WO2017049422A1 - Aéronef à quatre rotors atant des variations dynamiques - Google Patents

Aéronef à quatre rotors atant des variations dynamiques Download PDF

Info

Publication number
WO2017049422A1
WO2017049422A1 PCT/CN2015/000660 CN2015000660W WO2017049422A1 WO 2017049422 A1 WO2017049422 A1 WO 2017049422A1 CN 2015000660 W CN2015000660 W CN 2015000660W WO 2017049422 A1 WO2017049422 A1 WO 2017049422A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotor
engine
rotors
aircraft
Prior art date
Application number
PCT/CN2015/000660
Other languages
English (en)
Chinese (zh)
Original Assignee
康坚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康坚 filed Critical 康坚
Priority to PCT/CN2015/000660 priority Critical patent/WO2017049422A1/fr
Priority to PCT/CN2016/000248 priority patent/WO2017049806A1/fr
Priority to CN201680055534.1A priority patent/CN108025810B/zh
Publication of WO2017049422A1 publication Critical patent/WO2017049422A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U40/00On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration
    • B64U40/10On-board mechanical arrangements for adjusting control surfaces or rotors; On-board mechanical arrangements for in-flight adjustment of the base configuration for adjusting control surfaces or rotors

Definitions

  • the software can be programmed to make the quadrotor take off and land vertically, rotate, turn left and right, and roll. It can be more flexible than a helicopter. But the biggest drawback of the four-rotor is that it is very slow.
  • the aircraft shown in Figure 1 can be seen as a deformed quadrotor, which is also convenient for helicopter functions. But the speed is much faster.
  • a paddle is considered as the research object, and the paddle is the plane in which the blade rotates. That is, when the rotor rotates, the rotor has two variables, one is the lift generated by the rotational speed of the rotor, and the other is the torque. Now I want to change my mind and think of two paddles that are in a plane, mutually constant speed, reverse, and different axes as a whole. Looking at the whole from the outside, there is only one parameter lift, and no torque, because the two blades produce the same amount of torque and the opposite direction. It can be called a lift unit.
  • Figure 1 is a front view of the aircraft
  • Figure 2 is a schematic view of the rotation of the engine
  • Figure 3 is a schematic illustration of rotor total moment adjustment.
  • the engine is fixed at this point and the shaft is rotatable in the direction of the fuselage and fixed to the rotating mechanism.
  • the wing engine 12 is provided with a hub 20 at the upper end of the engine main shaft 7, a paddle 2 is mounted on the hub 20, a bevel gear 19 is fixed on the paddle, and the bevel gear 19 is connected to the bevel gear 18, and the bevel gear 18 is fixed on one end of the long gear 4.
  • the other end of the long gear 4 is connected to the output shaft 21 of the stepping motor 22.
  • the long gear 4 passes through a hole in the middle of the main shaft 7. Install a damper brake device between the main shaft 7 and the hub.
  • the slider 16 on the ball screw of the stepping motor 10 is connected to the connecting rod 14, and the connecting rod 14 is connected to the motor base 13, and the motor base 13 fixes the engine 12.
  • the vertical take-off and landing of the aircraft can be realized, forward and backward, left and right corners, and after the take-off is completed, it can be converted into a mode flight of the rotorcraft, and can also be changed into a fixed-wing mode flight.
  • the slider 16 is moved to the left and right along the ball screw, and the motor seat can be driven to perform circular motion at 11 o'clock. This allows the blades on the engine to be rotated to the desired angle.
  • the motor shaft 21 drives the long gear 4 to rotate
  • the long gear 4 drives the bevel gear 18,
