WO2017047796A1 - Method for producing water that contains ultra-fine bubbles, apparatus for producing water that contains ultra-fine bubbles, and method for extracting food and beverage components - Google Patents

Method for producing water that contains ultra-fine bubbles, apparatus for producing water that contains ultra-fine bubbles, and method for extracting food and beverage components Download PDF

Info

Publication number
WO2017047796A1
WO2017047796A1 PCT/JP2016/077563 JP2016077563W WO2017047796A1 WO 2017047796 A1 WO2017047796 A1 WO 2017047796A1 JP 2016077563 W JP2016077563 W JP 2016077563W WO 2017047796 A1 WO2017047796 A1 WO 2017047796A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
bubbles
pressurized
ultrafine
tank
Prior art date
Application number
PCT/JP2016/077563
Other languages
French (fr)
Japanese (ja)
Inventor
敏勝 鈴木
Original Assignee
株式会社ピーシーエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ピーシーエス filed Critical 株式会社ピーシーエス
Publication of WO2017047796A1 publication Critical patent/WO2017047796A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F5/00Coffee; Coffee substitutes; Preparations thereof
    • A23F5/24Extraction of coffee; Coffee extracts; Making instant coffee
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to a method for producing water containing ultrafine bubbles, an apparatus for producing water containing ultrafine bubbles, and a method for extracting edible fats and oils such as tea, coffee, cacao butter, soybean oil and corn oil using the water containing ultrafine bubbles. About.
  • Tea such as green tea
  • Black tea and oolong tea are extracted with hot water or water after fermentation and used for drinking.
  • cacao beans are extracted with cacao butter with a press after roasting
  • soy oil as edible oil is extracted from soybeans and corn by a pressing method or extraction method, Corn oil has been extracted.
  • Patent Document 1 discloses a method of performing an extraction treatment with an aqueous solution of an enzyme having tannin decomposing activity.
  • the extraction method uses an organic solvent that dissolves oil well and extracts edible fats and oils with high heat. Therefore, the fats and oils increase trans fatty acids that are considered to cause obesity.
  • the present invention has been made in view of the above-described conventional problems, and includes a method for producing ultrafine bubble-containing water containing very fine ultrafine bubbles, an ultrafine bubble-containing water production apparatus, It is an object of the present invention to provide a method capable of extracting tea, coffee, and edible fats and oils at room temperature or ice water temperature using water containing ultrafine bubbles.
  • the present inventor has completed a method and an apparatus for continuously producing a large amount of ultrafine bubble-containing water containing ultrafine bubbles having a size of less than 30 nm and a size of 3 mm or more.
  • tea or coffee can be extracted, cacao butter from cocoa beans, edible oil from soybeans and corn, etc. using water containing ultrafine bubbles at room temperature or ice temperature. Furthermore, since fine particles and organic substances can be washed away, it has been found that fresh foods and substrates can be washed without using a detergent.
  • a process of producing water containing fine bubbles by sucking gas from an ejector by negative pressure generated by a jet of water, or jetting fine bubbles into water, and a storage type after pressurizing the water containing fine bubbles Pumped as a downward swirling flow in the upper part of the pressurized water tank, large bubbles are gathered at the center of the swirling flow, and water in the central part of the swirling flow is continuously discharged from the upper end of the tank together with the large bubbles. And a step of discharging the ultrafine bubble-containing water from the lower part.
  • It has a pressurized water supply system capable of supplying pressurized water containing fine bubbles and a bubble-containing water separator, and the bubble-containing water separator comprises a storage-type pressurized water tank having a circular cross section, and is provided at the top.
  • a pressurized water inflow port through which fine bubble-containing water pumped from the pressurized water supply system flows, a pressurized water discharge port provided at a lower portion, a central water discharge port provided at an upper end, and a pressurized water inflow port.
  • a swirling flow forming pipe that makes the inflowing pressurized water a downward swirling flow along the circumferential surface in the tank, and the central water discharge port is water in the central portion of the swirling flow in the accumulation-type pressurized water tank.
  • the pressurized water discharge port is characterized in that the remaining pressurized water discharged from the central water discharge port can be discharged as ultrafine bubble-containing water.
  • Ultrafine bubble-containing water production apparatus By the above method or apparatus, ultrafine bubble-containing water can be produced in a large amount at a low cost and at a high speed.
  • a step of producing water containing fine bubbles by ejecting water from a nozzle and sucking gas from an ejector by negative pressure generated by the jet, or jetting fine bubbles into water; After pressurization, it is pumped as a downward swirling flow to the upper part of the accumulation type pressurized water tank, large bubbles are gathered at the center of the swirling flow, and the water in the central portion of the swirling flow is continuously from the upper end of the tank together with the large bubbles.
  • Water extraction method of dietary components consisting comprises a degree, the.
  • ultrafine bubbles When water containing ultrafine bubbles is stirred, ultrafine bubbles enter from the surface of the extract, for example, roasted coffee beans, adhere to ultrafine particles of the active ingredient on the surface and inside, and are discharged to the outside. As a result, they are extracted with water or float as they are.
  • the fine particles to which the ultrafine bubbles are attached become floating separations and float on the liquid surface, and the remaining extractables are precipitated as precipitation separations at the bottom of the liquid storage part.
  • the fine particles to which bubbles larger than the ultrafine bubbles are attached try to settle while the bubbles are ruptured, but the ultrafine bubbles are attached and floated.
  • the present invention there is an effect that a large amount of water containing ultrafine bubbles can be produced at high speed.
  • it can extract almost all active ingredients from tea leaves, coffee beans, soybeans, corn nuts, corn beans, etc. in a short time with ultra-fine bubble-containing water in the state of room temperature water or ice water without using a solvent. It has the effect of being able to.
  • the front view which shows the ultrafine bubble containing water manufacturing apparatus used for the Example 1 The front view which made the cross section expanded and shows the air-water mixing part in the apparatus Sectional drawing which expands and schematically shows the nozzle in the same-air mixing unit Side view showing a swirl flow forming device comprising fixed blades attached to the nozzle
  • the front view made into the partial cross section which shows the bubble containing liquid separation apparatus which comprises a part of ultra fine bubble containing water manufacturing apparatus based on the Example Sectional view taken along line VII-VII in FIG.
  • the flowchart which shows the other example of the ultrafine bubble presence confirmation method in an Example Pipeline diagram showing another form of water production apparatus containing ultrafine bubbles The block diagram which shows the edible oil-water extraction apparatus which concerns on Example 2 of this invention.
  • the green tea cold water extraction apparatus 1 includes an ultrafine bubble-containing water production apparatus 10 for water extraction, a green tea cold water stirring apparatus 80, a filter 90, and a cold water extraction tea container. 92.
  • the ultrafine bubble-containing water production apparatus 10 continuously produces a large amount of ultrafine bubble-containing water containing ultrafine bubbles having a size of less than 30 nm and a size of 3 mm or more.
  • the ultrafine bubble-containing water produced by the ultrafine bubble-containing water production device 10 is pressurized and allowed to flow into the stirring tank 82 in which the ultrafine air-packed water is stored.
  • the cold water is circulated in the tank 82.
  • a circulation device 83 for circulating water containing ultrafine bubbles and tea leaves is provided.
  • the circulation device 83 includes a swirl discharge pipe 83A, a swirl flow guide 83B, and a gap 83C.
  • the swirl discharge pipe 83A is provided to protrude from an end portion (left end portion in the figure) in the agitation tank 82, and has a tip opening as an inflow port 84A.
  • the mixed water of tea leaves and water containing ultrafine bubbles is inclined upward. Further, it is shaped like a curved pipe to be ejected to the inside of the agitating tank 82 and further ejected as a swirling flow into the stirring tank 82 by a fixed fin.
  • the swirling flow guide 83B surrounds the swirling discharge pipe 83A, and is a cylindrical body that opens obliquely upward and guides the swirling flow discharged therefrom, and is ejected from the inflow port 84A. It arrange
  • the gap 83C is provided between the lower end opening of the swirling discharge pipe 83A and the bottom of the stirring tank 82, and the swirling flow circulating in the stirring tank 82 flows into the swirling discharge pipe 83A from the lower end opening. .
  • the green tea cold water extraction device 1 is a batch process, and in the case of cold water, a maximum amount of green tea that has been charged is stirred for a maximum of 5 minutes to extract active ingredients from the green tea. After one batch is completed, the cold water containing green tea in the tank is filtered through the filter 90 to remove the tea leaves after extraction, and the cold water containing the extracted components is stored in the cold water extraction tea container 92, from which the bottle The product is subdivided into products.
  • the ultrafine bubble-containing water production apparatus 10 includes an air / water mixing unit 20, a nozzle 30 (see FIG. 3) provided in the air / water mixing unit 20, a swirling flow, and the like.
  • a forming apparatus 40 (see FIGS. 4 and 5), a pressurized water supply system 50, and a bubble-containing water separator 60 (see FIGS. 6 and 7) are configured.
  • the air-water mixing unit 20 includes a water flow path 22 through which water can flow, a water inflow port 24 provided at one end (right end in FIG. 3), and the other end of the water flow path 22. Gas can flow into the water flow path 22 from the side (upper side in FIG. 3) at the position between the discharge port 26 of the bubble-containing water provided at (the left end in FIG. 3) and the inflow port 24 and the discharge port 26. And an ejection port 28 formed in the above.
  • the nozzle 30 for water ejection is provided which protrudes into the water flow path 22 and whose tip 30A is opened at the position of the ejection port 28.
  • the swirl flow forming device 40 including four stationary blades 42 in the circumferential direction is provided from the base end 30 ⁇ / b> B of the nozzle 30 to the nozzle 30. It is inserted and fixed inside.
  • the water swirled by the swirl flow forming device 40 when flowing through the nozzle 30 is jetted from the tip 30A in a swirl flow, but the position of the tip 30A of the nozzle 30 is from the tip 30A.
  • the discharge flow of the gas sucked out from the ejection port 28 by the negative pressure formed by the previous swirl flow is determined so as to flow into the swirl flow.
  • the gas is N 2 gas so that the extracted component is not oxidized.
  • N 2 gas is formed from liquid nitrogen, it is convenient to cool the water by the cold heat to make cold water.
  • the nozzle 30 includes a gas guide device 44 configured by a cylindrical guide that surrounds the tip 30A at an interval.
  • the gas guide device 44 is configured to guide the discharge flow of the gas sucked into the water flow path 22 from the ejection port 28 so as to flow into the swirling flow of water ejected from the tip 30 ⁇ / b> A of the nozzle 30.
  • the nozzle 30 has a tapered shape
  • the gas guide device 44 has a tapered inner peripheral surface 44A that tapers in the direction of water ejection, and an axial intermediate portion of the tapered inner peripheral surface 44A is provided.
  • the nozzle 30 is attached to the nozzle 30 by screws (not shown) so as to be positioned at the tip 30A of the nozzle 30.
  • an inflow pipe 52 is connected to the inflow port 24 of the air / water mixing unit 20 by screwing. Further, a discharge pipe 54 is connected to the discharge port 26 by screwing in the same manner as the inflow pipe 52. Further, the gas introduction pipe 28A is also connected to the ejection port 28 by screwing. A gas introduction amount control valve 28B is provided in the middle of the gas introduction pipe 28A.
  • the pressurized water supply system 50 is connected to an inflow pipe 52 and a discharge pipe 54, a pressurizing pump 56 capable of supplying pressurized water containing fine bubbles to the inflow pipe 52, and a suction side of the pressurizing pump 56, and gas is mixed.
  • An inflow pipe 52 is connected in the middle of the pumping pipe 58, a discharge pipe 54 is connected to the raw water supply pipe 57, and a part of the ultrafine bubble-containing water formed in the air / water mixing unit 20 is discharged to the discharge pipe 54.
  • the raw water supply pipe 57, the pressure pump 56, the pressure feed pipe 58, and the inflow pipe 52 are configured to return to the inflow port 24 of the air / water mixing unit 20.
  • Reference numeral 56 ⁇ / b> A in FIG. 2 indicates a motor for driving the pressurizing pump 56.
  • the pressure feed pipe 58 of the pressurized water supply system 50 is connected to the bubble-containing water separation device 60 shown in FIGS. 6 and 7 so as to supply water containing ultrafine bubbles in a pressurized state.
  • the bubble-containing water separation device 60 is composed of a storage-type pressurized water tank having a circular cross section, and is provided on the upper side surface of the tank, and a pressurized water inflow port 61 into which ultrafine bubble-containing water pumped through a pressure feed pipe 58 flows in,
  • the pressurized water discharge port 62 provided on the side surface, the central water discharge port 63 provided at the upper end of the tank, and the pressurized water inflow port 61 are provided on the inner side of the pressurized water.
  • a swirl flow forming pipe 64 is provided on the inner side of the pressurized water.
  • the swirling flow forming pipe 64 is configured to supply pressurized ultrafine bubble-containing water flowing in the radial direction from the pressurized water inflow port 61 in the circular tank cross section to the inner peripheral surface of the circular cross section tank.
  • the pressure water is guided in a counterclockwise direction and a spiral flow that is slightly obliquely downward.
  • Water flowing in from the pressurized water inflow port 61 is discharged out of the tank from a pressurized water discharge port 62 and a central water discharge port 63 provided on the lower side surface of the tank, and each discharge amount is in the vicinity of the central water discharge port 63. It is controlled by the provided discharge amount control valve 65.
  • the pressurized water flowing into the tank is turned into a swirl flow by the swirl flow forming pipe 64, but the central water discharge port 63 is provided at the center position of the upper end surface of the tank. Water is discharged from the central water discharge port 63, and water in the outer portion of the swirling flow is discharged from the pressurized water discharge port 62.
  • the part with a relatively large specific gravity including ultrafine bubbles is outside the swirl, and the water containing the bubbles larger than this has a relatively small specific gravity and collects in the central part of the swirling flow.
  • the portion of the water flowing into the tank that contains relatively large bubbles is discharged from the central water discharge port 63, and the remaining water is discharged from the pressurized water discharge port 62 in a state that contains more ultrafine bubbles. . This reduces the chance that the fine bubbles come into contact with the large bubbles and makes them difficult to break.
  • the raw water to be mixed with gas is sucked from the raw water supply pipe 57 by the pressurizing pump 56, and is pressurized and sent out from the pressure feeding pipe 58.
  • a part of the water in the pressure feeding pipe 58 reaches the air / water mixing section 20 through the inflow pipe 52 and the inflow port 24. The remainder reaches the pressurized water inflow port 61 of the bubble-containing water separator 60.
  • the water flowing in from the inflow port 24 of the air / water mixing unit 20 remains swirled by the swirl flow forming device 40 provided at the base end 30B of the nozzle 30 and enters the water flow path 22 from the tip 30A of the nozzle 30. Erupted.
  • the pressure in the air / water mixing unit 20 is set higher than the external pressure, for example, 2.5 to 6.0 kg / cm 2 .
  • the negative pressure applied to the ejection port 28 is compared with the case of flowing water in a normal linear shape. Therefore, the gas can be reliably discharged from the ejection port 28 even when the pressure in the air / water mixing section 20 is higher than the external pressure.
  • the spiral flow of water ejected from the tip 30A of the nozzle 30 entrains water in the water flow path 22 and gas from the ejection port 28 to form a spiral flow.
  • the gas sucked from the ejection port 28 is entrained as a spiral flow along the taper outer peripheral surface 31 of the nozzle 30 and between the taper inner peripheral surface 44A of the gas guide device 44 and is ejected from the nozzle 30 here. It is strongly mixed in the spiral flow of water.
  • cavitation is repeatedly generated and destroyed in the spiral flow mixed with gas, and each time the bubbles formed by the gas are broken into small pieces, the size of which is almost 100 nm or less, 30 nm or less, and further 10 to 3 mm. It becomes a super fine bubble.
  • the water containing ultrafine bubbles passes through the discharge port 26 and the discharge pipe 54 of the air / water mixing unit 20 and reaches the raw water supply pipe 57, from which it is sucked and pressurized by the pressure pump 56, and the pressure feed pipe. 58.
  • a part of the pressurized water sent out is supplied to the gas-water mixing unit 20 and the generation and destruction of bubbles due to cavitation is repeated, and the remaining large bubbles are also made into smaller ultrafine bubbles. .
  • the size of the contained bubbles is almost 100 nm or less, but the ratio of 30 nm or less is increased by passing the air-water mixing unit 20 a plurality of times. Moreover, although not all of the bubbles, bubbles of less than 10 mm and 3 mm or more could be confirmed.
  • the measurement can be performed as follows using an artificial zeolite whose void size is previously designed to be 3 mm or more.
  • the present inventor was able to confirm that there were bubbles having a size of less than 10 to 3 mm in the produced ultrafine bubble-containing water.
  • the ultrafine bubbles were mixed with water when the size was less than 10 mm, and when the size was less than 10 mm, the wavelength of the visible light was not exceeded, and transparent ultrafine bubbles could not be visually confirmed.
  • the above phenomenon was caused when the fine pores and the pore diameter of the artificial zeolite were 10 mm or less, and this was considered to be less than 10 mm.
  • the ultrafine bubbles are assumed to have a size of 30 nm or less, which has been considered impossible to measure in the past.
  • ultrafine bubbles containing bubbles having a size of less than 10 mm which could not be confirmed by visual observation, were discharged from the outlet of the pressure feed tube 58 from 600 t / day to 1250 t of ultrafine bubble-containing water.
  • the amount of water per day could be dissolved at a rate of 15 to 20 liters / minute. Gas and were similar case of the N 2.
  • the air-water mixing unit 20 is used in which the swirling flow of water is applied to the ejector to suck out the gas.
  • a general ejector having a structure in which the flow of straight water is simply applied to the port.
  • the above-described bubble-containing water separation device 60 is used to sort out the ultrafine bubbles over time, or the bubble-containing water separation devices 60 are provided in multiple stages. If selected, water with a high content of ultrafine bubbles can be produced.
  • the ultrafine bubble-containing water is supplied to the pressurized water inflow port 61 of the bubble-containing water separator 60 via the pressure feed pipe 58.
  • the pressurized water supplied from the pressurized water inflow port 61 is always filled in the tank-shaped bubble-containing water separator 60 and discharged from the central water discharge port 63 and the pressurized water discharge port 62 to the outside as much as the inflow amount of the pressurized water.
  • the pressurized water supplied from the pressure feed pipe 58 via the pressurized water inflow port 61 into the pressurized water filled in the bubble-containing water separator 60 is contained in a tank constituting the bubble-containing water separator 60 by the swirl flow forming pipe 64. It flows into the tank as an obliquely downward swirling flow along the peripheral surface.
  • a large downward and counterclockwise swirl flow is formed in the tank, and water having a relatively low specific gravity including relatively large bubbles gathers at the center thereof, and a portion along the inner peripheral surface of the tank is relatively Ultrafine bubble-containing water containing small ultrafine bubbles and having a large specific gravity gathers, the former being discharged from the central water discharge port 63 and the latter being discharged from the pressurized water discharge port 62.
  • the relatively large bubbles that were separated were about 5% of the total amount of bubbles added with ultrafine bubbles, but almost all of them could be separated and removed.
  • the abundance of fine bubbles of 100 nm or less or 30 nm or less, 10 cm or more is small, and the content ratio of ultrafine bubbles having a size of 10 cm or less is large. Become.
  • the ultrafine bubbles are not lost together with the relatively large microbubbles having a size of 10 mm or more, and the unique function of the ultrafine bubbles can be exhibited in the subsequent stage. become able to.
  • Fig. 8 shows a flowchart of the above confirmation procedure.
  • the air / water mixing unit 20 is configured such that the water containing ultrafine bubbles is repeatedly circulated, but the present invention is not limited to this, and the air / water mixing unit 20 is finally super
  • the configuration may be such that, before the formation of the fine bubbles, the air / water mixing unit 20 is supplied in a state of water containing fine bubbles containing at least slightly larger bubbles than the ultrafine bubbles.
  • a first air / water mixing unit 70 corresponding to the air / water mixing unit 20 and fine bubbles in the first air / water mixing unit 70. It is necessary to provide the second air / water mixing unit 72 corresponding to the air / water mixing unit 20 for supplying the contained water in a two-stage configuration and to circulate the ultrafine bubble-containing water from the first air / water mixing unit 70. Try not to have it.
  • the air / water mixing section may inject fine bubbles into water to form fine bubble-containing water without using an ejector.
  • a first pressure pump 74 that supplies fine bubble-containing water to the first air / water mixing unit 70 and a second pressure pump that pressurizes and supplies raw water to the second air / water mixing unit 72. 76.
  • green tea is poured into the ultrafine bubble-containing water stored in the stirring tank 82, and the ultrafine bubble-containing water is repeatedly brought into contact with the surface of the green tea by the flow of pressurized water.
  • Components adhering to the surface and cracks of green tea such as organic fine particles such as catechin, are separated by the entry of ultrafine bubbles between this and the extract, and the ultrafine bubbles adhere and float.
  • the process of organic fine particles adhering to the surface of ultrafine bubbles can be said to be dynamic extraction that is close to the adsorption phenomenon by chemical sorption due to the high surface activity of the ultrafine bubbles and is attracted to the surface. Since the surface activity increases as the diameter of the ultrafine bubbles decreases, sufficient sorption is possible even with a slight contact time between the ultrafine bubbles and the organic fine particles.
  • the green tea cold water extraction device 1 performs batch processing on the extract
  • the present invention is not limited to this, and may be continuously processed.
  • the extractables include fermented black tea, fermented oolong tea, roasted coffee beans and the like in addition to roasted green tea.
  • This edible oil / water extraction apparatus 100 includes an ultrafine bubble-containing water production apparatus 10, an extract water agitator 110, and a filter 120, as in the green tea cold water extraction apparatus 1 according to the first embodiment. Further, an oil / water separator 130 is provided.
  • the oil / water separator 130 separates the water containing ultrafine bubbles, including the oil after the extractable substance is filtered by the filter 120, into edible oil and water based on the specific gravity difference. Only the oil separated above is collected separately from water and collected in the edible oil container 140. In addition, when there is oil in the inside of shells such as soybean, corn, sesame oil, etc., it is preferable to extract after squeezing the whole to destroy the shell.
  • the to-be-extracted substance in Example 2 is the fruit containing the edible fats and oils, such as an oil palm pulp, roasted cocoa beans, soybeans, a corn nut, and a sesame seed, or a pulp.
  • the edible fats and oils such as an oil palm pulp, roasted cocoa beans, soybeans, a corn nut, and a sesame seed, or a pulp.
  • the present invention is not limited to roasted green tea according to the above-mentioned examples, soybeans, and corn fruits, but generally edible oils that can be extracted by organic solvents or pressing. It is applicable to extraction, and can be used for extraction when an extract obtained by extracting an active ingredient from green tea, black tea, oolong tea, coffee beans or the like is used.
  • the present inventor conducted an experiment of extracting and separating fish blood components (fish processing wash water) uniformly dispersed in fresh water and seawater.
  • the temperature of the water in which the fish blood components are dispersed was about 8 ° C.
  • fish discharge components are dispersed in normal river water, and if this component is rich, the odor may not be tolerated.
  • the present inventor treated the 15 ° C. river water pumped up as normal industrial water with water containing ultrafine bubbles, and as shown in Table 2 below.
  • the trimethylamine odor becomes prominent on the water surface several minutes after the start of the treatment, and it can be visually observed that fine suspended substances are separated on the film (thin film) formed on the surface. It was.
  • the trimethylamine odor is a discharge component of fish, and usually has high solubility even in river water, and will not be separated naturally unless an operation such as extraction is performed.
  • suspended matter is usually not visible.
  • Ultrafine bubbles are extracted not only by suspended substances but also by components that are transparently dissolved in water by sorbing fish discharge components on the surface of the ultrafine bubbles because the surface has high chemical activity. I was able to separate.
  • the separated suspended matter can be used as feed.
  • the ultrafine bubble-containing water used for separation of these fish blood components and trimethylamine is produced by the ultrafine bubble-containing water production apparatus 10 described above.
  • the components separated on the surface can be scooped or recovered from the surface current of the stirring tank.
  • the present invention is also applicable to a method for producing ultrafine bubble-containing water or an apparatus therefor. Further, the produced ultrafine bubble-containing water is used not only for extracting components such as tea leaves but also for fresh vegetables such as vegetables. It can be used to clean industrial products such as food and circuit boards without detergent.
  • the present invention has applicability to industries that produce a large amount of ultrafine bubble-containing water that can clean substrates and foods without detergent, and industries that use the water. It can also be used in businesses that extract cold tea by extracting tea components, organic components from coffee beans, and edible oils that are efficiently extracted from soybeans and corn at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

