WO2017048109A1 - 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말 - Google Patents

무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말 Download PDF

Info

Publication number
WO2017048109A1
WO2017048109A1 PCT/KR2016/010432 KR2016010432W WO2017048109A1 WO 2017048109 A1 WO2017048109 A1 WO 2017048109A1 KR 2016010432 W KR2016010432 W KR 2016010432W WO 2017048109 A1 WO2017048109 A1 WO 2017048109A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
resource
pscch
subframe
idle
Prior art date
Application number
PCT/KR2016/010432
Other languages
English (en)
French (fr)
Inventor
이승민
서한별
채혁진
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201680052422.0A priority Critical patent/CN108028730B/zh
Priority to JP2018533600A priority patent/JP6672463B2/ja
Priority to KR1020187007258A priority patent/KR102128947B1/ko
Priority to EP16846930.2A priority patent/EP3352402B1/en
Priority to US15/760,604 priority patent/US10536958B2/en
Publication of WO2017048109A1 publication Critical patent/WO2017048109A1/ko
Priority to US16/707,954 priority patent/US10973041B2/en
Priority to US17/211,742 priority patent/US11832239B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to wireless communication, and more particularly, to a resource selection method for V2X operation of a terminal in a wireless communication system and a terminal using the method.
  • ITU-R International Telecommunication Union Radio communication sector
  • IP Internet Protocol
  • 3rd Generation Partnership Project is a system standard that meets the requirements of IMT-Advanced.
  • Long Term Evolution is based on Orthogonal Frequency Division Multiple Access (OFDMA) / Single Carrier-Frequency Division Multiple Access (SC-FDMA) transmission.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE-A LTE-Advanced
  • LTE-A is one of the potential candidates for IMT-Advanced.
  • D2D Device-to-Device
  • D2D is drawing attention as a communication technology for a public safety network.
  • Commercial communication networks are rapidly changing to LTE, but current public safety networks are mainly based on 2G technology in terms of cost and conflict with existing communication standards. This gap in technology and the need for improved services have led to efforts to improve public safety networks.
  • Public safety networks have higher service requirements (reliability and security) than commercial communication networks, and require direct signal transmission and reception, or D2D operation, between devices, especially when cellular coverage is not available or available. .
  • the D2D operation may have various advantages in that it transmits and receives signals between adjacent devices.
  • the D2D user equipment has a high data rate and low delay and can perform data communication.
  • the D2D operation may distribute traffic congested at the base station, and may also serve to extend the coverage of the base station if the D2D terminal serves as a relay.
  • V2X vehicle-to-everything
  • V2X collectively refers to communication technology via the vehicle and all interfaces.
  • Types of V2X include, for example, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-person (V2P), and the like.
  • a resource for V2X communication is given in the form of a resource pool, and a resource for performing V2X communication may be selected by a terminal in the resource pool. In this case, since different terminals select resources by themselves in the same resource pool, the same or some overlapping resources may be selected.
  • the technical problem to be solved by the present invention is to provide a resource selection method for V2X operation of the terminal in a wireless communication system and a terminal using the method.
  • a method of selecting a resource for vehicle-to-everything (V2X) operation of a terminal in a wireless communication system monitors a physical sidelink control channel (PSCCH) for another UE in a first subframe, and uses a resource that does not overlap with a resource scheduled by the PSCCH for the other UE in a second subframe. It is characterized in that for transmitting the V2X message.
  • PSCCH physical sidelink control channel
  • the UE may receive PSCCH subframe pool information indicating the subframes capable of transmitting the PSCCH from the network.
  • the second subframe may be included in subframes indicated by the PSCCH subframe pool information.
  • the PSCCH for another UE can be monitored while moving a basic resource unit composed of at least one subframe by one subframe.
  • An idle resource unit that does not overlap with a resource scheduled by the PSCCH for the other terminal may be searched.
  • one idle resource unit of the plurality of idle resource units may be selected to transmit a PSCCH.
  • the terminal provided in another aspect performs a vehicle-to-everything (V2X) operation in a wireless communication system.
  • the terminal includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor operating in conjunction with the RF unit, wherein the processor includes a physical sidelink control channel for another terminal in a first subframe.
  • RF radio frequency
  • the processor includes a physical sidelink control channel for another terminal in a first subframe.
  • a control channel (PSCCH) is monitored and a V2X message is transmitted using a resource that does not overlap with a resource scheduled by the PSCCH for the other UE in a second subframe.
  • PSCCH control channel
  • the terminal monitors whether another terminal uses a resource in the basic resource unit while moving a resource region called a basic resource unit in the time domain. Through this, since the idle resource unit not used by other terminals is detected and used, interference with other terminals can be reduced. In addition, when a plurality of idle resource units are detected and other terminals can also use the plurality of idle resource units, a method of selecting a specific idle resource unit while avoiding collision with another terminal is provided. As a result, V2X operation can be more reliable and resource efficient.
  • 1 shows a wireless communication system.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol structure for a control plane.
  • 5 shows examples of arrangement of terminals and cell coverage that perform a D2D operation.
  • 6 and 7 illustrate examples of defining V2X transmission resource candidates while sliding a basic resource unit.
  • FIG. 8 illustrates a resource selection method for V2X operation of a terminal according to an embodiment of the present invention.
  • FIG. 10 illustrates signaling between a first terminal and a base station to transmit a V2X message.
  • FIG. 11 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • 1 shows a wireless communication system.
  • the wireless communication system may be called, for example, an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE) / LTE-A system.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), a wireless device (Wireless Device), and the like.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane
  • FIG. 3 is a block diagram showing a radio protocol architecture for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC medium access control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transmission channel for transmitting data from the network to the UE includes a BCH (Broadcast Channel) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connected state (RRC_CONNECTED), if not connected, the RRC idle state ( RRC_IDLE). Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state cannot be understood by the E-UTRAN, and is managed by the CN (core network) in units of a tracking area, which is a larger area unit than the cell. That is, the UE in the RRC idle state is identified only in a large area unit, and must move to the RRC connected state in order to receive a normal mobile communication service such as voice or data.
  • CN core network
  • the terminal When the user first powers on the terminal, the terminal first searches for an appropriate cell and then stays in an RRC idle state in the cell.
  • the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through an RRC connection procedure and transitions to the RRC connected state.
  • RRC connection procedure There are several cases in which the UE in RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or a paging message is sent from E-UTRAN. If received, a response message may be sent.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • EMM-REGISTERED EPS Mobility Management-REGISTERED
  • EMM-DEREGISTERED EMM-DEREGISTERED
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the attach procedure is successfully performed, the UE and the MME are in the EMM-REGISTERED state.
  • an EPS Connection Management (ECM) -IDLE state In order to manage a signaling connection between the UE and the EPC, two states are defined, an EPS Connection Management (ECM) -IDLE state and an ECM-CONNECTED state, and these two states are applied to the UE and the MME.
  • ECM EPS Connection Management
  • ECM-IDLE state When the UE in the ECM-IDLE state establishes an RRC connection with the E-UTRAN, the UE is in the ECM-CONNECTED state.
  • the MME in the ECM-IDLE state becomes the ECM-CONNECTED state when it establishes an S1 connection with the E-UTRAN.
  • the E-UTRAN does not have context information of the terminal.
  • the UE in the ECM-IDLE state performs a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal when the terminal is in the ECM-CONNECTED state, the mobility of the terminal is managed by the command of the network.
  • the terminal In the ECM-IDLE state, if the position of the terminal is different from the position known by the network, the terminal informs the network of the corresponding position of the terminal through a tracking area update procedure.
  • ProSe proximity based services
  • ProSe includes ProSe direct communication and ProSe direct discovery.
  • ProSe direct communication refers to communication performed between two or more neighboring terminals.
  • the terminals may perform communication using a user plane protocol.
  • ProSe-enabled UE refers to a terminal that supports a procedure related to the requirements of ProSe.
  • ProSe capable terminals include both public safety UEs and non-public safety UEs.
  • the public safety terminal is a terminal that supports both a public safety-specific function and a ProSe process.
  • a non-public safety terminal is a terminal that supports a ProSe process but does not support a function specific to public safety.
  • ProSe direct discovery is a process for ProSe capable terminals to discover other ProSe capable terminals that are adjacent to each other, using only the capabilities of the two ProSe capable terminals.
  • EPC-level ProSe discovery refers to a process in which an EPC determines whether two ProSe capable terminals are in proximity and informs the two ProSe capable terminals of their proximity.
  • ProSe direct communication may be referred to as D2D communication
  • ProSe direct discovery may be referred to as D2D discovery.
  • a reference structure for ProSe includes a plurality of terminals including an E-UTRAN, an EPC, a ProSe application program, a ProSe application server, and a ProSe function.
  • EPC represents the E-UTRAN core network structure.
  • the EPC may include MME, S-GW, P-GW, policy and charging rules function (PCRF), home subscriber server (HSS), and the like.
  • PCRF policy and charging rules function
  • HSS home subscriber server
  • ProSe application server is a user of ProSe ability to create application functions.
  • the ProSe application server may communicate with an application program in the terminal.
  • An application program in the terminal may use the ProSe capability to create a coagulation function.
  • the ProSe function may include at least one of the following, but is not necessarily limited thereto.
  • PC1 This is a reference point between a ProSe application in a terminal and a ProSe application in a ProSe application server. This is used to define signaling requirements at the application level.
  • PC2 Reference point between ProSe application server and ProSe function. This is used to define the interaction between the ProSe application server and ProSe functionality. An application data update of the ProSe database of the ProSe function may be an example of the interaction.
  • PC3 Reference point between the terminal and the ProSe function. Used to define the interaction between the UE and the ProSe function.
  • the setting for ProSe discovery and communication may be an example of the interaction.
  • PC4 Reference point between the EPC and ProSe functions. It is used to define the interaction between the EPC and ProSe functions. The interaction may exemplify when establishing a path for 1: 1 communication between terminals, or when authenticating a ProSe service for real time session management or mobility management.
  • PC5 Reference point for using the control / user plane for discovery and communication, relay, and 1: 1 communication between terminals.
  • PC6 Reference point for using features such as ProSe discovery among users belonging to different PLMNs.
  • SGi can be used for application data and application level control information exchange.
  • the D2D operation may be supported in both the case where the UE receives service within the coverage of the network (cell) or the case out of the coverage of the network.
  • 5 shows examples of arrangement of terminals and cell coverage that perform a D2D operation.
  • terminals A and B may be located outside cell coverage.
  • UE A may be located within cell coverage and UE B may be located outside cell coverage.
  • UEs A and B may both be located within a single cell coverage.
  • UE A may be located within the coverage of the first cell and UE B may be located within the coverage of the second cell.
  • the D2D operation may be performed between terminals located at various locations as shown in FIG. 5.
  • Resource allocation for D2D communication may use at least one of the following two modes.
  • Mode 1 is a mode for scheduling resources for ProSe direct communication from a base station.
  • the UE In order to transmit data in mode 1, the UE must be in an RRC_CONNECTED state.
  • the terminal requests the base station for transmission resources, and the base station schedules resources for scheduling allocation and data transmission.
  • the terminal may transmit a scheduling request to the base station and may transmit a ProSe BSR (Buffer Status Report). Based on the ProSe BSR, the base station determines that the terminal has data for ProSe direct communication and needs resources for this transmission.
  • ProSe BSR Buffer Status Report
  • Mode 2 is a mode in which the terminal directly selects a resource.
  • the terminal selects a resource for direct ProSe direct communication from a resource pool.
  • the resource pool may be set or predetermined by the network.
  • the terminal when the terminal has a serving cell, that is, the terminal is in the RRC_CONNECTED state with the base station or located in a specific cell in the RRC_IDLE state, the terminal is considered to be within the coverage of the base station.
