WO2017049443A1 - 一种数据传输方法、收发设备及系统 - Google Patents

一种数据传输方法、收发设备及系统 Download PDF

Info

Publication number
WO2017049443A1
WO2017049443A1 PCT/CN2015/090197 CN2015090197W WO2017049443A1 WO 2017049443 A1 WO2017049443 A1 WO 2017049443A1 CN 2015090197 W CN2015090197 W CN 2015090197W WO 2017049443 A1 WO2017049443 A1 WO 2017049443A1
Authority
WO
WIPO (PCT)
Prior art keywords
transceiver device
training sequence
sequence
optimized
power
Prior art date
Application number
PCT/CN2015/090197
Other languages
English (en)
French (fr)
Inventor
马文凯
万金
袁贺
周素杰
雍芝奎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/090197 priority Critical patent/WO2017049443A1/zh
Priority to CN201580081404.0A priority patent/CN107710669B/zh
Publication of WO2017049443A1 publication Critical patent/WO2017049443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present invention relates to the field of optical communications, and in particular, to a data transmission method, a transceiver device, and a system.
  • DMT Discrete Multi-Tone
  • IM-DD intensity modulation-direct detection
  • the DMT divides the communication channel into a plurality of narrow-band subchannels, and assigns a Quadrature Amplitude Modulation (QAM) encoding format and power corresponding to the subchannel to each subchannel according to the channel estimation result of each subchannel.
  • QAM Quadrature Amplitude Modulation
  • the DMT technique performs independent modulation on each subchannel, thereby applying limited power to subchannels with relatively better performance, thereby improving spectrum utilization.
  • the DMT system includes two states, a channel estimation state and a working state.
  • the first transceiver device predetermines the start time of the channel estimation state and the start time of the working state, and sends the start time of the channel estimation state and the start time of the working state to the second transceiver device, so as to enable the second transceiver device Simultaneously with the first transceiver device entering the channel estimation state at the beginning of the channel estimation state, entering the working state at the beginning of the working state.
  • the first transceiver device sends parameters such as QAM encoding format and power of each subchannel to the second transceiver device in advance, and the power value allocated by each subchannel is usually a non-zero power value.
  • the second transceiver device generates a serial training sequence, and serially distributes the training sequence to all subchannels by serial-to-parallel conversion, and the second transceiver device uses the received QAM encoding format and power corresponding to each subchannel on the subchannel.
  • the training sequences are separately modulated.
  • IFFT Inverse Fast Fourier Transformation
  • CP Cyclic Prefix
  • PAPR Peak to Average Power Ratio
  • DAC Digital-to-analog Converter
  • the first transceiver device After receiving the training sequence, the first transceiver device performs channel estimation for each subchannel, and determines an optimized QAM modulation format and optimized power for each of the subchannels, and optimizes the QAM modulation format and optimizes Power is sent to the second transceiver device.
  • the second transceiver device modulates the received service sequence by using the optimized QAM modulation format and the optimized power of each subchannel, and sends the modulated service sequence to the first transceiver device.
  • the first transceiver device converts the received service sequence into a digital signal through an Analog-to-Digital Converter (ADC), and receives the received service sequence through Automatic Gain Control (AGC).
  • ADC Analog-to-Digital Converter
  • AGC Automatic Gain Control
  • the signal amplitude is used for gain control
  • the clock source of the first transceiver device and the second transceiver device is synchronized by the TR module, and then the received service sequence is sequentially removed from the cyclic prefix and fast Fourier Transformation (FFT) is performed. ), channel equalization, QAM decoding, and parallel-to-serial conversion to recover the original service sequence.
  • FFT fast Fourier Transformation
  • the power value allocated by each subchannel is a non-zero power value.
  • the power value In the working state, due to the bandwidth characteristics, the power value is generally concentrated on the subchannel of the low frequency band, and at this time, some of the high frequency bands are The power value on the subchannel is zero.
  • the working state when the second transceiver device transmits a signal to the first transceiver device through the subchannel of the low frequency band, the total power of the signal is less lost during the transmission, so the signal received by the first transceiver device in the working state is The total power is greater than the total power of the received signal in the channel estimation state. That is to say, when the first transceiver device switches from the channel estimation state to the working state, the total power of the signal received by the first transceiver device increases, and the amplitude value of the signal also increases.
  • the first transceiver device includes an AGC module.
  • the AGC module performs gain control on the received signal to maintain a constant average power output of the signal received by the first transceiver device.
  • the AGC outputs a large AGC coefficient, so as to increase the signal amplitude.
  • the working state when the amplitude of the signal received by the first transceiver device is large, the AGC outputs a small AGC coefficient to facilitate the signal amplitude to be lowered. It can be seen that when switching from the channel estimation state to the working state, the AGC coefficient is changed from large to small.
  • FIG. 1a exemplarily shows a schematic diagram of changes in AGC coefficients when the first transceiver device switches from a channel estimation state to an active state.
  • the AGC coefficient is changed from large to small, and a convergence duration is required.
  • the channel estimation result does not match the actual channel condition in the convergence time period, thereby causing
  • the QAM decoding is performed, the bit error rate is high, so that the first transceiver device performs clock recovery (Time Recover, referred to as TR) phase discrimination according to the QAM decoded service sequence, and the noise increases, as shown in FIG. 1b, and FIG. 1b is exemplary.
  • TR Time Recover
  • a schematic diagram of TR phase discrimination when the first transceiver device switches from the channel estimation state to the active state is shown.
  • the TR phase discrimination noise is large, and the TR phase discrimination noise is increased. The risk of a TR crash when the channel estimation state switches to the active state.
  • the embodiments of the present invention provide a data transmission method, a transceiver device, and a system, which are used to reduce TR phase noise when a transceiver device switches from receiving a training sequence to receiving a service sequence, thereby reducing the risk of TR crash.
  • the first aspect provides a data transmission method, including:
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and sends the optimized encoding format and the optimized power determined by the channel estimation according to the first training sequence to the second transceiver device;
  • the first transceiver device receives a second training sequence that is sent by the second transceiver device and is modulated by using the optimized power and the first encoding format known by the first transceiver device;
  • the AGC coefficient output by the automatic gain control AGC module of the first transceiver device converges from the value corresponding to the first training sequence to the value corresponding to the second training sequence, and demodulates the modulated second training sequence according to the first encoding format.
  • the first transceiver device receives a service sequence that is sent by the second transceiver device and is modulated by using the optimized power and the optimized coding format;
  • the AGC coefficient output by the AGC module of the first transceiver device converges from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, Specifically include:
  • the AGC coefficient output by the AGC module of the first transceiver device converges from a value corresponding to the first training sequence to a minimum value among all values corresponding to the second training sequence.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, including:
  • the first transceiver device receives, by using the N subchannels, a first training sequence that is sent by the second transceiver device and is modulated by using the second power;
  • N is an integer greater than or equal to 1; the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • ,Also after the first transceiver device receives the first training sequence sent by the second transceiver device, before receiving the second training sequence, ,Also includes:
  • the first transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • the first transceiver device optimizes the encoding format and power of the N subchannels according to the channel estimation result, and determines the optimized encoding format and the optimized power of the N subchannels.
  • the method further includes:
  • the first transceiver device performs nonlinear equalization on the received first training sequence by using the first nonlinear equalization coefficient; wherein the first nonlinear equalization coefficient is determined according to the first training sequence and the channel estimation result;
  • the first transceiver device performs demodulation operation on the modulated second training sequence according to the first encoding format Work, including:
  • the first transceiver device performs nonlinear equalization on the received modulated second training sequence by using the first nonlinear equalization coefficient
  • the first transceiver device performs a pre-demodulation operation on the sequence obtained after the nonlinear equalization, and decodes the sequence obtained after performing the pre-demodulation operation according to the first encoding format.
  • the first nonlinear equalization coefficient is obtained by:
  • the first transceiver device multiplies the first training sequence and the channel estimation result to obtain a nonlinear sequence
  • the first transceiver device determines the first nonlinear equalization coefficient according to the non-linear sequence.
  • the second aspect provides a data transmission method, including:
  • the second transceiver device receives the optimized encoding format and the optimized power sent by the first transceiver device, where the optimized encoding format and the optimized power are determined by the first transceiver device according to the first training sequence used for channel estimation;
  • the second transceiver device determines a second training sequence, modulates the second training sequence using the optimized power and the first encoding format known by the first transceiver device, and sends the modulated second training sequence to the first transceiver device.
  • the second training sequence is configured to cause the automatic gain control AGC module of the first transceiver device to converge the output AGC coefficient from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and according to the known first encoding
  • the format performs a demodulation operation on the modulated second training sequence;
  • the second transceiver device receives the service sequence, modulates the service sequence by using the optimized power and the optimized coding format, and sends the modulated service sequence to the first transceiver device, where the service sequence is used to enable the AGC module of the first transceiver device to The output AGC coefficient converges from a value corresponding to the second training sequence to a value corresponding to the traffic sequence.
  • the second transceiver device modulates the service sequence by using the optimized power and the optimized coding format, including:
  • the second transceiver device modulates the received service sequence after the first time using the optimized power and the optimized coding format
  • the first time and the second transceiver device send the start time of the modulated second training sequence.
  • the duration between them is not less than the convergence duration;
  • the convergence duration is the duration of the AGC coefficient output by the AGC module of the first transceiver device from the value corresponding to the first training sequence to the minimum value among all the values corresponding to the second training sequence.
  • the second transceiver device receives the optimized encoding format and the optimized power sent by the first transceiver device Previously, it also included:
  • the second transceiver device determines a first training sequence, and modulates the first training sequence by using the second power, and sends the modulated first training sequence to the first transceiver device by using the N subchannels;
  • N is an integer greater than or equal to 1
  • the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the optimized encoding format and the optimized power are obtained by:
  • the first transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • the first transceiver device optimizes the coding format and power of the N subchannels according to the channel estimation result, and determines an optimized coding format and optimized power of the N subchannels.
  • a third aspect provides a transceiver device, including:
  • a receiving module configured to receive a first training sequence sent by another transceiver device, a second training sequence sent by another transceiver device, using the optimized power and a first encoding format known by the transceiver device, and another transceiver device to send a service sequence modulated using optimized power and optimized coding format;
  • a processing module configured to perform channel estimation according to the first training sequence, and determine the optimized encoding format and the optimized power
  • a sending module configured to send the determined optimized encoding format and the optimized power to another transceiver device
  • a demodulation module configured to perform a demodulation operation on the modulated second training sequence according to the first encoding format
  • Automatic gain module AGC module which is used when the receiving module receives the second training sequence
  • the output AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence; when the receiving module receives the service sequence, converges the output AGC coefficient from the value corresponding to the second training sequence to correspond The value of the business sequence.
  • the AGC module is specifically configured to:
  • the output AGC coefficients are converged from the value corresponding to the first training sequence to the minimum of all values corresponding to the second training sequence.
  • the receiving module is specifically configured to:
  • N is an integer greater than or equal to 1; the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the processing module is specifically configured to:
  • the coding format and power of the N subchannels are optimized, and the optimized coding format and the optimized power of the N subchannels are determined.
  • the method further includes:
  • the receiving module receives the first training sequence, performing nonlinear equalization on the received first training sequence by using the first nonlinear equalization coefficient; wherein the first nonlinear equalization coefficient is determined according to the first training sequence and the channel estimation result of;
  • the receiving module receives the second training sequence, performing nonlinear equalization on the received modulated second training sequence by using the first nonlinear equalization coefficient
  • a pre-demodulation operation is performed on the sequence obtained after performing the nonlinear equalization, and the sequence obtained after performing the pre-demodulation operation is decoded according to the first encoding format.
  • the method further includes: a nonlinear equalization coefficient calculation module, configured to:
  • the first nonlinear equalization coefficient is determined from the nonlinear sequence.
  • a fourth aspect provides a transceiver device, including:
  • a receiving module configured to receive an optimized encoding format and an optimized power sent by another transceiver device, and a service sequence; wherein the optimized encoding format and the optimized power are another transceiver device according to the first training sequence used for channel estimation definite;
  • a modulation module configured to determine a second training sequence, modulate the second training sequence using the optimized power and a first encoding format known by another transceiver device; and modulate the service sequence using the optimized power and the optimized encoding format;
  • a sending module configured to send the modulated second training sequence to another transceiver device, and send the modulated service sequence to another transceiver device; and the second training sequence is used to enable an automatic gain control AGC module of another transceiver device And outputting the AGC coefficient from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performing a demodulation operation on the modulated second training sequence according to the known first encoding format;
  • the AGC module of another transceiver device is caused to converge the output AGC coefficient from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the modulating module is specifically configured to:
  • the received service sequence is modulated after the first time using the optimized power and the optimized coding format
  • the duration between the first time and the start time of the second training sequence sent by the transceiver device is not less than the convergence time; the AGC coefficient outputted by the AGC module of the other transceiver device corresponds to the first training sequence.
  • the value of the convergence converges to the duration of all the values corresponding to the values of the second training sequence.
  • the modulating module is further configured to:
  • the sending module is also used to:
  • N is an integer greater than or equal to 1
  • the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the optimized encoding format and the optimized power are obtained by:
  • Another transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • Another transceiver device optimizes the encoding format and power of the N subchannels according to the channel estimation result, and determines an optimized coding format and optimized power of the N subchannels.
  • a fifth aspect provides a transceiver device, including:
  • a receiver configured to receive a first training sequence sent by another transceiver device, a second training sequence sent by another transceiver device using the optimized power and a first encoding format known by the transceiver device, and another transceiver device to send a service sequence modulated using optimized power and optimized coding format;
  • a transmitter configured to send the determined optimized encoding format and the optimized power to another transceiver device;
  • a processor configured to perform channel estimation according to the first training sequence, determine the optimized encoding format and the optimized power; perform demodulation operation on the modulated second training sequence according to the first encoding format; and receive at the receiver
  • the output automatic gain module AGC coefficient is converged from the value corresponding to the first training sequence to the value corresponding to the second training sequence; when the receiver receives the service sequence, the output AGC coefficient is The value corresponding to the second training sequence converges to a value corresponding to the traffic sequence.
  • the processor is specifically configured to:
  • the output AGC coefficients are converged from the value corresponding to the first training sequence to the minimum of all values corresponding to the second training sequence.
  • the receiver is specifically configured to:
  • N is an integer greater than or equal to 1; the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the processor is specifically configured to:
  • the coding format and power of the N subchannels are optimized, and the optimized coding format and the optimized power of the N subchannels are determined.
  • the processor is further configured to:
  • a pre-demodulation operation is performed on the sequence obtained after performing the nonlinear equalization, and the sequence obtained after performing the pre-demodulation operation is decoded according to the first encoding format.
  • the processor is further configured to:
  • the first nonlinear equalization coefficient is determined from the nonlinear sequence.
  • a sixth aspect provides a transceiver device, including:
  • a receiver configured to receive an optimized encoding format and an optimized power sent by another transceiver device, and a service sequence; wherein the optimized encoding format and the optimized power are another transceiver device according to a first training sequence used for channel estimation definite;
  • a processor configured to determine a second training sequence, modulate the second training sequence using the optimized power and a first encoding format known by another transceiver device; and modulate the service sequence using the optimized power and the optimized encoding format;
  • a transmitter configured to send the modulated second training sequence to another transceiver device, to transmit the modulated service sequence to another transceiver device; and the second training sequence is configured to enable an automatic gain control AGC module of the other transceiver device And outputting the AGC coefficient from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performing a demodulation operation on the modulated second training sequence according to the known first encoding format;
  • the AGC module of another transceiver device is caused to converge the output AGC coefficient from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the processor is specifically configured to:
  • the received service sequence is modulated after the first time using the optimized power and the optimized coding format
  • the duration between the first time and the start time of the second training sequence sent by the transceiver device is not less than the convergence time; the AGC coefficient outputted by the AGC module of the other transceiver device corresponds to the first training sequence.
  • the value of the convergence converges to the duration of all the values corresponding to the values of the second training sequence.
  • the processor is further configured to:
  • the transmitter is also used to:
  • N is an integer greater than or equal to 1
  • the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the optimized encoding format and the optimized power are obtained by:
  • Another transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • Another transceiver device optimizes the encoding format and power of the N subchannels according to the channel estimation result, and determines an optimized coding format and optimized power of the N subchannels.
  • a seventh aspect provides a data transmission system, including:
  • the first transceiver device is configured to receive the first training sequence sent by the second transceiver device, and send the optimized encoding format and the optimized power determined by the channel estimation according to the first training sequence to the second transceiver device; a second training sequence sent by the device, using the optimized power and the first encoding format known by the first transceiver device; the AGC coefficient output by the automatic gain control AGC module converges from the value corresponding to the first training sequence to correspond to the first a value of the second training sequence, performing a demodulation operation on the modulated second training sequence according to the first encoding format; receiving a service sequence sent by the second transceiver device using the optimized power and the optimized encoding format; and outputting by the AGC module The AGC coefficient converges from a value corresponding to the second training sequence to a value corresponding to the service sequence;
  • a second transceiver device configured to receive an optimized encoding format and optimized power sent by the first transceiver device, determine a second training sequence, and use the optimized power and the first encoding format known by the first transceiver device to the second training sequence Performing modulation, and transmitting the modulated second training sequence to the first transceiver device; the second transceiver device receiving the service sequence, modulating the service sequence using the optimized power and the optimized coding format, and transmitting the modulated service sequence Give the first transceiver device.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and sends the optimized encoding format and the optimized power determined by the channel estimation according to the first training sequence to the second transceiver device; a transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the AGC coefficient output by the AGC module of the first transceiver device corresponds to the first The value of the training sequence converges to a value corresponding to the second training sequence, and the modulated second training sequence is demodulated according to the first encoding format; the first transceiver device receives the used optimized power and optimized by the second transceiver device.
  • an AGC coefficient output by the AGC module of the first transceiver device corresponds to The values of the two training sequences converge to values corresponding to the traffic sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to a value corresponding to the second training sequence.
  • the first transceiver device can decode the second training sequence using the known first encoding format, so that the first transceiver device uses the second decoded device from the process of receiving the first training sequence to receiving the second training sequence.
  • the training sequence is less noisy when performing TR phase discrimination, thereby reducing the risk of TR crashing when the second training sequence is received.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence.
  • the AGC coefficient does not fluctuate greatly. Therefore, when the first transceiver device decodes the service sequence, the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • FIG. 1a is a schematic diagram of changes in AGC coefficients when a first transceiver device switches from a channel estimation state to an active state in the background art
  • FIG. 1b is a schematic diagram of TR phase detection when the first transceiver device switches from a channel estimation state to an active state in the background art
  • FIG. 2 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present disclosure
  • 3a is a schematic diagram of a corresponding relationship between a pre-measured signal-to-noise ratio, a power load, and a bit load corresponding to a subcarrier according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another data transmission system according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another data transmission system according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first transceiver device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a second transceiver device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another first transceiver device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another second transceiver device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • the embodiments of the present invention are applicable to a variety of transmission systems.
  • the embodiments of the present invention are not limited thereto.
  • the following embodiments use the DMT-based IM-DD technology as an example.
  • Both the first transceiver device and the second transceiver device in the embodiment of the present invention have a receiving and transmitting function.
  • the first transceiver device can be a receiver
  • the second transceiver device can be a transmitter
  • there are two communication channels between the transmitter and the receiver one for the transmitter to send information to the receiver, and the other for transmitting An independent communication channel between the machine and the receiver for the receiver to send information to the transmitter.
  • FIG. 2 is a schematic diagram showing a system architecture applicable to an embodiment of the present invention.
  • the second transceiver device 101 and the first transceiver device 102 are included.
  • the second transceiver device 101 includes at least The second transceiver device negotiation module 110, the training sequence generation module 104, and the selection module 106, the second transceiver device 101 further includes a DAC module.
  • the first transceiver device 102 includes at least a first transceiver device negotiation module 124, an ADC module 114, an AGC module 115, a TR module 116, a TR phase discrimination module 120, a channel estimation and channel compensation module 121, a decoding module 122, and a parallel-to-serial conversion module 125.
  • the first transceiver device 102 can also include a nonlinear equalization module 117 and a nonlinear equalization coefficient calculation module 118.
  • the communication channel is divided into enough narrowband subchannels, such as the subchannel 1, the subchannel 2, the ... subchannel N shown in FIG. 2, and each subchannel can be according to the coding format corresponding to the subchannel and The power is independently modulated.
  • the second transceiver device 101 can receive the service sequence 103, and the training sequence generation module 104 can also generate training sequences, such as a first training sequence and a second training sequence.
  • the training sequence generated by the service sequence 103 and the training sequence generation module 104 performs bit loading and serial-to-parallel conversion, and then the service sequence and the training sequence enter the selection module 106.
  • the selection module 106 selects in the training sequence and the service sequence at the control of the second transceiver device negotiation module 110, and then outputs the selected sequence.
  • the sequence output by the selection module 106 is loaded into the N subchannels, and each subchannel encodes the sequence loaded on the subchannel using an encoding format corresponding to the subchannel, for example, using the encoding format 1 to sequence on the subchannel 1.
  • loading the power corresponding to the subchannel for each subchannel for example, loading power 1 for subchannel 1, loading power 2 for subchannel 2, ..., loading power N for subchannel N.
  • the second transceiver device 101 performs IFFT on the sequences on the N subchannels, thereby converting the training sequence on all subchannels into a time domain signal, adding CP and PAPR clipping, and finally transmitting to the first transceiver device 102 via the DAC.
  • the encoding format in the embodiment of the present invention may be a QAM encoding format.
  • the second transceiver device 101 sequentially passes the signal output by the DAC through a Transmitter Optical Subassembly (TOSA) 111, a fiber channel 112, and a light receiving device.
  • TOSA Transmitter Optical Subassembly
  • ROSA Receiver Optical Subassembly
  • the signal will be affected by the low-pass characteristics and nonlinear distortion characteristics of the device during transmission.
  • the ADC module 114 of the first transceiver device converts the received analog signal into a digital signal and performs gain control on the signal amplitude of the received sequence through the AGC module 115.
  • the clock source synchronization of the first transceiver device 102 and the second transceiver device 101 is then implemented by the TR module 116, and then input to the nonlinear equalization module 117 for nonlinear equalization to compensate for nonlinear distortion of the signal during transmission.
  • the sequence output by the nonlinear equalization module 117 sequentially removes the CP, and performs FFT and then inputs to the channel estimation and channel compensation module 121 for channel equalization, channel estimation, and channel compensation.
  • the sequence output by the channel estimation and channel compensation module 121 sequentially enters the decoding module 122 and the parallel-to-serial conversion module 125, and is sequentially subjected to decoding and parallel-to-serial conversion, after which the first transceiver device 102 outputs the sequence recovered by the first transceiver device 102, such as
  • the second transceiver device 101 transmits a service sequence, and the first transceiver device 102 outputs a service sequence.
  • the second transceiver device 101 transmits a training sequence, and the first transceiver device 102 outputs a training sequence.
  • the TR module 116 needs to receive the signal input by the TR phase discrimination module 120, and the TR phase recognition module 120 needs to receive the sequence after the CP and FFT are sequentially removed, and the decoded sequence.
  • the TR phase is performed according to the sequence after the CP and FFT are sequentially removed and the decoded sequence is sequentially removed.
  • the nonlinear equalization module 117 needs to perform nonlinear equalization according to the nonlinear equalization coefficients input by the nonlinear equalization coefficient calculation module 118.
  • the first transceiver device 102 may also generate a first training sequence by using the training sequence generating module 104, and send the first training sequence to the first transceiver device 102, and the first transceiver device 102 is configured according to the first transceiver device 102.
  • a channel estimation result is obtained.
  • the first transceiver device negotiation module 124 can be sent to the second transceiver device negotiation module 110 of the second transceiver device, so that the second transceiver device 101 can be optimized for use.