An apparatus 10 for producing water that contains ultra-fine bubbles has: a pressurized water supply system 50 for pressurizing water that contains ultra-fine bubbles produced by suctioning in air from an ejection port 28 using the low pressure that accompanies a current of water jetted from a nozzle 30; and a device 60 for separating out water that contains bubbles, the device 60 comprising a storage-type pressurized-water tank. The device 60 for separating water that contains bubbles has: a pressurized-water inflow port 61 for pumping the pressurized water to an upper part within the tank as a downward swirling flow and allowing the pressurized water to flow into said port 61; a central-part water discharge port 63 for continuously discharging, from the upper end of the tank, water in the central portion of the swirling flow that includes large bubbles collected in the center of the swirling flow; and a pressurized-water outlet port 62 for letting out, from the lower part of the tank, water that contains ultra-fine bubbles after the water that contains large bubbles is separated out. The apparatus 10 for producing water that contains ultra-fine bubbles is configured so as to obtain the water that contains ultra-fine bubbles from the pressurized-water outlet port 62.

Description

超微細気泡含有水製造方法、超微細気泡含有水製造装置及び飲食用成分の水抽出方法Ultrafine bubble-containing water production method, ultrafine bubble-containing water production apparatus, and water extraction method for food and drink ingredients
 本発明は、超微細気泡含有水製造方法、超微細気泡含有水製造装置、及び、超微細気泡含有水を用いた、茶、コーヒー、カカオバター、大豆油、コーン油等の食用油脂の抽出方法に関する。 The present invention relates to a method for producing water containing ultrafine bubbles, an apparatus for producing water containing ultrafine bubbles, and a method for extracting edible fats and oils such as tea, coffee, cacao butter, soybean oil and corn oil using the water containing ultrafine bubbles. About.
 茶、例えば、緑茶は、焙煎後に湯や水で茶成分を抽出して、飲用に供されている。また、紅茶やウーロン茶は、発酵後に湯や水によって抽出され飲用に供されている。 Tea, such as green tea, is used for drinking after roasting by extracting tea ingredients with hot water or water. Black tea and oolong tea are extracted with hot water or water after fermentation and used for drinking.
 更に、コーヒーは、焙煎後に湯により抽出され、カカオ豆は焙煎後に圧搾機によりカカオバターが抽出され、また、圧搾法や抽出法により大豆やコーン等からは、食用油としての大豆油、コーンオイルが抽出されている。 Furthermore, coffee is extracted with hot water after roasting, cacao beans are extracted with cacao butter with a press after roasting, and soy oil as edible oil is extracted from soybeans and corn by a pressing method or extraction method, Corn oil has been extracted.
 特許文献1には、タンニン分解活性を有する酵素の水溶液で抽出処理する方法が開示されている。 Patent Document 1 discloses a method of performing an extraction treatment with an aqueous solution of an enzyme having tannin decomposing activity.
 茶及びコーヒーの抽出は、水よりも湯を用いたほうがより多くの成分を抽出することができる。また、食用油脂の場合、圧搾法と抽出法が用いられ、圧搾法による抽出は効率が低いので、製品としては高価になる。また、抽出法は、油をよく溶かす有機溶媒を使って、食用油脂を高熱で抽出するので、その油脂が、肥満の原因となるとされているトランス脂肪酸を増大させてしまうという問題点がある。 In the extraction of tea and coffee, more components can be extracted using hot water than water. Moreover, in the case of edible fats and oils, a pressing method and an extraction method are used, and extraction by the pressing method is low in efficiency, so that it becomes expensive as a product. In addition, the extraction method uses an organic solvent that dissolves oil well and extracts edible fats and oils with high heat. Therefore, the fats and oils increase trans fatty acids that are considered to cause obesity.
 また、茶やコーヒーの抽出に湯を用いた場合は、湯が冷めたとき抽出液の味が落ちてしまうという問題点がある。 Also, when hot water is used to extract tea or coffee, there is a problem that the taste of the extract falls when the hot water is cooled.
 これに対して、茶の抽出方法として、氷水を用いて、茶のうまみ成分を抽出する方法があるが、抽出効率が非常に低く、したがって、その抽出水は非常に高価になってしまうという問題点がある。 On the other hand, as a tea extraction method, there is a method of extracting tea umami components using ice water, but the extraction efficiency is very low, and therefore the extraction water becomes very expensive. There is a point.
特開2015-130841号公報Japanese Patent Laid-Open No. 2015-130841
 この発明は、上記従来の問題点に鑑みてなされたものであって、非常に微細な超微細気泡を含む超微細気泡含有水を製造する方法及び超微細気泡含有水製造装置、更には、この超微細気泡含有水を用いて、常温や氷水温で茶やコーヒー及び、食用油脂を抽出することができる方法を提供することを課題とする。 The present invention has been made in view of the above-described conventional problems, and includes a method for producing ultrafine bubble-containing water containing very fine ultrafine bubbles, an ultrafine bubble-containing water production apparatus, It is an object of the present invention to provide a method capable of extracting tea, coffee, and edible fats and oils at room temperature or ice water temperature using water containing ultrafine bubbles.
 本発明者は、鋭意研究の結果、大きさが30nm未満、3Å以上の大きさの超微細気泡を含有する超微細気泡含有水を大量に且つ連続的に製造する方法及び装置を完成した。 As a result of diligent research, the present inventor has completed a method and an apparatus for continuously producing a large amount of ultrafine bubble-containing water containing ultrafine bubbles having a size of less than 30 nm and a size of 3 mm or more.
 また、常温又は氷温の超微細気泡含有水を用いて、茶やコーヒーを抽出したり、カカオ豆からカカオバターを、また、大豆やコーン等から食用油を抽出できることを見出した。更に、微細な粒子や有機物を洗い落とすことができるので、洗剤を用いることなく生鮮食品や基板の洗浄ができることを見出した。 It was also found that tea or coffee can be extracted, cacao butter from cocoa beans, edible oil from soybeans and corn, etc. using water containing ultrafine bubbles at room temperature or ice temperature. Furthermore, since fine particles and organic substances can be washed away, it has been found that fresh foods and substrates can be washed without using a detergent.
 すなわち、以下の実施例により上記課題を解決することができる。 That is, the above-described problems can be solved by the following embodiments.
 (1)水の噴流により生じる負圧によってエジェクターから気体を吸い込むか、又は水に微細気泡を噴出させて、微細気泡含有水を製造する工程と、前記微細気泡含有水を加圧してから蓄積型加圧水タンク内の上部に、下向きの旋回流として圧送し、旋回流の中心に大きな気泡を集合させ、前記旋回流の中心部分の水を前記大きな気泡とともに、タンク上端から連続的に排出し、タンク下部から超微細気泡含有水を吐出する工程と、を有してなる超微細気泡含有水製造方法。 (1) A process of producing water containing fine bubbles by sucking gas from an ejector by negative pressure generated by a jet of water, or jetting fine bubbles into water, and a storage type after pressurizing the water containing fine bubbles Pumped as a downward swirling flow in the upper part of the pressurized water tank, large bubbles are gathered at the center of the swirling flow, and water in the central part of the swirling flow is continuously discharged from the upper end of the tank together with the large bubbles. And a step of discharging the ultrafine bubble-containing water from the lower part.
 (2)微細気泡を含む加圧水を供給可能の加圧水供給系統と、気泡含有水分離装置とを有し、前記気泡含有水分離装置は、断面円形の蓄積型加圧水タンクからなり、上部に設けられた、前記加圧水供給系統から圧送される微細気泡含有水が流入する加圧水流入ポートと、下部に設けられた加圧水吐出ポートと、上端に設けられた中心部水排出ポートと、前記加圧水流入ポートに設けられ、流入する加圧水をタンク内円周面に沿う下向きの旋回流とする旋回流形成パイプと、を備え、前記中心部水排出ポートは、前記蓄積型加圧水タンク内の前記旋回流の中心部の水を連続的に排出可能とされ、前記加圧水吐出ポートは、前記中心部水排出ポートから排出された加圧水の残りの加圧水を超微細気泡含有水として排出可能とされたことを特徴とする超微細気泡含有水製造装置。
 上記方法又は装置により、超微細気泡含有水を、低コストで大量に、且つ、高速で製造することができる。
(2) It has a pressurized water supply system capable of supplying pressurized water containing fine bubbles and a bubble-containing water separator, and the bubble-containing water separator comprises a storage-type pressurized water tank having a circular cross section, and is provided at the top. A pressurized water inflow port through which fine bubble-containing water pumped from the pressurized water supply system flows, a pressurized water discharge port provided at a lower portion, a central water discharge port provided at an upper end, and a pressurized water inflow port. A swirling flow forming pipe that makes the inflowing pressurized water a downward swirling flow along the circumferential surface in the tank, and the central water discharge port is water in the central portion of the swirling flow in the accumulation-type pressurized water tank. The pressurized water discharge port is characterized in that the remaining pressurized water discharged from the central water discharge port can be discharged as ultrafine bubble-containing water. Ultrafine bubble-containing water production apparatus.
By the above method or apparatus, ultrafine bubble-containing water can be produced in a large amount at a low cost and at a high speed.
 (3)ノズルから水を噴出させ、その噴流により生じる負圧によってエジェクターから気体を吸い込むか、又は水に微細気泡を噴出させて、微細気泡含有水を製造する工程と、前記微細気泡含有水を加圧してから蓄積型加圧水タンク内の上部に、下向きの旋回流として圧送し、旋回流の中心に大きな気泡を集合させ、前記旋回流の中心部分の水を前記大きな気泡とともに、タンク上端から連続的に排出し、タンク下部から超微細気泡含有水を吐出する工程と、前記タンク下部から吐出された前記超微細気泡含有水を攪拌槽内に貯留させる工程と、前記貯留された前記超微細気泡含有水と被抽出物とを、一定時間攪拌させる工程と、前記一定時間の攪拌の後に、前記被抽出物とともに前記超微細気泡含有水を排出し、前記被抽出物を除去する工程と、を有してなる飲食用成分の水抽出方法。 (3) A step of producing water containing fine bubbles by ejecting water from a nozzle and sucking gas from an ejector by negative pressure generated by the jet, or jetting fine bubbles into water; After pressurization, it is pumped as a downward swirling flow to the upper part of the accumulation type pressurized water tank, large bubbles are gathered at the center of the swirling flow, and the water in the central portion of the swirling flow is continuously from the upper end of the tank together with the large bubbles. And discharging the ultrafine bubble-containing water from the lower portion of the tank, storing the ultrafine bubble-containing water discharged from the lower portion of the tank in the stirring tank, and storing the stored ultrafine bubbles The step of stirring the contained water and the substance to be extracted for a certain period of time, and after the stirring for the certain period of time, discharge the ultrafine bubble-containing water together with the substance to be extracted to remove the substance to be extracted Water extraction method of dietary components consisting comprises a degree, the.
 超微細気泡含有水が攪拌されると、被抽出物、例えば焙煎されたコーヒー豆の表面から、超微細気泡が入り込んで、表面や内部の有効成分の超微粒子に付着して、外部に排出し、結果として、これらが水により抽出されるか、そのまま浮遊する。 When water containing ultrafine bubbles is stirred, ultrafine bubbles enter from the surface of the extract, for example, roasted coffee beans, adhere to ultrafine particles of the active ingredient on the surface and inside, and are discharged to the outside. As a result, they are extracted with water or float as they are.
 超微細気泡が付着した微粒子は、浮上分離物となって液面に浮上し、残りの被抽出物は、沈殿分離物として貯液部の底に沈殿される。また、超微細気泡より大きい気泡が付着した微小粒子は、浮上途中で気泡が破裂して沈殿しようとするが、超微細気泡が付着して浮上される。 The fine particles to which the ultrafine bubbles are attached become floating separations and float on the liquid surface, and the remaining extractables are precipitated as precipitation separations at the bottom of the liquid storage part. In addition, the fine particles to which bubbles larger than the ultrafine bubbles are attached try to settle while the bubbles are ruptured, but the ultrafine bubbles are attached and floated.
