WO2017047941A1 - Pulsation reducer using double-sided multilayer waveform spring - Google Patents

Pulsation reducer using double-sided multilayer waveform spring Download PDF

Info

Publication number
WO2017047941A1
WO2017047941A1 PCT/KR2016/009332 KR2016009332W WO2017047941A1 WO 2017047941 A1 WO2017047941 A1 WO 2017047941A1 KR 2016009332 W KR2016009332 W KR 2016009332W WO 2017047941 A1 WO2017047941 A1 WO 2017047941A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
high pressure
low pressure
fuel
wave
Prior art date
Application number
PCT/KR2016/009332
Other languages
French (fr)
Korean (ko)
Inventor
황현식
Original Assignee
황현식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황현식 filed Critical 황현식
Priority to US15/747,347 priority Critical patent/US10364783B2/en
Priority claimed from KR1020160106861A external-priority patent/KR101873373B1/en
Publication of WO2017047941A1 publication Critical patent/WO2017047941A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets

Definitions

  • the present invention relates to a pulsation reducer using a double sided multilayer corrugated spring.
  • Automotive gasoline engines are divided into multi-port injection (MPI) engines and gasoline direct injection (GDI) engines according to fuel injection methods.
  • MPI multi-port injection
  • GDI gasoline direct injection
  • the gasoline direct injection engine supplies fuel stored in the fuel tank to the engine by a low pressure fuel pump.
  • the low pressure fuel supplied to the engine is compressed to high pressure by a high pressure piston fuel pump and supplied to the fuel injection injector via the high pressure fuel pipe and the fuel rail.
  • the fuel injection injector of the gasoline direct injection engine is configured to directly inject the high pressure fuel pumped into the cylinder.
  • the fuel of the gasoline direct injection engine is made of high pressure and fine spray particles by a fuel injection injector and injected directly into the engine cylinder.
  • the injected fuel is ignited with a spark plug to explode, thus completely burning the fuel.
  • the gasoline direct injection engine has high fuel combustion efficiency and emits exhaust gas that is completely burned, and thus is an engine that can prevent air pollution.
  • the high pressure gasoline direct injection engine consists of a high pressure generator, a high pressure piston fuel pump, a high pressure fuel pipe, a fuel rail and a fuel injection injector.
  • the high pressure gasoline direct injection engine has a fuel pressure of about 35 bar at low speed and no load operation, and a fuel pressure of 35 bar to 350 bar at high speed.
  • the high pressure gasoline direct injection engine as described above requires a high pressure piston fuel pump that has a fuel pressure fluctuation range of 10 times or more. High pressure fuel is generated by the high pressure piston fuel pump, and pump pulsations with large amplitudes are generated. In addition, when the high-pressure fuel injection in the fuel injection injector, fuel injection pulsation waves are generated in the fuel rail.
  • the pump pulsating wave and the mixed pulsating wave having a large amplitude in which the fuel injection pulsating wave is mixed are present in the fuel rail.
  • an orifice was installed at the fuel rail inlet to reduce high pressure pulsating waves.
  • the pulsation reducing device using the orifice was used to reduce the pulsating wave by rapidly reducing the fuel rail inlet to 1/10 times the cross-sectional area of the high pressure fuel pipe to generate fuel flow rate and pressure resistance.
  • the pulsation reducer using the orifice as described above can reduce the pump pulsation wave, but not the fuel injection pulsation wave generated in the fuel rail.
  • the orifice-based method has a large pump loss (flow rate and pressure loss of the high pressure piston fuel pump) by using fuel resistance.
  • patent registration No. 10-1168591 is a pulsation reducer using a disk spring.
  • the pulsation reducer uses a single disk spring and lacks performance in reducing pulsations in a wide pressure range such as gasoline direct injection engines.
  • Patent Registration No. 10-1424994 is a pulsation reducer using a composite disk spring.
  • the pulsation reducer reduces pulsation by connecting a piston to the composite spring.
  • the pulsation reducer is an indirect contact pulsation reducer in which pulsating waves in the fuel are transmitted to the composite spring through the piston.
  • the pulsation reducer has a structure in which pulsating waves in the fuel contact the piston and the pulsating waves do not directly contact the composite spring.
  • the pulsation reducer has a drawback in that it is unable to reduce high frequency pulsations in fuel such as gasoline direct injection engines due to a slow reaction rate in response to high frequency pulsations.
  • the present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring capable of reducing mixed pulsations in which pump pulsations and fuel injection pulsations present in fuel supplied to the inlet expansion fuel rails are mixed.
  • the present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that can improve the vehicle fuel efficiency by removing the pressure and flow loss of the high-pressure piston fuel pump by using the inlet expansion fuel rail.
  • the present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that reduces pulsations present in high pressure fuel to reduce vibration and noise of the engine.
  • the present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that enables the fuel injection injector to perform multiple stage injections, thereby reducing engine fuel consumption, improving engine output and completely burning fuel.
  • the present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that can solve problems such as preventing air pollution caused by automobiles by improving harmful substances discharged through exhaust gas.
  • the pulsation reducer includes an inlet expansion fuel rail 40 and a fuel storage space 611 in which a cross section expansion fuel rail inlet 41 is formed to extend in the same manner as the cross section of the high-pressure fuel pipe 31. ), A spring housing 61, a spring housing 61, and an inlet expansion, in which a low pressure exercise space 613 and a high pressure exercise space 614 connected to the fuel storage space 611 through the communication holes 612a and 612b are formed therein. Arrangements 62a, 62b and 62c connecting the fuel rails 40, the low pressure reducing unit 63 disposed in the low pressure motion space 613 to absorb the mixed pulse wave in the low pressure region, and the high pressure motion space 614.
  • a high pressure reduction portion 64 for absorbing the mixed pulsating wave in the high pressure region, and the fuel reservoir 611 is connected to the inside of the inlet expansion fuel rail 40, and the mixed pulsation wave together with the fuel.
  • the low pressure reducing unit 63 and the high pressure sense through the fuel storage space 611 inside the 40. It is reduced to reach the unit 64.
  • the low pressure reducing unit 63 includes a low pressure multilayer wave spring 631 for reducing the mixed pulsation wave in the low pressure region and a low pressure spring cover 632 for fixing the low pressure multilayer wave spring 631 in the low pressure motion space 613.
  • the center of the inner surface of the low pressure multilayer corrugated spring 631 is connected to the fuel storage space 611 through a communication hole 612a, and the outer surface of the low pressure multilayer corrugated spring 631 and the low pressure spring cover 632 facing each other.
  • the inner central portion forms a curved space with each other, and a low pressure spring motion space 632a is formed in which the low pressure multilayer corrugated spring 631 vibrates.
  • a low pressure spring cushion pad 632b having a curved shape is provided on the inner curved surface of the low pressure spring cover 632 so that the low pressure spring cushion pad (when the low pressure multi-layer corrugated spring 631 contacts the low pressure spring cover 632 by vibration and expansion ( In 632b), the shock is buffered and absorbed.
  • the low pressure multilayer wave spring 631 includes a first low pressure wave spring 631a and a second low pressure wave spring 631b, and the first low pressure wave spring 631a and the second low pressure wave spring 631b are different from each other. It is formed of material and thickness.
  • the low pressure reducing unit 63 is disposed between the inner surface of the spring housing 61 constituting the low pressure motion space 613 and the low pressure multi-layer corrugated spring 631 to maintain the primary airtight while mixing the low pressure in the inlet expansion rail 40. It further includes a low pressure spring airtight corrugation membrane 635 for absorbing pulsating waves, and a low pressure spring cover o-ring 636 disposed between the inner surface of the spring housing 61 and the outer surface of the low pressure spring cover 632.
  • the high pressure reduction unit 64 includes a high pressure multilayer wave spring 641 for reducing the mixed pulsation wave in the high pressure region and a high pressure spring cover 642 for fixing the high pressure multilayer wave spring 641 in the high pressure motion space 614.
  • the center of the inner surface of the high pressure multilayer corrugated spring 641 is connected to the fuel storage space 611 through the communication hole 612b, and the outer surface of the high pressure multilayer corrugated spring 641 and the high pressure spring cover 642 facing each other.
  • a central portion of the inner surface forms a curved space, and a high pressure spring motion space 642a in which the high pressure multilayer corrugated spring 641 vibrates is formed therebetween.
  • a high pressure spring cushion pad 642b having a curved shape is installed on the inner curved surface of the high pressure spring cover 642 so that the high pressure spring cushion pad (when the high pressure multilayer wave spring 641 contacts the high pressure spring cover 642 by vibration and expansion ( 642b) has a structure in which the shock is absorbed and absorbed.
  • the high pressure multilayer wave spring 641 includes a first high pressure wave spring 641a, a second high pressure wave spring 641b, and a third high pressure wave spring 641c.
  • the first high pressure wave spring 641a, the second high pressure wave spring 641b, and the third high pressure wave spring 641c are formed of different materials and thicknesses.
  • the inner surface of the spring housing 61 constituting the edge of the high pressure spring cover 642 and the edge of the high pressure multilayer corrugated spring 641 and the high pressure movement space 614 is overlapped, and the inner edge of the high pressure spring cover 642 along the circumferential direction.
  • a pressing groove 644b is formed in which an edge of the high pressure multilayer corrugated spring 641 is inserted, and a pressing protrusion 644a pressurizes the high pressure multilayer corrugated spring 641 to the pressing groove 644b on the inner surface of the spring housing 61. ) Is formed, the outer surface of the high-pressure spring cover 642 is in close contact with the inner surface of the spring housing (61).
  • the high pressure reduction unit 64 is disposed between the inner surface of the spring housing 61 constituting the high pressure movement space 614 and the high pressure multi-layer corrugated spring 641 to maintain high pressure mixing in the inlet expansion rail 40. And a high pressure spring cover o-ring 646 disposed between the inner surface of the spring housing 61 and the outer surface of the high pressure spring cover 642 to absorb the pulsating wave.
  • the connecting portion 62a includes a connecting nib 621 that can be coupled to the inlet extension fuel rail 40, and a connecting tube 622 connected to the spring housing 61 and detachably coupled to the connecting nib 621. And a connecting nut 624 for coupling the connecting tube 622 and the connecting nibble 621 and a nibble O-ring 625b disposed between the inner surface of the connecting nib 621 facing the lower surface of the connecting tube 622. .
  • the connecting portion 62a further includes a positioning groove 623a and a positioning protrusion 623b formed at a portion where the connecting nibble 621 and the connecting pipe 622 contact each other, and the positioning protrusion 623b includes a positioning groove.
  • the connecting portion 62b has a fastening hole 626d and a connecting socket 626 which can be engaged with the inlet expansion fuel rail 40, a flange bolt formed in the spring housing 61 and fastened to the fastening hole 626d. 627 and a socket o-ring 626c between the flange bolt 627 and the connecting socket 626, wherein the connecting socket 626 and the flange bolt 627 are inside the inlet expansion fuel rail 40 and the fuel.
  • a socket passage 626a and a flange connection passage 627a connecting the storage space 611 are formed.
  • the connector 62c is connected to the housing connector 628 and the housing connector 628 protruding from the spring housing 61 and to the connector flange 629 which is in contact with the outer surface of the inlet expansion fuel rail 40.
  • the housing connector 628 has an inner connector passage 628a connecting the fuel reservoir 611 and the inlet extension fuel rail 40 to the inside, and the inlet extension fuel rail 40 and the spring are formed. It is integrally bonded at the brazing surface 629a which bonds to one body while maintaining fuel tightness between the housings 61.
  • the insertion tube 647 is inserted between the internal connector passage 628a of the connector flange 629 and the fuel rail hole 42 to extend the brazing surface 629a to extend the connector flange 629 and the inlet expansion fuel. It is a structure that improves the joining strength between the rails (40).
  • the pulsation reducer according to the embodiment of the present invention is installed in the inlet extension fuel rail from which the cross-sectional reduced orifice is removed by making the fuel rail inlet cross-sectional area equal to that of the high pressure fuel pipe coupled with the inlet extension fuel rail.
  • the mixed pulsation wave of the pump pulsation wave generated from the high pressure piston fuel pump of the gasoline direct injection engine and the fuel injection pulsation wave generated from the fuel injection injector is generated by the low pressure and high pressure multilayer wave spring divided into the low pressure region and the high pressure region inside the pulsator. Is reduced. Accordingly, it is possible to obtain a pulsation reducer without the resistance loss of the fuel supplied by the driving of the high pressure piston fuel pump.
  • the pulsation reducer is installed in the inlet expansion fuel rail from which the orifice has been removed, thereby reducing the mixed pulsation wave existing in the inlet expansion fuel rail, and reducing the noise and vibration of the engine due to the reduced pulsation wave It is effective.
  • the present invention due to the removal of the mixed pulsating wave in the fuel it is possible to multi-stage injection that is injected 2 to 5 times per cycle when fuel injection to the engine cylinder. Since the fuel is completely burned by the multi-stage fuel injection, the engine combustion efficiency is improved. In addition, carbide mass (PM) and carbon number (PN), which are engine exhaust regulations, can be reduced.
  • PM carbide mass
  • PN carbon number
  • FIG. 1 is a configuration diagram showing a pulsation reducer installation state according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional perspective view of the pulsation reducer of FIG.
  • FIG. 3 is an exploded perspective view of the spring housing, the low pressure reducing unit and the high pressure reducing unit of FIG.
  • Figure 4 is an exploded perspective view of the connecting portion of FIG.
  • FIG. 5 is a longitudinal sectional perspective view of the low pressure multilayer corrugated spring of FIG. 2;
  • FIG. 6 is a longitudinal sectional perspective view of the high pressure multilayer corrugated spring of FIG. 2;
  • FIG. 7 is an exploded cross-sectional view of a pulsation reducer according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a coupling state of FIG.
  • FIG. 9 is a cross-sectional view showing a pulsation reducer according to another embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a pulsation reducer installed state according to an embodiment of the present invention
  • Figure 2 is a longitudinal cross-sectional perspective view of the pulsation reducer of Figure 1
  • Figure 3 is a spring housing
  • Figure 4 is an exploded perspective view of the reduced portion
  • Figure 4 is an exploded perspective view of the connecting portion of Figure 2
  • Figure 5 is a longitudinal cross-sectional perspective view of the low pressure multi-layer corrugated spring of Figure 2
  • Figure 6 is a longitudinal cross-sectional perspective view of the high pressure multilayer corrugated spring of FIG.
  • the gasoline fuel stored in the fuel tank 10 is first transmitted to the high pressure piston fuel pump 30, which is a high pressure fuel generator, through the low pressure fuel pipe 21 by the operation of the low pressure fuel pump 20. do.
  • the low pressure fuel pump 20 is driven by the low pressure fuel pump motor 22.
  • the low pressure fuel pump 20 uses a vane type pump, and the low pressure fuel pressure transmitted from the low pressure fuel pump 20 to the high pressure piston fuel pump 30 is a low pressure within about 4.5 bar.
  • the low pressure fuel is secondarily compressed to high pressure by the operation of the high pressure piston fuel pump 30 and is supplied into the inlet expansion fuel rail 40 through the high pressure fuel pipe 31 through the sectional expansion fuel rail inlet 41.
  • the inlet expansion fuel rail 40 is a cross section expansion fuel rail inlet 41 with the orifice installed in the existing fuel rail inlet removed and connected to the high pressure fuel pipe 31, the cross section being the same as the cross section of the high pressure fuel pipe 31. It has an extended cross section extended fuel rail inlet 41.
  • the high pressure fuel pipe 31 connects the high pressure fuel pipe nut 31b inserted into the high pressure fuel pipe end flange 31a and the inlet expansion fuel rail nibble 40a attached to one end of the inlet expansion fuel rail 40 and the high pressure fuel pipe. It is connected with the screw 31c.
  • the high pressure piston fuel pump 30 is driven by the high pressure fuel pump cam 32 connected to the engine camshaft.
  • the high pressure piston pump 30 uses a piston type pump to generate high pressure fuel over 350 bar.
