30.
  • the method may include the following steps:
  • S1001 Receive a second OTN signal by the optical module, determine a time slot that has been deleted in the second OTN signal, and a transmission rate of the second OTN signal is matched with a transmission rate of the optical module.
  • the second OTN signal may be an OTUC2-30 signal, and the OTUC2-30 signal shares 30 5 Gbit/s time slots.
  • the OTUC2-30 signal is restored to the OTUC2 signal, and the time slots that have been deleted in the OTUC2-30 signal are 10.
  • the transmission rate of the OTUC2-30 signal is 150 Gbit/s
  • the transmission rate of the optical module in the NE2 is 150 Gbit/s.
  • the transmission rate of the OTUC2-30 signal is adapted to the transmission rate of the optical module.
  • the second OTN signal may also be specifically any one of an ODUC2-30 signal and an OPUC2-30 signal.
  • a slot deletion identifier wherein the slot deletion identifier indicates a slot in the second OTN signal that has been deleted.
  • NE2 determines the time slot that has been deleted in the second OTN signal according to the time slot deletion identifier. Specifically, the slot deletion identifier determines which 10 slots have been deleted, or determines which 30 slots are not deleted by the slot deletion identifier, or determines which 10 slots have been deleted by the slot deletion identifier. And which 30 time slots have not been deleted.
  • the NE2 may determine, according to the time slot configuration information acquired from the external (for example, the network management system), the time slot that has been deleted in the second OTN signal. Specifically, the NE2 receives the first time slot configuration information from the network management system, where the first time slot configuration information indicates a time slot that has been deleted in the second OTN signal; and determines the second OTN signal according to the first time slot configuration information. The time slot that has been deleted.
  • the NE2 may further add a time slot deletion identifier to the second OTN signal according to the first time slot configuration information.
  • the first time slot configuration information that the NE2 obtains from the network management system may be a TxMSI.
  • the specific format is described in detail in the embodiment shown in FIG. 9, and details are not described herein again.
  • S1002 Fill a time slot in a time slot that has been deleted in the second OTN signal, and restore the second OTN signal to a first OTN signal.
  • the second OTN signal may be any one of an OTUC2-30 signal, an ODUC2-30 signal, and an OPUC2-30 signal.
  • the bits may be padded based on the deleted time slots of the second OTN signal of any of the above signal types.
  • the first OTN signal may be any one of an OTUC2 signal, an ODUC2 signal, and an OPUC2 signal.
  • the second OTN signal is an ODUC2-30 signal
  • the first OTN signal may be any one of an ODUC2 signal and an OPUC2 signal.
  • the second OTN signal is an OPUC2-30 signal
  • the first OTN signal may be an OPUC2 signal.
  • NE2 may fill 0 in the deleted time slot, so that the first OTN signal is restored to the second OTN signal.
  • the second time slot configuration information obtained from the outside for example, the network management system
  • the deleted time slot in the OTN signal is checked. Specifically, before filling the bit in the time slot that has been deleted in the second OTN signal, the NE2 receives the second time slot configuration information from the network management system, where the second time slot configuration information indicates that the second OTN signal has been The time slot that was deleted.
  • the second time slot configuration information and the time slot deletion identifier are checked, and when the check results are consistent, the time slots that have been deleted in the second OTN signal are filled with bits. When the check results are inconsistent, a multiplexing structure indication mismatch alarm MSI_MISMATCH is generated and reported to the network management system.
  • the second time slot configuration information obtained by the NE2 from the network management system may be ExMSI, and the specific format thereof has been described in detail in the embodiment shown in FIG. 9, and details are not described herein again.
  • S1003 Demap the first OTN signal to obtain a client signal.
  • the client signal may be demapped from the remaining time slots except the deleted time slot indicated by the time slot deletion identifier.
  • the remaining time slots other than the deleted time slot indicated by the time slot configuration information eg, TxMSI and/or ExMSI
  • TxMSI and/or ExMSI may be demapped to obtain a client signal. It is also possible to demap all time slots in the first OTN signal to obtain a guest User signal.
  • the second OTN signal may not be restored to the first OTN signal, and all time slots of the second OTN signal may be directly demapped to obtain a client signal.
  • the NE2 receives the second OTN signal through the optical module, and determines the time slot that has been deleted in the second OTN signal, where the transmission rate of the second OTN signal is matched with the transmission rate of the optical module;
  • the time slot in the time slot that has been deleted in the two OTN signals is used to restore the second OTN signal to the first OTN signal;
  • the first OTN signal is demapped to obtain the client signal.
  • the second OTN signal is restored to the first OTN signal, and the frame processing chip does not need to be redesigned, and the implementation complexity is low.
  • the problem that the rate of the OTN signal and the rate of the optical module are not adapted is solved.
  • FIG. 11 is a schematic structural diagram of an OTN device 1100 according to an embodiment of the present invention.
  • the OTN device 1100 can be a SWXC or a WXC.
  • the OTN device 1100 may include: an obtaining module 1101, a determining module 1102, a deleting module 1103, and a sending module 1104.
  • the OTN device 1100 can perform the method steps in the embodiment shown in FIG. 9 or FIG.
  • the acquiring module 1101 is configured to acquire a first OTN signal.
  • the determining module 1102 is configured to determine a time slot to be deleted in the first OTN signal.
  • the deleting module 1103 is configured to delete the to-be-deleted time slot in the first OTN signal to form a second OTN signal.
  • the sending module 1104 is configured to send the second OTN signal by using an optical module, where a transmission rate of the second OTN signal is matched with a transmission rate of the optical module.
  • the OTN device 1100 further includes an adding module, configured to add a time slot deletion identifier to the first OTN signal, where the time slot deletion identifier indicates a time slot to be deleted in the first OTN signal.
  • the OTN device 1100 further includes a verification module for receiving from a network management system The second time slot configuration information, wherein the second time slot configuration information indicates the time slot to be deleted in the first OTN signal; and the second time slot configuration information and the time slot deletion identifier are verified, when the verification result is consistent And deleting the to-be-deleted time slot in the first OTN signal.
  • a verification module for receiving from a network management system The second time slot configuration information, wherein the second time slot configuration information indicates the time slot to be deleted in the first OTN signal; and the second time slot configuration information and the time slot deletion identifier are verified, when the verification result is consistent And deleting the to-be-deleted time slot in the first OTN signal.
  • the OTN device acquires the first OTN signal, determines the to-be-deleted time slot in the first OTN signal, deletes the to-be-deleted time slot in the first OTN signal, and the remaining time slot and the first OTN in the first OUT signal.
  • the overhead in the signal constitutes a second OTN signal; the second OTN signal is transmitted through the optical module, wherein the transmission rate of the second OTN signal is adapted to the transmission rate of the optical module.
  • the embodiment of the present invention constructs the second OTN signal based on the slot granularity, and has high flexibility, and solves the problem that the rate of the OTN signal and the rate of the optical module are not adapted.
  • FIG. 12 is a schematic structural diagram of an OTN device 1200 according to an embodiment of the present invention.
  • the OTN device 1200 can be a SWXC or a WXC.
  • the OTN device 1200 can include a receiving module 1201, a determining module 1202, a restoring module 1203, and a demapping module 1204.
  • the OTN device 1100 can perform the method steps in the embodiment shown in FIG. 9 or FIG.
  • the receiving module 1201 is configured to receive, by the optical module, a second OTN signal, where a transmission rate of the second OTN signal is matched with a transmission rate of the optical module, and a determining module 1202, configured to determine the second a time slot that has been deleted in the OTN signal; a recovery module 1203, configured to fill a bit in the time slot that has been deleted in the second OTN signal, and restore the second OTN signal to the first OTN signal;
  • the mapping module 1204 is configured to demap the first OTN signal to obtain a client signal.
  • the determining module 1202 is specifically configured to acquire a time slot deletion identifier in an overhead of the second OTN signal, where the time slot deletion identifier indicates a time slot that has been deleted in the second OTN signal; and determine the second according to the time slot deletion identifier. The time slot in the OTN signal that has been deleted.
  • the OTN device further includes a verification module, configured to receive second time slot configuration information from the network management system, where the second time slot configuration information indicates a time slot in the second OTN signal that has been deleted;
  • the slot configuration information and the slot deletion identifier are checked, and when the check results are consistent, the bits that have been deleted in the second OTN signal are filled with bits.
  • the OTN device receives the second OTN signal through the optical module, and determines the time slot that has been deleted in the second OTN signal, where the transmission rate of the second OTN signal is matched with the transmission rate of the optical module;
  • the time slot in the second OTN signal that has been deleted is filled with bits, and the second OTN signal is restored to the first OTN signal; the first OTN signal is demapped to obtain the client signal.
  • the second OTN signal is restored to the first OTN signal, and the frame processing chip does not need to be redesigned, and the implementation complexity is low.
  • the problem that the rate of the OTN signal and the rate of the optical module are not adapted is solved.
  • FIG. 13 is a schematic structural diagram of a system for transmitting and receiving an OTN signal according to an embodiment of the present invention.
  • NE1 and NE2 can be SWXC.
  • the SWXC has a sub-wavelength crossing function, that is, an electrical layer OTN small particle crossing function, and its specific structure and function are described in detail in the embodiment shown in FIG.
  • both NE1 and NE2 are interconnected by optical modules with a transmission rate of 150 Gbit/s.
  • the OTUC2 signal of the rate of 200 Gbit/s is transmitted on the NE1.
  • the rate of the OTUC2 needs to be adjusted to 150 Gbit/s to adapt the optical module. rate. Specifically, OTUC2 is converted into an OTUC2-30 signal with a rate of 150 Gbit/s to adapt the transmission rate of the optical module.
  • the framing processing module and the optical processing module of NE1 and NE2 respectively have a transmitting end and a receiving end.
  • the mark (1) is used.
  • the transmitting end of the framing processing module of NE1 indicates the receiving end of the optical processing module of NE1 with the mark (2), the transmitting end of the optical processing module of NE2 with the mark (3), and the formation of the NE2 with the mark (4).