 また、例えば、有機物を含有する大豆、コーンの実等に、大きさが30nm未満、3Å以上の超微細気泡を含有する超微細気泡含有水を混合、攪拌すると、有機物は気泡に付着されるので、大豆等の中まで入り込んで超微細気泡を付着させて、その浮力により、被付着物から浮上分離させることができる。 In addition, for example, when water containing ultrafine bubbles containing ultrafine bubbles having a size of less than 30 nm or 3 mm or more is mixed and stirred with soybeans, corn, etc. containing organic matter, the organic matter adheres to the bubbles. Then, it enters into soybeans and the like to attach ultrafine bubbles, and can float and separate from the adherend by its buoyancy.
 本発明によれば、高速で大量の超微細気泡含有水を製造できるという効果を有する。又、常温水や氷水の状態で、溶剤を用いたりすることなく、超微細気泡含有水により茶葉、コーヒー豆、大豆、コーンの実、コーン豆等からほぼ全部の有効成分を短時間で抽出することができるという効果を有する。 According to the present invention, there is an effect that a large amount of water containing ultrafine bubbles can be produced at high speed. In addition, it can extract almost all active ingredients from tea leaves, coffee beans, soybeans, corn nuts, corn beans, etc. in a short time with ultra-fine bubble-containing water in the state of room temperature water or ice water without using a solvent. It has the effect of being able to.
本発明の実施例1に係る緑茶冷水抽出装置を示すブロック図The block diagram which shows the green tea cold-water extraction apparatus which concerns on Example 1 of this invention. 同実施例1に用いる超微細気泡含有水製造装置を示す正面図The front view which shows the ultrafine bubble containing water manufacturing apparatus used for the Example 1 同装置における気水混合部を拡大して示す一部断面とした正面図The front view which made the cross section expanded and shows the air-water mixing part in the apparatus 同気水混合部におけるノズルを拡大して模式的に示す断面図Sectional drawing which expands and schematically shows the nozzle in the same-air mixing unit 同ノズルに取付けた固定翼からなる旋回流形成装置を示す側面図Side view showing a swirl flow forming device comprising fixed blades attached to the nozzle 同実施例に係る超微細気泡含有水製造装置の一部を構成する気泡含有液体分離装置を示す一部断面とした正面図The front view made into the partial cross section which shows the bubble containing liquid separation apparatus which comprises a part of ultra fine bubble containing water manufacturing apparatus based on the Example 図6のVII-VII線に沿う断面図Sectional view taken along line VII-VII in FIG. 実施例における超微細気泡存在確認方法の他の例を示すフローチャートThe flowchart which shows the other example of the ultrafine bubble presence confirmation method in an Example 超微細気泡含有水製造装置の他の形態を示す管路図Pipeline diagram showing another form of water production apparatus containing ultrafine bubbles 本発明の実施例2に係る食用油水抽出装置を示すブロック図The block diagram which shows the edible oil-water extraction apparatus which concerns on Example 2 of this invention.
 以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 この実施例1にかかる緑茶冷水抽出装置1は、図1に示されるように、水抽出用の超微細気泡含有水製造装置10と、緑茶冷水攪拌装置80と、フィルター90と、冷水抽出茶容器92とから構成されている。 As shown in FIG. 1, the green tea cold water extraction apparatus 1 according to the first embodiment includes an ultrafine bubble-containing water production apparatus 10 for water extraction, a green tea cold water stirring apparatus 80, a filter 90, and a cold water extraction tea container. 92.
 超微細気泡含有水製造装置10では、大きさが30nm未満、3Å以上の大きさの超微細気泡を含有する超微細気泡含有水を連続的に大量に生産するようにされている。 The ultrafine bubble-containing water production apparatus 10 continuously produces a large amount of ultrafine bubble-containing water containing ultrafine bubbles having a size of less than 30 nm and a size of 3 mm or more.
 緑茶冷水攪拌装置80では、超微細気包含有水が貯留される攪拌槽82内に、超微細気泡含有水製造装置10で製造された超微細気泡含有水を加圧して流入させることにより、攪拌槽82内に冷水が循環されるようにするものである。 In the green tea cold water stirring device 80, the ultrafine bubble-containing water produced by the ultrafine bubble-containing water production device 10 is pressurized and allowed to flow into the stirring tank 82 in which the ultrafine air-packed water is stored. The cold water is circulated in the tank 82.
 攪拌槽82内には、超微細気泡含有水と茶葉を循環させる循環装置83が設けられている。 In the stirring tank 82, a circulation device 83 for circulating water containing ultrafine bubbles and tea leaves is provided.
 循環装置83は、旋回吐出管83Aと、旋回流ガイド83Bと、隙間83Cから構成されている。旋回吐出管83Aは、攪拌槽82内の端部(図において左端部)に突出して設けられ、先端開口が流入口84Aとされていて、茶葉と超微細気泡含有水との混合水を斜め上向きに噴出させる湾曲パイプ形状であって、更に、固定フィンにより攪拌槽82内に旋回流として噴出させる構成とされている。 The circulation device 83 includes a swirl discharge pipe 83A, a swirl flow guide 83B, and a gap 83C. The swirl discharge pipe 83A is provided to protrude from an end portion (left end portion in the figure) in the agitation tank 82, and has a tip opening as an inflow port 84A. The mixed water of tea leaves and water containing ultrafine bubbles is inclined upward. Further, it is shaped like a curved pipe to be ejected to the inside of the agitating tank 82 and further ejected as a swirling flow into the stirring tank 82 by a fixed fin.
 また、旋回流ガイド83Bは、旋回吐出管83Aを囲んでいて、ここから吐出される旋回流を、斜め上向きに案内する、上下が開口している筒状体であって、流入口84Aから噴出された旋回流を斜め前方にガイドするように配置されている。隙間83Cは、旋回吐出管83Aの下端開口と攪拌槽82の底部との間に設けられ、攪拌槽82内を循環した旋回流が下端開口から旋回吐出管83A内に流入するようにされている。 The swirling flow guide 83B surrounds the swirling discharge pipe 83A, and is a cylindrical body that opens obliquely upward and guides the swirling flow discharged therefrom, and is ejected from the inflow port 84A. It arrange | positions so that the performed swirl | flow may be guided diagonally forward. The gap 83C is provided between the lower end opening of the swirling discharge pipe 83A and the bottom of the stirring tank 82, and the swirling flow circulating in the stirring tank 82 flows into the swirling discharge pipe 83A from the lower end opening. .
 緑茶冷水抽出装置1は、バッチ処理であり、一定量の投入された緑茶を、冷水の場合は最大5分間攪拌して、緑茶から有効成分を抽出するものである。1バッチが終了した後は、タンク内の緑茶を含む冷水を、フィルター90を通して、抽出後の茶葉を濾し取り、抽出成分を含む冷水は、冷水抽出茶容器92内に収容され、ここから、ボトル等に小分けされて製品となる。 The green tea cold water extraction device 1 is a batch process, and in the case of cold water, a maximum amount of green tea that has been charged is stirred for a maximum of 5 minutes to extract active ingredients from the green tea. After one batch is completed, the cold water containing green tea in the tank is filtered through the filter 90 to remove the tea leaves after extraction, and the cold water containing the extracted components is stored in the cold water extraction tea container 92, from which the bottle The product is subdivided into products.
 次に、水抽出用の超微細気泡含有水製造装置10について、図2~9を参照して詳細に説明する。 Next, the ultrafine bubble-containing water production apparatus 10 for water extraction will be described in detail with reference to FIGS.
 超微細気泡含有水製造装置10は、図2~図7に示されるように、気水混合部20と、この気水混合部20内に設けられたノズル30(図3参照)と、旋回流形成装置40(図4、5参照)と、加圧水供給系統50と、気泡含有水分離装置60(図6、7参照)と、を有して構成されている。 As shown in FIGS. 2 to 7, the ultrafine bubble-containing water production apparatus 10 includes an air / water mixing unit 20, a nozzle 30 (see FIG. 3) provided in the air / water mixing unit 20, a swirling flow, and the like. A forming apparatus 40 (see FIGS. 4 and 5), a pressurized water supply system 50, and a bubble-containing water separator 60 (see FIGS. 6 and 7) are configured.
 気水混合部20は、図3に示されるように、水が流通可能な水流路22と、この水流路22の一端(図3において右端)に設けられた水の流入ポート24と、他端(図3において左端)に設けられた気泡含有水の吐出ポート26と、流入ポート24と吐出ポート26との間の位置で、側方(図3において上方)から水流路22に気体が流入可能に形成されたエジェクションポート28とを備えて構成されている。 As shown in FIG. 3, the air-water mixing unit 20 includes a water flow path 22 through which water can flow, a water inflow port 24 provided at one end (right end in FIG. 3), and the other end of the water flow path 22. Gas can flow into the water flow path 22 from the side (upper side in FIG. 3) at the position between the discharge port 26 of the bubble-containing water provided at (the left end in FIG. 3) and the inflow port 24 and the discharge port 26. And an ejection port 28 formed in the above.
 流入ポート24からは、水流路22内に突出して、先端30Aがエジェクションポート28の位置に開口される水噴出のための前記ノズル30が設けられている。 From the inflow port 24, the nozzle 30 for water ejection is provided which protrudes into the water flow path 22 and whose tip 30A is opened at the position of the ejection port 28.
 このノズル30の内側には、図4、図5に拡大して示されるように、円周方向に4枚の固定翼42からなる前記旋回流形成装置40がノズル30の基端30Bからノズル30内に挿入して固定されている。 Inside the nozzle 30, as shown in enlarged views in FIGS. 4 and 5, the swirl flow forming device 40 including four stationary blades 42 in the circumferential direction is provided from the base end 30 </ b> B of the nozzle 30 to the nozzle 30. It is inserted and fixed inside.
 ここでは、ノズル30内を流れる時に旋回流形成装置40によって旋回流とされた水は旋回流のまま先端30Aから噴出される構成であるが、ノズル30の先端30Aの位置は、該先端30Aから先の旋回流により形成される負圧によってエジェクションポート28から吸い出される気体の吐出流が、旋回流に流入されるように決定されている。なお、この実施例では、気体はNガスとされ、抽出成分が酸化されないようにしている。 Here, the water swirled by the swirl flow forming device 40 when flowing through the nozzle 30 is jetted from the tip 30A in a swirl flow, but the position of the tip 30A of the nozzle 30 is from the tip 30A. The discharge flow of the gas sucked out from the ejection port 28 by the negative pressure formed by the previous swirl flow is determined so as to flow into the swirl flow. In this embodiment, the gas is N 2 gas so that the extracted component is not oxidized.
 ここで、Nガスを液体窒素から形成すると、その冷熱により水を冷却して冷水とするのに好都合である。 Here, when N 2 gas is formed from liquid nitrogen, it is convenient to cool the water by the cold heat to make cold water.
 ノズル30は、その先端30Aを間隔を空けて囲む円筒形状ガイドにより構成された気体ガイド装置44を備えている。 The nozzle 30 includes a gas guide device 44 configured by a cylindrical guide that surrounds the tip 30A at an interval.
 気体ガイド装置44は、エジェクションポート28から水流路22内に吸い出される気体の吐出流を、ノズル30の先端30Aから噴出される水の旋回流に流入すべく導くようにされている。 The gas guide device 44 is configured to guide the discharge flow of the gas sucked into the water flow path 22 from the ejection port 28 so as to flow into the swirling flow of water ejected from the tip 30 </ b> A of the nozzle 30.
 更に詳細には、ノズル30は先細りのテーパ形状とされ、気体ガイド装置44は、水の噴出方向に先細りのテーパ内周面44Aを有し、且つ、テーパ内周面44Aの軸方向中間部分が、ノズル30の先端30Aの位置となるようにノズル30にねじ(図示省略)により、取り付けられている。 More specifically, the nozzle 30 has a tapered shape, the gas guide device 44 has a tapered inner peripheral surface 44A that tapers in the direction of water ejection, and an axial intermediate portion of the tapered inner peripheral surface 44A is provided. The nozzle 30 is attached to the nozzle 30 by screws (not shown) so as to be positioned at the tip 30A of the nozzle 30.
 気水混合部20の、流入ポート24には、図2に示されるように、流入管52がねじ込みにより接続されている。又、吐出ポート26には、吐出管54が流入管52と同様にねじ込みにより接続されている。更に、エジェクションポート28にも、気体導入管28Aがねじ込みにより接続されている。この気体導入管28Aの途中には、気体導入量制御弁28Bが設けられている。 As shown in FIG. 2, an inflow pipe 52 is connected to the inflow port 24 of the air / water mixing unit 20 by screwing. Further, a discharge pipe 54 is connected to the discharge port 26 by screwing in the same manner as the inflow pipe 52. Further, the gas introduction pipe 28A is also connected to the ejection port 28 by screwing. A gas introduction amount control valve 28B is provided in the middle of the gas introduction pipe 28A.
 加圧水供給系統50は、流入管52及び吐出管54と、流入管52に微細気泡を含む加圧水を供給可能の加圧ポンプ56と、加圧ポンプ56の吸入側に接続され、気体が混合されるべき水を供給する原水供給管57と、加圧ポンプ56の吐出側に接続され、加圧された水を送り出す圧送管58とを備えている。 The pressurized water supply system 50 is connected to an inflow pipe 52 and a discharge pipe 54, a pressurizing pump 56 capable of supplying pressurized water containing fine bubbles to the inflow pipe 52, and a suction side of the pressurizing pump 56, and gas is mixed. A raw water supply pipe 57 that supplies water to be supplied and a pressure feed pipe 58 that is connected to the discharge side of the pressure pump 56 and delivers pressurized water.