  • the high pressure pulsation wave is introduced into the inlet extension fuel rail 40.
  • the mixed pulsation wave may be amplified by generating a resonance phenomenon at a certain frequency, and may be canceled by a cancellation phenomenon at a certain frequency.
  • amplification and cancellation of the mixed pulsating wave occurs repeatedly, the fuel injection amount of the fuel injection injector 50 occurs irregularly. Irregularities in fuel injection can cause an increase in engine fuel consumption.
  • the pulsation reducer 60a according to this embodiment was installed in the inlet expansion fuel rail 40 to reduce the mixed pulsation wave.
  • the pulsation reducer 60a includes a spring housing 61, a connecting portion 62a, a low pressure reducing portion 63, and a high pressure reducing portion 64.
  • the spring housing 61 is connected with the inlet expansion fuel rail 40 through the connection portion 62a.
  • a fuel storage space 611 is formed at the inner center of the spring housing 61 and connected to the inside of the inlet expansion fuel rail 40 through the connecting portion 62a.
  • the inner left side of the spring housing 61 has a low pressure motion space 613 connected to the fuel storage space 611 through a connector pipe passage 625a.
  • the inner right side of the spring housing 61 is formed with a high-pressure movement space 614 connected to the fuel storage space 611 through a connector pipe passage 625a.
  • the connecting portion 62a includes a connecting nibble 621, a connecting pipe 622, a positioning unit 623, a connecting nut 624, and a nibble o-ring 625b.
  • the connecting nibble 621 has a predetermined length and penetrates up and down inside.
  • the lower surface of the connecting nibble 621 is fixed in contact with the outer surface of the inlet expansion fuel rail 40.
  • the interior of the connecting nibble 621 is connected to the interior of the inlet expansion fuel rail 40.
  • An o-ring jaw 621a is formed at an inner lower side of the connecting nibble 621.
  • a screw is formed on the outer peripheral surface of the connecting nibble 621.
  • the connector tube 622 has a predetermined length and the upper surface is coupled to the housing sleeve 625 of the spring housing 61 and the lower surface of the connector flange 622a is in contact with the upper surface of the connecting nibble 621.
  • the housing sleeve 625 protrudes in the direction of the connecting pipe 622 while surrounding the inner side of the spring housing 61.
  • a connector flange 622a is formed on the middle outer circumferential surface of the connector tube 622.
  • the inside of the connecting pipe 622 is penetrated up and down and is connected to the fuel storage space 611.
  • the lower bottom surface of the connecting pipe 622 has an O-ring sealing surface 622b in contact with the nibble O-ring 625b.
  • the positioning unit 623 includes two pairs of positioning grooves 623a and positioning projections 623b.
  • the positioning groove 623a is formed at the upper side before and after the connector pipe flange 622a.
  • the positioning projection 623b is protruded to the upper side before and after the upper surface of the connecting nibble 621 to be inserted into the positioning groove 623a.
  • the spring housing 61 may always be coupled in the same direction at the same position.
  • connection nut 624 penetrates up and down inside.
  • the inner lower circumferential surface of the connecting nut 624 is formed with a screw engaged with the screw of the connecting nibble 621.
  • a connection nut tuck 624a is formed on the inner circumferential surface of the connection nut 624 in close contact with the connector flange 622a.
  • the low pressure reducing portion 63 includes a low pressure multi-layer corrugated spring 631, a low pressure spring cover 632, a low pressure spring hermetic waveform membrane 635, and a low pressure spring cover o-ring 636 to reduce the mixed pulsation wave in the low pressure region. .
  • the low pressure multilayer corrugated spring 631 includes a first low pressure corrugated spring 631a and a second low pressure corrugated spring 631b and is disposed on the left side of the low pressure motion space 613.
  • the first low pressure waveform spring 631a and the second low pressure waveform spring 631b are formed in the same structure.
  • the first low pressure waveform spring 631a and the second low pressure waveform spring 631b overlap each other.
  • the central portion of the first low pressure wave spring 631a is connected to the fuel storage space 611 through the communication hole 612a.
  • the edge of the first low pressure wave spring 631a is in contact with the inner surface of the spring housing 61 forming the low pressure motion space 613.
  • the low pressure spring cover 632 is disposed on the left side of the low pressure motion space 613 and fixes the low pressure multi-layer corrugated spring 631 in the low pressure motion space 613.
  • the inner surface edge of the low pressure spring cover 632 is in close contact with the outer surface edge of the second low pressure wave spring 631b. Accordingly, the edge of the low pressure spring cover 632, the edge of the low pressure multi-layer corrugated spring 631, and the inner surface of the spring housing 61 overlap each other.
  • the inner surface edge of the low pressure spring cover 632 is formed with a pressing groove 634b into which the edge of the low pressure multilayer wave spring 631 is inserted along the circumferential direction.
  • a pressing protrusion 634a for pressing the low pressure multi-layer corrugated spring 631 into the pressing groove 634b is formed.
  • the outer surface of the low pressure spring cover 632 is in close contact with the inner surface of the spring housing 61.
  • the low pressure spring cover fixing plate 633 formed on the spring housing 61 is coupled to the outer surface of the low pressure spring cover 632.
  • the low pressure multi-layer corrugated spring 631 and the low pressure spring cover 632 are fixed in the low pressure movement space 613 by the low pressure spring cover fixing plate 633 and the pressure protrusion 634a.
  • the outer circumferential surface of the low pressure multilayer corrugated spring 631 is spaced apart from the inner circumferential surface of the spring housing 61.
  • the resistance when the low pressure multilayer corrugated spring 631 is coupled between the pressing protrusion 634a and the pressing groove 634b is resisted. This can happen.
  • the outer circumferential surface of the low pressure multilayer corrugated spring 631 and the inner circumferential surface of the spring housing 61 are separated so that the low pressure multilayer corrugated spring 631 can be easily coupled between the pressing protrusion 634a and the pressing groove 634b without generating resistance. Can be.
  • the central portion of the low pressure spring cover 632 forms a curved space from the outer surface of the second low pressure wave spring 631b. Accordingly, a low pressure spring motion space 632a is formed between the low pressure spring cover 632 and the center portion of the second low pressure waveform spring 631b.
  • a low pressure spring cushion pad 632b having a curved shape is provided on the inner curved surface of the low pressure spring cover 632 so that the low pressure spring cushion pad (when the low pressure multi-layer corrugated spring 631 contacts the low pressure spring cover 632 by vibration and expansion ( In 632b), the shock is buffered and absorbed.
  • the edge of the low pressure multilayer corrugated spring 631 is fixed and the center part is located in space.
  • a mixed pulsating wave in the low pressure region is applied to the center of the low pressure multi-layer corrugated spring 631.
  • the mixed pulsation wave in the low pressure region causes the central portion of the low pressure multi-layer corrugated spring 631 to vibrate, thereby reducing the mixed pulsation wave in the low pressure region.
  • the low pressure spring hermetic corrugated film 635 is disposed between the low pressure multilayer corrugated spring 631 and the inner surface of the spring housing 61.
  • the low pressure spring hermetic corrugation membrane 635 is present in the inlet extension rail 40 while maintaining primary airtight such that fuel in the fuel reservoir 611 does not leak between the low pressure multilayer corrugated spring 631 and the spring housing 61. It absorbs low pressure mixed pulsating waves.
  • the low pressure spring cover o-ring 636 is disposed between the outer circumferential surface of the low pressure spring cover 632 and the inner circumferential surface of the spring housing 61 and maintains secondary hermeticity.
  • the high pressure reduction unit 64 includes a high pressure multilayer wave spring 641, a high pressure spring cover 642, a high pressure spring hermetic wave film 645, and a high pressure spring cover o-ring 646 to reduce the mixed pulsation wave in the high pressure region.
  • the high pressure spring cover 642, the high pressure spring gas tight membrane 645, and the high pressure spring cover o-ring 646 implement the low pressure spring cover 632, the low pressure spring gas tight membrane 635 and the low pressure spring cover o-ring 636 described above. Since it is the same as the example, duplicate description will be omitted.
  • the low pressure multilayer corrugated spring 631 includes first and second low pressure corrugated springs 631a and 631b, while the high pressure multilayer corrugated spring 641 includes first, second and third high pressure corrugated springs 641a and 641b. 641c). That is, the high pressure multilayer corrugated spring 641 further includes a third high pressure corrugated spring 641c.
  • the third high pressure wave spring 641c is formed in the same structure as the first and second high pressure wave springs 641a and 641b.
  • the third high pressure wave spring 641c is disposed between the high pressure spring covers 642.
  • the high pressure spring movement space 642a is formed between the third high pressure wave spring 641c and the high pressure spring cover 642.
  • the edge of the high pressure multi-layer corrugated spring 641 is fixed between the pressing protrusion 644a and the pressing groove 644b and the center portion is located in the space.
  • the mixed pulsation wave of the high pressure region is applied to the center of the high pressure multilayer corrugated spring 641 in the fuel storage space 611.
  • the mixed pulsation wave in the high pressure region is reduced while the central portion of the high pressure multilayer wave spring 641 vibrates due to the mixed pulsation wave in the high pressure region.
  • the mixed pulsation wave present in the inlet extension fuel rail 40 passes through the fuel rail hole 42 through the connector passage 625a and through the housing connection passage 616 to reach the fuel reservoir 611. do.
  • the mixed pulsation wave reaching the fuel storage space 611 vibrates the low pressure multilayer corrugated spring 631 and the high pressure multilayer corrugated spring 641. That is, due to the low pressure region (35 bar ⁇ 100 bar) pulsating wave of the mixed pulsating wave reaching the fuel storage space 611, the low pressure multi-layer corrugated spring 631 performs the oscillating plate motion in the low pressure spring movement space 632a. Due to the low pressure multilayer wave spring 631 oscillating plate motion, the mixed pulsation wave in the low pressure region 35bar to 100bar in the fuel is reduced.
  • the high pressure multi-layer corrugated spring 641 performs the oscillating plate motion in the high pressure spring movement space 642a. Due to the shaking plate motion of the high pressure multilayer wave spring 641, the mixed pulsation wave of the high pressure region 100bar to 350bar is also reduced.
  • the mixed pulsation wave existing in the inlet expansion fuel rail 40 is reduced by the low pressure multilayer wave spring 631 and the high pressure multilayer wave spring 641 in the spring housing 61 and then disappear.
  • the high pressure fuel in which the mixed pulsating wave disappears due to the pulsation reducer 60a according to the present embodiment is injected into the engine cylinder 50a by the fuel injection injector 50 as fine particles at a predetermined pressure.
  • the engine combustion efficiency is increased to improve the fuel economy of the vehicle.
  • the mixed pulsation wave in the fuel can be more effectively extinguished with the orifice which is a conventional pulsation damper removed.
  • the engine efficiency is further improved by reducing the pump loss of the high pressure piston fuel pump 30.
  • the high-pressure fuel in which the pulsation is extinguished through the pulsation reducer 60a according to the present embodiment is made into fine particles of a predetermined pressure by the fuel injection injector 50 and is injected directly to the engine cylinder 50a. Therefore, the fuel may be injected in two to five times in one stroke when the fuel is multi-stage injection, that is, the fuel injection to the engine. Fuel combustion is completely burned by the fuel multi-stage injection, so the engine combustion efficiency can be further improved.
  • FIG. 7 is an exploded cross-sectional view showing a pulsation reducer according to another embodiment of the present invention
  • Figure 8 is a cross-sectional view showing a coupling state of FIG.
  • the pulsation reducer 60b according to the present embodiment is overlapped since all components except the connection part 62b are the same as the pulsation reducer components according to the embodiment of FIGS. 1 to 6. The description will be omitted.
  • the connecting portion 62b includes a connecting socket 626, a flange bolt 627, and a socket o-ring 626c, and the inlet expansion fuel rail 40 is formed inside the connecting socket 626 and the flange bolt 627.
  • the socket passage 626a and the flange connecting passage 627a connecting the inside and the fuel storage space 611 are formed.
  • connection socket 626 may be coupled to a predetermined position on the outer circumferential surface of the inlet extension fuel rail 40.
  • the interior of the connection socket 626 is vertically penetrated and connected to the interior of the inlet expansion fuel rail 40.
  • An inner lower side of the connection socket 626 is formed with an O-ring jaw 626b for supporting the socket O-ring 626c. Screws are formed on the inner circumferential surface of the connection socket 626.
  • the flange bolt 627 projects vertically from the housing flange 627b formed on the outer circumferential surface of the spring housing 61.
  • the inside of the flange bolt 627 and the housing flange 627b are vertically penetrated and connected to the fuel storage space 611.
  • the lower side of the flange bolt 627 is inserted into the connection socket 626.
  • the outer circumferential surface of the flange bolt 627 is formed with a screw that engages with the connecting socket 626 screw.
  • connection socket 626 When the flange bolt 627 is coupled to the connection socket 626, the socket o-ring 626c is compressed between the flange bolt 627 and the o-ring jaw 626b to maintain airtightness.
  • the housing flange 627b and the flange bolt 627 connected to the spring housing 61 are installed for screw assembly of the pulsation reducer 60b according to the present embodiment.
  • the flange bolts 627 are coupled to the connection socket 626 and fastened to each other to allow screw assembly.
  • a flange connection passage 627a is formed inside the flange bolt 627 for the mixed pulse wave transmission from the inlet extension fuel rail 40 to the fuel storage space 611 of the spring housing 61.
  • Mixed pulsation waves present in the inlet expansion fuel rail 40 pass through the fuel passage hole 42 and the socket passage 626a together with the fuel to be delivered to the fuel storage space 611 via the flange connection passage 627a. Can be.
  • the socket o-ring 626c is mounted between the o-ring jaw 626b of the connecting socket 626 and the lower end of the flange bolt 627 and fastened and assembled with the flange bolt 627 to install the inlet extension fuel rail 40 and the spring housing ( 61) to maintain confidentiality.
  • the configuration of the embodiment of FIGS. 1 to 6 may be applied as it is.
  • FIG. 9 is a cross-sectional view showing a pulsation reducer according to another embodiment of the present invention.
  • the pulsation reducer 60c according to the present embodiment is the same as the pulsation reducer component according to the embodiment of FIGS. 1 to 6 except that all components except the connection part 62c are duplicated. It will be omitted.
  • the connecting portion 62c includes a housing connector 628 and a connector flange 629.
  • the housing connector 628 includes a fuel reservoir 611 and an inlet expansion fuel rail 40.
  • a housing connector passage 628a is formed to connect.
  • the housing connector 628 has a predetermined length and projects perpendicularly from the outer circumferential surface of the spring housing 61.
  • the housing connector passage 628a connected to the fuel storage space 611 passes through the housing connector tube 628 up and down.
  • the end of the housing connector 628 is joined to the outer circumferential surface of the inlet extension fuel rail 40.
  • the connector flange 629 extends the area where the housing connector 628 abuts the inlet expansion fuel rail 40.
  • the connector flange 629 is brazed to the inlet expansion fuel rail 40.
  • the spring housing 61 and the housing connector 628 and the connector flange 629 are integrally formed to integrally assemble the pulsation reducer 60c according to the present embodiment to the inlet expansion fuel rail 40. It is.
  • a housing connector passage 628a is formed inside the housing connector 628 for mixed pulsating wave transmission from within the inlet extension fuel rail 40 to the fuel reservoir 611 of the spring housing 61.
  • a brazing surface 629a was formed between the connector flange 629 and the outer circumferential surface of the inlet expansion fuel rail 40 for fuel tightness between the inlet expansion fuel rail 40 and the spring housing 61.
  • the inlet expansion fuel rail 40 and the connector flange 629 are integrally joined by the brazing surface 629a so that airtightness is maintained between the inlet expansion fuel rail 40 and the spring housing 61.
  • the insertion tube 647 is inserted between the housing connector passage 628a of the connector flange 629 and the fuel rail hole 42 to extend the brazing surface 629a to extend the connector flange 629 and the inlet expansion fuel.
  • the structure which improves the joining strength between the rails 40 is carried out.
  • the configuration of the embodiment of FIGS. 1 to 6 may be applied as it is.