  • the receiving end of the frame processing module is the receiving end of the frame processing module.
  • the framing processing module of the NE1 determines the to-be-deleted in the OTUC2 signal according to the external time slot configuration information MI_TxMSI (Multiplex Identifier_Transmitted Multiplex Structure Identifier). Time slot.
  • MI_TxMSI Multiplex Identifier_Transmitted Multiplex Structure Identifier
  • the ODSP chip in the optical processing module of the NE1 performs the to-be-deleted time slot in the OTUC2 signal according to the external time slot configuration information MI_ExMSI (Multiplex Identifier_Expected Multiplex Structure Identifier). Verify and delete the time slot to be deleted to construct the OTUC2-30 signal.
  • the ODSP chip of the light processing module of NE2 determines the time slot that has been deleted in the OTUC2-30 signal based on the external time slot configuration information MI_TxMSI.
  • the framing processing module of NE2 checks the deleted time slot of the OTUC2-30 signal according to the external time slot configuration information MI_ExMSI, and fills the bit in the deleted time slot, The OTUC2-30 signal is restored to the OTUC2 signal.
  • S901 can be performed by the flag (1)
  • S902 and S903 can be performed by the flag (2).
  • "determining the time slot to be deleted in the first OTN signal" in S901 may be performed by the flag (1), and may also be performed by the flag (2).
  • S901 and S902 may be performed by the flag (1)
  • S903 may be performed by the flag (2).
  • S1001 can be performed by the flag (3), and S1002 and S1003 can be performed by the flag (4).
  • "determining the time slot in the second OTN signal that has been deleted" in S1001 It can be executed by the mark (3) and can also be performed by the mark (4).
  • S1001 and S1002 may be performed by the flag (3), and S1003 may be performed by the flag (4).
  • the to-be-deleted time slot in the OTUC2 signal is deleted, and the OTUC2 signal is converted into the OTUC2-30 signal; on the NE2, the time slot in the deleted time slot in the OTUC2-30 signal is filled.
  • the OTUC2-30 signal is restored to the OTUC2 signal, and the OTUC2 is demapped to obtain a client signal.
  • the OTUC2-30 signal is constructed based on the slot granularity, and the flexibility is high, which solves the problem that the rate of the OTN signal and the rate of the optical module are not adapted.
  • FIG. 14 is a schematic structural diagram of a system for transmitting and receiving an OTN signal according to an embodiment of the present invention.
  • NE1 and NE4 can be SWXC.
  • the SWXC has a sub-wavelength crossing function, that is, an electrical layer OTN small particle crossing function, and its specific structure and function are described in detail in the embodiment shown in FIG.
  • NE2 can be WXC
  • WXC has wavelength crossover function, only optical layer signal processing.
  • NE3 can be WXC or 3R, with wavelength crossover function, and can perform electrical layer signal regeneration processing.
  • NE3 can terminate the received OTUCn signal, parse out the ODUCn signal, and then encapsulate the ODUCn signal into the regenerated OTUCn signal for transmission.
  • the specific structure and function of the WXC or 3R are described in detail in the implementation shown in FIG.
  • NE1 and NE4 can be connected through NE2 and NE3.
  • An optical module with a transmission rate of 200 Gbit/s is interconnected between NE1 and NE2, and between NE3 and NE3.
  • An optical module with a transmission rate of 150 Gbit/s is interconnected between NE3 and NE4.
  • NE1 and NE4 are connected by NE3.
  • An optical module with a transmission rate of 200 Gbit/s is interconnected between NE1 and NE3, and a transmission rate between NE3 and NE4 is used.
  • the 150 Gbit/s optical modules are interconnected.
  • an OTUC2 signal with a rate of 200 Gbit/s is transmitted on the NE1, and an OTUC2 signal is transmitted between NE1, NE2, and NE3.
  • the OTUC2 signal is transmitted between NE1 and NE3.
  • the optical module connected between NE3 and NE4 has a rate of 150 Gbit/s.
  • the rate of the OTUC2 signal needs to be adjusted to 150 Gbit/s to match the rate of the optical module.
  • OTUC2 is converted into an OTUC2-30 signal with a rate of 150 Gbit/s to adapt the transmission rate of the optical module.
  • the execution steps at ) are similar, except that the steps performed at markers (1), (2) are implemented on NE1, NE3, respectively.
  • the time slot to be deleted in the OTUC2 signal is determined; on the intermediate node NE3, the time slot to be deleted determined by the NE1 is deleted, and the OTUC2 signal is converted into the OTUC2-30 signal; on the NE2, in the NE2, The OTUC2-30 signal has been deleted in the time slot, and the OTUC2-30 signal is restored to the OTUC2 signal, and the OTUC2 signal is demapped to obtain the client signal.
  • the OTUC2-30 signal is constructed based on the slot granularity, and the flexibility is high, which solves the problem that the rate of the OTN signal and the rate of the optical module are not adapted.
  • aspects of the present invention, or possible implementations of various aspects may be embodied as a system, method, or computer program product.
  • aspects of the invention, or possible implementations of various aspects may employ an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, etc.), or a combination of soft Forms of embodiments of hardware and hardware are collectively referred to herein as "circuits," "modules," or “systems.”
  • aspects of the invention, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.
  • the computer readable medium can be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium includes, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing, such as random access memory (RAM), read only memory (ROM), Erase programmable read-only memory (EPROM or flash memory), optical fiber, portable read-only memory (CD-ROM).
  • the processor in the computer reads the computer readable program code stored in the computer readable medium such that the processor is capable of performing the various functional steps specified in each step of the flowchart, or a combination of steps; A device that functions as specified in each block, or combination of blocks.
  • the computer readable program code can execute entirely on the user's computer, partly on the user's computer, as a separate software package, partly on the user's computer and partly on the remote computer, or entirely on the remote computer or server.
  • the functions noted in the various steps in the flowcharts or in the blocks in the block diagrams may not occur in the order noted. For example, two steps, or two blocks, shown in succession may be executed substantially concurrently or the blocks may be executed in the reverse order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明实施例公开了一种发送光传送网OTN信号的方法,包括:网元(OTN设备)获取第一OTN信号,确定所述第一OTN信号中待删除时隙;删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。通过以上技术方案,可以实现基于时隙粒度的OTN信号的构造,灵活性高,解决了OTN信号的速率和光模块的速率不适配的问题。

Description

一种发送和接收光传送网OTN信号的方法、OTN设备和系统 技术领域
本发明涉及通信领域,尤其涉及一种发送和接收光传送网OTN信号的方法、OTN设备和系统。
背景技术
当前OTN(Optical transport network,光传送网)作为传送网的核心技术,包括电层和光层的技术规范,具备丰富的OAM(Operation Administration and Maintenance,操作、管理与维护)、强大的TCM(Tandem Connection Monitoring,串联连接监视)能力和带外FEC(Forward Error Correction,前向错误纠正)能力,能够实现大容量业务的灵活调度和管理。
随着业务流量的增长和业务的多样化发展,相对于传统OTN提供的固定速率的接口,业界更倾向于提供多粒度等级速率的OTN接口。目前ITU-T(International Telecommunication Union-Telecommunication Sector,国际电信联盟-通信领域)标准组织针对超100Gbit/s OTN的应用,正在制定OTUCn(Optical Channel Transport Unit-Cn,光通道传输单元-Cn)(C为罗马数字100,n为正整数)接口。OTUCn接口提供了速率为n*100Gbit/s的电接口处理能力,OTUCn信号包含20*n个5Gbit/s时隙。
其中,OTUCn信号定义的OTUCn帧的帧结构如图1所示,OTUCn帧由n个OTU子帧组成,每个OTU子帧为4行3824列。其中,FA OH (Frame Alignment Overhead,帧对齐开销)为帧定位开销字节,提供帧同步定位的功能。OTU OH为OTUCn开销字节,将OTUCn作为一路信号进行管理和监控,提供光通道传输单元级别的网络管理功能。OTUCn开销中大部分开销信息通过第一路OTU子帧(OTU子帧#1)的OTU OH携带,其余小部分开销信息通过其余多路OTU子帧携带。OTUCn帧是在ODUCn(Optical Channel Data Unit-Cn,光通道数据单元-Cn)帧上添加FA OH以及OTUCn开销后形成的。ODUCn帧由n个ODU子帧组成,每个ODU子帧为4行3824列。ODUCn帧是在OPUCn(Optical Channel Payload Unit-Cn,光通道净荷单元-Cn)上添加ODUCn开销后形成。OPUCn帧由n个OPU子帧组成,每个OPU子帧为4行3810列。每个OPU子帧包含2列开销区和3808列净荷区,每个OPU子帧包含20个5Gbit/s时隙,用于承载低阶业务。在发送OTUCn帧之前,基于待传输的物理接口的类型对OTUCn帧的n个OTU子帧进行单字节或多字节间插处理,例如进行单字节或16字节间插处理,形成一路串行的OTUCn比特数据流,并通过相应速率的光模块发送。
现有技术中,由于OTUCn接口提供了n*100Gbit/s速率的电接口处理能力,能够适配100Gbit/s整数倍速率的光模块。事实上,在实际应用中,网络中会存在例如150Gbit/s、250Gbit/s等非100Gbit/s整数倍速率的光模块。对于非100Gbit/s整数倍速率的光模块,OTUCn信号将无法适配。例如,图2中,通过150Gbit/s速率的光模块发送或接收OTU4(100Gbit/s速率)信号时,存在带宽浪费的问题;通过150Gbit/s速率的光模块发送或接收OTUC2(200Gbit/s速率)信号时,存在无 法适配传送的问题。因此,在现有技术中,存在OTN信号的速率和光模块的速率不适配的问题。
发明内容
有鉴于此,本发明实施例提供一种发送和接收光传送网OTN信号的方法、OTN设备和系统,可以解决OTN信号的速率和光模块的速率不适配的问题。
第一方面,本发明实施例提供了一种发送光传送网OTN信号的方法,包括:OTN设备获取第一OTN信号,确定所述第一OTN信号中待删除时隙;删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。基于时隙的粒度构造第二OTN信号,灵活度高;通过第一OTN信号构造第二OTN信号,从而使得第二OTN信号的传输速率和光模块的传输速率相适配。
结合第一方面的实现方式,在第一方面第一种可能的实现方式中,所述确定所述第一OTN信号中待删除时隙之后,还包括:在所述第一OTN信号中添加时隙删除标识,所述时隙删除标识指示所述第一OTN信号中待删除时隙。其中,待删除时隙可以为系统中的不可用时隙,例如空闲时隙或预留时隙。具体地,可以在第一OTN信号的待删除时隙对应的开销中添加时隙删除标识。在第一OTN信号中添加时隙删除标识,为构造第二OTN信号提供了时隙删除的依据。
结合第一方面、或第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,所述确定所述第一OTN信号中待删除时隙, 具体包括:接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第一OTN信号中的待删除时隙;根据所述第一时隙配置信息确定所述第一OTN信号中待删除时隙。
结合第一方面、或第一方面第一种至第二种任一可能的实现方式,在第一方面第三种可能的实现方式中,所述确定所述第一OTN信号中待删除时隙,具体包括:根据预设的策略确定所述第一OTN信号中的待删除时隙。其中,预设的策略可以为系统设定的空闲时隙或预留时隙。
结合第一方面、或第一方面第一种至第三种任一可能的实现方式,在第一方面第四种可能的实现方式中,所述在所述第一OTN信号中添加时隙删除标识之后,包括:根据所述第一OTN信号中的待删除时隙生成时隙删除标识信息,所述时隙删除标识信息指示所述第一OTN信号中的待删除时隙;将所述时隙删除标识信息发送给网络管理系统。
结合第一方面、或第一方面第一种至第四种任一可能的实现方式,在第一方面第五种可能的实现方式中,所述删除所述第一OTN信号中的待删除时隙之前,还包括:接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第一OTN信号中的待删除时隙;所述删除所述第一OTN信号中的待删除时隙,具体包括:将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,删除所述第一OTN信号中的待删除时隙。在删除待删除时隙之前,将时隙删除标识和第二时隙配置信息进行校验,可以保证时隙删除的准确性。
结合第一方面、或第一方面第一种至第五种任一可能的实现方式,在第一方面第六种可能的实现方式中,第一OTN信号为OTUCn信号、ODUCn信号、OPUCn信号中任意一种,第二OTN信号为OTUCn-M信号,其中,C表示罗马数字100,n为正整数,M为OTUCn-M信号中时隙的个数。
第二方面,本发明实施例提供了一种接收光传送网OTN信号的方法,包括:OTN设备通过光模块接收第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述光模块的传输速率相适配;在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;将所述第一OTN信号进行解映射,获取客户信号。通过光模块接收第二OTN信号,第二OTN信号的传输速率与光模块的传输速率相适配。将第二OTN信号恢复为第二OTN信号,无需重新设计成帧处理芯片,实现复杂度低。
结合第二方面的实现方式,在第二方面第一种可能的实现方式中,所述确定所述第二OTN信号中已被删除的时隙,具体包括:在所述第二OTN信号中获取时隙删除标识,所述时隙删除标识指示所述第二OTN信号中已被删除的时隙;根据所述时隙删除标识确定所述第二OTN信号中已被删除的时隙。其中,已被删除的时隙可以为系统中的不可用时隙,例如空闲时隙或预留时隙。具体地,时隙删除标识可以携带在第二OTN信号中已被删除的时隙对应的开销中。通过时隙删除标识,可以确定哪些时隙为已被删除的时隙。
结合第二方面、或第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,所述在所述第二OTN信号中已被删除的时隙中填充比特位之前,还包括:接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第二OTN信号中已被删除的时隙;所述在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号,具体包括:将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,在所述第二OTN信号中已被删除的时隙中填充比特位。在已被删除的时隙中填充比特位之前,将第二时隙配置信息和时隙删除标志进行校验,可以保证数据恢复的准确性。
结合第二方面、或第二方面第一种至第二种任一可能的实现方式,在第二方面第三种可能的实现方式中,所述确定所述第二OTN信号中已被删除的时隙,具体包括:接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第二OTN信号中已被删除的时隙;根据所述第一时隙配置信息确定所述第二OTN信号中已被删除的时隙。
结合第二方面、或第二方面第一种至第三种任一可能的实现方式,在第二方面第四种可能的实现方式中,所述将所述第一OTN信号进行解映射,获取客户信号,具体包括:将所述第一OTN信号中除所述已被删除的时隙之外的时隙进行解映射,获取所述客户信号。
结合第二方面、或第二方面第一种至第四种任一可能的实现方式,在第二方面第五种可能的实现方式中,第二OTN信号为OTUCn-M信 号,第一OTN信号为OTUCn信号、ODUCn信号、OPUCn信号中任意一种,其中,C表示罗马数字100,n为正整数,M为OTUCn-M信号中时隙的个数。
第三方面,本发明实施例提供了一种光传送网OTN设备,其特征在于,所述OTN设备包括:获取模块,用于获取第一OTN信号;确定模块,用于确定所述第一OTN信号中待删除时隙;删除模块,用于删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;发送模块,用于通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。
结合第三方面的实现方式,在第三方面第一种可能的实现方式中,所述OTN设备还包括添加模块,所述添加模块,用于在所述第一OTN信号中添加时隙删除标识,所述时隙删除标识指示所述第一OTN信号中待删除时隙。
结合第三方面、或第三方面第一种可能的实现方式,在第三方面第二种可能的实现方式中,所述确定模块,具体用于:接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第一OTN信号中的待删除时隙;根据所述第一时隙配置信息确定所述第一OTN信号中待删除时隙。
结合第三方面、或第三方面第一种至第二种任一可能的实现方式,在第三方面第三种可能的实现方式中,所述确定模块,具体用于:根据预设的策略确定所述第一OTN信号中的待删除时隙。
结合第三方面、或第三方面第一种至第三种任一可能的实现方式, 在第三方面第四种可能的实现方式中,所述OTN设备还包括,时隙删除标识信息生成单元,所述时隙删除标识信息生成单元,用于根据所述第一OTN信号中的待删除时隙生成时隙删除标识信息,所述时隙删除标识信息指示所述第一OTN信号中的待删除时隙;将所述时隙删除标识信息发送给网络管理系统。
结合第三方面、或第三方面第一种至第四种任一可能的实现方式,在第三方面第五种可能的实现方式中,所述OTN设备还包括校验模块,所述校验模块,用于接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第一OTN信号中的待删除时隙;将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,删除所述第一OTN信号中的待删除时隙。
结合第三方面、或第三方面第一种至第五种任一可能的实现方式,在第三方面第六种可能的实现方式中,第一OTN信号为OTUCn信号、ODUCn信号、OPUCn信号中任意一种,第二OTN信号为OTUCn-M信号,其中,C表示罗马数字100,n为正整数,M为OTUCn-M信号中时隙的个数。
第四方面,本发明实施例提供了一种接收光传送网信号的OTN设备,其特征在于,所述OTN设备包括:接收模块,用于通过光模块接收第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配;确定模块,用于确定所述第二OTN信号中已被删除的时隙;恢复模块,用于在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;解映射模块,用 于将所述第一OTN信号进行解映射,获取客户信号。
结合第四方面的实现方式,在第四方面第一种可能的实现方式中,所述确定模块,具体用于:在所述第二OTN信号中获取时隙删除标识,所述时隙删除标识指示所述第二OTN信号中已被删除的时隙;根据所述时隙删除标识确定所述第二OTN信号中已被删除的时隙。
结合第四方面、或第四方面第一种可能的实现方式,在第四方面第二种可能的实现方式中,所述OTN设备还包括校验模块,所述校验模块,用于接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第二OTN信号中已被删除的时隙;将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,在所述第二OTN信号中已被删除的时隙中填充比特位。
结合第四方面、或第四方面第一种至第二种任一可能的实现方式,在第四方面第三种可能的实现方式中,所述确定模块,具体用于:接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第二OTN信号中已被删除的时隙;根据所述第一时隙配置信息确定所述第二OTN信号中已被删除的时隙。
结合第四方面、或第四方面第一种至第三种任一可能的实现方式,在第四方面第四种可能的实现方式中,所述解映射模块,具体用于:将所述第一OTN信号中除所述已被删除的时隙之外的时隙进行解映射,获取所述客户信号。
结合第四方面、或第四方面第一种至第四种任一可能的实现方式,在第四方面第五种可能的实现方式中,第二OTN信号为OTUCn-M信 号,第一OTN信号为OTUCn信号、ODUCn信号、OPUCn信号中任意一种,其中,C表示罗马数字100,n为正整数,M为OTUCn-M信号中时隙的个数。
第五方面,本发明实施例提供了一种发送和接收光传送网OTN信号的系统,包括:第一OTN设备和第二OTN设备,所述第一OTN设备,用于获取第一OTN信号,确定所述第一OTN信号中待删除时隙;删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;通过所述第一OTN设备的光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述第一OTN设备的光模块的传输速率相适配;所述第二OTN设备,用于通过所述第二OTN设备的光模块接收第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述第二OTN设备的光模块的传输速率相适配;在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;将所述第一OTN信号进行解映射,获取客户信号。
第六方面,本发明实施例提供了一种发送和接收光传送网OTN信号的系统,包括:第一OTN设备、第二OTN设备和第三OTN设备,所述第三OTN设备为第一OTN设备和第二OTN设备之间的中间节点;所述第一OTN设备,用于获取第一OTN信号,确定所述第一OTN信号中待删除时隙;将所述第一OTN信号发送给所述第三OTN设备;所述第三OTN设备,用于接收第一OTN信号,删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;通过所述第三OTN设备的光模 块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述第三OTN设备的光模块的传输速率相适配;所述第二OTN设备,用于通过所述第二OTN设备的光模块接收第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述第二OTN设备的光模块的传输速率相适配;在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;将所述第一OTN信号进行解映射,获取客户信号。
第七方面,本发明实施例提供了一种OTN设备,包括:成帧处理模块、ODSP芯片和光模块;成帧处理模块,用于产生OTN信号,ODSP芯片用于对成帧处理模块产生的OTN信号进行调制处理;光模块,用于对ODSP芯片调制处理后的OTN信号进行光电转换,并进行发送。该OTN设备可以执行如第一方面及第一方面的任意一种可能的实现方式所述的方法。
第八方面,本发明实施例提供了一种OTN设备,包括:成帧处理模块、ODSP芯片和光模块;光模块,用于对接收到的OTN信号进行光电转换;ODSP芯片,用于对光模块光电转换后的OTN信号进行解调处理;成帧处理模块,用于对ODSP芯片解调处理后的OTN信号进行解映射。该OTN设有可以执行如第二方面及第二方面的任意一种可能的实现方式所述的方法。
本发明实施例提供的技术方案可以应用于OTN信号的传输速率与传输该OTN信号的光模块的传输速率不适配的应用场景。
在发送设备中,可以在第一OTN信号(例如OTUCn信号)中删除待删除时隙,构造成第二OTN信号(例如OTUCn-M信号)。基于时 隙粒度构造第二OTN信号,灵活性高。第二OTN信号的传输速率和光模块的传输速率相适配,因此,可以通过光模块发送第二OTN信号。通过构造与光模块速率相适配的第二OTN信号,解决了OTN信号的速率和光模块的速率不适配的问题。
在接收设备中,第二OTN信号的传输速率和光模块的传输速率相适配,因此,可以通过光模块接收第一OTN信号。在第二OTN信号已被删除的时隙中填充为比特位,将第二OTN信号恢复为第一OTN信号。将第一OTN信号进行解映射,得到客户信号。在接收设备中,将第二OTN信号恢复为第一OTN信号,不需要重新设计成帧处理芯片,实现复杂度低。同时,解决了OTN信号的速率和光模块的速率不适配的问题。
附图说明
为了更清楚地说明本发明的实施例或现有技术中的技术方案,下面将对描述背景技术和实施例时所使用的附图作简单的介绍。显而易见地,下面附图中描述的仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图和描述得到其他的附图或实施例,而本发明旨在涵盖所有这些衍生的附图或实施例。
图1是现有技术中ODUCn和OTUCn的帧结构示意图;
图2是现有技术中客户信号的传输过程的示意图;
图3是本发明实施例提供的一种传送设备300的结构示意图;
图4是本发明实施例提供的另一种传送设备400的结构示意图;
图5是本发明实施例提供一种OTUCn-M帧的部分帧结构;
图6是本发明实施例提供的一种由OTUCn帧转换为OTUCn-M帧的示意图;
图7为本发明实施例提供的一种时隙可用开销的结构示意图;
图8是本发明实施例提供的一种时隙可用开销的结构示意图;
图9为本发明实施例提供的一种发送OTN信号的方法的示范性流程图;
图10为本发明实施例提供的一种接收OTN信号的方法的示范性流程图;
图11是本发明实施例提供的一种OTN设备1100的结构示意图;
图12是本发明实施例提供的一种OTN设备1200的结构示意图;
图13是本发明实施例提供的一种发送和接收OTN信号的系统结构示意图;
图14是本发明实施例提供的一种发送和接收OTN信号的系统结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图3是本发明实施例提供的一种传送设备300的结构示意图。如图3所示,该传送设备300可以为SWXC(Sub-Wavelength Cross Connector,子波长交叉连接器)。其中,SWXC具有子波长交叉功能,能够在不同的光路径上进行子波长交换,即具有电层OTN小颗粒交叉功能。所谓的交叉,指的是信号在不同的路径之间进行交换。具体地,SWXC可以将经过交叉后的客户信号映射、封装成OTU信号,发送到光纤通道中。或者,SWXC还可以对OPU、ODU、OTU等信号终结,即从这些信号中解映射出客户信号,然后将客户信号经过交叉,通过交叉后选择的路径进行传送。
传送设备300可以包括成帧处理模块31和光处理模块32。其中,光处理模块32包括ODSP(Optical Digital Signal Processor,光数字信号处理器)芯片321和光模块322。具体地,ODSP芯片321可以是一个独立的功能模块,也可以集成到光模块322中。具体地,成帧处理模块31可以是用于实现数据成帧的芯片。成帧处理模块31可以将客户信号映射、封装到OTN承载信号(例如ODU),添加OTU开销字节以及FA开销字节,构成OTU信号(例如OTU)。成帧处理模块31还可以从光模块322接收的OTU信号中解映射出客户信号。ODSP芯片321用于完成成帧处理模块31发送的信号或从光模块322接收的信号的调制和解调处理,以及用于增强线路误码容忍能力等相关处理。光模块322用于完成光电转换,具体地,在OTU信号发送之前可以将电信号转换成光信号,接收到OTU信号之后可以将光信号转换成电信号。
图4是本发明实施例提供的另一种传送设备400的结构示意图。如 图4所示,该传送设备400可以为WXC(波长交叉连接器,Wavelength Cross Connect)或3R(Reamplification,Reshaping and Retiming,再放大,再整形,再定时生成器)。其中,WXC或3R具有波长交叉功能,能够在不同的光路径上进行波长交换,并且能够进行电层信号再生处理。也就是说,WXC或3R将接收到的OTU信号终结,解析出ODU信号,将ODU信号封装到再生的OTU信号进行发送。
具体地,传送设备400包括成帧处理模块41、光处理模块42/43。传送设备400可以为网络中的中间网元,因此比传送设备300多了一个光处理模块。具体地,可以通过光模块431或421接收OTU信号,通过成帧处理模块41解析出ODU信号之后,将ODU信号封装到再生的OTU信号中,通过光模块421或431进行发送。传送设备400中的成帧处理模块41、光处理模块42/43、光模块421/431、ODSP芯片422/432和传送设备300中的成帧处理模块31、光处理模块32、光模块322、ODSP芯片321的功能类似,此处不再赘述。
传统的OTN信号包括四种固定速率的OTUk,其中k=l,2,3,4时分别对应2.5Gbit/s,10Gbit/s,40Gbit/s,100Gbit/s的速率级别。当前ITU-T正在制定OTUCn(n为正整数)信号,可以提供n*100Gbit/s速率。OTUCn信号中包含20*n个时隙,每个时隙的速率为5Gbit/s。但是,目前网络中会存在无法与上述OTN信号的速率匹配的光模块。在图3或图4所示的OTN设备中,现有技术中存在成帧处理模块产生的OTN信号和光模块的速率不适配的情况,或者光模块接收的OTN信号和光模块的速率不适配的情况。例如,针对OTUCn信号,150Gbit/s、 250Gbit/s等非100Gbit/s整数倍速率的光模块无法适配。本发明实施例解决OTN信号的速率和光模块的速率不适配的问题,可以适用于任意的OTN信号速率和速率为与传输该OTN信号不匹配的光模块的适配。例如,包括速率为100Gbit/s整数倍的OTUCn信号和其他速率的OTN信号(OTUk信号)。本发明实施例可以实现OTUCn信号(例如OTUC2信号)和非100Gbit/s整数倍(例如150Gbit/s)的光模块之间的适配,还可以实现其他速率的OTN信号(例如OTU4信号)和速率为与传输该OTN信号不匹配(例如为75Gbit/s)的光模块之间的适配。本发明实施例中主要以OTUCn信号为例进行说明。
本发明实施例中,OTN设备通过将OTUCn帧全部时隙中的不可用时隙删除,从而构造出OTUCn-M(M为正整数,并且M小于20*n)帧。其中,不可用时隙可以为空闲时隙或者系统设定的预留时隙等。可以通过网络管理系统的时隙配置信息指示哪些时隙为不可用时隙,OTN设备根据网络管理系统的时隙配置信息确定不可用时隙。或者,OTN设备根据预设的策略确定哪些为不可用时隙,并将哪些为不可用时隙的信息上报给网络管理系统。OTUCn-M帧中包含M个时隙,每个时隙的速率为5Gbit/s,其中M个时隙为OTUCn帧中的可用时隙。例如,OTN设备中,成帧处理模块生成的OTUC2信号通过速率为150Gbit/s的光模块发送时,需要将OTUC2转化为OTUC2-30。即将OTUC2的40个时隙中的10个不可用时隙删除,构造出速率为30个时隙*5Gbit/s的OTUC-30。
图5是本发明实施例提供一种OTUCn-M帧的部分帧结构。 OTUCn帧可以看作是n个OTUC#A(A=1~n)复帧构成的,每个OTUC#A复帧可以由20个OTUC#A子帧构成的。一个OTUC#A子帧可以为4行*3824列。OTUCn-M帧可以以OTUCn帧的OTUC#A子帧为单位重新排列出新的帧结构图案,从中选取出M个可用时隙构成。具体地,每2.5个OTUC#A子帧共2.5个4行*3824列,构成一个超行*2390列。这样,20个OTUC#A子帧构成8超行*2390列,每列16个字节。如图5中,灰色部分为开销区,其余部分为净荷区。以列为单位,将OTUCn帧的净荷区依次划分为20个时隙,TS#A.1、TS#A.2……TS#A.20。其中,TS#A.20的区域上标识了斜线阴影,表示TS#A.20是构成OTUCn-M帧的OTUCn帧中被删除的时隙,例如可以为不可用时隙,即OTUCn-M帧不包含TS#A.20时隙。OTUCn-M帧由8超行*(10*n+119*M)列组成,其中10*n列为构成OTUCn-M帧的OTUCn帧中的开销区,119*M列为构成OTUCn-M帧的OTUCn帧中的可用时隙区域。图5中仅示出了20个OTUC#A子帧构成的OTUCn-M帧部分的帧结构,实际上,可以由20*n个OTUC#A子帧构成一个完整的OTUCn-M帧。OTUCn帧中删除(20*n-M)个时隙,剩余M个时隙构成OTUCn-M帧。
图6是本发明实施例提供的一种由OTUCn帧转换为OTUCn-M帧的示意图。如图6所示,可以删除OTUCn中的TS#1.2时隙和TS#1.3时隙等(20*n-M)个时隙,OTUCn帧中开销区和剩余时隙构成OTUCn-M帧,其中M代表OTUCn-M帧中时隙的个数。
值的说明的是,上述实施例仅仅是OTUCn-M帧的帧结构图案的 一种划分方式,其划分方式不限于此。例如,除了以5Gbit/s时隙粒度进行划分外,还可以采用其他时隙粒度进行划分。
OTUCn-M帧的比特速率为:(10n+119*M)/(10n+119*20*n)*构成OTUCn-M帧的OTUCn帧的比特速率。其中,(10n+119*M)为OTUCn-M帧中的列数量,(10n+119*20*n)为构成OTUCn-M帧的OTUCn帧中的列数量,构成OTUCn-M帧的OTUCn帧的比特速率为(n×239/226×99 532 800)kbit/s。具体如表1所示:
表1 OTUCn-M帧比特速率
Figure PCTCN2015090613-appb-000001
图7为本发明实施例提供的一种时隙可用开销的结构示意图。通过“Availability”比特位标识OTUCn帧中的可用时隙和不可用时隙,根据“Availability”比特位将可用时隙保留,删除不可用时隙,从而构造出OTUCn-M帧。
具体地,OPUCn帧的MSI(Multiplex Structure Identifier,复用结构指示)可以作为时隙可用开销。MSI中为每个时隙分配一个比特的“Availability”字段,用于指示时隙可用或不可用。OPUCn可以看作是n个OPUC#A复帧组成,每个OPUC#A复帧由20个OPUC#A子帧构 成,即OPUC#A子帧和OTUC#A子帧存在一一对应的关系。在图5所示的OTUCn-M帧结构中,20个OPUC#A子帧划分为20个时隙,分别为TS#A.1,TS#A.2,……,TS#A.20。其中,每个时隙对应2个PSI(Payload Structure Identifier,净荷结构指示)字节,在PSI[A.2],PSI[A.4],……,PSI[A.40]的第一个比特分别为TS#A.1,TS#A.2,……,TS#A.20分配1比特的时隙可用开销,具体为“Availability”字段。
图8是本发明实施例提供的一种时隙可用开销的结构示意图。在每个时隙对应的PSI字段中,“Availability”指示该时隙是否可用,例如,1表示可用,0表示不可用;“Occupation”指示该时隙是否被占用,例如,1表示占用,0表示未占用。只有当该时隙可用时,也即“Availability”为1时,该字段“Occupation”才有意义;“Tributary Port#”指示该时隙被占用时所对应的支路端口号。
图9为本发明实施例提供的一种发送OTN信号的方法的示范性流程图。该方法可以由网络中任意一个网元执行,例如NE1(Network Element,网元1)执行,NE1具体可以为SWXC或WXC。本实施例中,以OTUC2信号(速率为200Gbit/s)转化为OTUC2-30信号(速率为150Gbit/s)为例进行说明。具体地,上述实施例所说的OTUCn可以为OTUC2,OTUCn-M可以为OTUC2-30。如图9所示,该方法可以包括如下步骤:
S901:获取第一OTN信号,确定所述第一OTN信号中待删除时隙。
本实施例中,第一OTN信号可以为OTUC2信号,OTUC2信号共 有40个5Gbit/s时隙。在发送设备NE1中,将OTUC2信号转化为OTUC2-30信号,待删除时隙为10个,即保留30个5Gbit/s时隙。第一OTN信号还可以为ODUC2信号、OPUC2信号中的任意一种。
确定第一OTN信号中的待删除时隙可以包括以下两种方法:
一、NE1接收来自网络管理系统的第一时隙配置信息,其中,第一时隙配置信息指示第一OTN信号中的待删除时隙;根据第一时隙配置信息确定第一OTN信号中待删除时隙。
二、NE1根据预设的策略确定第一OTN信号中的待删除时隙,其中,预设的策略可以为系统设定的空闲时隙或者预留时隙。
具体实施过程中,确定第一OTN信号中待删除时隙之后,可以在第一OTN信号中添加时隙删除标识,通过时隙删除标识指示第一OTN信号中待删除时隙。具体地,通过时隙删除标识指示哪10个时隙需要被删除,或者通过时隙删除标识指示哪30个时隙不需要被删除,或者通过时隙删除标识指示哪10个时隙需要被删除和哪30个时隙不需要被删除。
时隙删除标识可以通过图7或图8所示的时隙可用开销的一个比特位“Availability”来实现。“Availability”=0时表示时隙不可用,为待删除时隙。“Availability”=1时表示时隙可用,不需要被删除,为剩余时隙。还可以只标识待删除时隙或剩余时隙,例如只标识“Availability”=0,或者只标识“Availability”=1。还可以通过“Availability”=0标识剩余时隙,“Availability”=1标识待删除时隙。时隙删除标识还可以采用多个比特位,时隙删除标识的种类不限于此。
可选地,在第一OTN信号中添加时隙删除标识之前,NE1可以从外部(例如,网络管理系统)获得时隙配置信息作为添加时隙删除标识的依据。具体地,NE1接收来自网络管理系统的第一时隙配置信息,其中,第一时隙配置信息指示第一OTN信号中的待删除时隙;NE1在第一时隙配置信息指示第一OTN信号中的待删除时隙中添加时隙删除标识。
NE1从网络管理系统获得的第一时隙配置信息可以为TxMSI(Transmitted Multiplex Structure Identifier,发射复用结构指示)。TxMSI可以包括4种配置信息,例如时隙编号、时隙可用指示、时隙被占用指示、承载的支路业务编号。TxMSI的具体格式如表2所示:
表2 TxMSI格式
Figure PCTCN2015090613-appb-000002
可选地,NE1可以按照预设的策略选取出待删除时隙,添加时隙删除标识,然后将时隙删除标识信息上报给网络管理系统,通知网络管理系统哪些时隙为待删除时隙。NE1按照预设的策略选取待删除时隙时,可以选取空闲时隙,或者系统设定的时隙,或者是预留时隙。
NE1确定第一OTN信号中的待删除时隙,在第一OTN信号中的待删除时隙添加时隙删除标识;然后,NE1根据所述第一OTN信号中的待删除时隙生成时隙删除标识信息,将时隙删除标识信息发送给网络管理系统。
S902:删除所述第一OTN信号中的待删除时隙,形成第二OTN信号。
具体地,第一OTN信号可以为OTUC2信号、ODUC2信号、OPUC2信号中的任意一种。可以基于上述任意一种信号类型删除第一OTN信号中的待删除时隙。当第一OTN信号为OTUC2信号时,第二OTN信号可以为OTUC2-30信号。当第一OTN信号为ODUC2信号时,第二OTN信号可以为ODUC2-30信号或OTUC2-30信号。当第一OTN信号为OPUC2信号时,对应地,第二OTN信号可以为OTUC2-30信号、ODUC2-30信号、OPUC2-30信号中的任意一种。
本实施例中,待删除时隙可以为10个,剩余时隙为30个。第二OTN信号中的开销可以为第一OTN信号中的全部开销,还可以为第一OTN信号中的部分开销。例如,第一OTN信号中的开销可以包含OTU开销、FA开销、ODU开销等,还可以包含时隙可用开销。可选地,第一OTN信号中的时隙可用开销,即第一OTN信号中“Availability” =0和“Availability”=1的时隙删除标识可以不携带在第二OTN信号中。或者,“Availability”=0的时隙删除标识可以不携带在第二OTN信号中。
为了更准确地删除待删除时隙,在删除第一OTN信号中的待删除时隙之前,可以根据从外部(例如,网络管理系统)获得的时隙配置信息对第一OTN信号中的待删除时隙进行校验。具体地,在删除第一OTN信号中的待删除时隙之前,NE1接收来自网络管理系统的第二时隙配置信息,其中,第二时隙配置信息指示第一OTN信号中的待删除时隙。将第二时隙配置信息和时隙删除标识进行校验,当校验结果一致时,删除第一OTN信号中的待删除时隙。当校验结果不一致时,产生复用结构指示不匹配告警MSI_MISMATCH,上报给网络管理系统。
NE1接收网络管理系统的第二时隙配置信息可以为ExMSI(Expected Multiplex Structure Identifier,期望的复用结构指示)。ExMSI可以包括4种配置信息,例如时隙编号,时隙期望的可用指示状态,时隙期望的被占用指示状态,时隙期望承载的支路业务编号。ExMSI的具体格式如表3所示:
表3 ExMSI格式
Figure PCTCN2015090613-appb-000003
Figure PCTCN2015090613-appb-000004
可选地,删除第一OTN信号中的待删除时隙之前,还可以不在第一OTN信号中添加时隙删除标识,直接根据网络管理系统的第二时隙配置信息或第一时隙配置信息删除待删除时隙。或者,NE1按照预设的策略选取出待删除时隙后,并不添加时隙删除标识,而是直接将待删除时隙删除。
S903:通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。
具体地,第二OTN信号可以为OTUC2-30信号。第二OTN在S901中为ODUC2-30信号或OPUC2-30信号时,可以先转化为OTUC2-30信号,再通过光模块发送。OTUC2-30的帧结构可以采用如图5所示的方式,根据表1计算其速率为158.1074Gbit/s,约为150Gbit/s。NE1中光模块的传输速率为150Gbit/s,和OTUC2-30信号的速率相适配。
本发明实施例中,NE1获取第一OTN信号,确定第一OTN信号中 待删除时隙;删除第一OTN信号中的待删除时隙,形成第二OTN信号;通过光模块发送第二OTN信号,其中,第二OTN信号的传输速率和光模块的传输速率相适配。本发明实施例基于时隙粒度构造第二OTN信号,灵活性高,解决了OTN信号的速率和光模块的速率不适配的问题。
图10为本发明实施例提供的一种接收OTN信号的方法的示范性流程图。该方法可以由网络中任意一个网元执行,例如NE2,NE2可以为SWXC或WXC。本实施例中,以OTUC2-30信号(速率为150Gbit/s)转化为OTUC2信号(速率为200Gbit/s)为例进行说明。具体地,上述实施例所说的OTUCn可以为OTUC2,OTUCn-M可以为OTUC2-30。如图10所示,该方法可以包括如下步骤:
S1001:通过光模块接收第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。
本实施例中,第二OTN信号可以为OTUC2-30信号,OTUC2-30信号共用30个5Gbit/s时隙。在接收设备NE2中,将OTUC2-30信号恢复为OTUC2信号,OTUC2-30信号中已经被删除的时隙为10个。OTUC2-30信号的传输速率为150Gbit/s,NE2中光模块的传输速率为150Gbit/s。OTUC2-30信号的传输速率与光模块的传输速率相适配。第二OTN信号还可以具体为ODUC2-30信号、OPUC2-30信号中的任意一种。
具体实施过程中,可以从第二OTN信号的时隙可用开销中获取时 隙删除标识,其中,时隙删除标识指示第二OTN信号中已被删除的时隙。NE2根据时隙删除标识确定第二OTN信号中已被删除的时隙。具体地,通过时隙删除标识确定哪10个时隙已经被删除的,或者通过时隙删除标识确定哪30个时隙没有被删除,或者通过时隙删除标识确定哪10个时隙已经被删除和哪30个时隙没有被删除。
时隙删除标识在第二OTN信号开销中的表示方法在图9所示的实施例中已经作出详细的描述,此处不再赘述。
可选地,当第二OTN信号中没有携带时隙删除标识时,NE2可以根据从外部(例如网络管理系统)获取的时隙配置信息确定第二OTN信号中已被删除的时隙。具体地,NE2接收来自网络管理系统的第一时隙配置信息,其中,第一时隙配置信息指示第二OTN信号中已被删除的时隙;根据第一时隙配置信息确定第二OTN信号中已被删除的时隙。
进一步地,当第二OTN信号中没有携带时隙删除标识时,NE2还可以根据第一时隙配置信息在第二OTN信号中添加时隙删除标识。
NE2从网络管理系统获得的第一时隙配置信息可以为TxMSI,其具体格式在图9所示的实施例中已经作出详细的描述,此处不再赘述。
S1002:在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号。
具体地,第二OTN信号可以为OTUC2-30信号、ODUC2-30信号、OPUC2-30信号中的任意一种。可以基于上述任意一种信号类型的第二OTN信号的已被删除的时隙填充比特位。当第二OTN信号为 OTUC2-30信号时,第一OTN信号可以为OTUC2信号、ODUC2信号、OPUC2信号中的任意一种。当第二OTN信号为ODUC2-30信号时,第一OTN信号可以为ODUC2信号、OPUC2信号中的任意一种。当第二OTN信号为OPUC2-30信号时,第一OTN信号可以为OPUC2信号。
NE2在确定第一OTN信号中已被删除的时隙之后,可以在已被删除的时隙中填充0,使得第一OTN信号恢复为第二OTN信号。为了更准确地识别已被删除的时隙,在第二OTN信号中已被删除的时隙中填充比特位之前,可以根据从外部(例如,网络管理系统)获得的时隙配置信息对第二OTN信号中的已被删除的时隙进行校验。具体地,在第二OTN信号中已被删除的时隙中填充比特位之前,NE2接收来自网络管理系统的第二时隙配置信息,其中,第二时隙配置信息指示第二OTN信号中已被删除的时隙。将第二时隙配置信息和时隙删除标识进行校验,当校验结果一致时,在第二OTN信号中已被删除的时隙中填充比特位。当校验结果不一致时,产生复用结构指示不匹配告警MSI_MISMATCH,上报给网络管理系统。
NE2从网络管理系统获得的第二时隙配置信息可以为ExMSI,其具体格式在图9所示的实施例中已经作出详细的描述,此处不再赘述。
S1003:将所述第一OTN信号进行解映射,获取客户信号。
具体地,可以从时隙删除标识指示的已被删除的时隙之外的其余时隙中解映射出客户信号。或者,可用对时隙配置信息(例如TxMSI和/或ExMSI)指示的已被删除的时隙之外的其余时隙进行解映射,得到客户信号。还可以对第一OTN信号中所有的时隙解映射,获得客 户信号。
可选地,还可以不把第二OTN信号恢复为第一OTN信号,直接对第二OTN信号的所有时隙进行解映射,得到客户信号。
本发明实施例中,NE2通过光模块接收第二OTN信号,确定第二OTN信号中已被删除的时隙,其中,第二OTN信号的传输速率与光模块的传输速率相适配;在第二OTN信号中已被删除的时隙中填充比特位,将第二OTN信号恢复为第一OTN信号;将第一OTN信号进行解映射,获取客户信号。将第二OTN信号恢复为第一OTN信号,不需要重新设计成帧处理芯片,实现复杂度低。同时,解决了OTN信号的速率和光模块的速率不适配的问题。
图11是本发明实施例提供的一种OTN设备1100的结构示意图。该OTN设备1100可以为SWXC或WXC。如图11所示,该OTN设备1100可以包括:获取模块1101,确定模块1102,删除模块1103和发送模块1104。OTN设备1100可以执行图9或图10所示实施例中的方法步骤。
具体地,获取模块1101,用于获取第一OTN信号。确定模块1102,用于确定所述第一OTN信号中待删除时隙。删除模块1103,用于删除所述第一OTN信号中的待删除时隙,形成第二OTN信号。发送模块1104,用于通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。
OTN设备1100还包括添加模块,用于在第一OTN信号中添加时隙删除标识,其中,时隙删除标识指示第一OTN信号中待删除时隙。
所述OTN设备1100还包括校验模块,用于接收来自网络管理系统 的第二时隙配置信息,其中,第二时隙配置信息指示第一OTN信号中的待删除时隙;将第二时隙配置信息和时隙删除标识进行校验,当校验结果一致时,删除第一OTN信号中的待删除时隙。
本发明实施例中,OTN设备获取第一OTN信号,确定第一OTN信号中待删除时隙;删除第一OTN信号中的待删除时隙,第一OUT信号中的剩余时隙和第一OTN信号中的开销构成第二OTN信号;通过光模块发送第二OTN信号,其中,第二OTN信号的传输速率和光模块的传输速率相适配。本发明实施例基于时隙粒度构造第二OTN信号,灵活性高,解决了OTN信号的速率和光模块的速率不适配的问题。
图12是本发明实施例提供的一种OTN设备1200的结构示意图。该OTN设备1200可以为SWXC或WXC。如图12所示,该OTN设备1200可以包括:接收模块1201,确定模块1202,恢复模块1203,解映射模块1204。OTN设备1100可以执行图9或图10所示实施例中的方法步骤。
具体地,接收模块1201,用于通过光模块接收第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配;确定模块1202,用于确定所述第二OTN信号中已被删除的时隙;恢复模块1203,用于在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;解映射模块1204,用于将所述第一OTN信号进行解映射,获取客户信号。
所述确定模块1202,具体用于在第二OTN信号的开销中获取时隙删除标识,其中,时隙删除标识指示第二OTN信号中已被删除的时隙;根据时隙删除标识确定第二OTN信号中已被删除的时隙。
所述OTN设备还包括校验模块,用于接收来自网络管理系统的第二时隙配置信息,其中,第二时隙配置信息指示第二OTN信号中已被删除的时隙;将第二时隙配置信息和时隙删除标识进行校验,当校验结果一致时,在第二OTN信号中已被删除的时隙中填充比特位。
本发明实施例中,OTN设备通过光模块接收第二OTN信号,确定第二OTN信号中已被删除的时隙,其中,第二OTN信号的传输速率与光模块的传输速率相适配;在第二OTN信号中已被删除的时隙中填充比特位,将第二OTN信号恢复为第一OTN信号;将第一OTN信号进行解映射,获取客户信号。将第二OTN信号恢复为第一OTN信号,不需要重新设计成帧处理芯片,实现复杂度低。同时,解决了OTN信号的速率和光模块的速率不适配的问题。
图13是本发明实施例提供的一种发送和接收OTN信号的系统结构示意图。其中,NE1、NE2可以为SWXC。SWXC具备子波长交叉功能,即电层OTN小颗粒交叉功能,其具体结构和功能在图3所示的实施例中进行了详细的描述。在本实施例中,NE1和NE2之间没有中间节点,假设NE1和NE2均采用传输速率为150Gbit/s的光模块进行互联。本发明实施例中,在NE1上发送速率为200Gbit/s的OTUC2信号,因此通过速率为150Gbit/s的光模块进行发送时,需要将OTUC2的速率调整为150Gbit/s,以适配光模块的速率。具体地,将OTUC2转化为速率为150Gbit/s的OTUC2-30信号,以适配光模块的传输速率。
NE1和NE2的成帧处理模块、光处理模块分别具有发送端和接收端。当信号从标记(1)至标记(4)的方向传输时,以标记(1)表 示NE1的成帧处理模块的发送端,以标记(2)表示NE1的光处理模块的接收端,以标记(3)表示NE2的光处理模块的发送端,以标记(4)表示NE2的成帧处理模块的接收端。具体实施过程中,在标记(1)处,NE1的成帧处理模块根据外部的时隙配置信息MI_TxMSI(Multiplex Identifier_Transmitted Multiplex Structure Identifier,复用指示_发射复用结构指示)确定OTUC2信号中的待删除时隙。在标记(2)处,NE1的光处理模块中的ODSP芯片根据外部的时隙配置信息MI_ExMSI(Multiplex Identifier_Expected Multiplex Structure Identifier,复用指示_期望复用结构指示)对OTUC2信号中待删除时隙进行校验,并删除待删除时隙,构造OTUC2-30信号。在标记(3)处,NE2的光处理模块的ODSP芯片根据外部的时隙配置信息MI_TxMSI确定OTUC2-30信号中已被删除的时隙。在标记(4)处,NE2的成帧处理模块根据外部的时隙配置信息MI_ExMSI对OTUC2-30信号中已被删除的时隙进行校验,在已被删除的时隙中填充比特位,将OTUC2-30信号恢复为OTUC2信号。
图9和图10所示的实施例的方法步骤可以由该系统实现。
具体地,S901可以由标记(1)执行,S902和S903可以由标记(2)执行。具体地,S901中的“确定所述第一OTN信号中待删除时隙”可以由标记(1)执行,还可以由标记(2)执行。或者,S901和S902可以由标记(1)执行,S903可以由标记(2)执行。
S1001可以由标记(3)执行,S1002和S1003可以由标记(4)执行。具体地,S1001中的“确定所述第二OTN信号中已被删除的时隙” 可以由标记(3)执行,还可以由标记(4)执行。或者,S1001和S1002可以由标记(3)执行,S1003可以由标记(4)执行。
本发明实施例中,在NE1上,删除OTUC2信号中的待删除时隙,将OTUC2信号转化为OTUC2-30信号;在NE2上,在OTUC2-30信号中已被删除的时隙中填充比特位,将OTUC2-30信号恢复为OTUC2信号,对OTUC2进行解映射,得到客户信号。基于时隙粒度构造OTUC2-30信号,灵活性高,解决了OTN信号的速率和光模块的速率不适配的问题。
图14是本发明实施例提供的一种发送和接收OTN信号的系统结构示意图。其中,NE1、NE4可以为SWXC。SWXC具备子波长交叉功能,即电层OTN小颗粒交叉功能,其具体结构和功能在图3所示的实施例中进行了详细的描述。NE2可以为WXC,WXC具备波长交叉功能,仅进行光层信号处理。NE3可以为WXC或3R,具备波长交叉功能,同时可以进行电层信号再生处理。例如NE3可以将接收到的OTUCn信号终结,解析出ODUCn信号,然后将ODUCn信号封装到再生的OTUCn信号进行发送。WXC或3R的具体结构和功能在图4所示的实施中进行了详细的描述。NE1和NE4之间存在中间节点,例如NE2、NE3。NE1和NE4之间可以通过NE2和NE3相连。其中,NE1和NE2、NE2和NE3之间采用传输速率为200Gbit/s的光模块进行互联,NE3和NE4之间采用传输速率为150Gbit/s的光模块进行互联。或者NE1和NE4之间通过NE3相连。其中,NE1和NE3之间采用传输速率为200Gbit/s的光模块进行互联,NE3和NE4之间采用传输速率为 150Gbit/s的光模块进行互联。本发明实施例中,在NE1上发送速率为200Gbit/s的OTUC2信号,NE1、NE2、NE3之间传输OTUC2信号。或者,NE1、NE3之间传输OTUC2信号。OTUC2信号从NE3发送至NE4时,NE3和NE4之间互联的光模块速率为150Gbit/s。因此,需要将OTUC2信号的速率调整为150Gbit/s,以适配光模块的速率。具体地,将OTUC2转化为速率为150Gbit/s的OTUC2-30信号,以适配光模块的传输速率。
图9和图10所示的实施例的方法步骤可以由该系统实现。
具体地,在标记(1)、(2)、(3)、(4)处的执行步骤和图13所示的实施例中所标记的(1)、(2)、(3)、(4)处的执行步骤类似,只是标记(1)、(2)处执行的步骤分别在NE1、NE3上实现。
本发明实施例中,在NE1上,确定OTUC2信号中的待删除时隙;在中间节点NE3上,删除NE1确定的待删除时隙,将OTUC2信号转化为OTUC2-30信号;在NE2上,在OTUC2-30信号已被删除的时隙中填充比特位,将OTUC2-30信号恢复为OTUC2信号,对OTUC2信号进行解映射,得到客户信号。基于时隙粒度构造OTUC2-30信号,灵活性高,解决了OTN信号的速率和光模块的速率不适配的问题。
本领域普通技术人员将会理解,本发明的各个方面、或各个方面的可能实现方式可以被具体实施为系统、方法或者计算机程序产品。因此,本发明的各方面、或各个方面的可能实现方式可以采用完全硬件实施例、完全软件实施例(包括固件、驻留软件等等),或者组合软 件和硬件方面的实施例的形式,在这里都统称为“电路”、“模块”或者“系统”。此外,本发明的各方面、或各个方面的可能实现方式可以采用计算机程序产品的形式,计算机程序产品是指存储在计算机可读介质中的计算机可读程序代码。
计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质包含但不限于电子、磁性、光学、电磁、红外或半导体系统、设备或者装置,或者前述的任意适当组合,如随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、光纤、便携式只读存储器(CD-ROM)。
计算机中的处理器读取存储在计算机可读介质中的计算机可读程序代码,使得处理器能够执行在流程图中每个步骤、或各步骤的组合中规定的功能动作;生成实施在框图的每一块、或各块的组合中规定的功能动作的装置。
计算机可读程序代码可以完全在用户的计算机上执行、部分在用户的计算机上执行、作为单独的软件包、部分在用户的计算机上并且部分在远程计算机上,或者完全在远程计算机或者服务器上执行。也应该注意,在某些替代实施方案中,在流程图中各步骤、或框图中各块所注明的功能可能不按图中注明的顺序发生。例如,依赖于所涉及的功能,接连示出的两个步骤、或两个块实际上可能被大致同时执行,或者这些块有时候可能被以相反顺序执行。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和 电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims (24)

  1. 一种发送光传送网OTN信号的方法,其特征在于,所述方法包括:
    获取第一OTN信号,确定所述第一OTN信号中待删除时隙;
    删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;
    通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。
  2. 如权利要求1所述的方法,其特征在于,所述确定所述第一OTN信号中待删除时隙之后,还包括:
    在所述第一OTN信号中添加时隙删除标识,所述时隙删除标识指示所述第一OTN信号中待删除时隙。
  3. 如权利要求1或2所述的方法,其特征在于,所述确定所述第一OTN信号中待删除时隙,具体包括:
    接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第一OTN信号中的待删除时隙;
    根据所述第一时隙配置信息确定所述第一OTN信号中待删除时隙。
  4. 如权利要求1或2所述的方法,其特征在于,所述确定所述第一OTN信号中待删除时隙,具体包括:
    根据预设的策略确定所述第一OTN信号中的待删除时隙。
  5. 如权利要求4所述的方法,其特征在于,所述在所述第一OTN信号中添加时隙删除标识之后,包括:
    根据所述第一OTN信号中的待删除时隙生成时隙删除标识信息,所述时隙删除标识信息指示所述第一OTN信号中的待删除时隙;
    将所述时隙删除标识信息发送给网络管理系统。
  6. 如权利要求2-5任一所述的方法,其特征在于,所述删除所述第一OTN信号中的待删除时隙之前,还包括:
    接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第一OTN信号中的待删除时隙;
    所述删除所述第一OTN信号中的待删除时隙,具体包括:
    将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,删除所述第一OTN信号中的待删除时隙。
  7. 一种接收光传送网OTN信号的方法,其特征在于,所述方法包括:
    通过光模块接收第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述光模块的传输速率相适配;
    在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;
    将所述第一OTN信号进行解映射,获取客户信号。
  8. 如权利要求7所述的方法,其特征在于,所述确定所述第二OTN信号中已被删除的时隙,具体包括:
    在所述第二OTN信号中获取时隙删除标识,所述时隙删除标识指示所述第二OTN信号中已被删除的时隙;
    根据所述时隙删除标识确定所述第二OTN信号中已被删除的时隙。
  9. 如权利要求8所述的方法,其特征在于,所述在所述第二OTN信号中已被删除的时隙中填充比特位之前,还包括:
    接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第二OTN信号中已被删除的时隙;
    所述在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号,具体包括:
    将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,在所述第二OTN信号中已被删除的时隙中填充比特位。
  10. 如权利要求7所述的方法,其特征在于,所述确定所述第二OTN信号中已被删除的时隙,具体包括:
    接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第二OTN信号中已被删除的时隙;
    根据所述第一时隙配置信息确定所述第二OTN信号中已被删除的时隙。
  11. 如权利要求7-10任一所述的方法,其特征在于,所述将所述第一OTN信号进行解映射,获取客户信号,具体包括:
    将所述第一OTN信号中除所述已被删除的时隙之外的时隙进行解映射,获取所述客户信号。
  12. 一种光传送网OTN设备,其特征在于,所述OTN设备包括:
    获取模块,用于获取第一OTN信号;
    确定模块,用于确定所述第一OTN信号中待删除时隙;
    删除模块,用于删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;
    发送模块,用于通过光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配。
  13. 如权利要求12所述的OTN设备,其特征在于,所述OTN设备还包括添加模块,
    所述添加模块,用于在所述第一OTN信号中添加时隙删除标识,所述时隙删除标识指示所述第一OTN信号中待删除时隙。
  14. 如权利要求12或13所述的OTN设备,其特征在于,所述确定模块,具体用于:
    接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第一OTN信号中的待删除时隙;
    根据所述第一时隙配置信息确定所述第一OTN信号中待删除时隙。
  15. 如权利要求12或13所述的OTN设备,其特征在于,所述确定模块,具体用于:
    根据预设的策略确定所述第一OTN信号中的待删除时隙。
  16. 如权利要求15所述的OTN设备,其特征在于,所述OTN设备还包括,时隙删除标识信息生成单元,
    所述时隙删除标识信息生成单元,用于根据所述第一OTN信号中的待删除时隙生成时隙删除标识信息,所述时隙删除标识信息指示所 述第一OTN信号中的待删除时隙;
    将所述时隙删除标识信息发送给网络管理系统。
  17. 如权利要求13-16任一所述的OTN设备,其特征在于,所述OTN设备还包括校验模块,
    所述校验模块,用于接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第一OTN信号中的待删除时隙;
    将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,删除所述第一OTN信号中的待删除时隙。
  18. 一种接收光传送网信号的OTN设备,其特征在于,所述OTN设备包括:
    接收模块,用于通过光模块接收第二OTN信号,所述第二OTN信号的传输速率与所述光模块的传输速率相适配;
    确定模块,用于确定所述第二OTN信号中已被删除的时隙;
    恢复模块,用于在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;
    解映射模块,用于将所述第一OTN信号进行解映射,获取客户信号。
  19. 如权利要求18所述的OTN设备,其特征在于,所述确定模块,具体用于:
    在所述第二OTN信号中获取时隙删除标识,所述时隙删除标识指示所述第二OTN信号中已被删除的时隙;
    根据所述时隙删除标识确定所述第二OTN信号中已被删除的时 隙。
  20. 如权利要求19所述的OTN设备,其特征在于,所述OTN设备还包括校验模块,
    所述校验模块,用于接收来自网络管理系统的第二时隙配置信息,所述第二时隙配置信息指示所述第二OTN信号中已被删除的时隙;
    将所述第二时隙配置信息和所述时隙删除标识进行校验,当校验结果一致时,在所述第二OTN信号中已被删除的时隙中填充比特位。
  21. 如权利要求18所述的OTN设备,其特征在于,所述确定模块,具体用于:
    接收来自网络管理系统的第一时隙配置信息,所述第一时隙配置信息指示所述第二OTN信号中已被删除的时隙;
    根据所述第一时隙配置信息确定所述第二OTN信号中已被删除的时隙。
  22. 如权利要求18-21任一所述的OTN设备,其特征在于,所述解映射模块,具体用于:
    将所述第一OTN信号中除所述已被删除的时隙之外的时隙进行解映射,获取所述客户信号。
  23. 一种发送和接收光传送网OTN信号的系统,其特征在于,所述系统包括:第一OTN设备和第二OTN设备,
    所述第一OTN设备,用于获取第一OTN信号,确定所述第一OTN信号中待删除时隙;删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;通过所述第一OTN设备的光模块发送所述第二OTN信 号,所述第二OTN信号的传输速率与所述第一OTN设备的光模块的传输速率相适配;
    所述第二OTN设备,用于通过所述第二OTN设备的光模块接收第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述第二OTN设备的光模块的传输速率相适配;在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;将所述第一OTN信号进行解映射,获取客户信号。
  24. 一种发送和接收光传送网OTN信号的系统,其特征在于,所述系统包括:第一OTN设备、第二OTN设备和第三OTN设备,所述第三OTN设备为第一OTN设备和第二OTN设备之间的中间节点;
    所述第一OTN设备,用于获取第一OTN信号,确定所述第一OTN信号中待删除时隙;将所述第一OTN信号发送给所述第三OTN设备;
    所述第三OTN设备,用于接收所述第一OTN信号,删除所述第一OTN信号中的待删除时隙,形成第二OTN信号;通过所述第三OTN设备的光模块发送所述第二OTN信号,所述第二OTN信号的传输速率与所述第三OTN设备的光模块的传输速率相适配;
    所述第二OTN设备,用于通过所述第二OTN设备的光模块接收所述第二OTN信号,确定所述第二OTN信号中已被删除的时隙,所述第二OTN信号的传输速率与所述第二OTN设备的光模块的传输速率相适配;在所述第二OTN信号中已被删除的时隙中填充比特位,将所述第二OTN信号恢复为第一OTN信号;将所述第一OTN信号进行解映 射,获取客户信号。
PCT/CN2015/090613 2015-09-24 2015-09-24 一种发送和接收光传送网otn信号的方法、otn设备和系统 WO2017049546A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580082339.3A CN107925635A (zh) 2015-09-24 2015-09-24 一种发送和接收光传送网otn信号的方法、otn设备和系统
PCT/CN2015/090613 WO2017049546A1 (zh) 2015-09-24 2015-09-24 一种发送和接收光传送网otn信号的方法、otn设备和系统
US15/934,067 US10771178B2 (en) 2015-09-24 2018-03-23 Method for sending and receiving optical transport network (OTN) signal, OTN device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090613 WO2017049546A1 (zh) 2015-09-24 2015-09-24 一种发送和接收光传送网otn信号的方法、otn设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/934,067 Continuation US10771178B2 (en) 2015-09-24 2018-03-23 Method for sending and receiving optical transport network (OTN) signal, OTN device, and system

Publications (1)

Publication Number Publication Date
WO2017049546A1 true WO2017049546A1 (zh) 2017-03-30

Family

ID=58385641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090613 WO2017049546A1 (zh) 2015-09-24 2015-09-24 一种发送和接收光传送网otn信号的方法、otn设备和系统

Country Status (3)

Country Link
US (1) US10771178B2 (zh)
CN (1) CN107925635A (zh)
WO (1) WO2017049546A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411689A (zh) * 2020-03-17 2021-09-17 华为技术有限公司 一种数据帧的传送方法以及相关设备
US20210336762A1 (en) * 2019-01-22 2021-10-28 Huawei Technologies Co., Ltd. Communication method and optical module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013961A (zh) * 2007-02-09 2007-08-08 华为技术有限公司 通过光传送网络传送以太网数据的方法及系统及以太网数据发送及接收装置
CN101674218A (zh) * 2008-09-09 2010-03-17 华为技术有限公司 光传送网互通的方法和装置
CN101695144A (zh) * 2009-10-10 2010-04-14 中兴通讯股份有限公司 一种支持多业务接入和传输的方法及系统
CN101873517A (zh) * 2009-04-24 2010-10-27 华为技术有限公司 光传送网的信号传送方法、设备及通信系统
US8059685B2 (en) * 2006-12-26 2011-11-15 Ciena Corporation Methods and systems for carrying synchronization over Ethernet and optical transport network

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373847C (zh) * 2004-12-14 2008-03-05 华为技术有限公司 在光传送网中传输低速率业务信号的方法
US8155148B2 (en) * 2005-09-27 2012-04-10 Ciena Corporation Telecommunications transport methods and systems for the transparent mapping/demapping of client data signals
CN101499997B (zh) * 2008-01-29 2013-06-05 中兴通讯股份有限公司 一种多路低速业务复用及解复用装置及其方法
US8982775B2 (en) * 2010-11-02 2015-03-17 Infinera Corporation GMPLS signaling for networks having multiple multiplexing levels
BR112015001429A2 (pt) * 2012-07-26 2017-07-04 Ericsson Telefon Ab L M método e aparelho para transportar um sinal de cliente ao longo de uma rede óptica
US9647788B2 (en) * 2013-02-12 2017-05-09 Applied Micro Circuits Corporation Low latency multiplexing for optical transport networks
JP6323070B2 (ja) * 2014-03-03 2018-05-16 富士通株式会社 光受信装置、及び光受信方法
US10079641B1 (en) * 2014-04-01 2018-09-18 Sprint Spectrum, L.P. Systems and methods of transporting data over an optical transport network
US10116403B2 (en) * 2014-08-25 2018-10-30 Ciena Corporation OTN adaptation for support of subrate granularity and flexibility and for distribution across multiple modem engines
US9762349B1 (en) * 2015-09-21 2017-09-12 Cox Communications, Inc Hybrid multiplexing over passive optical networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059685B2 (en) * 2006-12-26 2011-11-15 Ciena Corporation Methods and systems for carrying synchronization over Ethernet and optical transport network
CN101013961A (zh) * 2007-02-09 2007-08-08 华为技术有限公司 通过光传送网络传送以太网数据的方法及系统及以太网数据发送及接收装置
CN101674218A (zh) * 2008-09-09 2010-03-17 华为技术有限公司 光传送网互通的方法和装置
CN101873517A (zh) * 2009-04-24 2010-10-27 华为技术有限公司 光传送网的信号传送方法、设备及通信系统
CN101695144A (zh) * 2009-10-10 2010-04-14 中兴通讯股份有限公司 一种支持多业务接入和传输的方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210336762A1 (en) * 2019-01-22 2021-10-28 Huawei Technologies Co., Ltd. Communication method and optical module
US11876884B2 (en) * 2019-01-22 2024-01-16 Huawei Technologies Co., Ltd. Communication method and optical module
CN113411689A (zh) * 2020-03-17 2021-09-17 华为技术有限公司 一种数据帧的传送方法以及相关设备
CN113411689B (zh) * 2020-03-17 2023-04-11 华为技术有限公司 一种数据帧的传送方法以及相关设备

Also Published As

Publication number Publication date
CN107925635A (zh) 2018-04-17
US10771178B2 (en) 2020-09-08
US20180212696A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US11595130B2 (en) Method and apparatus for transmitting and receiving client signal in optical transport network
US10771177B2 (en) Method for transmitting client signal in optical transport network, and optical transport device
CN113316037B (zh) 一种业务承载的方法、设备和系统
US11082199B2 (en) Data transmission method in optical network and optical network device
CN105122763B (zh) 以太网信号传送方法、调度方法及其装置和系统
WO2017201953A1 (zh) 一种客户业务处理的方法和设备
WO2019105010A1 (zh) 接口传输方法、装置及设备
WO2016045426A1 (zh) 光传输网的业务映射处理方法、装置及系统
US9264283B2 (en) Method of accommodating signals, frame generation apparatus, frame reception apparatus, and transmission system
WO2013189034A1 (zh) 一种分配光频谱带宽资源的方法及装置
WO2017121158A1 (zh) 处理弹性以太网信号的方法和装置
US20110318001A1 (en) Method and device for sending and receiving service data
US11962349B2 (en) Signal sending and receiving method, apparatus, and system
WO2019090696A1 (zh) 光传输单元信号的传输方法和装置
WO2019170064A1 (zh) 光网络中以太数据处理的方法、装置和系统
WO2017049546A1 (zh) 一种发送和接收光传送网otn信号的方法、otn设备和系统
WO2011150807A1 (zh) 带宽分配方法及实现带宽分配的设备
CN116264587A (zh) 一种数据传输的方法以及相关装置
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
JP5945244B2 (ja) 多重伝送システム及び多重伝送方法
JP6046598B2 (ja) 通信システム、フレームレート変換装置、及びフレームレート変換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904432

Country of ref document: EP

Kind code of ref document: A1