  • mode 2 may be applied. If the terminal is in coverage, mode 1 or mode 2 may be used depending on the configuration of the base station.
  • the terminal may change the mode from mode 1 to mode 2 or from mode 2 to mode 1 only when the base station is configured.
  • D2D discovery refers to a procedure used by a ProSe capable terminal to discover other ProSe capable terminals in proximity, and may also be referred to as ProSe direct discovery.
  • Information used for ProSe direct discovery is referred to as discovery information hereinafter.
  • the PC 5 interface can be used for D2D discovery.
  • the PC 5 interface consists of the MAC layer, the PHY layer, and the higher layer, ProSe Protocol layer.
  • the upper layer (ProSe Protocol) deals with the announcement of discovery information and permission for monitoring, and the content of discovery information is transparent to the access stratum (AS). )Do.
  • the ProSe Protocol ensures that only valid discovery information is sent to the AS for the announcement.
  • the MAC layer receives discovery information from a higher layer (ProSe Protocol).
  • the IP layer is not used for sending discovery information.
  • the MAC layer determines the resources used to announce the discovery information received from the upper layer.
  • the MAC layer creates a MAC protocol data unit (PDU) that carries discovery information and sends it to the physical layer. The MAC header is not added.
  • PDU MAC protocol data unit
  • the base station provides the UEs with a resource pool configuration for discovery information announcement.
  • This configuration may be included in a system information block (SIB) and signaled in a broadcast manner.
  • SIB system information block
  • the configuration may be provided included in a terminal specific RRC message.
  • the configuration may be broadcast signaling or terminal specific signaling of another layer besides the RRC message.
  • the terminal selects a resource from the indicated resource pool by itself and announces the discovery information using the selected resource.
  • the terminal may announce the discovery information through a randomly selected resource during each discovery period.
  • the UE in the RRC_CONNECTED state may request a resource for discovery signal announcement from the base station through the RRC signal.
  • the base station may allocate resources for discovery signal announcement with the RRC signal.
  • the UE may be allocated a resource for monitoring the discovery signal within the configured resource pool.
  • the base station 1) may inform the SIB of the type 1 resource pool for discovery signal announcement.
  • ProSe direct UEs are allowed to use the Type 1 resource pool for discovery information announcement in the RRC_IDLE state.
  • the base station may indicate that the base station supports ProSe direct discovery through 2) SIB, but may not provide a resource for discovery information announcement. In this case, the terminal must enter the RRC_CONNECTED state for the discovery information announcement.
  • the base station may set whether the terminal uses a type 1 resource pool or type 2 resource for discovery information announcement through an RRC signal.
  • V2D operation may also be applied to V2X (VEHICLE-TO-EVERYTHING, VEHICLE-TO-X) operation.
  • V2X VEHICLE-TO-EVERYTHING, VEHICLE-TO-X
  • V2X may be a pedestrian, where V2X may be denoted as a V2P.
  • V2P means communication between a vehicle (or a terminal installed in a vehicle) and a device held by a person.
  • the device held by a person may be a terminal held by a pedestrian, a terminal held by a person riding a bicycle, or a terminal owned by a driver of a vehicle moving at a slow speed.
  • X may be a vehicle.
  • V2X can be expressed as V2V.
  • X may be an infrastructure or an infrastructure, and may be expressed as V2I, V2N, or the like.
  • Infrastructure includes roadside units (RSUs) to indicate speed, and devices to indicate traffic conditions.
  • the infrastructure may operate as a base station or as a terminal.
  • a V2P communication related device possessed by a pedestrian is named "P-UE”
  • V-UE a V2X communication related device installed in a vehicle
  • ENTITY can be interpreted as P-UE and / or V-UE and / or RSU (/ NETWORK / INFRASTRUCTURE).
  • a terminal transmitting a V2X message may be referred to as a V2X TX UE or a V2X transmitting terminal.
  • the following schemes propose a method in which different terminals transmitting a V2X message efficiently select a V2X transmission resource in a predefined or signaled V2X transmission resource pool (V2X TX RESOURCE POOL).
  • the V2X transmitting terminal may select a V2X transmission resource by itself in the set (/ signaling) V2X transmission resource pool and then transmit a V2X message using the selected V2X transmission resource.
  • the V2X message may be, for example, the above-described D2D discovery message, a message by D2D communication, or the like.
  • “energy sensing (/ detection)” warping is an RSRP measurement operation for a preset (/ signaled) reference signal (eg, DMRS) on a PSSCH resource region scheduled by a blind decoded (/ detected) PSCCH. And / or may be interpreted as a “LINEAR AVERAGE OF RSSI” measurement operation (for symbols) on a preset (/ signaling) resource unit (/ area) (eg, a basic resource unit).
  • a V2X transmitting terminal may be configured to have a predefined size or signal (from a network or (serving) base station) at a specific point in time (e.g., subframe # N, denoted SF # N). It is possible to define V2X transmission resource candidates related to V2X message transmission while moving (sliding) a BASIC RESOURCE UNIT '(or' window ').
  • the V2X transmitting terminal may be interpreted as performing a V2X (data (and / or control)) message transmission in the corresponding basic resource unit (preset (/ signaled)).
  • the basic resource unit may be a predefined number of time domain resources (eg, subframes, slots, symbols) and / or frequency domain resources (eg, physical) (eg from a network or (serving) base station). It may consist of a combination of resource blocks (pairs) and subcarriers.
  • the basic resource unit may be composed of N subframes, and N may be one or more natural numbers.
  • the basic resource unit may be composed of one subframe and a plurality of preset (/ signaled) physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the sliding size may be set (/ signaled) to be equal to the number of subframes constituting the basic resource unit.
  • 6 and 7 illustrate examples of defining V2X transmission resource candidates while sliding a basic resource unit.
  • V2X control message transmission resource region and the V2X data message transmission resource region are implemented in a 'TDM' form.
  • 7 illustrates an example in which the V2X control message transmission resource region and the V2X data message transmission resource region are implemented in a 'FDM' form.
  • the basic resource unit is composed of four consecutive subframes.
  • the unit for moving the basic resource unit is a sliding size
  • the sliding size is '1 subframe'.
  • the sensing (/ monitoring) window (size) of the V2X transmitting terminal is 1) an interval from SF # (NK) to SF # (N-1) (for example, a 'K' value is a positive integer greater than or equal to 1). This is called option #A) and / or 2) decoding / encoding delay (e.g., its (optimal) as a result of sensing (/ detecting) and / or sensing (/ detecting) operations.
  • the interval from SF # (N-K1) to SF # (N-K2) (e.g., in consideration of transmission resource selection operation and / or processing time related to V2X message to be transmitted).
  • the V2X transmitting terminal is a V2X control message (information) of the other V2X transmitting terminal in the 'V2X control message transmission resource region (named "CTL_REGION") belonging to the corresponding sensing (/ monitoring) window (B) blind decoding (/ detection) on (V2X) data resource region related information scheduled by the V2X control message.
  • CTL_REGION transmission resource region
  • V2X scheduling by another V2X transmitting terminal related V2X control message (information) and (as applicable) V2X control message through operation of blind decoding (/ detection) (in the sensing (/ monitoring) window) described above.
  • the V2X transmitting terminal acquiring the data resource region information may be defined in advance or signaled (from a network or (serving) base station) by a time interval and / or a resource region (e.g., sub # illustrated in option #A or option #B). (Additionally) energy detection (/ sensing) operation (for additional V2X data transmission resource (/ subframe) region in which the V2X control message is blind decoded (/ detected)) within a frame (/ resource) interval). Can be done.
  • FIG. 6 and 7 illustrate a sensing (/ detection) operation of a V2X transmitting terminal (for example, a V2X control message blind decoding (/ detecting) (related to another V2X transmitting terminal), and a V2X scheduled by the corresponding V2X control message.
  • the resource zone (/ size / unit) that performs energy detection (/ sensing) for the data transfer resource zone (the base) resource unit (size used for sending V2X (data (and / or control)) messages) The same situation is assumed.
  • the V2X transmitting terminal (after the sensing (/ detecting) operation) has a 'IDLE BASIC RESOURCE UNIT' that satisfies some or all of the following conditions at the time of 'SF # N' (hereinafter referred to as “child resource unit”). (IDLE RESOURCE UNIT) ”), and / or the like, it is possible to determine whether to perform the final V2X message transmission at the time of 'SF # N'.
  • the corresponding idle resource unit (candidate) selection (/ determination) is a (transfer) resource candidate for which (part or complete) collision (/ overlap) may occur with a relatively high probability between different V2X transmitting terminals ( Can be interpreted as excluding all (transfer) resource candidates).
  • the V2X transmitting terminal blindly decodes the V2X control message (related to another V2X transmitting terminal) on 'CTL_REGION' belonging to a pre-defined or signaled time (/ resource) interval (before 'SF # N'). (/ Detect) operation can be performed.
  • the V2X transmitting terminal may monitor another terminal related V2X control message through a corresponding sensing (/ detection) operation.
  • a resource for example, a resource block, a sub
  • another V2X transmitting terminal interesting for V2X data message transmission purposes Frame
  • the 'K' (and / or 'K1' and / or 'K2') values may be predefined or signaled (from a network or (serving) base station).
  • 6 and 7 may be considered a case where the value of 'K' (and / or 'K1' and / or 'K2') is set to '1'.
  • the V2X transmitting terminal that intends to perform V2X message transmission in subframe #N monitors another terminal related V2X control message in subframe # N-1.
  • the resource that is not used by the other terminal is determined as (their) idle resource unit candidate.
  • the above-described idle resource unit (candidate) may be selected (/ determined) according to whether one or both (all) of the following two examples (conditions) are satisfied.
  • Idle resource units can be defined as base resource units that do not overlap (some (or all) or at all) with the resources they use (for sending V2X data (and / or control) messages).
  • Example # 2 As an example, (for another V2X data transmission resource (/ subframe) region in which the V2X control message is blind decoded (/ detected)) (predefined (network or (serving) base station) Can be defined as an idle resource unit (candidate) where the energy of the (average) value less than the signaled (average) threshold is detected (/ sensed).
  • the total number of basic resource units, i.e., idle resource units, satisfying the condition of (example # 1) at the time point 'SF # N' is two.
  • the V2X transmitting terminal selects its (optimal) transmission resource selection operation according to the result of decoding / encoding delay (for example, sensing (/ detection) operation and / or sensing (/ detection) operation. And / or may include a processing time related to a V2X message to be transmitted)), in 'CTL_REGION' belonging to the section 'from SF # (N-K2 + 1) to SF # (N-1)'). It may not be possible to perform blind decoding (/ detection) operations.
  • the V2X transmitting terminal performs blind decoding on 'CTL_REGION' belonging to the section from 'SF # (N-K1) to SF # (N-K2)', and then 'SF # N' derived through this.
  • the number of idle resource units' M 'at a time point is added to a predefined or signaled offset value' OFF_VAL ', and finally the number of idle resource units at a time point SF # N' ('M + OFF_VAL') Can be set to calculate (/ deriv)
  • FIG. 8 illustrates a resource selection method for V2X operation of a terminal according to an embodiment of the present invention.
  • the terminal monitors PSCCHs for other terminals in the first subframe (S210).
  • PSCCH physical sidelink control channel
  • the first subframe may be a subframe belonging to the basic resource unit described with reference to FIGS. 6 and 7, and may be a subframe before the second subframe in which the UE intends to perform V2X transmission.
  • the terminal transmits a V2X message using a resource (that is, an idle resource unit) that does not overlap (PSSCH) resources scheduled by PSCCHs for the other terminals in a second subframe (S220).
  • a resource that is, an idle resource unit
  • PSSCH does not overlap
  • the UE monitors PSCCHs for other UEs while moving a basic resource unit composed of at least one subframe by one subframe (S410).
  • the terminal searches for an idle resource unit that is a resource that does not overlap with a (PSSCH) resource scheduled by PSCCHs for the other terminals (S420), and when the number of idle resource units is plural (and / Alternatively, the idle resource unit for transmitting the actual PSSCH (and / or PSCCH) is determined in a case where the threshold value is greater than a preset (/ signaled) threshold (S430).
  • PSSCH a resource that does not overlap with a (PSSCH) resource scheduled by PSCCHs for the other terminals
  • the probability that the V2X transmitting terminal actually performs V2X control and / or data message transmission is determined according to ((Example # 1) and / or (Example # 2). ) May be changed according to the number of children resource units (candidates) at the corresponding time point (SF # N). For example, the transmission probability value 'P' is set (/ signaled) per idle resource unit (candidate), and the V2X transmitting terminal causes 'M' 'child resource unit (candidate)' at 'SF # N' time. If present, it is possible to determine whether to perform V2X control and / or data message transmission with a probability of 'P * M' at that time (SF # N).
  • 'P * M' when the calculated value of 'P * M' is greater than '1' may be set to perform the V2X control and / or data message transmission with a probability of '1' at the time 'SF # N'.