  • the post-encoding format and the optimized power modulate the received traffic sequence 103.
  • FIG. 3 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present invention.
  • an embodiment of the present invention provides a data transmission method, including:
  • Step 301 The first transceiver device receives the first training sequence sent by the second transceiver device, and sends the optimized encoding format and the optimized power determined by the channel estimation according to the first training sequence to the second transceiver device.
  • Step 302 The first transceiver device receives, by the second transceiver device, a second training sequence that is modulated by using the optimized power and the first encoding format known by the first transceiver device.
  • Step 303 The AGC coefficient output by the automatic gain control AGC module of the first transceiver device converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and the second training sequence is modulated according to the first encoding format. Perform demodulation operations;
  • Step 304 The first transceiver device receives a service sequence that is sent by the second transceiver device and is modulated by using the optimized power and the optimized coding format.
  • Step 305 The AGC coefficient output by the AGC module of the first transceiver device converges from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • three states a channel estimation state, a channel estimation water injection state, and an operation state are defined for the first transceiver device and the second transceiver device, and a start time of the channel estimation state is defined as a second time, and the channel is estimated to be flooded.
  • the starting moment is defined as the third moment, and the starting moment of the working state is defined as the first moment.
  • the second transceiver device and the first transceiver device can determine the first moment, the second moment, and the third moment in multiple manners, for example, by using a second transceiver device and the first transceiver device to negotiate in advance The method of unified notification, by the first transceiver
  • An optional implementation manner is that when the system is powered on, it is determined to be the second moment. After the system is powered on, the second transceiver device and the first transceiver device automatically enter the channel estimation state.
  • the second transceiver device and the first transceiver device enter a channel estimation state at a second moment.
  • the second transceiver device determines the first training sequence, and modulates the first training sequence by using the second power. And transmitting the modulated first training sequence to the first transceiver device by using the N subchannels, where N is an integer greater than or equal to 1, and the second power includes power corresponding to each of the N subchannels, and any subchannel The corresponding power is not zero.
  • the second transceiver device modulates the first training sequence using the second power and the second encoding format.
  • An optional implementation manner is that, because the second transceiver device negotiation module of the second transceiver device and the first transceiver device negotiation module of the first transceiver device transmit information through an independent communication channel, the second transceiver device and the second A transceiver device can negotiate with the first transceiver device negotiation module and the first transceiver device negotiation module, and determine, by negotiation, a first training sequence generation rule, and a second encoding format and a second power.
  • the training sequence generation module of the second transceiver device generates a first training sequence according to a generation rule of the first training sequence that is pre-negotiated with the first transceiver device under the control of the second transceiver device negotiation module.
  • the first training sequence is modulated using the second encoding format and the second power negotiated with the first transceiver device.
  • the second coding format is an encoding format corresponding to each of the N subchannels
  • the second power is a power corresponding to each of the N subchannels.
  • the power corresponding to any subchannel included in the second power is not zero.
  • the first transceiver device that enters the channel estimation state receives the first training sequence that is modulated by the second transceiver device and uses the second power, and then the first transceiver device performs channel estimation according to the first training sequence to obtain channel estimation.
  • the first transceiver device optimizes the encoding format and power of the N subchannels according to the channel estimation result, and determines the optimized encoding format and the optimized power of the N subchannels. And send the optimized encoding format and optimized power to the first transceiver
  • the device in order to achieve the purpose of optimizing the coding format and power of each subchannel, thereby applying limited power to the subchannel with relatively better performance and improving spectrum utilization.
  • the optimized coding format includes an encoding format corresponding to each subchannel, and the optimized power includes power corresponding to each subchannel.
  • the first transceiver device After performing channel estimation according to the first training sequence, the first transceiver device obtains a channel estimation result, such as a signal to noise ratio (SNR) of all subchannels, or a channel state information measurement reference of all subchannels.
  • the signal (English: Channel State Information Reference Signal, referred to as: CSI-RS) and other parameters.
  • CSI-RS Channel State Information Reference Signal
  • the coding format and power are optimized to determine the optimized coding format and the optimized power, so that the limited power is applied to the subchannel with relatively better performance, and the spectrum utilization is improved.
  • FIG. 3a exemplarily shows the pre-measured SNR and power load, bit load correspondence corresponding to the subcarrier, the pre-measured SNR, that is, the channel estimation result SNR obtained by channel estimation.
  • the pre-measured SNR of the subcarrier when the pre-measured SNR of the subcarrier is high, the power load corresponding to the subcarrier is large, and the corresponding bit load is also large. Conversely, when the pre-measured SNR of the subcarrier is low, the power load corresponding to the subcarrier is small, and the corresponding bit load is also small. That is, when the SNR of a subcarrier on a certain subchannel is higher, the corresponding allocated power on the subchannel should also be larger.
  • the subchannel is The corresponding allocated power should also be small. Combining the channel estimation results, the limited power is applied to the subchannels with relatively better performance, and the spectrum utilization is improved.
  • An optional implementation manner is that, in the channel estimation state, the second transceiver device sends the first training sequence, and the first transceiver device performs channel estimation according to the first training sequence, and obtains the optimized coding format and the optimized power is sent to the first transceiver.
  • the first transceiver device further determines a third time, where the third time is the start time of the channel estimation water injection state, and the first transceiver device sends the information of the third time to the second transceiver device, so that the second transceiver device At the same time as the first transceiver device enters the channel estimation water injection state at the third time.
  • the first transceiver device further determines the first encoding format, and will An encoding format is sent to the first transceiver device.
  • the first transceiver device is configured to indicate the information of the third moment, the first encoding format, and the optimized encoding format and the optimized power are sent to the second transceiver device in a piece of information, or the first The transceiver device sends, by using a plurality of pieces of information, information used by the first transceiver device to indicate the third moment, the first encoding format, and the optimized encoding format and the optimized power to the second transceiver device, specifically, the first Transmitting, by the transceiver device, information for indicating the third moment, the first encoding format, and the optimized encoding format and the optimized power by using a communication channel between the first transceiver negotiation module and the second transceiver negotiation module The second transceiver device.
  • the third moment must be after the time when the second transceiver device receives the optimized encoding format and the optimized power sent by the first transceiver device.
  • the second transceiver device and the first transceiver device simultaneously enter the channel estimation water injection state.
  • the second transceiver device may generate a second training sequence according to an algorithm generated by the training sequence pre-negotiated with the first transceiver device, and The second training sequence is modulated using the optimized power and a first encoding format known to the first transceiver.
  • the second training sequence may be the same as the first training sequence, or may be different, and the embodiment of the present invention does not limit this.
  • the first encoding format that is known by the first transceiver device may specifically include multiple forms. For example, the first transceiver device determines the first encoding format, and sends the first encoding format to the second transceiver device. The encoding format is known to the first transceiver device; or the first encoding format is determined by the first transceiver device and the second transceiver device in a negotiated manner, where the first encoding format is known to the first transceiver device.
  • the first transceiver device Or transmitting the information in the first encoding format to the second transceiver device and the first transceiver device through the high layer signaling, so that the first transceiver device acquires the first encoding format; or manually configuring the first transceiver device and the first
  • the second transceiver device is configured with the first encoding format, so that the first transceiver device obtains the first encoding format.
  • the manner in which the first transceiver format is known to the first transceiver device is not limited in the embodiment of the present invention.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device, and the modulated image is modulated according to the first encoding format.
  • the second training sequence is demodulated.
  • the first transceiver device receives the first training sequence through the ADC module 114.
  • the AGC module 115 of the first transceiver device performs gain control on the received signal amplitude of the first training sequence, and the AGC module of the first transceiver device outputs an AGC coefficient corresponding to the first training sequence.
  • the AGC module 115 of the first transceiver device performs gain control on the received signal amplitude of the second training sequence, and outputs an AGC coefficient corresponding to the second training sequence.
  • the power used by the first training sequence modulation is tiled, that is, the power corresponding to any one of the subchannels is non-zero power.
  • the power loss of the first training sequence during the transmission process is large, so that the power of the first transceiver device to receive the first training sequence is small.
  • the AGC module 115 needs to output the output corresponding to the first training sequence.
  • the AGC coefficient is large.
  • the second transceiver device modulates the second training sequence by using the optimized power. After the first transceiver device receives the first training sequence and performs channel estimation, it is determined according to conditions of each subchannel.
  • the optimized power distribution is such that most of the power is distributed in the low frequency band, and the power value on some subchannels of the high frequency band is zero.
  • the second training sequence has a small loss in the transmission process, and the signal amplitude of the second training sequence received by the first transceiver device is large. At this time, the AGC coefficient corresponding to the second training sequence that the AGC module 115 needs to output is more small. At this time, the first transceiver device switches from the channel estimation state to the channel estimation water injection state.
  • the AGC coefficient output by the AGC module of the first transceiver device corresponds to The larger value of the first training sequence begins to decrease, converging to a value corresponding to the second training sequence.
  • the AGC module 115 of the first transceiver device transmits the sequence transmission after the gain control to the TR module 116, and then performs a demodulation operation on the second training sequence and outputs a second training sequence.
  • a preferred embodiment is that the second transceiver device and the first transceiver device simultaneously enter the working state at the first moment after the channel estimation water injection state. In the working state, the second transceiver device starts the received service sequence. deal with.
  • the sequence of services is a sequence of regular operating states received by the second transceiver device.
  • the second transceiver device modulates the service sequence received after the first time using the optimized power and the optimized coding format; wherein the first time is sent by the second transceiver The duration between the start times of the modulated second training sequence is not less than the convergence time; the convergence duration is the AGC module of the first transceiver The derived AGC coefficient converges from a value corresponding to the first training sequence to a duration of all of the values corresponding to the second training sequence. That is, the first transceiver device receives the second training sequence until the AGC coefficients output by the AGC module of the first transceiver device converge from values corresponding to the first training sequence to all corresponding to the second training sequence. The minimum of the values.
  • the first transceiver device receives the second training sequence, and the demodulation operation of the second training sequence specifically includes:
  • the sequence output by the TR module 116 is input to the nonlinear equalization module 117 for nonlinear equalization, and then the sequence obtained after the nonlinear equalization is subjected to a pre-demodulation operation, and the sequence obtained after the pre-demodulation operation is input to the decoding module 122. So that the decoding module 122 performs the corresponding operation.
  • the pre-demodulation operation may include removing the CP and the FFT from the sequence output by the nonlinear equalization module 117, and then performing channel equalization, channel estimation, and channel compensation.
  • the first transceiver device inputs a second training sequence for performing the demodulation operation to the parallel-to-serial conversion module 125 for parallel-to-serial conversion, and outputs the parallel-converted second training sequence.
  • the signal sent by the AGC module 115 of the first transceiver device after the gain control is sent to the TR module 116, and then the second training sequence is not nonlinearly balanced by the nonlinear equalization module 117. Instead, the pre-demodulation operation is performed directly on the sequence output by the TR module 116.
  • the first transceiver device inputs the second training sequence for performing the pre-demodulation operation to the parallel-to-serial conversion module 125 for parallel-to-serial conversion, and outputs the parallel-converted second training sequence.
  • the first transceiver device decodes the second training sequence by using a known first encoding format. At this time, in the channel estimation water injection state, the error rate of decoding by the first transceiver device is almost zero, and the TR of the first transceiver device is detected.
  • the module 120 performs TR phase discrimination based on the decoded second training sequence, the noise is small and the possibility of collapse is greatly reduced.
  • the second transceiver device After the second transceiver device enters the working state, the second transceiver device receives the service sequence, modulates the service sequence using the optimized power and the optimized coding format, and sends the modulated service sequence to the first transceiver device.
  • the AGC module of the first transceiver device outputs an AGC coefficient to perform gain control on the signal amplitude of the received service sequence. Since the second training sequence is modulated using the optimized power, the service sequence is also modulated by the optimized power, therefore, a transceiver from The channel estimation water injection state is switched to the working state, and the AGC coefficient output by the AGC module of the first transceiver device corresponding to the second training sequence is not much different from the AGC coefficient corresponding to the service sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device does not fluctuate greatly, so that when the first transceiver device decodes the service sequence, the correct rate is compared.
  • the TR phase is further calculated based on the decoded service sequence, the phase noise is small and the possibility of TR collapse is small.
  • the power used by the first training sequence modulation is tiled, that is, the power corresponding to any one of the subchannels is non-zero power, and therefore, the first training sequence is The power loss in the transmission process is large. Therefore, the power of the first training sequence received by the first transceiver device is small.
  • the power of the first training sequence received by the receiver is 2
  • the AGC coefficient of the first transceiver device needs to output an AGC coefficient of 2.5.
  • the output sequence power is 2.5 times 2, that is, 5.
  • the first transceiver device When the first transceiver device receives the second training sequence, since the second training sequence uses the optimized power for modulation, further, due to the specific distribution of the optimized power, most of the power is distributed in the low frequency band, and at this time, some of the high frequency bands are The power value on the channel is zero, so the second training sequence loses less during the transmission process, and the power of the second training sequence received by the first transceiver device is larger. At this time, the first transceiver device receives the second training. The power of the sequence is 8. At this time, the AGC coefficient of the first transceiver device needs to output an AGC coefficient of 0.625.
  • the output sequence power is 0.625 times 8, which is Is 5. It can be seen that when the second training sequence is received, the AGC coefficient needs to converge from 2.5 to 0.625.
  • the AGC coefficients output by the AGC module are all AGC coefficients corresponding to the second training sequence, that is, from 2.5 to 0.625 are AGC coefficients corresponding to the second training sequence output by the AGC module, and 0.625 is the minimum value of the values of the AGC coefficients corresponding to the second training sequence.
  • the duration of the convergence that is, the duration between the first moment and the third moment, can usually be used with an empirical value, such as a few milliseconds.
  • the AGC module of the first transceiver device When receiving the service sequence, the AGC module of the first transceiver device outputs the AGC coefficient pair to receive The gain control of the service sequence is performed. Since the second training sequence is modulated using the optimized power, the service sequence is also modulated by the optimized power. Therefore, the first transceiver device switches from the channel estimation water injection state to the working state, first. The AGC coefficient output by the AGC module of the transceiver device corresponding to the second training sequence is not much different from the AGC coefficient corresponding to the service sequence. The power of the service sequence received by the first transceiver device is 8. At this time, the AGC coefficient of the AGC module of the first transceiver device is 0.625.
  • the power of the output sequence is Multiply 0.625 by 8, which is 5. It can be seen that the first transceiver device receives the second training sequence to receive the service sequence, and the AGC coefficient output by the AGC module does not fluctuate greatly.
  • the second transceiver device and the first transceiver device switch from the channel estimation state to the channel estimation water injection state, and then switch from the channel estimation water injection state to the working state, and the correct rate of decoding of the first transceiver device is high in the whole process. Therefore, during the whole process, when the first transceiver device performs TR phase discrimination, the phase discrimination noise is small, and the possibility of TR collapse is also small.
  • FIG. 4 For a more detailed introduction to the above method flow, the embodiment of the present invention provides a schematic flowchart of another data transmission method, as shown in FIG. 4:
  • Step 401 the communication channel between the second transceiver device negotiation module and the first transceiver device negotiation module is successfully established, and then step 402 is performed;
  • Step 402 the second transceiver device negotiation module and the first transceiver device negotiation module determine the second time, the first time and the first training sequence generation rule by negotiation, and then step 403 is performed;
  • Step 403 The first transceiver device requests the second transceiver device to send the first training sequence, and sends the second encoding format and the second power. Specifically, the first transceiver device may send a message for instructing the second transceiver device to send the first Training the indication information of the sequence, and then performing step 404;
  • Step 404 after the second transceiver device receives the indication information sent by the first transceiver device for instructing the second transceiver device to send the first training sequence, the second transceiver device generates a first training sequence, and acquires the second encoding format and the first Two powers, after which step 405 is performed;
  • Step 405 The second transceiver device enters a channel estimation state at a second moment, modulates the first training sequence by using the second encoding format and the second power, and sends the modulated first sequence to the first transceiver device, and then executes Step 406;
  • Step 406 the first transceiver device receives the first training sequence, and then proceeds to step 407;
  • Step 407 the first transceiver device performs channel estimation according to the first training sequence, and then performs step 408;
  • Step 408 the first transceiver device combines the DMT subcarrier power/constellation allocation algorithm, and the channel estimation result to determine the optimized encoding format and the optimized power, and then step 409 is performed;
  • Step 409 the first transceiver device sends the optimized encoding format and the optimized power to the second transceiver device; and sends the first encoding format to the second transceiver device, and the third time, after which step 410 is performed;
  • Step 410 the second transceiver device obtains the optimized encoding format, the optimized power, the first encoding format, and the third moment, and then performs step 411;
  • Step 411 The second transceiver device enters the channel estimation water injection state at the third moment, modulates the second training by using the first encoding format and the optimized power, and sends the modulated second training sequence to the first transceiver device, and then Go to step 412;
  • Step 412 the first transceiver device enters the channel estimation water injection state at the third time, the first transceiver device receives the second training sequence, and performs processing, and outputs the second training sequence processed by the first transceiver device, and then proceeds to step 413;
  • Step 413 The second transceiver device enters the working state at the first moment, modulates the received service sequence by using the optimized coding format and the optimized power, and sends the modulated service sequence to the first transceiver device, and then performs the steps. 414;
  • Step 414 After receiving the working state at the first moment, the first transceiver device receives the service sequence, and performs processing to output the service sequence processed by the first transceiver device.
  • FIG. 5 exemplarily shows another system architecture diagram applicable to the embodiment of the present invention.
  • a nonlinear sequence generation module 501 is added to the system architecture shown in FIG. 1, and the nonlinear sequence generation module 501 is connected.
  • a preferred implementation manner of the embodiment of the present invention is that, in the channel estimation state, when the first transceiver device receives the first training sequence, the first non-linear equalization coefficient pair is used to receive The first training sequence performs nonlinear equalization.
  • the first nonlinear equalization system The number is determined according to the first training sequence and the channel estimation result, and the channel estimation result is a result of channel estimation according to the first training sequence.
  • the first non-linear equalization coefficient is obtained by: the first transceiver device multiplies the first training sequence and the channel estimation result in the frequency domain, and then transforms the obtained structure into the time domain through IFFT, and adds The CP, that is, obtains a nonlinear sequence; the first transceiver device determines the first nonlinear equalization coefficient according to the nonlinear sequence.
  • the channel estimation result may be some parameters determined by the first transceiver device that reflect all subchannel conditions, such as the SNR of each subchannel.
  • the first transceiver device when the first transceiver device receives the second training sequence, the first modulated equalization sequence is used to perform nonlinear equalization on the received modulated second training sequence.
  • the first transceiver device performs a pre-demodulation operation on the sequence obtained after the nonlinear equalization, and decodes the sequence obtained after performing the pre-demodulation operation according to the first encoding format.
  • FIG. 6 exemplarily shows a schematic flowchart of a preferred data transmission method according to an embodiment of the present invention, as shown in FIG.
  • Step 401 the communication channel between the second transceiver device negotiation module and the first transceiver device negotiation module is successfully established, and then step 402 is performed;
  • Step 402 the second transceiver device negotiation module negotiates the second time, the first time, and the first training sequence generation rule with the first transceiver device negotiation module, and then performs step 403;
  • Step 403 The first transceiver device requests the second transceiver device to send the first training sequence, and sends the second encoding format and the second power. Specifically, the first transceiver device may send a message for instructing the second transceiver device to send the first Training the indication information of the sequence, and then performing step 404;
  • Step 404 the second transceiver device generates a first training sequence, and obtains a second encoding format and a second power, and then performs step 405;
  • Step 405 The second transceiver device enters a channel estimation state at a second moment, modulates the first training sequence by using the second encoding format and the second power, and sends the modulated first sequence to the first transceiver device, and then executes Step 406;
  • Step 406 the first transceiver device receives the first training sequence, and then proceeds to step 407;
  • Step 407 The first transceiver device performs channel estimation according to the first training sequence, and then performs steps. 601;
  • Step 601 the first transceiver device generates a nonlinear sequence according to the first training sequence and the channel estimation result; and determines the first nonlinear equalization coefficient according to the nonlinear sequence, and then performs step 602;
  • Step 602 Perform non-linear equalization on the received first training sequence by using the first nonlinear equalization coefficient, perform pre-demodulation operation on the sequence obtained after performing nonlinear equalization, and perform pre-solution according to the second encoding format.
  • the sequence obtained after the operation is decoded, and then step 408 is performed;
  • Step 408 the first transceiver device combines the DMT subcarrier power/constellation allocation algorithm, and the channel estimation result to determine the optimized encoding format and the optimized power, and then step 409 is performed;
  • Step 409 the first transceiver device sends the optimized encoding format and the optimized power to the second transceiver device; and sends the first encoding format to the second transceiver device, and the third time, after which step 410 is performed;
  • Step 410 the second transceiver device obtains the optimized encoding format, the optimized power, the first encoding format, and the third moment, and then performs step 411;
  • Step 411 The second transceiver device enters the channel estimation water injection state at the third moment, modulates the second training by using the first encoding format and the optimized power, and sends the modulated second training sequence to the first transceiver device, and then Step 603 is performed, and then step 603 is performed;
  • Step 603 Entering a channel estimation water injection state at a third moment, the first transceiver device receives the second training sequence, performs nonlinear equalization on the received second training sequence, and performs nonlinear equalization using the first nonlinear equalization coefficient.
  • the obtained sequence is subjected to a pre-demodulation operation, and the sequence obtained after performing the pre-demodulation operation is decoded according to the second encoding format, and then step 604 is performed;
  • Step 604 the first transceiver device processes the second training sequence after the non-linear equalization, and outputs the second training sequence processed by the first transceiver device;
  • Step 413 The second transceiver device enters the working state at the first moment, modulates the received service sequence by using the optimized coding format and the optimized power, and sends the modulated service sequence to the first transceiver device, and then performs the steps. 414;
  • Step 414 After receiving the working state at the first moment, the first transceiver device receives the service sequence, and performs processing to output the service sequence processed by the first transceiver device.
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the first training sequence to the value corresponding to the second training sequence, and further corresponds to the first training sequence received by the first transceiver device.
  • the amplitude of the signal is small, and the amplitude of the signal corresponding to the second training sequence is large. Therefore, the AGC coefficient needs to converge from a larger value to a smaller value.
  • the first transceiver device because in the channel estimation state, the first transceiver device generates a nonlinear sequence according to the channel estimation state and the first training sequence, and determines the first nonlinear equalization coefficient according to the nonlinear sequence; therefore, the first nonlinear equalization coefficient at this time
  • the actual condition of the channel has been reflected. Therefore, the first transceiver device can perform nonlinear equalization on the received second training sequence directly using the first nonlinear equalization coefficient in the channel estimation water injection state, and is switched in the slave channel estimation state.
  • the AGC coefficient fluctuates greatly during the convergence of the AGC. Therefore, the new non-linear equalization coefficient is not matched with the actual channel condition according to the second training sequence, which is prone to error.
  • the embodiment of the present invention uses The channel estimation state performs nonlinear equalization on the second training sequence according to the first nonlinear equalization coefficient calculated by the channel estimation result, and avoids the problem that the calculated nonlinear coefficient is easy to be erroneous when the AGC coefficient fluctuates greatly, and the other In terms of aspect, the received second training sequence is well balanced.
  • the first transceiver device continues to calculate the current service sequence according to the received service sequence for the received service sequence.
  • the nonlinear equalization coefficient corresponding to the service sequence is used to perform nonlinear equalization using the nonlinear equalization coefficient corresponding to the current service sequence, and a series of processes are performed after the nonlinear equalization is performed, and the restored service sequence of the first transceiver device is output. .
  • FIG. 7 exemplarily shows another system architecture diagram applicable to the embodiment of the present invention.
  • the nonlinear equalization module 117 is deleted from the system architecture shown in FIG.
  • a nonlinear equalization coefficient calculation module 118 is included in the nonlinear equalization module 117.