 圧送管58の途中には、流入管52が接続され、原水供給管57には吐出管54が接続され、気水混合部20で形成された超微細気泡含有水の一部を、吐出管54、原水供給管57、加圧ポンプ56、圧送管58、流入管52を経て気水混合部20の流入ポート24に還流するように構成されている。図2の符号56Aは加圧ポンプ56を駆動するためのモータを示す。 An inflow pipe 52 is connected in the middle of the pumping pipe 58, a discharge pipe 54 is connected to the raw water supply pipe 57, and a part of the ultrafine bubble-containing water formed in the air / water mixing unit 20 is discharged to the discharge pipe 54. , The raw water supply pipe 57, the pressure pump 56, the pressure feed pipe 58, and the inflow pipe 52 are configured to return to the inflow port 24 of the air / water mixing unit 20. Reference numeral 56 </ b> A in FIG. 2 indicates a motor for driving the pressurizing pump 56.
 加圧水供給系統50の圧送管58は、図6、7に示される前記気泡含有水分離装置60に接続されて、ここに超微細気泡含有水を加圧状態で供給するようにされている。 The pressure feed pipe 58 of the pressurized water supply system 50 is connected to the bubble-containing water separation device 60 shown in FIGS. 6 and 7 so as to supply water containing ultrafine bubbles in a pressurized state.
 気泡含有水分離装置60は、断面円形の蓄積型加圧水タンクからなり、タンク上部側面に設けられ、圧送管58を経て圧送されてくる超微細気泡含有水が流入する加圧水流入ポート61と、タンク下部側面に設けられた加圧水吐出ポート62と、タンク上端に設けられた中心部水排出ポート63と、加圧水流入ポート61の内側に設けられ、流入する加圧水をタンク内円周面に沿う下向きの旋回流とする旋回流形成パイプ64とを備えて構成されている。 The bubble-containing water separation device 60 is composed of a storage-type pressurized water tank having a circular cross section, and is provided on the upper side surface of the tank, and a pressurized water inflow port 61 into which ultrafine bubble-containing water pumped through a pressure feed pipe 58 flows in, The pressurized water discharge port 62 provided on the side surface, the central water discharge port 63 provided at the upper end of the tank, and the pressurized water inflow port 61 are provided on the inner side of the pressurized water. And a swirl flow forming pipe 64.
 旋回流形成パイプ64は、図7に示されるように、加圧水流入ポート61から、円形のタンク断面において半径方向に流入する加圧された超微細気泡含有水を、円形断面のタンクの内周面に沿って反時計廻りで、且つ、やや斜め下向きの螺旋流となるように、加圧水を導くように構成されている。 As shown in FIG. 7, the swirling flow forming pipe 64 is configured to supply pressurized ultrafine bubble-containing water flowing in the radial direction from the pressurized water inflow port 61 in the circular tank cross section to the inner peripheral surface of the circular cross section tank. The pressure water is guided in a counterclockwise direction and a spiral flow that is slightly obliquely downward.
 加圧水流入ポート61から流入した水は、タンク下部側面に設けられた加圧水吐出ポート62と中心部水排出ポート63とからタンク外に吐出され、それぞれの排出量は、中心部水排出ポート63近傍に設けられた排出量制御弁65によって制御されるようになっている。 Water flowing in from the pressurized water inflow port 61 is discharged out of the tank from a pressurized water discharge port 62 and a central water discharge port 63 provided on the lower side surface of the tank, and each discharge amount is in the vicinity of the central water discharge port 63. It is controlled by the provided discharge amount control valve 65.
 タンクに流入する加圧水は、旋回流形成パイプ64により旋回流とされるが、中心部水排出ポート63は、タンク上端面中心部位置に設けられているので、タンク内の旋回流における中心部分の水が該中心部水排出ポート63から排出され、又、旋回流の外側部分の水は、加圧水吐出ポート62から排出される。 The pressurized water flowing into the tank is turned into a swirl flow by the swirl flow forming pipe 64, but the central water discharge port 63 is provided at the center position of the upper end surface of the tank. Water is discharged from the central water discharge port 63, and water in the outer portion of the swirling flow is discharged from the pressurized water discharge port 62.
 タンク内水は旋回流によって、超微細気泡を含んで比較的比重の大きい部分が旋回の外側に、又これより大きい気泡を含む水は比較的比重が小さく、旋回流の中心部分に集まるので、タンク内に流入した水の、比較的大きな気泡を含む部分が中心部水排出ポート63から排出され、残りの水は超微細気泡をより多く含む状態で加圧水吐出ポート62から排出されることになる。これにより微細気泡が大きな気泡に接触して包含される機会が少なくなり、微細気泡が壊れにくくなる。 Since the water in the tank is swirled, the part with a relatively large specific gravity including ultrafine bubbles is outside the swirl, and the water containing the bubbles larger than this has a relatively small specific gravity and collects in the central part of the swirling flow. The portion of the water flowing into the tank that contains relatively large bubbles is discharged from the central water discharge port 63, and the remaining water is discharged from the pressurized water discharge port 62 in a state that contains more ultrafine bubbles. . This reduces the chance that the fine bubbles come into contact with the large bubbles and makes them difficult to break.
 次に、上記超微細気泡含有水製造装置10により、超微細気泡含有水を製造する過程について説明する。 Next, the process of producing ultrafine bubble-containing water by the ultrafine bubble-containing water production apparatus 10 will be described.
 まず、加圧ポンプ56により、気体が混合されるべき原水を、原水供給管57から吸入して、圧送管58から加圧して送り出す。 First, the raw water to be mixed with gas is sucked from the raw water supply pipe 57 by the pressurizing pump 56, and is pressurized and sent out from the pressure feeding pipe 58.
 圧送管58内の水は一部が流入管52、流入ポート24を経て気水混合部20に至る。又、残りは、気泡含有水分離装置60の加圧水流入ポート61に至る。 A part of the water in the pressure feeding pipe 58 reaches the air / water mixing section 20 through the inflow pipe 52 and the inflow port 24. The remainder reaches the pressurized water inflow port 61 of the bubble-containing water separator 60.
 気水混合部20の流入ポート24から流入された水は、ノズル30の基端30Bに設けられた旋回流形成装置40によって旋回流とされたまま、ノズル30の先端30Aから水流路22内に噴出される。噴出から一定時間経過後の定常状態では、気水混合部20内の圧力が外部の圧力よりも高くされ、例えば2.5~6.0kg/cmとなるようにする。 The water flowing in from the inflow port 24 of the air / water mixing unit 20 remains swirled by the swirl flow forming device 40 provided at the base end 30B of the nozzle 30 and enters the water flow path 22 from the tip 30A of the nozzle 30. Erupted. In a steady state after a lapse of a certain time from the ejection, the pressure in the air / water mixing unit 20 is set higher than the external pressure, for example, 2.5 to 6.0 kg / cm 2 .
 噴出された水は、水流路22内での流れの方向の速度に加えて、旋回流の速度成分が大きいので、エジェクションポート28にかかる負圧は通常の直線状に水を流す場合と比較して2~3倍以上の大きさとなり、気水混合部20内の圧力が外部の圧力より高くても、エジェクションポート28から確実に気体を吐出させることができる。 Since the ejected water has a large velocity component of the swirl flow in addition to the velocity in the direction of flow in the water flow path 22, the negative pressure applied to the ejection port 28 is compared with the case of flowing water in a normal linear shape. Therefore, the gas can be reliably discharged from the ejection port 28 even when the pressure in the air / water mixing section 20 is higher than the external pressure.
 ノズル30の先端30Aから噴出される水の螺旋流は水流路22内の水やエジェクションポート28からの気体を巻き込んで螺旋流を成型する。 The spiral flow of water ejected from the tip 30A of the nozzle 30 entrains water in the water flow path 22 and gas from the ejection port 28 to form a spiral flow.
 エジェクションポート28から吸い込まれた気体は、ノズル30のテーパ外周面31に沿って、気体ガイド装置44のテーパ内周面44Aとの間に螺旋流として巻き込まれ、ここで、ノズル30から噴出された水の螺旋流に強く混合される。 The gas sucked from the ejection port 28 is entrained as a spiral flow along the taper outer peripheral surface 31 of the nozzle 30 and between the taper inner peripheral surface 44A of the gas guide device 44 and is ejected from the nozzle 30 here. It is strongly mixed in the spiral flow of water.
 すなわち、水の螺旋流と気体の螺旋流の螺旋流同士の激しい特徴的な竜巻のような瞬時の激しい混合と分散、気体溶解が起こる。 That is, instantaneous intense mixing and dispersion, such as a spiral flow of water and a spiral flow of gas, and a gas dissolution occur.
 その過程で、気体が混合された螺旋流内ではキャビテーションの発生、破壊が繰り返され、その都度、気体が形成する気泡は小さく分裂され、大きさがほとんど100nm以下、30nm以下、更には10Å~3Åの超微細気泡となる。 In the process, cavitation is repeatedly generated and destroyed in the spiral flow mixed with gas, and each time the bubbles formed by the gas are broken into small pieces, the size of which is almost 100 nm or less, 30 nm or less, and further 10 to 3 mm. It becomes a super fine bubble.
 超微細気泡を含む水は気水混合部20の吐出ポート26、吐出管54を経て、原水供給管57に至り、ここから、加圧ポンプ56によって吸引され、且つ、加圧されて、圧送管58から送り出される。送り出された加圧水の一部には、前述と同様に、気水混合部20に供給されて、キャビテーションによる気泡の発生、破壊を繰り返し、残っていた大きい気泡も、更に小さい超微細気泡とされる。 The water containing ultrafine bubbles passes through the discharge port 26 and the discharge pipe 54 of the air / water mixing unit 20 and reaches the raw water supply pipe 57, from which it is sucked and pressurized by the pressure pump 56, and the pressure feed pipe. 58. In the same way as described above, a part of the pressurized water sent out is supplied to the gas-water mixing unit 20 and the generation and destruction of bubbles due to cavitation is repeated, and the remaining large bubbles are also made into smaller ultrafine bubbles. .
 超微細気泡含有水における、含有される気泡のサイズはほとんど100nm以下であるが、気水混合部20を複数回通過させることによって30nm以下の割合が増加する。又、気泡の全部ではないが10Å未満、3Å以上の気泡を確認することができた。例えば、予め空隙の大きさが3Å以上に設計された人工ゼオライトを利用して、次のように測定することができる。 In the ultrafine bubble-containing water, the size of the contained bubbles is almost 100 nm or less, but the ratio of 30 nm or less is increased by passing the air-water mixing unit 20 a plurality of times. Moreover, although not all of the bubbles, bubbles of less than 10 mm and 3 mm or more could be confirmed. For example, the measurement can be performed as follows using an artificial zeolite whose void size is previously designed to be 3 mm or more.
 空隙の大きさが各々3Å、4Å、5Å、7Å、10Åの人工ゼオライトにマグネシウム、セシウム陽イオンを吸着させてから、これを繰り返し純水で洗浄し、ろ過液の溶出する陽イオン量が一定となった段階で、超微細気泡を含む水と混合攪拌したとき、マグネシウム、セシウム陽イオンが顕著に溶出したことを確認した。 After adsorbing magnesium and cesium cations on artificial zeolites with pore sizes of 3mm, 4mm, 5mm, 7mm and 10mm respectively, this is repeatedly washed with pure water, and the amount of cations eluted from the filtrate is constant. At that stage, it was confirmed that magnesium and cesium cations were remarkably eluted when mixed and stirred with water containing ultrafine bubbles.
 また、空隙にマグネシウム、セシウム陽イオンが入り込んでいるゼオライトは、そのままでは水中に沈むが、超微細気泡含有水に接触させると、人工ゼオライトは比重が小さくなって浮き上がることが確認できた。これは、上記のマグネシウム、セシウム陽イオンが顕著に溶出したことと合わせると、超微細気泡が人工ゼオライトの空隙内のマグネシウム、セシウム陽イオンを排出して入り込んだためと推定できる。なお、ゼオライトの空隙の大きさよりも大きい気泡は空隙に入ることができない。 In addition, zeolite with magnesium and cesium cations entering the voids sinks in the water as it is, but it has been confirmed that the artificial zeolite has a reduced specific gravity when brought into contact with water containing ultrafine bubbles. In combination with the remarkable elution of the magnesium and cesium cations, it can be estimated that the ultrafine bubbles discharged and entered the magnesium and cesium cations in the voids of the artificial zeolite. It should be noted that bubbles larger than the size of the voids in the zeolite cannot enter the voids.
 上記と同様の方法の繰り返しによって、本発明者は、製造された超微細気泡含有水中に、大きさが10Å未満~3Å以上の気泡があることを確認できた。 By repeating the same method as described above, the present inventor was able to confirm that there were bubbles having a size of less than 10 to 3 mm in the produced ultrafine bubble-containing water.