Abstract

The present invention relates to a pulsation reducer which comprises: an inlet-expanded fuel rail (40) on which a cross-sectionally expanded fuel rail inlet (41) is formed expanded to the same size as the cross section of a high pressure fuel line (31); a spring housing (61) within which a fuel storage space (611), a low pressure movement space (613) connected to the fuel storage space (611) via communicating holes (612a, 612b), and a high pressure movement space (614) are formed; connecting parts (62a, 62b, 62c) connecting the spring housing (61) and the inlet-expanded fuel rail (40); a low pressure reducing part (63) having a low pressure multilayer waveform spring (631) disposed in the low pressure movement space (613), and reducing compound pulse waves in a low pressure region; and a high pressure reducing part (64) having a high pressure multilayer waveform spring (641) disposed in the high pressure movement space (614), and reducing compound pulse waves in a high pressure region. The fuel storage space (611) is connected to the inside of the inlet-expanded fuel rail (40), and compound pulse waves, together with fuel, progress from inside the inlet-expanded fuel rail (40) through the fuel storage space (611) and arrive at the low pressure reducing part (63) and the high pressure reducing part (64) so as to be reduced.

Description

양면 다층 파형 스프링을 이용한 맥동 감소기Pulsation reducer using double-sided multilayer corrugated spring
본 발명은 양면 다층 파형 스프링을 이용한 맥동 감소기에 관한 것이다.The present invention relates to a pulsation reducer using a double sided multilayer corrugated spring.
자동차 가솔린 엔진은 연료 분사방법에 따라 다중 연료 분사(Multi-Port Injection; MPI) 엔진과 가솔린 직접분사(Gasoline Direct Injection; GDI) 엔진으로 구분된다.Automotive gasoline engines are divided into multi-port injection (MPI) engines and gasoline direct injection (GDI) engines according to fuel injection methods.
가솔린 직접분사 엔진은 연료탱크에 저장된 연료를 저압 연료펌프에 의해 엔진까지 공급된다. 엔진까지 공급된 저압 연료는 고압 피스톤 연료펌프에 의해 고압으로 압축되어 고압 연료관과 연료 레일을 거처 연료 분사 인젝터에 공급되게 된다.The gasoline direct injection engine supplies fuel stored in the fuel tank to the engine by a low pressure fuel pump. The low pressure fuel supplied to the engine is compressed to high pressure by a high pressure piston fuel pump and supplied to the fuel injection injector via the high pressure fuel pipe and the fuel rail.
가솔린 직접분사 엔진의 연료 분사 인젝터는 고압으로 압송된 고압 연료를 실린더 내부에 직접 분사하도록 구성되어있다. 가솔린 직접분사 엔진의 연료는 연료 분사 인젝터에 의해 고압 및 미세 분무입자로 만들어져 엔진 실린더 내에 직접 분사된다. 분사된 연료를 점화 플러그로 점화시켜 폭발하므로 연료를 완전히 연소시킨다. 이에 가솔린 직접분사 엔진은 연료 연소 효율이 높고 완전 연소된 엔진 배기가스가 방출되므로 대기환경오염을 방지할 수 있는 엔진이다.The fuel injection injector of the gasoline direct injection engine is configured to directly inject the high pressure fuel pumped into the cylinder. The fuel of the gasoline direct injection engine is made of high pressure and fine spray particles by a fuel injection injector and injected directly into the engine cylinder. The injected fuel is ignited with a spark plug to explode, thus completely burning the fuel. The gasoline direct injection engine has high fuel combustion efficiency and emits exhaust gas that is completely burned, and thus is an engine that can prevent air pollution.
최근에 연료압력이 350bar이상의 고압 가솔린 직접분사 엔진이 개발되고 있다. 고압 가솔린 직접분사 엔진은 고압 발생기인 고압 피스톤 연료펌프, 고압 연료관, 연료 레일 및 연료 분사 인젝터로 구성되어 있다.Recently, high pressure gasoline direct injection engines with fuel pressures of 350 bar or more have been developed. The high pressure gasoline direct injection engine consists of a high pressure generator, a high pressure piston fuel pump, a high pressure fuel pipe, a fuel rail and a fuel injection injector.
고압 가솔린 직접분사 엔진은 저속 무 부하 운전 시 연료 압력은 35bar 내외이고, 고속 운전 시 연료 압력은 35bar~350bar이다.The high pressure gasoline direct injection engine has a fuel pressure of about 35 bar at low speed and no load operation, and a fuel pressure of 35 bar to 350 bar at high speed.
위와 같은 고압 가솔린 직접분사 엔진은 연료 압력 변동 폭이 10배 이상 되는 고압 피스톤 연료펌프가 필요하다. 고압 피스톤 연료펌프에 의해 고압 연료가 만들어짐과 동시에 진폭이 큰 펌프 맥동파가 발생하게 되었다. 또한, 연료 분사 인젝터에서 고압 연료 분사 시 연료 레일 내부에 연료 분사 맥동파가 발생하게 된다.The high pressure gasoline direct injection engine as described above requires a high pressure piston fuel pump that has a fuel pressure fluctuation range of 10 times or more. High pressure fuel is generated by the high pressure piston fuel pump, and pump pulsations with large amplitudes are generated. In addition, when the high-pressure fuel injection in the fuel injection injector, fuel injection pulsation waves are generated in the fuel rail.
이에, 연료 레일 내부에는 펌프 맥동파와, 연료 분사 맥동파가 혼합된 진폭이 큰 혼합 맥동파가 존재하게 된다.Accordingly, the pump pulsating wave and the mixed pulsating wave having a large amplitude in which the fuel injection pulsating wave is mixed are present in the fuel rail.
진폭이 큰 혼합 맥동파가 연료 분사 인젝터에 직접 전달되면 연료 분사량이 순간순간 변한다. 연료 분사량 변화로 인하여 연료는 불안전 연소되고 불안전 연소로 인하여 엔진 연소 효율이 저하된다. 연료의 불안전 연소로 인하여 엔진 배기가스가 대기로 방출됨으로써 대기환경오염의 원인이 되고, 혼합 맥동파로 인하여 엔진 진동 및 소음 발생 원인이 된다.When a large mixed pulse wave is transmitted directly to the fuel injection injector, the fuel injection amount changes instantaneously. Due to the fuel injection amount change, the fuel is unstable and the engine combustion efficiency is lowered due to the unstable combustion. Engine exhaust gas is released into the atmosphere due to unsafe combustion of fuel, which causes air pollution, and due to mixed pulsating waves, engine vibration and noise are generated.
위와 같은 이유로 넓은 압력 범위의 혼합 맥동파를 감소시킬 수 있는 넓은 압력 범위의 맥동 감소기가 필요하게 되었다.For this reason, a wide pressure range pulsation reducer is needed to reduce the mixed pulsation wave of the wide pressure range.
종래에는 연료 레일 입구에 오리피스를 설치하여 고압 맥동파를 감소시켰다. 오리피스를 이용한 맥동 감소장치는 연료 레일입구를 고압 연료관 단면적보다 1/10배 이상으로 급격히 줄여 연료의 유량과 압력 저항이 발생하게 하여 맥동 파를 감소시키는 방식을 사용하고 있었다. Conventionally, an orifice was installed at the fuel rail inlet to reduce high pressure pulsating waves. The pulsation reducing device using the orifice was used to reduce the pulsating wave by rapidly reducing the fuel rail inlet to 1/10 times the cross-sectional area of the high pressure fuel pipe to generate fuel flow rate and pressure resistance.
위와 같은 오리피스를 이용한 맥동 감소기는 펌프 맥동파는 감소시킬 수 있으나, 연료 레일 내에서 발생되는 연료 분사 맥동파는 감소시킬 수 없었다. 그리고 오리피스를 이용한 방식은 연료 저항을 이용함으로 펌프 손실(고압 피스톤 연료펌프의 유량 및 압력 손실)이 많은 구조이다.The pulsation reducer using the orifice as described above can reduce the pump pulsation wave, but not the fuel injection pulsation wave generated in the fuel rail. In addition, the orifice-based method has a large pump loss (flow rate and pressure loss of the high pressure piston fuel pump) by using fuel resistance.
또한, 특허등록 제10-1168591호는 디스크 스프링을 이용한 맥동 감소기다. 상기 맥동 감소기는 단일 디스크 스프링을 사용하며 가솔린 직접 분사 엔진과 같은 넓은 압력 범위의 맥동을 감소시키는데 성능이 부족한 단점이 있다.In addition, patent registration No. 10-1168591 is a pulsation reducer using a disk spring. The pulsation reducer uses a single disk spring and lacks performance in reducing pulsations in a wide pressure range such as gasoline direct injection engines.
또한, 특허등록 제10-1424994호는 복합 디스크 스프링을 이용한 맥동 감소기다. 상기 맥동 감소기는 복합 스프링에 피스톤을 연결하여 맥동을 감소시킨다. 상기 맥동 감소기는 연료 내 맥동파가 피스톤을 통해 복합 스프링에 전달되는 간접 접촉방식의 맥동 감소기다,In addition, Patent Registration No. 10-1424994 is a pulsation reducer using a composite disk spring. The pulsation reducer reduces pulsation by connecting a piston to the composite spring. The pulsation reducer is an indirect contact pulsation reducer in which pulsating waves in the fuel are transmitted to the composite spring through the piston.
상기 맥동 감소기는 연료 내 맥동파가 피스톤에 접촉하고 복합 스프링에는 맥동파가 직접 접촉하지 않은 구조로 되어있다. 상기 맥동 감소기는 고주파수의 맥동파에 반응하는 반응속도가 느려서 가솔린 직접 분사 엔진과 같은 연료 내 고주파수 맥동파를 감소시킬 수 없는 결점이 있다.The pulsation reducer has a structure in which pulsating waves in the fuel contact the piston and the pulsating waves do not directly contact the composite spring. The pulsation reducer has a drawback in that it is unable to reduce high frequency pulsations in fuel such as gasoline direct injection engines due to a slow reaction rate in response to high frequency pulsations.
또한, 단층 양면 파형 스프링을 사용하는 4.5bar 압력 범위 내의 MPI 엔진의 연료 맥동파만 감소시킬 수 있는 단점을 가지고 있다.In addition, it has the disadvantage of reducing only the fuel pulsation of the MPI engine in the 4.5 bar pressure range using a single-sided double-sided corrugated spring.
본 발명은 입구 확장 연료 레일에 공급된 연료에 존재하는 펌프 맥동파와 연료 분사 맥동파가 혼합된 혼합 맥동파를 감소시킬 수 있는 양면 다층 파형 스프링을 이용한 맥동 감소기를 제공한다.The present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring capable of reducing mixed pulsations in which pump pulsations and fuel injection pulsations present in fuel supplied to the inlet expansion fuel rails are mixed.
본 발명은 입구 확장 연료 레일을 이용함으로써 고압 피스톤 연료펌프의 압력 및 유량 손실을 제거하여 엔진 효율을 높여 자동차 연비가 향상될 수 있는 양면 다층 파형 스프링을 이용한 맥동 감소기를 제공한다.The present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that can improve the vehicle fuel efficiency by removing the pressure and flow loss of the high-pressure piston fuel pump by using the inlet expansion fuel rail.
본 발명은 고압 연료에 존재하는 맥동을 감소시켜 엔진의 진동과 소음을 감소시키는 양면 다층 파형 스프링을 이용한 맥동 감소기를 제공한다.The present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that reduces pulsations present in high pressure fuel to reduce vibration and noise of the engine.
본 발명은 연료 분사 인젝터가 다단 분사를 할 수 있도록 하여 엔진 연료 소모량을 감소시키고 엔진 출력 향상과 연료를 완전히 연소할 수 있도록 하는 양면 다층 파형 스프링을 이용한 맥동 감소기를 제공한다.The present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that enables the fuel injection injector to perform multiple stage injections, thereby reducing engine fuel consumption, improving engine output and completely burning fuel.
본 발명은 배기가스를 통해 배출되는 유해물질을 개선함으로써 자동차로 인한 대기환경오염 방지 등 문제점들을 해결할 수 있는 양면 다층 파형 스프링을 이용한 맥동 감소기를 제공한다.The present invention provides a pulsation reducer using a double-sided multi-layer corrugated spring that can solve problems such as preventing air pollution caused by automobiles by improving harmful substances discharged through exhaust gas.
본 발명의 한 실시예에 따른 맥동 감소기는, 고압 연료관(31)의 단면과 동일하게 확장된 단면 확장 연료 레일 입구(41)가 형성되어 있는 입구 확장 연료 레일(40), 연료 저장공간(611), 연통 홀(612a, 612b)을 통해 연료 저장공간(611)과 연결된 저압 운동공간(613) 및 고압 운동공간(614)이 내부에 형성된 스프링 하우징(61), 스프링 하우징(61)과 입구 확장 연료 레일(40)을 연결하는 연결부(62a, 62b, 62c), 저압 운동공간(613)에 배치되어 저압 영역의 혼합 맥동파를 흡수하는 저압 감소부(63) 및 고압 운동공간(614)에 배치되어 고압 영역의 혼합 맥동파를 흡수하는 고압 감소부(64)를 포함하고, 연료 저장공간(611)은 입구 확장 연료 레일(40) 내부와 연결되어 있고, 혼합 맥동파는 연료와 함께 입구 확장 연료 레일(40) 내부에서 연료 저장공간(611)을 통해 저압 감소부(63)와 고압 감소부(64)에 도달하여 감소된다.The pulsation reducer according to an embodiment of the present invention includes an inlet expansion fuel rail 40 and a fuel storage space 611 in which a cross section expansion fuel rail inlet 41 is formed to extend in the same manner as the cross section of the high-pressure fuel pipe 31. ), A spring housing 61, a spring housing 61, and an inlet expansion, in which a low pressure exercise space 613 and a high pressure exercise space 614 connected to the fuel storage space 611 through the communication holes 612a and 612b are formed therein. Arrangements 62a, 62b and 62c connecting the fuel rails 40, the low pressure reducing unit 63 disposed in the low pressure motion space 613 to absorb the mixed pulse wave in the low pressure region, and the high pressure motion space 614. And a high pressure reduction portion 64 for absorbing the mixed pulsating wave in the high pressure region, and the fuel reservoir 611 is connected to the inside of the inlet expansion fuel rail 40, and the mixed pulsation wave together with the fuel. The low pressure reducing unit 63 and the high pressure sense through the fuel storage space 611 inside the 40. It is reduced to reach the unit 64.
저압 감소부(63)는, 저압 영역의 혼합 맥동파를 감소시키는 저압 다층 파형 스프링(631) 및 저압 다층 파형 스프링(631)을 저압 운동공간(613) 내에 고정하는 저압 스프링 커버(632)를 포함하고, 저압 다층 파형 스프링(631)의 내면 중앙부는 연통 홀(612a)을 통해 연료 저장공간(611)과 연결되어 있고, 서로 마주하는 저압 다층 파형 스프링(631) 외면과 저압 스프링 커버(632)의 내면 중앙 부분은 서로 곡면 형상의 공간을 형성하고 있어 그사이에 저압 다층 파형 스프링(631)이 진동하는 저압 스프링 운동공간(632a)이 형성된다.The low pressure reducing unit 63 includes a low pressure multilayer wave spring 631 for reducing the mixed pulsation wave in the low pressure region and a low pressure spring cover 632 for fixing the low pressure multilayer wave spring 631 in the low pressure motion space 613. The center of the inner surface of the low pressure multilayer corrugated spring 631 is connected to the fuel storage space 611 through a communication hole 612a, and the outer surface of the low pressure multilayer corrugated spring 631 and the low pressure spring cover 632 facing each other. The inner central portion forms a curved space with each other, and a low pressure spring motion space 632a is formed in which the low pressure multilayer corrugated spring 631 vibrates.
저압 스프링 커버(632)의 내부 곡면에 곡면 형상의 저압 스프링 쿠션 패드(632b)를 설치하여 저압 다층 파형 스프링(631)이 진동과 팽창으로 저압 스프링 커버(632)에 접촉할 때 저압 스프링 쿠션 패드(632b)에서 충격이 완충, 흡수되는 구조로 형성되어 있다.A low pressure spring cushion pad 632b having a curved shape is provided on the inner curved surface of the low pressure spring cover 632 so that the low pressure spring cushion pad (when the low pressure multi-layer corrugated spring 631 contacts the low pressure spring cover 632 by vibration and expansion ( In 632b), the shock is buffered and absorbed.
저압 다층 파형 스프링(631)은, 제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)을 포함하며, 제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)은 서로 다른 재질과 두께로 형성된다.The low pressure multilayer wave spring 631 includes a first low pressure wave spring 631a and a second low pressure wave spring 631b, and the first low pressure wave spring 631a and the second low pressure wave spring 631b are different from each other. It is formed of material and thickness.
저압 스프링 커버(632) 가장자리와 저압 다층 파형 스프링(631) 가장자리 및 저압 운동공간(613)을 이루는 스프링 하우징(61) 내부 면은 중첩되어 있으며, 저압 스프링 커버(632) 내면 가장자리에는 원주 방향을 따라 저압 다층 파형 스프링(631)의 가장자리가 삽입되는 가압 홈(634b)이 형성되어 있고, 스프링 하우징(61) 내부면에는 저압 다층 파형 스프링(631)을 가압 홈(634b)으로 가압하는 가압 돌기(634a)가 형성되어 있으며, 저압 스프링 커버(632) 외면은 스프링 하우징(61) 내부면과 밀착된다.An inner surface of the spring housing 61 constituting the edge of the low pressure spring cover 632, the edge of the low pressure multi-layer corrugated spring 631, and the low pressure motion space 613 overlaps, and an inner edge of the low pressure spring cover 632 along the circumferential direction. A pressing groove 634b into which an edge of the low pressure multi-layer corrugated spring 631 is inserted is formed, and a pressing protrusion 634a for pressing the low-pressure multi-layer corrugated spring 631 into the pressing groove 634b on the inner surface of the spring housing 61. ) Is formed, the outer surface of the low-pressure spring cover 632 is in close contact with the inner surface of the spring housing (61).
저압 감소부(63)는, 저압 운동공간(613)을 이루는 스프링 하우징(61) 내부면과 저압 다층 파형 스프링(631) 사이에 배치되어 1차 기밀을 유지하면서 입구 확장 레일(40) 내 저압 혼합 맥동파를 흡수하는 저압 스프링 기밀 파형막(635), 그리고 스프링 하우징(61) 내부면과 저압 스프링 커버(632) 외면 사이에 배치된 저압 스프링 커버 오링(636)을 더 포함한다.The low pressure reducing unit 63 is disposed between the inner surface of the spring housing 61 constituting the low pressure motion space 613 and the low pressure multi-layer corrugated spring 631 to maintain the primary airtight while mixing the low pressure in the inlet expansion rail 40. It further includes a low pressure spring airtight corrugation membrane 635 for absorbing pulsating waves, and a low pressure spring cover o-ring 636 disposed between the inner surface of the spring housing 61 and the outer surface of the low pressure spring cover 632.