  • a preferred implementation manner of the embodiment of the present invention is that, in a channel estimation state, the first transceiver device receives the first training sequence and performs decoding, and finally outputs the first transceiver device for recovery. During the entire training sequence, the first transceiver device does not perform nonlinear equalization on the first training sequence. And in the channel estimation water injection state, the first transceiver device receives the first During the second training sequence and decoding, and finally outputting the second training sequence recovered by the first transceiver device, the first transceiver device does not perform nonlinear equalization on the second training sequence.
  • the first transceiver device does not perform non-linear equalization on the service sequence in the whole process of receiving the service sequence and decoding, and finally outputting the service sequence recovered by the first transceiver device.
  • the first transceiver device switches from the channel estimation state to the channel estimation water injection state, when the AGC coefficient fluctuates greatly, the nonlinear coefficient calculated by the first transceiver device is prone to error.
  • the embodiment of the present invention provides a schematic flowchart of a preferred data transmission method, as shown in FIG.
  • Step 401 the communication channel between the second transceiver device negotiation module and the first transceiver device negotiation module is successfully established, and then step 402 is performed;
  • Step 402 the second transceiver device negotiation module negotiates the second time, the first time, and the first training sequence generation rule with the first transceiver device negotiation module, and then performs step 403;
  • Step 403 The first transceiver device requests the second transceiver device to send the first training sequence, and sends the second encoding format and the second power. Specifically, the first transceiver device may send a message for instructing the second transceiver device to send the first Training the indication information of the sequence, and then performing step 404;
  • Step 404 the second transceiver device generates a first training sequence, and obtains a second encoding format and a second power, and then performs step 405;
  • Step 405 The second transceiver device enters a channel estimation state at a second moment, modulates the first training sequence by using the second encoding format and the second power, and sends the modulated first sequence to the first transceiver device, and then executes Step 406;
  • Step 406 the first transceiver device receives the first training sequence, and then proceeds to step 801;
  • Step 801 The first transceiver device performs channel estimation according to the first training sequence, and outputs a first training sequence processed by the first transceiver device.
  • the first transceiver device does not perform nonlinear equalization on the first training sequence. Then, step 408 is performed. ;
  • Step 408 the first transceiver device combines the DMT subcarrier power/constellation allocation algorithm, and the channel estimation result to determine the optimized encoding format and the optimized power, and then step 409 is performed;
  • Step 409 the first transceiver device sends the optimized encoding format and the optimized power to the second transceiver device; and sends the first encoding format to the second transceiver device, and the third time, after which step 410 is performed;
  • Step 410 the second transceiver device obtains the optimized encoding format, the optimized power, the first encoding format, and the third moment, and then performs step 411;
  • Step 411 The second transceiver device enters a channel estimation water injection state at a third moment, modulates the second training using the first encoding format and the optimized power, and sends the modulated second training sequence to the first transceiver device; Perform step 802;
  • Step 802 Entering a channel estimation water injection state at a third time, the first transceiver device receives the second training sequence, and performs processing to output a second training sequence processed by the first transceiver device, where the first transceiver device is not in the second The training sequence is subjected to nonlinear equalization; then step 413 is performed;
  • Step 413 The second transceiver device enters the working state at the first moment, modulates the received service sequence by using the optimized coding format and the optimized power, and sends the modulated service sequence to the first transceiver device, and then performs the steps. 414;
  • Step 414 After receiving the working state at the first moment, the first transceiver device receives the service sequence, and performs processing to output the service sequence processed by the first transceiver device.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device
  • the AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format
  • the first transceiver device receives the second transceiver device to send The service sequence modulated using the optimized power and the optimized coding format
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to correspond to the second training sequence Value, in the process of AGC coefficient convergence, since the first transceiver device can decode the second training sequence using the known first encoding format, the error rate when the first transceiver device decodes the second training sequence is almost Zero, so that the first transceiver device receives the first training sequence to receive the second training sequence, the first transceiver device uses the decoded second training sequence to perform TR phase discrimination, and the noise is low, thereby reducing the reception.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence.
  • the AGC coefficient does not fluctuate greatly. Therefore, when the first transceiver device decodes the service sequence, the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • FIG. 9 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present invention.
  • the present invention provides a data transmission method, as shown in FIG. 9, including:
  • Step 901 The second transceiver device receives the optimized encoding format and the optimized power sent by the first transceiver device, where the optimized encoding format and the optimized power are determined by the first transceiver device according to the first training sequence used for channel estimation. ;
  • Step 902 The second transceiver device determines a second training sequence, modulates the second training sequence by using the optimized power and the first encoding format known by the first transceiver device, and sends the modulated second training sequence to the first a transceiver device, wherein the second training sequence is configured to cause the AGC module of the first transceiver device to converge the output AGC coefficient from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and according to the known first encoding
  • the format performs a demodulation operation on the modulated second training sequence;
  • Step 903 The second transceiver device receives the service sequence, modulates the service sequence by using the optimized power and the optimized coding format, and sends the modulated service sequence to the first transceiver device, where the service sequence is used to enable the first transceiver device.
  • the AGC module will output the AGC coefficient from the second training The value of the sequence converges to a value corresponding to the sequence of services.
  • the second transceiver device modulates the service sequence by using the optimized power and the optimized coding format, including:
  • the second transceiver device modulates the received service sequence after the first time using the optimized power and the optimized coding format
  • the duration between the first time and the start time of the second transceiver sequence that is sent by the second transceiver device is not less than the convergence time; the convergence time is the location of the first transceiver device.
  • the AGC coefficient output by the AGC module converges from the value corresponding to the first training sequence to the duration of all the values corresponding to the second training sequence.
  • the method further includes:
  • the second transceiver device determines the first training sequence, and modulates the first training sequence by using a second power, and sends the modulated first training sequence to the first through N subchannels Transceiver device
  • N is an integer greater than or equal to 1
  • the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the optimized encoding format and the optimized power are obtained by:
  • the first transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • the first transceiver device optimizes an encoding format and power of the N subchannels according to the channel estimation result, and determines the optimized encoding format and the optimized power of the N subchannels.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device AGC coefficient from corresponding to the first training The value of the sequence converges to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format; the first transceiver device receives the optimized power and optimized after the second transceiver device transmits The service sequence is modulated by the coding format; the AGC coefficient output by the AGC module of the first transceiver device converges from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to a value corresponding to the second training sequence.
  • the error rate when the first transceiver device decodes the second training sequence is almost zero, so that the first transceiver device uses the second decoded device from the process of receiving the first training sequence to receiving the second training sequence.
  • the training sequence is less noisy when performing TR phase discrimination, thereby reducing the risk of TR crashing when the second training sequence is received.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence. In the process, the AGC coefficient does not fluctuate greatly.
  • the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • FIG. 10 is a schematic structural diagram of a first transceiver device according to an embodiment of the present invention.
  • the present invention provides a first transceiver device, as shown in FIG. 10, including a receiving module 1001, a processing module 1002, a sending module 1003, a demodulating module 1004, an AGC module 1005, a nonlinear equalization module 1006, and a non- Linear equalization coefficient calculation module 1007:
  • the receiving module 1001 is configured to receive a first training sequence and a second sending and receiving sent by the second transceiver device a second training sequence transmitted by the device using the optimized power and the first encoding format known by the first transceiver device, and a service sequence transmitted by the second transceiver device using the optimized power and the optimized encoding format;
  • the processing module 1002 is configured to perform channel estimation according to the first training sequence, and determine the optimized encoding format and the optimized power.
  • the sending module 1003 is configured to send the determined optimized encoding format and the optimized power to the second transceiver device;
  • the demodulation module 1004 is configured to perform a demodulation operation on the modulated second training sequence according to the first encoding format.
  • the AGC module 1005 is configured to, when the receiving module receives the second training sequence, converge the output AGC coefficient from a value corresponding to the first training sequence to a value corresponding to the second training sequence; when the receiving module receives the service sequence And outputting the AGC coefficient from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the AGC module 1005 is specifically configured to:
  • the output AGC coefficients are converged from the value corresponding to the first training sequence to the minimum of all values corresponding to the second training sequence.
  • the receiving module 1001 is specifically configured to:
  • N is an integer greater than or equal to 1; the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • processing module 1002 is specifically configured to:
  • the coding format and power of the N subchannels are optimized, and the optimized coding format and the optimized power of the N subchannels are determined.
  • a nonlinear equalization module 1006 is further included for:
  • the first training sequence performs nonlinear equalization; wherein the first nonlinear equalization coefficient is determined according to the first training sequence and the channel estimation result;
  • the receiving module receives the second training sequence, performing nonlinear equalization on the received modulated second training sequence by using the first nonlinear equalization coefficient
  • the demodulation module 1004 is specifically configured to:
  • a pre-demodulation operation is performed on the sequence obtained after performing the nonlinear equalization, and the sequence obtained after performing the pre-demodulation operation is decoded according to the first encoding format.
  • a nonlinear equalization coefficient calculation module 1007 is further included for:
  • the first nonlinear equalization coefficient is determined from the nonlinear sequence.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device
  • the AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format
  • the first transceiver device receives the second transceiver device to send The service sequence modulated using the optimized power and the optimized coding format
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to a value corresponding to the second training sequence.
  • the error rate when the first transceiver device decodes the second training sequence is almost zero, so that the first transceiver device uses the second decoded device from the process of receiving the first training sequence to receiving the second training sequence.
  • the training sequence is less noisy when performing TR phase discrimination, thereby reducing the risk of TR crashing when the second training sequence is received. Further due to the first When a transceiver device receives a service sequence, the AGC coefficient output by the AGC module of the first transceiver device needs to converge from a value corresponding to the second training sequence to a value corresponding to the service sequence, but the second training sequence and the service sequence are optimized for use.
  • the post-power is modulated, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence.
  • the AGC coefficient does not fluctuate greatly.
  • the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the second training received. The risk of a TR crash in sequence.
  • FIG. 11 is a schematic structural diagram of a second transceiver device according to an embodiment of the present invention.
  • the present invention provides a second transceiver device, as shown in FIG. 11, including a receiving module 1101, a modulation module 1102, and a sending module 1103:
  • the receiving module 1101 is configured to receive the optimized encoding format and the optimized power sent by the first transceiver, and the service sequence, where the optimized encoding format and the optimized power are the first training performed by the first transceiver device according to the channel estimation. Sequence determined
  • the modulating module 1102 is configured to determine a second training sequence, modulate the second training sequence by using the optimized power and the first encoding format known by the first transceiver device, and modulate the service sequence by using the optimized power and the optimized encoding format. ;
  • the sending module 1103 is configured to send the modulated second training sequence to the first transceiver device, and send the modulated service sequence to the first transceiver device.
  • the second training sequence is used to enable the automatic gain control AGC of the first transceiver device.
  • the module converges the output AGC coefficient from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the known first encoding format; the service sequence
  • the AGC module for causing the first transceiver device to converge the output AGC coefficient from a value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the modulation module 1102 is specifically configured to:
  • the duration between the first time and the start time of the second transmission sequence sent by the second transceiver device is not less than the convergence time; the convergence time is the AGC coefficient output by the AGC module of the first transceiver device corresponding to the first time.
  • the value of the training sequence converges to the duration of all of the values corresponding to the values of the second training sequence.
  • the modulation module 1102 is further configured to:
  • the sending module 1103 is further configured to:
  • N is an integer greater than or equal to 1
  • the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the optimized encoding format and the optimized power are obtained by:
  • the first transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • the first transceiver device optimizes the coding format and power of the N subchannels according to the channel estimation result, and determines an optimized coding format and optimized power of the N subchannels.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device
  • the AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format
  • the first transceiver device receives the second transceiver device to send The service sequence modulated using the optimized power and the optimized coding format
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to correspond to the second training sequence Value, in the process of AGC coefficient convergence, since the first transceiver device can decode the second training sequence using the known first encoding format, the error rate when the first transceiver device decodes the second training sequence is almost Zero, so that the first transceiver device receives the first training sequence to receive the second training sequence, the first transceiver device uses the decoded second training sequence to perform TR phase discrimination, and the noise is low, thereby reducing the reception.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence.
  • the AGC coefficient does not fluctuate greatly. Therefore, when the first transceiver device decodes the service sequence, the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • FIG. 12 is a schematic structural diagram of another first transceiver device according to an embodiment of the present invention.
  • the present invention provides a first transceiver device, as shown in FIG. 12, including a receiver 1201, a processor 1202, and a transmitter 1206:
  • the receiver 1201 is configured to receive, by the processor 1202, a first training sequence sent by the second transceiver device, and the second encoding format sent by the second transceiver device and the first encoding format known by the first transceiver device for modulation. a second training sequence and a service sequence transmitted by the second transceiver device using the optimized power and the optimized coding format;
  • a transmitter 1206, configured to send, by the processor 1202, the determined optimized encoding format and the optimized power to the second transceiver device;
  • the processor 1202 is configured to perform channel estimation according to the first training sequence, determine the optimized encoding format and the optimized power, and perform a demodulation operation on the modulated second training sequence according to the first encoding format;
  • the automatic gain module AGC will be output. The number converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence; when the receiver receives the traffic sequence, the output AGC coefficient converges from the value corresponding to the second training sequence to correspond to the service sequence Value
  • the memory 1205 is configured to store data and information.
  • bus 1200 can include any number of interconnected buses and bridges, and bus 1200 will include one or more processors represented by processor 1202 and memory represented by memory 1205. The various circuits are linked together. The bus 1200 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1203 provides an interface between bus 1200 and receiver 1201 and transmitter 1206. Receiver 1201 and transmitter 1206 may be one component or multiple components, such as multiple receivers and transmitters, providing modules for communicating with various other devices on a transmission medium.
  • Data processed by processor 1202 is transmitted over wireless medium via antenna 1204. Further, antenna 1204 also receives the data and transmits the data to processor 1202.
  • the processor 1202 is responsible for managing the bus 1200 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1205 can be used to store data used by the processor 1202 in performing operations.
  • the processor 1202 can be a central buried device (CPU), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable Complex Programmable Logic Device (CPLD).
  • CPU central buried device
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • CPLD complex programmable Complex Programmable Logic Device
  • the processor 1202 is specifically configured to:
  • the output AGC coefficients are converged from the value corresponding to the first training sequence to the minimum of all values corresponding to the second training sequence.
  • the receiver 1201 is specifically configured to:
  • N is an integer greater than or equal to 1; the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the processor 1202 is specifically configured to:
  • the coding format and power of the N subchannels are optimized, and the optimized coding format and the optimized power of the N subchannels are determined.
  • the processor 1202 is further configured to:
  • a pre-demodulation operation is performed on the sequence obtained after performing the nonlinear equalization, and the sequence obtained after performing the pre-demodulation operation is decoded according to the first encoding format.
  • the processor 1202 is further configured to:
  • the first nonlinear equalization coefficient is determined from the nonlinear sequence.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device
  • the AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format
  • the first transceiver device receives the second transceiver device to send The service sequence modulated using the optimized power and the optimized coding format
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device Since the first transceiver device performs channel estimation according to the first training sequence, the first coded cell is used for receiving And a second training sequence of the optimized power modulation. At this time, the AGC coefficient output by the AGC module of the first transceiver device needs to converge from a value corresponding to the first training sequence to a value corresponding to the second training sequence, in the AGC coefficient.
  • the first transceiver device can decode the second training sequence using the known first encoding format, the error rate when the first transceiver device decodes the second training sequence is almost zero, thereby When the transceiver device receives the first training sequence to receive the second training sequence, the first transceiver device uses the decoded second training sequence to perform TR phase discrimination, and the noise is low, thereby reducing the time when the second training sequence is received. The risk of TR crashing.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence.
  • the AGC coefficient does not fluctuate greatly. Therefore, when the first transceiver device decodes the service sequence, the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • FIG. 13 is a schematic structural diagram of a second transceiver device according to an embodiment of the present invention.
  • the present invention provides a second transceiver device, as shown in FIG. 13, including a receiver 1301, a processor 1302, and a transmitter 1306:
  • the receiver 1301 is configured to receive, after the control of the processor 1302, the optimized encoding format and the optimized power sent by the first transceiver, and the service sequence; wherein the optimized encoding format and the optimized power are used by the first transceiver device Determining a first training sequence for channel estimation;
  • the processor 1302 is configured to determine a second training sequence, and modulate the second training sequence by using the optimized power and the first encoding format known by the first transceiver device; and modulating the service sequence by using the optimized power and the optimized encoding format ;
  • the transmitter 1306 is configured to send the modulated second training sequence under the control of the processor 1302. Sending, to the first transceiver device, the modulated service sequence to the first transceiver device; the second training sequence is configured to enable the automatic gain control AGC module of the first transceiver device to output the AGC coefficient from the value corresponding to the first training sequence Converging to a value corresponding to the second training sequence, and performing a demodulation operation on the modulated second training sequence according to the known first encoding format; the service sequence is used to enable the AGC module of the first transceiver device to output the AGC coefficient Converging from a value corresponding to the second training sequence to a value corresponding to the service sequence;
  • the memory 1305 is configured to store data and information.
  • bus 1300 can include any number of interconnected buses and bridges, and bus 1300 will include one or more processors represented by processor 1302 and memory represented by memory 1305. The various circuits are linked together. The bus 1300 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1303 provides an interface between bus 1300 and receiver 1301 and transmitter 1306.
  • Receiver 1301 and transmitter 1306 can be one component or multiple components, such as multiple receivers and transmitters, providing modules for communicating with various other devices on a transmission medium.
  • Data processed by processor 1302 is transmitted over wireless medium via antenna 1304. Further, antenna 1304 also receives data and transmits the data to processor 1302.
  • the processor 1302 is responsible for managing the bus 1300 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1305 can be used to store data used by the processor 1302 in performing operations.
  • the processor 1302 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the processor 1302 is specifically configured to:
  • the received service sequence is modulated after the first time using the optimized power and the optimized coding format
  • the duration between the first time and the start time of the second transmission sequence sent by the second transceiver device is not less than the convergence time; the convergence time is the AGC coefficient output by the AGC module of the first transceiver device corresponding to the first time.
  • the value of the training sequence converges to all values corresponding to the second training sequence The length of the minimum.
  • the processor 1302 is further configured to:
  • the transmitter 1306 is further configured to:
  • N is an integer greater than or equal to 1
  • the second power includes power corresponding to each of the N subchannels, and the power corresponding to any subchannel is not zero.
  • the optimized encoding format and the optimized power are obtained by:
  • the first transceiver device performs channel estimation according to the first training sequence to obtain a channel estimation result
  • the first transceiver device optimizes the coding format and power of the N subchannels according to the channel estimation result, and determines an optimized coding format and optimized power of the N subchannels.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device
  • the AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format
  • the first transceiver device receives the second transceiver device to send The service sequence modulated using the optimized power and the optimized coding format
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to a value corresponding to the second training sequence.
  • the error rate when the first transceiver device decodes the second training sequence is almost zero, so that the first transceiver device uses the second decoded device from the process of receiving the first training sequence to receiving the second training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence. In the process, the AGC coefficient does not fluctuate greatly.
  • the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • FIG. 14 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • the present invention provides a data transmission system. As shown in FIG. 14, the second transceiver device 1401 and the first transceiver device 1402 are included:
  • the second transceiver device 1401 is configured to receive the optimized encoding format and the optimized power sent by the first transceiver device, determine the second training sequence, and use the optimized power and the first encoding format known by the first transceiver device to perform the second training.
  • the sequence is modulated, and the modulated second training sequence is sent to the first transceiver device;
  • the second transceiver device receives the service sequence, modulates the service sequence using the optimized power and the optimized coding format, and modulates the modulated service sequence Send to the first transceiver device;
  • the first transceiver device 1402 is configured to receive a first training sequence sent by the second transceiver device, and send the optimized encoding format and the optimized power determined by the channel estimation according to the first training sequence to the second transceiver device; a second training sequence sent by the transceiver device using the optimized power and the first encoding format known by the first transceiver device; the AGC coefficient output by the automatic gain control AGC module converges from a value corresponding to the first training sequence to correspond to a value of the second training sequence, performing a demodulation operation on the modulated second training sequence according to the first encoding format; receiving a service sequence sent by the second transceiver device using the optimized power and the optimized encoding format; AGC module output The AGC coefficient converges from a value corresponding to the second training sequence to a value corresponding to the traffic sequence.
  • the first transceiver device receives the first training sequence sent by the second transceiver device, and performs optimized channel coding format and optimized power transmission determined by channel estimation according to the first training sequence.
  • the first transceiver device receives a second training sequence sent by the second transceiver device using the optimized power and the first encoding format known by the first transceiver device; the output of the AGC module of the first transceiver device
  • the AGC coefficient converges from a value corresponding to the first training sequence to a value corresponding to the second training sequence, and performs a demodulation operation on the modulated second training sequence according to the first encoding format
  • the first transceiver device receives the second transceiver device to send The service sequence modulated using the optimized power and the optimized coding format
  • the AGC coefficient output by the AGC module of the first transceiver device converges from the value corresponding to the second training sequence to a value corresponding to the service sequence.
  • the first transceiver device receives the second training sequence using the first encoding format and the optimized power modulation after performing channel estimation according to the first training sequence.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to correspond to The value of the first training sequence converges to a value corresponding to the second training sequence.
  • the error rate when the first transceiver device decodes the second training sequence is almost zero, so that the first transceiver device uses the second decoded device from the process of receiving the first training sequence to receiving the second training sequence.
  • the training sequence is less noisy when performing TR phase discrimination, thereby reducing the risk of TR crashing when the second training sequence is received.
  • the AGC coefficient output by the AGC module of the first transceiver device needs to converge from the value corresponding to the second training sequence to the value corresponding to the service sequence, but because of the second training sequence and the service sequence
  • the modulating power is used to modulate, that is, the AGC coefficient of the AGC module of the first transceiver device corresponds to the value of the second training sequence is close to the value corresponding to the service sequence, and the first transceiver device receives the second training sequence to receive the service sequence. In the process, the AGC coefficient does not fluctuate greatly.
  • the error rate is low. Further, when the first transceiver device performs TR phase discrimination for the service sequence, the noise is low, thereby reducing the reception. The risk of a TR crash in the second training sequence.
  • embodiments of the present invention can be provided as a method, or a computer program product. Accordingly, the present invention may employ an entirely hardware embodiment, an entirely software embodiment, or a combination. A form of embodiment of the software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、收发设备及系统,用以降低收发设备从接收训练序列切换至接收业务序列时的TR鉴相噪声。本发明实施例包括:第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备,接收使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列,第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;接收使用优化后功率和优化后编码格式进行调制的业务序列,AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。