 ここで、10Å未満と確認したのは、超微細気泡を水に混合した場合、大きさが10Å未満となると、可視光の波長以下となり、透明な超微細気泡は目視では確認できなくなるが、この微細気泡と人工ゼオライトの細孔径10Å以下で上記の現象が惹起したので、これをもって、10Å未満であるとした。なお、超微細気泡は、その大きさが、従来測定不能であるとされた30nm以下の大きさの場合を言うものとする。 Here, it was confirmed that the ultrafine bubbles were mixed with water when the size was less than 10 mm, and when the size was less than 10 mm, the wavelength of the visible light was not exceeded, and transparent ultrafine bubbles could not be visually confirmed. The above phenomenon was caused when the fine pores and the pore diameter of the artificial zeolite were 10 mm or less, and this was considered to be less than 10 mm. It should be noted that the ultrafine bubbles are assumed to have a size of 30 nm or less, which has been considered impossible to measure in the past.
 気体を空気とした実験によれば、目視により確認できなかった、大きさが10Å未満の気泡を含む超微細気泡を、圧送管58の出口から吐出された超微細気泡含有水600t/日から1250t/日の水量について、15から20リットル/分の速度で溶解させることができた。気体をNとした場合も同様であった。 According to the experiment using gas as air, ultrafine bubbles containing bubbles having a size of less than 10 mm, which could not be confirmed by visual observation, were discharged from the outlet of the pressure feed tube 58 from 600 t / day to 1250 t of ultrafine bubble-containing water. The amount of water per day could be dissolved at a rate of 15 to 20 liters / minute. Gas and were similar case of the N 2.
 上記実施例では、水の旋回流をエジェクターに作用させて、気体を吸い出すようにした気水混合部20を用いているが、直進する水の流れを単にポートに作用させる構造の一般的なエジェクターであっても、わずかに超微細気泡が発生するので、上記のような気泡含有水分離装置60を用いて時間をかけて超微細気泡を選別するか、気泡含有水分離装置60を多段に設けて選別すれば、超微細気泡の含有量の多い水を製造できる。 In the above embodiment, the air-water mixing unit 20 is used in which the swirling flow of water is applied to the ejector to suck out the gas. However, a general ejector having a structure in which the flow of straight water is simply applied to the port. Even so, since ultrafine bubbles are generated slightly, the above-described bubble-containing water separation device 60 is used to sort out the ultrafine bubbles over time, or the bubble-containing water separation devices 60 are provided in multiple stages. If selected, water with a high content of ultrafine bubbles can be produced.
 超微細気泡含有水は、圧送管58を経て、気泡含有水分離装置60の加圧水流入ポート61に供給される。 The ultrafine bubble-containing water is supplied to the pressurized water inflow port 61 of the bubble-containing water separator 60 via the pressure feed pipe 58.
 加圧水流入ポート61から供給された加圧水は、タンク形状の気泡含有水分離装置60内に常時充満され、加圧水の流入量に見合うだけ、中心部水排出ポート63と加圧水吐出ポート62から外部に排出される。 The pressurized water supplied from the pressurized water inflow port 61 is always filled in the tank-shaped bubble-containing water separator 60 and discharged from the central water discharge port 63 and the pressurized water discharge port 62 to the outside as much as the inflow amount of the pressurized water. The
 気泡含有水分離装置60内に充満された加圧水中に、圧送管58から加圧水流入ポート61を経て供給された加圧水は、旋回流形成パイプ64によって、気泡含有水分離装置60を構成するタンクの内周面に沿う斜め下向きの旋回流となってタンク内に流れ込む。 The pressurized water supplied from the pressure feed pipe 58 via the pressurized water inflow port 61 into the pressurized water filled in the bubble-containing water separator 60 is contained in a tank constituting the bubble-containing water separator 60 by the swirl flow forming pipe 64. It flows into the tank as an obliquely downward swirling flow along the peripheral surface.
 これによって、タンク内では下向きで反時計回りの大きな旋回流が形成され、その中心部には、比較的大きい気泡を含む比重の小さい水が集まり、タンク内周面に沿う部分には、比較的小さな超微細気泡を含んで比重が大きい超微細気泡含有水が集まり、前者は、中心部水排出ポート63から排出され、後者は加圧水吐出ポート62から排出される。 As a result, a large downward and counterclockwise swirl flow is formed in the tank, and water having a relatively low specific gravity including relatively large bubbles gathers at the center thereof, and a portion along the inner peripheral surface of the tank is relatively Ultrafine bubble-containing water containing small ultrafine bubbles and having a large specific gravity gathers, the former being discharged from the central water discharge port 63 and the latter being discharged from the pressurized water discharge port 62.
 微細気泡は大きさが小さくなるほど、上昇速度が遅くなることが物性として判っており、この旋回流を利用した機構により、大きな気泡と小さな微細気泡の分離が進む結果として旋回流中に超微細気泡の割合が増えた水が加圧水吐出ポート62から流出する。比較的大きな気泡は旋回中に遠心力により超微細気泡群から分離され上昇し、タンク上部の中心部付近に集まり、効率的に排出される。 It is known as a physical property that the smaller the size of the fine bubbles, the slower the ascending speed becomes. As a result of the separation of the large bubbles and the small fine bubbles by this swirling flow mechanism, the ultrafine bubbles are contained in the swirling flow. The water with the increased ratio flows out from the pressurized water discharge port 62. The relatively large bubbles are separated from the ultrafine bubble group by the centrifugal force during swirling and rise, gather near the center of the upper part of the tank, and are efficiently discharged.
 分離された比較的大きい気泡は、超微細気泡を加えた全気泡量の約5%であったが、これをぼぼ全量分離除去できた。 The relatively large bubbles that were separated were about 5% of the total amount of bubbles added with ultrafine bubbles, but almost all of them could be separated and removed.
 従って、加圧水吐出ポート62から排出される超微細気泡含有水には、100nm以下あるいは30nm以下、10Å以上の微細気泡の存在量がわずかになり、10Å以下のサイズの超微細気泡の含有割合が大きくなる。 Therefore, in the ultrafine bubble-containing water discharged from the pressurized water discharge port 62, the abundance of fine bubbles of 100 nm or less or 30 nm or less, 10 cm or more is small, and the content ratio of ultrafine bubbles having a size of 10 cm or less is large. Become.
 上記作用機序により、超微細気泡が、わずかに存在する大きさが10Å以上の比較的大きな微細気泡に合一して失われることが無くなり、超微細気泡独特の機能を後段で発揮させることができるようになる。 By the above mechanism of action, the ultrafine bubbles are not lost together with the relatively large microbubbles having a size of 10 mm or more, and the unique function of the ultrafine bubbles can be exhibited in the subsequent stage. become able to.
 また、次のようにしても、超微細気泡の存在を確認することができた。
I 材料・装置
1.材料;
(1)試験用水・・・煮沸後除冷した純水(溶存空気のない水)
(2)人工ゼオライト・・・1nm未満サイズの細孔を有するもの1.5g
(3)1000mg/lのC水溶液を600ml
2.装置;
(1)攪拌装置(4基)
(2)超微細気泡加圧水製造装置
(3)観賞魚水槽用エアバブル発生装置
(4)溶存酸素(DO)測定装置(溶存酸素計)
(5)Csイオン検出用原子吸光度計
II 手順
1.人工ゼオライト1.5gを、1000mg/l濃度のCs水溶液600mlに投入して攪拌装置(1基)により攪拌し、ゼオライトにCs微粒子を吸着させる。
2.Cs微粒子を吸着したゼオライトを試験用水により、よく洗浄する。
(Csイオンの原子吸光度分析により、洗浄水からCsイオンが検出されなくなるまで攪拌装置により洗浄する。)
3.洗浄後、ゼオライトを濾過して取り出し、水切りする。水切り後に3等分する。
4.次の3種類のサンプル水を作製する。
(1)超微細気泡加圧水製造装置により、試験用水に超微細気泡を加えて超微細気泡含有水を作製する。そのうちの100mlを1号サンプル水として採取する。
(2)観賞魚水槽用エアバブル発生装置により、試験用水にエアバブルを加えたバブル含有水を作製する。そのうちの100mlを2号サンプル水として採取する。
(3)試験用水にエアバブルを加えないでそのまま100mlを採取して3号サンプル水とする。
(注)(1)(2)は、それぞれ充分な時間、バブルを加える。
5.1~3号サンプル水のDOを溶存酸素計により測定する。
6.4.(1)(2)の水中に、目視によりバブルを確認できなくなるまで一定時間静置する。
7.再度1~3号サンプル水のDOを溶存酸素計により測定する。
これにより1号サンプル水により多くの酸素が溶存していることが解る。
8.1~3号サンプル水を別個の攪拌装置に注入し、各々に、3.で水切りされたゼオライトを等量投入して、各々のDOを溶存酸素計により測定し、Csイオン濃度を原子吸光度計で測定する。
9.一定時間攪拌後に、ゼオライトを濾過した各サンプル水のDOを溶存酸素計により測定し、Csイオン濃度を原子吸光度計で測定する。
Also, the presence of ultrafine bubbles could be confirmed in the following manner.
I Materials and equipment material;
(1) Test water: Pure water that has been cooled after boiling (water without dissolved air)
(2) Artificial zeolite: 1.5 g having pores with a size of less than 1 nm
(3) of 1000 mg / l C S aqueous solution 600ml
2. apparatus;
(1) Stirring device (4 units)
(2) Ultra-fine bubble pressurized water production device (3) Air bubble generator for ornamental fish tank (4) Dissolved oxygen (DO) measuring device (dissolved oxygen meter)
(5) Atomic Absorbance Meter II for Cs ion detection Procedure 1. 1.5 g of artificial zeolite is put into 600 ml of a 1000 mg / l Cs aqueous solution and stirred with a stirrer (one unit) to adsorb Cs fine particles on the zeolite.
2. The zeolite adsorbed with the Cs fine particles is thoroughly washed with test water.
(Washing is performed with a stirrer until no Cs ions are detected from the washing water by atomic absorption analysis of Cs ions.)
3. After washing, the zeolite is filtered out and drained. Divide into 3 equal parts after draining.
4). The following three types of sample water are prepared.
(1) Ultrafine bubble-containing water is prepared by adding ultrafine bubbles to test water using an ultrafine bubble pressurized water production apparatus. 100 ml of them are collected as No. 1 sample water.
(2) Bubble-containing water obtained by adding air bubbles to test water is produced by an air bubble generator for an ornamental fish tank. 100 ml of them are collected as No. 2 sample water.
(3) Collect 100 ml as it is without adding air bubbles to the test water and use it as No. 3 sample water.
(Note) In (1) and (2), bubbles are added for sufficient time.
5. Measure the DO of sample Nos. 1 to 3 with a dissolved oxygen meter.
6.4. (1) Leave in the water of (2) for a certain period of time until no bubbles can be visually confirmed.
7). Again, measure DO of sample Nos. 1-3 with a dissolved oxygen meter.
As a result, it can be seen that more oxygen is dissolved in the No. 1 sample water.
8. Inject No. 1-3 sample water into separate stirrers, An equal amount of the zeolite drained in (1) is added, each DO is measured with a dissolved oxygen meter, and the Cs ion concentration is measured with an atomic absorption meter.
9. After stirring for a certain time, DO of each sample water filtered from zeolite is measured with a dissolved oxygen meter, and a Cs ion concentration is measured with an atomic absorption meter.
 1号サンプル水では、より多くの酸素がゼオライトに移行し、また、ゼオライトからCsイオンが流出したことが解る。 It can be seen that in the No. 1 sample water, more oxygen was transferred to the zeolite, and Cs ions flowed out of the zeolite.
 図8に上記確認手順のフローチャートを示す。 Fig. 8 shows a flowchart of the above confirmation procedure.
 上記において、気水混合部20には、繰り返し超微細気泡含有水が循環される構成となっているが、本発明はこれに限定されるものでなく、気水混合部20において最終的に超微細気泡が形成される前段階で、少なくとも超微細気泡よりもやや大きい気泡を含む微細気泡含有水の状態で気水混合部20に供給される構成であっても良い。 In the above, the air / water mixing unit 20 is configured such that the water containing ultrafine bubbles is repeatedly circulated, but the present invention is not limited to this, and the air / water mixing unit 20 is finally super The configuration may be such that, before the formation of the fine bubbles, the air / water mixing unit 20 is supplied in a state of water containing fine bubbles containing at least slightly larger bubbles than the ultrafine bubbles.
 例えば、図9に示される超微細気泡含有水製造装置11のように、前記気水混合部20に相当する第1の気水混合部70と、この第1の気水混合部70に微細気泡含有水を供給する前記気水混合部20に相当する第2の気水混合部72とを2段構成として設け、第1の気水混合部70からの超微細気泡含有水を循環させる必要が無いようにする。 For example, as in the ultrafine bubble-containing water production apparatus 11 shown in FIG. 9, a first air / water mixing unit 70 corresponding to the air / water mixing unit 20 and fine bubbles in the first air / water mixing unit 70. It is necessary to provide the second air / water mixing unit 72 corresponding to the air / water mixing unit 20 for supplying the contained water in a two-stage configuration and to circulate the ultrafine bubble-containing water from the first air / water mixing unit 70. Try not to have it.
 なお、本発明において、気水混合部は、エジェクターを用いることなく、水に微細気泡を注入して微細気泡含有水を形成するようにしても良い。 In the present invention, the air / water mixing section may inject fine bubbles into water to form fine bubble-containing water without using an ejector.
 この場合、第1の気水混合部70に微細気泡含有水を供給する第1の加圧ポンプ74と、第2の気水混合部72に原水を加圧して供給する第2の加圧ポンプ76とを設ける。 In this case, a first pressure pump 74 that supplies fine bubble-containing water to the first air / water mixing unit 70 and a second pressure pump that pressurizes and supplies raw water to the second air / water mixing unit 72. 76.