  • the V2X transmitting terminal actually performs V2X control and / or data message transmission at the 'SF # N' time point, among the 'M' children resource units' Randomly select one and / or (randomly) select one of the idle resource units that have a relatively small (average) energy detection (/ sensing) value (out of 'M' 'children resource units'). It may be set.
  • the V2X transmitting terminal may skip V2X control and / or data message transmission if there is no 'idle resource unit' at the 'SF # N' time point. Can be. And / or randomly select one of the (all) basic resource units of the corresponding SF # N to perform V2X control and / or data message transmission. And / or (randomly) select one of those having relatively small (average) energy detection (/ sensing) values among all the basic resource units at that time (SF # N) to transmit V2X control and / or data messages. You can also do this.
  • a transmission probability value per 'child resource unit' may be set (/ signaled) independently (or (some or all) differently).
  • idle resource unit # 0 idle resource unit # 1, idle resource unit # 2
  • idle resource unit # 0 idle resource unit If probability values of P1, P2, and P3 are set (/ signaled) in # 1 and idle resource unit # 2, respectively, the V2X transmitting terminal has a probability of '(P1 + P2 + P3)' at the corresponding time point (SF # N). The final decision is whether to perform V2X control and / or data message transmission.
  • the transmission probability value per idle resource unit may be partially or different between V2X messages (/ information / service type) (and / or V2X signals / channels) having different priorities (when [Proposed Method # 1] is applied). All may be set (/ signaled) differently (or independently).
  • the (transmission) probability value per 'idle resource unit' may be set (/ signaled) relatively high.
  • V2X control and / or data message transmission in two or more 'child resource units' is probabilistically determined, one of them is randomly selected to control V2X. And / or perform a data message transmission and / or (randomly) select one of the idle resource units with a relatively small (average) energy detection (/ sensing) value to perform V2X control and / or data message transmission. It may be set to perform.
  • the V2X transmitting terminal may omit V2X control and / or data message transmission if there is no 'idle resource unit' at the 'SF # N' time point. And / or randomly select one of the (all) basic resource units (at that time (SF # N)) to perform V2X control and / or data message transmission. And / or (randomly) select one of the relatively small (average) energy detection (/ sensing) values among the entire basic resource units (at that time (SF # N)) to control V2X and / or data. You can also perform a message transfer.
  • the V2X transmitting terminal And / or, at a particular point in time (SF # N), cause the V2X transmitting terminal to have a predefined or signaled probability of P (e.g., the P value may be set (/ signaled) to '1').
  • P e.g., the P value may be set (/ signaled) to '1'.
  • the transmission probability value P is set (/ signaled) per 'basic resource unit (set)', and the V2X transmitting terminal controls V2X with (independent) P probability for each 'basic resource unit (set)'. And / or determine whether to perform data message transmission.
  • the (transmission) probability value between basic resource units (sets) may be set independently (or (partly or all) differently).
  • V2X control and / or data message transmission on a particular 'base resource unit (set)' has been probabilistically determined, the final (/ substantial) performance is determined by that particular 'base resource unit (set)'. It may be set to be made only when it is determined that the unit (set).
  • (transmission) probability per 'child resource unit' between V2X messages (/ information / service type) (and / or V2X signal / channel) having different priorities when [Proposed Method # 2] is applied).
  • the value (or (transport) probability value per 'basic resource unit (set)') may be set (/ signaled) differently (or independently).
  • the (transmission) probability value per 'idle resource unit' may be set relatively large (/ signaled).
  • a V2X transmitting terminal causes a 'backoff window size / range' (referred to as “/ updated” or previously signaled through a predefined rule).
  • BACKOFF_SIZE which can be expressed as [0, (B-1)]
  • SEL_BACKVAL after selecting the 'backoff value' (named it“ SEL_BACKVAL ”), the corresponding backoff value is decremented.
  • the size can be set to change according to the 'number of children resource units' (at later points that do not include (or include) the corresponding point in time (SF # K)).
  • the V2X transmitting terminal selects the backoff value SEL_BACKVAL of the 'Q' value ('0 ⁇ Q ⁇ (B-1)') at the time of 'SF # (N-1)', It may be '(Q-2)' at the 'SF # N' point where two 'child resource units' exist.
  • an exception may be set to reduce the backoff value SEL_BACKVAL according to a predefined or signaled value (eg '1'). have.
  • the backoff value SEL_BACKVAL according to a predefined or signaled value (eg, '1') regardless of the number of idle resource units. May be set to decrease.
  • V2X control message transmission may be performed. If not, only V2X data message transmission can be performed), it may be set not to reduce the backoff value (SEL_BACKVAL).
  • the V2X transmitting terminal backoff value (based on the number of children resource units) (SEL_BACKVAL) in order to postpone its V2X control and / or data message transmission time, even though there is an idle resource unit at a specific time point. May not perform a reduction operation.
  • the V2X transmitting terminal intentionally assumes the number of idle resource units as a value of '0', or performs idle resource unit related judgment. It can also be interpreted as not doing.
  • the backoff value (SEL_BACKVAL) has a value of '0' (or 'negative integer')
  • the V2X control and / or data message transmission may be performed on the idle resource unit appearing at the closest time point after the 'SF # N' time.
  • the backoff value (SEL_BACKVAL) has a value of '0' (or 'negative integer' value) 'M' children at the time of 'SF # N' If there is a resource unit, randomly select one of the 'M' idle resource units to perform V2X control and / or data message transmission and / or to obtain a relatively small (average) energy detection (/ sensing) value.
  • the branch may be configured to (randomly) select one of the idle resource units to perform V2X control and / or data message transmission.
  • a V2X transmitting terminal causes a base resource unit (set) within a backoff window size / range (BACKOFF_SIZE).
  • Each backoff value SEL_BACKVAL may be independently selected.
  • Reducing the backoff value SEL_BACKVAL for each basic resource unit (set) may be set to be performed only when the corresponding basic resource unit (set) is determined to be an idle resource unit (set).
  • the maximum value of the backoff window size / range (BACKOFF_SIZE) at which the V2X transmitting terminal selects the backoff value (SEL_BACKVAL) is idle at the corresponding time point (SF # K). It may be set to change according to the number of resource units.
  • the backoff window size / range (BACKOFF_SIZE) at that time (SF # K) is' [0, (3-1). )] '
  • the off window size / range maximum may be set relatively small (/ signaling) (or the back off value reduction size may be set relatively large (/ signaling)).
  • the time interval (/ area) is' Interval from SF # (KT) to SF # (K-1) (Example) 'T' is a positive integer greater than or equal to 1) '(or' SF # (K) -T1) to SF # (K-T2) (eg, 'T1', 'T2' may be a positive integer greater than or equal to 1 ').
  • rule # 4-1 change (/ update) the maximum value of backoff window size / range (BACKOFF_SIZE) between V2X messages (/ information / service type) (and / or V2X signals / channels) with different priorities.
  • BACKOFF_SIZE the maximum value of backoff window size / range between V2X messages (/ information / service type) (and / or V2X signals / channels) with different priorities.
  • Some or all of the parameters (eg 'W', 'R') may be set differently (or independently).
  • V2X transmitting terminal that actually performed V2X control and / or data message transmission before 'SF # K' (and / or V2X before 'SF # K' according to a predefined rule) V2X transmitting terminal omitting control and / or data message transmission.
  • the V2X transmitting terminal may perform V2X control and / or data message transmission by performing the following procedure.
  • the PSCCH may be transmitted in one subframe (or a plurality of preset (/ signaled) subframes) and one PRB may be used in each slot.
  • a set of candidates of PRBs that can be used for PSCCH transmission in the first slot, i.e., ⁇ PRB PSCCH, 0 , PRB PSCCH, 1 ,... , PRB PSCCH, N-1 ⁇ may be set by a higher layer.
  • the terminal transmits the PSCCH using the PRB PSCCH, X in the first slot of the subframe and the terminal also transmits the physical sidelink shared channel (PSSCH), which is a sidelink shared channel, the following condition may be satisfied. .
  • PSSCH physical sidelink shared channel
  • PRB PSSCH start means the smallest index among the indexes of PRBs used for PSSCH transmission
  • PRB PSSCH end means the largest index among the indexes of PRBs used for PSSCH transmission.
  • A may be set by the network or a predetermined value.
  • the sidelink grant may include information indicating sidelink control information (SCI) and PSCCH transmission resources.
  • SCI sidelink control information
  • the UE having data to be transmitted may start the PSCCH transmission process.
  • the terminal selects a backoff value arbitrarily in the interval [1, CWmax].
  • the UE determines SCI information excluding the resource block assignment field and determines L CRBs values.
  • the L CRBs value means the number of consecutive resource blocks allocated to a physical sidelink shared channel (PSSCH).
  • the UE Before starting the PSCCH transmission process, the UE assumes that all PRBs of all subframes can be used as long as they are included in a resource pool.
  • the UE monitors PSCCH candidates in subframe n-k. That is, by monitoring each PSCCH candidate in subframe n-k, it is possible to receive SCI for other terminals.
  • the UE considers that the PRB used for transmission of the PSSCH scheduled by any one of the SCIs for the other UEs received in the subframe n-k is not available.
  • subframe n is included in a PSCCH subframe pool representing candidate subframes capable of transmitting PSCCH, a PRB for which PSCCH transmission using PRB PSCCH, x is not available in the first slot of the subframe n is used. If not used (ie PRB PSCCH, x Is a PRB available), subframe n is a PSSCH subframe without using a PRB for which SCI transmission with specific resource block assignment configuration based on the determined L CRBs in subframe n is not available.
  • the terminal is allocated for the sidelink grant and resource block allocation including the PRB PSCCH, x for the PSCCH transmission resources
  • the setting is considered feasible.
  • the terminal considers that the sidelink grant including PRB PSCCH, x for the PSCCH transmission resource and the configuration for resource block allocation are not feasible (or feasible).
  • the terminal decreases the backoff value by one.
  • the UE may transmit the PSCCH according to the sidelink grant that can be realized in subframe n. If there are a plurality of possible sidelink grants, one can select one of the plurality of sidelink grants with an equal probability.
  • the UE may continue the PSSCH transmission process. After this, it moves to the next subframe.
  • FIG. 10 illustrates signaling between a first terminal and a base station to transmit a V2X message.
  • the base station transmits sidelink settings to the first terminal and the second terminal (S510).
  • the sidelink configuration may include information indicating a subframe in which the UE can transmit the PSCCH, that is, a PSCCH subframe pool.
  • the PSCCH subframe pool information may be provided in the form of a bitmap.
  • the terminal may include information indicating the subframes that can transmit the PSSCH, that is, the PSSCH subframe pool.
  • the PSSCH subframe pool information may be provided in the form of a bitmap. It may also include information indicating a resource block that can be used for PSCCH (and / or PSSCH) transmission.
  • Each information indicating a PSCCH subframe pool, a PSSCH subframe pool, or a (PSCCH and / or PSSCH) resource block pool is not necessarily all included in the same sidelink configuration and transmitted.
  • the first terminal determines a subframe and a resource block for transmitting the PSCCH (and / or PSSCH) based on the sidelink configuration (S512).
  • the first terminal may use at least one of the above-described proposal methods # 1 to # 5.
  • at least one of the proposed methods # 1 to # 5 may be used when determining which idle resource unit is actually used.
  • the first terminal transmits a PSCCH (and / or PSSCH) to the second terminal using the determined subframe and resource block (S513). More specifically, PSCCH (for example, can be interpreted as SCI) may be transmitted to the second terminal. After the PSCCH transmission, the PSSCH may be transmitted (and / or transmitted when the PSCCH and the PSSCH are identical (subframes)).
  • PSCCH for example, can be interpreted as SCI
  • PSSCH may be transmitted (and / or transmitted when the PSCCH and the PSSCH are identical (subframes)).
  • examples of the proposed scheme described above may also be regarded as a kind of proposed schemes as they may be included as one of the implementation methods of the present invention.
  • some proposal schemes may be implemented in combination (or merge).
  • the present invention has been described a proposal method based on the 3GPP LTE / LTE-A system for convenience of description, the scope of the system to which the proposed method is applied can be extended to other systems in addition to the 3GPP LTE / LTE-A system Do.
  • the proposed schemes of the present invention can be extended and applied for D2D communication.
  • D2D communication may mean that a terminal and another terminal communicate directly using a wireless channel.
  • a terminal means a terminal of a user, but when a network equipment such as a base station transmits / receives a signal according to a communication method between terminals, it may also be regarded as a kind of terminal.
  • FIG. 11 is a block diagram illustrating a terminal in which an embodiment of the present invention is implemented.
  • the terminal 1100 includes a processor 1110, a memory 1120, and an RF unit 1130.
  • the processor 1110 implements the proposed functions, processes, and / or methods.