Description

一种数据传输方法、收发设备及系统 技术领域
本发明涉及光通信领域,尤其涉及一种数据传输方法、收发设备及系统。
背景技术
随着互联网的发展,应用于城域及接入网络的短距通讯系统逐渐趋于大容量低成本。基于离散多音调(Discrete Multi-Tone,简称DMT)的强度调制-直接检测(Intensity modulation-direct detection,简称IM-DD)技术由于其结构简单、频谱利用率高、抗脉冲噪声能力强、成本低等特点而成为当前主流技术之一。
DMT将通信信道划分为足够多的窄带子信道,根据每个子信道的信道估计结果,为每个子信道分配该子信道对应的正交振幅调制(Quadrature Amplitude Modulation,简称QAM)编码格式和功率。DMT技术对每个子信道进行独立的调制,从而将有限的功率应用于性能相对更好的子信道上,从而提高频谱利用率。
DMT系统包括两种状态,信道估计状态和工作状态。第一收发设备预先确定信道估计状态的起始时刻和工作状态的起始时刻,并将信道估计状态的起始时刻和工作状态的起始时刻发送给第二收发设备,以便使第二收发设备和第一收发设备同时在信道估计状态的起始时刻进入信道估计状态,在工作状态的起始时刻进入工作状态。
在DMT的信道估计状态,第一收发设备预先将每个子信道的QAM编码格式和功率等参数发送给第二收发设备,每个子信道所分配的功率值通常为非零功率值。第二收发设备产生串行的训练序列,并经串并转换将训练序列并行分配到所有子信道上,第二收发设备使用接收到的每个子信道对应的QAM编码格式和功率对该子信道上的训练序列分别进行调制。之后通过快速傅氏逆变换(Inverse Fast Fourier Transformation,简称IFFT)将所有子信道上 的训练序列转换为时域信号,并添加循环前缀(Cyclic Prefix,简称CP)及峰值平均功率比(Peak to Average Power Ratio,简称PAPR)削波,最后经数模转换(Digital-to-Analog Converter,简称DAC)器发送给第一收发设备。第一收发设备接收到训练序列之后,对每个子信道进行信道估计,并为所有子信道中的每个子信道确定出优化后QAM调制格式和优化后功率,并将优化后QAM调制格式和优化后功率发送给给第二收发设备。
在DMT工作状态,第二收发设备使用每个子信道的优化后QAM调制格式和优化后功率对接收到的业务序列进行调制,并将调制后的业务序列发送给第一收发设备。第一收发设备经模数转换(Analog-to-Digital Converter,简称ADC)器将接收到的业务序列转换为数字信号,并通过自动增益控制(Automatic Gain Control,简称AGC)对接收到的业务序列的信号幅度进行增益控制,并通过TR模块实现第一收发设备和第二收发设备的时钟源同步,之后将接收到的业务序列依次去掉循环前缀、进行快速傅氏变换(Fast Fourier Transformation,简称FFT)、信道均衡、QAM解码及并串转换,从而恢复出原始的业务序列。
在信道估计状态,每个子信道所分配的功率值均为非零功率值,在工作状态下,由于受到带宽特性影响,功率值一般集中在低频段的子信道上,此时高频段的某些子信道上的功率值为零。由于在工作状态下,第二收发设备通过低频段的子信道向第一收发设备传输信号时,信号的总功率在传输过程中损耗较小,因此第一收发设备在工作状态下接收到的信号的总功率比信道估计状态下接收到的信号的总功率大。也就是说,第一收发设备从信道估计状态切换到工作状态时,第一收发设备收到的信号的总功率会增大,信号的幅度值也随之增大。
第一收发设备包括AGC模块,当第一收发设备接收到信号时,AGC模块对接收到的信号进行增益控制,以便将第一收发设备接收到的信号保持恒定的平均功率输出。具体做法为,在信道估计状态,第一收发设备接收到的信号幅度较小时,AGC输出一个较大的AGC系数,以便于将信号幅度调高, 在工作状态,第一收发设备接收到的信号幅度较大时,AGC输出一个较小的AGC系数,以便于将信号幅度调低。可见,从信道估计状态切换至工作状态时,AGC系数从大变小。图1a示例性示出了第一收发设备从信道估计状态切换至工作状态时AGC系数变化示意图。如图1a所示,AGC系数从大变小,需要一个收敛时长,在AGC的收敛时长内,由于AGC系数波动比较大,因此在收敛时长内信道估计结果与实际信道状况也不匹配,从而导致QAM解码时误码率较高,从而导致第一收发设备根据QAM解码后的业务序列进行时钟恢复(Time Recover,简称TR)鉴相时,噪声增大,如图1b所示,图1b示例性示出了第一收发设备从信道估计状态切换至工作状态时TR鉴相示意图,从图中可看出,在AGC收敛时长阶段,TR鉴相噪声较大,TR鉴相噪声增大加剧了从信道估计状态切换到工作状态时TR崩溃的风险。
发明内容
本发明实施例提供一种数据传输方法、收发设备及系统,用以降低收发设备从接收训练序列切换至接收业务序列时的TR鉴相噪声,从而降低TR崩溃的风险。
第一方面提供一种数据传输方法,包括:
第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;
第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;
第一收发设备的自动增益控制AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;
第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;
第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
结合第一方面,在第一方面的第一种可能的实现方式中,第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,具体包括:
第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,第一收发设备接收第二收发设备发送的第一训练序列,包括:
第一收发设备通过N个子信道接收第二收发设备发送的使用第二功率进行调制的第一训练序列;
其中,N为大于等于1的整数;第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,第一收发设备接收第二收发设备发送的第一训练序列之后,接收第二训练序列之前,还包括:
第一收发设备根据第一训练序列进行信道估计,得到信道估计结果;
第一收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化后编码格式和优化后功率。
结合第一方面至第一方面的第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,第一收发设备接收第一训练序列之后,接收第二训练序列之前,还包括:
第一收发设备使用第一非线性均衡系数对接收到的第一训练序列进行非线性均衡;其中,第一非线性均衡系数是根据第一训练序列和信道估计结果确定的;
第一收发设备根据第一编码格式对调制后的第二训练序列进行解调操 作,包括:
第一收发设备使用第一非线性均衡系数对接收到的调制后的第二训练序列进行非线性均衡;
第一收发设备对进行非线性均衡之后得到的序列进行预解调操作,并根据第一编码格式,对进行预解调操作之后得到的序列进行解码。
结合第一方面的第四种可能的实现方式,在第一方面的第无种可能的实现方式中,第一非线性均衡系数是通过以下方式得到的:
第一收发设备将第一训练序列和信道估计结果相乘,得到非线性序列;
第一收发设备根据非线性序列确定第一非线性均衡系数。
第二方面提供一种数据传输方法,包括:
第二收发设备接收第一收发设备发送的优化后编码格式和优化后功率,其中优化后编码格式和优化后功率是第一收发设备根据用于进行信道估计的第一训练序列确定的;
第二收发设备确定第二训练序列,使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制,并将调制后的第二训练序列发送给第一收发设备,第二训练序列用于使第一收发设备的自动增益控制AGC模块将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,并根据已知的第一编码格式对调制后的第二训练序列进行解调操作;
第二收发设备接收业务序列,使用优化后功率和优化后编码格式对业务序列进行调制,并将调制后的业务序列发送给第一收发设备,业务序列用于使第一收发设备的AGC模块将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
结合第二方面,在第二方面的第一种可能的实现方式中,第二收发设备使用优化后功率和优化后编码格式对业务序列进行调制,包括:
第二收发设备使用优化后功率和优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
其中,第一时刻与第二收发设备发送调制后的第二训练序列的起始时刻 之间的时长不小于收敛时长;收敛时长为第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值的时长。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,第二收发设备接收第一收发设备发送的优化后编码格式和优化后功率之前,还包括:
第二收发设备确定第一训练序列,并使用第二功率对第一训练序列进行调制,并将调制后的第一训练序列通过N个子信道发送给第一收发设备;
其中,N为大于等于1的整数,第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,优化后编码格式和优化后功率是通过以下方式得到的:
第一收发设备根据第一训练序列进行信道估计,得到信道估计结果;
第一收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化编码格式和优化功率。
第三方面提供一种收发设备,包括:
接收模块,用于接收另一个收发设备发送的第一训练序列、另一个收发设备发送的使用优化后功率和收发设备已知的第一编码格式进行调制的第二训练序列和另一个收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;
处理模块,用于根据第一训练序列进行信道估计,确定出的优化后编码格式和优化后功率;
发送模块,用于将确定出的优化后编码格式和优化后功率发送给另一个收发设备;
解调模块,用于根据第一编码格式对调制后的第二训练序列进行解调操作;
自动增益模块AGC模块,用于在接收模块接收到第二训练序列时,将输 出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值;在接收模块接收到业务序列时,将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
结合第三方面,在第三方面的第一种可能的实现方式中,AGC模块,具体用于:
在接收模块接收到第二训练序列时,将输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,接收模块,具体用于:
通过N个子信道接收另一个收发设备发送的使用第二功率进行调制的第一训练序列;
其中,N为大于等于1的整数;第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,处理模块,具体用于:
根据第一训练序列进行信道估计,得到信道估计结果;
根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化后编码格式和优化后功率。
结合第三方面至第三方面的第三种可能的实现方式中的任一种可能的实现方式,在第三方面的第四种可能的实现方式中,还包括非线性均衡模块,用于:
在接收模块接收到第一训练序列时,使用第一非线性均衡系数对接收到的第一训练序列进行非线性均衡;其中,第一非线性均衡系数是根据第一训练序列和信道估计结果确定的;
在接收模块接收到第二训练序列时,使用第一非线性均衡系数对接收到的调制后的第二训练序列进行非线性均衡;
解调模块,具体用于:
对进行非线性均衡之后得到的序列进行预解调操作,并根据第一编码格式,对进行预解调操作之后得到的序列进行解码。
结合第三方面的第四种可能的实现方式,在第三方面的第无种可能的实现方式中,还包括非线性均衡系数计算模块,用于:
将第一训练序列和信道估计结果相乘,得到非线性序列;
根据非线性序列确定第一非线性均衡系数。
第四方面提供一种收发设备,包括:
接收模块,用于接收另一个收发设备发送的优化后编码格式和优化后功率,以及业务序列;其中优化后编码格式和优化后功率是另一个收发设备根据用于进行信道估计的第一训练序列确定的;
调制模块,用于确定第二训练序列,使用优化后功率和另一个收发设备已知的第一编码格式对第二训练序列进行调制;使用优化后功率和优化后编码格式对业务序列进行调制;
发送模块,用于将调制后的第二训练序列发送给另一个收发设备,将调制后的业务序列发送给另一个收发设备;第二训练序列用于使另一个收发设备的自动增益控制AGC模块将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,并根据已知的第一编码格式对调制后的第二训练序列进行解调操作;业务序列用于使另一个收发设备的AGC模块将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
结合第四方面,在第四方面的第一种可能的实现方式中,调制模块,具体用于:
使用优化后功率和优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
其中,第一时刻与收发设备发送调制后的第二训练序列的起始时刻之间的时长不小于收敛时长;收敛时长为另一个收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值的时长。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,调制模块,还用于:
确定第一训练序列,并使用第二功率对第一训练序列进行调制;
发送模块,还用于:
将调制后的第一训练序列通过N个子信道发送给另一个收发设备;
其中,N为大于等于1的整数,第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,优化后编码格式和优化后功率是通过以下方式得到的:
另一个收发设备根据第一训练序列进行信道估计,得到信道估计结果;
另一个收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化编码格式和优化功率。
第五方面提供一种收发设备,包括:
接收机,用于接收另一个收发设备发送的第一训练序列、另一个收发设备发送的使用优化后功率和收发设备已知的第一编码格式进行调制的第二训练序列和另一个收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;
发送机,用于将确定出的优化后编码格式和优化后功率发送给另一个收发设备;
处理器,用于根据第一训练序列进行信道估计,确定出的优化后编码格式和优化后功率;根据第一编码格式对调制后的第二训练序列进行解调操作;用于在接收机接收到第二训练序列时,将输出的自动增益模块AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值;在接收机接收到业务序列时,将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
结合第五方面,在第五方面的第一种可能的实现方式中,处理器,具体用于:
在接收机接收到第二训练序列时,将输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,接收机,具体用于:
通过N个子信道接收另一个收发设备发送的使用第二功率进行调制的第一训练序列;
其中,N为大于等于1的整数;第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,处理器,具体用于:
根据第一训练序列进行信道估计,得到信道估计结果;
根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化后编码格式和优化后功率。
结合第五方面至第五方面的第三种可能的实现方式中的任一种可能的实现方式,在第五方面的第四种可能的实现方式中,处理器,还用于:
在接收机接收到第一训练序列时,使用第一非线性均衡系数对接收到的第一训练序列进行非线性均衡;其中,第一非线性均衡系数是根据第一训练序列和信道估计结果确定的;
在接收机接收到第二训练序列时,使用第一非线性均衡系数对接收到的调制后的第二训练序列进行非线性均衡;
对进行非线性均衡之后得到的序列进行预解调操作,并根据第一编码格式,对进行预解调操作之后得到的序列进行解码。
结合第五方面的第四种可能的实现方式,在第五方面的第无种可能的实现方式中,处理器,还用于:
将第一训练序列和信道估计结果相乘,得到非线性序列;
根据非线性序列确定第一非线性均衡系数。
第六方面提供一种收发设备,包括:
接收机,用于接收另一个收发设备发送的优化后编码格式和优化后功率,以及业务序列;其中优化后编码格式和优化后功率是另一个收发设备根据用于进行信道估计的第一训练序列确定的;
处理器,用于确定第二训练序列,使用优化后功率和另一个收发设备已知的第一编码格式对第二训练序列进行调制;使用优化后功率和优化后编码格式对业务序列进行调制;
发送机,用于将调制后的第二训练序列发送给另一个收发设备,将调制后的业务序列发送给另一个收发设备;第二训练序列用于使另一个收发设备的自动增益控制AGC模块将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,并根据已知的第一编码格式对调制后的第二训练序列进行解调操作;业务序列用于使另一个收发设备的AGC模块将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
结合第六方面,在第六方面的第一种可能的实现方式中,处理器,具体用于:
使用优化后功率和优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
其中,第一时刻与收发设备发送调制后的第二训练序列的起始时刻之间的时长不小于收敛时长;收敛时长为另一个收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值的时长。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,处理器,还用于:
确定第一训练序列,并使用第二功率对第一训练序列进行调制;
发送机,还用于:
将调制后的第一训练序列通过N个子信道发送给另一个收发设备;
其中,N为大于等于1的整数,第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,优化后编码格式和优化后功率是通过以下方式得到的:
另一个收发设备根据第一训练序列进行信道估计,得到信道估计结果;
另一个收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化编码格式和优化功率。
第七方面提供一种数据传输系统,包括:
第一收发设备,用于接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;自动增益控制AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值;
第二收发设备,用于接收第一收发设备发送的优化后编码格式和优化后功率;确定第二训练序列,使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制,并将调制后的第二训练序列发送给第一收发设备;第二收发设备接收业务序列,使用优化后功率和优化后编码格式对业务序列进行调制,并将调制后的业务序列发送给第一收发设备。
本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第 二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为背景技术中第一收发设备从信道估计状态切换至工作状态时AGC系数变化示意图;
图1b为背景技术中第一收发设备从信道估计状态切换至工作状态时TR鉴相示意图;
图2为本发明实施例适用的一种数据传输系统架构示意图;
图3为本发明实施例提供的一种数据传输方法的流程示意图;
图3a为本发明实施例中子载波所对应的预先测量的信噪比和功率负荷、比特负荷的对应关系示意图;
图4为本发明实施例提供的一种数据传输方法的流程示意图;
图5为本发明实施例适用的另一种数据传输系统架构示意图;
图6为本发明实施例提供的另一种数据传输方法的流程示意图;
图7为本发明实施例适用的另一种数据传输系统架构示意图;
图8为本发明实施例提供的另一种数据传输方法的流程示意图;
图9为本发明实施例提供的另一种数据传输方法的流程示意图;
图10为本发明实施例提供的一种第一收发设备的结构示意图;
图11为本发明实施例提供的一种第二收发设备的结构示意图;
图12为本发明实施例提供的另一种第一收发设备的结构示意图;
图13为本发明实施例提供的另一种第二收发设备的结构示意图;
图14为本发明实施例提供的一种数据传输系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例适用于多种传输系统,本发明实施例对此不做限制,为介绍方便,以下实施例中以基于DMT的IM-DD技术为例进行介绍。本发明实施例中的第一收发设备和第二收发设备均具有接收和发送功能。可选地,第一收发设备可为接收机,第二收发设备可为发送机,发送机和接收机之间有两条通信通道,一条用于发送机向接收机发送信息,另一条在发送机和接收机之间的独立的通信通道,用于接收机向发送机发送信息。
图2示例性示出了本发明实施例适用的一种系统架构示意图。如图2所示,包括第二收发设备101和第一收发设备102。第二收发设备101至少包括 第二收发设备协商模块110、训练序列产生模块104、选择模块106,第二收发设备101还包括DAC模块。第一收发设备102至少包括第一收发设备协商模块124、ADC模块114、AGC模块115、TR模块116、TR鉴相模块120、信道估计和信道补偿模块121、解码模块122、并串转换模块125。第一收发设备102还可包括非线性均衡模块117、非线性均衡系数计算模块118。
DMT技术中,将通信信道划分为足够多的窄带子信道,比如图2中示出的子信道1、子信道2、…子信道N,每个子信道均可根据该子信道对应的编码格式和功率进行独立的调制。
在图2示出的系统架构中,第二收发设备101的第二收发设备协商模块110和第一收发设备的第一收发设备协商模块124之间有通信通道,可用于第二收发设备101和第一收发设备102之间互相发送和接收信息。
第二收发设备101可接收业务序列103,也可通过训练序列产生模块104产生训练序列,比如第一训练序列和第二训练序列。第二收发设备101中,业务序列103和训练序列产生模块104产生的训练序列进行比特加载和串并转换,之后业务序列和训练序列进入选择模块106。选择模块106在第二收发设备协商模块110的控制在训练序列和业务序列中进行选择,之后将选择的序列进行输出。选择模块106输出的序列被加载到N个子信道中,每个子信道使用该子信道对应的编码格式对该子信道上加载的序列进行编码,比如,使用编码格式1对子信道1上的序列进行编码,使用编码格式2对子信道2上的序列进行编码,…,使用编码格式N对子信道N上的序列进行编码。并为每个子信道加载该子信道对应的功率,比如为子信道1加载功率1,为子信道2加载功率2,…,为子信道N加载功率N。第二收发设备101将N个子信道上的序列进行IFFT,从而将所有子信道上的训练序列转换为时域信号,并添加CP及PAPR削波,最后经DAC发送给第一收发设备102。优选地,本发明实施例中的编码格式可为QAM编码格式。