 実施例1に係る緑茶冷水抽出装置1においては、攪拌槽82内に蓄えられた超微細気泡含有水中に緑茶を投入し、加圧水の水流によって超微細気泡含有水を緑茶の表面に繰り返し接触させる。 In the green tea cold water extraction apparatus 1 according to the first embodiment, green tea is poured into the ultrafine bubble-containing water stored in the stirring tank 82, and the ultrafine bubble-containing water is repeatedly brought into contact with the surface of the green tea by the flow of pressurized water.
 緑茶の表面や亀裂などに付着している成分、例えばカテキン等の有機物微粒子は、これと被抽出物との間に超微細気泡が入り込むことによって分離され、かつ超微細気泡が付着して浮上される。 Components adhering to the surface and cracks of green tea, such as organic fine particles such as catechin, are separated by the entry of ultrafine bubbles between this and the extract, and the ultrafine bubbles adhere and float. The
 超微細気泡表面に有機物微粒子が付着する過程は、超微細気泡の表面活性の高さによる化学的な収着で吸着現象に近いもので表面に吸い寄せられるダイナミックな抽出と言える。上記表面活性は、超微細気泡の直径が小さい程大きくなるので、超微細気泡と有機物微粒子との接触時間がわずかでも充分な収着が可能となる。 The process of organic fine particles adhering to the surface of ultrafine bubbles can be said to be dynamic extraction that is close to the adsorption phenomenon by chemical sorption due to the high surface activity of the ultrafine bubbles and is attracted to the surface. Since the surface activity increases as the diameter of the ultrafine bubbles decreases, sufficient sorption is possible even with a slight contact time between the ultrafine bubbles and the organic fine particles.
 被抽出物や微粒子に大きい気泡が付着して浮上することがあるが、浮上の途中で気泡が破裂して浮力を失う。これらには再度超微細気泡が付着するが、被洗浄物を浮上させる浮力はなく、微粒子のみが浮上される。 大 き い Large bubbles may be attached to the extract or fine particles and float, but the bubbles burst during the ascent and lose buoyancy. Ultrafine bubbles again adhere to these, but there is no buoyancy to lift the object to be cleaned, and only fine particles are lifted.
 上記実施例1に係る緑茶冷水抽出装置1は、被抽出物をバッチ処理するものであるが、本発明はこれに限定されるものでなく、連続処理をするようにしてもよい。 Although the green tea cold water extraction device 1 according to the first embodiment performs batch processing on the extract, the present invention is not limited to this, and may be continuously processed.
 有機物は気泡に付着するので、この気泡が超微細であれば、茶葉との接触機会が非常に大きくなり、ほとんどの微小有機物に超微細気泡を付着させて、その浮力により、茶葉から浮上分離させることができる。実施例1の場合、被抽出物は、焙煎した緑茶の他に、発酵した紅茶、発酵したウーロン茶、焙煎したコーヒー豆等がある。 Since organic matter adheres to bubbles, if this bubble is ultrafine, the chance of contact with tea leaves becomes very large, and superfine bubbles are attached to most micro organic matter and floated and separated from tea leaves by their buoyancy. be able to. In the case of Example 1, the extractables include fermented black tea, fermented oolong tea, roasted coffee beans and the like in addition to roasted green tea.
 以下、本発明の実施例2に係る食用油水抽出装置100について説明する。 Hereinafter, the edible oil / water extraction apparatus 100 according to Example 2 of the present invention will be described.
 この食用油水抽出装置100は、前記実施例1に係る緑茶冷水抽出装置1と同様に、超微細気泡含有水製造装置10と、被抽出物水攪拌装置110と、フィルター120と、を備え、その他に、油水分離装置130を備えたものである。 This edible oil / water extraction apparatus 100 includes an ultrafine bubble-containing water production apparatus 10, an extract water agitator 110, and a filter 120, as in the green tea cold water extraction apparatus 1 according to the first embodiment. Further, an oil / water separator 130 is provided.
 油水分離装置130は、フィルター120によって被抽出物をろ過した後の油分を含む、超微細気泡含有水を、その比重差によって、食用油と水とに分離するものであり、比重差によって、水の上方に分離された油分のみを水とは別途に回収し、食用油容器140に回収されるようにされている。なお、大豆、コーン、ごま油等の殻の内側に油分がある場合は、全体を圧搾して殻を破壊してから抽出するとよい。 The oil / water separator 130 separates the water containing ultrafine bubbles, including the oil after the extractable substance is filtered by the filter 120, into edible oil and water based on the specific gravity difference. Only the oil separated above is collected separately from water and collected in the edible oil container 140. In addition, when there is oil in the inside of shells such as soybean, corn, sesame oil, etc., it is preferable to extract after squeezing the whole to destroy the shell.
 ここで、実施例2における被抽出物は、アブラヤシの果肉、焙煎したカカオ豆、大豆、コーンの実、ごまの実等の食用油脂を含む実、あるいは果肉である。 Here, the to-be-extracted substance in Example 2 is the fruit containing the edible fats and oils, such as an oil palm pulp, roasted cocoa beans, soybeans, a corn nut, and a sesame seed, or a pulp.
 本発明は、被抽出物として、上記のような実施例に係る焙煎した緑茶や、大豆、コーンの実のみならず、一般的に従来、有機溶剤や圧搾によって抽出することができる食用油を抽出する場合に適用され、また、緑茶や紅茶、ウーロン茶、コーヒー豆等から有効成分を抽出した抽出液を用いる場合に、その抽出に利用できるものである。 The present invention is not limited to roasted green tea according to the above-mentioned examples, soybeans, and corn fruits, but generally edible oils that can be extracted by organic solvents or pressing. It is applicable to extraction, and can be used for extraction when an extract obtained by extracting an active ingredient from green tea, black tea, oolong tea, coffee beans or the like is used.
 他の被抽出物として、本発明者は、淡水及び海水中に、均一に分散した魚血液成分(魚加工の洗水)の抽出分離の実験をした。 As another extract, the present inventor conducted an experiment of extracting and separating fish blood components (fish processing wash water) uniformly dispersed in fresh water and seawater.
 血液成分は、透明に分散し溶解しているので、通常の微細気泡では分離できないが、本発明に係る超微細気泡含有水中の超微細気泡の表面に、その表面活性により、淡水や海水中に分散している魚血液成分を収着させ、分離させることに成功した。その結果を、次の表1に表す。 Since blood components are transparently dispersed and dissolved, they cannot be separated by ordinary fine bubbles, but the surface activity of the ultrafine bubbles in the ultrafine bubble-containing water according to the present invention is increased in fresh water or seawater due to its surface activity. The dispersed fish blood components were successfully sorbed and separated. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 なお、魚血液成分が分散している水の温度は、約8℃であった。 The temperature of the water in which the fish blood components are dispersed was about 8 ° C.
 また、通常の河川水中にも、魚類の排出成分が分散していて、この成分が濃厚な場合は、臭気が耐えられない場合がある。 Also, fish discharge components are dispersed in normal river water, and if this component is rich, the odor may not be tolerated.
 本発明者が、通常の工業用水として汲み上げられた15℃の河川水について、超微細気泡含有水により処理したところ、次の表2に示されるようになった。 The present inventor treated the 15 ° C. river water pumped up as normal industrial water with water containing ultrafine bubbles, and as shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 特に、超微細気泡を用いた場合は、処理開始数分後には、水面上でトリメチルアミン臭が顕著になり、表面にできた皮膜(薄膜)に細かな浮遊物が分離しているのが視認できた。 In particular, when ultrafine bubbles are used, the trimethylamine odor becomes prominent on the water surface several minutes after the start of the treatment, and it can be visually observed that fine suspended substances are separated on the film (thin film) formed on the surface. It was.
 上記のように、トリメチルアミン臭気は、魚類の排出成分であり、通常は河川水にあっても溶解度が高く、抽出等の操作によらなければ、自然に分離することは無い。また、浮遊物も通常は視認できない。超微細気泡は、浮遊物だけでなく、水中に透明に溶解している成分も、気泡表面の化学的活性が高いために、超微細気泡表面に、魚類の排出成分を収着させることで抽出分離できた。 As described above, the trimethylamine odor is a discharge component of fish, and usually has high solubility even in river water, and will not be separated naturally unless an operation such as extraction is performed. In addition, suspended matter is usually not visible. Ultrafine bubbles are extracted not only by suspended substances but also by components that are transparently dissolved in water by sorbing fish discharge components on the surface of the ultrafine bubbles because the surface has high chemical activity. I was able to separate.
 なお、分離された浮遊物は、飼料とすることができる。 The separated suspended matter can be used as feed.
 これら魚血液成分の分離、トリメチルアミンの分離の際に用いる超微細気泡含有水は、上述の超微細気泡含有水製造装置10により製造されるものである。 The ultrafine bubble-containing water used for separation of these fish blood components and trimethylamine is produced by the ultrafine bubble-containing water production apparatus 10 described above.
 また、表面に分離された成分は、すくい取ったり、攪拌槽の表面の逸流から回収することができる。 Also, the components separated on the surface can be scooped or recovered from the surface current of the stirring tank.
  また、本発明は、超微細気泡含有水の製造方法又はその装置にも適用されるものであり、更に、製造された超微細気泡含有水は茶葉などの成分抽出のみならず、野菜などの生鮮食品、回路基板等の工業品の洗剤なしの洗浄に用いることができる。 The present invention is also applicable to a method for producing ultrafine bubble-containing water or an apparatus therefor. Further, the produced ultrafine bubble-containing water is used not only for extracting components such as tea leaves but also for fresh vegetables such as vegetables. It can be used to clean industrial products such as food and circuit boards without detergent.
 本発明は、基板や食品を洗剤なしで洗浄できる超微細気泡含有水を高速で大量に製造する産業、その水を用いる産業に利用可能性がある。また、茶の成分を抽出して冷水茶を製造する事業、コーヒー豆から有機成分を抽出したり、大豆やコーンから常温で効率よく食用油を抽出する事業に利用可能性がある。 The present invention has applicability to industries that produce a large amount of ultrafine bubble-containing water that can clean substrates and foods without detergent, and industries that use the water. It can also be used in businesses that extract cold tea by extracting tea components, organic components from coffee beans, and edible oils that are efficiently extracted from soybeans and corn at room temperature.
 1…緑茶冷水抽出装置
 10、11…超微細気泡含有水製造装置
 20…気水混合部
 22…水流路
 24…流入ポート
 26…吐出ポート
 28…エジェクションポート
 28A…気体導入管
 28B…気体導入量制御弁
 30…ノズル
 30A…先端
 30B…基端
 40…旋回流形成装置
 42…固定翼
 44…気体ガイド装置
 44A…テーパ内周面
 50…加圧水供給系統
 52…流入管
 54…吐出管
 56…加圧ポンプ
 57…原水供給管
 58…圧送管
 60…気泡含有水分離装置
 61…加圧水流入ポート
 62…加圧水吐出ポート
 63…中心部水排出ポート
 64…旋回流形成パイプ
 65…排出量制御弁
 70…第1の気水混合部
 72…第2の気水混合部
 74…第1の加圧ポンプ
 76…第2の加圧ポンプ
 80…緑茶冷水攪拌装置
 82…攪拌槽
 83…循環装置
 83A…旋回吐出管
 83B…旋回流ガイド
 83C…隙間
 84A…流入口
 90、120…フィルター
 92…冷水抽出茶容器
 95…透水性砕石路盤
 100…食用油水抽出装置
 110…被抽出物水攪拌装置
 130…油水分離装置
 140…食用油容器
DESCRIPTION OF SYMBOLS 1 ... Green tea cold water extraction apparatus 10, 11 ... Ultra fine bubble containing water manufacturing apparatus 20 ... Air-water mixing part 22 ... Water flow path 24 ... Inflow port 26 ... Discharge port 28 ... Ejection port 28A ... Gas introduction pipe 28B ... Gas introduction amount Control valve 30 ... Nozzle 30A ... Tip 30B ... Base end 40 ... Swirling flow forming device 42 ... Fixed blade 44 ... Gas guide device 44A ... Taper inner peripheral surface 50 ... Pressurized water supply system 52 ... Inflow pipe 54 ... Discharge pipe 56 ... Pressurization Pump 57 ... Raw water supply pipe 58 ... Pressure feed pipe 60 ... Bubble-containing water separator 61 ... Pressurized water inflow port 62 ... Pressurized water discharge port 63 ... Center water discharge port 64 ... Swirling flow forming pipe 65 ... Discharge control valve 70 ... First The second air-water mixing unit 74 ... the first pressurizing pump 76 ... the second pressurizing pump 80 ... the green tea cold water stirring device 82 ... the stirring tank 83 ... circulation Device 83A ... Swirling discharge pipe 83B ... Swirling flow guide 83C ... Gap 84A ... Inlet 90, 120 ... Filter 92 ... Cold water extraction tea container 95 ... Permeable crushed stone roadbed 100 ... Edible oil / water extraction device 110 ... Extracted water agitator 130 ... Oil / water separator 140 ... Edible oil container