  • the bevel gear 18 drives the bevel gear 19, and the blade 2 can rotate along the axial direction of the blade, which can be 360. Rotate freely within degrees.
  • Figure 1 is a front view of the aircraft.
  • the right side of the fuselage and the left side do not generate torque.
  • the balance between the front and the back is to adjust the angle between the four blades and the ground: four blades (2, 17, 23, 24) are simultaneously adjusted synchronously, and the adjustment of the lift force is adjusted to a helicopter with the newly invented total moment adjustment mechanism 3.
  • the mode is complete. This completely replaces the complex cycle variation and total moment adjustment mechanism of the current helicopter.
  • the blades 2 and the blades 17 rotate in opposite directions and the rotational speed is the same, there is no difference in the force of the forward and backward blades of the helicopter, which may cause rolling moments, causing the helicopter to roll. In this way, the blade does not need to swing down the rotating surface, and there is no need for a seesaw and a pre-lag fully twisted mechanism.
  • the second stage accelerates the leveling: after the aircraft leaves the ground for a certain distance, the rotation mechanism adjusts the blade 17 and the blade 23 to tilt toward the head, and the blade 2 and the blade 24 remain, and the blade 17 continues to rotate.
  • the aircraft can slowly accelerate, the blade 17 and the blade 23 are constantly tilted, the thrust is greater, and the speed of the aircraft is greater.
  • the lift generated by the wing 8 is slowly increased, and the blade 2 and the blade 24 can be slowly decelerated to reduce energy consumption. Until the blade 2 and the blade 24 are stopped.
  • the paddles 17 and the blades 23 are turned to the horizontal direction.
  • the third stage becomes the rotorcraft mode flight: the blade 2 and the blade 24 are adjusted to the rotorcraft mode by the total moment adjustment mechanism, and are separated from the engine, at which time the blades are free to rotate.
  • the fourth stage fixed-wing mode At this time, the damper brake device can be activated to keep the blade 2 and the blade 24 fixed relative to the fuselage, the blade 17 and the blade 23 are unchanged, and the thrust is continued to be fixed. Wing mode.
  • the aircraft needs to be retracted, after the take-off, it is only necessary to rotate the blade 17 and the blade 23 along the fuselage toward the tail by the rotating mechanism 6, and the aircraft has a backward thrust. This way the aircraft can be retreated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Selon la présente invention, le décollage vertical, le mouvement vers l'avant et vers l'arrière, la rotation et le virage à gauche et à droite d'un aéronef sont ajustés en changeant les vitesses de rotation des pales 2, 17, 23, 24 et l'angle entre un moteur et le sol. Des dispositifs à pas variable cyclique et d'ajustement de couple total compliqués d'un hélicoptère sont éliminés en les remplaçant par un dispositif d'ajustement de couple total nouvellement inventé, car la pale ne peut pas être tournée de 360 degrés par un dispositif d'ajustement de couple total classique. Étant donné que l'ondulation de la pale n'est pas nécessaire, une bascule et une structure entièrement articulée pour l'avancée et le recul ne sont pas nécessaires.
PCT/CN2015/000660 2015-09-24 2015-09-24 Aéronef à quatre rotors atant des variations dynamiques WO2017049422A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/000660 WO2017049422A1 (fr) 2015-09-24 2015-09-24 Aéronef à quatre rotors atant des variations dynamiques
PCT/CN2016/000248 WO2017049806A1 (fr) 2015-09-24 2016-05-09 Aéronef à réaction quadrirotor avec des pas variables dynamiquement et simultanément
CN201680055534.1A CN108025810B (zh) 2015-09-24 2016-05-09 一种倾角同时动态变化的四旋翼喷气式飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000660 WO2017049422A1 (fr) 2015-09-24 2015-09-24 Aéronef à quatre rotors atant des variations dynamiques

Publications (1)

Publication Number Publication Date
WO2017049422A1 true WO2017049422A1 (fr) 2017-03-30

Family

ID=58385453

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/000660 WO2017049422A1 (fr) 2015-09-24 2015-09-24 Aéronef à quatre rotors atant des variations dynamiques
PCT/CN2016/000248 WO2017049806A1 (fr) 2015-09-24 2016-05-09 Aéronef à réaction quadrirotor avec des pas variables dynamiquement et simultanément

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000248 WO2017049806A1 (fr) 2015-09-24 2016-05-09 Aéronef à réaction quadrirotor avec des pas variables dynamiquement et simultanément

Country Status (2)

Country Link
CN (1) CN108025810B (fr)
WO (2) WO2017049422A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827302A (zh) * 2018-04-24 2018-11-16 大连理工大学 基于旋翼转速测量的多旋翼飞行器导航方法
WO2019062140A1 (fr) * 2017-09-30 2019-04-04 深圳市道通智能航空技术有限公司 Véhicule aérien sans pilote
CN110092000A (zh) * 2019-06-04 2019-08-06 南京灵龙旋翼无人机系统研究院有限公司 一种全电动倾转旋翼无人机
CN110422328A (zh) * 2019-08-26 2019-11-08 南京灵龙旋翼无人机系统研究院有限公司 一种倾转旋翼无人机直线形动力配置方法及结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104210655A (zh) * 2014-09-03 2014-12-17 西北农林科技大学 一种双旋翼无人机
RU2547950C1 (ru) * 2013-12-19 2015-04-10 Общество с ограниченной ответственностью научно-производственное предприятие "Измерон-В" (ООО НПП "Измерон-В") Квадролет
CN204279938U (zh) * 2014-10-27 2015-04-22 深圳九星智能航空科技有限公司 叶片可单独拆卸的旋翼无人飞行器
CN204279937U (zh) * 2014-10-27 2015-04-22 深圳九星智能航空科技有限公司 下叶片可折叠垂悬的双旋翼飞行器
CN104859836A (zh) * 2015-05-06 2015-08-26 浙江工业大学之江学院 无人飞行器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005003894U1 (de) * 2005-03-10 2005-06-30 Schraufstetter, Wilfried VTOL-Fluggerät mit einer Auftrieb und Vortrieb erzeugenden Rotoranordnung
CN1907806A (zh) * 2005-08-02 2007-02-07 韩培洲 前旋翼倾转式垂直起落飞机
US7861967B2 (en) * 2008-04-25 2011-01-04 Abe Karem Aircraft with integrated lift and propulsion system
CN101314409B (zh) * 2008-07-10 2012-04-18 周武双 燕式倾转旋翼机
KR20100026130A (ko) * 2008-08-29 2010-03-10 임채호 가변형 회전익을 이용한 수직이착륙기
CA2754206C (fr) * 2009-03-12 2019-04-09 Bell Helicopter Textron Inc. Surface de commande d'extension d'aile
PT2551198E (pt) * 2011-07-29 2013-12-27 Agustawestland Spa Avião convertível
CN202728576U (zh) * 2012-02-10 2013-02-13 田瑜 可变形的固定翼与电动多旋翼组成的复合飞行器
DE102013109392A1 (de) * 2013-08-29 2015-03-05 Airbus Defence and Space GmbH Schnellfliegendes, senkrechtstartfähiges Fluggerät
CN103935511A (zh) * 2014-04-15 2014-07-23 西安交通大学 一种倾转三旋翼飞行器
CN104369863A (zh) * 2014-10-31 2015-02-25 吴建伟 一种复合式垂直起降飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547950C1 (ru) * 2013-12-19 2015-04-10 Общество с ограниченной ответственностью научно-производственное предприятие "Измерон-В" (ООО НПП "Измерон-В") Квадролет
CN104210655A (zh) * 2014-09-03 2014-12-17 西北农林科技大学 一种双旋翼无人机
CN204279938U (zh) * 2014-10-27 2015-04-22 深圳九星智能航空科技有限公司 叶片可单独拆卸的旋翼无人飞行器
CN204279937U (zh) * 2014-10-27 2015-04-22 深圳九星智能航空科技有限公司 下叶片可折叠垂悬的双旋翼飞行器
CN104859836A (zh) * 2015-05-06 2015-08-26 浙江工业大学之江学院 无人飞行器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062140A1 (fr) * 2017-09-30 2019-04-04 深圳市道通智能航空技术有限公司 Véhicule aérien sans pilote
CN108827302A (zh) * 2018-04-24 2018-11-16 大连理工大学 基于旋翼转速测量的多旋翼飞行器导航方法
CN110092000A (zh) * 2019-06-04 2019-08-06 南京灵龙旋翼无人机系统研究院有限公司 一种全电动倾转旋翼无人机
CN110422328A (zh) * 2019-08-26 2019-11-08 南京灵龙旋翼无人机系统研究院有限公司 一种倾转旋翼无人机直线形动力配置方法及结构

Also Published As

Publication number Publication date
WO2017049806A1 (fr) 2017-03-30
CN108025810A (zh) 2018-05-11
CN108025810B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
US10640207B2 (en) Tilt-prop aircraft
US10252796B2 (en) Rotor-blown wing with passively tilting fuselage
RU2020110832A (ru) Система управления наклоном крыла электрического летательного аппарата с вертикальными взлетом и посадкой (ВВП)
EP2340880B1 (fr) Système de contrôle d'hélicoptère de type à double rotor
WO2017049422A1 (fr) Aéronef à quatre rotors atant des variations dynamiques
CN110979651B (zh) 一种共轴直升机及控制方法
US8939394B1 (en) Anemometer drive apparatus and method
US20180141655A1 (en) VTOL airplane or drone utilizing at least two tilting propellers located in front of wings center of gravity.
CN106143899B (zh) 变距旋翼及包括该变距旋翼的多旋翼飞行器及其飞行方法
CN109747817A (zh) 一种无尾翼矢量共轴直升机设计
GB2560181B (en) Swiveling tandem rotorcraft
CN109515704B (zh) 基于摆线桨技术的涵道卷流旋翼飞行器
CN104816821A (zh) 水陆空三栖多旋翼飞行器
JP6620365B2 (ja) ヘリコプター
CN106167092B (zh) 一种共轴直升机及其旋翼系统
KR20160070034A (ko) 고정익 수직 이착륙 무인기
US2957526A (en) Drive means for helicopter rotary blade systems
CN105129072A (zh) 一种飞机机尾
US20070095973A1 (en) Aircraft having a helicopter rotor and an inclined front mounted propeller
CN205311908U (zh) 一种复合翼无人机
CN209382271U (zh) 一种滚翼飞行器
CN108454827A (zh) 一种紧凑型摆线桨叶片控制机构
CN207972799U (zh) 用于载人飞行车辆的旋翼
CN108263610A (zh) 一种用于载人飞行车辆的倾转旋翼
CN207972800U (zh) 一种用于载人飞行车辆的倾转旋翼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904310

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15904310

Country of ref document: EP

Kind code of ref document: A1