具体来说,第二收发设备101将DAC输出的信号依次通过光发射次模块(Transmitter Optical Subassembly,简称TOSA)111、光纤信道112和光接收 次模块(Receiver Optical Subassembly,简称ROSA)113之后进入第一收发设备102的ADC模块114。TOSA111、光纤信道112和ROSA113作为信号传输的媒介时,信号在传输过程中会受到器件低通特性以及非线性畸变特性等的影响。
第一收发设备的ADC模块114将接收到的模拟信号转换为数字信号,并通过AGC模块115对接收到的序列的信号幅度进行增益控制。之后通过TR模块116实现第一收发设备102和第二收发设备101的时钟源同步,之后输入至非线性均衡模块117中,进行非线性均衡,以补偿信号在传输过程中的非线性失真。非线性均衡模块117输出的序列依次去掉CP,并进行FFT后输入至信道估计和信道补偿模块121,以进行信道均衡、信道估计和信道补偿。信道估计和信道补偿模块121输出的序列依次进入解码模块122和并串转换模块125中,依次经过解码和并串转换,之后第一收发设备102输出第一收发设备102所恢复出的序列,比如,第二收发设备101发送的为业务序列,则第一收发设备102输出业务序列,第二收发设备101发送的为训练序列,则第一收发设备102输出训练序列。
在上述第一收发设备102的信号处理过程中,TR模块116需接收TR鉴相模块120输入的信号,而TR鉴相模块120需要接收依次去除CP和FFT之后的序列,以及解码后的序列,并根据依次去除CP和FFT之后的序列和解码后的序列进行TR鉴相。非线性均衡模块117需要根据非线性均衡系数计算模块118输入的非线性均衡系数进行非线性均衡。
本发明实施例中,在信道估计状态,第一收发设备102还可通过训练序列产生模块104产生第一训练序列,并将第一训练序列发送给第一收发设备102,第一收发设备102根据第一训练序列进行信道估计之后,得到信道估计结果。结合信道估计结果以及信道估计和信道补偿模块121输出的序列,以及DMT子载波功率/星座分配算法,对所有子信道中的每个子信道当前所分配的参数,比如编码格式和功率等进行优化,确定出优化后编码格式和优化后功率,从而将有限的功率应用于性能相对更好的子信道上,提高频谱利用 率。
第一收发设备确定出优化后编码格式和优化后功率后,可通过第一收发设备协商模块124发送给第二收发设备的第二收发设备协商模块110,从而可使第二收发设备101使用优化后编码格式和优化后功率对接收到的业务序列103进行调制。
图3示例性示出了本发明实施例提供的一种数据传输方法的流程示意图。
基于上述内容,如图3所示,本发明实施例提供一种数据传输方法,包括:
步骤301,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;
步骤302,第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;
步骤303,第一收发设备的自动增益控制AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;
步骤304,第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;
步骤305,第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
本发明实施例中,为第一收发设备和第二收发设备定义三种状态,信道估计状态、信道估计注水状态和工作状态,信道估计状态的起始时刻定义为第二时刻,信道估计注水状态的起始时刻定义为第三时刻,工作状态的起始时刻定义为第一时刻。第二收发设备和第一收发设备可通过多种方式确定第一时刻、第二时刻和第三时刻,比如,通过第二收发设备和第一收发设备预先协商的方式、由高层服务器通过网络信令统一通知的方式、由第一收发设 备确定并发送给第二收发设备的方式、由第二收发设备确定后并发送给第一收发设备的方式,或者由人工配置的方式等。一种可选的实施方式为,在系统开机的时刻即确定为第二时刻,在系统开机之后,第二收发设备和第一收发设备自动进入信道估计状态。
第二收发设备和第一收发设备在第二时刻进入信道估计状态,可选地一种实施方式为,第二收发设备确定第一训练序列,并使用第二功率对第一训练序列进行调制,并将调制后的第一训练序列通过N个子信道发送给第一收发设备,其中,N为大于等于1的整数,第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。可选地,第二收发设备使用第二功率和第二编码格式对第一训练序列进行调制。
一种可选的实施方式为,由于第二收发设备的第二收发设备协商模块和第一收发设备的第一收发设备协商模块之间通过独立的通信通道传输信息,因此第二收发设备和第一收发设备可通过第二收发设备协商模块和第一收发设备协商模块进行协商,并通过协商的方式确定出第一训练序列的产生规则,以及第二编码格式和第二功率。第二收发设备的训练序列产生模块在第二收发设备协商模块的控制下,根据与第一收发设备预先协商的第一训练序列的产生规则产生第一训练序列。
第二收发设备确定出第一训练序列之后,使用与第一收发设备协商的第二编码格式和第二功率对第一训练序列进行调制。第二编码格式为N个子信道中每个子信道对应的编码格式,第二功率为N个子信道中每个子信道对应的功率。在信道估计状态,为了使第一收发设备对每个子信道均进行信道估计,因此,优选地,第二功率包括的任一子信道对应的功率均不为零。
进入信道估计状态的第一收发设备通过N个子信道接收第二收发设备发送的使用第二功率进行调制的第一训练序列,之后,第一收发设备根据第一训练序列进行信道估计,得到信道估计结果;第一收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化后编码格式和优化后功率。并将优化后编码格式和优化后功率发送给第一收发 设备,以便达到优化每个子信道的编码格式和功率的目的,从而将有限的功率应用于性能相对更好的子信道上,提高频谱利用率。其中,优化后编码格式包括每个子信道对应的编码格式,优化后功率包括每个子信道对应的功率。
具体来说,第一收发设备根据第一训练序列进行信道估计之后,得到信道估计结果,比如所有子信道的信噪比(Signal Noise Ratio,简称SNR),或者所有子信道的信道状态信息测量参考信号(英文为:Channel State Information Reference Signal,简称为:CSI-RS)等参数。结合信道估计结果以及信道估计和信道补偿模块输出的序列,以及DMT子载波功率/星座分配算法,确定出每个子信道的条件,对所有子信道中的每个子信道上当前所分配的参数,比如编码格式和功率等进行优化,确定出优化后编码格式和优化后功率,从而将有限的功率应用于性能相对更好的子信道上,提高频谱利用率。
以图3a为例,进行具体介绍。图3a示例性示出了子载波所对应的预先测量的SNR和功率负荷、比特负荷的对应关系,预先测量的SNR,即通过信道估计所得到的信道估计结果SNR。如图3a所示,当子载波的预先测量的SNR较高时,该子载波对应的功率负荷较大,对应的比特负荷也较大。反之,当子载波的预先测量的SNR较低时,该子载波对应的功率负荷较小,对应的比特负荷也较小。也就是说,当某个子信道上的子载波的SNR较高时,该子信道上对应分配的功率也应较大,反之,当某个子信道上的子载波的SNR较低时,该子信道上对应分配的功率也应较小。结合信道估计结果,从而将有限的功率应用于性能相对更好的子信道上,提高频谱利用率。
一种可选的实现方式,在信道估计状态,第二收发设备发送第一训练序列,第一收发设备根据第一训练序列进行信道估计,得到优化后编码格式和优化后功率发送给第一收发设备之后,第一收发设备还确定出第三时刻,第三时刻为信道估计注水状态的起始时刻,第一收发设备将第三时刻的信息发送给第二收发设备,以使第二收发设备和第一收发设备同时在第三时刻进入信道估计注水状态。优选地,第一收发设备还确定出第一编码格式,并将第 一编码格式发送给第一收发设备。可选的实施方式为,第一收发设备将用于指示第三时刻的信息、第一编码格式,以及该优化后编码格式和优化后功率在一条信息中发送给第二收发设备,或者第一收发设备通过多条信息分别将第一收发设备将用于指示第三时刻的信息、第一编码格式,以及该优化后编码格式和优化后功率发送给第二收发设备,具体来说,第一收发设备通过第一收发设备协商模块与第二收发设备协商模块之间的通信信道将用于指示第三时刻的信息、第一编码格式,以及该优化后编码格式和优化后功率等信息发送给第二收发设备。
具体实施中,第三时刻一定位于第二收发设备接收到第一收发设备发送的优化后编码格式和优化后功率的时刻之后。在第三时刻,第二收发设备和第一收发设备同时进入信道估计注水状态,此时,第二收发设备可根据与第一收发设备预先协商的训练序列产生的算法生成第二训练序列,并使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制。可选地,第二训练序列可与第一训练序列相同,也可不同,本发明实施例对此不做限制。第一收发设备已知的第一编码格式,具体可包括多种形式,比如,第一收发设备确定出第一编码格式,并将第一编码格式发送给第二收发设备,此时,第一编码格式对于第一收发设备是已知的;或者,由第一收发设备和第二收发设备通过协商的方式确定出第一编码格式,此时第一编码格式对于第一收发设备是已知的;或者,通过高层信令向第二收发设备和第一收发设备发送第一编码格式的信息,以使第一收发设备获取第一编码格式;或者通过人工配置的方式在第一收发设备和第二收发设备均配置第一编码格式,以使第一收发设备获取第一编码格式,本发明实施例对第一收发设备已知第一编码格式的方式不做限定。
在信道估计注水阶段,第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列,根据第一编码格式对调制后的第二训练序列进行解调。
结合图2进行阐述,第一收发设备通过ADC模块114接收到第一训练序 列之后,第一收发设备的AGC模块115对接收到的第一训练序列的信号幅度进行增益控制,第一收发设备的AGC模块输出对应于第一训练序列的AGC系数。第一收发设备通过ADC模块114接收到第二训练序列之后,第一收发设备的AGC模块115对接收到的第二训练序列的信号幅度进行增益控制,并输出对应于第二训练序列的AGC系数。由于第一收发设备接收第一训练序列时,第一训练序列调制所使用的功率是平铺的,即任一个子信道所对应的功率为非零功率。此时,第一训练序列在传输过程中的功率的损耗较大,因此第一收发设备接收到第一训练序列的功率较小,此时,AGC模块115需要输出的对应于第一训练序列的AGC系数较大。在信道估计注水状态,第二收发设备使用优化后功率对第二训练序列进行调制,由于第一收发设备接收到第一训练序列,并进行信道估计之后,根据每个子信道的条件所确定出的优化后功率具体分布情况为大部分功率均分布在低频段,此时高频段的某些子信道上的功率值为零。第二训练序列在传输过程中损耗较小,则第一收发设备接收到的第二训练序列的信号幅度较大,此时,AGC模块115需要输出的对应于第二训练序列的AGC系数则较小。此时,第一收发设备从信道估计状态切换至信道估计注水状态,第一收发设备从接收第一训练序列至接收第二训练序列时,第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的较大的值开始减小,收敛为对应于所述第二训练序列的值。第一收发设备的AGC模块115将进行增益控制之后的序列发送发送至TR模块116,之后,对第二训练序列进行解调操作,并输出第二训练序列。
一种优选的实施方式为,第二收发设备和第一收发设备在信道估计注水状态之后,在第一时刻时,同时进入工作状态,在工作状态,第二收发设备对接收到的业务序列开始处理。业务序列为第二收发设备接收到的常规工作状态的序列。一种优选的实施方式为,第二收发设备使用优化后功率和优化后编码格式对在第一时刻之后接收到的业务序列进行调制;其中,所述第一时刻与所述第二收发设备发送调制后的所述第二训练序列的起始时刻之间的时长不小于收敛时长;所述收敛时长为所述第一收发设备的所述AGC模块输 出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值的时长。也就是说,第一收发设备接收第二训练序列,直至所述第一收发设备的AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值。
结合图2进行介绍,在信道估计注水状态,第一收发设备接收第二训练序列,对第二训练序列进行解调操作具体包括:
将TR模块116输出的序列输入非线性均衡模块117,以便进行非线性均衡,之后将非线性均衡之后得到的序列进行预解调操作,并将预解调操作之后得到的序列输入至解码模块122,以便解码模块122进行相应操作。其中,预解调操作可包括,对非线性均衡模块117输出的序列去除CP和FFT,之后进行信道均衡、信道估计和信道补偿。
第一收发设备将进行解调操作的第二训练序列输入至并串转换模块125进行并串转换,并输出经并串转换的第二训练序列。
另一种可选的实施方式为,第一收发设备的AGC模块115进行增益控制之后的信号发送发送至TR模块116,之后,并不通过非线性均衡模块117对第二训练序列进行非线性均衡,而是直接对TR模块116输出的序列进行预解调操作。第一收发设备将进行预解调操作的第二训练序列输入至并串转换模块125进行并串转换,并输出经并串转换的第二训练序列。
第一收发设备使用已知的第一编码格式对第二训练序列进行解码,此时在信道估计注水状态,第一收发设备解码的错误率几乎为零,此时第一收发设备的TR鉴相模块120根据解码正确的第二训练序列进行TR鉴相时,噪声较小,且崩溃的可能性大大降低。
在第二收发设备进入工作状态之后,第二收发设备接收业务序列,使用优化后功率和优化后编码格式对业务序列进行调制,并将调制后的业务序列发送给第一收发设备。第一收发设备的AGC模块输出AGC系数对接收到的业务序列的信号幅度进行增益控制,由于第二训练序列是使用优化后功率进行调制的,业务序列也是通过优化后功率进行调制,因此,第一收发设备从 信道估计注水状态切换至工作状态,第一收发设备的AGC模块输出的对应于第二训练序列的AGC系数与对应于业务序列的AGC系数相差不大。也就是说,第一收发设备从信道估计注水状态切换至工作状态之后,第一收发设备的AGC模块输出的AGC系数波动不大,从而使第一收发设备针对业务序列进行解码时,正确率较高,且进一步根据解码后的业务序列进行TR鉴相时,鉴相噪声较小,TR崩溃的可能性也较小。
举例来说,第一收发设备接收第一训练序列时,第一训练序列调制所使用的功率是平铺的,即任一个子信道所对应的功率为非零功率,因此,第一训练序列在传输过程中的功率的损耗较大,因此第一收发设备接收到第一训练序列的功率较小,当所有子信道的总功率为10,则接收端接收到的第一训练序列的功率为2,此时,第一收发设备的AGC模块需输出的AGC系数为2.5,此时,第一训练序列AGC模块进行增益控制之后,输出的序列的功率为2.5乘以2,即为5。
当第一收发设备接收第二训练序列时,由于第二训练序列使用优化后功率进行调制,进一步由于优化后功率具体分布情况为大部分功率均分布在低频段,此时高频段的某些子信道上的功率值为零,因此第二训练序列在传输过程中损耗较小,则第一收发设备接收到的第二训练序列的功率较大,此时,第一收发设备接收到第二训练序列的功率为8,此时,第一收发设备的AGC模块需输出的AGC系数为0.625,如此,第二训练序列经AGC模块进行增益控制之后,输出的序列的功率为0.625乘以8,即为5。可见,当接收到第二训练序列时,AGC系数需要从2.5收敛至0.625,其中,接收到第二训练序列之后,AGC模块输出的AGC系数均为对应于第二训练序列的AGC系数,即从2.5至0.625均为AGC模块输出的对应于第二训练序列的AGC系数,而0.625即为对应于第二训练序列的AGC系数的值中的最小值。在AGC系数收敛至0.625之时或者之后的某一时刻为上述的第一时刻。收敛时长,即第一时刻与第三时刻之间的时长,通常可使用一个经验值,比如几个毫秒。
当接收业务序列时,第一收发设备的AGC模块输出AGC系数对接收到 的业务序列的进行增益控制,由于第二训练序列是使用优化后功率进行调制的,业务序列也是通过优化后功率进行调制,因此,第一收发设备从信道估计注水状态切换至工作状态,第一收发设备的AGC模块输出的对应于第二训练序列的AGC系数与对应于业务序列的AGC系数相差不大。第一收发设备接收到的业务序列的功率为8,此时,第一收发设备的AGC模块需输出的AGC系数为0.625,如此,业务序列经AGC模块进行增益控制之后,输出的序列的功率为0.625乘以8,即为5。可见,第一收发设备从接收第二训练序列至接收业务序列,AGC模块输出的AGC系数波动不大。
通过上述过程可见,第二收发设备和第一收发设备从信道估计状态切换至信道估计注水状态,之后从信道估计注水状态切换至工作状态,整个过程中第一收发设备解码的正确率较高,因此,整个过程中,第一收发设备进行TR鉴相时,鉴相噪声较小,TR崩溃的可能性也较小。
为更清楚的介绍上述方法流程,本发明实施例提供了另一种数据传输方法的流程示意图,如图4所示:
步骤401,第二收发设备协商模块与第一收发设备协商模块之间的通信通道建立成功,之后执行步骤402;
步骤402,第二收发设备协商模块与第一收发设备协商模块通过协商确定第二时刻、第一时刻和第一训练序列生成规则,之后执行步骤403;
步骤403,第一收发设备要求第二收发设备发送第一训练序列,并发送第二编码格式和第二功率;具体来说,第一收发设备可发送一条用于指示第二收发设备发送第一训练序列的指示信息,之后执行步骤404;
步骤404,第二收发设备接收到第一收发设备发送的用于指示第二收发设备发送第一训练序列的指示信息之后,第二收发设备生成第一训练序列,并获取第二编码格式和第二功率,之后执行步骤405;
步骤405,第二收发设备在第二时刻进入信道估计状态,使用第二编码格式和第二功率对第一训练序列进行调制,并将调制后的第一序列发送给第一收发设备,之后执行步骤406;
步骤406,第一收发设备接收到第一训练序列,之后执行步骤407;
步骤407,第一收发设备根据第一训练序列进行信道估计,之后执行步骤408;
步骤408,第一收发设备结合DMT子载波功率/星座分配算法,和信道估计结果,确定出优化后编码格式和优化后功率,之后执行步骤409;
步骤409,第一收发设备向第二收发设备发送优化后编码格式和优化后功率;并向第二收发设备发送第一编码格式,以及第三时刻,之后执行步骤410;
步骤410,第二收发设备获取优化后编码格式、优化后功率、第一编码格式,以及第三时刻,之后执行步骤411;
步骤411,第二收发设备在第三时刻进入信道估计注水状态,使用第一编码格式和优化后功率对第二训练进行调制,并将调制后的第二训练序列发送给第一收发设备,之后执行步骤412;
步骤412,第一收发设备在第三时刻进入信道估计注水状态,第一收发设备接收到第二训练序列,并进行处理,输出第一收发设备处理后的第二训练序列,之后执行步骤413;
步骤413,第二收发设备在第一时刻进入工作状态,使用优化后编码格式和优化后功率对接收到的业务序列进行调制,并将调制后的业务序列发送给第一收发设备,之后执行步骤414;
步骤414,接收到在第一时刻进入工作状态,第一收发设备接收到业务序列,并进行处理,输出第一收发设备处理后的业务序列。
基于上述内容,本发明实施例提供一种优选的实施方式。图5示例性示出了本发明实施例适用的另一种系统架构示意图,如图5所示,在图1所示的系统架构上增加非线性序列产生模块501,非线性序列产生模块501连接信道估计和信道补偿模块121和非线性均衡系数计算模块118。
基于图5所示的系统架构,本发明实施例提供的一种优选的实施方式为,在信道估计状态,第一收发设备接收到第一训练序列时,使用第一非线性均衡系数对接收到的第一训练序列进行非线性均衡。其中,第一非线性均衡系 数是根据第一训练序列和信道估计结果确定的,信道估计结果是根据第一训练序列进行信道估计的结果。优选地,第一非线性均衡系数是通过以下方式得到的:第一收发设备将第一训练序列和频域上的信道估计结果相乘,之后将得到的结构通过IFFT变换到时域,并添加CP,即得到非线性序列;第一收发设备根据非线性序列确定第一非线性均衡系数。信道估计结果可为第一收发设备确定的能够反映所有子信道条件的一些参数,比如每个子信道的SNR。
在信道估计注水状态,第一收发设备接收到第二训练序列时,使用第一非线性均衡系数对接收到的调制后的第二训练序列进行非线性均衡。第一收发设备并对进行非线性均衡之后得到的序列进行预解调操作,并根据第一编码格式,对进行预解调操作之后得到的序列进行解码。
基于图5所示的系统架构,图6示例性示出了本发明实施例提供一种优选数据传输方法的流程示意图,如图6所示:
步骤401,第二收发设备协商模块与第一收发设备协商模块之间的通信通道建立成功,之后执行步骤402;
步骤402,第二收发设备协商模块与第一收发设备协商模块协商第二时刻、第一时刻和第一训练序列生成规则,之后执行步骤403;
步骤403,第一收发设备要求第二收发设备发送第一训练序列,并发送第二编码格式和第二功率;具体来说,第一收发设备可发送一条用于指示第二收发设备发送第一训练序列的指示信息,之后执行步骤404;
步骤404,第二收发设备生成第一训练序列,并获取第二编码格式和第二功率,之后执行步骤405;
步骤405,第二收发设备在第二时刻进入信道估计状态,使用第二编码格式和第二功率对第一训练序列进行调制,并将调制后的第一序列发送给第一收发设备,之后执行步骤406;
步骤406,第一收发设备接收到第一训练序列,之后执行步骤407;
步骤407,第一收发设备根据第一训练序列进行信道估计,之后执行步骤 601;
步骤601,第一收发设备根据第一训练序列和信道估计结果,生成非线性序列;并根据非线性序列确定第一非线性均衡系数,之后执行步骤602;
步骤602,使用第一非线性均衡系数对接收到的第一训练序列进行非线性均衡,并对进行非线性均衡之后得到的序列进行预解调操作,并根据第二编码格式,对进行预解调操作之后得到的序列进行解码,之后执行步骤408;
步骤408,第一收发设备结合DMT子载波功率/星座分配算法,和信道估计结果,确定出优化后编码格式和优化后功率,之后执行步骤409;
步骤409,第一收发设备向第二收发设备发送优化后编码格式和优化后功率;并向第二收发设备发送第一编码格式,以及第三时刻,之后执行步骤410;
步骤410,第二收发设备获取优化后编码格式、优化后功率、第一编码格式,以及第三时刻,之后执行步骤411;
步骤411,第二收发设备在第三时刻进入信道估计注水状态,使用第一编码格式和优化后功率对第二训练进行调制,并将调制后的第二训练序列发送给第一收发设备,之后执行步骤603,之后执行步骤603;
步骤603,在第三时刻进入信道估计注水状态,第一收发设备接收到第二训练序列,使用第一非线性均衡系数对接收到的第二训练序列进行非线性均衡,并对进行非线性均衡之后得到的序列进行预解调操作,并根据第二编码格式,对进行预解调操作之后得到的序列进行解码,之后执行步骤604;
步骤604,第一收发设备对进行非线性均衡之后的第二训练序列进行处理,输出第一收发设备处理后的第二训练序列;之后执行步骤413;
步骤413,第二收发设备在第一时刻进入工作状态,使用优化后编码格式和优化后功率对接收到的业务序列进行调制,并将调制后的业务序列发送给第一收发设备,之后执行步骤414;
步骤414,接收到在第一时刻进入工作状态,第一收发设备接收到业务序列,并进行处理,输出第一收发设备处理后的业务序列。