Claims (9)

  1.  水の噴流により生じる負圧によってエジェクターから気体を吸い込むか、又は水に微細気泡を噴出させて、微細気泡含有水を製造する工程と、
     前記微細気泡含有水を加圧してから蓄積型加圧水タンク内の上部に、下向きの旋回流として圧送し、旋回流の中心に大きな気泡を集合させ、前記旋回流の中心部分の水を前記大きな気泡とともに、タンク上端から連続的に排出し、タンク下部から超微細気泡含有水を吐出する工程と、
     を有してなる超微細気泡含有水製造方法。
    A process of producing water containing fine bubbles by sucking a gas from an ejector by a negative pressure generated by a jet of water, or jetting fine bubbles into water;
    After pressurizing the water containing fine bubbles, it is pumped as a downward swirling flow into the upper part of the accumulation type pressurized water tank, large bubbles are gathered at the center of the swirling flow, and the water in the central portion of the swirling flow is collected as the large bubbles And a process of continuously discharging from the upper end of the tank and discharging water containing ultrafine bubbles from the lower part of the tank,
    A method for producing water containing ultrafine bubbles.
  2.  微細気泡を含む加圧水を供給可能の加圧水供給系統と、
      気泡含有水分離装置とを有し、
     前記気泡含有水分離装置は、断面円形の蓄積型加圧水タンクからなり、
     上部に設けられた、前記加圧水供給系統から圧送される微細気泡含有水が流入する加圧水流入ポートと、
     下部に設けられた加圧水吐出ポートと、
     上端に設けられた中心部水排出ポートと、
     前記加圧水流入ポートに設けられ、流入する加圧水をタンク内円周面に沿う下向きの旋回流とする旋回流形成パイプと、
     を備え、
     前記中心部水排出ポートは、前記蓄積型加圧水タンク内の前記旋回流の中心部の水を連続的に排出可能とされ、前記加圧水吐出ポートは、前記中心部水排出ポートから排出された加圧水の残りの加圧水を超微細気泡含有水として排出可能とされたことを特徴とする超微細気泡含有水製造装置。
    A pressurized water supply system capable of supplying pressurized water containing fine bubbles;
    An air-containing water separation device,
    The bubble-containing water separator comprises a storage-type pressurized water tank having a circular cross section,
    A pressurized water inflow port into which fine bubble-containing water pumped from the pressurized water supply system is provided;
    A pressurized water discharge port provided at the bottom;
    A central water discharge port provided at the upper end;
    A swirl flow forming pipe that is provided in the pressurized water inflow port and causes the inflowing pressurized water to be a downward swirling flow along the circumferential surface of the tank;
    With
    The central water discharge port is capable of continuously discharging water in the central portion of the swirling flow in the accumulation-type pressurized water tank, and the pressurized water discharge port is the pressurized water discharged from the central water discharge port. An apparatus for producing ultrafine bubble-containing water, wherein the remaining pressurized water can be discharged as ultrafine bubble-containing water.
  3.  請求項2において、
     水が流通可能な水流路、この水流路の一端に設けられた水の流入ポート、他端に設けられた気泡含有水の吐出ポート、前記流入ポートと吐出ポートとの間の位置で、側方から前記水流路に気体が流入可能に形成されたエジェクションポートを有する気水混合部と、
     前記流入ポートに接続される流入管と、を設けてなり、
     前記加圧水供給系統は、前記吐出ポートに接続される吐出管と、前記加圧ポンプの吸入側に接続され、前記水を供給する原水供給管と、前記加圧ポンプの吐出側に接続され、加圧水を送り出す圧送管と、
     を有することを特徴とする超微細気泡含有水製造装置。
    In claim 2,
    A water flow path through which water can flow, a water inflow port provided at one end of the water flow path, a bubble-containing water discharge port provided at the other end, and a side position between the inflow port and the discharge port. An air-water mixing section having an ejection port formed so that gas can flow into the water flow path from
    An inflow pipe connected to the inflow port;
    The pressurized water supply system is connected to the discharge pipe connected to the discharge port, the suction side of the pressure pump, the raw water supply pipe for supplying the water, and the discharge side of the pressure pump. A pressure feeding pipe to send out,
    An apparatus for producing water containing ultrafine bubbles, comprising:
  4.  請求項3において、
     前記流入ポートから前記水流路内に突出して設けられ、先端が、前記エジェクションポートの位置に開口される水噴出のためのノズルと、
     前記ノズルの内側に設けられ、前記ノズルに先端から噴出される水を旋回流とするための旋回流形成装置と、を有してなり、
     前記ノズルの位置は、前記水の旋回流により形成される負圧により前記エジェクションポートから吸い出される気体の吐出流が、前記旋回流に流入されるようにされたことを特徴とする超微細気泡含有水製造装置。
    In claim 3,
    A nozzle for water ejection provided to protrude from the inflow port into the water flow path and having a tip opened at the position of the ejection port;
    A swirl flow forming device provided inside the nozzle for turning swirl water from the tip to the nozzle; and
    The nozzle is positioned so that a discharge flow of a gas sucked out of the ejection port by a negative pressure formed by the swirling flow of water flows into the swirling flow. Bubble-containing water production device.
  5.  請求項4において、
     前記ノズルの先端を、間隔をあけて囲む円筒形状ガイドにより構成されていて、前記エジェクションポートから吸い出される気体の吐出流を、前記旋回流に流入するように導く気体ガイド装置を有することを特徴とする超微細気泡含有水製造装置。
    In claim 4,
    It has a gas guide device that is configured by a cylindrical guide that surrounds the tip of the nozzle with an interval, and guides the discharge flow of the gas sucked out from the ejection port so as to flow into the swirl flow. A water production apparatus containing ultrafine bubbles.
  6.  請求項5において、
     前記ノズルは、先細りのテーパ形状とされ、前記気体ガイド装置は、水の噴出方向に先細りのテーパ内周面を有する円筒形状ガイドであり、且つ、該テーパ内周面の軸方向中間部分が、前記ノズルの先端位置となるように配置されたことを特徴とする超微細気泡含有水製造装置。
    In claim 5,
    The nozzle has a tapered shape, the gas guide device is a cylindrical guide having a tapered inner peripheral surface tapered in the direction of water ejection, and an axial intermediate portion of the tapered inner peripheral surface is An ultrafine-bubble-containing water production apparatus, which is disposed so as to be at the tip position of the nozzle.
  7.  請求項3乃至6のいずれかにおいて、
     前記流入管が、前記圧送管に加圧水流入可能に接続され、前記吐出管が、前記原水供給管に接続され、前記気水混合部で形成された超微細気泡含有水の一部を、前記吐出管、前記原水供給管、前記加圧ポンプ、前記圧送管、及び前記流入管を経て前記気水混合部に還流させるように構成されたことを特徴とする超微細気泡含有水製造装置。
    In any one of Claims 3 thru | or 6.
    The inflow pipe is connected to the pumping pipe so that pressurized water can flow, the discharge pipe is connected to the raw water supply pipe, and a part of the ultrafine bubble-containing water formed in the air-water mixing unit is discharged. An ultrafine bubble-containing water production apparatus configured to recirculate to the air / water mixing section through a pipe, the raw water supply pipe, the pressurizing pump, the pressure feeding pipe, and the inflow pipe.
  8.  ノズルから水を噴出させ、その噴流により生じる負圧によってエジェクターから気体を吸い込むか、又は水に微細気泡を噴出させて、微細気泡含有水を製造する工程と、
     前記微細気泡含有水を加圧してから蓄積型加圧水タンク内の上部に、下向きの旋回流として圧送し、旋回流の中心に大きな気泡を集合させ、前記旋回流の中心部分の水を前記大きな気泡とともに、タンク上端から連続的に排出し、タンク下部から超微細気泡含有水を吐出する工程と、
     前記タンク下部から吐出された前記超微細気泡含有水を攪拌槽内に貯留させる工程と、
     前記貯留された前記超微細気泡含有水と被抽出物とを、一定時間攪拌させる工程と、
     前記一定時間の攪拌の後に、前記被抽出物とともに前記超微細気泡含有水を排出し、前記被抽出物を除去する工程と、
     を有してなる飲食用成分の水抽出方法。
    A step of producing water containing fine bubbles by jetting water from a nozzle and sucking gas from an ejector by a negative pressure generated by the jet, or jetting fine bubbles into water; and
    After pressurizing the water containing fine bubbles, it is pumped as a downward swirling flow into the upper part of the accumulation type pressurized water tank, large bubbles are gathered at the center of the swirling flow, and the water in the central portion of the swirling flow is collected as the large bubbles And a process of continuously discharging from the upper end of the tank and discharging water containing ultrafine bubbles from the lower part of the tank,
    Storing the ultrafine bubble-containing water discharged from the lower part of the tank in a stirring tank;
    A step of stirring the stored ultrafine bubble-containing water and the extract for a certain period of time;
    After the stirring for a certain time, discharging the ultrafine bubble-containing water together with the extract, and removing the extract;
    A method for extracting water from food and drink ingredients.
  9.  請求項8において、
     前記被抽出物は、焙煎した緑茶、発酵した紅茶、発酵したウーロン茶、焙煎したコーヒー豆、アブラヤシの果肉、焙煎したカカオ豆、大豆、コーンの実、ごまの実のいずれかであることを特徴とする飲食用成分の水抽出方法。
    In claim 8,
    The extract is one of roasted green tea, fermented black tea, fermented oolong tea, roasted coffee beans, oil palm pulp, roasted cocoa beans, soybeans, corn nuts, and sesame seeds. A method for extracting water from food and drink components.
PCT/JP2016/077563 2015-09-18 2016-09-16 Method for producing water that contains ultra-fine bubbles, apparatus for producing water that contains ultra-fine bubbles, and method for extracting food and beverage components WO2017047796A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-185906 2015-09-18
JP2015185906 2015-09-18
JP2015-187375 2015-09-24
JP2015187375 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017047796A1 true WO2017047796A1 (en) 2017-03-23