고압 감소부(64)는, 고압 영역의 혼합 맥동파를 감소시키는 고압 다층 파형 스프링(641) 및 고압 다층 파형 스프링(641)을 고압 운동공간(614) 내에 고정하는 고압 스프링 커버(642)를 포함하고, 고압 다층 파형 스프링(641)의 내면 중앙부는 연통 홀(612b)을 통해 연료 저장공간(611)과 연결되어 있고, 서로 마주하는 고압 다층 파형 스프링(641) 외면과 고압 스프링 커버(642)의 내면 중앙 부분은 곡면 형상의 공간을 형성하고 있어 그사이에 고압 다층 파형 스프링(641)이 진동하는 고압 스프링 운동공간(642a)이 형성된다.The high pressure reduction unit 64 includes a high pressure multilayer wave spring 641 for reducing the mixed pulsation wave in the high pressure region and a high pressure spring cover 642 for fixing the high pressure multilayer wave spring 641 in the high pressure motion space 614. The center of the inner surface of the high pressure multilayer corrugated spring 641 is connected to the fuel storage space 611 through the communication hole 612b, and the outer surface of the high pressure multilayer corrugated spring 641 and the high pressure spring cover 642 facing each other. A central portion of the inner surface forms a curved space, and a high pressure spring motion space 642a in which the high pressure multilayer corrugated spring 641 vibrates is formed therebetween.
고압 스프링 커버(642)의 내부 곡면에 곡면 형상의 고압 스프링 쿠션 패드(642b)를 설치하여 고압 다층 파형 스프링(641)이 진동과 팽창으로 고압 스프링 커버(642)에 접촉할 때 고압 스프링 쿠션 패드(642b)에서 충격이 완충, 흡수되는 구조로 형성되어 있다.A high pressure spring cushion pad 642b having a curved shape is installed on the inner curved surface of the high pressure spring cover 642 so that the high pressure spring cushion pad (when the high pressure multilayer wave spring 641 contacts the high pressure spring cover 642 by vibration and expansion ( 642b) has a structure in which the shock is absorbed and absorbed.
고압 다층 파형 스프링(641)은, 제1 고압 파형 스프링(641a), 제2 고압 파형 스프링(641b) 및 제3 고압 파형 스프링(641c)을 포함한다. 제1 고압 파형 스프링(641a)과 제2 고압 파형 스프링(641b) 및 제3 고압 파형 스프링(641c)은 서로 다른 재질과 두께로 형성된다.The high pressure multilayer wave spring 641 includes a first high pressure wave spring 641a, a second high pressure wave spring 641b, and a third high pressure wave spring 641c. The first high pressure wave spring 641a, the second high pressure wave spring 641b, and the third high pressure wave spring 641c are formed of different materials and thicknesses.
고압 스프링 커버(642) 가장자리와 고압 다층 파형 스프링(641) 가장자리 및 고압 운동공간(614)을 이루는 스프링 하우징(61) 내부 면은 중첩되어 있으며, 고압 스프링 커버(642) 내면 가장자리에는 원주 방향을 따라 고압 다층 파형 스프링(641)의 가장자리가 삽입되는 가압 홈(644b)이 형성되어 있고, 스프링 하우징(61) 내부면에는 고압 다층 파형 스프링(641)을 가압 홈(644b)으로 가압하는 가압 돌기(644a)가 형성되어 있으며, 고압 스프링 커버(642) 외면은 스프링 하우징(61) 내부면과 밀착된다.The inner surface of the spring housing 61 constituting the edge of the high pressure spring cover 642 and the edge of the high pressure multilayer corrugated spring 641 and the high pressure movement space 614 is overlapped, and the inner edge of the high pressure spring cover 642 along the circumferential direction. A pressing groove 644b is formed in which an edge of the high pressure multilayer corrugated spring 641 is inserted, and a pressing protrusion 644a pressurizes the high pressure multilayer corrugated spring 641 to the pressing groove 644b on the inner surface of the spring housing 61. ) Is formed, the outer surface of the high-pressure spring cover 642 is in close contact with the inner surface of the spring housing (61).
고압 감소부(64)는, 고압 운동공간(614)을 이루는 스프링 하우징(61) 내부면과 고압 다층 파형 스프링(641) 사이에 배치되어 1차 기밀을 유지하면서 입구 확장 레일(40)내 고압 혼합 맥동파를 흡수하는 고압 스프링 기밀 파형막(645), 그리고 스프링 하우징(61) 내부면과 고압 스프링 커버(642) 외면 사이에 배치된 고압 스프링 커버 오링(646)을 더 포함한다.The high pressure reduction unit 64 is disposed between the inner surface of the spring housing 61 constituting the high pressure movement space 614 and the high pressure multi-layer corrugated spring 641 to maintain high pressure mixing in the inlet expansion rail 40. And a high pressure spring cover o-ring 646 disposed between the inner surface of the spring housing 61 and the outer surface of the high pressure spring cover 642 to absorb the pulsating wave.
연결부(62a)는, 입구 확장 연료 레일(40)과 결합될 수 있는 연결 닛블(621), 스프링 하우징(61)과 연결되어 있고 연결 닛블(621)과 분리할 수 있게 결합된 연결관(622), 연결관(622)과 연결 닛블(621)을 결합하는 연결 너트(624) 및 연결관(622)의 하면과 마주하는 연결 닛블(621) 내부 면 사이에 배치된 닛블 오링(625b)을 포함한다.The connecting portion 62a includes a connecting nib 621 that can be coupled to the inlet extension fuel rail 40, and a connecting tube 622 connected to the spring housing 61 and detachably coupled to the connecting nib 621. And a connecting nut 624 for coupling the connecting tube 622 and the connecting nibble 621 and a nibble O-ring 625b disposed between the inner surface of the connecting nib 621 facing the lower surface of the connecting tube 622. .
연결부(62a)는, 연결 닛블(621)과 연결관(622)이 접하는 부분에 형성된 위치 설정 홈(623a) 및 위치 설정 돌기(623b)를 더 포함하고, 위치 설정 돌기(623b)가 위치 설정 홈(623a)에 삽입되면 스프링 하우징(61)의 방향이 설정된다.The connecting portion 62a further includes a positioning groove 623a and a positioning protrusion 623b formed at a portion where the connecting nibble 621 and the connecting pipe 622 contact each other, and the positioning protrusion 623b includes a positioning groove. When inserted into 623a, the direction of the spring housing 61 is set.
연결부(62b)는, 체결 홀(626d)을 가지며 입구 확장 연료 레일(40)과 결합될 수 있는 연결 소켓(626), 스프링 하우징(61)에 형성되어 있고 체결 홀(626d)에 체결된 플랜지 볼트(627) 및 플랜지 볼트(627)와 연결 소켓(626) 사이에 있는 소켓 오링(626c)을 포함하며, 연결 소켓(626) 및 플랜지 볼트(627) 내부에는 입구 확장 연료 레일(40) 내부와 연료 저장공간(611)을 연결하는 소켓 통로(626a)와 플랜지 연결통로(627a)가 형성되어 있다.The connecting portion 62b has a fastening hole 626d and a connecting socket 626 which can be engaged with the inlet expansion fuel rail 40, a flange bolt formed in the spring housing 61 and fastened to the fastening hole 626d. 627 and a socket o-ring 626c between the flange bolt 627 and the connecting socket 626, wherein the connecting socket 626 and the flange bolt 627 are inside the inlet expansion fuel rail 40 and the fuel. A socket passage 626a and a flange connection passage 627a connecting the storage space 611 are formed.
연결부(62c)는, 스프링 하우징(61)에서 돌출된 하우징 연결관(628) 및 하우징 연결관(628)과 연결되어 있고 입구 확장 연료 레일(40) 외부 면에 접할 수 있는 연결관 플랜지(629)를 포함하고, 하우징 연결관(628) 내부에는 연료 저장공간(611)과 입구 확장 연료 레일(40) 내부를 연결하는 내부 연결관 통로(628a)가 형성되고, 입구 확장 연료 레일(40)과 스프링 하우징(61) 사이 연료 기밀을 유지하면서 한 몸체로 접합시키는 브레이징면(629a)에서 일체형으로 접합된다.The connector 62c is connected to the housing connector 628 and the housing connector 628 protruding from the spring housing 61 and to the connector flange 629 which is in contact with the outer surface of the inlet expansion fuel rail 40. The housing connector 628 has an inner connector passage 628a connecting the fuel reservoir 611 and the inlet extension fuel rail 40 to the inside, and the inlet extension fuel rail 40 and the spring are formed. It is integrally bonded at the brazing surface 629a which bonds to one body while maintaining fuel tightness between the housings 61.
그리고 연결관 플랜지(629)의 내부 연결관 통로(628a)와 연료 레일 홀(42) 사이에 삽입 튜브(647)를 삽입하여 브레이징면(629a)을 확장시켜 연결관 플랜지(629)와 입구 확장 연료 레일(40) 사이 접합강도를 향상시켜 주는 구조로 되어 있다.The insertion tube 647 is inserted between the internal connector passage 628a of the connector flange 629 and the fuel rail hole 42 to extend the brazing surface 629a to extend the connector flange 629 and the inlet expansion fuel. It is a structure that improves the joining strength between the rails (40).
본 발명의 실시예에 따른 맥동 감소기는 연료 레일 입구 단면적을 입구 확장 연료 레일과 결합되는 고압 연료관의 단면적과 같게 하여 단면 축소형 오리피스가 제거된 입구 확장 연료 레일에 설치한다. 가솔린 직접 분사 엔진의 고압 피스톤 연료펌프에서 발생한 펌프 맥동파와 연료 분사 인젝터에서 발생한 연료 분사 맥동파가 혼합된 혼합 맥동파는 맥동 감소기 내부에서 저압 영역과 고압 영역으로 나누어진 저압 및 고압 다층 파형 스프링에 의해 감소된다. 이에, 고압 피스톤 연료펌프의 구동으로 공급되는 연료의 저항손실이 없는 맥동 감소기를 얻을 수 있다.The pulsation reducer according to the embodiment of the present invention is installed in the inlet extension fuel rail from which the cross-sectional reduced orifice is removed by making the fuel rail inlet cross-sectional area equal to that of the high pressure fuel pipe coupled with the inlet extension fuel rail. The mixed pulsation wave of the pump pulsation wave generated from the high pressure piston fuel pump of the gasoline direct injection engine and the fuel injection pulsation wave generated from the fuel injection injector is generated by the low pressure and high pressure multilayer wave spring divided into the low pressure region and the high pressure region inside the pulsator. Is reduced. Accordingly, it is possible to obtain a pulsation reducer without the resistance loss of the fuel supplied by the driving of the high pressure piston fuel pump.
본 발명의 실시예에 따르면, 오리피스가 제거된 입구 확장 연료 레일에 맥동 감소기가 설치됨으로써 입구 확장 연료 레일 내부에 존재하는 혼합 맥동파가 감소되며, 혼합 맥동파 감소로 인하여 엔진의 소음과 진동이 감소하는 효과가 있다.According to an embodiment of the present invention, the pulsation reducer is installed in the inlet expansion fuel rail from which the orifice has been removed, thereby reducing the mixed pulsation wave existing in the inlet expansion fuel rail, and reducing the noise and vibration of the engine due to the reduced pulsation wave It is effective.
본 발명의 실시예에 따르면, 연료 내 혼합 맥동파 제거로 인하여 엔진 실린더에 연료 분사 시 한 사이클 당 2~5회 분사하는 다단 분사가 가능하다. 다단 연료 분사로 연료가 완전히 연소하므로 엔진 연소효율이 향상되는 효과가 있다. 그리고 엔진 배기가스 규제인 탄화물질량(PM) 및 탄화물질개수(PN)도 줄일 수 있다.According to the embodiment of the present invention, due to the removal of the mixed pulsating wave in the fuel it is possible to multi-stage injection that is injected 2 to 5 times per cycle when fuel injection to the engine cylinder. Since the fuel is completely burned by the multi-stage fuel injection, the engine combustion efficiency is improved. In addition, carbide mass (PM) and carbon number (PN), which are engine exhaust regulations, can be reduced.
도 1은 본 발명의 한 실시예에 따른 맥동 감소기 설치 상태를 나타낸 구성도.1 is a configuration diagram showing a pulsation reducer installation state according to an embodiment of the present invention.
도 2는 도 1의 맥동 감소기를 나타낸 종단면 사시도.2 is a longitudinal sectional perspective view of the pulsation reducer of FIG.
도 3은 도 2의 스프링 하우징, 저압 감소부 및 고압 감소부 분해 사시도.3 is an exploded perspective view of the spring housing, the low pressure reducing unit and the high pressure reducing unit of FIG.
도 4는 도 2의 연결부 분해 사시도.Figure 4 is an exploded perspective view of the connecting portion of FIG.
도 5는 도 2의 저압 다층 파형 스프링을 나타낸 종단면 사시도.5 is a longitudinal sectional perspective view of the low pressure multilayer corrugated spring of FIG. 2;
도 6은 도 2의 고압 다층 파형 스프링을 나타낸 종단면 사시도.6 is a longitudinal sectional perspective view of the high pressure multilayer corrugated spring of FIG. 2;
도 7은 본 발명의 다른 실시예에 따른 맥동 감소기 분해 단면도.7 is an exploded cross-sectional view of a pulsation reducer according to another embodiment of the present invention.
도 8은 도 7의 결합 상태를 나타낸 단면도.8 is a cross-sectional view showing a coupling state of FIG.
도 9는 본 발명의 다른 실시예에 따른 맥동 감소기를 나타낸 단면도.9 is a cross-sectional view showing a pulsation reducer according to another embodiment of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 같은 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. Like parts are designated by like reference numerals throughout the specification.
그러면 본 발명의 한 실시예에 따른 맥동 감소기에 대하여 도 1 내지 도 6을 참고하여 설명한다.Then, the pulsation reducer according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.
도 1은 본 발명의 한 실시예에 따른 맥동 감소기 설치 상태를 나타낸 구성도이고, 도 2는 도 1의 맥동 감소기를 나타낸 종단면 사시도이며, 도 3은 도 2의 스프링 하우징, 저압 감소부 및 고압 감소부 분해 사시도이고, 도 4는 도 2의 연결부 분해 사시도이며, 도 5는 도 2의 저압 다층 파형 스프링을 나타낸 종단면 사시도이고, 도 6은 도 2의 고압 다층 파형 스프링을 나타낸 종단면 사시도이다.1 is a configuration diagram showing a pulsation reducer installed state according to an embodiment of the present invention, Figure 2 is a longitudinal cross-sectional perspective view of the pulsation reducer of Figure 1, Figure 3 is a spring housing, a low pressure reducing portion and high pressure of Figure 2 Figure 4 is an exploded perspective view of the reduced portion, Figure 4 is an exploded perspective view of the connecting portion of Figure 2, Figure 5 is a longitudinal cross-sectional perspective view of the low pressure multi-layer corrugated spring of Figure 2, Figure 6 is a longitudinal cross-sectional perspective view of the high pressure multilayer corrugated spring of FIG.
먼저, 도 1을 참고하면 연료탱크(10)에 저장된 가솔린 연료는 1차로 저압 연료펌프(20)의 작동으로 저압 연료관(21)을 통해 연료 고압 발생장치인 고압 피스톤 연료펌프(30)에 전달된다. 저압 연료 펌프(20)는 저압 연료펌프 모터(22)로 구동된다. 저압 연료펌프(20)는 베인형 펌프를 사용함으로써 저압 연료펌프(20)에서 고압 피스톤 연료펌프(30)까지 전달되는 저압 연료 압력은 약 4.5bar 이내로 낮은 압력이다.First, referring to FIG. 1, the gasoline fuel stored in the fuel tank 10 is first transmitted to the high pressure piston fuel pump 30, which is a high pressure fuel generator, through the low pressure fuel pipe 21 by the operation of the low pressure fuel pump 20. do. The low pressure fuel pump 20 is driven by the low pressure fuel pump motor 22. The low pressure fuel pump 20 uses a vane type pump, and the low pressure fuel pressure transmitted from the low pressure fuel pump 20 to the high pressure piston fuel pump 30 is a low pressure within about 4.5 bar.
저압 연료는 2차로 고압 피스톤 연료펌프(30) 작동으로 고압으로 압축되어 고압 연료관(31)을 통해 단면 확장 연료 레일 입구(41)를 지나 입구 확장 연료 레일(40) 내부로 공급한다. 입구 확장 연료 레일(40)은 단면 확장 연료 레일 입구(41)로 기존의 연료 레일 입구에 설치된 오리피스가 제거되어 있고 고압 연료관(31)과 연결되며 단면이 고압 연료관(31) 단면과 동일하게 확장된 단면 확장 연료 레일 입구(41)를 가진다.The low pressure fuel is secondarily compressed to high pressure by the operation of the high pressure piston fuel pump 30 and is supplied into the inlet expansion fuel rail 40 through the high pressure fuel pipe 31 through the sectional expansion fuel rail inlet 41. The inlet expansion fuel rail 40 is a cross section expansion fuel rail inlet 41 with the orifice installed in the existing fuel rail inlet removed and connected to the high pressure fuel pipe 31, the cross section being the same as the cross section of the high pressure fuel pipe 31. It has an extended cross section extended fuel rail inlet 41.
고압 연료관(31)은 고압 연료관 끝단 플랜지(31a)에 삽입된 고압 연료관 너트(31b)와 입구 확장 연료 레일(40) 일단에 부착된 입구 확장 연료 레일 닛블(40a)과 고압 연료관 연결 나사(31c)로 연결된다.The high pressure fuel pipe 31 connects the high pressure fuel pipe nut 31b inserted into the high pressure fuel pipe end flange 31a and the inlet expansion fuel rail nibble 40a attached to one end of the inlet expansion fuel rail 40 and the high pressure fuel pipe. It is connected with the screw 31c.
고압 피스톤 연료펌프(30)는 엔진 캠축에 연결된 고압 연료펌프 캠(32)으로 구동된다. 고압 피스톤 펌프(30)는 350bar 이상 고압 연료 발생을 위해 피스톤형 펌프를 사용하고 있다.The high pressure piston fuel pump 30 is driven by the high pressure fuel pump cam 32 connected to the engine camshaft. The high pressure piston pump 30 uses a piston type pump to generate high pressure fuel over 350 bar.
입구 확장 연료 레일(40) 내부에 도달한 고압 연료는 고압 피스톤 연료펌프(30)에서 발생한 고압 맥동파를 동반하고 있으므로 입구 확장 연료 레일(40) 내부에 고압 맥동파가 유입된다.Since the high pressure fuel reaching the inlet expansion fuel rail 40 is accompanied by a high pressure pulsation wave generated in the high pressure piston fuel pump 30, the high pressure pulsation wave is introduced into the inlet extension fuel rail 40.
입구 확장 연료 레일(40) 내부에는 고압 피스톤 연료펌프(30)에서 발생한 펌프 맥동파와 연료 분사 인젝터(50)에서 발생한 연료 분사 맥동파가 혼합된 혼합 맥동파가 존재한다.Inside the inlet expansion fuel rail 40, there is a mixed pulsation wave in which the pump pulsation wave generated by the high pressure piston fuel pump 30 and the fuel injection pulsation wave generated by the fuel injection injector 50 are mixed.
혼합 맥동파는 어떤 주파수에서 공진현상이 발생하여 증폭될 수 있고, 어떤 주파수에서 상쇄 현상이 발생하여 상쇄될 수도 있다. 혼합 맥동파의 증폭 및 상쇄현상이 반복적으로 발생하면 연료 분사 인젝터(50)의 연료 분사량이 불규칙하게 일어난다. 연료 분사량의 불규칙 현상으로 엔진 연료의 소모량 증가 원인이 된다.The mixed pulsation wave may be amplified by generating a resonance phenomenon at a certain frequency, and may be canceled by a cancellation phenomenon at a certain frequency. When amplification and cancellation of the mixed pulsating wave occurs repeatedly, the fuel injection amount of the fuel injection injector 50 occurs irregularly. Irregularities in fuel injection can cause an increase in engine fuel consumption.
혼합 맥동파의 감소를 위해 본 실시예에 따른 맥동 감소기(60a)를 입구 확장 연료 레일(40)에 설치하였다.The pulsation reducer 60a according to this embodiment was installed in the inlet expansion fuel rail 40 to reduce the mixed pulsation wave.
도 2 내지 도 6을 참고하면, 본 실시예에 따른 맥동 감소기(60a)는 스프링 하우징(61), 연결부(62a), 저압 감소부(63) 및 고압 감소부(64)를 포함한다.2 to 6, the pulsation reducer 60a according to the present embodiment includes a spring housing 61, a connecting portion 62a, a low pressure reducing portion 63, and a high pressure reducing portion 64.
스프링 하우징(61)은 연결부(62a)를 통해 입구 확장 연료 레일(40)과 연결되어 있다. 스프링 하우징(61)의 내부 중앙에는 연결부(62a)를 통해 입구 확장 연료 레일(40) 내부와 연결된 연료 저장공간(611)이 형성되어 있다.The spring housing 61 is connected with the inlet expansion fuel rail 40 through the connection portion 62a. A fuel storage space 611 is formed at the inner center of the spring housing 61 and connected to the inside of the inlet expansion fuel rail 40 through the connecting portion 62a.
스프링 하우징(61)의 내부 좌측에는 연결관 통로(625a)를 통해 연료 저장공간(611)과 연결된 저압 운동공간(613)이 형성되어 있다.The inner left side of the spring housing 61 has a low pressure motion space 613 connected to the fuel storage space 611 through a connector pipe passage 625a.
스프링 하우징(61)의 내부 우측에는 연결관 통로(625a)를 통해 연료 저장공간(611)과 연결된 고압 운동공간(614)이 형성되어 있다.The inner right side of the spring housing 61 is formed with a high-pressure movement space 614 connected to the fuel storage space 611 through a connector pipe passage 625a.
연결부(62a)는 연결 닛블(621), 연결관(622), 위치 설정부(623), 연결 너트(624) 및 닛블 오링(625b)을 포함한다.The connecting portion 62a includes a connecting nibble 621, a connecting pipe 622, a positioning unit 623, a connecting nut 624, and a nibble o-ring 625b.
연결 닛블(621)은 기설정된 길이를 가지며 내부가 상하 관통되어 있다. 연결 닛블(621)의 하면은 입구 확장 연료 레일(40) 외부 면에 접하여 고정되어 있다. 연결 닛블(621) 내부는 입구 확장 연료 레일(40) 내부와 연결되어 있다. 연결 닛블(621) 내부 하부측에는 오링 턱(621a)이 형성되어 있다. 연결 닛블(621) 외부 둘레 면에는 나사가 형성되어 있다.The connecting nibble 621 has a predetermined length and penetrates up and down inside. The lower surface of the connecting nibble 621 is fixed in contact with the outer surface of the inlet expansion fuel rail 40. The interior of the connecting nibble 621 is connected to the interior of the inlet expansion fuel rail 40. An o-ring jaw 621a is formed at an inner lower side of the connecting nibble 621. A screw is formed on the outer peripheral surface of the connecting nibble 621.
연결관(622)은 기설정된 길이를 가지며 상면은 스프링 하우징(61)의 하우징 슬리브(625)와 결합되어 있고 연결관 플랜지(622a) 하면은 연결 닛블(621) 상면과 접해 있다. 하우징 슬리브(625)는 스프링 하우징(61) 내부 둘레면서 연결관(622) 방향으로 돌출되어 있다.The connector tube 622 has a predetermined length and the upper surface is coupled to the housing sleeve 625 of the spring housing 61 and the lower surface of the connector flange 622a is in contact with the upper surface of the connecting nibble 621. The housing sleeve 625 protrudes in the direction of the connecting pipe 622 while surrounding the inner side of the spring housing 61.
연결관(622)의 중간 외부 둘레 면에는 연결관 플랜지(622a)가 형성되어 있다.A connector flange 622a is formed on the middle outer circumferential surface of the connector tube 622.
연결관(622)의 내부는 상하 관통되어 있으며 연료 저장공간(611)과 연결되어 있다. 연결관(622)의 하부 밑면은 닛블 오링(625b)과 접하는 오링 씰링면(622b)이 형성되어 있다.The inside of the connecting pipe 622 is penetrated up and down and is connected to the fuel storage space 611. The lower bottom surface of the connecting pipe 622 has an O-ring sealing surface 622b in contact with the nibble O-ring 625b.
위치 설정부(623)는 2쌍의 위치 설정 홈(623a) 및 위치 설정 돌기(623b)를 포함한다.The positioning unit 623 includes two pairs of positioning grooves 623a and positioning projections 623b.
위치 설정 홈(623a)은 연결관 플랜지(622a) 전후에 상부측으로 형성되어 있다.The positioning groove 623a is formed at the upper side before and after the connector pipe flange 622a.
위치 설정 돌기(623b)는 연결 닛블(621) 상면 전후에 상부측으로 돌출되어 위치 설정 홈(623a)에 삽입되게 된다. 위치 설정 돌기(623b)와 위치 설정 홈(623a)의 결합으로 스프링 하우징(61)은 항상 같은 위치에서 같은 방향으로 결합될 수 있다.The positioning projection 623b is protruded to the upper side before and after the upper surface of the connecting nibble 621 to be inserted into the positioning groove 623a. By coupling the positioning protrusion 623b and the positioning groove 623a, the spring housing 61 may always be coupled in the same direction at the same position.
연결 너트(624)는 내부가 상하 관통되어 있다. 연결 너트(624)의 내부 하부 둘레 면에는 연결 닛블(621)의 나사와 결합된 나사가 형성되어 있다. 연결 너트(624) 내부 상부 둘레 면에는 연결관 플랜지(622a)와 밀착된 연결 너트 턱(624a)이 형성되어 있다. 연결 너트(624)와 연결 닛블(621)을 나사로 체결하면 연결 너트 턱(624a)은 연결관 플랜지(622a)를 연결 닛블(621) 방향으로 가압하게 된다. 가압되는 연결관 플랜지(622a)에 의해 연결 닛블(621) 상면과 연결관 플랜지(622a) 하면은 밀착된다.The connection nut 624 penetrates up and down inside. The inner lower circumferential surface of the connecting nut 624 is formed with a screw engaged with the screw of the connecting nibble 621. A connection nut tuck 624a is formed on the inner circumferential surface of the connection nut 624 in close contact with the connector flange 622a. When the connection nut 624 and the connection nibble 621 are fastened with a screw, the connection nut jaw 624a presses the connector flange 622a in the direction of the connection nibble 621. The upper surface of the connection nibble 621 and the lower surface of the connector flange 622a are closely contacted by the connector flange 622a that is pressurized.
저압 감소부(63)는 저압 다층 파형 스프링(631), 저압 스프링 커버(632), 저압 스프링 기밀 파형막(635) 및 저압 스프링 커버 오링(636)을 포함하며 저압 영역의 혼합 맥동파를 감소시킨다.The low pressure reducing portion 63 includes a low pressure multi-layer corrugated spring 631, a low pressure spring cover 632, a low pressure spring hermetic waveform membrane 635, and a low pressure spring cover o-ring 636 to reduce the mixed pulsation wave in the low pressure region. .
저압 다층 파형 스프링(631)은 제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)을 포함하며 저압 운동공간(613)의 좌측에 배치되어 있다.The low pressure multilayer corrugated spring 631 includes a first low pressure corrugated spring 631a and a second low pressure corrugated spring 631b and is disposed on the left side of the low pressure motion space 613.
제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)은 같은 구조로 형성되어 있다. 제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)은 서로 겹쳐 있다.The first low pressure waveform spring 631a and the second low pressure waveform spring 631b are formed in the same structure. The first low pressure waveform spring 631a and the second low pressure waveform spring 631b overlap each other.
제1 저압 파형 스프링(631a)의 중앙부는 연통 홀(612a)을 통해 연료 저장공간(611)과 연결되어 있다. 제1 저압 파형 스프링(631a)의 가장자리는 저압 운동공간(613)을 이루는 스프링 하우징(61) 내부 면과 접해 있다.The central portion of the first low pressure wave spring 631a is connected to the fuel storage space 611 through the communication hole 612a. The edge of the first low pressure wave spring 631a is in contact with the inner surface of the spring housing 61 forming the low pressure motion space 613.
제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)을 자른 단면은 물결 모양이다.The cross section which cut | disconnected the 1st low pressure waveform spring 631a and the 2nd low pressure waveform spring 631b is wavy.
저압 스프링 커버(632)는 저압 운동공간(613) 좌측에 배치되어 있으며 저압 다층 파형 스프링(631)을 저압 운동공간(613) 내에 고정한다.The low pressure spring cover 632 is disposed on the left side of the low pressure motion space 613 and fixes the low pressure multi-layer corrugated spring 631 in the low pressure motion space 613.
저압 스프링 커버(632)의 내면 가장자리는 제2 저압 파형 스프링(631b)의 외면 가장자리와 밀착되어 있다. 이에, 저압 스프링 커버(632) 가장자리, 저압 다층 파형 스프링(631) 가장자리 및 스프링 하우징(61) 내부 면은 중첩되어 있다.The inner surface edge of the low pressure spring cover 632 is in close contact with the outer surface edge of the second low pressure wave spring 631b. Accordingly, the edge of the low pressure spring cover 632, the edge of the low pressure multi-layer corrugated spring 631, and the inner surface of the spring housing 61 overlap each other.
저압 스프링 커버(632) 내면 가장자리에는 원주 방향을 따라 저압 다층 파형 스프링(631)의 가장자리가 삽입되는 가압 홈(634b)이 형성되어 있다. 스프링 하우징(61) 내부면에는 저압 다층 파형 스프링(631)을 가압 홈(634b)으로 가압하는 가압 돌기(634a)가 형성되어 있다.The inner surface edge of the low pressure spring cover 632 is formed with a pressing groove 634b into which the edge of the low pressure multilayer wave spring 631 is inserted along the circumferential direction. On the inner surface of the spring housing 61, a pressing protrusion 634a for pressing the low pressure multi-layer corrugated spring 631 into the pressing groove 634b is formed.
저압 스프링 커버(632) 외면은 스프링 하우징(61) 내부면과 밀착되어 있다. 스프링 하우징(61)에 형성된 저압 스프링 커버 고정판(633)이 저압 스프링 커버(632)의 외면과 결합되어 있다.The outer surface of the low pressure spring cover 632 is in close contact with the inner surface of the spring housing 61. The low pressure spring cover fixing plate 633 formed on the spring housing 61 is coupled to the outer surface of the low pressure spring cover 632.
저압 스프링 커버 고정판(633) 및 가압 돌기(634a)에 의해 저압 다층 파형 스프링(631) 및 저압 스프링 커버(632)는 저압 운동공간(613) 내에 고정되어 있다.The low pressure multi-layer corrugated spring 631 and the low pressure spring cover 632 are fixed in the low pressure movement space 613 by the low pressure spring cover fixing plate 633 and the pressure protrusion 634a.
저압 다층 파형 스프링(631)의 외부 둘레 면은 스프링 하우징(61) 내부 둘레 면과 간격(G)을 두고 있다. 저압 다층 파형 스프링(631)의 외부 둘레 면이 스프링 하우징(61)의 내부 둘레 면과 접하면, 저압 다층 파형 스프링(631)이 가압 돌기(634a)와 가압 홈(634b) 사이에 결합될 때 저항이 발생할 수 있다. 그러나 저압 다층 파형 스프링(631) 외부 둘레 면과 스프링 하우징(61)의 내부 둘레 면이 떨어져 있어 저항 발생 없이 가압 돌기(634a)와 가압 홈(634b) 사이로 저압 다층 파형 스프링(631)을 쉽게 결합할 수 있다.The outer circumferential surface of the low pressure multilayer corrugated spring 631 is spaced apart from the inner circumferential surface of the spring housing 61. When the outer circumferential surface of the low pressure multilayer corrugated spring 631 is in contact with the inner circumferential surface of the spring housing 61, the resistance when the low pressure multilayer corrugated spring 631 is coupled between the pressing protrusion 634a and the pressing groove 634b is resisted. This can happen. However, the outer circumferential surface of the low pressure multilayer corrugated spring 631 and the inner circumferential surface of the spring housing 61 are separated so that the low pressure multilayer corrugated spring 631 can be easily coupled between the pressing protrusion 634a and the pressing groove 634b without generating resistance. Can be.
저압 스프링 커버(632) 중앙부는 제2 저압 파형 스프링(631b)의 외면으로부터 곡면 형상의 공간을 형성하고 있다. 이에 저압 스프링 커버(632)와 제2 저압 파형 스프링(631b)의 중앙부 사이에 저압 스프링 운동공간(632a)이 형성된다.The central portion of the low pressure spring cover 632 forms a curved space from the outer surface of the second low pressure wave spring 631b. Accordingly, a low pressure spring motion space 632a is formed between the low pressure spring cover 632 and the center portion of the second low pressure waveform spring 631b.
저압 스프링 커버(632)의 내부 곡면에 곡면 형상의 저압 스프링 쿠션 패드(632b)를 설치하여 저압 다층 파형 스프링(631)이 진동과 팽창으로 저압 스프링 커버(632)에 접촉할 때 저압 스프링 쿠션 패드(632b)에서 충격이 완충, 흡수되는 구조로 형성되어 있다.A low pressure spring cushion pad 632b having a curved shape is provided on the inner curved surface of the low pressure spring cover 632 so that the low pressure spring cushion pad (when the low pressure multi-layer corrugated spring 631 contacts the low pressure spring cover 632 by vibration and expansion ( In 632b), the shock is buffered and absorbed.
저압 다층 파형 스프링(631)의 가장자리는 고정되고 중앙부는 공간상에 위치한다. 이에 연료 저장공간(611)에서 저압 다층 파형 스프링(631)의 중앙부에 저압 영역의 혼합 맥동파가 가해진다. 저압 영역의 혼합 맥동파에 의해 저압 다층 파형 스프링(631)의 중앙부가 진동하게 되면서 저압 영역의 혼합 맥동파가 감소된다.The edge of the low pressure multilayer corrugated spring 631 is fixed and the center part is located in space. In the fuel storage space 611, a mixed pulsating wave in the low pressure region is applied to the center of the low pressure multi-layer corrugated spring 631. The mixed pulsation wave in the low pressure region causes the central portion of the low pressure multi-layer corrugated spring 631 to vibrate, thereby reducing the mixed pulsation wave in the low pressure region.
저압 스프링 기밀 파형막(635)은 저압 다층 파형 스프링(631)과 스프링 하우징(61) 내부 면 사이에 배치되어 있다. 저압 스프링 기밀 파형막(635)은 연료 저장공간(611)의 연료가 저압 다층 파형 스프링(631)과 스프링 하우징(61) 사이로 새어 나오지 않도록 1차 기밀을 유지하면서 입구 확장 레일(40) 내에 존재하는 저압 혼합 맥동파를 흡수하는 역할을 한다.The low pressure spring hermetic corrugated film 635 is disposed between the low pressure multilayer corrugated spring 631 and the inner surface of the spring housing 61. The low pressure spring hermetic corrugation membrane 635 is present in the inlet extension rail 40 while maintaining primary airtight such that fuel in the fuel reservoir 611 does not leak between the low pressure multilayer corrugated spring 631 and the spring housing 61. It absorbs low pressure mixed pulsating waves.
저압 스프링 커버 오링(636)은 저압 스프링 커버(632) 외부 둘레 면과 스프링 하우징(61) 내부 둘레 면 사이에 배치되어 있으며 2차 기밀을 유지한다.The low pressure spring cover o-ring 636 is disposed between the outer circumferential surface of the low pressure spring cover 632 and the inner circumferential surface of the spring housing 61 and maintains secondary hermeticity.
고압 감소부(64)는 고압 다층 파형 스프링(641), 고압 스프링 커버(642), 고압 스프링 기밀 파형막(645) 및 고압 스프링 커버 오링(646)을 포함하며 고압 영역의 혼합 맥동파를 감소시킨다The high pressure reduction unit 64 includes a high pressure multilayer wave spring 641, a high pressure spring cover 642, a high pressure spring hermetic wave film 645, and a high pressure spring cover o-ring 646 to reduce the mixed pulsation wave in the high pressure region.
고압 스프링 커버(642), 고압 스프링 기밀 파형막(645) 및 고압 스프링 커버 오링(646)은 전술된 저압 스프링 커버(632), 저압 스프링 기밀 파형막(635) 및 저압 스프링 커버 오링(636) 실시예와 같으므로 중복된 설명은 생략하기로 한다.The high pressure spring cover 642, the high pressure spring gas tight membrane 645, and the high pressure spring cover o-ring 646 implement the low pressure spring cover 632, the low pressure spring gas tight membrane 635 and the low pressure spring cover o-ring 636 described above. Since it is the same as the example, duplicate description will be omitted.
다만 고압 다층 파형 스프링(641)과 저압 다층 파형 스프링(631)에 있어 차이가 있다. 저압 다층 파형 스프링(631)은 제1 및 제2 저압 파형 스프링(631a, 631b)을 포함하는 데 반하여, 고압 다층 파형 스프링(641)은 제1, 제2 및 제3 고압 파형 스프링(641a, 641b, 641c)을 포함한다. 즉, 고압 다층 파형 스프링(641)은 제3 고압 파형 스프링(641c)을 더 포함한다.However, there is a difference between the high pressure multi-layer corrugated spring 641 and the low pressure multi-layer corrugated spring 631. The low pressure multilayer corrugated spring 631 includes first and second low pressure corrugated springs 631a and 631b, while the high pressure multilayer corrugated spring 641 includes first, second and third high pressure corrugated springs 641a and 641b. 641c). That is, the high pressure multilayer corrugated spring 641 further includes a third high pressure corrugated spring 641c.
제3 고압 파형 스프링(641c)은 제1 및 제2 고압 파형 스프링(641a, 641b)과 동일한 구조로 형성되어 있다. 제3 고압 파형 스프링(641c)은 고압 스프링 커버(642) 사이에 배치되어 있다. 제3 고압 파형 스프링(641c)과 고압 스프링 커버(642) 사이에 고압 스프링 운동공간(642a)이 형성된다.The third high pressure wave spring 641c is formed in the same structure as the first and second high pressure wave springs 641a and 641b. The third high pressure wave spring 641c is disposed between the high pressure spring covers 642. The high pressure spring movement space 642a is formed between the third high pressure wave spring 641c and the high pressure spring cover 642.
이에 고압 다층 파형 스프링(641)의 가장자리는 가압 돌기(644a)와 가압 홈(644b) 사이에서 고정되고 중앙부는 공간상에 위치한다. 연료 저장공간(611)에서 고압 다층 파형 스프링(641)의 중앙부에 고압 영역의 혼합 맥동파가 가해진다. 고압 영역의 혼합 맥동파에 의해 고압 다층 파형 스프링(641)의 중앙부가 진동하게 되면서 고압 영역의 혼합 맥동파가 감소된다.Accordingly, the edge of the high pressure multi-layer corrugated spring 641 is fixed between the pressing protrusion 644a and the pressing groove 644b and the center portion is located in the space. The mixed pulsation wave of the high pressure region is applied to the center of the high pressure multilayer corrugated spring 641 in the fuel storage space 611. The mixed pulsation wave in the high pressure region is reduced while the central portion of the high pressure multilayer wave spring 641 vibrates due to the mixed pulsation wave in the high pressure region.
다음은 도 1 내지 도 6을 다시 참고하여 위에서 설명한 맥동 감소기(60a)의 작용에 대하여 설명한다.Next, the operation of the pulsation reducer 60a described above will be described with reference to FIGS. 1 to 6 again.
입구 확장 연료 레일(40) 내부에 존재하는 혼합 맥동파가 연료 레일 홀(42)을 지나, 연결관 통로(625a)를 거처, 하우징 연결통로(616)를 거처 연료 저장공간(611)에 도달하게 된다.The mixed pulsation wave present in the inlet extension fuel rail 40 passes through the fuel rail hole 42 through the connector passage 625a and through the housing connection passage 616 to reach the fuel reservoir 611. do.
연료 저장공간(611)에 도달한 혼합 맥동파는 저압 다층 파형 스프링(631)과 고압 다층 파형 스프링(641)을 진동시키게 된다. 즉, 연료 저장공간(611)에 도달한 혼합 맥동파의 저압 영역(35bar~100bar) 맥동파로 인하여 저압 다층 파형 스프링(631)이 저압 스프링 운동공간(632a)에서 떨림판 운동을 하게 된다. 저압 다층 파형 스프링(631) 떨림판 운동으로 인하여 연료 내 저압 영역(35bar~100bar)의 혼합 맥동파는 감소하게 된다.The mixed pulsation wave reaching the fuel storage space 611 vibrates the low pressure multilayer corrugated spring 631 and the high pressure multilayer corrugated spring 641. That is, due to the low pressure region (35 bar ~ 100 bar) pulsating wave of the mixed pulsating wave reaching the fuel storage space 611, the low pressure multi-layer corrugated spring 631 performs the oscillating plate motion in the low pressure spring movement space 632a. Due to the low pressure multilayer wave spring 631 oscillating plate motion, the mixed pulsation wave in the low pressure region 35bar to 100bar in the fuel is reduced.
또한, 같은 방법으로 연료 저장공간(611)에 도달한 혼합 맥동파의 고압 영역(100bar~ 350bar) 맥동파로 인하여 고압 다층 파형 스프링(641)이 고압 스프링 운동공간(642a)에서 떨림판 운동을 하게 된다. 고압 다층 파형 스프링(641)의 떨림판 운동으로 인하여 고압 영역(100bar~350bar)의 혼합 맥동파도 감소하게 된다.In addition, due to the high pressure region (100bar to 350bar) pulsating wave of the mixed pulsating wave reaching the fuel storage space 611 in the same manner, the high pressure multi-layer corrugated spring 641 performs the oscillating plate motion in the high pressure spring movement space 642a. . Due to the shaking plate motion of the high pressure multilayer wave spring 641, the mixed pulsation wave of the high pressure region 100bar to 350bar is also reduced.
위와 같이 입구 확장 연료 레일(40) 내부에 존재하던 혼합 맥동파는 스프링 하우징(61) 내의 저압 다층 파형 스프링(631)과 고압 다층 파형 스프링(641)에 의해 감소되면서 소멸하게 된다.As described above, the mixed pulsation wave existing in the inlet expansion fuel rail 40 is reduced by the low pressure multilayer wave spring 631 and the high pressure multilayer wave spring 641 in the spring housing 61 and then disappear.
본 실시예에 따른 맥동 감소기(60a) 때문에 혼합 맥동파가 소멸한 고압 연료는 연료 분사 인젝터(50)에 의해 엔진 실린더(50a) 내부로 일정 압력의 미세입자로 분사된다. 이에, 엔진 연소 효율이 높아져 자동차 연비가 향상된다.The high pressure fuel in which the mixed pulsating wave disappears due to the pulsation reducer 60a according to the present embodiment is injected into the engine cylinder 50a by the fuel injection injector 50 as fine particles at a predetermined pressure. As a result, the engine combustion efficiency is increased to improve the fuel economy of the vehicle.
그리고 기존의 맥동 감쇄장치인 오리피스를 제거한 상태에서 연료 내 혼합 맥동파를 보다 효과적으로 소멸시킬 수 있다. 이에 고압 피스톤 연료펌프(30)의 펌프 손실을 줄임으로써 엔진 효율이 더욱 향상된다.In addition, the mixed pulsation wave in the fuel can be more effectively extinguished with the orifice which is a conventional pulsation damper removed. The engine efficiency is further improved by reducing the pump loss of the high pressure piston fuel pump 30.
또한, 본 실시예에 따른 맥동 감소기(60a) 때문에 연료 내 혼합 맥동파가 소멸되므로 엔진 진동 및 소음 감소 효과가 발생한다.In addition, due to the pulsation reducer 60a according to the present embodiment, since the mixed pulsation wave in the fuel disappears, engine vibration and noise reduction effects occur.
또한, 본 실시예에 따른 맥동 감소기(60a)를 통해 맥동이 소멸된 고압 연료는 연료 분사 인젝터(50)에 의해 일정 압력의 미세입자로 만들어져 엔진 실린더(50a)에 직접 분사된다. 이에, 연료 다단 분사 즉 엔진에 연료 분사 시 한 행정에서 연료를 2~5회 나누어 분사할 수 있다. 연료 다단 분사로 인하여 연료는 완전히 연소되므로 엔진 연소 효율은 더욱 향상될 수 있다.In addition, the high-pressure fuel in which the pulsation is extinguished through the pulsation reducer 60a according to the present embodiment is made into fine particles of a predetermined pressure by the fuel injection injector 50 and is injected directly to the engine cylinder 50a. Therefore, the fuel may be injected in two to five times in one stroke when the fuel is multi-stage injection, that is, the fuel injection to the engine. Fuel combustion is completely burned by the fuel multi-stage injection, so the engine combustion efficiency can be further improved.
위와 같은 맥동이 감소된 연료가 엔진에서 완전히 연소되므로 연료의 불완전 연소로 발생한 유해물질이 발생하지 않아 대기환경 오염을 크게 줄일 수 있다.Since the pulsation-reduced fuel as described above is completely burned in the engine, harmful substances caused by incomplete combustion of the fuel are not generated, thereby greatly reducing air pollution.
다음으로 도 7 및 도 8을 참고하여 본 발명의 다른 실시예에 대하여 설명한다.Next, another embodiment of the present invention will be described with reference to FIGS. 7 and 8.
도 7은 본 발명의 다른 실시예에 따른 맥동 감소기를 나타낸 분해 단면도이고, 도 8은 도 7의 결합상태를 나타낸 단면도이다.7 is an exploded cross-sectional view showing a pulsation reducer according to another embodiment of the present invention, Figure 8 is a cross-sectional view showing a coupling state of FIG.
도 7 및 도 8을 참고하면, 본 실시예에 따른 맥동 감소기(60b)는 연결부(62b)를 제외한 모든 구성 요소는 도 1 내지 도 6의 실시예에 따른 맥동 감소기 구성 요소와 같으므로 중복된 설명은 생략하기로 한다.Referring to FIGS. 7 and 8, the pulsation reducer 60b according to the present embodiment is overlapped since all components except the connection part 62b are the same as the pulsation reducer components according to the embodiment of FIGS. 1 to 6. The description will be omitted.
본 실시예에 따른 연결부(62b)는 연결 소켓(626), 플랜지 볼트(627) 및 소켓 오링(626c)을 포함하며, 연결 소켓(626) 및 플랜지 볼트(627) 내부에는 입구 확장 연료 레일(40) 내부와 연료 저장공간(611)을 연결하는 소켓 통로(626a)와 플랜지 연결통로(627a)가 형성되어 있다.The connecting portion 62b according to the present embodiment includes a connecting socket 626, a flange bolt 627, and a socket o-ring 626c, and the inlet expansion fuel rail 40 is formed inside the connecting socket 626 and the flange bolt 627. The socket passage 626a and the flange connecting passage 627a connecting the inside and the fuel storage space 611 are formed.
연결 소켓(626)은 입구 확장 연료 레일(40) 외부 둘레 면의 기설정된 위치에 결합될 수 있다. 연결 소켓(626)의 내부는 상하 관통되어 있고 입구 확장 연료 레일(40) 내부와 연결되어 있다. 연결 소켓(626)의 내부 하부측에는 소켓 오링(626c)을 지지하는 오링 턱(626b)이 형성되어 있다. 연결 소켓(626) 내부 둘레 면에는 나사가 형성되어 있다.The connection socket 626 may be coupled to a predetermined position on the outer circumferential surface of the inlet extension fuel rail 40. The interior of the connection socket 626 is vertically penetrated and connected to the interior of the inlet expansion fuel rail 40. An inner lower side of the connection socket 626 is formed with an O-ring jaw 626b for supporting the socket O-ring 626c. Screws are formed on the inner circumferential surface of the connection socket 626.
플랜지 볼트(627)는 스프링 하우징(61)의 외부 둘레 면에 형성된 하우징 플랜지(627b)에서 수직 하게 돌출되어 있다. 플랜지 볼트(627)와 하우징 플랜지(627b)의 내부는 상하 관통되어 있고 연료 저장공간(611)과 연결되어 있다.The flange bolt 627 projects vertically from the housing flange 627b formed on the outer circumferential surface of the spring housing 61. The inside of the flange bolt 627 and the housing flange 627b are vertically penetrated and connected to the fuel storage space 611.
플랜지 볼트(627)의 하부측은 연결 소켓(626) 내부로 삽입되어 있다. 플랜지 볼트(627)의 외부 둘레 면에는 연결 소켓(626) 나사와 결합되는 나사가 형성되어 있다.The lower side of the flange bolt 627 is inserted into the connection socket 626. The outer circumferential surface of the flange bolt 627 is formed with a screw that engages with the connecting socket 626 screw.
플랜지 볼트(627)가 연결 소켓(626)에 결합될 때 소켓 오링(626c)은 플랜지 볼트(627)와 오링 턱(626b) 사이에서 압착되어 기밀을 유지하게 된다.When the flange bolt 627 is coupled to the connection socket 626, the socket o-ring 626c is compressed between the flange bolt 627 and the o-ring jaw 626b to maintain airtightness.
즉, 본 실시예에 따른 맥동 감소기(60b)의 나사 조립을 위해 스프링 하우징(61)에 연결된 하우징 플랜지(627b)와 플랜지 볼트(627)를 설치하였다. 플랜지 볼트(627)는 연결 소켓(626)과 한 쌍으로 되어 서로 체결함으로서 나사 조립이 가능하다.That is, the housing flange 627b and the flange bolt 627 connected to the spring housing 61 are installed for screw assembly of the pulsation reducer 60b according to the present embodiment. The flange bolts 627 are coupled to the connection socket 626 and fastened to each other to allow screw assembly.
입구 확장 연료 레일(40) 내부에서 스프링 하우징(61)의 연료 저장공간(611)까지 혼합 맥동파 전달을 위해 플랜지 볼트(627) 내부에 플랜지 연결통로(627a)를 형성하였다. 입구 확장 연료 레일(40) 내부에 존재하는 혼합 맥동파는 연료와 함께 연료 레일 홀(42)을 지나 소켓 통로(626a)를 통과하여 플랜지 연결통로(627a)를 거처 연료 저장공간(611)에 전달될 수 있다.A flange connection passage 627a is formed inside the flange bolt 627 for the mixed pulse wave transmission from the inlet extension fuel rail 40 to the fuel storage space 611 of the spring housing 61. Mixed pulsation waves present in the inlet expansion fuel rail 40 pass through the fuel passage hole 42 and the socket passage 626a together with the fuel to be delivered to the fuel storage space 611 via the flange connection passage 627a. Can be.
그리고 연결 소켓(626)의 오링 턱(626b)과 플랜지 볼트(627)의 하단 사이에 소켓 오링(626c)을 장착하고 플랜지 볼트(627)로 체결 조립하여 입구 확장 연료 레일(40)과 스프링 하우징(61) 사이 기밀을 유지하도록 하였다.Then, the socket o-ring 626c is mounted between the o-ring jaw 626b of the connecting socket 626 and the lower end of the flange bolt 627 and fastened and assembled with the flange bolt 627 to install the inlet extension fuel rail 40 and the spring housing ( 61) to maintain confidentiality.
이외 다른 구성은 도 1 내지 도 6의 실시예의 구성이 그대로 적용될 수 있다.In other configurations, the configuration of the embodiment of FIGS. 1 to 6 may be applied as it is.
다음으로 도 9를 참고하여 본 발명의 다른 실시예에 대하여 설명한다.Next, another embodiment of the present invention will be described with reference to FIG. 9.
도 9는 본 발명의 다른 실시예에 따른 맥동 감소기를 나타낸 단면도이다.9 is a cross-sectional view showing a pulsation reducer according to another embodiment of the present invention.
도 9를 참고하면, 본 실시예에 따른 맥동 감소기(60c)는 연결부(62c)를 제외한 모든 구성 요소는 도 1 내지 도 6의 실시예에 따른 맥동 감소기 구성 요소와 같으므로 중복된 설명은 생략하기로 한다.Referring to FIG. 9, the pulsation reducer 60c according to the present embodiment is the same as the pulsation reducer component according to the embodiment of FIGS. 1 to 6 except that all components except the connection part 62c are duplicated. It will be omitted.
본 실시예에 따른 연결부(62c)는 하우징 연결관(628) 및 연결관 플랜지(629)를 포함하며 하우징 연결관(628) 내부에는 연료 저장공간(611)과 입구 확장 연료 레일(40) 내부를 연결하는 하우징 연결관 통로(628a)가 형성되어 있다.The connecting portion 62c according to the present embodiment includes a housing connector 628 and a connector flange 629. The housing connector 628 includes a fuel reservoir 611 and an inlet expansion fuel rail 40. A housing connector passage 628a is formed to connect.
하우징 연결관(628)은 기설정된 길이를 가지며 스프링 하우징(61)의 외부 둘레 면에서 수직 하게 돌출되어 있다. 하우징 연결관(628) 내부에는 연료 저장공간(611)과 연결된 하우징 연결관 통로(628a)가 상하 관통되어 있다. 하우징 연결관(628)의 끝은 입구 확장 연료 레일(40) 외부 둘레 면에 접합되어 있다.The housing connector 628 has a predetermined length and projects perpendicularly from the outer circumferential surface of the spring housing 61. The housing connector passage 628a connected to the fuel storage space 611 passes through the housing connector tube 628 up and down. The end of the housing connector 628 is joined to the outer circumferential surface of the inlet extension fuel rail 40.
연결관 플랜지(629)는 하우징 연결관(628)이 입구 확장 연료 레일(40)에 접하는 면적을 확장시켜 준다. 연결관 플랜지(629)는 입구 확장 연료 레일(40)에 브레이징 방식으로 접합된다.The connector flange 629 extends the area where the housing connector 628 abuts the inlet expansion fuel rail 40. The connector flange 629 is brazed to the inlet expansion fuel rail 40.
즉, 본 실시예에 따른 맥동 감소기(60c)를 입구 확장 연료 레일(40)에 일체로 조립하기 위해 스프링 하우징(61)과 하우징 연결관(628) 및 연결관 플랜지(629)가 일체로 형성되어 있다.That is, the spring housing 61 and the housing connector 628 and the connector flange 629 are integrally formed to integrally assemble the pulsation reducer 60c according to the present embodiment to the inlet expansion fuel rail 40. It is.
입구 확장 연료 레일(40) 내부에서 스프링 하우징(61)의 연료 저장공간(611)까지 혼합 맥동파 전달을 위해 하우징 연결관(628) 내부에 하우징 연결관 통로(628a)가 형성된다.A housing connector passage 628a is formed inside the housing connector 628 for mixed pulsating wave transmission from within the inlet extension fuel rail 40 to the fuel reservoir 611 of the spring housing 61.
입구 확장 연료 레일(40) 내부에 존재하는 혼합 맥동파는 연료 레일 홀(42) 및 하우징 연결관 통로(628a)를 통해 연료 저장공간(611)에 전달되도록 하였다. Mixed pulsation waves present in the inlet extension fuel rail 40 are allowed to be delivered to the fuel reservoir 611 through the fuel rail hole 42 and the housing connector passage 628a.
그리고 입구 확장 연료 레일(40)과 스프링 하우징(61) 사이 연료 기밀을 위해 연결관 플랜지(629)와 입구 확장 연료 레일(40) 외부 둘레 면 사이에 브레이징면(629a)을 형성하였다. 브레이징면(629a)에 의해 입구 확장 연료 레일(40)과 연결관 플랜지(629)가 일체형으로 접합되게 하여 입구 확장 연료 레일(40)과 스프링 하우징(61)사이 기밀이 유지된다.A brazing surface 629a was formed between the connector flange 629 and the outer circumferential surface of the inlet expansion fuel rail 40 for fuel tightness between the inlet expansion fuel rail 40 and the spring housing 61. The inlet expansion fuel rail 40 and the connector flange 629 are integrally joined by the brazing surface 629a so that airtightness is maintained between the inlet expansion fuel rail 40 and the spring housing 61.
그리고 연결관 플랜지(629)의 하우징 연결관 통로(628a)와 연료 레일 홀(42) 사이에 삽입 튜브(647)를 삽입하여 브레이징면(629a)을 확장시켜 연결관 플랜지(629)와 입구 확장 연료 레일(40) 사이 접합 강도를 향상시켜 주는 구조로 되어 있다.The insertion tube 647 is inserted between the housing connector passage 628a of the connector flange 629 and the fuel rail hole 42 to extend the brazing surface 629a to extend the connector flange 629 and the inlet expansion fuel. The structure which improves the joining strength between the rails 40 is carried out.
이외 다른 구성은 도 1 내지 도 6의 실시예의 구성이 그대로 적용될 수 있다.In other configurations, the configuration of the embodiment of FIGS. 1 to 6 may be applied as it is.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (16)