由于当第二收发设备和第一收发设备从信道估计状态切换至信道估计注 水状态时,第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至对应于第二训练序列的值,进一步由于第一收发设备接收到的对应于第一训练序列的信号幅度较小,对应于第二训练序列的信号幅度较大,因此,AGC系数需从较大的值收敛至较小的值。此时,由于在信道估计状态,第一收发设备根据信道估计状态和第一训练序列产生非线性序列,并根据非线性序列确定第一非线性均衡系数;因此,此时第一非线性均衡系数已经反映了信道的实际条件,因此,第一收发设备可在信道估计注水状态,直接使用第一非线性均衡系数对接收到的第二训练序列进行非线性均衡,且由于在从信道估计状态切换至工作状态时,AGC收敛过程中AGC系数波动较大,因此,此时根据第二训练序列产生新的非线性均衡系数与实际信道条件不匹配,容易出错,基于此,本发明实施例中使用信道估计状态根据信道估计结果计算得到的第一非线性均衡系数对第二训练序列进行非线性均衡,一方面避免了AGC系数波动较大的情况下计算的非线性系数容易出错的问题,另一方面很好的对接收到的第二训练序列进行了非线性均衡。
一种可选的实施方式,当第二收发设备和第一收发设备同时切换至工作状态时,第一收发设备针对接收到的业务序列,第一收发设备继续根据实时接收到的业务序列计算当前业务序列对应的非线性均衡系数,并使用当前业务序列对应的非线性均衡系数进行非线性均衡,并对进行非线性均衡之后得到序列进行一系列的处理,输出第一收发设备恢复后的业务序列。
基于上述内容,本发明实施例提供另一种优选的实施方式。图7示例性示出了本发明实施例适用的另一种系统架构示意图,如图7所示,基于图1所示的系统架构,图7所示的系统架构中删除了非线性均衡模块117和非线性均衡系数计算模块118。
基于图7所示的系统架构,本发明实施例提供的一种优选的实施方式为,在信道估计状态,第一收发设备接收到第一训练序列并进行解码,最终输出第一收发设备恢复的第一训练序列的整个过程中,第一收发设备并不对第一训练序列进行非线性均衡。且在信道估计注水状态,第一收发设备接收到第 二训练序列并进行解码,最终输出第一收发设备恢复的第二训练序列的整个过程中,第一收发设备并不对第二训练序列进行非线性均衡。可选地,在工作状态,第一收发设备接收到业务序列并进行解码,最终输出第一收发设备恢复的业务序列的整个过程中,第一收发设备并不对业务序列进行非线性均衡。如此,则可避免了在第一收发设备从信道估计状态切换至信道估计注水状态时,AGC系数波动较大的情况下,第一收发设备所计算的非线性系数容易出错的问题,
基于图7所示的系统架构,本发明实施例提供一种优选数据传输方法的流程示意图,如图8所示:
步骤401,第二收发设备协商模块与第一收发设备协商模块之间的通信通道建立成功,之后执行步骤402;
步骤402,第二收发设备协商模块与第一收发设备协商模块协商第二时刻、第一时刻和第一训练序列生成规则,之后执行步骤403;
步骤403,第一收发设备要求第二收发设备发送第一训练序列,并发送第二编码格式和第二功率;具体来说,第一收发设备可发送一条用于指示第二收发设备发送第一训练序列的指示信息,之后执行步骤404;
步骤404,第二收发设备生成第一训练序列,并获取第二编码格式和第二功率,之后执行步骤405;
步骤405,第二收发设备在第二时刻进入信道估计状态,使用第二编码格式和第二功率对第一训练序列进行调制,并将调制后的第一序列发送给第一收发设备,之后执行步骤406;
步骤406,第一收发设备接收到第一训练序列,之后执行步骤801;
步骤801,第一收发设备根据第一训练序列进行信道估计,并输出第一收发设备处理后的第一训练序列,该过程第一收发设备不对第一训练序列进行非线性均衡;之后执行步骤408;
步骤408,第一收发设备结合DMT子载波功率/星座分配算法,和信道估计结果,确定出优化后编码格式和优化后功率,之后执行步骤409;
步骤409,第一收发设备向第二收发设备发送优化后编码格式和优化后功率;并向第二收发设备发送第一编码格式,以及第三时刻,之后执行步骤410;
步骤410,第二收发设备获取优化后编码格式、优化后功率、第一编码格式,以及第三时刻,之后执行步骤411;
步骤411,第二收发设备在第三时刻进入信道估计注水状态,使用第一编码格式和优化后功率对第二训练进行调制,并将调制后的第二训练序列发送给第一收发设备;之后执行步骤802;
步骤802,在第三时刻进入信道估计注水状态,第一收发设备接收到第二训练序列,并进行处理,输出第一收发设备处理后的第二训练序列,该过程第一收发设备不对第二训练序列进行非线性均衡;之后执行步骤413;
步骤413,第二收发设备在第一时刻进入工作状态,使用优化后编码格式和优化后功率对接收到的业务序列进行调制,并将调制后的业务序列发送给第一收发设备,之后执行步骤414;
步骤414,接收到在第一时刻进入工作状态,第一收发设备接收到业务序列,并进行处理,输出第一收发设备处理后的业务序列。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的 值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
图9示例性示出了本发明实施例提供的一种数据传输方法的流程示意图。
基于相同构思,本发明实施提供一种数据传输方法,如图9所示,包括:
步骤901,第二收发设备接收第一收发设备发送的优化后编码格式和优化后功率,其中优化后编码格式和优化后功率是第一收发设备根据用于进行信道估计的第一训练序列确定的;
步骤902,第二收发设备确定第二训练序列,使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制,并将调制后的第二训练序列发送给第一收发设备,第二训练序列用于使第一收发设备的AGC模块将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,并根据已知的第一编码格式对调制后的第二训练序列进行解调操作;
步骤903,第二收发设备接收业务序列,使用优化后功率和优化后编码格式对业务序列进行调制,并将调制后的业务序列发送给第一收发设备,业务序列用于使第一收发设备的AGC模块将输出的AGC系数从对应于第二训练 序列的值收敛为对应于业务序列的值。
优选地,所述第二收发设备使用所述优化后功率和所述优化后编码格式对所述业务序列进行调制,包括:
所述第二收发设备使用所述优化后功率和所述优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
其中,所述第一时刻与所述第二收发设备发送调制后的所述第二训练序列的起始时刻之间的时长不小于收敛时长;所述收敛时长为所述第一收发设备的所述AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值的时长。
优选地,所述第二收发设备接收第一收发设备发送的优化后编码格式和优化后功率之前,还包括:
所述第二收发设备确定所述第一训练序列,并使用第二功率对所述第一训练序列进行调制,并将调制后的所述第一训练序列通过N个子信道发送给所述第一收发设备;
其中,N为大于等于1的整数,所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
优选地,所述优化后编码格式和所述优化后功率是通过以下方式得到的:
所述第一收发设备根据所述第一训练序列进行信道估计,得到信道估计结果;
所述第一收发设备根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化编码格式和所述优化功率。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练 序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
图10示例性示出了本发明实施例提供的一种第一收发设备的结构示意图。
基于相同构思,本发明实施提供一种第一收发设备,如图10所示,包括接收模块1001、处理模块1002、发送模块1003、解调模块1004、AGC模块1005、非线性均衡模块1006和非线性均衡系数计算模块1007:
接收模块1001,用于接收第二收发设备发送的第一训练序列、第二收发 设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列和第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;
处理模块1002,用于根据第一训练序列进行信道估计,确定出的优化后编码格式和优化后功率;
发送模块1003,用于将确定出的优化后编码格式和优化后功率发送给第二收发设备;
解调模块1004,用于根据第一编码格式对调制后的第二训练序列进行解调操作;
AGC模块1005,用于在接收模块接收到第二训练序列时,将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值;在接收模块接收到业务序列时,将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
优选地,AGC模块1005,具体用于:
在接收模块接收到第二训练序列时,将输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值。
优选地,接收模块1001,具体用于:
通过N个子信道接收第二收发设备发送的使用第二功率进行调制的第一训练序列;
其中,N为大于等于1的整数;第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
优选地,处理模块1002,具体用于:
根据第一训练序列进行信道估计,得到信道估计结果;
根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化后编码格式和优化后功率。
优选地,还包括非线性均衡模块1006,用于:
在接收模块接收到第一训练序列时,使用第一非线性均衡系数对接收到 的第一训练序列进行非线性均衡;其中,第一非线性均衡系数是根据第一训练序列和信道估计结果确定的;
在接收模块接收到第二训练序列时,使用第一非线性均衡系数对接收到的调制后的第二训练序列进行非线性均衡;
解调模块1004,具体用于:
对进行非线性均衡之后得到的序列进行预解调操作,并根据第一编码格式,对进行预解调操作之后得到的序列进行解码。
优选地,还包括非线性均衡系数计算模块1007,用于:
将第一训练序列和信道估计结果相乘,得到非线性序列;
根据非线性序列确定第一非线性均衡系数。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第 一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
图11示例性示出了本发明实施例提供的一种第二收发设备的结构示意图。
基于相同构思,本发明实施提供一种第二收发设备,如图11所示,包括接收模块1101、调制模块1102、发送模块1103:
接收模块1101,用于接收第一收发设备发送的优化后编码格式和优化后功率,以及业务序列;其中优化后编码格式和优化后功率是第一收发设备根据用于进行信道估计的第一训练序列确定的;
调制模块1102,用于确定第二训练序列,使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制;使用优化后功率和优化后编码格式对业务序列进行调制;
发送模块1103,用于将调制后的第二训练序列发送给第一收发设备,将调制后的业务序列发送给第一收发设备;第二训练序列用于使第一收发设备的自动增益控制AGC模块将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,并根据已知的第一编码格式对调制后的第二训练序列进行解调操作;业务序列用于使第一收发设备的AGC模块将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
优选地,调制模块1102,具体用于:
使用优化后功率和优化后编码格式在第一时刻之后对接收到的业务序列 进行调制;
其中,第一时刻与第二收发设备发送调制后的第二训练序列的起始时刻之间的时长不小于收敛时长;收敛时长为第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值的时长。
优选地,调制模块1102,还用于:
确定第一训练序列,并使用第二功率对第一训练序列进行调制;
发送模块1103,还用于:
将调制后的第一训练序列通过N个子信道发送给第一收发设备;
其中,N为大于等于1的整数,第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
优选地,优化后编码格式和优化后功率是通过以下方式得到的:
第一收发设备根据第一训练序列进行信道估计,得到信道估计结果;
第一收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化编码格式和优化功率。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的 值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
图12示例性示出了本发明实施例提供的另一种第一收发设备的结构示意图。
基于相同构思,本发明实施提供一种第一收发设备,如图12所示,包括接收机1201、处理器1202和发送机1206:
接收机1201,用于在处理器1202的控制下接收第二收发设备发送的第一训练序列、第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列和第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;
发送机1206,用于在处理器1202的控制下将确定出的优化后编码格式和优化后功率发送给第二收发设备;
处理器1202,用于根据第一训练序列进行信道估计,确定出的优化后编码格式和优化后功率;根据第一编码格式对调制后的第二训练序列进行解调操作;用于在接收机接收到第二训练序列时,将输出的自动增益模块AGC系 数从对应于第一训练序列的值收敛为对应于第二训练序列的值;在接收机接收到业务序列时,将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值;
存储器1205,用于存储数据和信息。
在图12中,总线架构(用总线1200来代表),总线1200可以包括任意数量的互联的总线和桥,总线1200将包括由处理器1202代表的一个或多个处理器和存储器1205代表的存储器的各种电路链接在一起。总线1200还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1203在总线1200和接收机1201和发送机1206之间提供接口。接收机1201和发送机1206可以是一个元件,也可以是多个元件,比如多个接收机和发送机,提供用于在传输介质上与各种其他装置通信的模块。经处理器1202处理的数据通过天线1204在无线介质上进行传输,进一步,天线1204还接收数据并将数据传送给处理器1202。
处理器1202负责管理总线1200和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1205可以被用于存储处理器1202在执行操作时所使用的数据。
可选的,处理器1202可以是中央处埋器(简称CPU)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,简称CPLD)。
优选地,处理器1202,具体用于:
在接收机接收到第二训练序列时,将输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中的最小值。
优选地,接收机1201,具体用于:
通过N个子信道接收第二收发设备发送的使用第二功率进行调制的第一训练序列;
其中,N为大于等于1的整数;第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
优选地,处理器1202,具体用于:
根据第一训练序列进行信道估计,得到信道估计结果;
根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化后编码格式和优化后功率。
优选地,处理器1202,还用于:
在接收机接收到第一训练序列时,使用第一非线性均衡系数对接收到的第一训练序列进行非线性均衡;其中,第一非线性均衡系数是根据第一训练序列和信道估计结果确定的;
在接收机接收到第二训练序列时,使用第一非线性均衡系数对接收到的调制后的第二训练序列进行非线性均衡;
对进行非线性均衡之后得到的序列进行预解调操作,并根据第一编码格式,对进行预解调操作之后得到的序列进行解码。
优选地,处理器1202,还用于:
将第一训练序列和信道估计结果相乘,得到非线性序列;
根据非线性序列确定第一非线性均衡系数。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格 式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
图13示例性示出了本发明实施例提供的一种第二收发设备的结构示意图。
基于相同构思,本发明实施提供一种第二收发设备,如图13所示,包括接收机1301、处理器1302和发送机1306:
接收机1301,用于在处理器1302的控制下接收第一收发设备发送的优化后编码格式和优化后功率,以及业务序列;其中优化后编码格式和优化后功率是第一收发设备根据用于进行信道估计的第一训练序列确定的;
处理器1302,用于确定第二训练序列,使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制;使用优化后功率和优化后编码格式对业务序列进行调制;
发送机1306,用于在处理器1302的控制下将调制后的第二训练序列发送 给第一收发设备,将调制后的业务序列发送给第一收发设备;第二训练序列用于使第一收发设备的自动增益控制AGC模块将输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,并根据已知的第一编码格式对调制后的第二训练序列进行解调操作;业务序列用于使第一收发设备的AGC模块将输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值;
存储器1305,用于存储数据和信息。
在图13中,总线架构(用总线1300来代表),总线1300可以包括任意数量的互联的总线和桥,总线1300将包括由处理器1302代表的一个或多个处理器和存储器1305代表的存储器的各种电路链接在一起。总线1300还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1303在总线1300和接收机1301和发送机1306之间提供接口。接收机1301和发送机1306可以是一个元件,也可以是多个元件,比如多个接收机和发送机,提供用于在传输介质上与各种其他装置通信的模块。经处理器1302处理的数据通过天线1304在无线介质上进行传输,进一步,天线1304还接收数据并将数据传送给处理器1302。
处理器1302负责管理总线1300和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1305可以被用于存储处理器1302在执行操作时所使用的数据。
可选的,处理器1302可以是CPU、ASIC、FPGA或CPLD。
优选地,处理器1302,具体用于:
使用优化后功率和优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
其中,第一时刻与第二收发设备发送调制后的第二训练序列的起始时刻之间的时长不小于收敛时长;收敛时长为第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛至所有对应于第二训练序列的值中 的最小值的时长。
优选地,处理器1302,还用于:
确定第一训练序列,并使用第二功率对第一训练序列进行调制;
发送机1306,还用于:
将调制后的第一训练序列通过N个子信道发送给第一收发设备;
其中,N为大于等于1的整数,第二功率包括N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
优选地,优化后编码格式和优化后功率是通过以下方式得到的:
第一收发设备根据第一训练序列进行信道估计,得到信道估计结果;
第一收发设备根据信道估计结果,对N个子信道的编码格式和功率进行优化,确定出N个子信道的优化编码格式和优化功率。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时 噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
图14示例性示出了本发明实施例提供的一种数据传输系统的结构示意图。
基于相同构思,本发明实施提供一种数据传输系统,如图14所示,包括第二收发设备1401和第一收发设备1402:
第二收发设备1401,用于接收第一收发设备发送的优化后编码格式和优化后功率;确定第二训练序列,使用优化后功率和第一收发设备已知的第一编码格式对第二训练序列进行调制,并将调制后的第二训练序列发送给第一收发设备;第二收发设备接收业务序列,使用优化后功率和优化后编码格式对业务序列进行调制,并将调制后的业务序列发送给第一收发设备;
第一收发设备1402,用于接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;自动增益控制AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。
从上述内容可以看出:本发明实施例中,第一收发设备接收第二收发设备发送的第一训练序列,将根据第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给第二收发设备;第一收发设备接收第二收发设备发送的使用优化后功率和第一收发设备已知的第一编码格式进行调制的第二训练序列;第一收发设备的AGC模块输出的AGC系数从对应于第一训练序列的值收敛为对应于第二训练序列的值,根据第一编码格式对调制后的第二训练序列进行解调操作;第一收发设备接收第二收发设备发送的使用优化后功率和优化后编码格式进行调制的业务序列;第一收发设备的AGC模块输出的AGC系数从对应于第二训练序列的值收敛为对应于业务序列的值。由于第一收发设备在根据第一训练序列进行信道估计之后,接收使用第一编码格式和优化后功率调制的第二训练序列,此时,第一收发设备的AGC模块输出的AGC系数需要从对应于第一训练序列的值收敛为对应于第二训练序列的值,在AGC系数收敛的过程中,由于第一收发设备可使用已知的第一编码格式对第二训练序列进行解码,因此,第一收发设备针对第二训练序列进行解码时的错误率几乎为零,从而第一收发设备从接收第一训练序列至接收第二训练序列的过程中,第一收发设备使用解码后的第二训练序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。进一步由于第一收发设备接收业务序列时,第一收发设备的AGC模块输出的AGC系数需要从对应于第二训练序列的值收敛至对应于业务序列的值,但是由于第二训练序列和业务序列均使用优化后功率进行调制,即第一收发设备的AGC模块的AGC系数对应于第二训练序列的值与对应于业务序列的值接近,第一收发设备从接收第二训练序列至接收业务序列的过程中,AGC系数波动不大,因此,第一收发设备对业务序列进行解码时错误率较低,进而,第一收发设备针对业务序列进行TR鉴相时噪声较低,从而降低了接收到第二训练序列时TR崩溃的风险。
本领域内的技术人员应明白,本发明的实施例可提供为方法、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合 软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (31)