Family

ID=58289458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077563 WO2017047796A1 (en) 2015-09-18 2016-09-16 Method for producing water that contains ultra-fine bubbles, apparatus for producing water that contains ultra-fine bubbles, and method for extracting food and beverage components

Country Status (1)

Country Link
WO (1) WO2017047796A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009830A1 (en) * 2019-07-16 2021-01-21 株式会社KB.cuento Micro-bubble generation unit and water cleaning system
JP2021037506A (en) * 2020-05-08 2021-03-11 昭和電工ガスプロダクツ株式会社 Extraction device
JP2021037496A (en) * 2019-09-05 2021-03-11 昭和電工ガスプロダクツ株式会社 Extraction device
JP7307232B1 (en) 2022-04-27 2023-07-11 株式会社御池鐵工所 FOOD CLEANING DEVICE AND FOOD CLEANING METHOD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291230A (en) * 1989-02-28 1990-12-03 Ajinomoto Co Inc Production of tea drink
JPH0723714A (en) * 1993-07-12 1995-01-27 Nitsusee:Kk Method for extracting tea or the like and device therefor
JP2006506990A (en) * 2002-11-22 2006-03-02 エムシーエヌ バイオプロダクツ インク. Filtration of vegetable slurry
JP2009106162A (en) * 2007-10-26 2009-05-21 Meicha Midoriya:Kk Method and apparatus for extracting green tea
JP2011142869A (en) * 2010-01-15 2011-07-28 Meio Bussan Kk Food material for seasoning or the like
WO2015137483A1 (en) * 2014-03-14 2015-09-17 株式会社ピーシーエス Decontamination method and system for water contaminated with radioactive substances

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02291230A (en) * 1989-02-28 1990-12-03 Ajinomoto Co Inc Production of tea drink
JPH0723714A (en) * 1993-07-12 1995-01-27 Nitsusee:Kk Method for extracting tea or the like and device therefor
JP2006506990A (en) * 2002-11-22 2006-03-02 エムシーエヌ バイオプロダクツ インク. Filtration of vegetable slurry
JP2009106162A (en) * 2007-10-26 2009-05-21 Meicha Midoriya:Kk Method and apparatus for extracting green tea
JP2011142869A (en) * 2010-01-15 2011-07-28 Meio Bussan Kk Food material for seasoning or the like
WO2015137483A1 (en) * 2014-03-14 2015-09-17 株式会社ピーシーエス Decontamination method and system for water contaminated with radioactive substances
WO2015137484A1 (en) * 2014-03-14 2015-09-17 株式会社ピーシーエス Micro bubble cleaning method using liquid containing micro bubbles, apparatus therefor, and dissolved air floatation apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009830A1 (en) * 2019-07-16 2021-01-21 株式会社KB.cuento Micro-bubble generation unit and water cleaning system
JPWO2021009830A1 (en) * 2019-07-16 2021-01-21
JP7086435B2 (en) 2019-07-16 2022-06-20 株式会社KB.cuento Micro bubble generation unit and water purification system
JP2021037496A (en) * 2019-09-05 2021-03-11 昭和電工ガスプロダクツ株式会社 Extraction device
JP2021037506A (en) * 2020-05-08 2021-03-11 昭和電工ガスプロダクツ株式会社 Extraction device
JP7307232B1 (en) 2022-04-27 2023-07-11 株式会社御池鐵工所 FOOD CLEANING DEVICE AND FOOD CLEANING METHOD
JP2023163013A (en) * 2022-04-27 2023-11-09 株式会社御池鐵工所 Food washing device and food washing method

Similar Documents

Publication Publication Date Title
WO2017047796A1 (en) Method for producing water that contains ultra-fine bubbles, apparatus for producing water that contains ultra-fine bubbles, and method for extracting food and beverage components
JP6120427B2 (en) Ultrafine bubble cleaning method using liquid containing ultrafine bubbles, apparatus and pressurized flotation device
US11912957B2 (en) Method and an apparatus for preparing a high-polyphenols olive oil
JP6987211B2 (en) Systems and methods for extracting soluble flavor components from solid flavor carrier materials into brewing liquids
US20130287915A1 (en) Method and apparatus for decocting ingredients in a solvent
AU2018335949B2 (en) Methods and devices to extract oil from oily fruits
Both et al. Mass transfer enhancement for solid–liquid extractions
WO2007077913A1 (en) Process for purification of plant oil without producing any trans-type fatty acid as by-product and apparatus for the process
US2086911A (en) Treatment of whole citrus fruit
KR101605836B1 (en) Method for manufacturing black chokeberry extract
CN209089960U (en) A kind of passion fruit seed separator
US9017755B1 (en) Methods for making fruit or vegetable extract from by-products
JP5123718B2 (en) Tea husk recycling system
CN109511987B (en) Manual passion fruit juice extracting device
CN209315640U (en) Food processor with material residue collecting function
CN105341593A (en) Preparation method of golden pomelo fruit juice concentrated solution
JP3156885U (en) Green plant paste body and liquid production system
KR20180107873A (en) Manufacturing method of sugared citron
JP6114092B2 (en) Method and apparatus for refreshing frying oil
CN104366627B (en) A kind of wild jujube leaching device
CN214802100U (en) Pretreatment equipment for producing vine tea beverage
JP2009045003A (en) Method for producing turmeric extract beverage
CN221230097U (en) Filtering component and fruit juicing equipment
CN214514080U (en) Formula drink production is with mixing machine
CN103071419B (en) Soup stock production equipment preventing fat from floating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP