WO2017049464A1 - 一种信号解调方法及终端 - Google Patents

一种信号解调方法及终端 Download PDF

Info

Publication number
WO2017049464A1
WO2017049464A1 PCT/CN2015/090315 CN2015090315W WO2017049464A1 WO 2017049464 A1 WO2017049464 A1 WO 2017049464A1 CN 2015090315 W CN2015090315 W CN 2015090315W WO 2017049464 A1 WO2017049464 A1 WO 2017049464A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
variance
transmit signal
unknown
signal
Prior art date
Application number
PCT/CN2015/090315
Other languages
English (en)
French (fr)
Inventor
汪浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/090315 priority Critical patent/WO2017049464A1/zh
Priority to EP15904351.2A priority patent/EP3334110A4/en
Priority to CN201580082444.7A priority patent/CN107925642A/zh
Publication of WO2017049464A1 publication Critical patent/WO2017049464A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/067Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing soft decisions, i.e. decisions together with an estimate of reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal demodulation method and a terminal.
  • LTE Long Term Evolution
  • a user equipment may be interfered by a paired user in a cell or interfered by a neighboring cell, and these interferences will seriously degrade the performance of the terminal demodulation data channel.
  • the high density and heterogeneity of the base station is the evolution direction of the LTE network structure, which will bring more serious inter-frequency interference between multiple users and cells.
  • the Symbol Level Interference Cancellation (SLIC) demodulation algorithm has strong ability to suppress co-channel interference and has low implementation complexity, and can be widely applied to LTE communication systems.
  • FIG. 1 a schematic diagram of a method for demodulating a signal received by a terminal by using a SLIC demodulation algorithm is shown in FIG. 1.
  • the signal received by the terminal includes at least one layer of the first transmit signal and the interfering cell sent by the serving cell.
  • At least one layer of the second transmit signal the terminal estimates the channel matrix of the serving cell and the interfering cell according to the received signal, and autonomously estimates the modulation order, the transmission mode, the rank sum of the second transmit signal by using the channel matrix and the received signal by a classical estimation algorithm.
  • the embodiment of the invention provides a signal demodulation method and a terminal, which can improve the estimation accuracy of the existing SLIC demodulation mechanism and improve the demodulation performance.
  • a terminal including:
  • a probability set obtaining circuit configured to perform a first operation, where the first operation comprises respectively obtaining, according to the received signal and the channel parameter, a probability set corresponding to an unknown demodulation parameter of each layer of the second transmit signal, and the transmit signal corresponding to the received signal
  • a symbol level interference cancellation SLIC detection circuit coupled to the probability set acquisition circuit and configured to perform a second operation, the second operation comprising calculating a probability set corresponding to an unknown demodulation parameter of the second transmission signal of each layer, respectively At least one of a mean value of the second transmit signal of each layer and a variance of the second transmit signal of each layer and a variance of the second equivalent transmit signal of each layer, the second equivalent transmit signal being a pair
  • the second transmit signal is subjected to a precoded signal;
  • the SLIC is further configured to perform a third operation, the third operation comprising: a mean value of the second transmit signal according to each layer, and each of the layers Calculating, by at least one of a variance of the two transmitted signals and a variance of the second equivalent transmit signal of each layer, respectively calculating a log likelihood ratio LLR corresponding to each of the transmit signals of each layer;
  • a decoding circuit coupled to the SLIC detection circuit, for performing a fourth operation, the fourth operation comprising: decoding, according to an LLR corresponding to each of the first transmit signals in each of the transmit signals, to obtain the A transmitting signal.
  • the unknown demodulation parameter includes at least one of a modulation order, a data pilot power ratio, a transmission mode, a rank, and a precoding indication PMI.
  • the SLIC detection circuit further before performing the second operation Used to preset the number of iterations;
  • the SLIC detection circuit is further configured to: after performing the third operation:
  • the unknown demodulation parameter includes only the first type of unknown demodulation parameter
  • the SLIC detection circuit performs the second operation specifically for:
  • the unknown demodulation parameter includes only the second type of unknown demodulation parameter
  • the SLIC detection circuit performs the second operation specifically for:
  • the SLIC detection circuit when the unknown demodulation parameter includes the first type of unknown demodulation parameter and In the second type of unknown demodulation parameters, the SLIC detection circuit performs a second operation specifically for:
  • the first type of unknown demodulation parameter includes Modulation order and data pilot power ratio.
  • the second type of unknown demodulation parameter includes a transmission mode, a rank, and Precoding indicates PMI.
  • the SLIC detecting circuit is configured to calculate a jth point according to a probability set corresponding to the first type of unknown demodulation parameter of the second transmit signal of the jth layer when performing the second operation
  • the mean of the second transmit signal of the layer and the variance of the second transmit signal of the jth layer include:
  • Calculating the second transmit signal of the jth layer according to a preset criterion, a probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer, and the first set of mean values and the first set of variances The mean of the sum and the variance of the second transmitted signal of the jth layer.
  • the SLIC detecting circuit is configured to calculate a jth point according to a probability set corresponding to the second type of unknown demodulation parameter of the second transmit signal of the jth layer when performing the second operation
  • the variance of the second equivalent transmitted signal of the layer includes:
  • each of the plurality of values in the preset value set of the second type of unknown demodulation parameters of the second transmit signal of the jth layer a second variance of the second equivalent transmitted signal of the jth layer, and forming a second variance set;
  • the SLIC detection circuit is configured to obtain a pre-demodulation parameter of the second transmit signal of the j-th layer And determining, by each of the plurality of values in the set of values, a first mean of the second transmit signal of the jth layer and a first variance of the second transmit signal of the jth layer, respectively, and forming a first Used for: the mean set and the first variance set:
  • the SLIC detection circuit is configured by the second transmit signal according to the preset criterion and the jth layer A set of probability corresponding to a class of unknown demodulation parameters and the first set of mean values are used to calculate the mean value of the second transmitted signal of the jth layer:
  • E(x j ) represents the mean value of the second transmitted signal of the jth layer
  • m represents the value of the preset value set of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is a positive integer
  • t is a positive integer in the interval [1, m]
  • E t represents an element in the first mean set corresponding to the t-th value in the preset value set
  • p t represents an element in the probability set corresponding to the tth value in the preset value set.
  • the SLIC detection circuit is configured according to a preset criterion, a layer j a probability set corresponding to the first type of unknown demodulation parameters of the two transmitted signals and the first set of variances, when calculating the variance of the second transmitted signal of the jth layer, is used for:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the value of the preset value set of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the quantity, m is a positive integer
  • t is a positive integer within the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • P t represents an element in the probability set corresponding to the tth value in the preset value set.
  • the SLIC detection circuit is in the unknown according to the preset criterion
  • the second transmit signal of the jth layer Determining a probability set corresponding to the demodulation parameter and the first variance set, and calculating a variance of the second transmit signal of the jth layer is used for:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the value of the preset value set of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the quantity, m is a positive integer
  • t is a positive integer within the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • p t represents an element in the probability set corresponding to the t-th value in the preset value set
  • E t represents the first element corresponding to the t-th value in the preset value set
  • the element in the set of means, E(x j ) represents the mean of the second transmitted signal of the jth layer.
  • the SLIC detection circuit is configured to calculate the jth layer according to a preset criterion, a probability set corresponding to the second type of unknown demodulation parameters of the second transmit signal of the jth layer, and the second variance set.
  • the variance of the second equivalent transmitted signal is used to:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the preset value set of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the number of values, n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents the first variance set corresponding to the wth value in the preset value set
  • the element, p w represents an element in the probability set corresponding to the wth value in the preset value set.
  • the SLIC detection circuit is the second type of unknown solution of the second transmit signal according to the preset criterion and the jth layer And using the probability set corresponding to the parameter and the second variance set to calculate a variance of the second equivalent transmit signal of the jth layer for:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the preset value set of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the number of values, n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents an element in the second variance set corresponding to the wth value in the preset value set
  • p w represents an element in the probability set corresponding to the wth value in the preset value set
  • E t represents a jth layer corresponding to the wth value in the preset value set
  • the second mean value of the second equivalent transmitted signal, E(X j ) represents the mean of the second equivalent transmitted signal of the jth layer.
  • a signal demodulation method including:
  • Step 1 Obtain a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer according to the received signal and the channel parameter, where the transmit signal corresponding to the received signal includes the first transmit signal of the [1, S] layer sent by the serving cell. And a second transmit signal of the [S+1, L] layer sent by the interfering cell, where S and L are positive integers, and S is less than L, and the probability set is a preset of unknown demodulation parameters of the second transmit signal of each layer. The probability that each of the multiple values in the set of values corresponds to each other;
  • Step 2 calculating, according to the probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, the mean value of the second transmit signal of each layer, and the variance of each second transmit signal of each layer and each layer Determining at least one of variances of the second equivalent transmit signal, the second equivalent transmit signal being a signal pre-coded by the second transmit signal;
  • Step three calculating the emission of each layer according to at least one of the average of the second transmit signal of each layer and the variance of the second transmit signal of each layer and the variance of the second equivalent transmit signal of each layer Corresponding log likelihood ratio LLRs of the signals;
  • Step 4 Decode according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, to obtain the first transmit signal.
  • the unknown The demodulation parameters include at least one of a modulation order, a data pilot power ratio, a transmission mode, a rank, and a precoding indication PMI.
  • the preset number of iterations is further included;
  • the method further includes:
  • step two proceed to the next iteration and increment the number of iterations by one.
  • the unknown demodulation parameter includes only the first type of unknown demodulation parameter
  • the second step includes:
  • the unknown demodulation parameter includes only the second type of unknown demodulation parameter
  • the second step includes:
  • the second step when the unknown demodulation parameter includes the first type of unknown demodulation parameter and In the second type of unknown demodulation parameters, the second step includes:
  • the first type of unknown demodulation parameters includes a modulation order and a data pilot power ratio.
  • the second type of unknown demodulation parameters includes a transmission mode, a rank, and Precoding indicates PMI.
  • j is an interval [ a positive integer in S+1, L]
  • calculating a second transmit signal of the jth layer according to a probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer The mean of the mean and the variance of the second transmitted signal of the jth layer include:
  • Calculating the second transmit signal of the jth layer according to a preset criterion, a probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer, and the first set of mean values and the first set of variances The mean of the sum and the variance of the second transmitted signal of the jth layer.
  • j is an interval [ a positive integer in S+1, L]
  • calculating a second equivalent of the jth layer according to a probability set corresponding to the second type of unknown demodulation parameters of the second transmit signal of the jth layer The variance of the transmitted signal includes:
  • each of the plurality of values in the preset value set of the second type of unknown demodulation parameters of the second transmit signal of the jth layer a second variance of the second equivalent transmitted signal of the jth layer, and forming a second variance set;
  • the one-difference set includes:
  • the first type of unknown demodulation parameter of the second transmit signal of the jth layer according to the preset criterion Calculating a mean value of the second transmit signal of the jth layer, comprising: a corresponding probability set and the first mean set:
  • E(x j ) represents the mean value of the second transmitted signal of the jth layer
  • m represents the value of the preset value set of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is a positive integer
  • t is a positive integer in the interval [1, m]
  • E t represents an element in the first mean set corresponding to the t-th value in the preset value set
  • p t represents an element in the probability set corresponding to the tth value in the preset value set.
  • the first type of unknown demodulation parameter of the second transmit signal of the jth layer according to the preset criterion Calculating a variance of the second transmit signal of the jth layer, including a corresponding probability set and the first variance set, including:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the value of the preset value set of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the quantity, m is a positive integer
  • t is a positive integer within the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • P t represents an element in the probability set corresponding to the tth value in the preset value set.
  • the probability corresponding to the unknown demodulation parameter of the second transmit signal of the jth layer according to the preset criterion And the set and the first variance set, and calculating a variance of the second transmit signal of the jth layer includes:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the value of the preset value set of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the quantity, m is a positive integer
  • t is a positive integer within the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • P t represents an element in the probability set corresponding to the t-th value in the preset value set
  • E t represents the first element corresponding to the t-th value in the preset value set
  • the element in the set of means, E(x j ) represents the mean of the second transmitted signal of the jth layer.
  • the second type of unknown demodulation parameter of the second transmit signal of the jth layer according to the preset criterion Calculating a variance of the second equivalent transmit signal of the jth layer, comprising: a corresponding probability set and the second variance set:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the preset value set of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the number of values, n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents the first variance set corresponding to the wth value in the preset value set
  • the element, p w represents an element in the probability set corresponding to the wth value in the preset value set.
  • the second type of unknown demodulation parameter of the second transmit signal of the jth layer according to the preset criterion Calculating a variance of the second equivalent transmit signal of the jth layer, comprising: a corresponding probability set and the second variance set:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the preset value set of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer.
  • the number of values, n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents an element in the second variance set corresponding to the wth value in the preset value set
  • p w represents an element in the probability set corresponding to the wth value in the preset value set
  • E t represents a jth layer corresponding to the wth value in the preset value set
  • the second mean value of the second equivalent transmitted signal, E(X j ) represents the mean of the second equivalent transmitted signal of the jth layer.
  • the embodiment of the present invention provides a signal demodulation method and a terminal, respectively, according to the probability that each of the multiple values in the preset value set of the unknown demodulation parameter of the second transmit signal of each layer transmitted by the interfering cell Calculating at least one of a mean value of the second transmit signal of each layer, and a variance of the second transmit signal of each layer and a variance of the second equivalent transmit signal of each layer, and calculating an average value of the second transmit signal of each layer according to the calculation, And calculating an LLR of each layer of the transmitted signal according to at least one of a variance of the second transmit signal of each layer and a variance of the second equivalent transmit signal of each layer, thereby obtaining the LLR decoding corresponding to the first transmit signal of each layer sent by the serving cell.
  • the first transmitted signal Therefore, unlike the prior art, it is necessary to obtain the first transmission signal according to the estimated demodulation parameter decoding, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism and improving the demodulation performance.
  • FIG. 1 is a schematic flow chart of a signal demodulation method in the prior art
  • FIG. 2 is a schematic diagram of a basic architecture of an LTE communication system
  • FIG. 3 is a schematic diagram of a resource block according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a signal demodulation method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another signal demodulation method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of still another method for demodulating a signal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of an improved SLIC detection method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another signal demodulation method according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another signal demodulation method according to an embodiment of the present invention.
  • Orthogonal Frequency Division Multiplexing (OFDM) technology and Multiple-Input Multiple-Output (MIMO) technology are two key technologies of LTE communication systems.
  • LTE communication systems use OFDM technology to pass multiple
  • the basic network architecture of the transmit antenna and multiple receive antennas for signal transmission can be seen in Figure 2.
  • 010 may be a base station (or an access point, etc.)
  • 021-028 may be a terminal (or a mobile station, a remote station, a user equipment, etc.)
  • the base station 010 and the terminal 021-028 may include at least one antenna, usually multiple antennas.
  • the signal transmitted by each antenna can correspond to one layer.
  • the terminal can be a user equipment such as a mobile phone, an iPad, or a personal digital assistant.
  • the first transmit signal sent by the serving cell formed by the serving base station 010 of the terminal 021-028 and the second transmit signal sent by the interfering cell of the other base station may be as shown in FIG.
  • the resource block and the resource element (RE) included in the resource block are transmitted to any one of the terminals 021-028.
  • the signal received by the terminal may include multiple resource units, and the signals in any of the resource units may include a first transmit signal sent by the serving cell and a second transmit signal sent by the interfering cell. If the number of receiving antennas of the terminal is N (N is a positive integer), the expression of the signal in any resource unit can be expressed as:
  • the layer transmit signal may include the first to Sth layer first transmit signals sent by the serving cell and the S+1th to Lth layer second transmit signals sent by the interfering cell, where S and L are positive integers, and x k represents the kth
  • the layer transmits a signal, and x k may be a reference signal (Reference Signal, RS) sent by the serving cell or the interfering cell, or a data signal sent by the serving cell or the interfering cell;
  • H [h 1 ,...,h k ,..., h L ], representing the channel matrix, h k is an N-dimensional column vector, representing the channel matrix corresponding to the k-th layer transmitted signal in the L-layer transmitted signal;
  • B [b 1 , b k ,..., b L
  • the “transmitted signal” indicates a pre-coded transmit signal
  • the pre-coded transmit signal may be referred to as an equivalent transmit signal
  • the pre-coded first transmit signal may be referred to as a first, etc.
  • the effective transmission signal, the pre-coded second transmission signal may be referred to as a second equivalent transmission signal.
  • the i-th layer transmission signal x i transmitted by the serving cell in any resource unit is demodulated according to the signal demodulation method flow shown in FIG. 1 as an example, where i is a positive integer in the range [1, S].
  • the demodulation parameters of the layer 1 to layer S transmission signals of the first transmission signal are agreed with the serving cell (the base station of the serving cell).
  • the S+1th layer to the Lth layer transmit signal is the second transmit signal transmitted by the interfering cell, and thus the demodulation parameters of the S+1th to Lth layer transmit signals are unknown, and need to be estimated by a classical estimation algorithm. obtain.
  • the demodulation parameters therein may include a modulation order to describe the characteristics of the transmitted signal, a data pilot power ratio, a transmission mode, a rank, a PMI, and the like.
  • the modulation order may be used to describe the number of bits included in the symbol of the transmitted signal corresponding to the point on the constellation diagram when using modulation methods such as QPSK, 8PSK, 16QAM, 64QAM, etc.; the data pilot power ratio may be used to describe the resource.
  • the ratio of the data signal to the power of the pilot signal in the unit; the transmission mode can be used to describe the transmission mode of the transmitted signal, which can include TM1-TM9; the rank can be used to describe the data layer of the transmitted signal that the terminal can receive from the base station; PMI An index that can be used to indicate a precoding matrix codebook set.
  • the terminal performs SLIC detection in combination with the received signal, the channel matrix, and the estimated demodulation parameters.
  • the SLIC detection process is actually an iterative process of a preset number of times.
  • the iterative process may be specifically as follows:
  • Eliminating soft interference that is, canceling interference of other layers of the transmitted signal other than the transmitted signal of the i-th layer in the received signal, and obtaining the received signal of the i-th layer corresponding to the transmitted signal of the i-th layer, which can be expressed as:
  • y i represents the ith layer received signal corresponding to the ith layer transmit signal
  • y represents the received signal
  • h k represents the channel matrix corresponding to the kth layer transmit signal, which can be obtained by channel estimation
  • E(X k ) represents the kth
  • the mean value of the layer equivalent transmit signal k is a positive integer in the range [1, L]
  • k ⁇ i E(x k ) represents the mean of the kth layer transmit signal
  • b k represents the kth layer transmit
  • the terminal may obtain the precoding matrix B according to the demodulation parameters such as the estimated transmission mode, rank, PMI, etc., thereby obtaining b k .
  • the terminal may be in the constellation diagram according to the modulation mode corresponding to the modulation order of the agreed k-th layer transmission signal, and during the last iteration.
  • the terminal may obtain the first according to the estimation
  • the pre-coding vector or the pre-coding matrix b k corresponding to the obtained k-th layer transmission signal can be calculated and obtained.
  • the mean value b k E(x k ) of the kth layer equivalent emission signal can be calculated and obtained.
  • Eliminate residual interference that is, estimate the transmitted signal of the i-th layer according to the MMSE estimation criterion, and the estimated amount of the transmitted signal of the i-th layer can be expressed as:
  • the above matrix is superscripted with -1 for the inverse matrix of the matrix; H for the channel matrix, h i for the channel matrix corresponding to the ith layer transmitted signal; and V i for the variance matrix to be obtained when demodulating the ith layer of the transmitted signal. among them,
  • V i Bdiag(v 1 ,...,1,...,v k ,...,v L )B * (1-6a)
  • v k V(x k x k * ) represents the variance of the k- th layer transmission signal x k , and the variance v i of the i-th layer transmission signal is 1.
  • the demodulation parameters of the estimated second transmission signal can be calculated to obtain v k and B and B * , thereby obtaining V i .
  • the variance of the k-th layer equivalent emission signal It can be expressed as:
  • V i can be expressed as:
  • B can be determined according to the estimated demodulation parameter of the second transmission signal to determine b k , It can also be expressed as:
  • V i can be expressed as:
  • the k-th layer can be calculated according to the pre-coding vector or the pre-coding matrix b k corresponding to the obtained k-th layer transmission signal.
  • the variance of the equivalent transmitted signal can be known from the formula (1-7b) that, on the premise that the variance v k of the k-th layer transmitted signal is obtained, the k-th layer can be calculated according to the pre-coding vector or the pre-coding matrix b k corresponding to the obtained k-th layer transmission signal. The variance of the equivalent transmitted signal.
  • the variance of the transmitted signals of all layers can be set to a preset value of 1.
  • the terminal obtains the modulation mode corresponding to the modulation order of the k-th layer transmission signal on the constellation diagram, and obtains the last iteration.
  • the LLR of the kth layer transmitting signal calculates the variance v k of the kth layer transmitted signal during the iteration; if k is in the range of [S+1, L], the terminal can obtain the kth layer transmitting signal according to the estimation
  • the modulation order corresponds to the point of the modulation scheme on the constellation diagram, and the LLR of the k-th layer transmitted signal obtained during the last iteration, and the variance v k of the k-th layer transmitted signal during the iteration is calculated.
  • the estimated amount of the ith layer transmitted signal can be modeled as:
  • the superscript H represents the conjugate transposed matrix
  • x i represents the value of the point on the constellation corresponding to the transmitted signal of the i-th layer
  • ⁇ i represents the random variable of the Gaussian distribution, the mean is zero, and the variance is as follows:
  • the log likelihood ratio LLR of the ith layer emission signal can be calculated, and the expression of the LLR can be expressed as:
  • ⁇ i,q represents the LLR of the qth bit of the ith layer transmit signal, and is used to describe the possibility that the qth bit of the ith layer transmit signal is 0 or 1.
  • Step (1) and step (2) here are described by taking an example of calculating the LLR of any layer of the transmitted signal (the i-th layer transmitted signal), and all layer emissions can be calculated based on the above steps (1) and (2).
  • the LLRs corresponding to the signals respectively include LLRs corresponding to the k-th layer transmit signals, that is, ⁇ k,q .
  • step (3) determining whether the current number of iterations is greater than or equal to a preset number of thresholds, and if so, decoding according to the LLRs corresponding to the first transmit signals of all layers, thereby obtaining the first transmit signal; if not, increasing the number of iterations by one Proceed to step (1) to start the next iterative process, and then continue to calculate the LLRs corresponding to the signals transmitted by all layers in the next iteration according to steps (1) and (2).
  • the terminal since the terminal needs to demodulate parameters such as a modulation order, a data pilot power ratio, a transmission mode, a rank, and a PMI of the second transmission signal transmitted by the interfering cell according to the autonomous estimation, Obtaining a mean value and a variance of the second transmit signal of each layer, thereby calculating an LLR for obtaining a transmit signal of each layer, and further decoding to obtain a first transmit signal sent by the serving cell, and the accuracy of the terminal autonomously estimating the demodulation parameter is low, thereby
  • the SLIC demodulation algorithm has a poor ability to suppress co-channel interference, and the frame error rate is high, thereby reducing the demodulation performance of the terminal.
  • the signal demodulation method provided by the following embodiments of the present invention enables the terminal to take each of the multiple values of the preset value set of the demodulation parameters of the second transmit signal of each layer without estimating the demodulation parameters.
  • the values corresponding to the probability, the received signal, and the channel matrix are SLIC demodulated, thereby calculating the mean of the second transmitted signal of each layer, and the variance of the second transmitted signal of each layer and the variance of the second equivalent transmitted signal of each layer.