  1. 一种数据传输方法,其特征在于,包括:
    第一收发设备接收第二收发设备发送的第一训练序列,将根据所述第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给所述第二收发设备;
    所述第一收发设备接收所述第二收发设备发送的使用所述优化后功率和所述第一收发设备已知的第一编码格式进行调制的第二训练序列;
    所述第一收发设备的自动增益控制AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值,根据所述第一编码格式对调制后的所述第二训练序列进行解调操作;
    所述第一收发设备接收所述第二收发设备发送的使用所述优化后功率和所述优化后编码格式进行调制的业务序列;
    所述第一收发设备的所述AGC模块输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值。
  2. 如权利要求1所述的方法,其特征在于,所述第一收发设备的AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值,具体包括:
    所述第一收发设备的AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一收发设备接收第二收发设备发送的第一训练序列,包括:
    所述第一收发设备通过N个子信道接收所述第二收发设备发送的使用第二功率进行调制的所述第一训练序列;
    其中,N为大于等于1的整数;所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
  4. 如权利要求3所述的方法,其特征在于,所述第一收发设备接收第二 收发设备发送的第一训练序列之后,接收所述第二训练序列之前,还包括:
    所述第一收发设备根据所述第一训练序列进行信道估计,得到信道估计结果;
    所述第一收发设备根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化后编码格式和所述优化后功率。
  5. 如权利要求1至4任一权利要求所述的方法,其特征在于,所述第一收发设备接收第一训练序列之后,接收所述第二训练序列之前,还包括:
    所述第一收发设备使用第一非线性均衡系数对接收到的所述第一训练序列进行非线性均衡;其中,所述第一非线性均衡系数是根据所述第一训练序列和所述信道估计结果确定的;
    所述第一收发设备根据所述第一编码格式对调制后的所述第二训练序列进行解调操作,包括:
    所述第一收发设备使用所述第一非线性均衡系数对接收到的调制后的所述第二训练序列进行非线性均衡;
    所述第一收发设备对进行非线性均衡之后得到的序列进行预解调操作,并根据所述第一编码格式,对进行预解调操作之后得到的序列进行解码。
  6. 如权利要求5所述的方法,其特征在于,所述第一非线性均衡系数是通过以下方式得到的:
    所述第一收发设备将所述第一训练序列和所述信道估计结果相乘,得到非线性序列;
    所述第一收发设备根据所述非线性序列确定所述第一非线性均衡系数。
  7. 一种数据传输方法,其特征在于,包括:
    第二收发设备接收第一收发设备发送的优化后编码格式和优化后功率,其中所述优化后编码格式和所述优化后功率是所述第一收发设备根据用于进行信道估计的第一训练序列确定的;
    所述第二收发设备确定第二训练序列,使用所述优化后功率和所述第一 收发设备已知的第一编码格式对所述第二训练序列进行调制,并将调制后的所述第二训练序列发送给所述第一收发设备,所述第二训练序列用于使所述第一收发设备的自动增益控制AGC模块将输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值,并根据已知的所述第一编码格式对调制后的所述第二训练序列进行解调操作;
    所述第二收发设备接收业务序列,使用所述优化后功率和所述优化后编码格式对所述业务序列进行调制,并将调制后的所述业务序列发送给所述第一收发设备,所述业务序列用于使所述第一收发设备的所述AGC模块将输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值。
  8. 如权利要求7所述的方法,其特征在于,所述第二收发设备使用所述优化后功率和所述优化后编码格式对所述业务序列进行调制,包括:
    所述第二收发设备使用所述优化后功率和所述优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
    其中,所述第一时刻与所述第二收发设备发送调制后的所述第二训练序列的起始时刻之间的时长不小于收敛时长;所述收敛时长为所述第一收发设备的所述AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值的时长。
  9. 如权利要求7或8所述的方法,其特征在于,所述第二收发设备接收第一收发设备发送的优化后编码格式和优化后功率之前,还包括:
    所述第二收发设备确定所述第一训练序列,并使用第二功率对所述第一训练序列进行调制,并将调制后的所述第一训练序列通过N个子信道发送给所述第一收发设备;
    其中,N为大于等于1的整数,所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
  10. 如权利要求9所述的方法,其特征在于,所述优化后编码格式和所述优化后功率是通过以下方式得到的:
    所述第一收发设备根据所述第一训练序列进行信道估计,得到信道估计结果;
    所述第一收发设备根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化编码格式和所述优化功率。
  11. 一种收发设备,其特征在于,包括:
    接收模块,用于接收另一个收发设备发送的第一训练序列、所述另一个收发设备发送的使用所述优化后功率和收发设备已知的第一编码格式进行调制的第二训练序列和所述另一个收发设备发送的使用所述优化后功率和所述优化后编码格式进行调制的业务序列;
    处理模块,用于根据所述第一训练序列进行信道估计,确定出的优化后编码格式和优化后功率;
    发送模块,用于将确定出的所述优化后编码格式和所述优化后功率发送给所述另一个收发设备;
    解调模块,用于根据所述第一编码格式对调制后的所述第二训练序列进行解调操作;
    自动增益模块AGC模块,用于在所述接收模块接收到所述第二训练序列时,将输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值;在所述接收模块接收到所述业务序列时,将输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值。
  12. 如权利要求11所述的收发设备,其特征在于,所述AGC模块,具体用于:
    在所述接收模块接收到所述第二训练序列时,将输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值。
  13. 如权利要求11或12所述的收发设备,其特征在于,所述接收模块,具体用于:
    通过N个子信道接收所述另一个收发设备发送的使用第二功率进行调制的所述第一训练序列;
    其中,N为大于等于1的整数;所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
  14. 如权利要求13所述的收发设备,其特征在于,所述处理模块,具体用于:
    根据所述第一训练序列进行信道估计,得到信道估计结果;
    根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化后编码格式和所述优化后功率。
  15. 如权利要求11至14任一权利要求所述的收发设备,其特征在于,还包括非线性均衡模块,用于:
    在所述接收模块接收到所述第一训练序列时,使用第一非线性均衡系数对接收到的所述第一训练序列进行非线性均衡;其中,所述第一非线性均衡系数是根据所述第一训练序列和所述信道估计结果确定的;
    在所述接收模块接收到所述第二训练序列时,使用所述第一非线性均衡系数对接收到的调制后的所述第二训练序列进行非线性均衡;
    所述解调模块,具体用于:
    对进行非线性均衡之后得到的序列进行预解调操作,并根据所述第一编码格式,对进行预解调操作之后得到的序列进行解码。
  16. 如权利要求15所述的收发设备,其特征在于,还包括非线性均衡系数计算模块,用于:
    将所述第一训练序列和所述信道估计结果相乘,得到非线性序列;
    根据所述非线性序列确定所述第一非线性均衡系数。
  17. 一种收发设备,其特征在于,包括:
    接收模块,用于接收另一个收发设备发送的优化后编码格式和优化后功率,以及业务序列;其中所述优化后编码格式和所述优化后功率是所述另一个收发设备根据用于进行信道估计的第一训练序列确定的;
    调制模块,用于确定第二训练序列,使用所述优化后功率和所述另一个收发设备已知的第一编码格式对所述第二训练序列进行调制;使用所述优化后功率和所述优化后编码格式对所述业务序列进行调制;
    发送模块,用于将调制后的所述第二训练序列发送给所述另一个收发设备,将调制后的所述业务序列发送给所述另一个收发设备;所述第二训练序列用于使所述另一个收发设备的自动增益控制AGC模块将输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值,并根据已知的所述第一编码格式对调制后的所述第二训练序列进行解调操作;所述业务序列用于使所述另一个收发设备的所述AGC模块将输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值。
  18. 如权利要求17所述的收发设备,其特征在于,所述调制模块,具体用于:
    使用所述优化后功率和所述优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
    其中,所述第一时刻与所述收发设备发送调制后的所述第二训练序列的起始时刻之间的时长不小于收敛时长;所述收敛时长为所述另一个收发设备的所述AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值的时长。
  19. 如权利要求17或18所述的收发设备,其特征在于,所述调制模块,还用于:
    确定所述第一训练序列,并使用第二功率对所述第一训练序列进行调制;
    所述发送模块,还用于:
    将调制后的所述第一训练序列通过N个子信道发送给所述另一个收发设备;
    其中,N为大于等于1的整数,所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
  20. 如权利要求19所述的收发设备,其特征在于,所述优化后编码格式 和所述优化后功率是通过以下方式得到的:
    所述另一个收发设备根据所述第一训练序列进行信道估计,得到信道估计结果;
    所述另一个收发设备根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化编码格式和所述优化功率。
  21. 一种收发设备,其特征在于,包括:
    接收机,用于接收另一个收发设备发送的第一训练序列、所述另一个收发设备发送的使用所述优化后功率和所述收发设备已知的第一编码格式进行调制的第二训练序列和所述另一个收发设备发送的使用所述优化后功率和所述优化后编码格式进行调制的业务序列;
    发送机,用于将确定出的所述优化后编码格式和所述优化后功率发送给所述另一个收发设备;
    处理器,用于根据所述第一训练序列进行信道估计,确定出的优化后编码格式和优化后功率;根据所述第一编码格式对调制后的所述第二训练序列进行解调操作;用于在所述接收机接收到所述第二训练序列时,将输出的自动增益模块AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值;在所述接收机接收到所述业务序列时,将输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值。
  22. 如权利要求21所述的收发设备,其特征在于,所述处理器,具体用于:
    在所述接收机接收到所述第二训练序列时,将输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值。
  23. 如权利要求21或22所述的收发设备,其特征在于,所述接收机,具体用于:
    通过N个子信道接收所述另一个收发设备发送的使用第二功率进行调制 的所述第一训练序列;
    其中,N为大于等于1的整数;所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
  24. 如权利要求23所述的收发设备,其特征在于,所述处理器,具体用于:
    根据所述第一训练序列进行信道估计,得到信道估计结果;
    根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化后编码格式和所述优化后功率。
  25. 如权利要求21至24任一权利要求所述的收发设备,其特征在于,所述处理器,还用于:
    在所述接收机接收到所述第一训练序列时,使用第一非线性均衡系数对接收到的所述第一训练序列进行非线性均衡;其中,所述第一非线性均衡系数是根据所述第一训练序列和所述信道估计结果确定的;
    在所述接收机接收到所述第二训练序列时,使用所述第一非线性均衡系数对接收到的调制后的所述第二训练序列进行非线性均衡;
    对进行非线性均衡之后得到的序列进行预解调操作,并根据所述第一编码格式,对进行预解调操作之后得到的序列进行解码。
  26. 如权利要求25所述的收发设备,其特征在于,所述处理器,还用于:
    将所述第一训练序列和所述信道估计结果相乘,得到非线性序列;
    根据所述非线性序列确定所述第一非线性均衡系数。
  27. 一种收发设备,其特征在于,包括:
    接收机,用于接收另一个收发设备发送的优化后编码格式和优化后功率,以及业务序列;其中所述优化后编码格式和所述优化后功率是所述另一个收发设备根据用于进行信道估计的第一训练序列确定的;
    处理器,用于确定第二训练序列,使用所述优化后功率和所述另一个收发设备已知的第一编码格式对所述第二训练序列进行调制;使用所述优化后功率和所述优化后编码格式对所述业务序列进行调制;
    发送机,用于将调制后的所述第二训练序列发送给所述另一个收发设备,将调制后的所述业务序列发送给所述另一个收发设备;所述第二训练序列用于使所述另一个收发设备的自动增益控制AGC模块将输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值,并根据已知的所述第一编码格式对调制后的所述第二训练序列进行解调操作;所述业务序列用于使所述另一个收发设备的所述AGC模块将输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值。
  28. 如权利要求27所述的收发设备,其特征在于,所述处理器,具体用于:
    使用所述优化后功率和所述优化后编码格式在第一时刻之后对接收到的业务序列进行调制;
    其中,所述第一时刻与所述收发设备发送调制后的所述第二训练序列的起始时刻之间的时长不小于收敛时长;所述收敛时长为所述另一个收发设备的所述AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛至所有对应于所述第二训练序列的值中的最小值的时长。
  29. 如权利要求27或28所述的收发设备,其特征在于,所述处理器,还用于:
    确定所述第一训练序列,并使用第二功率对所述第一训练序列进行调制;
    所述发送机,还用于:
    将调制后的所述第一训练序列通过N个子信道发送给所述另一个收发设备;
    其中,N为大于等于1的整数,所述第二功率包括所述N个子信道中每个子信道分别对应的功率,任一子信道对应的功率均不为零。
  30. 如权利要求29所述的收发设备,其特征在于,所述优化后编码格式和所述优化后功率是通过以下方式得到的:
    所述另一个收发设备根据所述第一训练序列进行信道估计,得到信道估计结果;
    所述另一个收发设备根据所述信道估计结果,对所述N个子信道的编码格式和功率进行优化,确定出所述N个子信道的所述优化编码格式和所述优化功率。
  31. 一种数据传输系统,其特征在于,包括:
    第一收发设备,用于接收第二收发设备发送的第一训练序列,将根据所述第一训练序列进行信道估计确定出的优化后编码格式和优化后功率发送给所述第二收发设备;接收所述第二收发设备发送的使用所述优化后功率和所述第一收发设备已知的第一编码格式进行调制的第二训练序列;自动增益控制AGC模块输出的AGC系数从对应于所述第一训练序列的值收敛为对应于所述第二训练序列的值,根据所述第一编码格式对调制后的所述第二训练序列进行解调操作;接收所述第二收发设备发送的使用所述优化后功率和所述优化后编码格式进行调制的业务序列;所述AGC模块输出的AGC系数从对应于所述第二训练序列的值收敛为对应于所述业务序列的值;
    第二收发设备,用于接收第一收发设备发送的优化后编码格式和优化后功率;确定第二训练序列,使用所述优化后功率和所述第一收发设备已知的第一编码格式对所述第二训练序列进行调制,并将调制后的所述第二训练序列发送给所述第一收发设备;第二收发设备接收业务序列,使用所述优化后功率和所述优化后编码格式对所述业务序列进行调制,并将调制后的所述业务序列发送给所述第一收发设备。
PCT/CN2015/090197 2015-09-21 2015-09-21 一种数据传输方法、收发设备及系统 WO2017049443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/090197 WO2017049443A1 (zh) 2015-09-21 2015-09-21 一种数据传输方法、收发设备及系统
CN201580081404.0A CN107710669B (zh) 2015-09-21 2015-09-21 一种数据传输方法、收发设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090197 WO2017049443A1 (zh) 2015-09-21 2015-09-21 一种数据传输方法、收发设备及系统

Publications (1)

Publication Number Publication Date
WO2017049443A1 true WO2017049443A1 (zh) 2017-03-30

Family

ID=58385518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090197 WO2017049443A1 (zh) 2015-09-21 2015-09-21 一种数据传输方法、收发设备及系统

Country Status (2)

Country Link
CN (1) CN107710669B (zh)
WO (1) WO2017049443A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202564A (zh) * 2007-11-28 2008-06-18 中国海洋石油总公司 一种信道初始化方法
CN104038461A (zh) * 2013-03-04 2014-09-10 联想(北京)有限公司 符号同步和信道估计方法、装置和系统
WO2014194940A1 (en) * 2013-06-05 2014-12-11 Huawei Technologies Co., Ltd. Coherent optical receiver
TW201528741A (zh) * 2012-01-20 2015-07-16 Intersil Inc 用於半雙工ip鏈路之離散多調式系統

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202564A (zh) * 2007-11-28 2008-06-18 中国海洋石油总公司 一种信道初始化方法
TW201528741A (zh) * 2012-01-20 2015-07-16 Intersil Inc 用於半雙工ip鏈路之離散多調式系統
CN104038461A (zh) * 2013-03-04 2014-09-10 联想(北京)有限公司 符号同步和信道估计方法、装置和系统
WO2014194940A1 (en) * 2013-06-05 2014-12-11 Huawei Technologies Co., Ltd. Coherent optical receiver

Also Published As

Publication number Publication date
CN107710669B (zh) 2020-06-02
CN107710669A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107113059B (zh) 利用多调制的离散多音调传输方法和系统
JP6288296B2 (ja) 光送信器およびその制御方法
US9520951B2 (en) Signal transmission method, transmitter, and signal transmission system
US9967047B2 (en) Method and device for optical transmission at adaptive effective rates
CN102356576B (zh) 光通信系统中的具有可变比特传输速率的ofdm发射机应答器接口
US20170070286A1 (en) Method for determining numbers of bits allocated to subcarriers and optical transmission system
US9912431B2 (en) Optical communication that achieves baud rate greater than sample rate
EP2916476A1 (en) Optical transmission device and optical transmission system
US20200266888A1 (en) Optical communication apparatus, optical transmission system, and optical communication method
US8879921B2 (en) Apparatus and a method for modulation of an optical signal
US8737516B2 (en) Amplitude modulation of carrier to encode data
US9473244B2 (en) Flexible 400G and 1 Tb/s transmission over transoceanic distance
KR102424821B1 (ko) 낮은 PAPR(Peak-to-Average Power Ratio)을 지원하는 송신 장치와 수신 장치 및 이를 위한 방법
US7471903B1 (en) Optical communication system
WO2018014969A1 (en) Papr reduction through tone reservation for ofdm
US20180175933A1 (en) Communication device, communication system and communication method for transmitting optical signal
EP3549282B1 (en) Optical transmission method and optical receiver apparatus
US10505636B2 (en) Methods and apparatuses for sending and receiving signal, and system
US10476632B2 (en) Device and method for transmitting frame in optical transmission system
US10390116B1 (en) Optical modem line timing
WO2017049443A1 (zh) 一种数据传输方法、收发设备及系统
US11310090B2 (en) Systems, transmitters, and methods employing waveform bandwidth compression to transmit information
WO2021057417A1 (zh) 配置调制器光工作点的方法、装置和系统
JP7015765B2 (ja) 通信システムの送信装置及び受信装置
JP2011142436A (ja) 無線送信装置及び無線受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904331

Country of ref document: EP

Kind code of ref document: A1