  • the RF unit 1130 is connected to the processor 1110 to transmit and receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말의 V2X(vehicle-to-everything) 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말을 제공한다. 상기 방법은 제1 서브프레임에서 다른 단말에 대한 사이드링크 제어 채널(physical sidelink control channel: PSCCH)을 모니터링하고, 제2 서브프레임에서 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 자원을 이용하여 V2X 메시지를 전송하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 단말의 V2X 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 단말의 V2X 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말에 관한 것이다.
ITU-R(International Telecommunication Union Radio communication sector)에서는 3세대 이후의 차세대 이동통신 시스템인 IMT(International Mobile Telecommunication)-Advanced의 표준화 작업을 진행하고 있다. IMT-Advanced는 정지 및 저속 이동 상태에서 1Gbps, 고속 이동 상태에서 100Mbps의 데이터 전송률로 IP(Internet Protocol)기반의 멀티미디어 서비스 지원을 목표로 한다.
3GPP(3rd Generation Partnership Project)는 IMT-Advanced의 요구 사항을 충족시키는 시스템 표준으로 OFDMA(Orthogonal Frequency Division Multiple Access)/SC-FDMA(Single Carrier-Frequency Division Multiple Access) 전송방식 기반인 LTE(Long Term Evolution)를 개선한 LTE-Advanced(LTE-A)를 준비하고 있다. LTE-A는 IMT-Advanced를 위한 유력한 후보 중의 하나이다.
한편, 최근 장치들 간 직접통신을 하는 D2D (Device-to-Device)기술에 대한 관심이 높아지고 있다. 특히, D2D는 공중 안전 네트워크(public safety network)을 위한 통신 기술로 주목 받고 있다. 상업적 통신 네트워크는 빠르게 LTE로 변화하고 있으나 기존 통신 규격과의 충돌 문제와 비용 측면에서 현재의 공중 안전 네트워크는 주로 2G 기술에 기반하고 있다. 이러한 기술 간극과 개선된 서비스에 대한 요구는 공중 안전 네트워크를 개선하고자 하는 노력으로 이어지고 있다.
공중 안전 네트워크는 상업적 통신 네트워크에 비해 높은 서비스 요구 조건(신뢰도 및 보안성)을 가지며 특히 셀룰러 통신의 커버리지가 미치지 않거나 이용 가능하지 않은 경우에도, 장치들 간의 직접 신호 송수신 즉, D2D 동작도 요구하고 있다.
D2D 동작은 근접한 기기들 간의 신호 송수신이라는 점에서 다양한 장점을 가질 수 있다. 예를 들어, D2D 단말은 높은 전송률 및 낮은 지연을 가지며 데이터 통신을 할 수 있다. 또한, D2D 동작은 기지국에 몰리는 트래픽을 분산시킬 수 있으며, D2D 단말이 중계기 역할을 한다면 기지국의 커버리지를 확장시키는 역할도 할 수 있다.
한편, D2D 동작은 V2X(vehicle-to-everything)에도 적용될 수 있다. V2X는 차량과 모든 인터페이스를 통한 통신 기술을 통칭한다. V2X의 형태에는 예를 들어, V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2P(vehicle-to-person) 등이 있다.
제1 단말이 V2X 통신을 수행할 때, 제2 단말도 상기 제1 단말과 동일하거나 일부 겹치는 자원을 이용하여 신호를 전송한다면 상호 간의 간섭으로 인해 신뢰성 높은 V2X 통신이 수행되기 어려울 것이다. 예를 들어, V2X 통신을 위한 자원이 자원 풀(resource pool) 형태로 주어지고, 실제로 V2X 통신을 수행하는 자원은 상기 자원 풀 내에서 단말이 선택할 수도 있다. 이 경우, 서로 다른 단말들이 동일한 자원 풀 내에서 스스로 자원을 선택하므로 상호 간에 동일하거나 일부 겹치는 자원을 선택할 수도 있는 것이다.
V2X 동작을 위하여 효율적으로 자원을 선택하는 방법 및 상기 방법을 이용하는 장치가 필요하다.
본 발명이 해결하고자 하는 기술적 과제는 무선 통신 시스템에서 단말의 V2X 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말을 제공하는 것이다.
일 측면에서, 무선 통신 시스템에서 단말의 V2X(vehicle-to-everything) 동작을 위한 자원 선택 방법을 제공한다. 상기 방법은 제1 서브프레임에서 다른 단말에 대한 사이드링크 제어 채널(physical sidelink control channel: PSCCH)을 모니터링하고, 제2 서브프레임에서 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 자원을 이용하여 V2X 메시지를 전송하는 것을 특징으로 한다.
상기 단말이 PSCCH를 전송할 수 있는 서브프레임들을 지시하는 PSCCH 서브프레임 풀(PSCCH subframe pool) 정보를 네트워크로부터 수신할 수 있다.
상기 제2 서브프레임은 상기 PSCCH 서브프레임 풀 정보가 지시하는 서브프레임들에 포함될 수 있다.
적어도 하나의 서브프레임으로 구성되는 기본 자원 단위(basic resource unit)를 1 서브프레임씩 이동시키면서 다른 단말에 대한 PSCCH를 모니터링할 수 있다.
상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 아이들 자원 단위(idle resource unit)를 검색할 수 있다.
상기 아이들 자원 단위가 복수 개 검색되는 경우, 상기 복수의 아이들 자원 단위들 중 하나의 아이들 자원 단위를 선택하여 PSCCH를 전송할 수 있다.
다른 측면에서 제공되는 단말은 무선 통신 시스템에서 V2X(vehicle-to-everything) 동작을 수행한다. 상기 단말은 무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부 및 상기 RF부와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 제1 서브프레임에서 다른 단말에 대한 사이드링크 제어 채널(physical sidelink control channel: PSCCH)을 모니터링하고, 제2 서브프레임에서 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 자원을 이용하여 V2X 메시지를 전송하는 것을 특징으로 한다.
단말은 기본 자원 단위라 칭하는 자원 영역을 시간 영역에서 이동시키면서 다른 단말이 상기 기본 자원 단위 내의 자원을 사용할 것인지 여부를 모니터링한다. 이를 통해 다른 단말이 사용하지 않는 아이들 자원 단위를 검출하여 사용하기 때문에 다른 단말과의 간섭을 줄일 수 있다. 또한, 아이들 자원 단위가 복수 개로 검출되고 다른 단말 역시 상기 복수 개의 아이들 자원 단위를 이용할 수 있을 때, 다른 단말과의 충돌을 피하면서 특정 아이들 자원 단위를 선택할 수 있는 방법을 제공한다. 그 결과 V2X 동작의 신뢰성 및 자원 사용의 효율성을 높일 수 있다.
도 1은 무선통신 시스템을 나타낸다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 6 및 7은 기본 자원 단위를 슬라이딩 시키면서 V2X 전송 자원 후보들을 정의하는 예를 나타낸다.
도 8은 본 발명의 일 실시예에 따른 단말의 V2X 동작을 위한 자원 선택 방법을 나타낸다.
도 9는 단말이 V2X 동작을 위한 자원을 선택하는 구체적인 예를 나타낸다.
도 10은 V2X 메시지를 전송하려는 제1 단말과 기지국 간의 시그널링을 예시한다.
도 11은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 1은 무선통신 시스템을 나타낸다.
무선통신 시스템은 예를 들어, E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라 칭할 수 있다.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(RRC_CONNECTED), 연결되어 있지 않은 경우는 RRC 아이들 상태(RRC_IDLE)라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 영역(Tracking Area) 단위로 CN(core network)이 관리한다. 즉, RRC 아이들 상태의 단말은 큰 지역 단위로 존재 여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 호출(paging) 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
NAS 계층에서 단말의 이동성을 관리하기 위하여 EMM-REGISTERED(EPS Mobility Management-REGISTERED) 및 EMM-DEREGISTERED 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말과 MME에게 적용된다. 초기 단말은 EMM-DEREGISTERED 상태이며, 이 단말이 네트워크에 접속하기 위해서 초기 연결(Initial Attach) 절차를 통해서 해당 네트워크에 등록하는 과정을 수행한다. 상기 연결(Attach) 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태가 된다.
단말과 EPC간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM(EPS Connection Management)-IDLE 상태 및 ECM-CONNECTED 상태 두 가지 상태가 정의되어 있으며, 이 두 상태는 단말 및 MME에게 적용된다. ECM-IDLE 상태의 단말이 E-UTRAN과 RRC 연결을 맺으면 해당 단말은 ECM-CONNECTED 상태가 된다. ECM-IDLE 상태에 있는 MME는 E-UTRAN과 S1 연결(S1 connection)을 맺으면 ECM-CONNECTED 상태가 된다. 단말이 ECM-IDLE 상태에 있을 때에는 E-UTRAN은 단말의 배경(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(reselection)과 같은 단말 기반의 이동성 관련 절차를 수행한다. 반면 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-IDLE 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라질 경우 단말은 트래킹 영역 갱신(Tracking Area Update) 절차를 통해 네트워크에 단말의 해당 위치를 알린다.
이제 D2D 동작에 대해 설명한다. 3GPP LTE-A에서는 D2D 동작과 관련한 서비스를 근접성 기반 서비스(Proximity based Services: ProSe)라 칭한다. 이하 ProSe는 D2D 동작과 동등한 개념이며 ProSe는 D2D 동작과 혼용될 수 있다. 이제, ProSe에 대해 기술한다.
ProSe에는 ProSe 직접 통신(ProSe direct communication)과 ProSe 직접 발견(ProSe direct discovery)이 있다. ProSe 직접 통신은 근접한 2 이상의 단말들 간에서 수행되는 통신을 말한다. 상기 단말들은 사용자 평면의 프로토콜을 이용하여 통신을 수행할 수 있다. ProSe 가능 단말(ProSe-enabled UE)은 ProSe의 요구 조건과 관련된 절차를 지원하는 단말을 의미한다. 특별한 다른 언급이 없으면 ProSe 가능 단말은 공용 안전 단말(public safety UE)와 비-공용 안전 단말(non-public safety UE)를 모두 포함한다. 공용 안전 단말은 공용 안전에 특화된 기능과 ProSe 과정을 모두 지원하는 단말이고, 비-공용 안전 단말은 ProSe 과정은 지원하나 공용 안전에 특화된 기능은 지원하지 않는 단말이다.
ProSe 직접 발견(ProSe direct discovery)은 ProSe 가능 단말이 인접한 다른 ProSe 가능 단말을 발견하기 위한 과정이며, 이 때 상기 2개의 ProSe 가능 단말들의 능력만을 사용한다. EPC 차원의 ProSe 발견(EPC-level ProSe discovery)은 EPC가 2개의 ProSe 가능 단말들의 근접 여부를 판단하고, 상기 2개의 ProSe 가능 단말들에게 그들의 근접을 알려주는 과정을 의미한다.
이하, 편의상 ProSe 직접 통신은 D2D 통신, ProSe 직접 발견은 D2D 발견이라 칭할 수 있다.
도 4는 ProSe를 위한 기준 구조를 나타낸다.
도 4를 참조하면, ProSe를 위한 기준 구조는 E-UTRAN, EPC, ProSe 응용 프로그램을 포함하는 복수의 단말들, ProSe 응용 서버(ProSe APP server), 및 ProSe 기능(ProSe function)을 포함한다.
EPC는 E-UTRAN 코어 네트워크 구조를 대표한다. EPC는 MME, S-GW, P-GW, 정책 및 과금 규칙(policy and charging rules function:PCRF), 가정 가입자 서버(home subscriber server:HSS)등을 포함할 수 있다.
ProSe 응용 서버는 응용 기능을 만들기 위한 ProSe 능력의 사용자이다. ProSe 응용 서버는 단말 내의 응용 프로그램과 통신할 수 있다. 단말 내의 응용 프로그램은 응요 기능을 만들기 위한 ProSe 능력을 사용할 수 있다.
ProSe 기능은 다음 중 적어도 하나를 포함할 수 있으나 반드시 이에 제한되는 것은 아니다.
- 제3자 응용 프로그램을 향한 기준점을 통한 인터워킹(Interworking via a reference point towards the 3rd party applications)
- 발견 및 직접 통신을 위한 인증 및 단말에 대한 설정(Authorization and configuration of the UE for discovery and direct communication)
- EPC 차원의 ProSe 발견의 기능(Enable the functionality of the EPC level ProSe discovery)
- ProSe 관련된 새로운 가입자 데이터 및 데이터 저장 조정, ProSe ID의 조정(ProSe related new subscriber data and handling of data storage, and also handling of ProSe identities)
- 보안 관련 기능(Security related functionality)
- 정책 관련 기능을 위하여 EPC를 향한 제어 제공(Provide control towards the EPC for policy related functionality)
- 과금을 위한 기능 제공(Provide functionality for charging (via or outside of EPC, e.g., offline charging))
이하에서는 ProSe를 위한 기준 구조에서 기준점과 기준 인터페이스를 설명한다.
- PC1: 단말 내의 ProSe 응용 프로그램과 ProSe 응용 서버 내의 ProSe 응용 프로그램 간의 기준 점이다. 이는 응용 차원에서 시그널링 요구 조건을 정의하기 위하여 사용된다.
- PC2: ProSe 응용 서버와 ProSe 기능 간의 기준점이다. 이는 ProSe 응용 서버와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 기능의 ProSe 데이터베이스의 응용 데이터 업데이트가 상기 상호 작용의 일 예가 될 수 있다.
- PC3: 단말과 ProSe 기능 간의 기준점이다. 단말과 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. ProSe 발견 및 통신을 위한 설정이 상기 상호 작용의 일 예가 될 수 있다.
- PC4: EPC와 ProSe 기능 간의 기준점이다. EPC와 ProSe 기능 간의 상호 작용을 정의하기 위하여 사용된다. 상기 상호 작용은 단말들 간에 1:1 통신을 위한 경로를 설정하는 때, 또는 실시간 세션 관리나 이동성 관리를 위한 ProSe 서비스 인증하는 때를 예시할 수 있다.
- PC5: 단말들 간에 발견 및 통신, 중계, 1:1 통신을 위해서 제어/사용자 평면을 사용하기 위한 기준점이다.
- PC6: 서로 다른 PLMN에 속한 사용자들 간에 ProSe 발견과 같은 기능을 사용하기 위한 기준점이다.
- SGi: 응용 데이터 및 응용 차원 제어 정보 교환을 위해 사용될 수 있다.
D2D 동작은 단말이 네트워크(셀)의 커버리지 내에서 서비스를 받는 경우나 네트워크의 커버리지를 벗어난 경우 모두에서 지원될 수 있다.
도 5는 D2D 동작을 수행하는 단말들과 셀 커버리지의 배치 예들을 나타낸다.
도 5 (a)를 참조하면, 단말 A, B는 모두 셀 커버리지 바깥에 위치할 수 있다. 도 5 (b)를 참조하면, 단말 A는 셀 커버리지 내에 위치하고, 단말 B는 셀 커버리지 바깥에 위치할 수 있다. 도 5 (c)를 참조하면, 단말 A, B는 모두 단일 셀 커버리지 내에 위치할 수 있다. 도 5 (d)를 참조하면, 단말 A는 제1 셀의 커버리지 내에 위치하고, 단말 B는 제2 셀의 커버리지 내에 위치할 수 있다.
D2D 동작은 도 5와 같이 다양한 위치에 있는 단말들 간에 수행될 수 있다.
<D2D 통신(ProSe 직접 통신)을 위한 무선 자원 할당>.
D2D 통신을 위한 자원 할당에는 다음 2가지 모드들 중 적어도 하나를 이용할 수 있다.
1. 모드 1
모드 1은 ProSe 직접 통신을 위한 자원을 기지국으로부터 스케줄링 받는 모드이다. 모드 1에 의하여 단말이 데이터를 전송하기 위해서는 RRC_CONNECTED 상태이여야 한다. 단말은 전송 자원을 기지국에게 요청하고, 기지국은 스케줄링 할당 및 데이터 전송을 위한 자원을 스케줄링한다. 단말은 기지국에게 스케줄링 요청을 전송하고, ProSe BSR(Buffer Status Report)를 전송할 수 있다. 기지국은 ProSe BSR에 기반하여, 상기 단말이 ProSe 직접 통신을 할 데이터를 가지고 있으며 이 전송을 위한 자원이 필요하다고 판단한다.
2. 모드 2
모드 2는 단말이 직접 자원을 선택하는 모드이다. 단말은 자원 풀(resource pool)에서 직접 ProSe 직접 통신을 위한 자원을 선택한다. 자원 풀은 네트워크에 의하여 설정되거나 미리 정해질 수 있다.
한편, 단말이 서빙 셀을 가지고 있는 경우 즉, 단말이 기지국과 RRC_CONNECTED 상태에 있거나 RRC_IDLE 상태로 특정 셀에 위치한 경우에는 상기 단말은 기지국의 커버리지 내에 있다고 간주된다.
단말이 커버리지 밖에 있다면 상기 모드 2만 적용될 수 있다. 만약, 단말이 커버리지 내에 있다면, 기지국의 설정에 따라 모드 1 또는 모드 2를 사용할 수 있다.
다른 예외적인 조건이 없다면 기지국이 설정한 때에만, 단말은 모드 1에서 모드 2로 또는 모드 2에서 모드 1로 모드를 변경할 수 있다.
<D2D 발견(ProSe 직접 발견: ProSe direct discovery)>
D2D 발견은 ProSe 가능 단말이 근접한 다른 ProSe 가능 단말을 발견하는데 사용되는 절차를 말하며 ProSe 직접 발견이라 칭할 수도 있다. ProSe 직접 발견에 사용되는 정보를 이하 발견 정보(discovery information)라 칭한다.
D2D 발견을 위해서는 PC 5 인터페이스가 사용될 수 있다. PC 5인터페이스는 MAC 계층, PHY 계층과 상위 계층인 ProSe Protocol 계층으로 구성된다. 상위 계층(ProSe Protocol)에서 발견 정보(discovery information)의 알림(announcement: 이하 어나운스먼트) 및 모니터링(monitoring)에 대한 허가를 다루며, 발견 정보의 내용은 AS(access stratum)에 대하여 투명(transparent)하다. ProSe Protocol은 어나운스먼트를 위하여 유효한 발견 정보만 AS에 전달되도록 한다. MAC 계층은 상위 계층(ProSe Protocol)로부터 발견 정보를 수신한다. IP 계층은 발견 정보 전송을 위하여 사용되지 않는다. MAC 계층은 상위 계층으로부터 받은 발견 정보를 어나운스하기 위하여 사용되는 자원을 결정한다. MAC 계층은 발견 정보를 나르는 MAC PDU(protocol data unit)를 만들어 물리 계층으로 보낸다. MAC 헤더는 추가되지 않는다.
발견 정보 어나운스먼트를 위하여 2가지 타입의 자원 할당이 있다.
1. 타입 1
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적이지 않게 할당되는 방법으로, 기지국이 단말들에게 발견 정보 어나운스먼트를 위한 자원 풀 설정을 제공한다. 이 설정은 시스템 정보 블록(system information block: SIB)에 포함되어 브로드캐스트 방식으로 시그널링될 수 있다. 또는 상기 설정은 단말 특정적 RRC 메시지에 포함되어 제공될 수 있다. 또는 상기 설정은 RRC 메시지 외 다른 계층의 브로드캐스트 시그널링 또는 단말 특정정 시그널링이 될 수도 있다.
단말은 지시된 자원 풀로부터 스스로 자원을 선택하고 선택한 자원을 이용하여 발견 정보를 어나운스한다. 단말은 각 발견 주기(discovery period) 동안 임의로 선택한 자원을 통해 발견 정보를 어나운스할 수 있다.
2. 타입 2
발견 정보의 어나운스먼트를 위한 자원들이 단말 특정적으로 할당되는 방법이다. RRC_CONNECTED 상태에 있는 단말은 RRC 신호를 통해 기지국에게 발견 신호 어나운스먼트를 위한 자원을 요청할 수 있다. 기지국은 RRC 신호로 발견 신호 어나운스먼트를 위한 자원을 할당할 수 있다. 단말들에게 설정된 자원 풀 내에서 발견 신호 모니터링을 위한 자원이 할당될 수 있다.
RRC_IDLE 상태에 있는 단말에 대하여, 기지국은 1) 발견 신호 어나운스먼트를 위한 타입 1 자원 풀을 SIB로 알려줄 수 있다. ProSe 직접 발견이 허용된 단말들은 RRC_IDLE 상태에서 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 이용한다. 또는 기지국은 2) SIB를 통해 상기 기지국이 ProSe 직접 발견은 지원함을 알리지만 발견 정보 어나운스먼트를 위한 자원은 제공하지 않을 수 있다. 이 경우, 단말은 발견 정보 어나운스먼트를 위해서는 RRC_CONNECTED 상태로 들어가야 한다.
RRC_CONNECTED 상태에 있는 단말에 대하여, 기지국은 RRC 신호를 통해 상기 단말이 발견 정보 어나운스먼트를 위하여 타입 1 자원 풀을 사용할 것인지 아니면 타입 2 자원을 사용할 것인지를 설정할 수 있다.
이제 본 발명에 대해 설명한다. 전술한 D2D 동작은 V2X(VEHICLE-TO-EVERYTHING, VEHICLE-TO-X) 동작에도 적용될 수 있다.
V2X에서 'X'는 보행자(pedestrian)일 수 있으며, 이 때 V2X는 V2P로 표시할 수 있다. V2P는 차량(또는 차량에 설치된 단말)과 사람이 들고 있는 장치 간의 통신을 의미한다. 사람이 들고 있는 장치란 보행자가 들고 있는 단말, 자전거를 타고 있는 사람이 들고 있는 단말, 느린 속도로 움직이는 차량의 운전자가 가지고 있는 단말 등이 될 수 있다.
또는 상기 X는 차량(vehicle)이 될 수 있다. 이 경우, V2X는 V2V로 표시할 수 있다. 또는 상기 X는 기반 시설(인프라 스트럭쳐: infrastructure) 또는 네트워크(network) 등이 될 수도 있으며 차례로 V2I, V2N 등으로 표시할 수 있다. 기반 시설에는 속도를 표시해 주는 도로변 장치(roadside unit: RSU), 교통 환경을 표시해주는 장치 등이 있다. 기반 시설은 기지국으로서 동작하거나 단말로 동작할 수도 있다.
이하, 제안 방식에 대한 설명의 편의를 위해서, 보행자가 소지한 V2P 통신 관련 디바이스를 “P-UE”로 명명하고, 차량에 설치된 V2X 통신 관련 디바이스를 “V-UE”로 명명한다. '엔티티(ENTITY)'는 P-UE 그리고/혹은 V-UE 그리고/혹은 RSU(/NETWORK/INFRASTRUCTURE)로 해석될 수 있다.
이하에서 V2X 메지시를 전송하는 단말을 V2X TX UE 또는 V2X 전송 단말이라 칭할 수도 있다. 아래 제안 방식들은 V2X 메지시를 전송하는 서로 다른 단말들이, 사전에 정의되거나 시그널링된 V2X 전송 자원 풀(V2X TX RESOURCE POOL) 내에서 V2X 전송 자원을 효율적으로 선택하는 방법을 제시한다. 다시 말해서, 일례로, V2X 전송 단말은 설정(/시그널링) 받은 V2X 전송 자원 풀 내에서 스스로 V2X 전송 자원을 선택한 후, 선택한 V2X 전송 자원을 이용하여 V2X 메시지를 전송할 수 있는 것이다. V2X 메시지는 예를 들어, 전술한 D2D 발견 메시지, D2D 통신에 의한 메시지 등일 수 있다.
본 발명에서 “에너지 센싱(/검출)” 워딩은 블라인드 디코딩(/검출)된 PSCCH가 스케줄링하는 PSSCH 자원 영역 상의 사전에 설정(/시그널링)된 참조 신호 (예를 들어, DMRS)에 대한 RSRP 측정 동작 그리고/혹은 사전에 설정(/시그널링) 자원 단위(/영역) (예를 들어, 기본 자원 단위) 상의 (심벌들에 대한) “LINEAR AVERAGE OF RSSI” 측정 동작으로 해석될 수 있다.
본 발명의 적용을 통해서, 서로 다른 V2X 전송 단말들이 일부 혹은 전부 겹치는 V2X 전송 자원을 선택하여 V2X 메시지를 전송하게 되는 확률을 낮출 수 있다.
본 발명에서는, V2X 전송 단말로 하여금, 특정 시점(예를 들어, 서브프레임#N, 이를 SF#N이라 표시한다)에서, 사전에 정의되거나 (네트워크 혹은 (서빙) 기지국으로부터) 시그널링된 크기의 '기본 자원 단위(BASIC RESOURCE UNIT)' (혹은 '원도우')를 이동(슬라이딩)시키면서 V2X 메시지 전송에 관련된 V2X 전송 자원 후보들을 정의하게 할 수 있다. 여기서, 일례로, (사전에 설정(/시그널링)된) 해당 기본 자원 단위로 V2X 전송 단말은 자신의 V2X (데이터 (그리고/혹은 제어)) 메시지 전송을 수행하는 것으로 해석될 수 있다.
여기서, 기본 자원 단위(혹은 윈도우)는 사전에 정의되거나 (네트워크 혹은 (서빙) 기지국으로부터) 시그널링된 개수의 시간 영역 자원(예: 서브프레임, 슬롯, 심볼) 그리고/혹은 주파수 영역 자원(예: 물리적 자원 블록(쌍), 부반송파)의 조합으로 구성될 수 있다. 예를 들어, 기본 자원 단위는 N개의 서브프레임으로 구성될 수 있으며, N은 1 이상의 자연수일 수 있다. 예를 들어, 기본 자원 단위는 1 개의 서브프레임과 사전에 설정(/시그널링된) 복수 개의 물리적 자원 블록(physical resource block: PRB)들로 구성될 수도 있다. 예를 들어, 슬라이딩 크기 (SLIDING SIZE)는 기본 자원 단위를 구성하는 서브프레임 개수와 동일하게 설정(/시그널링)될 수도 있다.
도 6 및 7은 기본 자원 단위를 슬라이딩 시키면서 V2X 전송 자원 후보들을 정의하는 예를 나타낸다.
도 6은, V2X 제어 메시지 전송 자원 영역과 V2X 데이터 메시지 전송 자원 영역이 'TDM' 형태로 구현된 경우에 대한 예시이다. 도 7은 V2X 제어 메시지 전송 자원 영역과 V2X 데이터 메시지 전송 자원 영역이 'FDM' 형태로 구현된 경우에 대한 예시이다.
도 6 및 도 7에서 기본 자원 단위는 연속하는 4개의 서브프레임들로 구성되어 있다. 여기서, 일례로, 기본 자원 단위를 이동시키는 단위를 슬라이딩 크기(SLIDING SIZE)라 하면, 도 6, 7에서 슬라이딩 크기는 '1 서브프레임'으로 가정하였다.
V2X 전송 단말의 센싱(/모니터링) 윈도우 (크기)는 1) SF#(N-K)에서 SF#(N-1)까지의 구간 (예를 들어, 'K' 값은 1 보다 크거나 같은 양의 정수이며, 이렇게 구간을 정하는 것을 옵션#A라 한다) 그리고/혹은 2) 디코딩/인코딩 지연 (예를 들어, 센싱(/검출) 동작 그리고/혹은 센싱(/검출) 동작 결과에 따른 자신의 (최적) 전송 자원 선택 동작 그리고/혹은 전송할 V2X 메시지 관련 프로세싱 타임을 포함하는 것으로 해석할 수 있음)을 (추가적으로) 고려하여 SF#(N-K1)에서 SF#(N-K2)까지의 구간(예를 들어, 'K1', 'K2' 값은 1 보다 크거나 같은 양의 정수이며, 이렇게 구간을 정하는 것을 옵션#B라 한다. 예를 들어, K2 값이 1로 고정되어 있지 않다는 점에서 옵션#A와 차이가 있다)으로 설정(/시그널링)될 수 있다. 여기서, 일례로, V2X 전송 단말은 해당 센싱(/모니터링) 윈도우에 속하는 'V2X 제어 메시지 전송 자원 영역(이를 “CTL_REGION”로 명명)'에서 (다른 V2X 전송 단말의 V2X 제어 메시지 (정보) 및 (해당) V2X 제어 메시지가 스케줄링하는 (V2X) 데이터 자원 영역 관련 정보에 대한) 블라인드 디코딩(/검출)을 수행할 수 있다.
그리고/혹은 (상기 설명한 (센싱(/모니터링) 윈도우 내의) 블라인드 디코딩(/검출)을 동작을 통해서, 다른 V2X 전송 단말 관련 V2X 제어 메시지 (정보) 및 (해당) V2X 제어 메시지가 스케줄링하는 (V2X) 데이터 자원 영역 정보를 획득한 V2X 전송 단말은) 사전에 정의되거나 (네트워크 혹은 (서빙) 기지국으로부터) 시그널링된 시간 구간 그리고/혹은 자원 영역(예를 들어, 옵션#A 또는 옵션#B에서 예시한 서브프레임(/자원) 구간) 내에서 (V2X 제어 메시지가 블라인드 디코딩(/검출)된 다른 V2X 전송 단말 관련 V2X 데이터 전송 자원(/서브프레임) 영역에 대한) 에너지 검출(/센싱) 동작을 (추가적으로) 수행하도록 할 수 있다.
일례로, 도 6 및 도 7은 V2X 전송 단말이 센싱(/검출) 동작 (예를 들어, (다른 V2X 전송 단말 관련) V2X 제어 메시지 블라인드 디코딩(/검출), (해당 V2X 제어 메시지가 스케줄링하는 V2X 데이터 전송 자원 영역에 대한) 에너지 검출(/센싱))을 수행하는 자원 영역(/크기/단위)가 (V2X (데이터 (그리고/혹은 제어)) 메시지 전송에 사용되는) (기본) 자원 단위 (크기)와 동일한 상황을 가정하였다.