  1. 고압 연료관(31)의 단면과 동일하게 확장된 단면 확장 연료 레일 입구(41)가 형성되어 있는 입구 확장 연료 레일(40),An inlet extension fuel rail 40 in which a cross section extension fuel rail inlet 41 is formed that is extended in the same manner as the cross section of the high-pressure fuel pipe 31;
    연료 저장공간(611)과, 연통 홀(612a, 612b)을 통해 연료 저장공간(611)과 연결된 저압 운동공간(613) 및 고압 운동공간(614)이 내부에 형성된 스프링 하우징(61),A spring housing 61 having a fuel storage space 611, a low pressure movement space 613 and a high pressure movement space 614 connected to the fuel storage space 611 through communication holes 612a and 612b,
    스프링 하우징(61)과 입구 확장 연료 레일(40)을 연결하는 연결부(62a, 62b, 62c),Connections 62a, 62b, 62c connecting the spring housing 61 and the inlet extension fuel rail 40;
    저압 운동공간(613)에 배치되어 저압 영역의 혼합 맥동파를 흡수하는 저압 감소부(63) 및A low pressure reducing unit 63 disposed in the low pressure motion space 613 to absorb the mixed pulse wave in the low pressure region;
    고압 운동공간(614)에 배치되어 고압 영역의 혼합 맥동파를 흡수하는 고압 감소부(64)The high pressure reducing unit 64 is disposed in the high pressure motion space 614 to absorb the mixed pulsation wave in the high pressure region.
    를 포함하고,Including,
    연료 저장공간(611)은 입구 확장 연료 레일(40) 내부와 연결되어 있고, 혼합 맥동파는 연료와 함께 입구 확장 연료 레일(40) 내부에서 연료 저장공간(611)을 통해 저압 감소부(63)와 고압 감소부(64)에 도달하여 감소되는The fuel reservoir 611 is connected to the inside of the inlet expansion fuel rail 40, and the mixed pulsation wave is connected to the low pressure reducing unit 63 through the fuel reservoir 611 in the inlet expansion fuel rail 40 together with the fuel. Reaching the high pressure reduction section 64 and reduced
    맥동 감소기.Pulsation reducer.
  2. 제1항에서,In claim 1,
    저압 감소부(63)는,Low pressure reduction unit 63,
    저압 영역의 혼합 맥동파를 감쇄시키는 저압 다층 파형 스프링(631) 및A low pressure multi-layer corrugated spring 631 for attenuating mixed pulsating waves in the low pressure region, and
    저압 다층 파형 스프링(631)을 저압 운동공간(613) 내에 고정하는 저압 스프링 커버(632)Low pressure spring cover 632 for fixing the low pressure multilayer corrugated spring 631 in the low pressure motion space 613.
    를 포함하고,Including,
    저압 다층 파형 스프링(631)의 내면 중앙부는 연통 홀(612a)을 통해 연료 저장공간(611)과 연결되어 있고, 서로 마주하는 저압 다층 파형 스프링(631) 외면과 저압 스프링 커버(632)의 내면 중앙 부분은 서로 곡면 형상의 공간을 형성하고 있고 그 사이에 저압 다층 파형 스프링(631)이 진동하는 저압 스프링 운동공간(632a)이 형성된The inner center of the low pressure multilayer corrugated spring 631 is connected to the fuel storage space 611 through a communication hole 612a, and the outer surface of the low pressure multilayer corrugated spring 631 and the inner center of the low pressure spring cover 632 facing each other. The portions form a curved space with each other, and a low pressure spring motion space 632a is formed in which the low pressure multilayer corrugated spring 631 vibrates.
    맥동 감소기.Pulsation reducer.
  3. 제2항에서,In claim 2,
    저압 다층 파형 스프링(631)은, 제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)을 포함하며, 제1 저압 파형 스프링(631a) 및 제2 저압 파형 스프링(631b)은 서로 다른 재질과 두께로 형성된 맥동 감소기.The low pressure multilayer wave spring 631 includes a first low pressure wave spring 631a and a second low pressure wave spring 631b, and the first low pressure wave spring 631a and the second low pressure wave spring 631b are different from each other. Pulsation reducer formed of material and thickness.
  4. 제2항에서,In claim 2,
    저압 스프링 커버(632) 가장자리와 저압 다층 파형 스프링(631) 가장자리 및 저압 운동공간(613)을 이루는 스프링 하우징(61) 내부 면은 중첩되어 있으며, 저압 스프링 커버(632) 내면 가장자리에는 원주 방향을 따라 저압 다층 파형 스프링(631)의 가장자리가 삽입되는 가압 홈(634b)이 형성되어 있고, 스프링 하우징(61) 내부면에는 저압 다층 파형 스프링(631)을 가압 홈(634b)으로 가압하는 가압 돌기(634a)가 형성되어 있으며, 저압 스프링 커버(632) 외면은 스프링 하우징(61) 내부면과 밀착된An inner surface of the spring housing 61 constituting the edge of the low pressure spring cover 632, the edge of the low pressure multi-layer corrugated spring 631, and the low pressure motion space 613 overlaps, and an inner edge of the low pressure spring cover 632 along the circumferential direction A pressing groove 634b into which an edge of the low pressure multi-layer corrugated spring 631 is inserted is formed, and a pressing protrusion 634a for pressing the low-pressure multi-layer corrugated spring 631 into the pressing groove 634b on the inner surface of the spring housing 61. ) Is formed, the outer surface of the low-pressure spring cover 632 is in close contact with the inner surface of the spring housing 61
    맥동 감소기.Pulsation reducer.
  5. 제2항에서, In claim 2,
    저압 감소부(63)는,Low pressure reduction unit 63,
    저압 운동공간(613)을 이루는 스프링 하우징(61) 내부면과 저압 다층 파형 스프링(631) 사이에 배치되어 1차 기밀을 유지하면서 입구 확장 레일(40) 내 저압 혼합 맥동파를 흡수하는 저압 스프링 기밀 파형막(635), 그리고Low pressure spring air tightness disposed between the inner surface of the spring housing 61 constituting the low pressure motion space 613 and the low pressure multi-layer corrugated spring 631 to absorb the low pressure mixed pulsating wave in the inlet expansion rail 40 while maintaining the primary air tightness Waveform film 635, and
    스프링 하우징(61) 내부면과 저압 스프링 커버(632) 외면 사이에 배치된 저압 스프링 커버 오링(636)Low pressure spring cover o-ring 636 disposed between the inner surface of the spring housing 61 and the outer surface of the low pressure spring cover 632.
    을 더 포함하는Containing more
    맥동 감소기.Pulsation reducer.
  6. 제1항에서,In claim 1,
    고압 감소부(64)는,High pressure reduction unit 64,
    고압 영역의 혼합 맥동파를 감쇄시키는 고압 다층 파형 스프링(641) 및A high pressure multilayer corrugated spring 641 that attenuates mixed pulsating waves in the high pressure region; and
    고압 다층 파형 스프링(641)을 고압 운동공간(614) 내에 고정하는 고압 스프링 커버(642)High pressure spring cover 642 securing high pressure multilayer corrugated spring 641 in high pressure movement space 614.
    를 포함하고,Including,
    고압 다층 파형 스프링(641)의 내면 중앙부는 연통 홀(612b)을 통해 연료 저장공간(611)과 연결되어 있고, 서로 마주하는 고압 다층 파형 스프링(641) 외면과 고압 스프링 커버(642)의 내면 중앙 부분은 서로 곡면 형상의 공간을 형성하고 있고 그 사이에 고압 다층 파형 스프링(641)이 진동하는 고압 스프링 운동공간(642a)이 형성된The inner center of the high pressure multilayer corrugated spring 641 is connected to the fuel storage space 611 through the communication hole 612b, and the outer surface of the high pressure multilayer corrugated spring 641 and the inner center of the high pressure spring cover 642 facing each other. The portions form a curved space with each other, and a high pressure spring motion space 642a in which the high pressure multilayer corrugated spring 641 vibrates is formed therebetween.
    맥동 감소기.Pulsation reducer.
  7. 제6항에서,In claim 6,
    고압 다층 파형 스프링(641)은, 제1 고압 파형 스프링(641a), 제2 고압 파형 스프링(641b) 및 제3 고압 파형 스프링(641c)을 포함하며, 제1 고압 파형 스프링(641a)과 제2 고압 파형 스프링(641b) 및 제3 고압 파형 스프링(641c)이 서로 다른 재질과 두께로 구성된 맥동 감소기.The high pressure multilayer wave spring 641 includes a first high pressure wave spring 641a, a second high pressure wave spring 641b, and a third high pressure wave spring 641c, and includes a first high pressure wave spring 641a and a second A pulsation reducer in which the high pressure wave spring 641b and the third high pressure wave spring 641c are made of different materials and thicknesses.
  8. 제6항에서,In claim 6,
    고압 스프링 커버(642) 가장자리와 고압 다층 파형 스프링(641) 가장자리 및 고압 운동공간(614)을 이루는 스프링 하우징(61) 내부 면은 중첩되어 있으며, 고압 스프링 커버(642) 내면 가장자리에는 원주 방향을 따라 고압 다층 파형 스프링(641)의 가장자리가 삽입되는 가압 홈(644b)이 형성되어 있고, 스프링 하우징(61) 내부면에는 고압 다층 파형 스프링(641)을 가압 홈(644b)으로 가압하는 가압 돌기(644a)가 형성되어 있으며, 고압 스프링 커버(642) 외면은 스프링 하우징(61) 내부면과 밀착된The inner surface of the spring housing 61 constituting the edge of the high pressure spring cover 642 and the edge of the high pressure multilayer corrugated spring 641 and the high pressure movement space 614 is overlapped, and the inner edge of the high pressure spring cover 642 along the circumferential direction. A pressing groove 644b is formed in which an edge of the high pressure multilayer corrugated spring 641 is inserted, and a pressing protrusion 644a pressurizes the high pressure multilayer corrugated spring 641 to the pressing groove 644b on the inner surface of the spring housing 61. ) Is formed, the outer surface of the high-pressure spring cover 642 is in close contact with the inner surface of the spring housing 61
    맥동 감소기.Pulsation reducer.
  9. 제6항에서,In claim 6,
    고압 감소부(64)는,High pressure reduction unit 64,
    고압 운동공간(614)을 이루는 스프링 하우징(61) 내부면과 고압 다층 파형 스프링(641) 사이에 배치되어 1차 기밀을 유지하면서 입구 확장 레일(40)내 고압 혼합 맥동파를 흡수하는 고압 스프링 기밀 파형막(645), 그리고The high pressure spring airtight which is disposed between the inner surface of the spring housing 61 constituting the high pressure motion space 614 and the high pressure multilayer corrugated spring 641 to absorb the high pressure mixed pulsation wave in the inlet expansion rail 40 while maintaining the primary airtightness. Waveform film 645, and
    스프링 하우징(61) 내부면과 고압 스프링 커버(642) 외면 사이에 배치된 고압 스프링 커버 오링(646)High pressure spring cover o-ring 646 disposed between the inner surface of the spring housing 61 and the outer surface of the high pressure spring cover 642.
    을 더 포함하는Containing more
    맥동 감소기.Pulsation reducer.
  10. 제1항에서,In claim 1,
    연결부(62a)는,The connecting portion 62a is
    입구 확장 연료 레일(40)과 결합될 수 있는 연결 닛블(621),Connecting nibble 621, which may be engaged with the inlet expansion fuel rail 40,
    스프링 하우징(61)과 연결되어 있고 연결 닛블(621)과 분리할 수 있게 결합된 연결관(622),A connecting pipe 622 connected to the spring housing 61 and detachably coupled to the connecting nibble 621;
    연결관(622)과 연결 닛블(621)을 결합하는 연결 너트(624) 및A connecting nut 624 for coupling the connecting pipe 622 to the connecting nibble 621; and
    연결관(622) 하면과 마주하는 연결 닛블(621) 내부 면 사이에 배치된 닛블 오링(625b)Nibble O-ring 625b disposed between the inner surface of the connecting nib 621 facing the lower surface of the connecting pipe 622.
    을 포함하는Containing
    맥동 감소기.Pulsation reducer.
  11. 제10항에서,In claim 10,
    연결부(62a)는,The connecting portion 62a is
    연결 닛블(621)과 연결관(622)이 접하는 부분에 형성된 위치 설정 홈(623a) 및 위치 설정 돌기(623b)를 더 포함하고,It further includes a positioning groove 623a and a positioning protrusion 623b formed at a portion where the connecting nibble 621 and the connection pipe 622 contact each other.
    위치 설정 돌기(623b)가 위치 설정 홈(623a)에 삽입되면 스프링 하우징(61)의 방향이 설정되는When the positioning projection 623b is inserted into the positioning groove 623a, the direction of the spring housing 61 is set.
    맥동 감소기. Pulsation reducer.
  12. 제1항에서,In claim 1,
    연결부(62b)는,The connecting portion 62b is
    체결 홀(626d)을 가지며 입구 확장 연료 레일(40)과 결합될 수 있는 연결 소켓(626),A connecting socket 626 having a fastening hole 626d and which can be engaged with the inlet expansion fuel rail 40;
    스프링 하우징(61)에 형성되어 있고 체결 홀(626d)에 체결된 플랜지 볼트(627) 및A flange bolt 627 formed in the spring housing 61 and fastened to the fastening hole 626d;
    플랜지 볼트(627)와 연결 소켓(626) 사이에 있는 소켓 오링(626c)Socket o-ring 626c between flange bolt 627 and connecting socket 626
    을 포함하며,Including;
    연결 소켓(626) 및 플랜지 볼트(627) 내부에는 입구 확장 연료 레일(40) 내부와 연료 저장공간(611)을 연결하는 소켓 통로(626a)와 플랜지 연결통로(627a)가 형성되어 있는In the connecting socket 626 and the flange bolt 627, a socket passage 626a and a flange connecting passage 627a are formed to connect the inside of the inlet expansion fuel rail 40 and the fuel storage space 611.
    맥동 감소기.Pulsation reducer.
  13. 제1항에서,In claim 1,
    연결부(62c)는,The connecting portion 62c is
    스프링 하우징(61)에서 돌출된 하우징 연결관(628) 및Housing connector 628 protruding from the spring housing 61 and
    하우징 연결관(628)과 연결되어 있고 입구 확장 연료 레일(40) 외부 면에 접할 수 있는 연결관 플랜지(629)Connector flange 629, which is connected to the housing connector 628 and abuts the outer surface of the inlet expansion fuel rail 40.
    를 포함하고,Including,
    하우징 연결관(628) 내부에는 연료 저장공간(611)과 입구 확장 연료 레일(40) 내부를 연결하는 하우징 연결관 통로(628a)가 형성되어 있고, 입구 확장 연료 레일(40)과 스프링 하우징(61) 사이 연료 기밀을 유지하면서 브레이징면(629a)에서 일체형으로 접합되는A housing connector passage 628a is formed in the housing connector 628 to connect the fuel reservoir 611 and the inlet extension fuel rail 40, and the inlet extension fuel rail 40 and the spring housing 61. Integrally bonded at the brazing surface 629a while maintaining fuel tightness between
    맥동 감소기.Pulsation reducer.
  14. 제2항에서,In claim 2,
    저압 스프링 커버(632)의 내부 곡면에 곡면 형상의 저압 스프링 쿠션 패드(632b)를 설치하여 저압 다층 파형 스프링(631)이 진동과 팽창으로 저압 스프링 커버(632)에 접촉할 때 저압 스프링 쿠션 패드(632b)에서 충격이 완충, 흡수되는 구조로 형성된A low pressure spring cushion pad 632b having a curved shape is provided on the inner curved surface of the low pressure spring cover 632 so that the low pressure spring cushion pad (when the low pressure multi-layer corrugated spring 631 contacts the low pressure spring cover 632 by vibration and expansion ( 632b) is formed in a structure that the shock is absorbed, absorbed
    맥동 감소기.Pulsation reducer.
  15. 제6항에서,In claim 6,
    고압 스프링 커버(642)의 내부 곡면에 곡면 형상의 고압 스프링 쿠션 패드(642b)를 설치하여 고압 다층 파형 스프링(641)이 진동과 팽창으로 고압 스프링 커버(642)에 접촉할 때 고압 스프링 쿠션 패드(642b)에서 충격이 완충, 흡수되는 구조로 형성된A high pressure spring cushion pad 642b having a curved shape is installed on the inner curved surface of the high pressure spring cover 642 so that the high pressure spring cushion pad (when the high pressure multilayer wave spring 641 contacts the high pressure spring cover 642 by vibration and expansion ( 642b) formed of a structure in which the shock is absorbed and absorbed
    맥동 감소기.Pulsation reducer.
  16. 제13항에서,In claim 13,
    연결관 플랜지(629)의 하우징 연결관 통로(628a)와 연료 레일 홀(42) 사이에 삽입 튜브(647)를 삽입하여 브레이징면(629a)을 확장시켜 연결관 플랜지(629)와 입구 확장 연료 레일(40) 사이 접합 강도를 향상시키는Insert the insertion tube 647 between the housing connector passage 628a of the connector flange 629 and the fuel rail hole 42 to extend the brazing surface 629a to extend the connector flange 629 and the inlet expansion fuel rail. To improve the bonding strength between 40
    맥동 감소기.Pulsation reducer.
PCT/KR2016/009332 2015-09-14 2016-08-23 Pulsation reducer using double-sided multilayer waveform spring WO2017047941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/747,347 US10364783B2 (en) 2015-09-14 2016-08-23 Pulsation reducer using double-sided multilayer waveform spring

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0129917 2015-09-14
KR20150129917 2015-09-14
KR1020160106861A KR101873373B1 (en) 2015-09-14 2016-08-23 Pulse Reducer by Double Multilayer Diaphragm Spring
KR10-2016-0106861 2016-08-23

Publications (1)

Publication Number Publication Date
WO2017047941A1 true WO2017047941A1 (en) 2017-03-23

Family

ID=58289276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009332 WO2017047941A1 (en) 2015-09-14 2016-08-23 Pulsation reducer using double-sided multilayer waveform spring

Country Status (1)

Country Link
WO (1) WO2017047941A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261098A (en) * 1995-03-24 1996-10-08 Toyoda Gosei Co Ltd Fuel pressure pulsation damper
JP2000192872A (en) * 1998-10-22 2000-07-11 Nippon Soken Inc Fuel supply system capable of mitigating pressure pulsation
KR20090114686A (en) * 2008-04-30 2009-11-04 현대자동차주식회사 Fuel pulse sound damping device of car engine
KR20130121280A (en) * 2012-04-27 2013-11-06 황병찬 Pulsation reducer by combination spring
KR101335871B1 (en) * 2012-06-11 2013-12-02 인지컨트롤스 주식회사 Pulsation damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261098A (en) * 1995-03-24 1996-10-08 Toyoda Gosei Co Ltd Fuel pressure pulsation damper
JP2000192872A (en) * 1998-10-22 2000-07-11 Nippon Soken Inc Fuel supply system capable of mitigating pressure pulsation
KR20090114686A (en) * 2008-04-30 2009-11-04 현대자동차주식회사 Fuel pulse sound damping device of car engine
KR20130121280A (en) * 2012-04-27 2013-11-06 황병찬 Pulsation reducer by combination spring
KR101335871B1 (en) * 2012-06-11 2013-12-02 인지컨트롤스 주식회사 Pulsation damper

Similar Documents

Publication Publication Date Title
US4372120A (en) V-Type engine intake with vibration isolated manifold connector
US7334571B1 (en) Isolation system for high pressure spark ignition direct injection fuel delivery components
US6928984B1 (en) High pressure line connection strategy and fuel system using same
CN1011997B (en) Hood for covering over space between v-shaped arranged banks of cylinder of internal combustion engine
US20070113828A1 (en) Fuel injector isolating and sealing member
KR20170032171A (en) Pulse Reducer by Double Multilayer Diaphragm Spring
WO1999061786A1 (en) Fuel injector isolation
JPH08100737A (en) Two-dimensional function clamp assembly for hydraulic actuation type fuel injector
KR102157272B1 (en) Pulse Reduce Damper by Single Disc Spring
CN104271938A (en) Arrangement having a fuel distributor and having multiple fuel injection valves
JP3871016B2 (en) Fuel injector mounting structure for in-cylinder injection engine
WO2017047941A1 (en) Pulsation reducer using double-sided multilayer waveform spring
DE50110415D1 (en) ARRANGEMENT FOR THE GAS-SEAL MOUNTING OF AN INFLATOR FITTING ANCHORER ON THE CYLINDER HEAD OF A COMBUSTION ENGINE
JP3134531B2 (en) Fuel injector mounting device
JP2004518855A (en) Assembly clip and method for assembling fuel injector
JP4056449B2 (en) Side feed type fuel injection valve mounting structure
JP2559534Y2 (en) Engine soundproof cover
WO2012020934A1 (en) Pulsation dampener with disk spring
JPH0459466B2 (en)
CN217950562U (en) Diesel engine high pressure fuel pipe arrangement structure
JP2001003809A (en) Structure of intake system of cylinder injection of fuel- type engine
JP2953233B2 (en) Fuel supply piping structure of internal combustion engine
JPH06235366A (en) Installation structure of injector
KR100312346B1 (en) Protecting device of hanger rubber for fixing exauct pipe of automobiles
JPS603339Y2 (en) Assembly structure of fuel injection nozzle for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846762

Country of ref document: EP

Kind code of ref document: A1