  • FIG. 4 For a flowchart of the signal demodulation method provided by the embodiment of the present invention, reference may be made to FIG. 4 . The following embodiments of the present invention will be described by taking an example of demodulating a first transmit signal sent by a serving cell in any resource unit.
  • an embodiment of the present invention provides a terminal 10, which may include:
  • the probability set obtaining circuit 11 may be configured to perform a first operation, where the first operation comprises respectively obtaining a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer according to the received signal and the channel parameter, and the transmit signal corresponding to the received signal includes the service.
  • the probability set is a probability corresponding to each of the plurality of values in the preset value set of the unknown demodulation parameter of the second transmit signal of each layer.
  • the channel parameters herein may include a channel matrix corresponding to each layer of transmitted signals.
  • the demodulation parameters therein may include a modulation order, a data pilot power ratio, a transmission mode, a rank, a PMI, and the like.
  • the demodulation parameter of the first layer to the S layer first transmission signal sent by the serving cell is agreed by the terminal and the serving cell, and thus is known; the S+1th to the Lth transmitted by the interfering cell
  • the demodulation parameters of the second transmit signal of the layer are unknown and can be estimated using the prior art.
  • the unknown demodulation parameter in the embodiment of the present invention is at least one of a modulation order, a data pilot power ratio, a transmission mode, a rank, a PMI, and the like.
  • the symbol level interference cancellation SLIC detection circuit 12 may be coupled to the probability set acquisition circuit and configured to perform a second operation, the second operation comprising calculating each layer according to a probability set corresponding to the unknown demodulation parameter of each layer of the second transmission signal At least one of a mean value of the two transmitted signals and a variance of the second transmitted signal of each layer and a variance of the second equivalent transmitted signal of each layer, the second equivalent transmitted signal being a precoded signal of the second transmitted signal;
  • the SLIC may be further configured to perform a third operation comprising at least one of a mean value of the second transmit signal of each layer, and a variance of the second transmit signal of each layer and a variance of the second equivalent transmit signal of each layer Calculate the log likelihood ratio LLR corresponding to each layer of the transmitted signals.
  • the decoding circuit 13 may be coupled to the SLIC detection circuit for performing a fourth operation, including decoding the LLR corresponding to the first transmission signal of each layer in the transmission signal to obtain the first transmission signal.
  • the terminal 10 herein may be a mobile station, a remote station, or the like that receives signals from the base station in the network system, and may be, for example, a user equipment such as a mobile phone, an iPad, or a personal digital assistant.
  • the demodulation parameter here is a parameter describing the characteristics of the signal in the SLIC demodulation process, and may include a modulation order, a data pilot power ratio, a transmission mode, a rank, a PMI, and the like.
  • unknown The demodulation parameters may include at least one of a modulation order, a data pilot power ratio, a transmission mode, a rank, and a precoding indication PMI.
  • the terminal 10 calculates the mean value of the second transmit signal of the layer and the second transmit signal of the layer according to the probability set corresponding to the unknown demodulation parameter of the second transmit signal of the layer. At least one of a variance and a variance of a second equivalent transmitted signal of the layer to facilitate obtaining a mean value of the second transmitted signal of the layer, a variance of the second transmitted signal of the layer, and a second equivalent transmit signal of the layer obtained according to the calculation At least one of the variances is calculated by calculating the LLR of each layer of the transmitted signal, thereby decoding to obtain the first transmitted signal.
  • the terminal 10 may calculate each layer by using a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer without estimating the specific value of the unknown demodulation parameter of the second transmit signal of each layer. At least one of a mean value of the second transmitted signal and a variance of the second transmitted signal of each layer and a variance of the second equivalent transmitted signal of each layer, thereby demodulating the obtained first transmitted signal, unlike the prior art, Calculating the mean and variance of the second transmission of each layer according to the estimated demodulation parameters, thereby calculating the LLR of each layer of the transmitted signal, and decoding to obtain the first transmitted signal, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism It can effectively suppress co-channel interference, reduce the frame error rate, and improve the demodulation performance.
  • the above unknown demodulation parameters may include a first type of unknown demodulation parameters and a second type of unknown demodulation parameters.
  • the first type of unknown demodulation parameters may include a modulation order, a data pilot power ratio, etc.
  • the second type of unknown demodulation parameters may include a transmission modulus, a rank, a PMI, and the like.
  • the different values of the second type of unknown demodulation parameters affect the precoding matrix B.
  • the SLIC detection circuit 12 performs the second operation, which may be specifically used for:
  • the SLIC detection circuit 12 performs the second operation, which may be specifically used for:
  • the unknown demodulation parameters include the first type of unknown demodulation parameters and the second type of unknown demodulation parameters
  • the SLIC detection circuit 12 performs the second operation, it may be specifically used for:
  • the variance set corresponding to the second type of unknown demodulation parameters and the variance of the second transmitted signal of each layer are used to calculate the variance of the second equivalent transmitted signal of each layer.
  • the probability set corresponding to the unknown demodulation parameter, the variance of the second transmission signal of the jth layer and the variance of the second transmission signal of the jth layer may include:
  • j is a positive integer within the interval [S+1, L]
  • the SLIC detection circuit 12 is used for the second type of unknown solution according to the second transmission signal of the jth layer when performing the second operation.
  • the probability set corresponding to the parameter is adjusted, and calculating the variance of the second equivalent transmit signal of the jth layer may include:
  • the SLIC detecting circuit 12 obtains the first of the j-th layer second transmitting signals corresponding to each of the plurality of values in the preset value set of the unknown demodulation parameter of the second transmission signal of the j-th layer.
  • the mean and the first variance of the j-th layer second transmitted signal, and forming the first mean set and the first set of variances, can be used for:
  • the LLR calculates a first mean value and a first value of the jth layer second transmit signal corresponding to each of the plurality of values in the preset value set of the first type of unknown demodulation parameters of the second transmit signal of the jth layer
  • the first variance of the second transmitted signal of the j layer and forming a first set of mean values and a first set of variances.
  • the SLIC detection circuit 12 may calculate the mean value of the second transmission signal of the jth layer according to the preset criterion, the probability set corresponding to the first type of unknown demodulation parameters of the jth second transmission signal, and the first mean set. Used for:
  • E(x j ) represents the mean value of the second transmitted signal of the jth layer
  • m represents the number of values in the preset set of values of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is A positive integer
  • t is a positive integer in the interval [1, m]
  • E t represents an element in the first mean set corresponding to the t-th value in the preset value set
  • p t represents a preset value set The element in the probability set corresponding to the tth value.
  • the SLIC detection circuit 12 can be used to calculate the variance of the j-th layer second transmission signal according to the preset criterion, the probability set corresponding to the first type of unknown demodulation parameters of the j-th layer second transmission signal, and the first variance set. :
  • Equation 2 is expressed as:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the number of values in the preset set of values of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is A positive integer
  • t is a positive integer in the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • p t represents the preset value The element in the probability set corresponding to the tth value in the set.
  • the SLIC detection circuit 12 can be used to calculate the variance of the j-th layer second transmission signal according to the preset criterion, the probability set corresponding to the unknown demodulation parameter of the j-th layer second transmission signal, and the first variance set.
  • Equation 3 is expressed as:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the number of values in the preset set of values of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is A positive integer
  • t is a positive integer in the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • p t represents the preset value
  • E t represents an element in the first mean set corresponding to the tth value in the preset value set
  • E(x j ) represents the jth layer The average of the two transmitted signals.
  • the SLIC detecting circuit 12 can calculate the variance of the second equivalent transmit signal of the jth layer according to the preset criterion, the probability set corresponding to the second type of unknown demodulation parameters of the jth second transmit signal, and the second variance set. to:
  • Equation 4 is expressed as:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the number of values in the preset set of values of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents an element in the first variance set corresponding to the wth value in the preset value set
  • p w represents and presets The elements in the probability set corresponding to the wth value in the value set.
  • the SLIC detecting circuit 12 can calculate the variance of the second equivalent transmit signal of the jth layer according to the preset criterion, the probability set corresponding to the second type of unknown demodulation parameters of the jth second transmit signal, and the second variance set. to:
  • Equation 5 is expressed as:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the number of values in the preset set of values of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents an element in the second variance set corresponding to the wth value in the preset value set
  • p w represents the preset An element in the probability set corresponding to the wth value in the set of values
  • E t represents a second mean value of the second equivalent transmit signal of the jth layer corresponding to the wth value in the preset value set
  • E(X) j ) represents the mean of the second equivalent transmitted signal of the jth layer.
  • the embodiment of the present invention provides a terminal, which calculates each layer according to a probability corresponding to each of a plurality of values in a preset value set of an unknown demodulation parameter of each layer of the second transmit signal transmitted by the interfering cell. At least one of a mean value of the two transmitted signals, and a variance of the second transmitted signal of each layer and a variance of the second equivalent transmitted signal of each layer, and an average of the second transmitted signals of each layer obtained according to the calculation, and a second of each layer Calculating an LLR of each layer of the transmitted signal by using at least one of a variance of the transmitted signal and a variance of the second equivalent transmitted signal of each layer, thereby obtaining a first transmit signal according to the LLR decoding corresponding to the first transmit signal of each layer transmitted by the serving cell. number. Therefore, unlike the prior art, it is necessary to obtain the first transmission signal according to the estimated demodulation parameter decoding, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism and improving the demodulation performance.
  • an embodiment of the present invention provides a signal demodulation method, which may include:
  • the terminal obtains, according to the received signal and the channel parameter, a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, where the transmit signal corresponding to the received signal includes the first transmit signal and the interference of the [1, S] layer sent by the serving cell.
  • a second transmit signal of the [S+1, L] layer transmitted by the cell where S and L are positive integers, and S is less than L, and the probability set is within a preset set of unknown demodulation parameters of the second transmit signal of each layer. The probability that each of the multiple values corresponds to each other.
  • the signal received by the terminal may include a plurality of resource units, and an expression of the received signal in any of the resource units may be referred to as Equation (1-1).
  • the channel parameters herein may include a channel matrix corresponding to each layer of transmitted signals.
  • the demodulation parameter here is a parameter describing the characteristics of the signal in the SLIC demodulation process, and may include a modulation order, a data pilot power ratio, a transmission mode, a rank, a PMI, and the like.
  • the demodulation parameter of the first layer to the S layer first transmission signal sent by the serving cell is agreed by the terminal and the serving cell, and thus is known; the S+1th to the Lth transmitted by the interfering cell
  • the demodulation parameters of the second transmit signal of the layer are unknown and can be estimated using the prior art.
  • the unknown demodulation parameter in the following embodiments of the present invention may include at least one of a modulation order, a data pilot power ratio, a transmission mode, a rank, and a PMI.
  • the terminal may obtain a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer according to the received signal and the channel parameter.
  • the preset value set of the modulation mode is ⁇ QPSK, 16QAM, 64QAM ⁇ , and the QPSK modulation mode corresponds to The modulation order is 2, the modulation order corresponding to the 16QAM modulation mode is 4, and the modulation order corresponding to the 64QAM modulation mode is 6, the preset value set of the modulation order is ⁇ 2, 4, 6 ⁇ , and the modulation order
  • the probability set corresponding to the modulation order can be equivalent to ⁇ P QPSK (probability when modulation mode is QPSK), P 16QAM (probability when modulation mode is 16QAM), P 64QAM (probability when modulation mode is
  • the terminal calculates, according to a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, an average value of the second transmit signal of each layer, and a variance of the second transmit signal of each layer and a second equivalent transmit signal of each layer. At least one of the variances, the second equivalent transmit signal is a precoded signal of the second transmit signal.
  • the equivalent transmit signal is a signal precoded by the transmit signal, that is, the equivalent transmit signal is the signal after the transmit signal is multiplied by the precoding matrix. That is, the S+1th to Lth layer signals of X in the equation (1-1) may be the second equivalent transmission signal, and the first to Sth layer signals of the X may be the first equivalent transmission signals.
  • the terminal calculates the mean value of the second transmit signal of the layer and the variance of the second transmit signal of the layer according to the probability set corresponding to the unknown demodulation parameter of the second transmit signal of the layer. And at least one of a variance of the second equivalent transmitted signal of the layer, so as to obtain a mean value of the second transmit signal of the layer obtained according to the calculation, and a variance of the second transmit signal of the layer and a second equivalent transmit signal of the layer At least one of the variances, the LLR of each layer of the transmitted signal is calculated, thereby decoding to obtain the first transmitted signal.
  • the terminal may calculate each layer by using a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer without estimating the specific value of the unknown demodulation parameter of the second transmit signal of each layer.
  • the estimated demodulation parameters calculate the mean and variance of the second transmission of each layer, thereby calculating the LLR of each layer of the transmitted signal, and decoding to obtain the first transmitted signal, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism and thereby enabling Effectively suppress co-channel interference, reduce frame error rate, and improve demodulation performance.
  • the unknown demodulation parameters may include a first type of unknown demodulation parameters and a second type of unknown demodulation parameter.
  • the first type of unknown demodulation parameters may include a modulation order, a data pilot power ratio, etc.
  • the second type of unknown demodulation parameters may include a transmission modulus, a rank, a PMI, and the like.
  • the different values of the second type of unknown demodulation parameters affect the precoding matrix B.
  • step 102 may include:
  • the terminal calculates the mean value of the second transmit signal of each layer and the variance of the second transmit signal of each layer according to the probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of each layer.
  • step 102 may include:
  • the terminal calculates the variance of the second equivalent transmit signal of each layer according to the probability set corresponding to the second type of unknown demodulation parameters of the second transmit signal of each layer.
  • step 102 may include:
  • the terminal calculates a mean value of the second transmit signal of each layer and a variance of the second transmit signal of each layer according to the probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of each layer, and respectively according to the second transmit signal of each layer.
  • the probability set corresponding to the second type of unknown demodulation parameters and the variance of the second transmitted signal of each layer are used to calculate the variance of the second equivalent transmitted signal of each layer.
  • the terminal can calculate the mean and variance of the first transmission signal of the layer according to the demodulation parameters of the first transmission signal of each layer.
  • the mean value of the first equivalent transmission signal of the layer can also be calculated according to the formula (1-3)
  • the variance of the first equivalent emission signal of the layer can also be calculated according to the formula (1-7b).
  • the terminal calculates a log likelihood corresponding to each layer of the transmit signal according to at least one of a mean value of the second transmit signal of each layer and a variance of the second transmit signal of each layer and a variance of the second equivalent transmit signal of each layer. Than LLR.
  • the terminal may perform soft interference cancellation according to the mean value of the second transmit signal of each layer, the average value of the first transmit signal of each layer, and the equation (1-2); the variance of the first transmit signal of each layer according to the variance of the second transmit signal of each layer , precoding matrix B, and equations (1-4), (1-5), (1-6a), (1-8), (1-9), and (1-10), respectively, calculate the transmit signal of each layer Corresponding LLR; or The variance of the first equivalent transmitted signal of each layer according to the variance of the second equivalent transmitted signal of each layer, and the formulas (1-4), (1-5), (1-6b), (1-8) (1-9) and (1-10), respectively calculating the LLR corresponding to each layer of the transmitted signal, wherein the variance of the first equivalent transmitted signal of each layer can be based on the variance of the first transmitted signal of each layer and the formula (1) 7b) Calculated.
  • the terminal decodes according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, to obtain the first transmit signal.
  • the terminal may obtain the first transmit signal sent by the serving cell according to the LLR decoding corresponding to the first transmit signal of each layer in the transmit signal.
  • An embodiment of the present invention provides a signal demodulation method, which is calculated according to a probability corresponding to each of a plurality of values in a preset value set of an unknown demodulation parameter of each layer of a second transmit signal transmitted by an interfering cell.
  • the embodiment of the present invention provides a signal demodulation method, which is described by taking an example in which the unknown demodulation parameter includes only the modulation order in the first type of unknown demodulation parameters.
  • the method may include:
  • the terminal obtains, according to the received signal and the channel parameter, a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, where the transmit signal corresponding to the received signal includes the first transmit signal and the interference of the [1, S] layer sent by the serving cell.
  • a second transmit signal of the [S+1, L] layer transmitted by the cell where S and L are positive integers, and S is less than L, and the probability set is within a preset set of unknown demodulation parameters of the second transmit signal of each layer. The probability that each of the multiple values corresponds to each other.
  • the unknown demodulation parameter is the modulation order
  • the preset value set of the modulation mode is ⁇ QPSK, 16QAM, 64QAM ⁇
  • the preset value set of the modulation order is ⁇ 2, 4, 6 ⁇
  • the terminal may obtain a probability corresponding to the value of any modulation order of the second transmit signal of each layer according to the received signal and the channel parameter, that is, a probability corresponding to any modulation mode, thereby forming a probability set.
  • the terminal may calculate the probability P QPSK of QPSK using a modified generalized log-maximum likelihood algorithm, where P QPSK may be a likelihood probability.
  • P QPSK may be a likelihood probability.
  • the expression of the non-normalized likelihood probability of QPSK using the improved generalized log-maximum likelihood algorithm can be:
  • x j represents the specific value of the point on the constellation diagram corresponding to QPSK, and the value of j is a positive integer in the range of [S+1, L], Indicates that the sum of the set of values corresponding to the four points on the constellation diagram corresponding to QPSK is summed, Represents a summation within the range of all resource elements RE that do not contain the reference signal RS in the current resource block.
  • the non-normalized likelihood probability of QPSK is obtained by first calculating the mean of the likelihood functions corresponding to the values of the four points on the QPSK constellation diagram, and then summing them in all RE ranges of the resource block that do not contain the reference signal RS. of. After obtaining the non-normalized likelihood probability of QPSK, and dividing by the sum of non-normalized likelihood ratios of QPSK, 16QAM, and 64QAM, the normalized likelihood probability of QPSK can be obtained.
  • the method for calculating the probability P QPSK of the QPSK using the improved generalized logarithm maximum likelihood algorithm is merely an example.
  • other algorithms can also be used to calculate P QPSK , which is not limited herein.
  • P 16QAM and P 64QAM can also be calculated to obtain a probability set ⁇ P QPSK , P 16QAM , P 64QAM ⁇ .
  • the terminal After obtaining the probability set corresponding to the unknown demodulation parameters of the second transmit signal of each layer, the terminal can enter the improved SLIC detection process.
  • the improved SLIC detection process is based on the probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, and calculates the mean and variance of the second transmit signal of each layer through an iterative process, thereby calculating corresponding signals of each layer respectively.
  • the log likelihood ratio is LLR.
  • the iterative process of any one time may include the following steps 202-204.
  • the terminal Before entering the improved SLIC detection process, the terminal may also preset the number of iterations and set an initial value, for example, the initial value of the number of iterations may be zero.
  • the terminal acquires a first mean value of the j-th layer second transmit signal corresponding to each of the plurality of values in the preset value set of the first type of unknown demodulation parameters of the second transmit signal of the j-th layer
  • the variance of the second transmitted signal of the jth layer forms a first set of mean values and a first set of variances.
  • the terminal Before performing step 202, the terminal may determine whether the current iterative process is the first iterative process according to the number of iterations.
  • the terminal may determine that the current iterative process is the first iterative process.
  • the first value of the j-th layer second transmission signal corresponding to each of the plurality of values in the preset value set of the first type of unknown demodulation parameters of the second transmission signal of the jth layer The mean value may be a preset value of 0, that is, the elements in the first mean value set are all 0; each of the plurality of values in the preset value set of the first type of unknown demodulation parameters of the second transmit signal of the jth layer
  • the first variance of the second transmission signal of the jth layer corresponding to the value may be a preset value of 1, that is, the elements in the first variance set are all 1.
  • the terminal may determine that the current iterative process is not the first iterative process.
  • the terminal may obtain a first mean value and a first variance of the j-th layer second transmit signal corresponding to each of the plurality of values in the preset value set of the modulation order, that is, The first mean value E QPSK of the j-th layer second transmission signal corresponding to the QPSK and the first variance V QPSK , the first mean value E 16QAM of the j-th layer second transmission signal corresponding to 16QAM and the first variance V 16QAM , 64QAM
  • the first average of the j-th layer second transmitted signal is E 64QAM and the first variance V 64QAM .
  • a first mean set ⁇ E QPSK , E 16QAM , E 64QAM ⁇ , and a first set of variances ⁇ V QPSK , V 16QAM , V 64QAM ⁇ can be formed.
  • the terminal may obtain the first mean set ⁇ E QPSK , E 16QAM , E 64QAM ⁇ and the first variance set ⁇ V QPSK , V 16QAM , V 64QAM ⁇ in the following two ways.
  • the terminal calculates E QPSK and V QPSK using the following expression:
  • x j represents the specific value of the point on the constellation diagram corresponding to QPSK, It is expressed in the range of 4 values of the points on the constellation diagram corresponding to QPSK, P QPSK indicates the probability that the j-th layer transmission signal adopts the QPSK modulation method, and P QPSK is the element in the probability set corresponding to the modulation order.
  • V( ⁇ j ) in (1-15) can be found in Formula (1-10).
  • the terminal can also calculate E 16QAM and V 16QAM using the following expression:
  • x j represents the specific value of the point on the constellation diagram corresponding to 16QAM
  • P 16QAM indicates the probability that the j-th layer transmission signal adopts the 16QAM modulation mode
  • P 16QAM is the element in the probability set corresponding to the modulation order.
  • the terminal can also calculate E 64QAM and V 64QAM using the following expression:
  • x j represents the specific value of the point on the constellation diagram corresponding to 64QAM
  • P 64QAM indicates the probability that the j-th layer transmission signal adopts the 64QAM modulation mode
  • P 64QAM is the element in the probability set corresponding to the modulation order.
  • the terminal may calculate, according to the LLR corresponding to the second transmission signal of the jth layer obtained in the previous iteration process, a plurality of values in the preset value set of the first type of unknown demodulation parameters of the second transmission signal of the jth layer.
  • Each of the values corresponds to a first mean of the j-th second transmitted signal and a first variance of the j-th second transmitted signal, respectively, and forms a first mean set and a first set of variances.
  • the terminal may calculate the first mean set ⁇ E QPSK , E 16QAM , E according to the LLR corresponding to the second transmission signal of the jth layer obtained in the previous iteration process by using the traditional algorithm in the existing SLIC demodulation algorithm.
  • 64QAM ⁇ first variance set ⁇ V QPSK , V 16QAM , V 64QAM ⁇ .
  • the expression of the E QPSK/ E 16QAM/ E 64QAM obtained by using the conventional algorithm in the existing SLIC demodulation algorithm may be as follows :
  • E QPSK/16QAM/64QAM means to calculate E QPSK or E 16QAM or E 64QAM .
  • the expression for obtaining E QPSK according to the formula (1-22)-formula (1-23) may be:
  • ⁇ 0 represents the LLR corresponding to the 0th bit of the two bits corresponding to the QPSK
  • ⁇ 1 represents the LLR corresponding to the 1st bit of the 2 bits corresponding to the QPSK.
  • the expression obtained by using the conventional algorithm in the existing SLIC demodulation algorithm to obtain V QPSK may be:
  • the method of calculating E 16QAM , E 64QAM , V 16QAM and V 64QAM and the above calculation are performed by using the traditional algorithm in the existing SLIC demodulation algorithm.
  • the process of E QPSK and V QPSK is similar and will not be described in detail here.
  • the second method can obtain the first mean value and the first variance of the j-th layer second transmit signal corresponding to the three modulation modes respectively by using the conventional algorithm existing in the prior art.
  • the first method cannot use the conventional algorithms existing in the prior art, and it is necessary to weight the four, 16 and 64 values respectively corresponding to the three modulation modes, thereby obtaining the corresponding j of the three modulation modes respectively.
  • the terminal calculates, according to a preset criterion, a probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer, and a first mean set and a first variance set, and calculates an average value of the second transmit signal of the jth layer.
  • the variance of the second transmitted signal of the jth layer is a preset criterion.
  • the terminal obtains, according to the first mean set of the second transmission signal of the jth layer and the first variance set, in step 202, the jth corresponding to each of the plurality of values in the preset value set of the modulation order