일례로, (상기 센싱(/검출) 동작 후) V2X 전송 단말은 'SF#N' 시점에서 아래 일부 혹은 모든 조건들을 만족시키는 '아이들 기본 자원 단위(IDLE BASIC RESOURCE UNIT)' (이를 “아이들 자원 단위(IDLE RESOURCE UNIT)”로 약칭)의 존재 여부 그리고/혹은 개수 등에 따라서, 'SF#N' 시점에서의 최종적인 V2X 메시지 전송 수행 여부를 결정할 수 있다. 여기서, 일례로, 해당 아이들 자원 단위 (후보) 선정(/결정)은 상이한 V2X 전송 단말들 간에 상대적으로 높은 확률로 (일부 혹은 완전한) 충돌(/겹침)이 발생할 수 있는 (전송) 자원 후보를 (전체 (전송) 자원 후보에서) 제외시키는 것으로 해석할 수 있다. 여기서, 일례로, V2X 전송 단말은 ('SF#N' 시점 이전의) 사전에 정의되거나 시그널링된 시간(/자원) 구간에 속하는 'CTL_REGION' 상에서 (다른 V2X 전송 단말 관련) V2X 제어 메시지의 블라인드 디코딩(/검출) 동작을 수행할 수 있다. 다시 말해서, 일례로, V2X 전송 단말은 해당 센싱(/검출) 동작을 통해서, 다른 단말 관련 V2X 제어 메시지를 모니터링할 수 있다. 이를 통해, 일례로, 'SF#N' 을 포함한 이후의 시간(/자원) 구간에서, (관심 있는) 다른 V2X 전송 단말이 V2X 데이터 메시지 전송 용도로 사용하는 자원(예를 들어, 자원 블록, 서브프레임) 위치/개수 그리고/혹은 반복 전송 횟수 등에 대한 정보를 파악할 수 있게 된다.
상기 'K' (그리고/혹은 'K1' 그리고/혹은 'K2') 값은 사전에 정의되거나 (네트워크 혹은 (서빙) 기지국으로부터) 시그널링될 수 있다.
도 6 및 7에서는 'K' (그리고/혹은 'K1' 그리고/혹은 'K2') 값이 '1'로 설정된 경우로 간주될 수 있다.
다시 말해서, 일례로, 서브프레임#N에서 V2X 메시지 전송을 수행하려는 V2X 전송 단말이 서브프레임#N-1에서 다른 단말 관련 V2X 제어 메시지를 모니터링한다. 여기서, 일례로, 이를 통해 서브프레임#N을 포함한 이후 서브프레임(/자원)들에서, 상기 다른 단말이 V2X 메시지 전송 용도로 사용하는 자원 위치/개수 그리고/혹은 반복 전송 횟수 등에 대한 정보들을 파악하고, 상기 다른 단말이 사용하지 않는 자원을 (자신의) 아이들 자원 단위 후보로 결정하는 것이다.
전술한 아이들 자원 단위 (후보)는 다음 2가지 예시 (조건)들 중에 한가지 혹은 두 가지 (모두)를 만족하는지에 따라 선정(/결정)될 수 있다.
(예시#1) 일례로, ((상기 설명한 (센싱(/모니터링) 윈도우 내의) 다른 V2X 전송 단말 관련 V2X 제어 메시지에 대한 블라인드 디코딩(/검출)을 동작을 통해서) (관심 있는) 다른 V2X 전송 단말이 (V2X 데이터 (그리고/혹은 제어) 메시지 전송 용도로) 사용하는 자원과 (일부 (혹은 모두) 혹은 전혀) 겹치지 않는 기본 자원 단위를 아이들 자원 단위 (후보)로 정할 수 있다.
(예시#2) 일례로, (V2X 제어 메시지가 블라인드 디코딩(/검출)된 다른 V2X 전송 단말 관련 V2X 데이터 전송 자원(/서브프레임) 영역에 대해서) (사전에 정의되거나 (네트워크 혹은 (서빙) 기지국으로부터) 시그널링된 (평균) 임계값보다 작은 (평균) 값의 에너지가 검출(/센싱)된 기본 자원 단위를 아이들 자원 단위 (후보)로 정할 수 있다.
도 6 및 7에서, 일례로, 'SF#N' 시점에서 '(예시#1)'의 조건을 만족시키는 기본 자원 단위 즉, 아이들 자원 단위의 총 개수는 2 개가 된다.
한편, 옵션#B가 적용될 경우, V2X 전송 단말은 (디코딩/인코딩 지연 (예를 들어, 센싱(/검출) 동작 그리고/혹은 센싱(/검출) 동작 결과에 따른 자신의 (최적) 전송 자원 선택 동작 그리고/혹은 전송할 V2X 메시지 관련 프로세싱 시간을 포함하는 것으로 해석할 수 있음)을 고려하여) 'SF#(N-K2+1)에서 SF#(N-1)까지의 구간'에 속하는 'CTL_REGION'에서 블라인드 디코딩(/검출) 동작을 수행할 수 없을 수 있다. 따라서, V2X 전송 단말로 하여금, 'SF#(N-K1)에서 SF#(N-K2)까지의 구간'에 속하는 'CTL_REGION'에서 블라인드 디코딩을 수행한 후, 이를 통해서 도출된 'SF#N' 시점에서의 아이들 자원 단위 개수('M')에 사전에 정의되거나 시그널링된 오프셋 값('OFF_VAL')을 합산하여, 최종적으로 SF#N' 시점에서의 아이들 자원 단위 개수('M+OFF_VAL')를 계산(/도출)하도록 설정할 수 있다.
이러한 규칙의 적용을 통해서, 'SF#(N-K2+1)에서 SF#(N-1)까지의 구간' (즉, 블라인드 디코딩이 수행되지 않는 CTL_REGION 영역)에서 발생되는 (관심 있는) 다른 V2X 전송 단말의 V2X 제어 그리고/혹은 데이터 메시지 전송으로 인해, 'SF#N' 시점에서의 아이들 자원 단위 개수가 받는 영향을 어느 정도 반영할 수 있다.
도 8은 본 발명의 일 실시예에 따른 단말의 V2X 동작을 위한 자원 선택 방법을 나타낸다.
도 8을 참조하면, 단말은 제1 서브프레임에서 다른 단말들에 대한 PSCCH들을 모니터링한다(S210). PSCCH(physical sidelink control channel)은 사이드링크의 제어 채널을 의미한다. 여기서, 제1 서브프레임은 도 6 및 7에서 설명한 기본 자원 단위에 속하는 서브프레임일 수 있으며, 단말이 V2X 전송을 수행하려는 제2 서브프레임 이전의 서브프레임일 수 있다.
단말은 제2 서브프레임에서 상기 다른 단말들에 대한 PSCCH들에 의하여 스케줄링되는 (PSSCH) 자원과 겹치지 않는 자원(즉, 아이들 자원 단위)을 이용하여 V2X 메시지를 전송한다(S220).
도 9는 단말이 V2X 동작을 위한 자원을 선택하는 구체적인 예를 나타낸다.
도 9를 참조하면, 단말은 적어도 하나의 서브프레임으로 구성되는 기본 자원 단위(basic resource unit)를 1 서브프레임씩 이동시키면서 다른 단말들에 대한 PSCCH들을 모니터링한다(S410).
단말은 상기 다른 단말들에 대한 PSCCH들에 의하여 스케줄링되는 (PSSCH) 자원과 겹치지 않는 자원인 아이들 자원 단위(idle resource unit)을 검색하고(S420), 상기 아이들 자원 단위 개수가 복수개인 경우 (그리고/혹은 사전에 설정(/시그널링)된 임계값보다 큰 경우), 실제 PSSCH (그리고/혹은 PSCCH)를 전송할 아이들 자원 단위를 결정한다(S430).
상기 규칙들(예: (예시#1), (예시#2))이 적용된다고 할지라도, 특정 시점 (SF#N)에서 상이한 V2X 전송 단말들이 가정하는 아이들 자원 단위의 위치 (그리고/혹은 개수) 등이 동일할 수 있다. 그러면, 서로 다른 V2X 단말들이 동일한 아이들 자원 단위를 이용하여 V2X 메시지를 전송할 수도 있으므로 충돌이 발생할 수 있다. V2X 전송 단말이 최종적으로 V2X 전송 자원을 선택할 때, 복수의 아이들 자원 단위들 중에서 다른 단말이 사용하는 V2X 전송 자원과 일부 혹은 모두 겹치는 아이들 자원 단위를 선택할 확률을 낮추기 위한 추가적인 방법들이 필요할 수 있다. 아래 제안 방법 #1 내지 #5는 이러한 방법들을 제시한다. 이하에서는 설명의 편의를 위해서, 도 6 또는 7의 상황을 가정한다.
[제안 방법#1] 특정 시점 (SF#N)에서, V2X 전송 단말이 V2X 제어 그리고/혹은 데이터 메시지 전송을 실제로 수행할 확률은 ((예시#1) 그리고/혹은 (예시#2)에 따라 파악한) 해당 시점 (SF#N)에서의 '아이들 자원 단위 (후보)의 개수'에 따라 변경될 수 있다. 예를 들어, 아이들 자원 단위 (후보) 당 전송 확률 값 'P'를 설정(/시그널링)해주고, V2X 전송 단말로 하여금, 만약 'SF#N' 시점에서 'M' 개의 '아이들 자원 단위 (후보)'가 존재한다면, 해당 시점 (SF#N)에서 'P*M'의 확률로 V2X 제어 그리고/혹은 데이터 메시지 전송 수행 여부를 결정하도록 할 수 있다.
일례로, 'P*M'의 계산 값이 '1' 보다 커질 경우에는 'SF#N' 시점에서 '1'의 확률로 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 설정될 수 있다.
([제안 방법#1]이 적용될 경우) 일례로, 만약 V2X 전송 단말이 'SF#N' 시점에서 V2X 제어 그리고/혹은 데이터 메시지 전송을 실제로 수행한다면, 'M' 개의 '아이들 자원 단위'들 중에 하나를 랜덤하게 선택하거나 그리고/혹은 ('M' 개의 '아이들 자원 단위'들 중에) 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 아이들 자원 단위들 중에 하나를 (랜덤하게) 선택하도록 설정될 수도 있다.
([제안 방법#1]이 적용될 경우) 일례로, V2X 전송 단말로 하여금, 만약 'SF#N' 시점에서 '아이들 자원 단위'가 존재하지 않는다면, V2X 제어 그리고/혹은 데이터 메시지 전송을 생략하도록 할 수 있다. 그리고/혹은 해당 시점 (SF#N)의 (전체) 기본 자원 단위들 중에 하나를 랜덤하게 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 할 수 있다. 그리고/혹은 해당 시점 (SF#N)의 전체 기본 자원 단위들 중에 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 것들 중에 하나를 (랜덤하게) 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 할 수도 있다.
[제안 방법#1]에서, '아이들 자원 단위' 당 전송 확률 값이 독립적으로 (혹은 (일부 혹은 모두) 상이하게) 설정(/시그널링)될 수 있다.
예를 들어, 'SF#N' 시점에서 3 개의 아이들 자원 단위(예: 아이들 자원 단위#0, 아이들 자원 단위#1, 아이들 자원 단위#2)이 존재하고, 아이들 자원 단위 #0, 아이들 자원 단위#1, 아이들 자원 단위#2에 각각 P1, P2, P3의 확률 값이 설정(/시그널링)되어 있었다면, V2X 전송 단말은 해당 시점 (SF#N)에서 '(P1+P2+P3)'의 확률로 V2X 제어 그리고/혹은 데이터 메시지 전송 수행 여부를 최종적으로 결정하게 된다.
또 다른 일례로, ([제안 방법#1]이 적용될 경우) 상이한 우선 순위를 가지는 V2X 메시지(/정보/서비스 타입) (그리고/혹은 V2X 신호/채널) 간에 아이들 자원 단위 당 전송 확률 값이 일부 혹은 모두 다르게 (혹은 독립적으로) 설정(/시그널링)될 수도 있다.
상대적으로 높은 우선 순위를 가지는 '사고 발생 여부 정보' (그리고/혹은 '이벤트 발생 기반의 정보') (혹은 'V2X 동기화 신호')을 위해서는 다른 정보들 (혹은 다른 V2X 신호/채널)에 비해, '아이들 자원 단위' 당 (전송) 확률 값이 상대적으로 높게 설정(/시그널링)될 수도 있다.
[제안 방법#2] '아이들 자원 단위' 당 전송 확률 값 P를 설정(/시그널링)해주고, V2X 전송 단말로 하여금, '아이들 자원 단위' 별로 (독립적인) P의 확률로 V2X 제어 그리고/혹은 데이터 메시지 전송 수행 여부를 결정하도록 할 수 있다.
여기서, 일례로, 특정 시점 (SF#N)에서, 만약 2 개 이상의 '아이들 자원 단위'에서의 V2X 제어 그리고/혹은 데이터 메시지 전송이 확률적으로 결정되면, 이들 중에 하나를 랜덤하게 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하거나, 그리고/혹은 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 아이들 자원 단위들 중에 하나를 (랜덤하게) 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 설정될 수도 있다.
([제안 방법#2]가 적용될 경우) 일례로, V2X 전송 단말로 하여금, 만약 'SF#N' 시점에서 '아이들 자원 단위'가 존재하지 않는다면, V2X 제어 그리고/혹은 데이터 메시지 전송을 생략하도록 하거나, 그리고/혹은 (해당 시점 (SF#N)의) '(전체) 기본 자원 단위들' 중에 하나를 랜덤하게 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 할 수 있다. 그리고/혹은 (해당 시점 (SF#N)의) 전체 기본 자원 단위들 중에 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 것들 중에 하나를 (랜덤하게) 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 할 수도 있다.
그리고/혹은, 특정 시점 (SF#N)에서, V2X 전송 단말로 하여금, 사전에 정의되거나 시그널링된 P의 확률 (예를 들어, P 값이 '1'로 설정(/시그널링)될 수도 있음)로 해당 시점 (SF#N)에서의 V2X 제어 그리고/혹은 데이터 메시지 전송 수행 여부를 (우선적으로) 결정하도록 한 후, 만약 해당 시점 (SF#N)에서 V2X 제어 그리고/혹은 데이터 메시지 전송을 실제로 수행한다면, 해당 시점 (SF#N)에서의 '아이들 자원 단위' 중에 하나를 랜덤하게 선택하도록 하거나, 그리고/혹은 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 아이들 자원 단위들 중에 하나를 (랜덤하게) 선택하도록 설정할 수도 있다.
또 다른 일례로, '기본 자원 단위 (집합)’ 당 전송 확률 값 P를 설정(/시그널링)해주고, V2X 전송 단말로 하여금, '기본 자원 단위 (집합)' 별로 (독립적인) P 확률로 V2X 제어 그리고/혹은 데이터 메시지 전송 수행 여부를 결정하도록 할 수 있다.
기본 자원 단위(집합) 간에 (전송) 확률 값은 독립적으로 (혹은 (일부 혹은 모두) 상이하게) 설정될 수도 있다.
특정 '기본 자원 단위(집합)' 상에서의 V2X 제어 그리고/혹은 데이터 메시지 전송이 확률적으로 결정되었다고 할지라도, 최종적인(/실질적인) 수행은 해당 특정 '기본 자원 단위(집합)'이 '아이들 자원 단위(집합)'으로 판단될 경우에만 이루어지도록 설정될 수도 있다.
또 다른 일례로, ([제안 방법#2]가 적용될 경우) 상이한 우선 순위를 가지는 V2X 메시지(/정보/서비스 타입) (그리고/혹은 V2X 신호/채널) 간에 '아이들 자원 단위' 당 (전송) 확률 값(혹은 '기본 자원 단위(집합)' 당 (전송) 확률 값)이 (일부 혹은 모두) 다르게 (혹은 독립적으로) 설정(/시그널링)될 수도 있다.
상대적으로 높은 우선 순위를 가지는 '사고 발생 여부 정보' (그리고/혹은 '이벤트 발생 기반의 정보') (혹은 'V2X 동기화 신호')을 위해서는 다른 정보들 (혹은 다른 V2X 신호/채널)에 비해, '아이들 자원 단위' 당 (전송) 확률 값 (혹은 '기본 자원 단위(집합)' 당 (전송) 확률 값)이 상대적으로 크게 설정(/시그널링)될 수도 있다.
[제안 방법#3] 특정 시점 (SF#K)에서, V2X 전송 단말로 하여금, 사전에 정의된 규칙을 통해서 도출(/갱신)되거나 또는 사전에 시그널링된 '백오프 원도우 크기/범위' (이를 “BACKOFF_SIZE”로 명명하고, [0, (B-1)]과 같이 나타낼 수 있음) 내에서 '백오프 값' (이를 “SEL_BACKVAL”로 명명)을 선정하도록 한 후에, 해당 선정된 백오프 값이 감소하는 크기는 (해당 시점 (SF#K)을 포함하지 않은 (혹은 포함한) 이후 시점들에서) '아이들 자원 단위 개수'에 따라 변경되도록 설정해줄 수 있다.
예를 들어, V2X 전송 단말이 'SF#(N-1)' 시점에서 'Q' 값 ('0≤≤Q≤≤(B-1)')의 백오프 값(SEL_BACKVAL)을 선정하였다면, 총 2 개의 '아이들 자원 단위'가 존재하는 'SF#N' 시점에서는 '(Q-2)'가 될 수 있다.
또 다른 일례로, 만약 특정 시점에서 '아이들 자원 단위'가 존재하지 않는다면, 예외적으로 사전에 정의되거나 시그널링된 값 (예: '1')에 따라 백오프 값(SEL_BACKVAL)을 감소시키도록 설정될 수도 있다.
또 다른 일례로, 특정 시점에서 복수 개의 '아이들 자원 단위'가 존재한다고 할지라도, 아이들 자원 단위의 개수에 상관없이 사전에 정의거나 시그널링된 값 (예: '1')에 따라 백오프 값(SEL_BACKVAL)을 감소시키도록 설정될 수도 있다.
또 다른 일례로, 특정 시점에서, '아이들 자원 단위'가 존재한다고 할지라도, 사전에 정의되거나 시그널링된 정보(/채널/시그널) 전송이 수행될 수 없다면 (예를 들어, V2X 제어 메시지 전송이 수행될 수 없고 V2X 데이터 메시지 전송만이 수행될 수 있는 경우), 백오프 값(SEL_BACKVAL)을 감소시키지 않도록 설정될 수도 있다.
또 다른 일례로, V2X 전송 단말은 특정 시점에서 아이들 자원 단위가 존재함에도 불구하고, 자신의 V2X 제어 그리고/혹은 데이터 메시지 전송 시점을 미루기 위해서, (아이들 자원 단위의 개수 기반의) 백오프 값(SEL_BACKVAL) 감소 동작을 수행하지 않을 수도 있다.
이러한 규칙의 적용에서, V2X 전송 단말이 자신의 V2X 제어 그리고/혹은 데이터 메시지 전송 시점을 미루기 위해서, 아이들 자원 단위의 개수를 의도적으로 '0'의 값으로 가정하거나, 혹은 아이들 자원 단위 관련 판단을 수행하지 않는 것으로 해석할 수도 있다.
([제안 방법#3]이 적용될 경우) 일례로, 만약 백오프 값(SEL_BACKVAL)이 '0'의 값 (혹은 '음의 정수' 값)을 가지는 'SF#N' 시점에서 아이들 자원 단위가 존재하지 않는다면, 'SF#N' 시점 이후의 가장 가까운 시점에 나타나는 아이들 자원 단위 상에서 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 할 수 있다. 그리고/혹은 'SF#N' 시점의 V2X 제어 그리고/혹은 데이터 메시지 전송을 생략하도록 하거나, 그리고/혹은 'SF#N' 시점의 백오프 원도우 크기/범위(BACKOFF_SIZE) 내에서 백오프 값(SEL_BACKVAL)을 다시 선정하도록 할 수 있다. 그리고/혹은 'SF#N' 시점의 전체 기본 자원 단위들 중에 하나를 랜덤하게 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 하거나, 그리고/혹은 'SF#N' 시점의 전체 기본 자원 단위들 중에 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 것들 중에 하나를 (랜덤하게) 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 할 수도 있다.
([제안 방법#3]이 적용될 경우) 일례로, 만약 백오프 값(SEL_BACKVAL)이 '0'의 값 (혹은 '음의 정수' 값)을 가지는 'SF#N' 시점에서 'M' 개의 아이들 자원 단위가 존재한다면, 'M' 개의 아이들 자원 단위들 중에 하나를 랜덤하게 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하거나, 그리고/혹은 상대적으로 작은 (평균) 에너지 검출(/센싱) 값을 가지는 아이들 자원 단위들 중에 하나를 (랜덤하게) 선택하여 V2X 제어 그리고/혹은 데이터 메시지 전송을 수행하도록 설정될 수도 있다.
또 다른 일례로, (상기 [제안 방법#3]이 적용될 경우) 특정 시점 (SF#K)에서, V2X 전송 단말로 하여금, 백오프 원도우 크기/범위(BACKOFF_SIZE) 내에서, 기본 자원 단위 (집합) 별로 백오프 값(SEL_BACKVAL)을 독립적으로 선정하도록 설정될 수도 있다.
기본 자원 단위(집합) 별 백오프 값(SEL_BACKVAL) 감소는 해당 기본 자원 단위 (집합)이 아이들 자원 단위(집합)으로 판단될 경우에만 수행되도록 설정될 수도 있다.
또 다른 일례로, 특정 시점 (SF#K)에서, V2X 전송 단말은 백오프 값(SEL_BACKVAL)을 선정하는 백오프 원도우 크기/범위(BACKOFF_SIZE)의 최대 값은 해당 시점 (SF#K)에서의 아이들 자원 단위의 개수에 따라 변경되도록 설정될 수도 있다.
예를 들어, 만약 'SF#N' 시점에서 '3' 개의 아이들 자원 단위들이 존재하였다면, 해당 시점 (SF#K)에서의 백오프 원도우 크기/범위(BACKOFF_SIZE)는 '[0, (3-1)]'가 되고, 백오프 원도우 크기/범위(BACKOFF_SIZE) 최대값은 '2 (=(3-1))'가 된다.
([제안 방법#3]이 적용될 경우) 일례로, 상이한 우선 순위를 가지는 V2X 메시지(/정보/서비스 타입) (그리고/혹은 V2X 신호/채널) 간에 백오프 원도우 크기/범위(BACKOFF_SIZE 또는 BACKOFF_SIZE 최대값(/최소값) 혹은 SEL_BACKVAL 감소 크기)가 (일부 혹은 모두) 다르게 (혹은 독립적으로) 설정(/시그널링)될 수도 있다.
상대적으로 높은 우선 순위를 가지는 '사고 발생 여부 정보' (그리고/혹은 '이벤트 발생 기반의 정보') (혹은 'V2X 동기화 신호')을 위해서는 다른 정보들 (혹은 다른 V2X 신호/채널)에 비해, 백오프 원도우 크기/범위 최대값이 상대적으로 작게 설정(/시그널링) (혹은 백오프 값 감소 크기가 상대적으로 크게 설정(/시그널링))될 수도 있다.
[제안 방법#4] (전술한 [제안 방법#3]이 적용될 경우) 일례로, 특정 시점 (SF#K)에서의 백오프 원도우 크기/범위(BACKOFF_SIZE) ('[0, (B-1)]')는 아래의 일부 혹은 모든 규칙에 따라 변경(/갱신)될 수 있다.
(규칙#4-1) 일례로, 사전에 정의되거나 시그널링된 시간 구간(/영역) 내에서, 만약 사전에 정의되거나 시그널링된 임계 값 (예: '1') 이상의 V2X 제어 그리고/혹은 데이터 메시지 전송이 수행되었다면 (혹은 사전에 정의되거나 시그널링된 임계 값 (예: '1') 이상의 아이들 자원 단위의 개수가 존재하였다면), 'SF#K' 시점에서의 백오프 원도우 크기/범위(BACKOFF_SIZE) 최대 값을 '(B-1)/W' (예) 'W=2’)로 감소 (혹은 '(B-1)*R' (예) 'R=2')로 증가) 시키도록 설정될 수 있다.
해당 시간 구간(/영역)은 'SF#(K-T)에서 SF#(K-1)까지의 구간 (예) 'T' 값은 1 보다 크거나 같은 양의 정수)' (혹은 'SF#(K-T1)에서 SF#(K-T2)까지의 구간 (예) 'T1', 'T2' 값은 1 보다 크거나 같은 양의 정수)')으로 설정될 수 있다.
사전에 정의되거나 시그널링된 시간 구간(/영역) 내에서, 만약 사전에 정의되거나 시그널링된 임계 값 (예: '1') 이상의 V2X 제어 그리고/혹은 데이터 메시지 전송이 수행되지 못하였다면 (혹은 사전에 정의되거나 시그널링된 임계 값 (예: '1') 이상의 아이들 자원 단위의 개수가 존재하지 않았다면), 'SF#K' 시점에서의 백오프 원도우 크기/범위(BACKOFF_SIZE) 최대 값을 '(B-1)*R' (예) 'R=2')로 증가 (혹은 '(B-1)/W' (예) 'W=2')로 감소) 시키도록 설정될 수도 있다.
규칙#4-1이 적용될 경우, 상이한 우선 순위를 가지는 V2X 메시지(/정보/서비스 타입) (그리고/혹은 V2X 신호/채널) 간에 백오프 원도우 크기/범위(BACKOFF_SIZE) 최대 값을 변경(/갱신)하는 파라미터 (예: 'W', 'R')가 일부 혹은 모두 다르게 (혹은 독립적으로) 설정될 수도 있다.
[제안 방법#5] (전술한 [제안 방법#3]이 적용될 경우) 일례로, 특정 시점 (SF#K)에서, 아래의 일부 혹은 모든 조건을 만족하는 V2X 전송 단말만이, 사전에 정의된 규칙을 통해서 도출(/갱신)되거나 사전에 시그널링된 백오프 원도우 크기/범위 (BACKOFF_SIZE) ('[0, (B-1)]') 내에서 백오프 값을 선정하도록 설정될 수 있다.
(조건#5-1) 백오프 값이 '0'의 값 (혹은 '음의 정수' 값)을 가지는 V2X 전송 단말.
(조건#5-2) 'SF#K' 시점 이전에 V2X 제어 그리고/혹은 데이터 메시지 전송을 실제로 수행한 V2X 전송 단말(그리고/혹은 사전에 정의된 규칙에 따라 'SF#K' 시점 이전에 V2X 제어 그리고/혹은 데이터 메시지 전송을 생략한 V2X 전송 단말).
전술한 일부 혹은 모든 제안 방식들 (예: [제안 방법#1], [제안 방법#2], [제안 방법#3], [제안 방법#4], [제안 방법#5])이 적용될 경우, V2X 전송 단말은 다음 절차를 수행하여, V2X 제어 그리고/혹은 데이터 메시지 전송을 수행할 수 있다.
PSCCH는 하나의 서브프레임(또는 사전에 설정(/시그널링)된 복수개의 서브프레임들)에서 전송될 수 있으며 각 슬롯에서 하나의 PRB가 사용될 수 있다. 첫번째 슬롯에서 PSCCH 전송에 사용될 수 있는 PRB들의 후보들의 집합 즉, {PRBPSCCH,0, PRBPSCCH,1, …, PRBPSCCH,N-1}가 상위 계층에 의하여 설정될 수 있다.
서브프레임의 첫번째 슬롯에서 PRBPSCCH,X 를 이용하여 단말이 PSCCH를 전송하고, 상기 서브프레임에서 사이드링크 공유 채널인 PSSCH(physical sidelink shared channel)도 단말이 전송한다면, 다음 조건을 만족해야 할 수 있다.
0 < PRBPSSCH,start - PRBPSCCH,x < A, 또는 0 < PRBPSCCH,x - PRBPSSCH,end < A.
상기 식에서 PRBPSSCH,start 는 PSSCH 전송에 사용되는 PRB들의 인덱스들 중에서 가장 작은 인덱스를 의미하고, PRBPSSCH,end 는 PSSCH 전송에 사용되는 PRB들의 인덱스들 중에서 가장 큰 인덱스를 의미한다. A는 네트워크에 의하여 설정되거나 미리 정해진 값일 수 있다.
사이드링크 그랜트는 SCI(sidelink control information)와 PSCCH 전송 자원을 알려주는 정보를 포함할 수 있다.
전송할 데이터를 가지고 있는 단말은 PSCCH 전송 과정을 시작할 수 있다. 단말은 구간 [1, CWmax]에서 임의로 백오프 값을 선택한다. 단말은 자원 블록 할당(Resource block assignment) 필드를 제외한 SCI 정보를 결정하고, LCRBs 값을 결정한다. 여기서, LCRBs 값은 PSSCH(physical sidelink shared channel)에 할당되는 연속된 자원 블록들의 개수를 의미한다.
PSCCH 전송 과정을 시작하기 전에, 단말은 모든 서브프레임들의 모든 PRB들이 자원 풀에 포함되어 있기만 하다면 사용 가능한 것으로 가정한다.
단말은 서브프레임 n-k에서 PSCCH 후보들을 모니터링한다. 즉, 서브프레임 n-k에서 각 PSCCH 후보들을 모니터링함으로써 다른 단말들에 대한 SCI를 수신할 수 있다.
단말은 상기 서브프레임 n-k에서 수신한 다른 단말들에 대한 SCI들 중 어느 하나에 의해서라도 스케줄링된 PSSCH의 전송에 사용되는 PRB는 사용 가능하지 않다(not-available)고 간주한다.
만약, PSCCH를 전송할 수 있는 후보 서브프레임들을 나타내는 PSCCH 서브프레임 풀(pool)에 서브프레임 n이 포함되고, 상기 서브프레임 n의 첫번째 슬롯에서 PRBPSCCH,x 을 이용하는 PSCCH 전송이 사용 가능하지 않은 PRB를 이용하지 않는다면(즉, PRBPSCCH,x 가 사용 가능한 PRB인 경우), 상기 서브프레임 n에서 상기 결정된 LCRBs에 기반한 특정 자원 블록 할당(resource bock assignment) 설정을 가지는 SCI 전송이 사용가능하지 않은 PRB를 이용하지 않고 서브프레임 n이 PSSCH 서브프레임 풀에도 포함되고, PSSCH PRB들과 자원 블록 할당 필드의 설정이 PSSCH와 PSCCH의 동시 전송 조건을 만족하면, 단말은 PSCCH 전송 자원을 위한 PRBPSCCH,x을 포함하는 사이드링크 그랜트와 자원 블록 할당을 위한 설정이 실현 가능(feasible)하다고 간주한다.
그렇지 않다면, 단말은 PSCCH 전송 자원을 위한 PRBPSCCH,x을 포함하는 사이드링크 그랜트와 자원 블록 할당을 위한 설정이 실현 불가능 (혹은 실현 가능)하다고 간주한다.
만약, 하나라도 실현 가능한 사이드링크 그랜트가 있다면, 단말은 백오프 값을 1씩 감소시킨다.
백오프 값이 0이 되면, 단말은 서브프레임 n에서 실현 가능한 사이드링크 그랜트에 따라 PSCCH를 전송할 수 있다. 만약, 실현 가능한 사이드링크 그랜트가 복수 개 있다면, 균등한 확률로 상기 복수의 사이드링크 그랜트들 중에서 하나를 선택할 수 있다.
PSCCH 전송 과정을 완료하면 단말은 PSSCH 전송 과정을 계속할 수 있다. 이 후 다음 서브프레임으로 이동한다.
도 10은 V2X 메시지를 전송하려는 제1 단말과 기지국 간의 시그널링을 예시한다.
도 10을 참조하면, 기지국은 제1 단말 및 제2 단말에게 사이드링크 설정을 전송한다(S510).
사이드링크 설정은 단말이 PSCCH를 전송할 수 있는 서브프레임들 즉, PSCCH 서브프레임 풀(pool)을 알려주는 정보를 포함할 수 있다. PSCCH 서브프레임 풀 정보는 비트맵 형태로 제공될 수 있다. 또한, 단말이 PSSCH를 전송할 수 있는 서브프레임들 즉, PSSCH 서브프레임 풀을 알려주는 정보를 포함할 수도 있다. PSSCH 서브프레임 풀 정보는 비트맵 형태로 제공될 수 있다. 또한, PSCCH (그리고/혹은 PSSCH) 전송에 사용될 수 있는 자원 블록을 지시하는 정보도 포함할 수 있다. PSCCH 서브프레임 풀, PSSCH 서브프레임 풀 또는 (PSCCH 그리고/혹은 PSSCH) 자원 블록 풀을 알려주는 각 정보는 반드시 동일한 사이드링크 설정에 모두 포함되어 전달되어야 하는 것은 아니다.
제1 단말은 사이드링크 설정에 기반하여 PSCCH (그리고/혹은 PSSCH)를 전송할 서브프레임 및 자원 블록을 결정한다(S512). 이 과정에서, 제1 단말은 전술한 제안 방법#1 내지 #5 중에 적어도 하나를 이용할 수 있다. 특히, 아이들 자원 단위가 복수 개로 주어질 경우 실제 어느 아이들 자원 단위를 이용할 것인지를 결정할 때, 제안 방법#1 내지 #5 중에 적어도 하나를 이용할 수 있다.
제1 단말은 결정된 서브프레임 및 자원 블록을 이용하여 제2 단말에게 PSCCH (그리고/혹은 PSSCH)를 전송한다(S513). 보다 구체적으로 PSCCH (예를 들어, SCI로 해석 가능)를 제2 단말에게 전송할 수 있다. PSCCH 전송 후에 PSSCH를 전송 (그리고/혹은 PSCCH와 PSSCH가 동일 (서브프레임) 시점에서 전송)할 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수도 있다. 일례로, 본 발명에서는 설명의 편의를 위해 3GPP LTE/LTE-A 시스템을 기반으로 제안 방식을 설명하였지만, 제안 방식이 적용되는 시스템의 범위는 3GPP LTE/LTE-A 시스템 외에 다른 시스템으로도 확장 가능하다. 일례로, 본 발명의 제안 방식들은 D2D 통신을 위해서도 확장 적용 가능하다. D2D 통신은 단말과 다른 단말이 직접 무선 채널을 이용하여 통신하는 것을 의미할 수 있다. 단말은 사용자의 단말을 의미하지만, 기지국과 같은 네트워크 장비가 단말 사이의 통신 방식에 따라서 신호를 송/수신하는 경우에는 역시 일종의 단말로 간주될 수 있다.
도 11은 본 발명의 실시예가 구현되는 단말을 나타낸 블록도이다.
도 11을 참조하면, 단말(1100)은 프로세서(1110), 메모리(1120) 및 RF부(radio frequency unit, 1130)을 포함한다. 프로세서(1110)는 제안된 기능, 과정 및/또는 방법을 구현한다.
RF부(1130)은 프로세서(1110)와 연결되어 무선 신호를 송신 및 수신한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.

Claims (12)

  1. 무선 통신 시스템에서 단말의 V2X(vehicle-to-everything) 동작을 위한 자원 선택 방법에 있어서,
    제1 서브프레임에서 다른 단말에 대한 사이드링크 제어 채널(physical sidelink control channel: PSCCH)을 모니터링하고, 및
    제2 서브프레임에서 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 자원을 이용하여 V2X 메시지를 전송하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 단말이 PSCCH를 전송할 수 있는 서브프레임들을 지시하는 PSCCH 서브프레임 풀(PSCCH subframe pool) 정보를 네트워크로부터 수신하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서, 상기 제2 서브프레임은 상기 PSCCH 서브프레임 풀 정보가 지시하는 서브프레임들에 포함되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 적어도 하나의 서브프레임으로 구성되는 기본 자원 단위(basic resource unit)를 1 서브프레임씩 이동시키면서 다른 단말에 대한 PSCCH를 모니터링하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서, 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 아이들 자원 단위(idle resource unit)를 검색하는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서, 상기 아이들 자원 단위가 복수 개 검색되는 경우, 상기 복수의 아이들 자원 단위들 중 하나의 아이들 자원 단위를 선택하여 PSCCH를 전송하는 것을 특징으로 하는 방법.
  7. 무선 통신 시스템에서 V2X(vehicle-to-everything) 동작을 수행하는 단말에 있어서,
    무선 신호를 송신 및 수신하는 RF(Radio Frequency) 부; 및
    상기 RF부와 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    제1 서브프레임에서 다른 단말에 대한 사이드링크 제어 채널(physical sidelink control channel: PSCCH)을 모니터링하고, 제2 서브프레임에서 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 자원을 이용하여 V2X 메시지를 전송하는 것을 특징으로 하는 단말.
  8. 제 7 항에 있어서, 상기 단말이 PSCCH를 전송할 수 있는 서브프레임들을 지시하는 PSCCH 서브프레임 풀(PSCCH subframe pool) 정보를 네트워크로부터 수신하는 것을 특징으로 하는 단말.
  9. 제 8 항에 있어서, 상기 제2 서브프레임은 상기 PSCCH 서브프레임 풀 정보가 지시하는 서브프레임들에 포함되는 것을 특징으로 하는 단말.
  10. 제 7 항에 있어서, 적어도 하나의 서브프레임으로 구성되는 기본 자원 단위(basic resource unit)를 1 서브프레임씩 이동시키면서 다른 단말에 대한 PSCCH를 모니터링하는 것을 특징으로 하는 단말.
  11. 제 10 항에 있어서, 상기 다른 단말에 대한 PSCCH에 의하여 스케줄링되는 자원과 겹치지 않는 아이들 자원 단위(idle resource unit)를 검색하는 것을 특징으로 하는 단말.
  12. 제 11 항에 있어서, 상기 아이들 자원 단위가 복수 개 검색되는 경우, 상기 복수의 아이들 자원 단위들 중 하나의 아이들 자원 단위를 선택하여 PSCCH를 전송하는 것을 특징으로 하는 단말.
PCT/KR2016/010432 2015-09-15 2016-09-19 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말 WO2017048109A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680052422.0A CN108028730B (zh) 2015-09-15 2016-09-19 在无线通信系统中终端的v2x操作的资源选择方法以及使用该方法的终端
JP2018533600A JP6672463B2 (ja) 2015-09-15 2016-09-19 無線通信システムにおける端末のv2x動作のためのリソース選択方法及び前記方法を利用する端末
KR1020187007258A KR102128947B1 (ko) 2015-09-15 2016-09-19 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말
EP16846930.2A EP3352402B1 (en) 2015-09-15 2016-09-19 Resource selection method for v2x operation of terminal in wireless communication system, and terminal using method
US15/760,604 US10536958B2 (en) 2015-09-15 2016-09-19 Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method
US16/707,954 US10973041B2 (en) 2015-09-15 2019-12-09 Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method
US17/211,742 US11832239B2 (en) 2015-09-15 2021-03-24 Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562219086P 2015-09-15 2015-09-15
US62/219,086 2015-09-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/760,604 A-371-Of-International US10536958B2 (en) 2015-09-15 2016-09-19 Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method
US16/707,954 Continuation US10973041B2 (en) 2015-09-15 2019-12-09 Resource selection method for V2X operation of terminal in wireless communication system, and terminal using method

Publications (1)

Publication Number Publication Date
WO2017048109A1 true WO2017048109A1 (ko) 2017-03-23

Family

ID=58289493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010432 WO2017048109A1 (ko) 2015-09-15 2016-09-19 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말

Country Status (6)

Country Link
US (3) US10536958B2 (ko)
EP (1) EP3352402B1 (ko)
JP (2) JP6672463B2 (ko)
KR (1) KR102128947B1 (ko)
CN (1) CN108028730B (ko)
WO (1) WO2017048109A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633049A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种资源选择方法及装置、资源配置方法及装置
CN109391972A (zh) * 2017-08-12 2019-02-26 捷开通讯(深圳)有限公司 支持载波聚合的终端到终端通信的资源选择方法及装置
WO2020036454A1 (ko) * 2018-08-17 2020-02-20 삼성전자 주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
EP3589051A4 (en) * 2017-03-25 2020-03-04 LG Electronics Inc. -1- METHOD FOR V2X COMMUNICATION OF A TERMINAL IN A WIRELESS COMMUNICATION SYSTEM AND TERMINAL USING THE METHOD
CN111148062A (zh) * 2018-11-02 2020-05-12 电信科学技术研究院有限公司 一种资源分配方法、装置及网络设备
EP3624518A4 (en) * 2017-08-04 2020-05-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD FOR COMMUNICATING DEVICE TO DEVICE, TERMINAL DEVICE AND NETWORK DEVICE
CN111163437A (zh) * 2018-11-08 2020-05-15 电信科学技术研究院有限公司 一种通信监听方法及通信设备
KR20200065051A (ko) * 2018-02-26 2020-06-08 후아웨이 테크놀러지 컴퍼니 리미티드 V2x 서비스뿐만 아니라 v2x 애플리케이션을 위한 엔티티, 네트워크, 및 사용자 장비
WO2021071199A1 (ko) * 2019-10-07 2021-04-15 삼성전자 주식회사 무선 통신 시스템에서 제어정보 송수신 방법 및 장치
CN112787788A (zh) * 2019-11-11 2021-05-11 华硕电脑股份有限公司 无线通信系统中处理多个装置到装置资源的方法和设备

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672463B2 (ja) 2015-09-15 2020-03-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末のv2x動作のためのリソース選択方法及び前記方法を利用する端末
JP6696192B2 (ja) * 2016-02-04 2020-05-20 ソニー株式会社 通信装置および通信方法
BR112019004649A2 (pt) * 2016-09-10 2019-06-18 Lg Electronics Inc método para reservar um número finito de recursos usados para realizar comunicação de v2x em um sistema de comunicação sem fio e terminal que utiliza o mesmo
JP6533345B2 (ja) * 2016-09-30 2019-06-19 京セラ株式会社 無線端末及び基地局
WO2018058558A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 选择资源的方法和终端设备
US10694427B2 (en) * 2017-09-27 2020-06-23 Intel IP Corporation Solution for vehicle-to-everything (V2X) communication authorization in 5G system
CN110557834B (zh) 2018-05-31 2022-06-28 华为技术有限公司 一种数据传输方法和通信装置
CN108933996B (zh) * 2018-07-19 2021-02-02 重庆邮电大学 一种针对lte-v2x系统的联合切换方法
US11419128B2 (en) * 2018-08-01 2022-08-16 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
US11432117B2 (en) * 2018-08-10 2022-08-30 Mediatek Inc. Multiplexing of physical sidelink control channel (PSCCH) and physical sidelink shared channel (PSSCH)
US11272461B2 (en) * 2018-08-10 2022-03-08 Lg Electronics Inc. Method and apparatus for transmitting plurality of packets by sidelink terminal in wireless communication system
CN112514299A (zh) * 2018-08-10 2021-03-16 英特尔公司 用于新无线电车辆到车辆通信的控制信令
CN112567854A (zh) * 2018-08-17 2021-03-26 Oppo广东移动通信有限公司 一种数据传输方法、终端设备及网络设备
JP2020053870A (ja) 2018-09-27 2020-04-02 ソニー株式会社 通信装置、制御装置及び通信システム
US11272482B2 (en) * 2018-11-01 2022-03-08 Qualcomm Incorporated Methods for transmission to achieve robust control and feedback performance in a network
CN111194057B (zh) * 2018-11-27 2023-07-18 维沃移动通信有限公司 一种资源排除方法及终端
CN111328041A (zh) * 2018-12-13 2020-06-23 普天信息技术有限公司 车联网v2x的资源复用模式指示方法及装置
US20220070874A1 (en) * 2018-12-25 2022-03-03 Beijing Xiaomi Mobile Software Co., Ltd. Methods and apparatuses for configuring sidelink resource
AU2019421242A1 (en) * 2019-01-11 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sidelink communication method, terminal device and network device
KR102230054B1 (ko) * 2019-01-23 2021-03-19 엘지전자 주식회사 Nr v2x의 2단계 sci 전송
CN111867059A (zh) * 2019-04-30 2020-10-30 夏普株式会社 由用户设备执行的方法以及用户设备
US20220217655A1 (en) * 2019-05-03 2022-07-07 Lg Electronics Inc. Transmission of pscch and pssch in sidelink communication
EP3962219B1 (en) * 2019-05-14 2024-07-17 LG Electronics Inc. Method and apparatus for scheduling plurality of resources in nr v2x
CN116782397A (zh) * 2019-06-20 2023-09-19 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114073141A (zh) 2019-07-12 2022-02-18 Oppo广东移动通信有限公司 在新无线电侧链路通信中排除和选择资源的用户设备和方法
US11546115B2 (en) 2019-08-15 2023-01-03 Ofinno, Llc Resource selection based on sensing sidelinks by wireless device
KR20210041439A (ko) * 2019-10-07 2021-04-15 삼성전자주식회사 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 장치 및 방법
WO2021085992A1 (en) * 2019-10-28 2021-05-06 Lg Electronics Inc. Clearing part of sidelink grant for single pdu transmission and sidelink resource allocation
US11611986B2 (en) 2020-01-02 2023-03-21 Qualcomm Incorporated Control and data multiplexing for resources
WO2021162370A1 (ko) * 2020-02-12 2021-08-19 엘지전자 주식회사 Nr v2x에서 사이드링크 cg 자원을 기반으로 사이드링크 통신을 수행하는 방법 및 장치
US20230131353A1 (en) * 2020-03-19 2023-04-27 Nec Corporation Method, device and computer readable medium for communications
CN115707147A (zh) * 2021-08-06 2023-02-17 中兴通讯股份有限公司 无线网络通信方法、电子设备及存储介质
WO2023200278A1 (ko) * 2022-04-15 2023-10-19 엘지전자 주식회사 비면허 대역에서 다중 채널을 기반으로 사이드링크 통신을 수행하는 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107091A1 (ko) * 2013-01-07 2014-07-10 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8150847B2 (en) * 2005-08-31 2012-04-03 Ebay Inc. System and method to transform results of client requests using client uploaded presentation formats
KR101367798B1 (ko) * 2007-06-29 2014-02-28 삼성전자주식회사 광대역 무선통신 시스템에서 피투피 통신 설정 장치 및방법
EP2510733A4 (en) * 2009-12-11 2017-05-17 Nokia Technologies Oy Method, apparatus and computer program product for allocating resources in wireless communication network
JP5654120B2 (ja) * 2010-05-19 2015-01-14 クアルコム,インコーポレイテッド 適応無線エネルギー伝送システム
BRPI1100288A2 (pt) 2011-02-07 2012-05-22 Silva Edilberto Acacio Da dispositivo para habilitar de forma involuntária a função desligar de um aparelho celular
JP5874020B2 (ja) * 2011-02-23 2016-03-01 パナソニックIpマネジメント株式会社 無線装置
US8738280B2 (en) * 2011-06-09 2014-05-27 Autotalks Ltd. Methods for activity reduction in pedestrian-to-vehicle communication networks
CN102547881B (zh) * 2012-01-20 2018-08-31 中兴通讯股份有限公司 一种用户设备控制方法、用户设备和网络侧设备
EP2810267A1 (de) * 2012-02-03 2014-12-10 Continental Teves AG&Co. Ohg SIGNALGEBER, SYSTEM UND VERFAHREN ZUR HERVORHEBUNG VON OBJEKTEN IM STRAßENVERKEHR SOWIE VERWENDUNG DES SYSTEMS UND VERWENDUNG DES SIGNALGEBERS
US9503216B2 (en) * 2012-11-02 2016-11-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices related to effective measurements
US9042938B2 (en) * 2012-12-27 2015-05-26 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9819441B2 (en) * 2013-01-21 2017-11-14 Spectrum Effect, Inc. Method for uplink jammer detection and avoidance in long-term evolution (LTE) networks
US9702349B2 (en) * 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
EP3626485B1 (en) * 2013-03-15 2024-05-29 ClearMotion, Inc. Active vehicle suspension improvements
CN103369585B (zh) * 2013-04-24 2016-06-08 华为技术有限公司 快速建立d2d通信的方法和装置
CN104144437A (zh) * 2013-05-08 2014-11-12 中兴通讯股份有限公司 设备到设备测量处理方法及装置
JP2015012591A (ja) * 2013-07-02 2015-01-19 株式会社Nttドコモ ユーザ装置、通信システム、及びバックオフ制御方法
EP2878145A2 (en) * 2013-07-12 2015-06-03 Nec Corporation Cellular network assisted device to device (d2d) discovery
US9172477B2 (en) * 2013-10-30 2015-10-27 Inthinc Technology Solutions, Inc. Wireless device detection using multiple antennas separated by an RF shield
US9033092B1 (en) * 2013-11-21 2015-05-19 Ford Global Technologies, Llc Vehicle front end structure providing pedestrian protection
EP3076729B1 (en) * 2013-11-27 2020-04-15 LG Electronics Inc. Method for scanning resource for device-to-device direct communication in wireless communication system and apparatus therefor
CN104780525B (zh) * 2014-01-15 2020-11-03 索尼公司 调整终端到终端通信传输功率的方法、设备、组头和系统
CN104796986B (zh) * 2014-01-16 2019-02-19 电信科学技术研究院 一种d2d通信方法及设备
CN104202749B (zh) * 2014-01-23 2019-09-24 中兴通讯股份有限公司 无线资源确定、获取方法及装置
JP6136984B2 (ja) 2014-02-28 2017-05-31 トヨタ自動車株式会社 車載無線通信装置、無線通信方法、およびプログラム
US9813910B2 (en) * 2014-03-19 2017-11-07 Qualcomm Incorporated Prevention of replay attack in long term evolution device-to-device discovery
US9425883B2 (en) * 2014-04-09 2016-08-23 Autotalks Ltd Method and system for supporting multi-channel dynamically controlled diversity reception
US9794888B2 (en) * 2014-05-05 2017-10-17 Isco International, Llc Method and apparatus for increasing performance of a communication link of a communication node
EP3141038B1 (en) 2014-05-08 2020-07-22 Sharp Kabushiki Kaisha Device-to device communications apparatus and methods
US10295693B2 (en) * 2014-05-15 2019-05-21 Witricity Corporation Systems, methods, and apparatus for foreign object detection loop based on inductive thermal sensing
US10142847B2 (en) * 2014-05-23 2018-11-27 Qualcomm Incorporated Secure relay of discovery information in wireless networks
US9971947B2 (en) * 2014-07-31 2018-05-15 Magna Electronics Inc. Vehicle vision system with camera power control
KR102311755B1 (ko) * 2014-08-06 2021-10-14 인터디지탈 패튼 홀딩스, 인크 디바이스-대-디바이스(d2d) 선점 및 액세스 제어
BR112017002529B1 (pt) * 2014-08-07 2023-10-24 Intel Corporation Alocação de recursos e comportamento de ue para transmissão de sinal de sincronização de d2d para descoberta de d2d intercelular
US9794976B2 (en) * 2014-09-03 2017-10-17 Futurewei Technologies, Inc. System and method for D2D resource allocation
WO2016034106A1 (en) * 2014-09-04 2016-03-10 Huawei Technologies Co., Ltd. System and method for communicating resource allocation for d2d
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
CN107005926B (zh) * 2015-04-09 2020-08-25 华为技术有限公司 一种终端到终端d2d系统中信号收发方法及装置
EP3294021B1 (en) * 2015-06-30 2020-03-11 Huawei Technologies Co., Ltd. Method for data transmission and related device
US9756641B2 (en) * 2015-07-07 2017-09-05 Qualcomm Incorporated Dynamic signaling of LTE-TDD configurations in the presence of D2D transmissions
US9955484B2 (en) * 2015-08-06 2018-04-24 Nokia Technologies Oy Position information based access to a shared radio access channel
WO2017027355A1 (en) * 2015-08-12 2017-02-16 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for realizing vehicle to vehicle communications using long term evolution device to device communications
US20170064638A1 (en) * 2015-09-01 2017-03-02 Qualcomm Incorporated Method and apparatus for power control in d2d/wan coexistence networks
JP6672463B2 (ja) 2015-09-15 2020-03-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末のv2x動作のためのリソース選択方法及び前記方法を利用する端末

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107091A1 (ko) * 2013-01-07 2014-07-10 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Support for PC5 Priority", R1-154599, 3GPP TSG RAN WG1 MEETING #82, 15 August 2015 (2015-08-15), Beijing, China, XP050993798 *
HUAWEI ET AL.: "Discussion on Group Priority for D2D Communication", R1-154339, 3GPP TSG RAN WG1 MEETING #82, 15 August 2015 (2015-08-15), Beijing, China, XP050993377 *
INTERDIGITAL COMMUNICATIONS: "Support of Different Priorities for D2D Communication", R1-154730, 3GPP TSG RAN WG1 MEETING #82, 14 August 2015 (2015-08-14), Beijing, China, XP050992739 *
See also references of EP3352402A4 *
ZTE: "Discussions on Different Priorities for D2D Communication", R1-154052, 3GPP TSG RAN WG1 MEETING #82, 15 August 2015 (2015-08-15), Beijing, China, XP050991407 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633049A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种资源选择方法及装置、资源配置方法及装置
EP3589051A4 (en) * 2017-03-25 2020-03-04 LG Electronics Inc. -1- METHOD FOR V2X COMMUNICATION OF A TERMINAL IN A WIRELESS COMMUNICATION SYSTEM AND TERMINAL USING THE METHOD
US11689401B2 (en) 2017-03-25 2023-06-27 Lg Electronics Inc. V2X communication method of terminal in wireless communication system, and terminal using method
EP3624518A4 (en) * 2017-08-04 2020-05-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD FOR COMMUNICATING DEVICE TO DEVICE, TERMINAL DEVICE AND NETWORK DEVICE
US11147085B2 (en) 2017-08-04 2021-10-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for device-to-device communication, terminal device, and network device
CN109391972A (zh) * 2017-08-12 2019-02-26 捷开通讯(深圳)有限公司 支持载波聚合的终端到终端通信的资源选择方法及装置
US11722864B2 (en) 2018-02-26 2023-08-08 Huawei Technologies Co., Ltd. Entity, network, and user equipment for a V2X service as well as V2X application
KR20200065051A (ko) * 2018-02-26 2020-06-08 후아웨이 테크놀러지 컴퍼니 리미티드 V2x 서비스뿐만 아니라 v2x 애플리케이션을 위한 엔티티, 네트워크, 및 사용자 장비
KR102415208B1 (ko) * 2018-02-26 2022-07-01 후아웨이 테크놀러지 컴퍼니 리미티드 V2x 서비스뿐만 아니라 v2x 애플리케이션을 위한 엔티티, 네트워크, 및 사용자 장비
WO2020036454A1 (ko) * 2018-08-17 2020-02-20 삼성전자 주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
US11432130B2 (en) 2018-08-17 2022-08-30 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving data in wireless communication system
CN111148062A (zh) * 2018-11-02 2020-05-12 电信科学技术研究院有限公司 一种资源分配方法、装置及网络设备
CN111163437B (zh) * 2018-11-08 2022-07-01 大唐移动通信设备有限公司 一种通信监听方法及通信设备
CN111163437A (zh) * 2018-11-08 2020-05-15 电信科学技术研究院有限公司 一种通信监听方法及通信设备
WO2021071199A1 (ko) * 2019-10-07 2021-04-15 삼성전자 주식회사 무선 통신 시스템에서 제어정보 송수신 방법 및 장치
CN112787788A (zh) * 2019-11-11 2021-05-11 华硕电脑股份有限公司 无线通信系统中处理多个装置到装置资源的方法和设备
CN112787788B (zh) * 2019-11-11 2023-07-18 华硕电脑股份有限公司 无线通信系统中处理多个装置到装置资源的方法和设备

Also Published As

Publication number Publication date
CN108028730A (zh) 2018-05-11
JP6672463B2 (ja) 2020-03-25
EP3352402A1 (en) 2018-07-25
EP3352402B1 (en) 2021-01-20
US10973041B2 (en) 2021-04-06
US10536958B2 (en) 2020-01-14
US11832239B2 (en) 2023-11-28
US20200112977A1 (en) 2020-04-09
KR20180033589A (ko) 2018-04-03
EP3352402A4 (en) 2019-07-17
US20210212089A1 (en) 2021-07-08
US20190045526A1 (en) 2019-02-07
JP2018528736A (ja) 2018-09-27
KR102128947B1 (ko) 2020-07-01
CN108028730B (zh) 2020-12-04
JP2020109984A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2017048109A1 (ko) 무선 통신 시스템에서 단말의 v2x 동작을 위한 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2018044079A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
WO2017171529A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 전송 자원 선택 방법 및 상기 방법을 이용하는 단말
WO2016182292A1 (ko) 무선 통신 시스템에서 단말의 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2018131947A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2017034324A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 송수신 방법 및 상기 방법을 이용하는 단말
WO2017192006A2 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2017086720A1 (ko) 무선 통신 시스템에서 단말의 v2x 신호의 전송 방법 및 상기 방법을 이용하는 단말
WO2018174537A1 (ko) 무선 통신 시스템에서 전송 다이버시티 기법에 의하여 전송된 v2x 신호의 디코딩 방법 및 상기 방법을 이용하는 단말
WO2016108679A1 (ko) 무선 통신 시스템에서 d2d 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2017007280A1 (ko) 무선 통신 시스템에서 단말의 동기화 수행 방법 및 상기 방법을 이용하는 단말
WO2018074874A1 (en) Method for triggering resource reselection for sidelink transmission prioritized over the uplink transmission in wireless communication system and a device therefor
WO2018070845A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 사이드링크 동기화 신호 전송 방법 및 상기 방법을 이용하는 단말
WO2019004688A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 단말의 동작 방법 및 상기 방법을 이용하는 단말
WO2018088837A1 (ko) 단말이 셀 재선택 절차를 수행하는 방법 및 이를 지원하는 장치
WO2016072591A1 (en) Method for canceling a sidelink buffer status report in a d2d communication system and device therefor
WO2016159559A1 (ko) Mcptt에서 단말이 우선 순위를 변경하는 방법 및 장치
WO2019022477A1 (en) CARRIER SELECTION METHOD AND APPARATUS FOR LATERAL LINK TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
WO2016122162A1 (en) Method for transmitting a mac pdu on sl-dch in a d2d communication system and device therefor
WO2016163856A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 psbch 전송 방법 및 상기 방법을 이용하는 단말
WO2016072590A1 (en) Method for canceling scheduling requests triggered by a sidelink buffer status report in a d2d communication system and device therefor
WO2016167563A1 (ko) 비면허 대역 상에서 단말이 데이터를 수신하는 방법 및 장치
WO2018038565A1 (ko) 무선 통신 시스템에서 v2x 단말에 의해 수행되는 v2x 통신 수행 방법 및 상기 방법을 이용하는 단말
WO2017126950A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2018174688A1 (ko) 복수의 반송파들이 설정된 단말의 전력 할당 방법 및 상기 방법을 이용하는 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007258

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018533600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846930

Country of ref document: EP