  • the second transmit signal of the jth layer may be calculated according to the preset criterion, the first mean set of the second transmit signal of the jth layer, and the first set of variances Mean and variance.
  • the terminal may calculate, according to the probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer, and the formula 1, calculate a weighted average number of the multiple elements in the first mean set to obtain the jth layer.
  • the mean value of the two transmitted signals, Equation 1 can be expressed as:
  • E(x j ) represents the mean value of the second transmitted signal of the jth layer
  • m represents the number of values in the preset set of values of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is A positive integer
  • t is a positive integer in the interval [1, m]
  • E t represents an element in the first mean set corresponding to the t-th value in the preset value set
  • p t represents a preset value set The element in the probability set corresponding to the tth value.
  • the preset value set is ⁇ QPSK, 16QAM, 64QAM ⁇ , m is 3, and E t represents an element E QPSK , E in the first mean set.
  • 16QAM or E 64QAM , p t represents P QPSK , P 16QAM or P 64QAM in the probability set, that is, the mean value E(x j ) of the second transmitted signal of the jth layer can be expressed as:
  • E(x j ) E QPSK P QPSK +E 16QAM P 16QAM +E 64QAM P 64QAM (1-27)
  • E QPSK , E 16QAM and E 64QAM may both be 0.
  • E QPSK , E 16QAM and E 64QAM may be obtained according to the LLR pass mode 2, or may be Calculated by way of calculation.
  • E QPSK , E 16QAM and E 64QAM are obtained by way of calculation 1, the mean value E(x j ) of the second transmission signal of the jth layer can also be expressed as:
  • the terminal may calculate, according to the probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer, and formula 2, calculate a weighted average number of the multiple elements in the first variance set to obtain the jth layer.
  • the variance of the second transmitted signal, Equation 2 can be expressed as:
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the number of values in the preset set of values of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is A positive integer
  • t is a positive integer in the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • p t represents the preset value The element in the probability set corresponding to the tth value in the set.
  • V t V QPSK and V 16QAM in the first variance set.
  • V 64QAM , p t represents P QPSK , P 16QAM or P 64QAM in the probability set, that is, the variance V(x j ) of the second transmitted signal of the jth layer can be expressed as:
  • V(x j ) V QPSK P QPSK +V 16QAM P 16QAM +V 64QAM P 64QAM (1-29)
  • V QPSK , V 16QAM and V 64QAM are both 1.
  • V QPSK , V 16QAM and V 64QAM can be obtained according to the LLR pass mode 2 or through The way one is calculated.
  • V QPSK , V 16QAM and V 64QAM are obtained by way of calculation 1, the variance V(x j ) of the second transmitted signal of the jth layer can also be expressed as:
  • Equations (1-28) and (1-30) the first mean set and the first set of variances are obtained by the first method, so that the process of obtaining the mean and variance of the second transmitted signal of the jth layer is complicated.
  • the calculation amount is large; and referring to equations (1-27) and (1-29), the process of obtaining the first mean set and the first variance set by the second method is relatively simple, and the calculation amount is small.
  • the method for calculating the mean and variance of the j-th layer transmitted signal based on the second method is increased by 2 times compared with the conventional SLIC demodulation algorithm in the prior art, but The complexity of the mean and variance calculations is small in the SLIC demodulation algorithm. The overall complexity has not increased much.
  • the terminal may further calculate a variance of the second transmit signal of the jth layer according to the probability set, the first variance set, and the formula 3 corresponding to the unknown demodulation parameter of the second transmit signal of the jth layer, and the formula 3 may be expressed as :
  • V(x j ) represents the variance of the second transmitted signal of the jth layer
  • m represents the number of values in the preset set of values of the first type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • m is A positive integer
  • t is a positive integer in the interval [1, m]
  • V t represents an element in the first variance set corresponding to the t-th value in the preset value set
  • p t represents the preset value
  • E t represents an element in the first mean set corresponding to the tth value in the preset value set
  • E(x j ) represents the jth layer The average of the two transmitted signals.
  • the demodulation parameter is a modulation order
  • the preset value set is ⁇ QPSK, 16QAM, 64QAM ⁇
  • m is 3
  • V t represents V QPSK and V 16QAM in the first variance set
  • V 64QAM , E t represents E QPSK , E 16QAM or E 64QAM in the first mean set
  • p t represents P QPSK , P 16QAM or P 64QAM .
  • the variance V(x j ) of the second transmitted signal of the jth layer can be expressed as:
  • E QPSK , E 16QAM or E 64QAM are 0, V QPSK , V 16QAM and V 64QAM are 1, in the non-first iteration process, E QPSK , E 16QAM or E 64QAM and V QPSK V 16QAM and V 64QAM can be obtained by the second method, and E(x j ) represents the average value of the second transmission signal of the jth layer, which can be calculated according to the formula (1-27).
  • the method of obtaining V(x j ) based on the first method by equation (1-30) is complicated and computationally intensive, but the obtained V(x j ) is the variance of the second transmitted signal of the jth layer in the strict sense.
  • the method of obtaining V(x j ) based on the second method by the formula (1-29) is relatively simple, and the calculation amount is small, but the obtained V(x j ) is an approximation, not the j-th layer second transmission signal in the strict sense.
  • the variance; the complexity of the method for obtaining V(x j ) based on the second method by the equation (1-31) is centered, and the obtained V(x j ) is the variance of the second transmission signal of the jth layer in the strict sense.
  • the terminal calculates a mean value of the second transmit signal of the layer and a variance of the second transmit signal of the layer according to a probability set corresponding to a modulation order unknown to the second transmit signal of the layer.
  • the terminal may calculate the second transmission of each layer by using a probability set corresponding to the modulation order of the second transmit signal of each layer without estimating the specific value of the modulation order of the second transmit signal of each layer.
  • the mean and variance of the signal thereby demodulating to obtain the first transmitted signal, instead of calculating the mean and variance of the second transmission of each layer according to the estimated modulation order, as in the prior art, thereby calculating the LLR of each layer of the transmitted signal
  • decoding to obtain the first transmit signal, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism, thereby effectively suppressing co-channel interference, reducing the frame error rate, and improving the demodulation performance.
  • steps 202 to 203 are described by taking the calculation of the mean value and the variance of the second transmission signal of the jth layer as an example.
  • the method for calculating the mean value and the variance of the second transmission signal of other layers is similar, and details are not described herein again.
  • the terminal calculates a log likelihood ratio LLR corresponding to each layer of the transmit signal according to a mean value of the second transmit signal of each layer and a variance of the second transmit signal of each layer.
  • the terminal may combine the mean values of the first transmit signals obtained by using the known demodulation parameters to eliminate soft interference according to equation (1-2);
  • the embodiment of the present invention can also calculate the emission signals of each layer according to the formulas (1-4), (1-5), (1-6c) (1-8), (1-9), and (1-10), respectively. Corresponding LLR.
  • the terminal determines whether the number of iterations is greater than or equal to a preset number of thresholds. If yes, the iterative process is ended and step 206 is performed; if not, step 202 is continued to proceed to the next iteration process, and the number of iterations is incremented by one.
  • the terminal performs decoding according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, to obtain the first transmit signal.
  • the first transmit signal sent by the serving cell is a useful signal and needs to be obtained by demodulation; and the second transmit signal sent by the interfering cell is an interference signal, which does not need to be obtained by demodulation.
  • the terminal can decode the LLR corresponding to the first transmit signal of each layer in the LLR of all layer transmit signals, thereby obtaining each first transmit signal.
  • the embodiment of the present invention is described by taking an example in which the unknown demodulation parameter includes only the modulation order in the first type of unknown demodulation parameters, and the unknown demodulation parameter includes multiple first-class unknown demodulation parameters. It is necessary to simultaneously consider the influence of multiple unknown demodulation parameters on the mean and variance of the second transmitted signal of each layer.
  • the preset value set is a permutation combination of all the values in the preset preset value set of the plurality of first type unknown demodulation parameters, and the probability in the probability set is the value obtained by the above arrangement and respectively Corresponding probability.
  • the preset value set of the modulation mode MM corresponding to the modulation order is ⁇ QPSK, 16QAM. , 64QAM ⁇
  • the preset value set of the data pilot power ratio PA is ⁇ 0dB, -3dB ⁇
  • the terminal may use the foregoing method described in this embodiment of the present invention to calculate the mean value of the second transmit signal of each layer and the variance of the second transmit signal of each layer according to the probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer.
  • Demodulation obtains a first transmitted signal.
  • the embodiment of the present invention provides a signal demodulation method.
  • the terminal selects a preset value set according to the modulation order of the second transmit signal of each layer sent by the interfering cell. Calculating the mean and variance of the second transmitted signal of each layer, and calculating the LLR of each layer of the transmitted signal according to the calculated mean and variance of the second transmitted signal of each layer, thereby decoding and obtaining the service
  • the first transmit signal sent by the cell and thus does not need to be decoded according to the estimated modulation order to obtain the first transmit signal, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism and improving the demodulation performance.
  • the following embodiments of the present invention provide a signal demodulation method, which is described by taking an example in which the unknown demodulation parameter includes only the rank of the second type of unknown demodulation parameters.
  • the method may include:
  • the terminal obtains, according to the received signal and the channel parameter, a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, where the transmit signal corresponding to the received signal includes the first transmit signal and the interference of the [1, S] layer sent by the serving cell.
  • a second transmit signal of the [S+1, L] layer transmitted by the cell where S and L are positive integers, and S is less than L, and the probability set is within a preset set of unknown demodulation parameters of the second transmit signal of each layer. The probability that each of the multiple values corresponds to each other.
  • the unknown demodulation parameter is rank
  • the precoding vector b j1 corresponding to the second transmission signal of the jth layer is a vector
  • the precoding matrix b j2 corresponding to the second transmission signal of the jth layer is a matrix.
  • the terminal may obtain a probability corresponding to any value of the rank of the second transmit signal of each layer according to the received signal and the channel parameter, thereby forming a probability set.
  • the terminal may calculate, according to the received signal and the channel parameter, the improved generalized logarithm maximum likelihood algorithm in step 201, respectively, to obtain the probability of the rank of the second transmitted signal of each layer and the different values respectively.
  • the terminal After obtaining the probability set corresponding to the unknown demodulation parameters of the second transmit signal of each layer, the terminal can enter the improved SLIC detection process.
  • the improved SLIC detection process is based on the probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer, and calculates the variance of the second equivalent transmit signal of each layer through an iterative process, thereby calculating the corresponding corresponding signals of each layer.
  • the log likelihood ratio is LLR.
  • the iterative process of any one time may include the following steps 302-304.
  • the terminal Before entering the improved SLIC detection process, the terminal may also preset the number of iterations and set an initial value, for example, the initial value of the number of iterations may be zero.
  • the terminal acquires, according to the variance of the second transmission signal of the jth layer, a corresponding value of each of the multiple values in the preset value set of the second type of unknown demodulation parameters of the second transmission signal of the jth layer.
  • the terminal may determine whether the current iterative process is the first iterative process according to the number of iterations.
  • the terminal may determine that the current iterative process is the first iterative process.
  • the first variance of the j-th layer second transmission signal corresponding to each of the plurality of values in the preset value set of the unknown demodulation parameter of the second transmission signal of the j-th layer may be Is the default value of 1.
  • the terminal may determine that the current iterative process is not the first iterative process. In the non-first iteration process, the terminal may obtain each of the multiple values in the preset value set of the rank in the current iteration process according to the LLR corresponding to the second transmission signal of the jth layer obtained in the previous iteration process.
  • the variance of the corresponding j-th layer equivalent transmit signal when the rank is 2
  • V jrank2 b j2 v j b j * 2 , thereby forming a second set of variances ⁇ V jrank1 , V jrank2 ⁇ .
  • the terminal calculates a variance of the second equivalent transmit signal of the jth layer according to the preset criterion, the probability set corresponding to the second type of unknown demodulation parameters of the second transmit signal of the jth layer, and the second set of variances.
  • the terminal may calculate a weighted average number of the multiple elements in the second variance set according to the probability set corresponding to the second type of unknown demodulation parameters of the second transmission signal of the jth layer, and formula 4, to obtain the jth layer.
  • the variance of the two equivalent transmitted signals, Equation 4 can be expressed as:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the number of values in the preset set of values of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents an element in the first variance set corresponding to the wth value in the preset value set
  • p w represents and presets The elements in the probability set corresponding to the wth value in the value set.
  • the expression for calculating the variance V(X j ) of the second equivalent transmitted signal of the jth layer according to formula 4 may be:
  • V jrank1 is b j1 b j1 *
  • V jrank2 is
  • V jrank1 and V jrank2 can be obtained according to the prior art calculation based on the LLR obtained in the previous iteration process.
  • the terminal may further calculate a variance of the second equivalent transmit signal of the jth layer according to the probability set, the second variance set, and the formula 5 corresponding to the second type of unknown demodulation parameters of the second transmit signal of the jth layer, and the formula Five can be expressed as:
  • V(X j ) represents the variance of the second equivalent transmitted signal of the jth layer
  • n represents the number of values in the preset set of values of the second type of unknown demodulation parameters of the second transmitted signal of the jth layer
  • n is a positive integer
  • w is a positive integer in the interval [1, n]
  • V w represents an element in the second variance set corresponding to the wth value in the preset value set
  • p w represents the preset An element in the probability set corresponding to the wth value in the set of values
  • E t represents a second mean value of the second equivalent transmit signal of the jth layer corresponding to the tth value in the preset value set
  • E(X) j ) represents the mean of the second equivalent transmitted signal of the jth layer.
  • the preset value set is ⁇ 1, 2 ⁇ , n is 2;
  • V w represents V jrank1 or V jrank2 in the first variance set;
  • E t represents a second mean value of the j-th layer second equivalent transmitted signal corresponding to the wth value in the preset value set, which may be known according to Demodulation parameters are calculated.
  • the jth layer when the first mean value of the jth layer second transmission signal corresponding to the wth value in the preset value set is obtained according to the known demodulation parameter, the jth layer may be obtained according to the formula (1-3) The second mean of the two equivalent transmitted signals.
  • the expression for calculating the variance V(X j ) of the second equivalent transmitted signal of the jth layer according to Equation 5 may be:
  • V jrank1 is b j1 b j1 * and V jrank2 is
  • V jrank1 and V jrank2 can be obtained according to the prior art calculation based on the LLR obtained in the previous iteration process.
  • the above steps 302 to 303 are described by taking the variance of the second equivalent transmission signal of the jth layer as an example.
  • the method for calculating the variance of the second equivalent transmission signal of other layers is similar, and details are not described herein again.
  • the terminal can calculate the variance of the first equivalent transmitted signal of each layer and the mean value of the transmitted signals of each layer according to the known demodulation parameters according to the prior art.
  • the terminal calculates a variance of the second equivalent transmit signal of the layer according to the probability set corresponding to the rank of the second transmit signal of the layer, so as to obtain the layer obtained according to the calculation.
  • the variance of the second equivalent transmitted signal calculates the LLR of each layer of the transmitted signal, thereby decoding to obtain the first transmitted signal. That is, the terminal may calculate the second equivalent transmit signal of each layer by using the probability set corresponding to the rank of the second transmit signal of each layer without estimating the specific value of the rank of the second transmit signal of each layer.
  • the variance is thus demodulated to obtain the first transmitted signal, instead of calculating the mean and variance of the second transmission of each layer according to the estimated rank, as in the prior art, thereby calculating the LLR of each layer of the transmitted signal, and decoding the obtained
  • a transmitting signal can improve the estimation accuracy of the existing SLIC demodulation mechanism, thereby effectively suppressing co-channel interference, reducing the frame error rate, and improving the demodulation performance.
  • the terminal calculates a log likelihood ratio LLR of each layer of the transmitted signal according to a variance of the second equivalent transmit signal of each layer.
  • the terminal may perform soft interference cancellation according to the mean value of each layer of the transmitted signal and the formula (1-2), and further, according to the variance of the second equivalent transmit signal of each layer, the variance of the first equivalent transmit signal of each layer, and the formula (1-4), (1-5), (1-6b), (1-8), (1-9), and (1-10) calculate the LLRs corresponding to the transmission signals of each layer, respectively.
  • the terminal determines whether the number of iterations is greater than or equal to a preset number of thresholds. If yes, the iterative process ends and step 306 is performed; if not, step 302 is continued to proceed to the next iteration process, and the number of iterations is incremented by one.
  • the terminal performs decoding according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, to obtain the first transmit signal.
  • the terminal may decode according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, thereby obtaining the first transmit signal sent by the serving cell.
  • the unknown demodulation parameter includes only one second type of unknown demodulation parameter as an example.
  • the unknown demodulation parameter includes multiple second types of unknown demodulation parameters, it is also required to simultaneously The effect of the variance of a plurality of second type of unknown demodulation parameters on the variance of the second equivalent transmitted signal of each layer is considered.
  • the signal demodulation method when the unknown demodulation parameter provided by the embodiment of the present invention includes only a second type of unknown demodulation parameter, it is easy to obtain an unknown demodulation parameter including multiple second types of unknown demodulation parameters according to all values. The method of demodulating the signal with the corresponding probability will not be described here.
  • the embodiment of the present invention provides a signal demodulation method.
  • the terminal selects multiple values in the preset value set of the rank of the second transmit signal of each layer sent by the interfering cell.
  • Corresponding probability calculating the variance of the second equivalent transmitted signal of each layer, and calculating the LLR of each layer of the transmitted signal according to the variance of the second equivalent transmitted signal of each layer obtained by the calculation, thereby decoding and obtaining the first transmission sent by the serving cell
  • the signal and thus unlike the prior art, requires obtaining the first transmitted signal based on the estimated rank decoding, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism and improving the demodulation performance.
  • An embodiment of the present invention provides a signal demodulation method, where an unknown demodulation parameter includes a modulation order in a first type of unknown demodulation parameters and a rank in a second type of unknown demodulation parameters as an example.
  • an unknown demodulation parameter includes a modulation order in a first type of unknown demodulation parameters and a rank in a second type of unknown demodulation parameters as an example.
  • the terminal obtains, according to the received signal and the channel parameter, the second transmit signal of each layer.
  • the probability set corresponding to the unknown demodulation parameter, the transmit signal corresponding to the received signal includes the first transmit signal of the [1, S] layer sent by the serving cell and the second transmit signal of the [S+1, L] layer sent by the interfering cell, where S L is a positive integer, and S is less than L.
  • the probability set is a probability corresponding to each of the plurality of values in the preset value set of the unknown demodulation parameter of the second transmit signal of each layer.
  • the unknown demodulation parameter includes a modulation order and a rank
  • the preset value set of the modulation mode corresponding to the modulation order is ⁇ QPSK, 16QAM, 64QAM ⁇
  • the preset value corresponding to the rank For the set of ⁇ 1, 2 ⁇ , the probability set corresponding to the modulation order is ⁇ P QPSK , P 16QAM , P 64QAM ⁇ .
  • the calculation method of the elements in the probability set can be specifically described in step 301.
  • the terminal After obtaining the probability set corresponding to the unknown demodulation parameters of the second transmit signal of each layer, the terminal can enter the improved SLIC detection process.
  • the improved SLIC detection process is based on a probability set corresponding to an unknown demodulation parameter of a second transmit signal of each layer, and calculates an average value and a variance of the second transmit signal of each layer through an iterative process, and a second equivalent transmit signal.
  • the variance is calculated to calculate the log likelihood ratio LLR corresponding to each layer of the transmitted signal.
  • the iterative process of any one time may include the following steps 402-404.
  • the terminal Before entering the improved SLIC detection process, the terminal may also preset the number of iterations and set an initial value, for example, the initial value of the number of iterations may be zero.
  • the terminal acquires a first mean value of the jth layer second transmit signal corresponding to each of the plurality of values in the preset value set of the first type of unknown demodulation parameters of the second transmit signal of the jth layer
  • the variance of the second transmitted signal of the jth layer forms a first set of mean values and a first set of variances.
  • the terminal calculates, according to a preset criterion, a probability set corresponding to the first type of unknown demodulation parameters of the second transmit signal of the jth layer, and a first mean set and a first variance set, and calculates an average value of the second transmit signal of the jth layer.
  • the variance of the second transmitted signal of the jth layer is a preset criterion.
  • step 202 and step 203 The process of calculating the mean and variance of the second transmission signal of the jth layer in steps 402 and 403 can be referred to the specific description in step 202 and step 203.
  • the terminal acquires, according to the variance of the second transmit signal of the jth layer, a corresponding value of each of the multiple values in the preset value set of the second type of unknown demodulation parameters of the second transmit signal of the jth layer.
  • step 404 refer to the description in step 302.
  • the variance of the second transmitted signal in step 302 is obtained by prior art calculation based on known demodulation parameters, and the variance of the second transmitted signal in step 404 is based on the first type of unknown demodulation.
  • the parameters are calculated by steps 402 and 403.
  • the terminal calculates a variance of the second equivalent transmit signal of the jth layer according to a preset criterion, a probability set corresponding to the second type of unknown demodulation parameters of the second transmit signal of the jth layer, and a second set of variances.
  • step 303 For details, refer to the description in step 303.
  • the terminal calculates a mean value and a variance of the second transmit signal of the layer according to a probability set corresponding to the unknown demodulation parameter of the second transmit signal of the layer, and the second layer of the layer.
  • the variance of the transmitted signal so as to calculate the LLR of the transmitted signal of each layer according to the calculated mean and variance of the second transmitted signal of the layer and the variance of the second equivalent transmitted signal of the layer, thereby decoding and obtaining the first transmission signal. That is, the terminal may calculate each layer by using a probability set corresponding to the unknown demodulation parameter of the second transmit signal of each layer without estimating the specific value of the unknown demodulation parameter of the second transmit signal of each layer.
  • the mean and variance of the transmission thereby calculating the LLR of each layer of the transmitted signal, and decoding to obtain the first transmitted signal, thereby improving the estimation accuracy of the existing SLIC demodulation mechanism, thereby effectively suppressing the same-frequency interference and reducing the frame error rate.
  • Improve demodulation performance improves the following abbreviations
  • the terminal according to the average value of the second transmit signal of each layer, and the second transmit signal of each layer
  • the variance of the variance and the variance of the second equivalent transmitted signal of each layer are used to calculate the log likelihood ratio LLR of the transmitted signal of each layer.
  • the terminal may perform soft interference cancellation by using Equation (1-2) according to the average value of the second transmit signal of each layer, combined with the mean value of each layer of the first transmit signal obtained by using the prior art according to the known demodulation parameters. And, the terminal can calculate the variance of the first equivalent transmit signal of each layer according to the variance of the second equivalent transmit signal of each layer, and formula (1-4), (1-5), 1-6b), (1-8), (1-9), and (1-10) calculate the LLRs corresponding to the emission signals of each layer, respectively.
  • the terminal determines whether the number of iterations is greater than or equal to a preset number of thresholds. If yes, the iterative process ends and step 408 is performed; if not, step 402 is continued to proceed to the next iteration process, and the number of iterations is incremented by one.
  • the terminal performs decoding according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, to obtain the first transmit signal.
  • the terminal may decode according to the LLR corresponding to the first transmit signal of each layer in the transmit signal, thereby obtaining the first transmit signal sent by the serving cell.
  • the unknown demodulation parameter includes only one first type of unknown demodulation parameter and one second type of unknown demodulation parameter, and the unknown demodulation parameter includes multiple firsts.
  • the unknown demodulation parameter includes only a first type of unknown demodulation parameter and a second type of unknown demodulation parameter, and the demodulation parameter is easily obtained, including multiple first classes.
  • Embodiments of the present invention provide a signal demodulation method, when an unknown demodulation parameter includes a modulation order in a first type of unknown demodulation parameter and a rank in a second type of unknown demodulation parameter, the terminal transmits according to the interfering cell.
  • LTE communication system As an example, other communication systems having a multi-cell or multi-user MIMO system, such as a Global System for Mobile system (Global System for Mobile) Communication, GSM), Wideband Code Division Multiple Access (W-CDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), and the like.
  • GSM Global System for Mobile
  • W-CDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • the disclosed terminal and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network) The device or the like) performs part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例提供一种信号解调方法及终端,涉及通信技术领域,能够提高现有SLIC解调机制的估计准确度从而提高解调性能。具体方案为:终端根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,接收信号对应的发射信号包括服务小区发送的第一发射信号和干扰小区发送的第二发射信号,概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率,根据每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,从而计算每层发射信号分别对应的LLR,译码获得第一发射信号。本发明实施例用于信号解调。

Description

一种信号解调方法及终端 技术领域
本发明涉及通信技术领域,尤其涉及一种信号解调方法及终端。
背景技术
在通信系统中,通信需求的持续增长推动着无线传输技术不断向前演进。长期演进(Long Term Evolution,LTE)项目改进并增强了第3代合作伙伴计划的空中接入技术,能够改善小区边缘用户的性能,提高小区的容量。
在LTE通信系统中,终端(User Equipment,UE)可能受到小区内配对用户的干扰或邻小区的干扰,这些干扰将严重降低终端解调数据信道的性能。基站高密度和异构是LTE网络结构的演进大方向,这将带来更加严重的多用户间和小区间的同频干扰。在多种解调算法中,符号级别干扰消除(Symbol Level Interference Cancellation,SLIC)解调算法抑制同频干扰的能力较强且实现复杂度较低,可以广泛应用于LTE通信系统中。
现有技术中,采用SLIC解调算法对终端接收的信号进行解调的方法流程示意图可以参见图1,其中,终端接收的信号包括服务小区发送的至少一层第一发射信号和干扰小区发送的至少一层第二发射信号,终端根据接收的信号估计服务小区和干扰小区的信道矩阵,并通过经典估计算法利用信道矩阵和接收信号自主估计第二发射信号的调制阶数、传输模式、秩和预编码指示(Pre-coder Matrix Indicator,PMI)等解调参数,而后结合终端接收的信号、信道矩阵以及估计出的解调参数进行SLIC检测,以获得每层第二发射信号的均值和方差,进而获得第一发射信号和第二发射信号的对数似然比(Log-Likelihood Ratio,LLR),从而根据第一发射信号的LLR进行译码获得解调后的第一发射信号。其中,由于终端自主估计解调参数的准确度低,尤其是在信噪比较低的场景下终端估计解调参数的准确度很难得以保证,因而极大地影响了终端通过SLIC解调算法抑制同频干扰的能力,使得误帧率较高,从而降低了终端的解调性能。
发明内容
本发明实施例提供一种信号解调方法及终端,能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种终端,包括:
概率集合获取电路,用于执行第一操作,所述第一操作包括根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,所述接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,所述概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值分别对应的概率;
符号级别干扰消除SLIC检测电路,耦合于所述概率集合获取电路并用于执行第二操作,所述第二操作包括分别根据每层所述第二发射信号的未知解调参数对应的概率集合,计算每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,所述第二等效发射信号为对所述第二发射信号进行预编码后的信号;其中,所述SLIC还用于执行第三操作,所述第三操作包括根据每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,计算每层所述发射信号分别对应的对数似然比LLR;
译码电路,耦合于所述SLIC检测电路,用于执行第四操作,所述第四操作包括根据所述发射信号中每层所述第一发射信号对应的LLR进行译码,获得所述第一发射信号。
结合第一方面,在第一方面的第一种可能的实现方式中,所述未知解调参数包括调制阶数、数据导频功率比、传输模式、秩以及预编码指示PMI中的至少一个。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述SLIC检测电路在执行第二操作之前还 用于预设迭代次数;
所述SLIC检测电路在执行第三操作之后还用于:
确定迭代次数是否大于或者等于预设次数阈值;
若是,则结束迭代过程,并触发所述译码电路执行第四操作;
若否,则继续执行第二操作,以进入下一次迭代过程,并将迭代次数加1。
结合第一方面至第一方面的第二种可能的实现方式中的任意一种,在第一方面的第三种可能的实现方式中,当未知解调参数仅包括第一类未知解调参数时,所述SLIC检测电路执行第二操作具体用于:
分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差。
结合第一方面至第一方面的第二种可能的实现方式中的任意一种,在第一方面的第四种可能的实现方式中,当未知解调参数仅包括第二类未知解调参数时,所述SLIC检测电路执行第二操作具体用于:
分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合,计算每层所述第二等效发射信号的方差。
结合第一方面至第一方面的第二种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,当未知解调参数包括第一类未知解调参数和第二类未知解调参数时,所述SLIC检测电路执行第二操作具体用于:
分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差,并分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合以及每层所述第二发射信号的方差,计算每层所述第二等效发射信号的方差。
结合第一方面的第三种可能的实现方式或第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一类未知解调参数包括 调制阶数及数据导频功率比。
结合第一方面的第四种可能的实现方式或第五种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第二类未知解调参数包括传输模式、秩及预编码指示PMI。
结合第一方面的第三种可能的实现方式或第五种可能的实现方式,在第一方面的第八种可能的实现方式中,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,所述SLIC检测电路在执行第二操作时用于根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差包括:
获取第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的方差,并形成第一均值集合和第一方差集合;
根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合和第一方差集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差。
结合第一方面的第四种可能的实现方式或第五种可能的实现方式,在第一方面的第九种可能的实现方式中,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,所述SLIC检测电路在执行第二操作时用于根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合,计算第j层所述第二等效发射信号的方差包括:
根据第j层所述第二发射信号的方差,获取第j层所述第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二等效发射信号的第二方差,并形成第二方差集合;
根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射 信号的方差。
结合第一方面的第八种可能的实现方式,在第一方面的第十种可能的实现方式中,所述SLIC检测电路在获取第j层所述第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成第一均值集合和第一方差集合时用于:
根据上一次迭代过程中计算获得的第j层所述第二发射信号对应的LLR,计算第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成所述第一均值集合和所述第一方差集合。
结合第一方面的第八种可能的实现方式,在第一方面的第十一种可能的实现方式中,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合,计算第j层所述第二发射信号的均值时用于:
根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式一,计算所述第一均值集合中多个元素的加权平均数,以获得第j层所述第二发射信号的均值;
所述公式一表示为:
Figure PCTCN2015090315-appb-000001
其中,E(xj)表示第j层所述第二发射信号的均值,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
结合第一方面的第八种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述SLIC检测电路在根据预设准则、第j层所述第 二发射信号的第一类未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差时用于:
根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式二,计算所述第一方差集合中多个元素的加权平均数,以获得第j层所述第二发射信号的方差;
所述公式二表示为:
Figure PCTCN2015090315-appb-000002
其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
结合第一方面的第八种可能的实现方式,在第一方面的第十三种可能的实现方式中,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差时用于:
根据第j层所述第二发射信号的未知解调参数对应的概率集合、所述第一方差集合以及公式三,计算第j层所述第二发射信号的方差;
所述公式三表示为:
Figure PCTCN2015090315-appb-000003
其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预 设取值集合内第t个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,E(xj)表示第j层所述第二发射信号的均值。
结合第一方面的第九种可能的实现方式,在第一方面的第十四种可能的实现方式中,
结合第一方面所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差时用于:
根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及公式四,计算所述第二方差集合中多个元素的加权平均数,以获得第j层所述第二等效发射信号的方差;
所述公式四表示为:
Figure PCTCN2015090315-appb-000004
其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第一方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素。的第九种可能的实现方式,在第一方面的第十五种可能的实现方式中,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差时用于:
根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合、所述第二方差集合以及公式五,计算第j层所述第二等效发射信号的方差;
所述公式五表示为:
Figure PCTCN2015090315-appb-000005
其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第二方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第w个取值对应的第j层所述第二等效发射信号的第二均值,E(Xj)表示第j层所述第二等效发射信号的均值。
第二方面,提供一种信号解调方法,包括:
步骤一:根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,所述接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,所述概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率;
步骤二:分别根据每层所述第二发射信号的未知解调参数对应的概率集合,计算每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,所述第二等效发射信号为所述第二发射信号进行预编码后的信号;
步骤三:根据每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,计算每层所述发射信号分别对应的对数似然比LLR;
步骤四:根据所述发射信号中每层所述第一发射信号对应的LLR进行译码,获得所述第一发射信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述未知 解调参数包括调制阶数、数据导频功率比、传输模式、秩以及预编码指示PMI中的至少一个。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,在所述步骤二之前还包括预设迭代次数;
在所述步骤三之后还包括:
确定迭代次数是否大于或者等于预设次数阈值;
若是,则结束迭代过程,并执行步骤四;
若否,则继续执行步骤二以进入下一次迭代过程,并将迭代次数加1。
结合第二方面至第二方面的第二种可能的实现方式中的任意一种,在第二方面的第三种可能的实现方式中,当未知解调参数仅包括第一类未知解调参数时,所述步骤二包括:
分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差。
结合第二方面至第二方面的第二种可能的实现方式中的任意一种,在第二方面的第四种可能的实现方式中,当未知解调参数仅包括第二类未知解调参数时,所述步骤二包括:
分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合,计算每层所述第二等效发射信号的方差。
结合第二方面至第二方面的第二种可能的实现方式中的任意一种,在第二方面的第五种可能的实现方式中,当未知解调参数包括第一类未知解调参数和第二类未知解调参数时,所述步骤二包括:
分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差,并分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合以及每层所述第二发射信号的方差,计算每层所述第二等效发射信号的方差。
结合第二方面的第三种可能的实现方式或第五种可能的实现方式, 在第二方面的第六种可能的实现方式中,所述第一类未知解调参数包括调制阶数及数据导频功率比。
结合第二方面的第四种可能的实现方式或第五种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第二类未知解调参数包括传输模式、秩及预编码指示PMI。
结合第二方面的第三种可能的实现方式或第五种可能的实现方式,在第二方面的第八种可能的实现方式中,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,在所述步骤二中根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差包括:
获取第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的方差,并形成第一均值集合和第一方差集合;
根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合和第一方差集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差。
结合第二方面的第四种可能的实现方式或第五种可能的实现方式,在第二方面的第九种可能的实现方式中,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,在所述步骤二中根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合,计算第j层所述第二等效发射信号的方差包括:
根据第j层所述第二发射信号的方差,获取第j层所述第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二等效发射信号的第二方差,并形成第二方差集合;
根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差。
结合第二方面的第八种可能的实现方式,在第二方面的第十种可能的实现方式中,所述获取第j层所述第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成第一均值集合和第一方差集合包括:
根据上一次迭代过程中计算获得的第j层所述第二发射信号对应的LLR,计算第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成所述第一均值集合和所述第一方差集合。
结合第二方面的第八种可能的实现方式,在第二方面的第十一种可能的实现方式中,根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合,计算第j层所述第二发射信号的均值包括:
根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式一,计算所述第一均值集合中多个元素的加权平均数,以获得第j层所述第二发射信号的均值;
所述公式一表示为:
Figure PCTCN2015090315-appb-000006
其中,E(xj)表示第j层所述第二发射信号的均值,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
结合第二方面的第八种可能的实现方式,在第二方面的第十二种可能的实现方式中,根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差包括:
根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式二,计算所述第一方差集合中多个元素的加权平均数,以获得第j层所述第二发射信号的方差;
所述公式二表示为:
Figure PCTCN2015090315-appb-000007
其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
结合第二方面的第八种可能的实现方式,在第二方面的第十三种可能的实现方式中,根据预设准则、第j层所述第二发射信号的未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差包括:
根据第j层所述第二发射信号的未知解调参数对应的概率集合、所述第一方差集合以及公式三,计算第j层所述第二发射信号的方差;
所述公式三表示为:
Figure PCTCN2015090315-appb-000008
其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,E(xj)表示第j层所述第二发射信号的均值。
结合第二方面的第九种可能的实现方式,在第二方面的第十四种可能的实现方式中,根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差包括:
根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及公式四,计算所述第二方差集合中多个元素的加权平均数,以获得第j层所述第二等效发射信号的方差;
所述公式四表示为:
Figure PCTCN2015090315-appb-000009
其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第一方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素。
结合第二方面的第九种可能的实现方式,在第二方面的第十五种可能的实现方式中,根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差包括:
根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合、所述第二方差集合以及公式五,计算第j层所述第二等效发射信号的方差;
所述公式五表示为:
Figure PCTCN2015090315-appb-000010
其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第 j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第二方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第w个取值对应的第j层所述第二等效发射信号的第二均值,E(Xj)表示第j层所述第二等效发射信号的均值。
本发明实施例提供一种信号解调方法及终端,根据干扰小区发送的每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率,计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,并根据计算获得的每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个计算每层发射信号的LLR,从而根据服务小区发送的每层第一发射信号对应的LLR译码获得第一发射信号。因而不像现有技术那样,需要根据估计出的解调参数译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种信号解调方法流程示意图;
图2为LTE通信系统基本架构示意图;
图3为本发明实施例提供的一种资源块的示意图;
图4为本发明实施例提供的一种信号解调方法流程示意图;
图5为本发明实施例提供的一种终端结构示意图;
图6为本发明实施例提供的另一种信号解调方法流程示意图;
图7为本发明实施例提供的又一种信号解调方法流程示意图;
图8为本发明实施例提供的一种改进的SLIC检测方法流程示意图;
图9为本发明实施例提供的另一种信号解调方法流程示意图;
图10为本发明实施例提供的另一种信号解调方法流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术和多输入多输出(Multiple-Input Multiple-Output,MIMO)技术是LTE通信系统的两个关键技术,LTE通信系统采用OFDM技术通过多个发射天线和多个接收天线进行信号传输的基本网络架构可以参见图2。其中,010可以为基站(或接入点等),021-028可以为终端(或移动站、远程站、用户设备等),基站010和终端021-028可以包括至少一个天线,通常是多天线,每个天线发射的信号可以对应一层。其中的终端可以为手机、iPad、个人数字助手等用户设备。
在图2所示的基本网络架构中,终端021-028的服务基站010形成的服务小区发送的第一发射信号和其他基站的干扰小区发送的第二发射信号,可以通过如图3所示的资源块及资源块包括的多个资源单元(Resource Element,RE)传输至终端021-028中的任一个。终端接收的信号可以包括多个资源单元,任一资源单元中的信号可能包括服务小区发送的第一发射信号和干扰小区发送的第二发射信号。若终端的接收天线个数为N(N为正整数),则任一资源单元中信号的表达式可以表示为:
y=HX+n=HBx+n         (1-1)
其中,y表示一个资源单元中的接收信号;X表示发射信号进行预编码后的等效发射信号;x=[x1,…,xk,…,xL]T,表示预编码前的L层发射信号,可以包括服务小区发送的第1至第S层第一发射信号和干扰小区发送的第S+1至第L层第二发射信号,S、L为正整数,xk表示第k层发射信号,xk具体可以为服务小区或干扰小区发送的参考信号(Reference Signal,RS),或者为服务小区或干扰小区发送的数据信号;H=[h1,…,hk,…,hL],表示信道矩阵,hk为N维列向量,表示L层发射信号中第k层发射信号对应的信道矩阵;B=[b1,bk,…,bL],表示预编码矩阵,bk表示L层发射信号中第k层发射信号对应的预编码向量或预编码矩阵;n表示N维加性高斯白噪声向量,n的均值为0,协方差矩阵为σ2I。
需要说明的是,以下实施例中,“发射信号”表示预编码前的发射信号,预编码后的发射信号可以称为等效发射信号,预编码后的第一发射信号可以称为第一等效发射信号,预编码后的第二发射信号可以称为第二等效发射信号。
这里将以根据图1所示的信号解调方法流程,解调任一资源单元中服务小区发送的第i层发射信号xi为例进行说明,i为[1,S]范围内的正整数,对于其它层发射信号来说,由于第一发射信号是服务小区发送的,因而第一发射信号的第1层至第S层发射信号的解调参数是与服务小区(服务小区的基站)约定的,而第S+1层至第L层发射信号是干扰小区发送的第二发射信号,因而第S+1层至第L层发射信号的解调参数是未知的,需要通过经典估计算法估计获得。其中的解调参数可以包括用以描述发射信号特性的调制阶数、数据导频功率比、传输模式、秩、PMI等。例如,调制阶数可以用于描述采用QPSK、8PSK、16QAM、64QAM等调制方式时,与星座图上的点对应的发射信号的码元包括的比特数;数据导频功率比可以用于描述资源单元中数据信号与导频信号的功率的比值;传输模式可以用于描述发射信号的传输方式,可以包括TM1-TM9;秩可以用于描述终端可以从基站接收的发射信号的数据层数;PMI可以用于指示预编码矩阵码本集合的索引。终端结合接收信号、信道矩阵以及估计出的解调参数进行SLIC检测,SLIC检测过程实际上是预设次数的迭代过程,该迭 代过程具体可以如下:
(1)、消除软干扰,即在接收信号中消去第i层发射信号以外的其它层发射信号的干扰,获得第i层发射信号对应的第i层接收信号,可以表示为:
Figure PCTCN2015090315-appb-000011
其中,yi表示第i层发射信号对应的第i层接收信号,y表示接收信号,hk表示第k层发射信号对应的信道矩阵,可以通过信道估计获得,E(Xk)表示第k层等效发射信号的均值,k的取值为[1,L]范围内的正整数,且k≠i,E(xk)表示第k层发射信号的均值,bk表示第k层发射信号对应的预编码向量或预编码矩阵。现有技术中,终端可以根据估计获得的传输模式、秩、PMI等解调参数获得预编码矩阵B,从而获得bk
其中,
Xk=bkxk        (1-3)
在首次迭代过程中,可以设置所有层发射信号的均值为预设值0。在非首次迭代过程中,若k在[1,S]范围内,则终端可以根据约定的第k层发射信号的调制阶数对应的调制方式在星座图上的点,以及上一次迭代过程中获得的第k层发射信号的LLR,计算本次迭代过程中第k层发射信号的均值E(xk);若k在[S+1,L]范围内,则终端可以根据估计获得的第k层发射信号的调制阶数对应的调制方式在星座图上的点,以及上一次迭代过程中获得的第k层发射信号的LLR,计算本次迭代过程中第k层发射信号的均值E(xk)
由式(1-2)可知,在获得第k层发射信号的均值E(xk)的前提下,可以根据获得的第k层发射信号对应的预编码向量或预编码矩阵bk,计算获得第k层等效发射信号的均值bkE(xk)
(2)、消除残余干扰,即根据MMSE估计准则估计第i层发射信号,第i层发射信号的估计量可以表示为:
Figure PCTCN2015090315-appb-000012
其中,
wi=[HViHH2I]-1hi     (1-5)
上述矩阵的上标为-1表示该矩阵的逆矩阵;H表示信道矩阵,hi表示第i层发射信号对应的信道矩阵;Vi表示解调第i层发射信号时需要获得的方差矩阵。其中,
Vi=Bdiag(v1,…,1,...,vk,…,vL)B*          (1-6a)
vk=V(xkxk *)表示第k层发射信号xk的方差,第i层发射信号的方差vi为1。现有技术根据估计出的第二发射信号的解调参数可以计算获得vk以及B和B*,从而计算获得Vi
此外,由于第k层等效发射信号为bkxk,因而第k层等效发射信号的方差
Figure PCTCN2015090315-appb-000013
可以表示为:
Figure PCTCN2015090315-appb-000014
且Vi可以表示为:
Figure PCTCN2015090315-appb-000015
当根据估计出的第二发射信号的解调参数可以确定B从而确定bk时,
Figure PCTCN2015090315-appb-000016
还可以表示为:
Figure PCTCN2015090315-appb-000017
则Vi可以表示为:
Figure PCTCN2015090315-appb-000018
由式(1-7b)可知,在获得第k层发射信号的方差vk的前提下,可以根据获得的第k层发射信号对应的预编码向量或预编码矩阵bk,计算获得第k层等效发射信号的方差。
在首次迭代过程中,可以设置所有层发射信号的方差为预设值1。在 非首次迭代过程中,若k在[1,S]范围内,则终端根据约定的第k层发射信号的调制阶数对应的调制方式在星座图上的点,以及上一次迭代过程中获得的第k层发射信号的LLR,计算本次迭代过程中第k层发射信号的方差vk;若k在[S+1,L]范围内,则终端可以根据估计获得的第k层发射信号的调制阶数对应的调制方式在星座图上的点,以及上一次迭代过程中获得的第k层发射信号的LLR,计算本次迭代过程中第k层发射信号的方差vk
进一步地,第i层发射信号的估计量可以建模为:
Figure PCTCN2015090315-appb-000019
其中,
Figure PCTCN2015090315-appb-000020
上标H表示共轭转置矩阵;xi表示第i层发射信号对应的星座图上的点的取值;ξi表示高斯分布的随机变量,均值为零,方差如下:
Figure PCTCN2015090315-appb-000021
根据式(1-8)、式(1-9)、式(1-10),可以计算第i层发射信号的对数似然比LLR,LLR的表达式可以表示为:
Figure PCTCN2015090315-appb-000022
其中,λi,q表示第i层发射信号第q比特的LLR,用以描述第i层发射信号第q比特为0或者为1的可能性。
这里的步骤(1)和步骤(2)是以计算任一层发射信号(第i层发射信号)的LLR为例进行说明的,基于上述步骤(1)和步骤(2)可以计算所有层发射信号分别对应的LLR,包括第k层发射信号对应的LLR即λk,q
(3)、确定当前迭代次数是否大于或者等于预设次数阈值,若是,则根据所有层第一发射信号对应的LLR进行译码,从而获得第一发射信号;若否,则迭代次数加1并继续执行步骤(1)开始下一次迭代过程,从而继续根据步骤(1)和步骤(2)计算下一次迭代过程中所有层发射信号分别对应的LLR。
在图1所示的信号解调方法流程图中,由于终端需要根据自主估计干扰小区发送的第二发射信号的调制阶数、数据导频功率比、传输模式、秩和PMI等解调参数,获得每层第二发射信号的均值和方差,从而计算获得每层发射信号的LLR,进而译码获得服务小区发送的第一发射信号,而终端自主估计解调参数的准确度较低,从而使得现有技术中通过SLIC解调算法抑制同频干扰的能力较差,误帧率较高,从而降低了终端的解调性能。
本发明以下实施例提供的信号解调方法使得终端可以在不估计解调参数的情况下,根据每层第二发射信号的解调参数的预设取值集合的多个取值中每个取值分别对应的概率、接收的信号以及信道矩阵进行SLIC解调,从而计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,进而根据每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个计算获得每层发射信号的LLR,从而译码获得解调后的第一发射信号。其中,本发明实施例提供的信号解调方法的流程图可以参见图4。本发明以下实施例将以解调任一资源单元中服务小区发送的第一发射信号为例进行说明。
实施例1
参见图5,本发明实施例提供一种终端10,可以包括:
概率集合获取电路11,可以用于执行第一操作,第一操作包括根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L 为正整数,且S小于L,概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率。
其中,终端接收到的信号可以包括多个资源单元,任一资源单元中的接收信号的表达式可以参见式(1-1),其中,x=[x1,…,xk,…,xL]T为接收信号y对应的发射信号,X为接收信号y对应的等效发射信号。这里的信道参数可以包括每层发射信号分别对应的信道矩阵。其中的解调参数可以包括调制阶数、数据导频功率比、传输模式、秩、PMI等。对于终端来说,服务小区发送的第1层至第S层第一发射信号的解调参数是终端与服务小区约定的,因而是已知的;干扰小区发送的第S+1层至第L层第二发射信号的解调参数是未知的,采用现有技术可以估计获得。需要说明的是,本发明实施例中的未知解调参数是调制阶数、数据导频功率比、传输模式、秩、PMI等解调参数中的至少一个。
符号级别干扰消除SLIC检测电路12,可以耦合于概率集合获取电路并用于执行第二操作,该第二操作包括分别根据每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,第二等效发射信号为第二发射信号进行预编码后的信号;其中,SLIC还可以用于执行第三操作,该第三操作包括根据每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,计算每层发射信号分别对应的对数似然比LLR。
译码电路13,可以耦合于SLIC检测电路,用于执行第四操作,该第四操作包括根据发射信号中每层第一发射信号对应的LLR进行译码,获得第一发射信号。
其中,这里的终端10可以通信网络系统中从基站接收信号的移动站、远程站等,例如可以为手机、iPad、个人数字助手等用户设备。这里的解调参数是SLIC解调过程中描述信号特性的参数,可以包括调制阶数、数据导频功率比、传输模式、秩、PMI等。在本发明实施例中,未知 解调参数可以包括调制阶数、数据导频功率比、传输模式、秩以及预编码指示PMI中的至少一个。
需要说明的是,对于每一层第二发射信号,终端10根据该层第二发射信号的未知解调参数对应的概率集合,计算该层第二发射信号的均值、以及该层第二发射信号的方差和该层第二等效发射信号的方差中的至少一个,以便于根据计算获得的该层第二发射信号的均值、该层第二发射信号的方差和该层第二等效发射信号的方差中的至少一个,计算每层发射信号的LLR,从而译码获得第一发射信号。也就是说,终端10可以在未估计出每层第二发射信号的未知解调参数的具体取值的情况下,通过每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,从而解调获得第一发射信号,而不像现有技术那样,需要根据估计出的解调参数计算每层第二发射的均值和方差,从而计算每层发射信号的LLR,并译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而能够有效抑制同频干扰,降低误帧率,提高解调性能。
上述未知解调参数可以包括第一类未知解调参数和第二类未知解调参数。第一类未知解调参数可以包括调制阶数、数据导频功率比等,第二类未知解调参数可以包括传输模数、秩、PMI等。其中,第二类未知解调参数的不同取值会影响预编码矩阵B。
当未知解调参数仅包括第一类未知解调参数时,SLIC检测电路12执行第二操作可以具体用于:
分别根据每层第二发射信号的第一类未知解调参数对应的概率集合,计算每层第二发射信号的均值和每层第二发射信号的方差。
当未知解调参数仅包括第二类未知解调参数时,SLIC检测电路12执行第二操作可以具体用于:
分别根据每层第二发射信号的第二类未知解调参数对应的概率集合,计算每层第二等效发射信号的方差。
当未知解调参数包括第一类未知解调参数和第二类未知解调参数 时,SLIC检测电路12执行第二操作可以具体用于:
分别根据每层第二发射信号的第一类未知解调参数对应的概率集合,计算每层第二发射信号的均值和每层第二发射信号的方差,并分别根据每层第二发射信号的第二类未知解调参数对应的概率集合以及每层第二发射信号的方差,计算每层第二等效发射信号的方差。
其中,对于第j层第二发射信号,j为区间[S+1,L]内的正整数,SLIC检测电路12在执行第二操作时用于根据第j层第二发射信号的第一类未知解调参数对应的概率集合,计算第j层第二发射信号的均值和第j层第二发射信号的方差可以包括:
获取第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第j层第二发射信号的方差,并形成第一均值集合和第一方差集合;
根据预设准则、第j层第二发射信号的第一类未知解调参数对应的概率集合以及第一均值集合和第一方差集合,计算第j层第二发射信号的均值和第j层第二发射信号的方差。
对于第j层第二发射信号,j为区间[S+1,L]内的正整数,SLIC检测电路12在执行第二操作时用于根据第j层第二发射信号的第二类未知解调参数对应的概率集合,计算第j层第二等效发射信号的方差可以包括:
根据第j层第二发射信号的方差,获取第j层第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二等效发射信号的第二方差,并形成第二方差集合;
根据预设准则、第j层第二发射信号的第二类未知解调参数对应的概率集合以及第二方差集合,计算第j层第二等效发射信号的方差。
具体的,SLIC检测电路12在获取第j层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第j层第二发射信号的第一方差,并形成第一均值集合和第一方差集合时可以用于:
根据上一次迭代过程中计算获得的第j层第二发射信号对应的 LLR,计算第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第j层第二发射信号的第一方差,并形成第一均值集合和第一方差集合。
进一步地,SLIC检测电路12在根据预设准则、第j层第二发射信号的第一类未知解调参数对应的概率集合以及第一均值集合,计算第j层第二发射信号的均值时可以用于:
根据第j层第二发射信号的第一类未知解调参数对应的概率集合以及公式一,计算第一均值集合中多个元素的加权平均数,以获得第j层第二发射信号的均值;
公式一表示为:
Figure PCTCN2015090315-appb-000023
   (公式一)
其中,E(xj)表示第j层第二发射信号的均值,m表示第j层第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Et表示与预设取值集合内第t个取值对应的第一均值集合中的元素,pt表示与预设取值集合内第t个取值对应的概率集合中的元素。
SLIC检测电路12在根据预设准则、第j层第二发射信号的第一类未知解调参数对应的概率集合以及第一方差集合,计算第j层第二发射信号的方差时可以用于:
根据第j层第二发射信号的第一类未知解调参数对应的概率集合以及公式二,计算第一方差集合中多个元素的加权平均数,以获得第j层第二发射信号的方差;
公式二表示为:
Figure PCTCN2015090315-appb-000024
   (公式二)
其中,V(xj)表示第j层第二发射信号的方差,m表示第j层第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m 为正整数,t为区间[1,m]内的正整数,Vt表示与预设取值集合内第t个取值对应的第一方差集合中的元素,pt表示与预设取值集合内第t个取值对应的概率集合中的元素。
SLIC检测电路12在根据预设准则、第j层第二发射信号的未知解调参数对应的概率集合以及第一方差集合,计算第j层第二发射信号的方差时可以用于:
根据第j层第二发射信号的未知解调参数对应的概率集合、第一方差集合以及公式三,计算第j层第二发射信号的方差;
公式三表示为:
Figure PCTCN2015090315-appb-000025
   (公式三)
其中,V(xj)表示第j层第二发射信号的方差,m表示第j层第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与预设取值集合内第t个取值对应的第一方差集合中的元素,pt表示与预设取值集合内第t个取值对应的概率集合中的元素,Et表示与预设取值集合内第t个取值对应的第一均值集合中的元素,E(xj)表示第j层第二发射信号的均值。
SLIC检测电路12在根据预设准则、第j层第二发射信号的第二类未知解调参数对应的概率集合以及第二方差集合,计算第j层第二等效发射信号的方差时可以用于:
根据第j层第二发射信号的第二类未知解调参数对应的概率集合以及公式四,计算第二方差集合中多个元素的加权平均数,以获得第j层第二等效发射信号的方差;
公式四表示为:
Figure PCTCN2015090315-appb-000026
   (公式四)
其中,V(Xj)表示第j层第二等效发射信号的方差,n表示第j层第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与预设取值集合内第w个取值对应的第一方差集合中的元素,pw表示与预设取值集合内第w个取值对应的概率集合中的元素。
SLIC检测电路12在根据预设准则、第j层第二发射信号的第二类未知解调参数对应的概率集合以及第二方差集合,计算第j层第二等效发射信号的方差时可以用于:
根据第j层第二发射信号的第二类未知解调参数对应的概率集合、第二方差集合以及公式五,计算第j层第二等效发射信号的方差;
公式五表示为:
Figure PCTCN2015090315-appb-000027
   (公式五)
其中,V(Xj)表示第j层第二等效发射信号的方差,n表示第j层第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与预设取值集合内第w个取值对应的第二方差集合中的元素,pw表示与预设取值集合内第w个取值对应的概率集合中的元素,Et表示与预设取值集合内第w个取值对应的第j层第二等效发射信号的第二均值,E(Xj)表示第j层第二等效发射信号的均值。
本发明实施例提供一种终端,根据干扰小区发送的每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率,计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,并根据计算获得的每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个计算每层发射信号的LLR,从而根据服务小区发送的每层第一发射信号对应的LLR译码获得第一发射信 号。因而不像现有技术那样,需要根据估计出的解调参数译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
实施例2
参见图6,本发明实施例提供一种信号解调方法,可以包括:
101、终端根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率。
终端接收到的信号可以包括多个资源单元,任一资源单元中的接收信号的表达式可以参见式(1-1)。这里的信道参数可以包括每层发射信号分别对应的信道矩阵。这里的解调参数是SLIC解调过程中描述信号特性的参数,可以包括调制阶数、数据导频功率比、传输模式、秩、PMI等。对于终端来说,服务小区发送的第1层至第S层第一发射信号的解调参数是终端与服务小区约定的,因而是已知的;干扰小区发送的第S+1层至第L层第二发射信号的解调参数是未知的,采用现有技术可以估计获得。本发明以下实施例中的未知解调参数可以包括调制阶数、数据导频功率比、传输模式、秩、PMI中的至少一个。
终端可以根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合。
示例性的,对于任一层第二发射信号来说,以未知解调参数为调制阶数为例,若调制方式的预设取值集合为{QPSK、16QAM、64QAM},且QPSK调制方式对应的调制阶数为2,16QAM调制方式对应的调制阶数为4,64QAM调制方式对应的调制阶数为6,则调制阶数的预设取值集合为{2、4、6},调制阶数对应的概率集合为{PMO=2(调制阶数取2时的概率),PMO=4(调制阶数取4时的概率),PMO=6(调制阶数取 6时的概率)},调制阶数对应的概率集合可以等效为{PQPSK(调制方式为QPSK时的概率),P16QAM(调制方式为16QAM时的概率),P64QAM(调制方式为64QAM时的概率)}。
示例性的,对于任一层第二发射信号来说,以未知解调参数为秩为例,若秩的预设取值集合为{1、2},则秩对应的概率集合为{PRI=1(秩为1时的概率),PRI=2(秩为2时对应的概率)}。
102、终端分别根据每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,第二等效发射信号为第二发射信号进行预编码后的信号。
等效发射信号是发射信号预编码后的信号,即等效发射信号是发射信号乘以预编码矩阵以后的信号。即式(1-1)中X的第S+1至第L层信号可以为第二等效发射信号,X的第1至第S层信号可以为第一等效发射信号。
在本步骤中,对于每一层第二发射信号,终端根据该层第二发射信号的未知解调参数对应的概率集合,计算该层第二发射信号的均值、以及该层第二发射信号方差和该层第二等效发射信号的方差中的至少一个,以便于根据计算获得的该层第二发射信号的均值、以及该层第二发射信号的方差和该层第二等效发射信号的方差中的至少一个,计算每层发射信号的LLR,从而译码获得第一发射信号。也就是说,终端可以在未估计出每层第二发射信号的未知解调参数的具体取值的情况下,通过每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,从而解调获得第一发射信号,而不像现有技术那样,需要根据估计出的解调参数计算每层第二发射的均值和方差,从而计算每层发射信号的LLR,并译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而能够有效抑制同频干扰,降低误帧率,提高解调性能。
其中,未知解调参数可以包括第一类未知解调参数和第二类未知解调 参数。第一类未知解调参数可以包括调制阶数、数据导频功率比等,第二类未知解调参数可以包括传输模数、秩、PMI等。其中,第二类未知解调参数的不同取值会影响预编码矩阵B。
具体的,当未知解调参数仅包括第一类未知解调参数时,步骤102可以包括:
终端分别根据每层第二发射信号的第一类未知解调参数对应的概率集合,计算每层第二发射信号的均值和每层第二发射信号的方差。
当未知解调参数仅包括第二类未知解调参数时,步骤102可以包括:
终端分别根据每层第二发射信号的第二类未知解调参数对应的概率集合,计算每层第二等效发射信号的方差。
当未知解调参数包括第一类未知解调参数和第二类未知解调参数时,步骤102可以包括:
终端分别根据每层第二发射信号的第一类未知解调参数对应的概率集合,计算每层第二发射信号的均值和每层第二发射信号的方差,并分别根据每层第二发射信号的第二类未知解调参数对应的概率集合以及每层第二发射信号的方差,计算每层第二等效发射信号的方差。
此外,由于第一发射信号的解调参数是约定的,因而与现有技术一致,终端可以根据每层第一发射信号的解调参数计算该层第一发射信号的均值和方差。并且,根据式(1-3)还可以计算获得该层第一等效发射信号的均值,根据式(1-7b)还可以计算获得该层第一等效发射信号的方差。
103、终端根据每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个,计算每层发射信号分别对应的对数似然比LLR。
终端可以根据每层第二发射信号的均值,每层第一发射信号的均值以及式(1-2)进行软干扰消除;根据每层第二发射信号的方差,每层第一发射信号的方差,预编码矩阵B,以及式(1-4)、(1-5)、(1-6a)、(1-8)、(1-9)和(1-10),分别计算每层发射信号对应的LLR;或 者,根据每层第二等效发射信号的方差,每层第一等效发射信号的方差,以及式(1-4)、(1-5)、(1-6b)、(1-8)、(1-9)和(1-10),分别计算每层发射信号对应的LLR,其中,每层第一等效发射信号的方差可以根据每层第一发射信号的方差以及式(1-7b)计算获得。
104、终端根据发射信号中每层第一发射信号对应的LLR进行译码,获得第一发射信号。
在获得每层发射信号分别对应的对数似然比LLR后,终端可以根据发射信号中每层第一发射信号对应的LLR译码获得服务小区发送的第一发射信号。
本发明实施例提供一种信号解调方法,根据干扰小区发送的每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率,计算每层第二发射信号的均值、每层第二发射信号的方差以及每层第二等效发射信号的方差中的至少一个,并根据计算获得的每层第二发射信号的均值、以及每层第二发射信号的方差和每层第二等效发射信号的方差中的至少一个计算每层发射信号的LLR,从而根据服务小区发送的每层第一发射信号对应的LLR译码获得第一发射信号。因而不像现有技术那样,需要根据估计出的解调参数译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
实施例3
本发明实施例提供一种信号解调方法,以未知解调参数仅包括第一类未知解调参数中的调制阶数为例进行说明,参见图7,可以包括:
201、终端根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率。
其中,任一资源单元中接收信号的表达式可以参见式(1-1),具体可以参见步骤101中的描述。当未知解调参数为调制阶数时,若调制方式的预设取值集合为{QPSK、16QAM、64QAM},则调制阶数的预设取值集合为{2、4、6},调制阶数对应的概率集合为{PMO=2、PMO=4、PMO=6},可以等效为概率集合{PQPSK、P16QAM、P64QAM}。终端可以根据接收信号以及信道参数,分别获得每层第二发射信号的任一调制阶数的取值对应的概率,即任一调制方式对应的概率,从而形成概率集合。
示例性的,终端可以采用改进的广义对数最大似然算法计算QPSK的概率PQPSK,这里的PQPSK可以是似然概率。其中,采用改进的广义对数最大似然算法计算QPSK的非归一化似然概率的表达式可以为:
Figure PCTCN2015090315-appb-000028
其中,xj表示QPSK对应的星座图上的点的具体取值,j的取值为[S+1,L]范围内的正整数,
Figure PCTCN2015090315-appb-000029
表示在QPSK对应的星座图上的4个点对应的取值集合范围内求和,
Figure PCTCN2015090315-appb-000030
表示在当前资源块中不包含参考信号RS的所有资源单元RE范围内求和。
即QPSK的非归一化似然概率是通过先计算QPSK星座图上4个点的取值对应的似然函数的均值,再在资源块中不包含参考信号RS的所有RE范围内求和得到的。在得到QPSK的非归一化似然概率后,再除以QPSK、16QAM、64QAM的非归一化似然概率之和,可以得到QPSK的归一化似然概率。
值得注意的是,这里采用改进的广义对数最大似然算法计算QPSK的概率PQPSK的方法仅是举例说明,当然,还可以采用其它算法计算PQPSK,这里不做限定。与计算PQPSK的方法类似,还可以计算获得P16QAM及P64QAM,从而获得概率集合{PQPSK、P16QAM、P64QAM}。
在获得每层第二发射信号的未知解调参数对应的概率集合后,终端可以进入改进的SLIC检测过程。参见图8,改进的SLIC检测过程是根据每层第二发射信号的未知解调参数对应的概率集合,通过迭代过程计算每层第二发射信号的均值和方差,从而计算每层发射信号分别对应的对数似然比LLR。其中,任一次的迭代过程可以包括以下步骤202-204。
在进入改进的SLIC检测过程之前,终端还可以预设迭代次数,并设定初始值,例如迭代次数的初始值可以为0。
202、终端获取第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第j层第二发射信号的方差,并形成第一均值集合和第一方差集合。
终端在执行步骤202之前,可以根据迭代次数确定当前迭代过程是否为首次迭代过程。
若迭代次数为初始值,则终端可以确定当前迭代过程为首次迭代过程。在首次迭代过程中,第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值可以为预设值0,即第一均值集合中的元素均为0;第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一方差可以为预设值1,即第一方差集合中的元素均为1。
若迭代次数不为初始值,则终端可以确定当前迭代过程为非首次迭代过程。在非首次迭代过程中,终端可以获取调制阶数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第一方差,即QPSK对应的第j层第二发射信号的第一均值EQPSK和第一方差VQPSK,16QAM对应的第j层第二发射信号的第一均值E16QAM和第一方差V16QAM,64QAM对应的第j层第二发射信号的第一均值E64QAM和第一方差V64QAM。从而,可以形成第一均值集合{EQPSK,E16QAM,E64QAM}, 和第一方差集合{VQPSK,V16QAM,V64QAM}。
示例性的,终端可以采用以下两种方式获得第一均值集合{EQPSK,E16QAM,E64QAM}和第一方差集合{VQPSK,V16QAM,V64QAM}。
方式一:
终端采用如下表示式计算EQPSK和VQPSK
Figure PCTCN2015090315-appb-000031
Figure PCTCN2015090315-appb-000032
Figure PCTCN2015090315-appb-000033
其中,xj表示QPSK对应的星座图上的点的具体取值,
Figure PCTCN2015090315-appb-000034
表示在QPSK对应的星座图上的点的4个取值范围内求和,PQPSK表示第j层发射信号采用QPSK调制方式的概率,PQPSK为调制阶数对应的概率集合中的元素,式(1-15)中V(ξj)的描述可以参见式(1-10)。
与计算EQPSK和VQPSK类似,终端还可以采用如下表达式计算获得E16QAM和V16QAM
Figure PCTCN2015090315-appb-000035
Figure PCTCN2015090315-appb-000036
Figure PCTCN2015090315-appb-000037
其中,xj表示16QAM对应的星座图上的点的具体取值,
Figure PCTCN2015090315-appb-000038
表示在16QAM对应的星座图上的点的16个取值范围内求和,P16QAM表示第j层发射信号采用16QAM调制方式的概率,P16QAM为调制阶数对应的概率集合中的元素,式(1-15)中V(ξj)的描述可以参见式(1-10)。
类似的,终端还可以采用如下表达式计算获得E64QAM和V64QAM
Figure PCTCN2015090315-appb-000039
Figure PCTCN2015090315-appb-000040
Figure PCTCN2015090315-appb-000041
其中,xj表示64QAM对应的星座图上的点的具体取值,
Figure PCTCN2015090315-appb-000042
表示在64QAM对应的星座图上的点的64个取值范围内求和,P64QAM表示第j层发射信号采用64QAM调制方式的概率,P64QAM为调制阶数对应的概率集合中的元素,式(1-15)中V(ξj)的描述可以参见式(1-10)。
方式二:
终端可以根据上一次迭代过程中计算获得的第j层第二发射信号对应的LLR,计算第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第j层第二发射信号的第一方差,并形成第一均值集合和第一方差集合。
具体的,终端可以根据上一次迭代过程中计算获得的第j层第二发射信号对应的LLR,采用现有SLIC解调算法中的传统算法,计算第一均值集合{EQPSK,E16QAM,E64QAM}、第一方差集合{VQPSK,V16QAM,V64QAM}。
示例性的,根据上一次迭代过程中计算获得的第j层第二发射信号对应的LLR,采用现有SLIC解调算法中的传统算法计算获得EQPSK/E16QAM/E64QAM的表达式可以如下:
Figure PCTCN2015090315-appb-000043
其中,
Figure PCTCN2015090315-appb-000044
Figure PCTCN2015090315-appb-000045
EQPSK/16QAM/64QAM表示计算EQPSK或E16QAM或E64QAM,当计算EQPSK时,xj表示QPSK对应的星座图上的点的具体取值,
Figure PCTCN2015090315-appb-000046
表示在QPSK对应的星座图上的点的4个取值范围内求和,P(tq=1)表示当前比特取1的概率,P(tq=0)表示当前比特取0的概率,
Figure PCTCN2015090315-appb-000047
表示在xj对应的q个比特范围内连乘,当调制方式为QPSK时,q为2。
具体的,根据式(1-22)-式(1-23)获得EQPSK的表达式可以为:
Figure PCTCN2015090315-appb-000048
其中,λ0表示QPSK对应的两个比特中第0比特对应的LLR,λ1表示QPSK对应的两个比特中第1比特对应的LLR。
此外,根据上一次迭代过程中计算获得的第j层第二发射信号对应的LLR,采用现有SLIC解调算法中的传统算法计算获得VQPSK的表达式可以为:
对于根据上一次迭代过程中计算获得的第j层第二发射信号对应的LLR,采用现有SLIC解调算法中的传统算法,计算E16QAM、E64QAM 以及V16QAM、V64QAM的方法与上述计算EQPSK和VQPSK的过程类似,这里不再进行详细描述。
将方式一与方式二相比可知,方式二可以采用现有技术中已有的传统算法基于LLR分别获得三种调制方式分别对应的第j层第二发射信号的第一均值和第一方差,而方式一不能采用现有技术中已有的传统算法,且需要对三种调制方式分别对应的4个、16个、64个取值进行加权,从而获得三种调制方式分别对应的第j层第二发射信号的第一均值和第一方差,因而方式一的计算过程较为复杂,计算量大。
203、终端根据预设准则、第j层第二发射信号的第一类未知解调参数对应的概率集合以及第一均值集合和第一方差集合,计算第j层第二发射信号的均值和第j层第二发射信号的方差。
终端在步骤202中根据第j层第二发射信号的第一均值集合和第一方差集合,获取调制阶数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第一方差之后,可以根据预设准则、第j层第二发射信号的第一均值集合和第一方差集合,计算第j层第二发射信号的均值和方差。
可选地,终端可以根据第j层第二发射信号的第一类未知解调参数对应的概率集合以及公式一,计算第一均值集合中多个元素的加权平均数,以获得第j层第二发射信号的均值,公式一可以表示为:
Figure PCTCN2015090315-appb-000050
   (公式一)
其中,E(xj)表示第j层第二发射信号的均值,m表示第j层第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Et表示与预设取值集合内第t个取值对应的第一均值集合中的元素,pt表示与预设取值集合内第t个取值对应的概率集合中的元素。
在本发明实施例中,当未知解调参数为调制阶数,预设取值集合为{QPSK、16QAM、64QAM}时,m为3,Et表示第一均值集合中的元素EQPSK、 E16QAM或E64QAM,pt表示概率集合中的PQPSK、P16QAM或P64QAM,即第j层第二发射信号的均值E(xj)可以表示为:
E(xj)=EQPSKPQPSK+E16QAMP16QAM+E64QAMP64QAM   (1-27)
其中,在首次迭代过程中,EQPSK、E16QAM和E64QAM可以均为0,在非首次迭代过程中,EQPSK、E16QAM和E64QAM可以是根据LLR通过方式二计算获得的,也可以是通过方式一计算获得的。当EQPSK、E16QAM和E64QAM通过方式一计算获得时,第j层第二发射信号的均值E(xj)还可以表示为:
Figure PCTCN2015090315-appb-000051
在上述表达式中,
Figure PCTCN2015090315-appb-000052
表示在三种调制方式对应的星座图上的点的所有84(4+16+64)个取值范围内求和,xj表示某一种调制方式对应的星座图上的点的一个具体取值,当xj取QPSK对应的星座图上的点的具体取值时,PQPSK/16QAM/64QAM取PQPSK,当xj取16QAM对应的星座图上的点的具体取值时,PQPSK/16QAM/64QAM取P16QAM,当xj取64QAM对应的星座图上的点的具体取值时,PQPSK/16QAM/64QAM取P64QAM,P(xj)可以参见式(1-21)的描述。
可选地,终端可以根据第j层第二发射信号的第一类未知解调参数对应的概率集合以及公式二,计算第一方差集合中多个元素的加权平均数,以获得第j层第二发射信号的方差,公式二可以表示为:
Figure PCTCN2015090315-appb-000053
   (公式二)
其中,V(xj)表示第j层第二发射信号的方差,m表示第j层第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与预设取值集合内第t个取值对应的第一方差集合中的元素,pt表示与预设取值集合内第t个取值对应的概率集合中的元素。
在本发明实施例中,当解调参数为调制阶数,预设取值集合为{QPSK、16QAM、64QAM}时,m为3,Vt表示第一方差集合中的VQPSK、V16QAM或V64QAM,pt表示概率集合中的PQPSK、P16QAM或P64QAM,即第j层第二发射信号的方差V(xj)可以表示为:
V(xj)=VQPSKPQPSK+V16QAMP16QAM+V64QAMP64QAM   (1-29)
其中,在首次迭代过程中,VQPSK、V16QAM和V64QAM均为1,在非首次迭代过程中,VQPSK、V16QAM和V64QAM可以是根据LLR通过方式二计算获得的,也可以是通过方式一计算获得的。当VQPSK、V16QAM和V64QAM通过方式一计算获得时,第j层第二发射信号的方差V(xj)还可以表示为:
Figure PCTCN2015090315-appb-000054
在上述表达式中,
Figure PCTCN2015090315-appb-000055
表示在三种调制方式对应的星座图上的点的所有84(4+16+64)个取值范围内求和,xj表示某一种调制方式对应的星座图上的点的一个具体取值,当xj取QPSK对应的星座图上的点的具体取值时,E(xj)取EQPSK,PQPSK/16QAM/64QAM取PQPSK,当xj取16QAM对应的星座图上的点的具体取值时,E(xj)取E16QAM,PQPSK/16QAM/64QAM取P16QAM,当xj取64QAM对应的星座图上的点的具体取值时,E(xj)取E64QAM,PQPSK/16QAM/64QAM取P64QAM,P(xj)可以参见式(1-21)的描述。
可见,参见式(1-28)和式(1-30)通过方式一获得第一均值集合和第一方差集合,从而计算获得第j层第二发射信号的均值和方差的过程较为复杂,计算量较大;而参见式(1-27)和式(1-29),通过方式二获得获得第一均值集合和第一方差集合的过程较为简单,计算量较小。
其中,采用式(1-27)和式(1-29),基于方式二计算第j层发射信号的均值和方差的方法相对于现有技术中的传统SLIC解调算法增加了2倍,但是均值、方差计算的复杂度在SLIC解调算法中占的比重很小,所 以总体复杂度增加不多。
可选地,终端还可以根据第j层第二发射信号的未知解调参数对应的概率集合、第一方差集合以及公式三,计算第j层第二发射信号的方差,公式三可以表示为:
Figure PCTCN2015090315-appb-000056
   (公式三)
其中,V(xj)表示第j层第二发射信号的方差,m表示第j层第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与预设取值集合内第t个取值对应的第一方差集合中的元素,pt表示与预设取值集合内第t个取值对应的概率集合中的元素,Et表示与预设取值集合内第t个取值对应的第一均值集合中的元素,E(xj)表示第j层第二发射信号的均值。
在本发明实施例中,当解调参数为调制阶数,预设取值集合为{QPSK、16QAM、64QAM}时,m为3,Vt表示第一方差集合中的VQPSK、V16QAM和V64QAM,Et表示第一均值集合中的EQPSK、E16QAM或E64QAM,pt表示PQPSK、P16QAM或P64QAM。根据公式三可知,第j层第二发射信号的方差V(xj)可以表示为:
Figure PCTCN2015090315-appb-000057
其中,在首次迭代过程中,EQPSK、E16QAM或E64QAM均为0,VQPSK、V16QAM和V64QAM均为1,在非首次迭代过程中,EQPSK、E16QAM或E64QAM以及VQPSK、V16QAM和V64QAM可以通过方式二计算获得,E(xj)表示第j层第二发射信号的均值,可以根据式(1-27)计算获得。
综上,通过式(1-30)基于方式一获得V(xj)的方法较为复杂,计算量大,但获得的V(xj)是严格意义上的第j层第二发射信号的方差;通过式 (1-29)基于方式二获得V(xj)的方法较为简单,计算量小,但获得的V(xj)是近似值,不是严格意义上的第j层第二发射信号的方差;通过式(1-31)基于方式二获得V(xj)的方法的复杂度居中,且获得的V(xj)是严格意义上的第j层第二发射信号的方差。
需要说明的是,对于每一层第二发射信号,终端根据该层第二发射信号未知的调制阶数对应的概率集合,计算该层第二发射信号的均值和该层第二发射信号的方差,以便于根据计算获得的该层第二发射信号的均值和该层第二发射信号的方差,计算每层发射信号的LLR,从而译码获得第一发射信号。也就是说,终端可以在未估计出每层第二发射信号的调制阶数的具体取值的情况下,通过每层第二发射信号的调制阶数对应的概率集合,计算每层第二发射信号的均值和方差,从而解调获得第一发射信号,而不像现有技术那样,需要根据估计出的调制阶数计算每层第二发射的均值和方差,从而计算每层发射信号的LLR,并译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而能够有效抑制同频干扰,降低误帧率,提高解调性能。
值得强调的是,上述步骤202至203是以计算第j层第二发射信号的均值和方差为例进行说明的,计算其它层第二发射信号的均值和方差的方法类似,这里不再赘述。
204、终端根据每层第二发射信号的均值和每层第二发射信号的方差,计算每层发射信号分别对应的对数似然比LLR。
在通过步骤202-203获得所有层第二发射信号的均值和方差后,终端可以结合通过已知解调参数获得的第一发射信号的均值,根据式(1-2)消除软干扰;进而结合通过已知解调参数获得的第一发射信号的方差以及预编码矩阵B,根据式(1-4)、(1-5)、(1-6a)(1-8)、(1-9)以及(1-10),分别计算每层发射信号对应的LLR。
此外,在本发明实施例中,由于根据调制阶数以外的解调参数可以获得预编码矩阵B以及每层发射信号对应的预编码矩阵bk,从而在获得每层发射信号的方差后,还可以根据式(1-7b)获得每层等效发 射信号的方差。因而本发明实施例还可以根据式(1-4)、(1-5)、(1-6c)(1-8)、(1-9)以及(1-10),分别计算每层发射信号对应的LLR。
205、终端确定迭代次数是否大于或者等于预设次数阈值,若是,则结束迭代过程并执行步骤206;若否,则继续执行步骤202以进入下一次迭代过程,并将迭代次数加1。
206、终端根据发射信号中每层第一发射信号对应的LLR进行译码,获得第一发射信号。
对于终端来说,服务小区发送的第一发射信号是有用信号,需要通过解调获得;而干扰小区发送的第二发射信号是干扰信号,不需要通过解调获得。因而,终端可以根据所有层发射信号的LLR中每层第一发射信号对应的LLR进行译码,从而获得每第一发射信号。
需要说明的是,本发明实施例是以未知解调参数仅包括第一类未知解调参数中的调制阶数为例进行说明的,当未知解调参数包括多个第一类未知解调参数,需要同时考虑多个未知解调参数对每层第二发射信号的均值和方差的影响。此时,预设取值集合为多个第一类未知解调参数的分别对应的预设取值集合内所有取值的排列组合,而概率集合中的概率为上述排列组合得到的取值分别对应的概率。举例来说,当未知解调参数包括调制阶数和数据导频功率比两个第一类未知解调参数时,若调制阶数对应的调制方式MM的预设取值集合为{QPSK,16QAM,64QAM},数据导频功率比PA的预设取值集合为{0dB,-3dB},则所有未知解调参数对应的预设取值集合为:{(MM=QPSK,PA=0dB),(MM=QPSK,PA=-3dB),(MM=16QAM,PA=0dB),(MM=16QAM,PA=-3dB),(MM=64QAM,PA=0dB),(MM=64QAM,PA=-3dB)}。概率集合为{P(MM=QPSK,PA=0dB),P(MM=QPSK,PA=-3dB),P(MM=16QAM,PA=0dB),P(MM=16QAM,PA=-3dB),P(MM=64QAM,PA=0dB),P(MM=64QAM,PA=-3dB)}。当调制阶数MM与数据导频功率比PA在符号域内相互独立时,概率集合可以为{PMM=QPSKPPA=0dB,PMM=QPSK,PPA=-3dB,PMM=16QAMPPA=0dB,PMM=16QAMPPA=-3dB,PMM=64QAMPPA=0dB,PMM=64QAMPPA=-3dB}。
进而,终端可以采用本发明实施例描述的上述方法,根据每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值和每层第二发射信号的方差,解调获得第一发射信号。根据本发明实施例描述的方法,很容易将未知解调参数仅包括一个第一类未知解调参数扩展为未知解调参数包括多个第一类未知解调参数,这里不再详细描述。
本发明实施例提供一种信号解调方法,当第一类未知解调参数中的调制阶数未知时,终端根据干扰小区发送的每层第二发射信号的调制阶数的预设取值集合内多个取值分别对应的概率,计算每层第二发射信号的均值和方差,并根据计算获得的每层第二发射信号的均值和方差计算每层发射信号的LLR,从而译码获得服务小区发送的第一发射信号,因而不像现有技术那样,需要根据估计出的调制阶数译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
实施例4
本发明以下实施例提供一种信号解调方法,以未知解调参数仅包括第二类未知解调参数中的秩为例进行说明,参见图9,可以包括:
301、终端根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率。
其中,任一资源单元中接收信号的表达式可以参见式(1-1),具体可以参见步骤101中的描述。当未知解调参数为秩时,若秩的预设取值集合为{1,2},则秩对应的概率集合为{PRI=1,PRI=2}。当秩为1时,第j层第二发射信号对应的预编码向量bj1为向量;当秩为1时,第j层第二发射信号对应的预编码矩阵bj2为矩阵。终端可以根据接收信号 以及信道参数,分别获得每层第二发射信号的秩的任一取值对应的概率,从而形成概率集合。
示例性的,终端可以根据接收信号以及信道参数,采用上述步骤201中的改进的广义对数最大似然算法,分别计算获得每层第二发射信号的秩的而不同取值分别对应的概率PRI=1和PRI=2,当然也可以采用其它算法进行计算,这里不做具体限定。
在获得每层第二发射信号的未知解调参数对应的概率集合后,终端可以进入改进的SLIC检测过程。参见图8,改进的SLIC检测过程是根据每层第二发射信号的未知解调参数对应的概率集合,通过迭代过程计算每层第二等效发射信号的方差,从而计算每层发射信号分别对应的对数似然比LLR。其中,任一次的迭代过程可以包括以下步骤302-304。
在进入改进的SLIC检测过程之前,终端还可以预设迭代次数,并设定初始值,例如迭代次数的初始值可以为0。
302、终端根据第j层第二发射信号的方差,获取第j层第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二等效发射信号的第二方差,并形成第二方差集合,第二等效发射信号为第二发射信号进行预编码后的信号。
终端在执行步骤302之前,可以根据迭代次数确定当前迭代过程是否为首次迭代过程。
若迭代次数为初始值,则终端可以确定当前迭代过程为首次迭代过程。在首次迭代过程中,第j层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一方差可以为预设值1。
在本发明实施例中的秩未知的情况下,终端不能确定每层第二发射信号分别对应的是预编码向量还是预编码矩阵。因而,当第j层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一方差为1时,若秩为1,则根据式 (1-7b),第j层第二发射信号对应的第j层第二等效发射信号的第二方差为Vjrank1=bj1bj1 *,若秩为2时,则根据式(1-7b),第j层第二发射信号对应的第j层第二等效发射信号的第二方差为Vjrank2=bj2bj2 *,其中,根据b2的酉矩阵特性可知
Figure PCTCN2015090315-appb-000058
因而,在首次迭代过程中,第j层第二等效发射信号的第二方差集合{Vjrank1,Vjrank2}为
Figure PCTCN2015090315-appb-000059
若迭代次数不为初始值,则终端可以确定当前迭代过程为非首次迭代过程。在非首次迭代过程中,终端可以根据上一次迭代过程中计算获得的第j层第二发射信号对应的LLR,获得本次迭代过程中秩的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一方差V(xjxj *)即vj,并根据bj1、bj2以及式(1-7b),计算秩为1时对应的第j层等效发射信号的方差为Vjrank1=bj1vjbj * 1,以及秩为2时对应的第j层等效发射信号的方差Vjrank2=bj2vjbj * 2,从而形成第二方差集合{Vjrank1,Vjrank2}。
303、终端根据预设准则、第j层第二发射信号的第二类未知解调参数对应的概率集合以及第二方差集合,计算第j层第二等效发射信号的方差。
可选地,终端可以根据第j层第二发射信号的第二类未知解调参数对应的概率集合以及公式四,计算第二方差集合中多个元素的加权平均数,以获得第j层第二等效发射信号的方差,公式四可以表示为:
Figure PCTCN2015090315-appb-000060
   (公式四)
其中,V(Xj)表示第j层第二等效发射信号的方差,n表示第j层第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与预设取值集合内第w个取值对应的第一方差集合中的元素,pw表示与预设取值集合内第w个取值对应的概率集合中的元素。
在本发明实施例中,当未知解调参数为秩,预设取值集合为{1、2} 时,w为2,Vw表示第一方差集合中的Vjrank1或Vjrank2,pw表示概率集合中的PjRI=1或PjRI=2,则根据公式四计算第j层第二等效发射信号的方差V(Xj)的表达式可以为:
V(Xj)=Vjrank1PjRI=1+Vjrank2PjRI=2  (1-32)
其中,在首次迭代过程中,Vjrank1为bj1bj1 *,Vjrank2
Figure PCTCN2015090315-appb-000061
在非首次迭代过程中,Vjrank1和Vjrank2可以根据上一次迭代过程中计算获得的LLR采用现有技术计算获得。
可选地,终端还可以根据第j层第二发射信号的第二类未知解调参数对应的概率集合、第二方差集合以及公式五,计算第j层第二等效发射信号的方差,公式五可以表示为:
Figure PCTCN2015090315-appb-000062
   (公式五)
其中,V(Xj)表示第j层第二等效发射信号的方差,n表示第j层第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与预设取值集合内第w个取值对应的第二方差集合中的元素,pw表示与预设取值集合内第w个取值对应的概率集合中的元素,Et表示与预设取值集合内第t个取值对应的第j层第二等效发射信号的第二均值,E(Xj)表示第j层第二等效发射信号的均值。
在本发明实施例中,当未知解调参数为秩,预设取值集合为{1、2}时,n为2;Vw表示第一方差集合中的Vjrank1或Vjrank2;pw表示概率集合中的PjRI=1或PjRI=2;Et表示与预设取值集合内第w个取值对应的第j层第二等效发射信号的第二均值,可以根据已知解调参数计算获得。例如,在根据已知解调参数获得与预设取值集合内第w个取值对应的第j层第二发射信号的第一均值时,可以根据式(1-3)获得第j层第 二等效发射信号的第二均值。根据公式五计算第j层第二等效发射信号的方差V(Xj)的表达式可以为:
Figure PCTCN2015090315-appb-000063
同样,在首次迭代过程中,Vjrank1为bj1bj1 *,Vjrank2
Figure PCTCN2015090315-appb-000064
在非首次迭代过程中,Vjrank1和Vjrank2可以根据上一次迭代过程中计算获得的LLR采用现有技术计算获得。
值得强调的是,上述步骤302至303是以计算第j层第二等效发射信号的方差为例进行说明的,计算其它层第二等效发射信号的方差的方法类似,这里不再赘述。此外,终端还可以根据已知解调参数采用现有技术计算每层第一等效发射信号的方差,以及每层发射信号的均值。
需要说明的是,对于每一层第二发射信号,终端根据该层第二发射信号未知的秩对应的概率集合,计算该层第二等效发射信号的方差,以便于根据计算获得的该层第二等效发射信号的方差,计算每层发射信号的LLR,从而译码获得第一发射信号。也就是说,终端可以在未估计出每层第二发射信号的秩的具体取值的情况下,通过每层第二发射信号的秩对应的概率集合,计算每层第二等效发射信号的方差,从而解调获得第一发射信号,而不像现有技术那样,需要根据估计出的秩计算每层第二发射的均值和方差,从而计算每层发射信号的LLR,并译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而能够有效抑制同频干扰,降低误帧率,提高解调性能。
304、终端根据每层第二等效发射信号的方差,分别计算每层发射信号的对数似然比LLR。
具体的,终端可以根据每层发射信号的均值以及式(1-2)进行软干扰消除,进而根据每层第二等效发射信号的方差,每层第一等效发射信号的方差,以及式(1-4)、(1-5)、(1-6b)、(1-8)、(1-9)和(1-10)分别计算每层发射信号对应的LLR。
305、终端确定迭代次数是否大于或者等于预设次数阈值,若是,则结束迭代过程并执行步骤306;若否,则继续执行步骤302以进入下一次迭代过程,并将迭代次数加1。
306、终端根据发射信号中每层第一发射信号对应的LLR进行译码,获得第一发射信号。
在获得每层发射信号对应的LLR后,终端可以根据发射信号中每层第一发射信号对应的LLR进行译码,从而获得服务小区发送的第一发射信号。
需要说明的是,本发明实施例是以未知解调参数仅包括一个第二类未知解调参数为例进行说明的,当未知解调参数包括多个第二类未知解调参数,也需要同时考虑多个第二类未知解调参数的对每层第二等效发射信号的方差的影响。根据本发明实施例提供的未知解调参数仅包括一个第二类未知解调参数时的信号解调方法,很容易得到未知解调参数包括多个第二类未知解调参数时根据所有取值和对应的概率进行信号解调的方法,这里不再赘述。
本发明实施例提供一种信号解调方法,当第二类未知解调参数秩未知时,终端根据干扰小区发送的每层第二发射信号的秩的预设取值集合内多个取值分别对应的概率,计算每层第二等效发射信号的方差,并根据计算获得的每层第二等效发射信号的方差计算每层发射信号的LLR,从而译码获得服务小区发送的第一发射信号,因而不像现有技术那样,需要根据估计出的秩译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
实施例5
本发明实施例提供一种信号解调方法,以未知解调参数包括第一类未知解调参数中的调制阶数和第二类未知解调参数中的秩为例进行说明,参见图10,可以包括:
401、终端根据接收信号及信道参数分别获得每层第二发射信号的 未知解调参数对应的概率集合,接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率。
其中,任一资源单元中接收信号的表达式可以参见式(1-1),具体可以参见步骤101中的描述。在本发明实施例中,当未知解调参数包括调制阶数和秩时,若调制阶数对应的调制方式的预设取值集合为{QPSK、16QAM、64QAM},秩对应的预设取值集合为{1,2},则调制阶数对应的概率集合为{PQPSK,P16QAM,P64QAM},概率集合中元素的计算过程具体可以参见步骤201中的描述;秩对应的概率集合为{PRI=1,PRI=2},概率集合中元素的计算方法具体可以参见步骤301中的描述。
在获得每层第二发射信号的未知解调参数对应的概率集合后,终端可以进入改进的SLIC检测过程。参见图8,改进的SLIC检测过程是根据每层第二发射信号的未知解调参数对应的概率集合,通过迭代过程计算每层第二发射信号的均值和方差,以及第二等效发射信号的方差,从而计算每层发射信号分别对应的对数似然比LLR。其中,任一次的迭代过程可以包括以下步骤402-404。
在进入改进的SLIC检测过程之前,终端还可以预设迭代次数,并设定初始值,例如迭代次数的初始值可以为0。
402、终端获取第j层第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二发射信号的第一均值和第j层第二发射信号的方差,并形成第一均值集合和第一方差集合。
403、终端根据预设准则、第j层第二发射信号的第一类未知解调参数对应的概率集合以及第一均值集合和第一方差集合,计算第j层第二发射信号的均值和第j层第二发射信号的方差。
其中,步骤402和步骤403中计算第j层第二发射信号的均值和方差的过程可以参见步骤202和步骤203中的具体描述。
404、终端根据第j层第二发射信号的方差,获取第j层第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层第二等效发射信号的第二方差,并形成第二方差集合,第二等效发射信号为第二发射信号进行预编码后的信号。
其中,步骤404具体可以参见步骤302中的描述。但与步骤302不同的是,步骤302中第二发射信号的方差是根据已知解调参数通过现有技术计算获得的,而步骤404中第二发射信号的方差是根据第一类未知解调参数通过步骤402和步骤403计算获得的。
405、终端根据预设准则、第j层第二发射信号的第二类未知解调参数对应的概率集合以及第二方差集合,计算第j层第二等效发射信号的方差。
其中,步骤405具体可以参见步骤303中的描述。
需要说明的是,对于每一层第二发射信号,终端根据该层第二发射信号的未知解调参数对应的概率集合,计算该层第二发射信号的均值和方差,和该层第二等效发射信号的方差,以便于根据计算获得的该层第二发射信号的均值和方差,以及该层第二等效发射信号的方差,计算每层发射信号的LLR,从而译码获得第一发射信号。也就是说,终端可以在未估计出每层第二发射信号的未知解调参数的具体取值的情况下,通过每层第二发射信号的未知解调参数对应的概率集合,计算每层第二发射信号的均值和方差,以及每层第二等效发射信号的方差,从而解调获得第一发射信号,而不像现有技术那样,需要根据估计出的解调参数计算每层第二发射的均值和方差,从而计算每层发射信号的LLR,并译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而能够有效抑制同频干扰,降低误帧率,提高解调性能。
406、终端根据每层第二发射信号的均值、以及每层第二发射信号 的方差和每层第二等效发射信号的方差,计算每层发射信号的对数似然比LLR。
具体的,终端可以根据每层第二发射信号的均值,结合根据已知解调参数采用现有技术获得的每层第一发射信号的均值,通过式(1-2)进行软干扰消除。并且,终端可以根据每层第二等效发射信号的方差,以及根据已知解调参数获得的每层第一等效发射信号的方差,式(1-4)、(1-5)、(1-6b)、(1-8)、(1-9)和(1-10)分别计算每层发射信号对应的LLR。
407、终端确定迭代次数是否大于或者等于预设次数阈值,若是,则结束迭代过程并执行步骤408;若否,则继续执行步骤402以进入下一次迭代过程,并将迭代次数加1。
408、终端根据发射信号中每层第一发射信号对应的LLR进行译码,获得第一发射信号。
在获得每层发射信号对应的LLR后,终端可以根据发射信号中每层第一发射信号对应的LLR进行译码,从而获得服务小区发送的第一发射信号。
需要说明的是,本发明实施例是以未知解调参数仅包括一个第一类未知解调参数和一个第二类未知解调参数为例进行说明的,当未知解调参数包括多个第一类未知解调参数和多个第二类解调参数时,需要同时考虑所有未知解调参数的对每层第二发射信号的均值、方差以及每层第二等效发射信号的方差的影响。根据本发明实施例提供的未知解调参数仅包括一个第一类未知解调参数和一个第二类未知解调参数时的信号解调方法,很容易得到未知解调参数包括多个第一类未知解调参数和多个第二类未知解调参数时根据所有取值和对应的概率进行信号解调的方法,这里不再进行详细描述。
本发明实施例提供一种信号解调方法,当未知解调参数包括第一类未知解调参数中的调制阶数和第二类未知解调参数中的秩时,终端根据干扰小区发送的每层第二发射信号的调制阶数对应的概率集合,计算每 层第二发射信号的均值和每层第二发射信号的方差,并根据每层第二发射信号的秩对应的概率集合以及每层第二发射信号的方差,计算每层第二等效发射信号的方差,从而计算每层发射信号的LLR并译码获得服务小区发送的第一发射信号,因而不像现有技术那样,需要根据估计出的调制阶数和秩译码获得第一发射信号,因而能够提高现有SLIC解调机制的估计准确度从而提高解调性能。
值的强调的是,本发明实施例是以LTE通信系统为例进行说明的,除LTE通信系统以外,具有多小区或多用户MIMO系统的其它通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM)、宽带码分多址(Wideband Code Division Multiple Access,W-CDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)等。
在本申请所提供的几个实施例中,应该理解到,所揭露的终端和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络 设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
关于装置、系统或设备的一些具体功能可参照之前方法实施例的描述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (32)

  1. 一种终端,其特征在于,包括:
    概率集合获取电路,用于执行第一操作,所述第一操作包括根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,所述接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,所述概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值分别对应的概率;
    符号级别干扰消除SLIC检测电路,耦合于所述概率集合获取电路并用于执行第二操作,所述第二操作包括分别根据每层所述第二发射信号的未知解调参数对应的概率集合,计算每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,所述第二等效发射信号为对所述第二发射信号进行预编码后的信号;其中,所述SLIC还用于执行第三操作,所述第三操作包括根据每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,计算每层所述发射信号分别对应的对数似然比LLR;
    译码电路,耦合于所述SLIC检测电路,用于执行第四操作,所述第四操作包括根据所述发射信号中每层所述第一发射信号对应的LLR进行译码,获得所述第一发射信号。
  2. 根据权利要求1所述的终端,其特征在于,所述未知解调参数包括调制阶数、数据导频功率比、传输模式、秩以及预编码指示PMI中的至少一个。
  3. 根据权利要求1或2所述的终端,其特征在于,所述SLIC检测电路在执行第二操作之前还用于预设迭代次数;
    所述SLIC检测电路在执行第三操作之后还用于:
    确定迭代次数是否大于或者等于预设次数阈值;
    若是,则结束迭代过程,并触发所述译码电路执行第四操作;
    若否,则继续执行第二操作,以进入下一次迭代过程,并将迭代次 数加1。
  4. 根据权利要求1-3任一项所述的终端,其特征在于,当未知解调参数仅包括第一类未知解调参数时,所述SLIC检测电路执行第二操作具体用于:
    分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差。
  5. 根据权利要求1-3任一项所述的终端,其特征在于,当未知解调参数仅包括第二类未知解调参数时,所述SLIC检测电路执行第二操作具体用于:
    分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合,计算每层所述第二等效发射信号的方差。
  6. 根据权利要求1-3任一项所述的终端,其特征在于,当未知解调参数包括第一类未知解调参数和第二类未知解调参数时,所述SLIC检测电路执行第二操作具体用于:
    分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差,并分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合以及每层所述第二发射信号的方差,计算每层所述第二等效发射信号的方差。
  7. 根据权利要求4或6所述的终端,其特征在于,所述第一类未知解调参数包括调制阶数及数据导频功率比。
  8. 根据权利要求5或6所述的终端,其特征在于,所述第二类未知解调参数包括传输模式、秩及预编码指示PMI。
  9. 根据权利要求4或6所述的终端,其特征在于,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,所述SLIC检测电路在执行第二操作时用于根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差包括:
    获取第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的方差,并形成第一均值集合和第一方差集合;
    根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合和第一方差集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差。
  10. 根据权利要求5或6所述的终端,其特征在于,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,所述SLIC检测电路在执行第二操作时用于根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合,计算第j层所述第二等效发射信号的方差包括:
    根据第j层所述第二发射信号的方差,获取第j层所述第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二等效发射信号的第二方差,并形成第二方差集合;
    根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差。
  11. 根据权利要求9所述的终端,其特征在于,所述SLIC检测电路在获取第j层所述第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成第一均值集合和第一方差集合时用于:
    根据上一次迭代过程中计算获得的第j层所述第二发射信号对应的LLR,计算第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成所述第一均值集合和所述第一方差集合。
  12. 根据权利要求9所述的终端,其特征在于,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第一类未知解调参数对 应的概率集合以及所述第一均值集合,计算第j层所述第二发射信号的均值时用于:
    根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式一,计算所述第一均值集合中多个元素的加权平均数,以获得第j层所述第二发射信号的均值;
    所述公式一表示为:
    Figure PCTCN2015090315-appb-100001
    其中,E(xj)表示第j层所述第二发射信号的均值,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
  13. 根据权利要求9所述的终端,其特征在于,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差时用于:
    根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式二,计算所述第一方差集合中多个元素的加权平均数,以获得第j层所述第二发射信号的方差;
    所述公式二表示为:
    Figure PCTCN2015090315-appb-100002
    其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
  14. 根据权利要求9所述的终端,其特征在于,所述SLIC检测电 路在根据预设准则、第j层所述第二发射信号的未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差时用于:
    根据第j层所述第二发射信号的未知解调参数对应的概率集合、所述第一方差集合以及公式三,计算第j层所述第二发射信号的方差;
    所述公式三表示为:
    Figure PCTCN2015090315-appb-100003
    其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,E(xj)表示第j层所述第二发射信号的均值。
  15. 根据权利要求10所述的终端,其特征在于,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差时用于:
    根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及公式四,计算所述第二方差集合中多个元素的加权平均数,以获得第j层所述第二等效发射信号的方差;
    所述公式四表示为:
    Figure PCTCN2015090315-appb-100004
    其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值 的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第一方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素。
  16. 根据权利要求10所述的终端,其特征在于,所述SLIC检测电路在根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差时用于:
    根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合、所述第二方差集合以及公式五,计算第j层所述第二等效发射信号的方差;
    所述公式五表示为:
    Figure PCTCN2015090315-appb-100005
    其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第二方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第w个取值对应的第j层所述第二等效发射信号的第二均值,E(Xj)表示第j层所述第二等效发射信号的均值。
  17. 一种信号解调方法,其特征在于,包括:
    步骤一:根据接收信号及信道参数分别获得每层第二发射信号的未知解调参数对应的概率集合,所述接收信号对应的发射信号包括服务小区发送的[1,S]层第一发射信号和干扰小区发送的[S+1,L]层第二发射信号,其中S、L为正整数,且S小于L,所述概率集合为每层第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的概率;
    步骤二:分别根据每层所述第二发射信号的未知解调参数对应的概率集合,计算每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,所述第二等效发射信号为所述第二发射信号进行预编码后的信号;
    步骤三:根据每层所述第二发射信号的均值、以及每层所述第二发射信号的方差和每层所述第二等效发射信号的方差中的至少一个,计算每层所述发射信号分别对应的对数似然比LLR;
    步骤四:根据所述发射信号中每层所述第一发射信号对应的LLR进行译码,获得所述第一发射信号。
  18. 根据权利要求17所述的方法,其特征在于,所述未知解调参数包括调制阶数、数据导频功率比、传输模式、秩以及预编码指示PMI中的至少一个。
  19. 根据权利要求17或18所述的方法,其特征在于,在所述步骤二之前还包括预设迭代次数;
    在所述步骤三之后还包括:
    确定迭代次数是否大于或者等于预设次数阈值;
    若是,则结束迭代过程,并执行步骤四;
    若否,则继续执行步骤二以进入下一次迭代过程,并将迭代次数加1。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,当未知解调参数仅包括第一类未知解调参数时,所述步骤二包括:
    分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差。
  21. 根据权利要求17-19任一项所述的方法,其特征在于,当未知解调参数仅包括第二类未知解调参数时,所述步骤二包括:
    分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合,计算每层所述第二等效发射信号的方差。
  22. 根据权利要求17-19任一项所述的方法,其特征在于,当未知 解调参数包括第一类未知解调参数和第二类未知解调参数时,所述步骤二包括:
    分别根据每层所述第二发射信号的第一类未知解调参数对应的概率集合,计算每层所述第二发射信号的均值和每层所述第二发射信号的方差,并分别根据每层所述第二发射信号的第二类未知解调参数对应的概率集合以及每层所述第二发射信号的方差,计算每层所述第二等效发射信号的方差。
  23. 根据权利要求20或22所述的方法,其特征在于,所述第一类未知解调参数包括调制阶数及数据导频功率比。
  24. 根据权利要求21或22所述的方法,其特征在于,所述第二类未知解调参数包括传输模式、秩及预编码指示PMI。
  25. 根据权利要求20或22所述的方法,其特征在于,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,在所述步骤二中根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差包括:
    获取第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的方差,并形成第一均值集合和第一方差集合;
    根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合和第一方差集合,计算第j层所述第二发射信号的均值和第j层所述第二发射信号的方差。
  26. 根据权利要求21或22所述的方法,其特征在于,对于第j层所述第二发射信号,j为区间[S+1,L]内的正整数,在所述步骤二中根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合,计算第j层所述第二等效发射信号的方差包括:
    根据第j层所述第二发射信号的方差,获取第j层所述第二发射信号的第二类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二等效发射信号的第二方差,并形成第二方差集合;
    根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差。
  27. 根据权利要求25所述的方法,其特征在于,所述获取第j层所述第二发射信号的未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成第一均值集合和第一方差集合包括:
    根据上一次迭代过程中计算获得的第j层所述第二发射信号对应的LLR,计算第j层所述第二发射信号的第一类未知解调参数的预设取值集合内多个取值中每个取值分别对应的第j层所述第二发射信号的第一均值和第j层所述第二发射信号的第一方差,并形成所述第一均值集合和所述第一方差集合。
  28. 根据权利要求25所述的方法,其特征在于,根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一均值集合,计算第j层所述第二发射信号的均值包括:
    根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式一,计算所述第一均值集合中多个元素的加权平均数,以获得第j层所述第二发射信号的均值;
    所述公式一表示为:
    Figure PCTCN2015090315-appb-100006
    其中,E(xj)表示第j层所述第二发射信号的均值,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
  29. 根据权利要求25所述的方法,其特征在于,根据预设准则、第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差包括:
    根据第j层所述第二发射信号的第一类未知解调参数对应的概率集合以及公式二,计算所述第一方差集合中多个元素的加权平均数,以获得第j层所述第二发射信号的方差;
    所述公式二表示为:
    Figure PCTCN2015090315-appb-100007
    其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素。
  30. 根据权利要求25所述的方法,其特征在于,根据预设准则、第j层所述第二发射信号的未知解调参数对应的概率集合以及所述第一方差集合,计算第j层所述第二发射信号的方差包括:
    根据第j层所述第二发射信号的未知解调参数对应的概率集合、所述第一方差集合以及公式三,计算第j层所述第二发射信号的方差;
    所述公式三表示为:
    Figure PCTCN2015090315-appb-100008
    其中,V(xj)表示第j层所述第二发射信号的方差,m表示第j层所述第二发射信号的第一类未知解调参数的预设取值集合内的取值的数量,m为正整数,t为区间[1,m]内的正整数,Vt表示与所述预设取值集合内第t个取值对应的所述第一方差集合中的元素,pt表示与所述预设取值集合内第t个取值对应的所述概率集合中的元素,Et表示与所述预设取值集合内第t个取值对应的所述第一均值集合中的元素,E(xj)表示第j层所述第二发射信号的均值。
  31. 根据权利要求26所述的方法,其特征在于,根据预设准则、 第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差包括:
    根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及公式四,计算所述第二方差集合中多个元素的加权平均数,以获得第j层所述第二等效发射信号的方差;
    所述公式四表示为:
    Figure PCTCN2015090315-appb-100009
    其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第一方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素。
  32. 根据权利要求26所述的方法,其特征在于,根据预设准则、第j层所述第二发射信号的第二类未知解调参数对应的概率集合以及所述第二方差集合,计算第j层所述第二等效发射信号的方差包括:
    根据第j层所述第二发射信号的第二类未知解调参数对应的概率集合、所述第二方差集合以及公式五,计算第j层所述第二等效发射信号的方差;
    所述公式五表示为:
    Figure PCTCN2015090315-appb-100010
    其中,V(Xj)表示第j层所述第二等效发射信号的方差,n表示第j层所述第二发射信号的第二类未知解调参数的预设取值集合内的取值的数量,n为正整数,w为区间[1,n]内的正整数,Vw表示与所述预设取值集合内第w个取值对应的所述第二方差集合中的元素,pw表示与所述预设取值集合内第w个取值对应的所述概率集合中的元素,Et表示与所 述预设取值集合内第w个取值对应的第j层所述第二等效发射信号的第二均值,E(Xj)表示第j层所述第二等效发射信号的均值。
PCT/CN2015/090315 2015-09-22 2015-09-22 一种信号解调方法及终端 WO2017049464A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/090315 WO2017049464A1 (zh) 2015-09-22 2015-09-22 一种信号解调方法及终端
EP15904351.2A EP3334110A4 (en) 2015-09-22 2015-09-22 Signal demodulation method and terminal
CN201580082444.7A CN107925642A (zh) 2015-09-22 2015-09-22 一种信号解调方法及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090315 WO2017049464A1 (zh) 2015-09-22 2015-09-22 一种信号解调方法及终端

Publications (1)

Publication Number Publication Date
WO2017049464A1 true WO2017049464A1 (zh) 2017-03-30

Family

ID=58385530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090315 WO2017049464A1 (zh) 2015-09-22 2015-09-22 一种信号解调方法及终端

Country Status (3)

Country Link
EP (1) EP3334110A4 (zh)
CN (1) CN107925642A (zh)
WO (1) WO2017049464A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999389A (zh) * 2011-11-04 2014-08-20 高通股份有限公司 用于使用盲检测由用户装备进行的干扰消除的方法和设备
US20140307569A1 (en) * 2013-04-12 2014-10-16 Qualcomm Incorporated Adaptive data interference cancellation
CN104243377A (zh) * 2014-09-01 2014-12-24 华为技术有限公司 一种干扰抑制方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
US9723496B2 (en) * 2011-11-04 2017-08-01 Qualcomm Incorporated Method and apparatus for interference cancellation by a user equipment using blind detection
CN203014806U (zh) * 2012-12-31 2013-06-19 上海斐讯数据通信技术有限公司 Eoc终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103999389A (zh) * 2011-11-04 2014-08-20 高通股份有限公司 用于使用盲检测由用户装备进行的干扰消除的方法和设备
US20140307569A1 (en) * 2013-04-12 2014-10-16 Qualcomm Incorporated Adaptive data interference cancellation
CN104243377A (zh) * 2014-09-01 2014-12-24 华为技术有限公司 一种干扰抑制方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: "Study on Network-Assisted Interference Cancellation and Suppression (NAIC) for LTE (Release 12)", 3GPP TR 36.866 V12.0.1, March 2014 (2014-03-01), XP050770109 *
MOROZOV, G. ET AL.: "Decoding-Aided Parameter Estimation for Interference Cancellation and Suppression Receivers in LTE-Advanced Systems", 2015 IEEE 81ST VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), - 14 May 2015 (2015-05-14), XP055371621, ISSN: 1550-2252 *
See also references of EP3334110A4 *

Also Published As

Publication number Publication date
EP3334110A1 (en) 2018-06-13
CN107925642A (zh) 2018-04-17
EP3334110A4 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
US9686069B2 (en) Adaptive MIMO signal demodulation using determinant of covariance matrix
US8693588B2 (en) Two-step joint demapping algorithm for LLR computation of MIMO signal based on sphere decoding
US8750359B2 (en) Apparatus for MIMO channel performance prediction
CN107624235B (zh) 用于估计无线通信系统中的下行链路信道的装置和方法
CN107094039B (zh) 用于lte系统中的干扰参数的盲检测的方法和设备
WO2016034051A1 (zh) 一种干扰抑制方法和装置
WO2015184967A1 (zh) 抑制同频干扰的方法和装置
US10097288B2 (en) Single-stream sliced maximum likelihood aided successive interference cancellation
JP2006005791A (ja) 通信路推定及びデータ検出方法
CN106877916B (zh) 一种基于广义空间调制系统的星座点分块检测方法
Drakshayini et al. A review of wireless channel estimation techniques: challenges and solutions
US9025708B1 (en) Method and apparatus for detecting a desired signal in the presence of an interfering signal
US9374175B2 (en) Joint spatial processing for space frequency block coding and/or non space frequency block coding channels
WO2008151518A1 (fr) Procédé et dispositif de détection d'information dans un système ofdm
JP2013074629A (ja) 1つ又は複数の干渉信号の存在下で送信された所望の信号を復元する方法及び受信機
CN105337685B (zh) 一种图拨检测方法及其装置
US11956055B2 (en) Apparatus and method of recursive tree search based multiple-input multiple-output detection
Sarieddeen et al. Likelihood-based modulation classification for MU-MIMO systems
Madhow et al. Differential MMSE: A framework for robust adaptive interference suppression for DS-CDMA over fading channels
WO2017049464A1 (zh) 一种信号解调方法及终端
US20140140448A1 (en) Reduced-Complexity Maximum Likelihood MIMO Receiver
WO2017054339A1 (zh) 一种迭代信道估计方法及装置、计算机存储介质
US8467439B2 (en) Adaptively switching equalization operations in a node of a wireless network
CN115298979A (zh) 具有连续传输层检测和软干扰消除的多输入多输出检测装置和方法
Yoda et al. Interference suppression using EM algorithm in OFDM transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015904351

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE