WO2017047480A1 - Energy-harvesting wireless device and system - Google Patents

Energy-harvesting wireless device and system Download PDF

Info

Publication number
WO2017047480A1
WO2017047480A1 PCT/JP2016/076365 JP2016076365W WO2017047480A1 WO 2017047480 A1 WO2017047480 A1 WO 2017047480A1 JP 2016076365 W JP2016076365 W JP 2016076365W WO 2017047480 A1 WO2017047480 A1 WO 2017047480A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
voltage
power
state
unit
Prior art date
Application number
PCT/JP2016/076365
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 石岡
啓太 桑原
陽二 菅間
Original Assignee
株式会社日立製作所
東日本旅客鉄道株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 東日本旅客鉄道株式会社 filed Critical 株式会社日立製作所
Publication of WO2017047480A1 publication Critical patent/WO2017047480A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to power saving of an energy harvesting type wireless device, and in particular, even when the power generation unit cannot supply power to the energy harvesting type wireless device before the sunrise time,
  • the present invention relates to a technology for starting a power generation type wireless device.
  • a wireless sensor network is built with wireless devices (sensor nodes) equipped with sensors to provide a system that can centrally grasp the “state” and “change” of people, things, and facilities.
  • wireless devices are often installed in places where it is difficult for people to enter or places where it is difficult to supply commercial power to drive the wireless devices.
  • periodic battery replacement work has a problem of spending time and labor of workers.
  • an energy harvesting wireless device using energy harvesting (energy harvesting) technology that obtains electric power for driving the wireless device from energy such as sunlight, vibration, and heat is provided.
  • an energy-generating wireless device must be small and able to operate for a long time.
  • the amount of power that can be generated by the power generation unit (solar panel, etc.) and the amount of power that can be charged in the power storage unit (battery, capacitor, etc.) is limited. Desired.
  • control of activation timing such as putting the energy-generating wireless device to sleep is used in a time zone where communication with other wireless devices is unnecessary.
  • Control of start-up timing here refers to the “start-up state” in which all functions of the energy-generating wireless device can be used, and the main functions of the energy-generating wireless device are suspended in order to prevent the power consumption of power supplies such as capacitors. This is to switch and control the “pause state” that is the state that has been made. For example, when in a dormant state, the energy-generating wireless device does not communicate with other wireless devices or sensors, and operates so as to be activated only when communicating.
  • the solar panel When a solar panel is used as an energy harvesting wireless device, the solar panel often cannot supply power stably to the energy harvesting wireless device for 24 hours.
  • Patent Document 1 discloses a method of predicting a future amount of sunshine based on the solar radiation time information acquired by a plurality of surrounding wireless devices arranged from the past, and controlling the startup timing of the wireless device, thereby reducing the power consumption of the wireless device. A series of methods for controlling the amount are described.
  • each wireless device needs to correlate with the amount of solar radiation.
  • each wireless device is affected by surrounding structures. In order to receive, there was a problem that the correlation with the amount of solar radiation became weak.
  • a solar panel when used as a power supply source for an energy harvesting wireless device, if the sunrise time is later than the time at which the energy harvesting wireless device is to be activated, such as in winter, it is sufficient for the energy harvesting wireless device at startup. In some cases, power cannot be supplied. In this case, it is necessary to operate the wireless device with power charged in a power source such as a capacitor until sunrise. However, there was a problem that the charging amount was insufficient and the startup could not be sufficiently performed. It was also found that the influence of sunrise time is more dominant than the influence of weather as a factor that affects the amount of charge. That is, according to the study by the inventors, the inventors have found that there is a correlation between the sunrise time (season) and the time at which it can be activated.
  • An object of the present invention is to provide an energy harvesting type wireless device that can be stably activated at a desired activation time regardless of the sunrise time.
  • This application includes a plurality of means for solving the above problems.
  • One aspect of the present invention is an energy generating wireless system that transmits data acquired by a sensor as it is or after processing it wirelessly.
  • a power generation unit that receives sunlight and generates electric power
  • a capacitor that accumulates electric power
  • a voltage monitoring unit that monitors the voltage of the capacitor
  • the electric power accumulated in the capacitor transmit data wirelessly.
  • a wireless unit a control device, and a storage device that stores information used by the control device.
  • the control device includes first means for controlling the system in at least two states, an active state in which the wireless unit can transmit data wirelessly and a sleep state in which power consumption is lower than the active state.
  • the operation is suspended from the activation state on the condition that the voltage monitored by the voltage monitoring unit falls below the first threshold or reaches a predetermined time.
  • the activation time is earlier than the sunrise time, the voltage monitored by the voltage monitoring unit falls below a second threshold value that is greater than the first threshold value, or the voltage monitored by the voltage monitoring unit is a second value.
  • the seventh means integrates the activation state voltage drop rate in the time interval between the activation time and the sunrise time, and further adds a positive value of 0 or more as a margin, The threshold value is generated.
  • control device determines the sunset time based on the output of the voltage monitoring unit, and stores the voltage of the capacitor at the sunset time in the storage device.
  • the storage device stores the voltage drop rate of the capacitor per unit time when the system is put into a hibernation state with the electric power stored in the capacitor as the hibernation state voltage drop rate.
  • the seventh means further generates the second threshold value by further using the capacitor voltage and the resting state voltage drop rate at the sunset time.
  • the storage device stores the voltage drop rate of the capacitor per unit time when the system is put into a hibernation state with the electric power stored in the capacitor as the hibernation state voltage drop rate.
  • the maximum voltage that can be stored in the capacitor is stored as the capacitor maximum voltage.
  • the seventh means generates the second threshold value by further using the capacitor maximum voltage and the resting state voltage drop rate.
  • the various numerical values stored in the storage device can be preliminarily stored.
  • the energy-generating wireless system can autonomously measure in the field, calculate as necessary, and store it in the storage device.
  • the numerical value can be updated as necessary. In this case, it is possible to control the system more in line with the operating state.
  • the second means determines the sunrise time every day based on, for example, the voltage of the voltage monitoring unit, the fourth means determines the order of the sunrise time every day, and the seventh means the second threshold every day. Is stored in the storage device.
  • control method it can be performed by comparing the voltage monitored by the voltage monitoring unit with the stored threshold value.
  • timing at which the voltage monitored by the voltage monitoring unit crosses the threshold may be calculated and stored in advance, and control based on time may be performed.
  • Another aspect of the present invention provides a power generation unit that generates power using sunlight as an energy source, a power storage unit that accumulates power, a wireless unit that wirelessly transmits a signal, a control device that controls the wireless unit, and a control It is an energy harvesting type wireless device having a storage device for storing information used by the device and a timer capable of measuring time.
  • the control device includes: a first unit that controls the device in at least two states: a start state in which the wireless unit transmits a signal wirelessly; and a sleep state that consumes less power than the start state; and a start stored in the storage device A second means for acquiring the start time (start-up time) of the state, a third means for acquiring the sunrise time, and a fourth means for controlling the start timing of the dormant state based on the start-up time and the sunrise time And having.
  • a voltage monitoring unit that monitors the voltage of the power storage unit.
  • the fourth means is a means for determining the anteroposterior relationship between the activation time and the sunrise time, and when the activation time is earlier than the sunrise time, the power required for maintaining the activation state from the activation time to the sunrise time.
  • a means for calculating the amount a means for calculating the voltage of the power storage unit (resting voltage) as a condition for starting the hibernation state based on the required amount of power, and the voltage monitoring unit causes the voltage of the power storage unit to fall below the resting voltage.
  • the third means determines the sunrise time based on the power generation state of the power generation unit, and stores the determined sunrise time every day in the storage device.
  • the fourth means performs processing using the latest sunrise time stored in the storage device.
  • the fourth means uses a starting voltage lower than the pause voltage when the starting time is later than the sunrise time, and the voltage of the power storage unit is set to the starting voltage by the voltage monitoring unit.
  • the power storage unit is a capacitor.
  • the storage device stores the starting voltage drop rate of the capacitor in the starting state before the sunrise time, and the fourth means is necessary by calculation using the starting voltage drop rate, the starting time, and the sunrise time.
  • a power amount is calculated, and a value obtained by adding at least a voltage corresponding to the required power amount to the start-up voltage is calculated as a pause voltage.
  • Another aspect of the present invention relates to a power generation unit that obtains power for driving a wireless device from solar energy, a power storage unit for storing power generated by the power generation unit, and an amount of power stored in the power storage unit.
  • a voltage monitoring unit that measures and outputs voltage information; a timer that outputs time information; a wireless unit that communicates with other wireless devices; a memory that records sunrise time and activation time; a power generation unit; a power storage unit;
  • the wireless device includes a voltage monitoring unit, a timer, a wireless unit, and a control device that controls the memory.
  • the control device includes means for calculating a sunrise time and recording it in a memory, and a power generation unit, a power storage unit, a voltage monitoring unit, a timer, a radio unit, a memory, and a control device from the start time to the sunrise time.
  • the unit for measuring the voltage drop rate of the power storage unit per unit time and the case where the sleep state is set only by the energy stored in the power storage unit And means for measuring a voltage drop rate of the power storage unit per unit time.
  • the energy harvesting type wireless device calculates the sunrise time by itself, and further calculates the amount of power to be stored in the power storage unit in advance from the startup time from the sunrise time and a predetermined startup time.
  • Another aspect of the present invention includes a power generation unit that generates power using sunlight as an energy source, a power storage unit that accumulates power, a wireless unit that wirelessly transmits a signal, a control device that controls the wireless unit, and a control In the energy harvesting type wireless device having a storage device for storing information used in the device and a timer capable of measuring time, the control device controls the method.
  • the control device includes: a first process for controlling the device in at least two states: an active state in which the wireless unit transmits a signal wirelessly; and a sleep state in which power consumption is lower than the active state; A second process for acquiring the start time (start time) of the activation state, a third process for acquiring the sunrise time, and a fourth process for controlling the start timing of the hibernation state based on the activation time and the sunrise time And processing.
  • Another aspect of the present invention includes a power generation unit that generates power using sunlight as an energy source, a power storage unit that accumulates power, a wireless unit that wirelessly transmits a signal, a control device that controls the wireless unit, and a control A program for controlling a control device in an energy harvesting type wireless device having a storage device for storing information used in the device and a timer capable of measuring time.
  • the program controls the device in at least two states: a start state in which the wireless unit sends signals wirelessly to a control device hardware composed of a microcomputer, and a sleep state that consumes less power than the start state.
  • a first process for acquiring a second process for acquiring a start time (start time) of the start state stored in the storage device, a third process for acquiring a sunrise time, and a start time and a sunrise time. Based on this, control is performed so as to execute a fourth process for controlling the start timing of the hibernation state.
  • FIG. 2 is a block diagram illustrating an example of a system configuration diagram of the energy-generating wireless device 1.
  • the graph figure which shows an example of the voltage change of the electrical storage part 12 in the summer (time when sunrise time is earlier than starting time).
  • the graph which shows an example of the voltage change of the electrical storage part 12 in winter (time when sunrise time is later than starting time).
  • the graph figure which shows an example of the voltage change of the electrical storage part 12 when the energy harvesting type
  • the flowchart figure which showed the operation example of the energy generation type radio
  • FIG. 3 is a block diagram showing an example of another system configuration diagram of the energy-generating wireless device 1.
  • notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order.
  • a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
  • Example 1 although the electric power generation part 11 is demonstrated as a solar panel, if it can carry out environmental power generation, it will not be limited to a solar panel. For example, in addition to photoelectric conversion of sunlight, there is one that converts thermal energy from sunlight into electric power.
  • the power storage unit is described as a capacitor. However, the capacitor is not limited to the capacitor as long as the energy generated by the power generation unit 11 can be stored.
  • Equation 1 the amount of power stored in the capacitor is proportional to the voltage. Therefore, calculating the amount of power stored in the power storage unit 12 by the voltage monitoring unit 13 is equivalent to obtaining the voltage of the power storage unit 12.
  • the energy-generating wireless device 1 operates from the early morning activation time T s (becomes “activated state”), but activates at night time (time zone from sunset T 2 to sunrise T 1 ). However, it does not have to be activated. Since the power generation unit 11 cannot supply power 20 to the power storage unit 12 in the nighttime, the energy harvesting type wireless device 1 is operated with the power stored in the power storage unit 12. The energy harvesting type wireless device 1 stops (forced) when the voltage of the power storage unit 12 falls below the starting voltage V1 (minimum voltage of the power storage unit 12 for the energy harvesting type wireless device 1 to operate normally). Will be "hibernated").
  • the night at this time is a time zone from sunset to sunrise, and is a time zone during which the power generation unit 11 cannot supply power 20 to the power storage unit 12.
  • FIG. 1 is an example of a system configuration diagram of the energy-generating wireless device 1. Hereinafter, each function of the energy-generating wireless device 1 will be described with reference to FIG.
  • the energy harvesting type wireless device 1 activates the energy harvesting type wireless device 1 with solar energy, for example, and does not require power supply by a battery or a cable.
  • the energy harvesting type wireless device 1 includes a power generation unit 11, a power storage unit 12, a voltage monitoring unit 13, a control device 14, a timer 15, a wireless unit 16, and a storage device (memory) 19.
  • the power generation unit 11 obtains electric power by collecting energy such as sunlight, illumination light, vibration generated by a machine, heat, and the like. For example, a solar cell panel can be used. The energy generated by the power generation unit 11 is supplied 20 to the power storage unit 12.
  • the power storage unit 12 stores power generated by the power generation unit 11, and is, for example, a capacitor or a chargeable / dischargeable battery.
  • the power generation unit 11 cannot supply power 20 to the power storage unit 12 from sunset to sunrise. In this case, the energy harvesting type wireless device 1 is activated using the energy stored in the power storage unit 12.
  • the voltage monitoring unit 13 has a function of calculating the amount of power stored in the power storage unit 12 and provides the voltage information 18 to the control device 14. As described above, when a capacitor is used for the power storage unit, the amount of stored power is proportional to the voltage, and thus the voltage may be obtained as the amount of power.
  • the voltage information 18 is information describing the amount of electric power (voltage) stored in the power storage unit 12.
  • the timer 15 has a function of providing time information 17 to the control device 14. It is assumed that the time information 17 of the timer 15 is not cleared even when it falls below the starting voltage V1.
  • the memory 19 stores information recorded in advance and information recorded by the control device 14. Information previously recorded is the starting voltage V1, the voltage drop rate is a start time T s and the like. Further, information recorded by the control unit 14 is a sunrise time T 1 and the rest voltage V2 and the voltage information 18 and the like. As the memory 19, a nonvolatile semiconductor memory or a small magnetic disk device can be used. It is assumed that the information recorded in the memory 19 is not cleared (volatilized) even when it falls below the starting voltage V1.
  • the starting voltage is a minimum voltage of the power storage unit 12 for the energy harvesting type wireless device 1 to operate normally.
  • the starting voltage V1 is recorded in the memory 19 in advance.
  • the power generation unit 11 In the winter season (time when the sunrise time is later than the start time), the power generation unit 11 cannot supply power 20 to the power storage unit 12 from the start time to the sunrise time, so only the energy stored in the power storage unit 12 can be used. It is necessary to activate the energy harvesting wireless device 1. At that time, the voltage drop rate of the power storage unit per unit time is defined as the voltage drop rate.
  • the voltage drop rate may be recorded in the memory 19 in advance, but may be calculated by the control device 14 by the following method. That is, for example, in the winter season (time when the sunrise time is later than the activation time), the control device 14 obtains the voltage drop rate per unit time from the activation time to the sunrise time by the voltage monitoring unit 13.
  • the wireless unit has a function of exchanging transmissions with other wireless devices 2. For example, when the energy-generating wireless device 1 transmits data from a sensor attached thereto to the other wireless device 2, at least a transmission function is provided. In addition, a reception function for receiving instructions and data from the outside may be provided.
  • the control device 14 has a function of controlling the voltage monitoring unit 13, the timer 15, the wireless unit 16, and the memory 19 for acquiring power and acquiring voltage information 18 from the voltage monitoring unit 13. Further, a function of inputting and processing measurement data from various sensors (not shown) may be provided.
  • the control device 14 is composed of, for example, a microcomputer and includes an input device, an output device, a processing device, a storage device, and the like.
  • a microcomputer includes an input device, an output device, a processing device, a storage device, and the like.
  • it is a one-chip integrated circuit device (LSI), and control and calculation operations described later can be executed by software control.
  • LSI one-chip integrated circuit device
  • the memory 19 may be built in the integrated circuit device as a semiconductor memory. Further, all or a part of the functions of the voltage monitoring unit 13 and the timer 15 can be realized by controlling the control device 14 configured by a microcomputer with software.
  • the energy-generating wireless device 1 is small and can operate for a long time, the amount of power that can be generated by the power generation unit 11 and the amount of power that can be charged in the power storage unit 12 are limited, and the energy-generating wireless device 1 is as much as possible. Low power consumption is required.
  • control device 14 controls the activation timing of each function, so that it is possible to suppress the power consumption of the power storage unit 12 during a time period when communication with the other wireless device 2 is not performed.
  • the activation timing control mentioned here is to repeat the “activation state” in which all functions of the energy-generating wireless device 1 can be used and the “sleep state” in which only the minimum necessary functions are operated. .
  • the hibernation state is a state in which the power consumed by the power storage unit 12 is suppressed by causing the control device 14 to suspend the functions of the voltage monitoring unit 13 and the radio unit 16, for example.
  • the control device 14 In a typical example, in the sleep state, the energy generating wireless device 1 is stopped or restricted from communicating with the other wireless device 2.
  • the activated state refers to a state in which all functions of the power generation unit 11, the power storage unit 12, the voltage monitoring unit 13, the control device 14, the timer 15, the wireless unit 16, and the memory 19 are activated. Note that more complicated control can be performed by providing an intermediate state between the hibernation state and the activation state in multiple stages. In the intermediate state, for example, only a part of the functions of the power generation unit 11, the power storage unit 12, the voltage monitoring unit 13, the control device 14, the timer 15, the radio unit 16, and the memory 19 are activated.
  • FIG. 2 is an example of a voltage change of the power storage unit 12 in summer.
  • Graph 27 shows the change in voltage of power storage unit 12.
  • the summer referred to here, sunrise time T 1 is the season of the early state from start-up time T S.
  • sunrise time T 1 is early morning than the activation time T S, as the voltage of power storage unit 12 falls below the starting voltage V1 at nighttime (time zone after sunset T 2 until sunrise T 1), starting power supply 20 is performed from the power generation unit 11 to the power storage unit 12 before the time T S.
  • the activation time T S has started the voltage V1 or voltage, it is possible to operate the energy harvesting wireless device 1.
  • the sunrise time T 1 of the 2 is defined as the time that enables the power supply 20 to the power storage unit 12 from the power generation unit 11. As the device itself, it can be determined autonomously by whether or not the power generation unit can substantially generate power. Alternatively, meteorological sunrise time information may be input from the outside and substituted. The same applies to the sunset time.
  • the sunset time T 2 of the FIG. 2 is defined as a time when the power supply 20 becomes impossible to power storage unit 12 from the power generation unit 11. As shown in FIG. 2, since the power supply 20 is performed in the power storage unit 12 from the power generation unit 11 to the sunset time T 2, the voltage 27 of the power storage unit 12 continues to rise. In this embodiment, for simplicity, if the sunrise time T 1 at sunset time T 2, the power generation amount of the power generation unit 11 is made larger than the consumption of energy harvesting wireless device 1.
  • FIG. 3 is an example of a voltage change of the power storage unit 12 in winter.
  • sunrise time T 1 is a season of slow state than the start-up time T s.
  • the voltage 27 of the power storage unit 12 exceeds the activation voltage V1.
  • FIG. 4 shows an example for stably starting the energy harvesting wireless device 1 at the start time T s even in winter in view of the phenomenon of FIG.
  • an example is shown in which the amount of power consumed by the energy-generating wireless device 1 is calculated in advance from the start time T s to the sunrise time T 1 and stored in the power storage unit 12.
  • the quiescent voltage V2 can be expressed by Equation 2.
  • FIG. 5 is a flowchart showing a series of operation examples of the energy-generating wireless device 1 for realizing the control of FIG.
  • a series of operations of the energy-generating wireless device 1 will be described with reference to FIG. As described above, such control can be performed by control by the control device 14.
  • the voltage of the power storage unit 12 is equal to or higher than the activation voltage V1, and the energy harvesting type wireless device 1 is activated.
  • V1 the activation voltage
  • the energy harvesting type wireless device 1 is activated.
  • it may be the time when the power generation unit 11 starts power generation at the sunrise time, or may be an arbitrary designated time near noon where power is available.
  • the specified time may be stored in the memory 19.
  • the control device 14 acquires the sunrise time T 1 and the activation time T s recorded in the memory 19. Then, by comparing the sunrise time T 1 and the start-up time T s, judges Which one is the early morning.
  • the memory 19 may store a daily activation time and a daily sunrise time in advance.
  • the data may be transmitted from the other wireless device 2 collectively or as data every day via the wireless unit 16 and stored in the memory 19.
  • the sunrise time as described in the following ⁇ method of calculating the sunrise time T 1>, the most recent data of the power generation start time of the power generation unit 11, may be stored in the memory as a day before the sunrise time, this, It may be used as the sunrise time of the day. At this time, if the information of the timer 15 is used together, the accuracy can be improved.
  • the energy harvesting type wireless device 1 can autonomously collect the data, and thus has an advantage of being maintenance-free. Further, when the power generation unit is an optical panel, it is possible to reflect the irradiation condition of sunlight on the panel.
  • Controller 14 if the direction of activation time T s from the sunrise time T 1 is determined to early morning, so the power generation portion 11 at the activation time T s can power 20 to the power storage unit 12, the processing of FIG. 5 is ended To do.
  • the energy harvesting type wireless device 1 can operate by receiving power supply from the power generation unit 11 after being activated at the activation time T s . Therefore, as shown in FIG. 2, the start voltage V1 may be used to control switching between the start state and the sleep state.
  • ⁇ S53> Controller 14 if the direction of sunrise T 1 than the activation time T s is determined to early morning, and calculates the time from the start time T s until sunrise time T 1.
  • the control device 14 calculates the pause voltage V2 from ⁇ Expression 2>.
  • the control device 14 calculates the pause voltage V2 and then stores it in the memory 19.
  • Resting voltage V2 starting voltage V1 + (voltage drop rate) * (starting time T s ⁇ sunrise time T 1 ).
  • the control device 14 acquires voltage information 18 from the voltage monitoring unit 13. Further, the pause voltage V ⁇ b> 2 is acquired from the memory 19.
  • the control device 14 compares the voltage information 18 with the pause voltage V2.
  • the acquisition and comparison of the voltage information 18 are performed at predetermined time intervals, for example, once every minute.
  • the process proceeds to (S58).
  • control device 14 transitions to a dormant state by pausing each function of the voltage monitoring unit 13, the memory 19, and the radio unit 16.
  • the control device 14 acquires the time information 17 from the timer 15 and the activation time T s from the memory 19.
  • the process proceeds to (S60).
  • Controller 14 a time when the power generation portion 11 starts the power supply 20 to the power storage unit 12 is acquired by the timer 15 is recorded in the memory 19 the time as sunrise time T 1.
  • the other wireless device 2 is a base station that collects data wirelessly transmitted from, for example, the energy-generating wireless device 1. It is not limited to the energy harvesting type, and power supply by a battery, a cable or the like may be used.
  • ⁇ Supplement> 2, 3, and 4 are simplified for explaining the first embodiment.
  • the voltage of the power storage unit 12 does not necessarily become the maximum at the sunset time 23.
  • Example 1 should be considered as illustrative in all points and not restrictive.
  • the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
  • the power storage unit 12 is assumed to be a capacitor.
  • the pause voltage V2 can be calculated by a simple calculation.
  • the voltage drop rate may be nonlinear.
  • data of a voltage drop corresponding to the time from the start time T s to the sunrise time T 1 in FIG. 4 may be stored in the memory 19 as a table in advance by simulation or experiment.
  • the capacitor is inexpensive, and in the case of a capacitor, it is only necessary to provide the control device 14 with a simple calculation function. Therefore, the combination of the capacitor and the control method of FIG. There are benefits.
  • Example 2 ⁇ Overview of Example 2>
  • the activation state the state in which all the functions of the voltage monitoring unit 13, the control device 14, the timer 15, the wireless unit 16, and the memory 19 are activated
  • the voltage drop of the power storage unit 12 does not occur in the resting state (the state where the control device 14 pauses the functions of the voltage monitoring unit 13 and the wireless unit 16).
  • ⁇ Voltage drop rate in startup state> 6 night-time (time period after sunset T 2 until sunrise T 1), and the ratio of the voltage drop of the power storage unit 12 per unit time in the activated state, is defined as the voltage drop rate of the activated state.
  • ⁇ Rate voltage drop rate> 6 night-time (time period after sunset T 2 until sunrise T 1), and the ratio of the voltage drop of the power storage unit 12 per unit in the hibernation time, that the voltage drop rate of the hibernation.
  • it is defined as a voltage drop due to natural discharge of the power storage unit 12.
  • ⁇ Switching voltage V3> the voltage that transitions from the activated state to the inactive state is defined as a switching voltage V3.
  • ⁇ Switching time T 4> 6 defines the time of transition to the dormant state from the active state and change time T 4.
  • Graph 27 in FIG. 6, in the winter illustrates an example of a voltage change in the power storage unit 12 in consideration of the voltage drop dormant.
  • Sunset time T 2 and later, since the power generation unit 11 is no longer able to power 20 to the power storage unit 12, the voltage of power storage unit 12 is gradually drops sharply.
  • the rate of voltage drop per unit time is the voltage drop rate in the activated state.
  • the switching time T 4 the time when the start state is changed to the hibernation state
  • the hibernation state since the hibernation state is entered, the voltage of the power storage unit 12 gradually decreases.
  • the rate of voltage drop of power storage unit 12 in the resting state per unit time is referred to as the resting state voltage drop rate.
  • ⁇ Switching voltage V3> By calculating the optimum value of the switching voltage V3, it is possible to reliably start the energy harvesting type wireless device 1 at the start time T s even in winter (when the sunrise time is later than the start time). Hereinafter, the switching voltage V3 is calculated.
  • the switching voltage V3 can be calculated from Equations 3 and 4.
  • Switching voltage V3 startup voltage V1 + (Voltage drop rate in rest state) * (Switching time T 4 -Starting time T s ) + (Voltage drop rate in startup state) * (Startup time T s -Sunrise time T 1 )
  • Switching time T 4 (Voltage at sunset time T 2 ⁇ Switching voltage V 3) / (Voltage drop rate in starting state)
  • the starting voltage V1, the starting time Ts , the voltage drop rate in the hibernation state, and the voltage drop rate in the start state are stored in the memory 19 in advance.
  • Sunrise time T 1, sunset time T 2 is obtained as follows. Controller 14, a time when the power generation portion 11 starts the power supply 20 to the power storage unit 12 is acquired by the timer 15 is recorded in the memory 19 the time as sunrise time T 1. Further, the control unit 14, the time at which the power generation unit 11 stops power supply 20 to the power storage unit 12 is acquired by the timer 15 is recorded in the memory 19 the time as sunset time T 2.
  • Voltage sunset time T 2 obtains the voltage at the sunset time T 2, the time of the voltage monitoring unit 13 and stored in the memory 19 by the controller 14.
  • FIG. 6 is simplified for explaining the second embodiment.
  • the voltage of power storage unit 12 to the sunset time T 2 is maximized.
  • the voltage drop rate of the power storage unit 12 from the sunset time T 2, to change time T 4 (time of transition from the activated state to a rest state) and the voltage drop rate of sunrise T 1 from the start time T s is the same However, it is just for convenience and may be different.
  • Example 1 As a method for obtaining the sunrise time T 1, the control unit 14, a time when the power generation portion 11 starts the power supply 20 to the power storage unit 12 is acquired by the timer 15, sunrise the time The time T 1 was recorded in the memory 19. Throughout the year, but it may be a method allowed to prerecorded sunrise time T 1 in the memory 19.
  • Example 2 As a method for obtaining the sunset time T 2, the control unit 14, the time at which the power generation unit 11 stops power supply 20 to the power storage unit 12 is acquired by the timer 15, and the time and sunset time 23 memory 19 recorded. Throughout the year, but it may be a way to keep to record in advance the sunset time T 2, the memory 19.
  • the method of performing control using the pause voltage V2 has been described.
  • the voltage value of the sunset time T 2 also determine the switching time T 4 when the voltage drop rate of the active state is known. Therefore, without voltage monitoring, the switching time T 4 obtained is stored in the memory 19 may be controlled by time.
  • the method of performing control using the pause voltage V3 has been described.
  • V3 the voltage value of the sunset time T 2
  • the change time T 4 when the voltage drop rate of the active state is known. Therefore, without voltage monitoring, the switching time T 4 obtained is stored in the memory 19 may be controlled by time.
  • the capacitor has an upper limit of the capacity, the sunset time T 2, it is assumed that the power storage to full capacity.
  • the maximum voltage value assuming VM, VM can be obtained pause voltage V3 or change time T 4 from the voltage drop rate of the V2 and activated state since it is known.
  • a VM may be used instead. Therefore, as in Example 4, it may be stored resting voltage V3 or change time T 4 obtained in the memory 19, which may control, based on the.
  • the capacitance and switching time T 4 it is possible to use the smallest possible capacitor in the required range, it is possible to reduce the cost of the apparatus.
  • the amount of power to be stored in the power storage unit in advance can be calculated from the sunrise time and the start time, it is possible to provide the energy harvesting type wireless device 1 using a capacitor having the minimum necessary electric capacity. Therefore, since the capacitor size can be reduced as compared with the conventional method, the space can be saved and the energy-saving wireless device can be reduced in size and weight.
  • FIG. 7 shows an example of an embodiment which is an application example of the present invention.
  • the example of FIG. 7 is an example in which the energy harvesting type wireless device 1 described in the first to fifth embodiments is used for maintenance of the transmission line (electric wire) 70.
  • the temperature of the transmission line 70 increases due to heat generation.
  • Such an abnormality is detected by the temperature sensor 71, and the detected data is processed by the control device 14 of the energy harvesting wireless device 1, stored in the memory 15, and transmitted from the wireless unit 16 to the other wireless device 2 in the activated state.
  • the energy-generating wireless device 1 operates as autonomously as possible.
  • FIG. 7 only one pair of the energy-generating wireless device 1 and the sensor 71 is shown, but in reality, a large number of devices are arranged in a very large number of places.
  • the data transmitted to the other wireless device 2 is accumulated in the data accumulation center 73 via a wired or wireless path 72.
  • the data accumulated in the center 73 can be monitored and used by the management terminal 75 via the local communication network 74 or the like.
  • FIG. 8 is a specific example of the energy harvesting type radio apparatus 1 shown in FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the sensor 71 is built in the energy-generating wireless device 1, but may be externally attached.
  • the power generation unit 11 uses a solar panel, and the power storage unit 12 uses a capacitor.
  • the control device 14 is a one-chip microcomputer and includes an input / output unit 801 and a processing unit 802. In addition, the control device 14 may incorporate a memory.
  • a nonvolatile semiconductor memory was used for the storage unit 19.
  • the semiconductor memory stores a startup time 803, a sunrise time 804, a sunset time voltage or capacitor capacity 805, a startup state voltage drop rate 806, a dormant state voltage drop rate 807, sensor data 808, and the like.
  • the processing unit 802 performs overall control of the energy-generating wireless device 1, processing of sensor data 808, and various calculations using data in the storage unit 19. Control of the entire apparatus includes switching control between an active state and a hibernation state.
  • Starting time 803, sunrise time 804, sunset voltage or capacitor capacity 805, starting state voltage drop rate 806, resting state voltage drop rate 807, etc. may be stored in advance.
  • the energy-generating wireless device 1 autonomously acquires data.
  • the startup state voltage drop rate 806 is a voltage drop rate of the capacitor per unit time when the system is started up with the power stored in the capacitor.
  • the hibernating voltage drop rate 807 is a voltage drop rate of the capacitor per unit time when the system is put into hibernation with the electric power stored in the capacitor.
  • the startup state voltage drop rate 806 and the dormant state voltage drop rate 807 may be stored in advance because a linear drop rate is assumed when a capacitor is used for the power storage unit 12.
  • One or a plurality of activation times 803 may be stored in advance according to conditions. If the wireless unit 16 can receive the activation time 803, the activation time is obtained from the received data and stored in the storage device 19. May be.
  • Sensor data 808 is data acquired by the sensor 71, and is transmitted collectively or sequentially from the wireless unit 16 in the activated state.
  • control device 14 may be configured by a single computer, or any part of the input device, output device, processing device, and storage device may be configured by another computer. .
  • the functions of the invention are realized by controlling the hardware of the control device 14 by software stored in the recording device 19.
  • functions equivalent to those configured by software can be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit). Such an embodiment is also included in the scope of the examples.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • wireless sensor networks etc.
  • wireless devices sensor nodes equipped with sensors.

Abstract

Provided is a technology for controlling activation timing that enables an energy-harvesting wireless device to be activated at a predetermined activation time. The present invention has: a power generation unit that generates power by using sunlight as an energy source; a power storage unit that stores the power; a wireless unit that transmits signals wirelessly; a control device that controls the wireless unit; a storage device that stores information used by the control device; and a timer capable of measuring time. The control device has: a first means that controls a device to at least two states, that is, an active state in which the wireless unit transmits signals wirelessly, and an idle state in which less power is consumed than in the active state; a second means that acquires a start time (activation time) for the active state stored in the storage device; a third means that acquires the sunrise time; and a fourth means that controls the start timing for the idle state on the basis of the activation time and the sunrise time.

Description

環境発電型無線装置及びシステムEnergy generation type wireless device and system
 本発明は、環境発電型無線装置の省電力化に係わり、特に、日の出時刻前のために発電部が環境発電型無線装置に電力供給できない状態であっても、予め決められた起動時刻に環境発電型無線装置を起動させる技術に関する。 The present invention relates to power saving of an energy harvesting type wireless device, and in particular, even when the power generation unit cannot supply power to the energy harvesting type wireless device before the sunrise time, The present invention relates to a technology for starting a power generation type wireless device.
 センサを実装した無線装置(センサノード)によりワイヤレスセンサネットワークを構築し、人やモノ、設備などの「状態」や「変化」を一元的に把握するシステムが提供されている。 A wireless sensor network is built with wireless devices (sensor nodes) equipped with sensors to provide a system that can centrally grasp the “state” and “change” of people, things, and facilities.
 一般的に無線装置は、人の立ち入りが困難な箇所や無線装置を駆動させる商用電源の供給が困難な箇所に設置されることが多い。また、無線装置を内蔵の電池で駆動させる場合、定期的な電池交換作業は、作業員の時間や労力を費やす課題があった。 Generally, wireless devices are often installed in places where it is difficult for people to enter or places where it is difficult to supply commercial power to drive the wireless devices. In addition, when the wireless device is driven by a built-in battery, periodic battery replacement work has a problem of spending time and labor of workers.
 そこで、太陽光や振動、熱などのエネルギーから無線装置を駆動させる電力を得るエナジーハーベスト(環境発電)技術を用いた環境発電型無線装置が提供されている。 Therefore, an energy harvesting wireless device using energy harvesting (energy harvesting) technology that obtains electric power for driving the wireless device from energy such as sunlight, vibration, and heat is provided.
 一般的に環境発電型無線装置は小型で、かつ長時間稼働できなければならない。しかし、発電部(太陽光パネルなど)が発電できる電力量や、蓄電部(電池やキャパシタなど)に充電できる電力量は有限であり、可能な限り環境発電型無線装置自体の低消費電力化が求められる。 Generally, an energy-generating wireless device must be small and able to operate for a long time. However, the amount of power that can be generated by the power generation unit (solar panel, etc.) and the amount of power that can be charged in the power storage unit (battery, capacitor, etc.) is limited. Desired.
 一般的に環境発電型無線装置の消費電力を抑制する方法として、他の無線装置と通信が不要な時間帯は、環境発電型無線装置をスリープさせるなどの起動タイミングの制御が用いられる。ここで言う起動タイミングの制御とは、環境発電型無線装置の全ての機能を使用できる状態である「起動状態」と、キャパシタ等電源の消費電力を防ぐために環境発電型無線装置の主要機能を休止させた状態である「休止状態」とを、切り換えて制御することである。例えば、休止状態のとき、環境発電型無線装置は、他無線装置やセンサと通信を行わず、通信を行うときのみ起動状態とするように動作する。 Generally, as a method for suppressing the power consumption of the energy-generating wireless device, control of activation timing such as putting the energy-generating wireless device to sleep is used in a time zone where communication with other wireless devices is unnecessary. Control of start-up timing here refers to the “start-up state” in which all functions of the energy-generating wireless device can be used, and the main functions of the energy-generating wireless device are suspended in order to prevent the power consumption of power supplies such as capacitors. This is to switch and control the “pause state” that is the state that has been made. For example, when in a dormant state, the energy-generating wireless device does not communicate with other wireless devices or sensors, and operates so as to be activated only when communicating.
特開2012-80622号公報JP 2012-80622 A
 環境発電型無線装置として太陽光パネルを用いた場合、太陽光パネルは環境発電型無線装置に24時間安定に電力供給できないことが多い。 When a solar panel is used as an energy harvesting wireless device, the solar panel often cannot supply power stably to the energy harvesting wireless device for 24 hours.
 特許文献1には、多台数配置した周囲の無線装置が過去から取得してきた日射時刻情報に基づき、今後の日照量を予測して無線装置の起動タイミングの制御を行って、無線装置の消費電力量を制御する一連の方法が記載されている。 Patent Document 1 discloses a method of predicting a future amount of sunshine based on the solar radiation time information acquired by a plurality of surrounding wireless devices arranged from the past, and controlling the startup timing of the wireless device, thereby reducing the power consumption of the wireless device. A series of methods for controlling the amount are described.
 しかしながら、日照量を予測するには複数台の無線装置が必要であり、さらにそれぞれの無線装置は日射量と相関がある必要があるが、実際には、各々の無線装置は周辺構造物の影響を受けるために日射量との相関が弱くなるという課題があった。 However, in order to predict the amount of sunlight, a plurality of wireless devices are required, and each wireless device needs to correlate with the amount of solar radiation. In reality, each wireless device is affected by surrounding structures. In order to receive, there was a problem that the correlation with the amount of solar radiation became weak.
 発明者らが行った環境発電型無線装置のフィールドテストでは、光の照射量の減少する冬季には、充電量が不足することにより、無線装置の起動状態が不安定になることが分かった。 In the field test of the energy harvesting type wireless device conducted by the inventors, it was found that the start-up state of the wireless device becomes unstable due to insufficient charge amount in the winter when the light irradiation amount decreases.
 特に、環境発電型無線装置の電力供給源として太陽光パネルを用いた場合、冬季など環境発電型無線装置を起動させたい時刻より日の出時刻が遅い場合は、起動時に環境発電型無線装置に十分な電力供給できない場合がある。この場合は、日の出までの間、キャパシタなどの電源に充電した電力により無線装置を動作させる必要がある。しかし、充電量が不足し起動時間に十分に起動ができないという問題があった。また、充電量を左右する要因としては、天候による影響よりも、日の出時間の影響が支配的であることが分かった。すなわち、発明者らの検討によると、日の出時間(季節)と起動できる時刻の間には相関関係があるという知見を見出した。 In particular, when a solar panel is used as a power supply source for an energy harvesting wireless device, if the sunrise time is later than the time at which the energy harvesting wireless device is to be activated, such as in winter, it is sufficient for the energy harvesting wireless device at startup. In some cases, power cannot be supplied. In this case, it is necessary to operate the wireless device with power charged in a power source such as a capacitor until sunrise. However, there was a problem that the charging amount was insufficient and the startup could not be sufficiently performed. It was also found that the influence of sunrise time is more dominant than the influence of weather as a factor that affects the amount of charge. That is, according to the study by the inventors, the inventors have found that there is a correlation between the sunrise time (season) and the time at which it can be activated.
 本発明の課題は、日の出時間に係らず、所望の起動時間に安定的に起動状態とすることができる、環境発電型無線装置を提供することにある。 An object of the present invention is to provide an energy harvesting type wireless device that can be stably activated at a desired activation time regardless of the sunrise time.
 本願は上記課題を解決する手段を複数含んでいる。 This application includes a plurality of means for solving the above problems.
 本発明の一側面は、センサで取得したデータをそのまま、もしくは、加工して、無線により送信する環境発電型無線システムである。このシステムは、太陽光を受光して電力を発生させる発電部と、電力を蓄積するキャパシタと、キャパシタの電圧を監視する電圧監視部と、キャパシタに蓄積された電力によって、無線によりデータを送出する無線部と、制御装置と、制御装置で用いる情報を格納する記憶装置とを有する。 One aspect of the present invention is an energy generating wireless system that transmits data acquired by a sensor as it is or after processing it wirelessly. In this system, a power generation unit that receives sunlight and generates electric power, a capacitor that accumulates electric power, a voltage monitoring unit that monitors the voltage of the capacitor, and the electric power accumulated in the capacitor transmit data wirelessly. A wireless unit, a control device, and a storage device that stores information used by the control device.
 制御装置は、無線部が無線によりデータを送出可能な起動状態と、起動状態よりも消費電力が少ない休止状態の少なくとも2つの状態にシステムを制御する第1の手段を備える。また、電圧監視部の出力に基づいて日の出時刻を判定し、記憶装置に格納する第2の手段と、記憶装置に格納された起動状態の開始時刻(起動時刻)を取得する第3の手段と、記憶装置に格納された、起動時刻と日の出時刻の前後関係を判定する第4の手段とを備える。 The control device includes first means for controlling the system in at least two states, an active state in which the wireless unit can transmit data wirelessly and a sleep state in which power consumption is lower than the active state. A second means for determining the sunrise time based on the output of the voltage monitoring unit and storing it in the storage device; and a third means for acquiring the start time (startup time) of the startup state stored in the storage device; And a fourth means for determining the anteroposterior relationship between the activation time and the sunrise time stored in the storage device.
 さらに、起動時刻が日の出時刻と同時もしくは遅い場合には、電圧監視部で監視された電圧が第1の閾値を下回るか、あるいは、予め定められた時刻となることを条件に、起動状態から休止状態に切り替える第5の手段を有する。また、起動時刻が日の出時刻より早い場合には、電圧監視部で監視された電圧が第1の閾値より大きい第2の閾値を下回るか、あるいは、電圧監視部で監視された電圧が第2の閾値を下回る時刻となることを条件に、起動状態から休止状態に切り替える第6の手段を有する。さらに、第1の閾値に、起動時刻と日の出時刻の時間間隔を基に計算された値を加算し、第2の閾値を生成して記憶装置に格納する第7の手段と、を有する。 Further, when the activation time is the same as or later than the sunrise time, the operation is suspended from the activation state on the condition that the voltage monitored by the voltage monitoring unit falls below the first threshold or reaches a predetermined time. There is a fifth means for switching to the state. When the activation time is earlier than the sunrise time, the voltage monitored by the voltage monitoring unit falls below a second threshold value that is greater than the first threshold value, or the voltage monitored by the voltage monitoring unit is a second value. There is a sixth means for switching from the activated state to the dormant state on condition that the time falls below the threshold value. And a seventh means for adding a value calculated based on the time interval between the activation time and the sunrise time to the first threshold value to generate a second threshold value and storing it in the storage device.
 さらに具体的な態様の例では、第7の手段は、起動時刻と日の出時刻の時間間隔に、起動状態電圧降下率を積算し、さらに0以上の正の値を余裕度として加算し、第2の閾値を生成する。 In a more specific example, the seventh means integrates the activation state voltage drop rate in the time interval between the activation time and the sunrise time, and further adds a positive value of 0 or more as a margin, The threshold value is generated.
 他の具体的な態様の例では、制御装置は、電圧監視部の出力に基づいて日の入り時刻を判定し、日の入り時刻におけるキャパシタの電圧を記憶装置に格納する。記憶装置は、キャパシタに蓄積されている電力でシステムを休止状態とする際の、単位時間当たりのキャパシタの電圧降下率を休止状態電圧降下率として記憶する。第7の手段は、日の入り時刻におけるキャパシタの電圧と休止状態電圧降下率をさらに用いて、第2の閾値を生成する、
 他の具体的な態様の例では、記憶装置は、キャパシタに蓄積されている電力でシステムを休止状態とする際の、単位時間当たりのキャパシタの電圧降下率を休止状態電圧降下率として記憶し、キャパシタに蓄積可能な最大電圧をキャパシタ最大電圧として記憶する。第7の手段は、キャパシタ最大電圧と休止状態電圧降下率をさらに用いて、第2の閾値を生成する。
In another specific example, the control device determines the sunset time based on the output of the voltage monitoring unit, and stores the voltage of the capacitor at the sunset time in the storage device. The storage device stores the voltage drop rate of the capacitor per unit time when the system is put into a hibernation state with the electric power stored in the capacitor as the hibernation state voltage drop rate. The seventh means further generates the second threshold value by further using the capacitor voltage and the resting state voltage drop rate at the sunset time.
In another specific example, the storage device stores the voltage drop rate of the capacitor per unit time when the system is put into a hibernation state with the electric power stored in the capacitor as the hibernation state voltage drop rate. The maximum voltage that can be stored in the capacitor is stored as the capacitor maximum voltage. The seventh means generates the second threshold value by further using the capacitor maximum voltage and the resting state voltage drop rate.
 記憶装置に格納される各種の数値は、予め想定して格納しておくことができる。また、環境発電型無線システムがフィールドで自律的に測定し、必要に応じて計算し、記憶装置に記憶することができる。また、必要に応じて数値を更新することもできる。この場合は、より稼働状態に即したシステム制御が可能となる。 The various numerical values stored in the storage device can be preliminarily stored. In addition, the energy-generating wireless system can autonomously measure in the field, calculate as necessary, and store it in the storage device. Also, the numerical value can be updated as necessary. In this case, it is possible to control the system more in line with the operating state.
 例えば、第2の手段は、例えば電圧監視部の電圧に基づいて、毎日日の出時刻を判定し、第4の手段は毎日日の出時刻の前後関係を判定し、第7の手段は毎日第2の閾値を生成して前記記憶装置に格納する。 For example, the second means determines the sunrise time every day based on, for example, the voltage of the voltage monitoring unit, the fourth means determines the order of the sunrise time every day, and the seventh means the second threshold every day. Is stored in the storage device.
 具体的な制御方法の例としては、電圧監視部で監視された電圧と記憶された閾値の比較によって行うことができる。別の方法としては、電圧監視部で監視された電圧が閾値を横切るタイミングを予め計算、記憶し、時刻による制御を行ってもよい。 As an example of a specific control method, it can be performed by comparing the voltage monitored by the voltage monitoring unit with the stored threshold value. As another method, the timing at which the voltage monitored by the voltage monitoring unit crosses the threshold may be calculated and stored in advance, and control based on time may be performed.
 本発明の他の側面は、太陽光をエネルギー源として電力を発生させる発電部と、電力を蓄積する蓄電部と、無線により信号を送出する無線部と、無線部を制御する制御装置と、制御装置で用いる情報を格納する記憶装置と、時間を測定可能なタイマと、を有する環境発電型無線装置である。 Another aspect of the present invention provides a power generation unit that generates power using sunlight as an energy source, a power storage unit that accumulates power, a wireless unit that wirelessly transmits a signal, a control device that controls the wireless unit, and a control It is an energy harvesting type wireless device having a storage device for storing information used by the device and a timer capable of measuring time.
 制御装置は、無線部が無線により信号を送出する起動状態と、起動状態よりも消費電力が少ない休止状態の少なくとも2つの状態に装置を制御する第1の手段と、記憶装置に格納された起動状態の開始時刻(起動時刻)を取得する第2の手段と、日の出時刻を取得する第3の手段と、起動時刻と日の出時刻とに基づいて、休止状態の開始タイミングを制御する第4の手段と、を有する。 The control device includes: a first unit that controls the device in at least two states: a start state in which the wireless unit transmits a signal wirelessly; and a sleep state that consumes less power than the start state; and a start stored in the storage device A second means for acquiring the start time (start-up time) of the state, a third means for acquiring the sunrise time, and a fourth means for controlling the start timing of the dormant state based on the start-up time and the sunrise time And having.
 より具体化された態様の例では、蓄電部の電圧を監視する電圧監視部を備える。また、第4の手段は、起動時刻と日の出時刻の前後関係を判定する手段と、起動時刻が日の出時刻より早い場合には、起動時刻から日の出時刻までに起動状態を維持するために必要な電力量を算出する手段と、必要な電力量に基づいて、休止状態の開始の条件となる蓄電部の電圧(休止電圧)を算出する手段と、電圧監視部により蓄電部の電圧が休止電圧以下になったと判定されたタイミングで、休止状態を開始する手段と、を有する。 In an example of a more specific aspect, a voltage monitoring unit that monitors the voltage of the power storage unit is provided. The fourth means is a means for determining the anteroposterior relationship between the activation time and the sunrise time, and when the activation time is earlier than the sunrise time, the power required for maintaining the activation state from the activation time to the sunrise time. A means for calculating the amount, a means for calculating the voltage of the power storage unit (resting voltage) as a condition for starting the hibernation state based on the required amount of power, and the voltage monitoring unit causes the voltage of the power storage unit to fall below the resting voltage. And a means for starting a dormant state at a timing when it is determined that it has become.
 より具体化された他の態様の例では、第3の手段は、発電部の発電状態に基づいて日の出時刻を判定し、判定した日の出時刻を記憶装置に日々格納する。第4の手段は、記憶装置に格納された最新の日の出時刻を用いて処理を行う。 In another example of a more specific embodiment, the third means determines the sunrise time based on the power generation state of the power generation unit, and stores the determined sunrise time every day in the storage device. The fourth means performs processing using the latest sunrise time stored in the storage device.
 より具体化された他の態様の例では、第4の手段は、起動時刻が日の出時刻より遅い場合には、休止電圧より低い起動電圧を用い、電圧監視部により前記蓄電部の電圧が起動電圧以下になったと判定されたタイミングで、休止状態を開始する手段と、を有する。 In another example of the more specific embodiment, the fourth means uses a starting voltage lower than the pause voltage when the starting time is later than the sunrise time, and the voltage of the power storage unit is set to the starting voltage by the voltage monitoring unit. Means for starting a dormant state at a timing determined to be as follows.
 より具体化された他の態様の例では、蓄電部はキャパシタである。また、記憶装置は、日の出時刻前に起動状態にあるキャパシタの起動電圧降下率を記憶しており、第4の手段は、起動電圧降下率と、起動時刻と、日の出時刻を用いた計算により必要な電力量を算出し、起動電圧に、少なくとも必要な電力量に相当する電圧を加算した値を休止電圧として算出する。 In another example of a more specific embodiment, the power storage unit is a capacitor. In addition, the storage device stores the starting voltage drop rate of the capacitor in the starting state before the sunrise time, and the fourth means is necessary by calculation using the starting voltage drop rate, the starting time, and the sunrise time. A power amount is calculated, and a value obtained by adding at least a voltage corresponding to the required power amount to the start-up voltage is calculated as a pause voltage.
 本発明の他の態様は、太陽光のエネルギーから無線装置を駆動させる電力を得る発電部と、発電部で発電した電力を蓄電するための蓄電部と、蓄電部に蓄電されている電力量を計測し電圧情報を出力する電圧監視部と、時刻情報を出力するタイマと、他無線装置と通信を行うための無線部と、日の出時刻と起動時刻を記録するメモリと、発電部、蓄電部、電圧監視部、タイマ、無線部、および、メモリを制御する制御装置を有する無線装置である。この装置では、制御装置は、日の出時刻を算出してメモリに記録する手段と、起動時刻から日の出時刻までに発電部、蓄電部、電圧監視部、タイマ、無線部、メモリ、および、制御装置が起動状態に消費する電力量を算出する手段を備える。また、電圧監視部、タイマ、無線部、メモリ、および、制御装置の一部機能を停止することにより蓄電部の電力消費を抑制する休止状態に消費する電力量を算出する手段を備える。また、蓄電部に蓄電されているエネルギーのみで起動状態とする場合に、単位時間当たりの蓄電部の電圧降下率を計測する手段と、蓄電部に蓄電されているエネルギーのみで休止状態とする場合に、単位時間当たりの蓄電部の電圧降下率を計測する手段とを有する。 Another aspect of the present invention relates to a power generation unit that obtains power for driving a wireless device from solar energy, a power storage unit for storing power generated by the power generation unit, and an amount of power stored in the power storage unit. A voltage monitoring unit that measures and outputs voltage information; a timer that outputs time information; a wireless unit that communicates with other wireless devices; a memory that records sunrise time and activation time; a power generation unit; a power storage unit; The wireless device includes a voltage monitoring unit, a timer, a wireless unit, and a control device that controls the memory. In this device, the control device includes means for calculating a sunrise time and recording it in a memory, and a power generation unit, a power storage unit, a voltage monitoring unit, a timer, a radio unit, a memory, and a control device from the start time to the sunrise time. Means for calculating the amount of power consumed in the activated state. The voltage monitoring unit, the timer, the radio unit, the memory, and a unit for calculating the amount of power consumed in the sleep state that suppresses the power consumption of the power storage unit by stopping some functions of the control device. In addition, when only the energy stored in the power storage unit is set to the start-up state, the unit for measuring the voltage drop rate of the power storage unit per unit time and the case where the sleep state is set only by the energy stored in the power storage unit And means for measuring a voltage drop rate of the power storage unit per unit time.
 この態様によると、日の出時刻と起動時刻から予め蓄電部に蓄電しておくべき電力量を算出し、予め決められた起動時刻に確実に環境発電型無線装置を起動させることができる。特に、環境発電型無線装置が単体で日の出時刻を求め、さらに日の出時刻と予め決められた起動時間から、起動時刻から予め蓄電部に蓄電しておくべき電力量を算出する。 According to this aspect, it is possible to calculate the amount of power to be stored in the power storage unit in advance from the sunrise time and the start time, and to reliably start the energy generating wireless device at a predetermined start time. In particular, the energy harvesting type wireless device calculates the sunrise time by itself, and further calculates the amount of power to be stored in the power storage unit in advance from the startup time from the sunrise time and a predetermined startup time.
 本発明の他の態様は、太陽光をエネルギー源として電力を発生させる発電部と、電力を蓄積する蓄電部と、無線により信号を送出する無線部と、無線部を制御する制御装置と、制御装置で用いる情報を格納する記憶装置と、時間を測定可能なタイマと、を有する環境発電型無線装置において、制御装置が制御する方法である。 Another aspect of the present invention includes a power generation unit that generates power using sunlight as an energy source, a power storage unit that accumulates power, a wireless unit that wirelessly transmits a signal, a control device that controls the wireless unit, and a control In the energy harvesting type wireless device having a storage device for storing information used in the device and a timer capable of measuring time, the control device controls the method.
 制御装置は、無線部が無線により信号を送出する起動状態と、起動状態よりも消費電力が少ない休止状態の少なくとも2つの状態に装置を制御する第1の処理と、記憶装置に格納された前記起動状態の開始時刻(起動時刻)を取得する第2の処理と、日の出時刻を取得する第3の処理と、起動時刻と日の出時刻とに基づいて、休止状態の開始タイミングを制御する第4の処理と、を実行する。 The control device includes: a first process for controlling the device in at least two states: an active state in which the wireless unit transmits a signal wirelessly; and a sleep state in which power consumption is lower than the active state; A second process for acquiring the start time (start time) of the activation state, a third process for acquiring the sunrise time, and a fourth process for controlling the start timing of the hibernation state based on the activation time and the sunrise time And processing.
 本発明の他の態様は、太陽光をエネルギー源として電力を発生させる発電部と、電力を蓄積する蓄電部と、無線により信号を送出する無線部と、無線部を制御する制御装置と、制御装置で用いる情報を格納する記憶装置と、時間を測定可能なタイマと、を有する環境発電型無線装置において、制御装置を制御するためのプログラムである。 Another aspect of the present invention includes a power generation unit that generates power using sunlight as an energy source, a power storage unit that accumulates power, a wireless unit that wirelessly transmits a signal, a control device that controls the wireless unit, and a control A program for controlling a control device in an energy harvesting type wireless device having a storage device for storing information used in the device and a timer capable of measuring time.
 プログラムは、マイクロコンピュータで構成される制御装置のハードウェアに対して、無線部が無線により信号を送出する起動状態と、起動状態よりも消費電力が少ない休止状態の少なくとも2つの状態に装置を制御する第1の処理と、記憶装置に格納された前記起動状態の開始時刻(起動時刻)を取得する第2の処理と、日の出時刻を取得する第3の処理と、起動時刻と日の出時刻とに基づいて、休止状態の開始タイミングを制御する第4の処理と、を実行させるように制御を行う。 The program controls the device in at least two states: a start state in which the wireless unit sends signals wirelessly to a control device hardware composed of a microcomputer, and a sleep state that consumes less power than the start state. A first process for acquiring, a second process for acquiring a start time (start time) of the start state stored in the storage device, a third process for acquiring a sunrise time, and a start time and a sunrise time. Based on this, control is performed so as to execute a fourth process for controlling the start timing of the hibernation state.
 起動時間に確実に環境発電型無線装置を起動させることができる。 It is possible to start the energy harvesting type wireless device reliably at the starting time.
環境発電型無線装置1のシステム構成図の一例を示すブロック図。FIG. 2 is a block diagram illustrating an example of a system configuration diagram of the energy-generating wireless device 1. 夏季(日の出時刻が起動時刻より早い時期)の蓄電部12の電圧変化の一例を示すグラフ図。The graph figure which shows an example of the voltage change of the electrical storage part 12 in the summer (time when sunrise time is earlier than starting time). 冬季(日の出時刻が起動時刻より遅い時期)の蓄電部12の電圧変化の一例を示すグラフ図。The graph which shows an example of the voltage change of the electrical storage part 12 in winter (time when sunrise time is later than starting time). 冬季(日の出時刻が起動時刻より遅い時期)において、休止電圧に環境発電型無線装置1を休止させたときの蓄電部12の電圧変化の一例を示すグラフ図。The graph figure which shows an example of the voltage change of the electrical storage part 12 when the energy harvesting type | mold radio | wireless apparatus 1 is made to rest to a rest voltage in winter (time when sunrise time is later than starting time). 環境発電型無線装置1の動作例を示したフローチャート図。The flowchart figure which showed the operation example of the energy generation type radio | wireless apparatus 1. FIG. 冬季(日の出時刻が起動時刻より遅い時期)において、休止状態の電圧降下を加味した蓄電部12の電圧変化の一例を示すグラフ図。The graph figure which shows an example of the voltage change of the electrical storage part 12 which considered the voltage drop of a dormant state in winter (time when sunrise time is later than starting time). 本実施例の実施形態の例を示す説明図。Explanatory drawing which shows the example of embodiment of a present Example. 環境発電型無線装置1の他のシステム構成図の一例を示すブロック図。FIG. 3 is a block diagram showing an example of another system configuration diagram of the energy-generating wireless device 1.
 実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not construed as being limited to the description of the embodiments below. Those skilled in the art will readily understand that the specific configuration can be changed without departing from the spirit or the spirit of the present invention.
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。 In the structure of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and redundant description may be omitted.
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。 In this specification and the like, notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order. In addition, a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings and the like may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. For this reason, the present invention is not necessarily limited to the position, size, shape, range, and the like disclosed in the drawings and the like.
 以下、図1~図5を参照して、実施例1における環境発電型無線装置1の起動タイミングの制御方法及びプログラムの詳細について説明する。 Hereinafter, with reference to FIG. 1 to FIG. 5, the details of the control method and program of the start timing of the energy harvesting type wireless device 1 in the first embodiment will be described.
 なお、実施例1では、発電部11を太陽光パネルとして説明するが、環境発電できるものであれば太陽光パネルに限定されるものではない。例えば、太陽光を光電変換するものの他、太陽光による熱エネルギーを電力に変換するものがある。また、同様に実施例1では蓄電部をキャパシタとして説明するが、発電部11で発電したエネルギーを蓄電できるものであれば、キャパシタに限定されるものではない。 In addition, in Example 1, although the electric power generation part 11 is demonstrated as a solar panel, if it can carry out environmental power generation, it will not be limited to a solar panel. For example, in addition to photoelectric conversion of sunlight, there is one that converts thermal energy from sunlight into electric power. Similarly, in the first embodiment, the power storage unit is described as a capacitor. However, the capacitor is not limited to the capacitor as long as the energy generated by the power generation unit 11 can be stored.
 <キャパシタの性質>
 式1に示すとおり、キャパシタに蓄電される電力量は電圧に比例する。従って電圧監視部13が蓄電部12に蓄電されている電力量を算出することは、蓄電部12の電圧を求めることと等価である。
<Characteristics of capacitor>
As shown in Equation 1, the amount of power stored in the capacitor is proportional to the voltage. Therefore, calculating the amount of power stored in the power storage unit 12 by the voltage monitoring unit 13 is equivalent to obtaining the voltage of the power storage unit 12.
 <式1>
 Q= C × V
       Q:キャパシタに蓄電されている電力量
       C:電気容量(固定値)
       V:電圧。
<Formula 1>
Q = C x V
Q: Electric energy stored in the capacitor C: Electric capacity (fixed value)
V: Voltage.
 <起動時刻T>
 実施例1における環境発電型無線装置1は、早朝の起動時刻Tから動作する(「起動状態」になる)が、夜間帯(日の入りT後から日の出Tまでの時間帯)は起動しても起動しなくても良いものとする。夜間帯においては、発電部11は蓄電部12に電力供給20できないので、蓄電部12に蓄電されている電力で環境発電型無線装置1を動作させることになる。なお、環境発電型無線装置1は、蓄電部12の電圧が起動電圧V1(環境発電型無線装置1が正常動作するための最低限の蓄電部12の電圧)を下回った時点で停止する(強制的に「休止状態」になる)。
<Start-up time T 1>
The energy-generating wireless device 1 according to the first embodiment operates from the early morning activation time T s (becomes “activated state”), but activates at night time (time zone from sunset T 2 to sunrise T 1 ). However, it does not have to be activated. Since the power generation unit 11 cannot supply power 20 to the power storage unit 12 in the nighttime, the energy harvesting type wireless device 1 is operated with the power stored in the power storage unit 12. The energy harvesting type wireless device 1 stops (forced) when the voltage of the power storage unit 12 falls below the starting voltage V1 (minimum voltage of the power storage unit 12 for the energy harvesting type wireless device 1 to operate normally). Will be "hibernated").
 <夜間帯>
 なお、ここで言う夜間とは、日の入り後から日の出までの時間帯であり、発電部11が蓄電部12に電力供給20できない時間帯のことである。
<Nighttime>
The night at this time is a time zone from sunset to sunrise, and is a time zone during which the power generation unit 11 cannot supply power 20 to the power storage unit 12.
 <図1の説明>
 図1は、環境発電型無線装置1のシステム構成図の一例である。以下、図1を用いて環境発電型無線装置1の各機能を説明する。
<Description of Figure 1>
FIG. 1 is an example of a system configuration diagram of the energy-generating wireless device 1. Hereinafter, each function of the energy-generating wireless device 1 will be described with reference to FIG.
 <環境発電型無線装置1>
 環境発電型無線装置1は、例えば太陽光のエネルギーにより環境発電型無線装置1を起動するものであり、電池やケーブル等による電力供給を必要としない。図1に示すとおり、環境発電型無線装置1は、発電部11、蓄電部12、電圧監視部13、制御装置14、タイマ15、無線部16、記憶装置(メモリ)19から構成される。以下、環境発電型無線装置1の各機能について説明する。
<Energy generation type wireless device 1>
The energy harvesting type wireless device 1 activates the energy harvesting type wireless device 1 with solar energy, for example, and does not require power supply by a battery or a cable. As shown in FIG. 1, the energy harvesting type wireless device 1 includes a power generation unit 11, a power storage unit 12, a voltage monitoring unit 13, a control device 14, a timer 15, a wireless unit 16, and a storage device (memory) 19. Hereinafter, each function of the energy-generating wireless device 1 will be described.
 <発電部11>
 発電部11は、太陽光や照明光、機械の発する振動、熱などのエネルギーを採取することにより電力を得るものであり、例えば、太陽電池パネルをあげることができる。発電部11により発電されたエネルギーは、蓄電部12に電力供給20される。
<Power generation part 11>
The power generation unit 11 obtains electric power by collecting energy such as sunlight, illumination light, vibration generated by a machine, heat, and the like. For example, a solar cell panel can be used. The energy generated by the power generation unit 11 is supplied 20 to the power storage unit 12.
 <蓄電部12>
 蓄電部12は、発電部11が発電した電力を蓄電するものであり、例えば、キャパシタや充放電可能な電池である。発電部11として太陽光パネルを用いた場合、日の入り後から日の出までの間、発電部11は蓄電部12に電力供給20することができない。その場合は、蓄電部12に蓄電されているエネルギーを用いて環境発電型無線装置1の起動を行う。
<Power storage unit 12>
The power storage unit 12 stores power generated by the power generation unit 11, and is, for example, a capacitor or a chargeable / dischargeable battery. When a solar panel is used as the power generation unit 11, the power generation unit 11 cannot supply power 20 to the power storage unit 12 from sunset to sunrise. In this case, the energy harvesting type wireless device 1 is activated using the energy stored in the power storage unit 12.
 <電圧監視部13>
 電圧監視部13は、蓄電部12で蓄電されている電力量を算出する機能を有し、制御装置14に電圧情報18として提供する。既に説明したとおり、蓄電部にキャパシタを用いた場合は、蓄電されている電力量は電圧に比例するので、電力量として電圧を求めても良い。
<Voltage monitoring unit 13>
The voltage monitoring unit 13 has a function of calculating the amount of power stored in the power storage unit 12 and provides the voltage information 18 to the control device 14. As described above, when a capacitor is used for the power storage unit, the amount of stored power is proportional to the voltage, and thus the voltage may be obtained as the amount of power.
 <電圧情報18>
 電圧情報18とは、蓄電部12で蓄電されている電力量(電圧)を記した情報のことである。
<Voltage information 18>
The voltage information 18 is information describing the amount of electric power (voltage) stored in the power storage unit 12.
 <タイマ15>
 タイマ15は、時刻情報17を制御装置14に提供する機能を有する。タイマ15の時刻情報17は起動電圧V1を下回った場合でもクリアされないものとする。
<Timer 15>
The timer 15 has a function of providing time information 17 to the control device 14. It is assumed that the time information 17 of the timer 15 is not cleared even when it falls below the starting voltage V1.
 <記憶装置(メモリ)19>
 メモリ19には予め記録されている情報と、制御装置14により記録された情報が格納される。予め記録されている情報は、起動電圧V1、電圧降下率、起動時刻T等である。また、制御装置14により記録される情報は、日の出時刻Tと休止電圧V2と電圧情報18等である。メモリ19は、不揮発性半導体メモリや小型の磁気ディスク装置を使用することができる。メモリ19に記録されている情報は、起動電圧V1を下回った場合でもクリア(揮発)されないものとする。
<Storage device (memory) 19>
The memory 19 stores information recorded in advance and information recorded by the control device 14. Information previously recorded is the starting voltage V1, the voltage drop rate is a start time T s and the like. Further, information recorded by the control unit 14 is a sunrise time T 1 and the rest voltage V2 and the voltage information 18 and the like. As the memory 19, a nonvolatile semiconductor memory or a small magnetic disk device can be used. It is assumed that the information recorded in the memory 19 is not cleared (volatilized) even when it falls below the starting voltage V1.
 <起動電圧V1>
 起動電圧とは、環境発電型無線装置1が正常動作するための最低限の蓄電部12の電圧のことである。予めメモリ19に起動電圧V1は記録されている。
<Starting voltage V1>
The starting voltage is a minimum voltage of the power storage unit 12 for the energy harvesting type wireless device 1 to operate normally. The starting voltage V1 is recorded in the memory 19 in advance.
 <電圧降下率>
 冬季(日の出時刻が起動時刻より遅い時期)において、起動時刻から日の出時刻までの間、発電部11は蓄電部12に電力供給20することができないため、蓄電部12に蓄電されているエネルギーのみで環境発電型無線装置1を起動させる必要がある。その際、単位時間当たりの蓄電部の電圧降下率を電圧降下率とする。
<Voltage drop rate>
In the winter season (time when the sunrise time is later than the start time), the power generation unit 11 cannot supply power 20 to the power storage unit 12 from the start time to the sunrise time, so only the energy stored in the power storage unit 12 can be used. It is necessary to activate the energy harvesting wireless device 1. At that time, the voltage drop rate of the power storage unit per unit time is defined as the voltage drop rate.
 <電圧降下率の算出方法>
 電圧降下率は、予めメモリ19に記録されていても良いが、下記方法で制御装置14が算出しても良い。すなわち、制御装置14は、例えば冬季(日の出時刻が起動時刻より遅い時期)において、起動時刻から日の出時刻までの間に単位時間当たりの電圧降下率を電圧監視部13により求める。
<Calculation method of voltage drop rate>
The voltage drop rate may be recorded in the memory 19 in advance, but may be calculated by the control device 14 by the following method. That is, for example, in the winter season (time when the sunrise time is later than the activation time), the control device 14 obtains the voltage drop rate per unit time from the activation time to the sunrise time by the voltage monitoring unit 13.
 <無線部16>
 無線部は、他無線装置2と伝送のやり取りを行う機能を有する。例えば、環境発電型無線装置1が、それに付属するセンサからのデータを他無線装置2に送信する場合は、少なくとも送信機能を備える。また、外部からの指示やデータを受信するための受信機能を備えてもよい。
<Radio unit 16>
The wireless unit has a function of exchanging transmissions with other wireless devices 2. For example, when the energy-generating wireless device 1 transmits data from a sensor attached thereto to the other wireless device 2, at least a transmission function is provided. In addition, a reception function for receiving instructions and data from the outside may be provided.
 <制御装置14>
 制御装置14は、省電力化のために電圧監視部13、タイマ15、無線部16、メモリ19を制御したり、電圧監視部13から電圧情報18を取得したりする機能を有する。また、図示していない各種センサからの測定データを入力、処理する機能も備えてもよい。
<Control device 14>
The control device 14 has a function of controlling the voltage monitoring unit 13, the timer 15, the wireless unit 16, and the memory 19 for acquiring power and acquiring voltage information 18 from the voltage monitoring unit 13. Further, a function of inputting and processing measurement data from various sensors (not shown) may be provided.
 制御装置14は、例えばマイクロコンピュータで構成され、入力装置、出力装置、処理装置、記憶装置等を備える。例えば、1チップの集積回路装置(LSI)であり、後述する制御や計算の動作をソフトウェアによる制御で実行することができる。 The control device 14 is composed of, for example, a microcomputer and includes an input device, an output device, a processing device, a storage device, and the like. For example, it is a one-chip integrated circuit device (LSI), and control and calculation operations described later can be executed by software control.
 なお、メモリ19は、半導体メモリとして集積回路装置に内蔵されていてもよい。また、電圧監視部13、タイマ15等の機能の全部または一部は、マイクロコンピュータで構成された制御装置14を、ソフトウェアで制御することにより実現することもできる。 Note that the memory 19 may be built in the integrated circuit device as a semiconductor memory. Further, all or a part of the functions of the voltage monitoring unit 13 and the timer 15 can be realized by controlling the control device 14 configured by a microcomputer with software.
 <エナジーハーベスト>
 環境発電型無線装置1は小型で、かつ長時間稼働できることが望ましいが、発電部11が発電できる電力量や蓄電部12に充電できる電力量は有限であり、可能な限り環境発電型無線装置1の低消費電力化が求められる。
<Energy Harvest>
Although it is desirable that the energy-generating wireless device 1 is small and can operate for a long time, the amount of power that can be generated by the power generation unit 11 and the amount of power that can be charged in the power storage unit 12 are limited, and the energy-generating wireless device 1 is as much as possible. Low power consumption is required.
 <起動タイミングの制御>
 そこで、制御装置14が各機能の起動タイミングの制御を行うことにより、他無線装置2と通信が行われない時間帯は蓄電部12の消費電力を抑制することが可能となる。ここで言う起動タイミングの制御とは、環境発電型無線装置1の全機能を使用できる状態である「起動状態」と、必要最低限の機能のみ動作させる「休止状態」とを、繰り返すことである。
<Control of startup timing>
Therefore, the control device 14 controls the activation timing of each function, so that it is possible to suppress the power consumption of the power storage unit 12 during a time period when communication with the other wireless device 2 is not performed. The activation timing control mentioned here is to repeat the “activation state” in which all functions of the energy-generating wireless device 1 can be used and the “sleep state” in which only the minimum necessary functions are operated. .
 <休止状態>
 休止状態とは、例えば制御装置14が電圧監視部13、無線部16の各機能を休止させることにより、蓄電部12が消費する電力を抑制した状態である。典型的な例では、休止状態のとき、環境発電型無線装置1は他無線装置2との通信が停止または制限される。
<Hibernate>
The hibernation state is a state in which the power consumed by the power storage unit 12 is suppressed by causing the control device 14 to suspend the functions of the voltage monitoring unit 13 and the radio unit 16, for example. In a typical example, in the sleep state, the energy generating wireless device 1 is stopped or restricted from communicating with the other wireless device 2.
 <起動状態>
 起動状態とは、発電部11、蓄電部12、電圧監視部13、制御装置14、タイマ15、無線部16、メモリ19の全ての機能が起動している状態をいう。なお、休止状態と起動状態の中間の状態を多段階に設けて、より複雑な制御を行うこともできる。中間の状態では、例えば発電部11、蓄電部12、電圧監視部13、制御装置14、タイマ15、無線部16、メモリ19の一部の機能のみが起動している。
<Startup state>
The activated state refers to a state in which all functions of the power generation unit 11, the power storage unit 12, the voltage monitoring unit 13, the control device 14, the timer 15, the wireless unit 16, and the memory 19 are activated. Note that more complicated control can be performed by providing an intermediate state between the hibernation state and the activation state in multiple stages. In the intermediate state, for example, only a part of the functions of the power generation unit 11, the power storage unit 12, the voltage monitoring unit 13, the control device 14, the timer 15, the radio unit 16, and the memory 19 are activated.
 <図2の説明>
 図2は、夏季の蓄電部12の電圧変化の一例である。グラフ27は蓄電部12の電圧の変化を示す。ここでいう夏季とは、日の出時刻Tが起動時刻Tより早い状態の季節とする。夏季においては、日の出時刻Tが起動時刻Tより早朝なので、夜間帯(日の入りT後から日の出Tまでの時間帯)において蓄電部12の電圧が起動電圧V1を下回ったとしても、起動時刻T前に発電部11から蓄電部12に電力供給20が行われる。よって、起動時刻Tには起動電圧V1以上の電圧があり、環境発電型無線装置1を動作させることができる。
<Explanation of Figure 2>
FIG. 2 is an example of a voltage change of the power storage unit 12 in summer. Graph 27 shows the change in voltage of power storage unit 12. The summer referred to here, sunrise time T 1 is the season of the early state from start-up time T S. In summer, since the sunrise time T 1 is early morning than the activation time T S, as the voltage of power storage unit 12 falls below the starting voltage V1 at nighttime (time zone after sunset T 2 until sunrise T 1), starting power supply 20 is performed from the power generation unit 11 to the power storage unit 12 before the time T S. Thus, the activation time T S has started the voltage V1 or voltage, it is possible to operate the energy harvesting wireless device 1.
 <起動時刻T>
 図2の起動時刻Tとは、環境発電型無線装置1が起動する時刻であり予めメモリ19に記録されている。
<Start time T S >
The activation time T S in Figure 2, energy harvesting wireless device 1 is recorded at the time a and advance in the memory 19 to start.
 <日の出時刻T>
 図2の日の出時刻Tとは、発電部11から蓄電部12に電力供給20が可能となる時刻と定義する。装置単体としては、発電部の実質的な発電が可能か否かで自律的に判定することができる。また、気象学的な日の出時刻の情報を外部から入力して、代用してもよい。日の入り時刻も同様である。
<Sunrise time T 1>
The sunrise time T 1 of the 2 is defined as the time that enables the power supply 20 to the power storage unit 12 from the power generation unit 11. As the device itself, it can be determined autonomously by whether or not the power generation unit can substantially generate power. Alternatively, meteorological sunrise time information may be input from the outside and substituted. The same applies to the sunset time.
 <日の入り時刻T>
 図2の日の入り時刻Tとは、発電部11から蓄電部12に電力供給20が不可となる時刻と定義する。図2に示すとおり、日の入り時刻Tまで発電部11から蓄電部12に電力供給20が行われるため、蓄電部12の電圧27は上昇を続ける。この実施例では、簡素化のために、日の出時刻Tから日の入り時刻Tであれば、発電部11の発電量は環境発電型無線装置1の消費量より大きいものとする。
<Sunset time T 2>
The sunset time T 2 of the FIG. 2, is defined as a time when the power supply 20 becomes impossible to power storage unit 12 from the power generation unit 11. As shown in FIG. 2, since the power supply 20 is performed in the power storage unit 12 from the power generation unit 11 to the sunset time T 2, the voltage 27 of the power storage unit 12 continues to rise. In this embodiment, for simplicity, if the sunrise time T 1 at sunset time T 2, the power generation amount of the power generation unit 11 is made larger than the consumption of energy harvesting wireless device 1.
 日の入り時刻T後は、発電部11は蓄電部12に電力供給20できないので、起動状態により消費される電力を反映して、蓄電部の電圧は一定の傾きで低下していく。そして、起動電圧V1以下となったとき(図2のT)に休止状態となる。 After sunset time T 2, since the power generation portion 11 can not be powered 20 to the power storage unit 12, to reflect the power consumed by the active state, the voltage of the power storage unit decreases with a constant gradient. Then, the hibernation mode when it becomes less than the starting voltage V1 (T 3 in FIG. 2).
 <図2の補足>
 このように、日の出時刻Tが起動時刻Tより早ければ、夜間帯において蓄電部12の電圧27が起動電圧V1を下回ったとしても、起動時刻21前に発電部11から蓄電部12に電力供給20が行われる。従って、起動時刻21には起動電圧V1以上の電圧があり、環境発電型無線装置1は動作させることができる。
<Supplement to Figure 2>
Thus, earlier than sunrise T 1 is the start time T S, as the voltage 27 of the power storage unit 12 falls below the starting voltage V1 at nighttime, the power to the power storage unit 12 from the power generation unit 11 before the start time 21 Supply 20 takes place. Therefore, there is a voltage equal to or higher than the startup voltage V1 at the startup time 21, and the energy harvesting type wireless device 1 can be operated.
 <図3の説明>
 図3は、冬季の蓄電部12の電圧変化の一例である。ここで冬季とは、日の出時刻Tが起動時刻Tより遅い状態の季節とする。図3では、夜間帯(日の入りT後から日の出Tまでの時間帯)においても、蓄電部12の電圧27は起動電圧V1を上回っている。
<Explanation of Figure 3>
FIG. 3 is an example of a voltage change of the power storage unit 12 in winter. Here in winter and is, sunrise time T 1 is a season of slow state than the start-up time T s. In Figure 3, also in the nighttime (time zone after sunset T 2 until sunrise T 1), the voltage 27 of the power storage unit 12 exceeds the activation voltage V1.
 しかし、起動時刻Tの時点では起動電圧V1を上回っており起動できても、起動後、日の出時刻Tまでは、電力の供給ができないので、電力消費により起動電圧V1を下回り、途中で正常な起動状態が保てなくなる可能性がある。 However, even it is started well above the starting voltage V1 at the time of activation time T s, after activation until sunrise T 1, can not supply power, lower than the starting voltage V1 by the power consumption, normally in the middle May not be able to maintain the correct startup state.
 <図4の説明>
 図4は図3の事象を鑑み、冬季においても起動時刻Tに環境発電型無線装置1を安定して起動させるための例を示す。図4の例では、予め起動時刻Tから日の出時刻Tまでに環境発電型無線装置1で消費される電力量を算出しておき、蓄電部12に蓄電しておく一例を示している。
<Description of FIG. 4>
FIG. 4 shows an example for stably starting the energy harvesting wireless device 1 at the start time T s even in winter in view of the phenomenon of FIG. In the example of FIG. 4, an example is shown in which the amount of power consumed by the energy-generating wireless device 1 is calculated in advance from the start time T s to the sunrise time T 1 and stored in the power storage unit 12.
 具体的には、日の入りT後、環境発電型無線装置1が起動電圧V1を下回るまで起動させるのではなく、休止電圧V2で起動状態から休止状態に遷移する。 Specifically, after sunset T 2, rather than energy harvesting wireless device 1 activates to below the starting voltage V1, the transition from the startup state at rest voltage V2 dormant.
 <休止電圧V2>
 休止電圧V2は、式2で示すことができる。
<Pause voltage V2>
The quiescent voltage V2 can be expressed by Equation 2.
 <式2>
 休止電圧V2=起動電圧V1+(電圧降下率)*(起動時刻T-日の出時刻T)。
<Formula 2>
Resting voltage V2 = starting voltage V1 + (voltage drop rate) * (starting time T s −sunrise time T 1 ).
 図4にみられるように、日の入りT後、電圧27が休止電圧V2に達した時点Tで休止状態に移行する。このような制御によって、起動後、日の出時刻Tまでの電力消費による電圧降下があっても、日の出時刻Tまでは起動電圧V1を維持することが可能となる。なお、安全のために、式2で求められる休止電力V2にさらに余裕を持たせた値を、休止電力として用いてもよい。その場合には式2の右辺に余裕度αを加算する。αは0以上の正の値であって、例えば
(起動電圧V1+(電圧降下率)*(起動時刻T-日の出時刻T))の値の数%でよい。
As seen in FIG. 4, after sunset T 2 , the state transitions to the resting state at time T 4 when the voltage 27 reaches the resting voltage V 2 . This control, after starting, even if there is a voltage drop due to the power consumption of up to sunrise T 1, sunrise until time T 1 it becomes possible to maintain the activation voltage V1. For the sake of safety, a value obtained by adding a margin to the sleep power V2 obtained by Expression 2 may be used as the sleep power. In that case, the margin α is added to the right side of Equation 2. α is a positive value greater than or equal to 0, and may be, for example, a few percent of the value of (startup voltage V1 + (voltage drop rate) * (startup time T s −sunrise time T 1 )).
 <図5の説明>
 図5は、図4の制御を実現するための、環境発電型無線装置1の一連の動作例を示したフローチャートである。以下、図5を用い環境発電型無線装置1の一連の動作を説明する。先に述べたように、このような制御は、制御装置14による制御により可能となる。
<Description of FIG. 5>
FIG. 5 is a flowchart showing a series of operation examples of the energy-generating wireless device 1 for realizing the control of FIG. Hereinafter, a series of operations of the energy-generating wireless device 1 will be described with reference to FIG. As described above, such control can be performed by control by the control device 14.
 <S51>
 蓄電部12の電圧が起動電圧V1以上あり、環境発電型無線装置1が起動した状態である。具体例としては、日の出時刻となり発電部11が発電を開始した時点でもよいし、あるいは、電力に余裕がある正午近くの任意の指定時刻でもよい。指定時刻はメモリ19に記憶しておけばよい。
<S51>
The voltage of the power storage unit 12 is equal to or higher than the activation voltage V1, and the energy harvesting type wireless device 1 is activated. As a specific example, it may be the time when the power generation unit 11 starts power generation at the sunrise time, or may be an arbitrary designated time near noon where power is available. The specified time may be stored in the memory 19.
 <S52>
 制御装置14は、メモリ19に記録されている日の出時刻Tと起動時刻Tを取得する。次に、日の出時刻Tと起動時刻Tを対比し、どちらが早朝であるか判定する。
<S52>
The control device 14 acquires the sunrise time T 1 and the activation time T s recorded in the memory 19. Then, by comparing the sunrise time T 1 and the start-up time T s, judges Which one is the early morning.
 ここで、メモリ19には、予め毎日の起動時刻と毎日の日の出時刻を記憶しておいてもよい。あるいは、無線部16を介して、他無線装置2から纏めてあるいは毎日データとして送信し、メモリ19に記憶しておいてもよい。 Here, the memory 19 may store a daily activation time and a daily sunrise time in advance. Alternatively, the data may be transmitted from the other wireless device 2 collectively or as data every day via the wireless unit 16 and stored in the memory 19.
 日の出時刻については、以下の<日の出時刻Tの算出方法>で説明するように、発電部11の発電開始時刻の直近のデータを、前日の日の出時刻としてメモリに記憶しておき、これを、当日の日の出時刻として利用してもよい。このとき、タイマ15の情報を併用すると、精度を向上することができる。発電開始時刻のデータを利用する方法では、環境発電型無線装置1が自律的にデータを収集できるので、メンテナンスフリーとなるメリットがある。また、発電部が光パネルの場合、パネルへの太陽光の照射条件を反映することができる。 The sunrise time, as described in the following <method of calculating the sunrise time T 1>, the most recent data of the power generation start time of the power generation unit 11, may be stored in the memory as a day before the sunrise time, this, It may be used as the sunrise time of the day. At this time, if the information of the timer 15 is used together, the accuracy can be improved. In the method of using the data of the power generation start time, the energy harvesting type wireless device 1 can autonomously collect the data, and thus has an advantage of being maintenance-free. Further, when the power generation unit is an optical panel, it is possible to reflect the irradiation condition of sunlight on the panel.
 制御装置14は、起動時刻Tより日の出時刻Tの方が早朝と判定した場合、起動時刻Tの時点で発電部11は蓄電部12に電力供給20できるので、図5の処理は終了する。 Controller 14, if the direction of activation time T s from the sunrise time T 1 is determined to early morning, so the power generation portion 11 at the activation time T s can power 20 to the power storage unit 12, the processing of FIG. 5 is ended To do.
 すなわち、夜間帯(日の入りT後から日の出Tまでの時間帯)において、蓄電部12の電圧が起動電圧V1を下回ったとしても、起動時刻Tより日の出時刻Tの方が早朝なので、起動時刻Tには起動電圧V1に達していることが期待できる。また、環境発電型無線装置1は起動時刻Tに起動した後、発電部11からの電力供給を受けて動作することが可能である。よって、図2に示したように、起動電圧V1を用い、起動状態と休止状態を切り替える制御を行えばよい。 That is, in the nighttime (time zone after sunset T 2 until sunrise T 1), as the voltage of power storage unit 12 falls below the starting voltage V1, since the direction of sunrise T 1 than the activation time T s is early morning, starting at time T s can be expected to have reached the start-up voltage V1. In addition, the energy harvesting type wireless device 1 can operate by receiving power supply from the power generation unit 11 after being activated at the activation time T s . Therefore, as shown in FIG. 2, the start voltage V1 may be used to control switching between the start state and the sleep state.
 <S53>
 制御装置14は、日の出時刻Tより起動時刻Tの方が早朝と判定した場合、起動時刻Tから日の出時刻Tまでの時間を算出する。
<S53>
Controller 14, if the direction of sunrise T 1 than the activation time T s is determined to early morning, and calculates the time from the start time T s until sunrise time T 1.
 <S54>
 日の出時刻Tより起動時刻Tの方が早朝の場合、起動時刻Tに環境発電型無線装置1を起動させるためには、蓄電部12に起動時刻Tから日の出時刻Tまで環境発電型無線装置1を動作させる電力を蓄電する必要がある。
<S54>
If direction of sunrise T 1 than the activation time T s is the early morning, in order to activate the energy harvesting wireless device 1 to start time T s is energy harvesting from the start time T s to the storage unit 12 until sunrise T 1 It is necessary to store electric power for operating the wireless device 1.
 制御装置14は、<式2>から休止電圧V2を算出する。制御装置14は、休止電圧V2を算出した後、メモリ19に格納する。
 <式2>
 休止電圧V2=起動電圧V1+(電圧降下率)*(起動時刻T-日の出時刻T)。
The control device 14 calculates the pause voltage V2 from <Expression 2>. The control device 14 calculates the pause voltage V2 and then stores it in the memory 19.
<Formula 2>
Resting voltage V2 = starting voltage V1 + (voltage drop rate) * (starting time T s −sunrise time T 1 ).
 <S55>
 制御装置14は、電圧監視部13から電圧情報18を取得する。また、メモリ19から休止電圧V2を取得する。
<S55>
The control device 14 acquires voltage information 18 from the voltage monitoring unit 13. Further, the pause voltage V <b> 2 is acquired from the memory 19.
 <S56>
 制御装置14は、電圧情報18と休止電圧V2を比較する。電圧情報18の取得と比較は所定時間間隔、例えば毎分1回行う。ここで、電圧情報18が休止電圧V2を下回っている場合は、(S58)に遷移する。
<S56>
The control device 14 compares the voltage information 18 with the pause voltage V2. The acquisition and comparison of the voltage information 18 are performed at predetermined time intervals, for example, once every minute. Here, when the voltage information 18 is lower than the pause voltage V2, the process proceeds to (S58).
 <S58>
 制御装置14は、電圧監視部13、メモリ19、無線部16の各機能を休止させることにより、休止状態に遷移する。
<S58>
The control device 14 transitions to a dormant state by pausing each function of the voltage monitoring unit 13, the memory 19, and the radio unit 16.
 <S59>
 制御装置14は、タイマ15から時刻情報17を、メモリ19から起動時刻Tを取得する。ここで、時刻情報17が起動時刻Tと同時刻またはこれを過ぎている場合は、(S60)に遷移する。
<S59>
The control device 14 acquires the time information 17 from the timer 15 and the activation time T s from the memory 19. Here, when the time information 17 is the same time as the start time T s or past this time , the process proceeds to (S60).
 <S60>
 電圧監視部13、メモリ19、タイマ15、無線部16の各機能を動作させることにより、起動状態に遷移する。
<S60>
By operating each function of the voltage monitoring unit 13, the memory 19, the timer 15, and the wireless unit 16, the state is shifted to the activated state.
 <日の出時刻Tの算出方法>
 制御装置14は、発電部11が蓄電部12に電力供給20を開始した時刻をタイマ15により取得し、その時刻を日の出時刻Tとしてメモリ19に記録する。
<Method of calculating the sunrise time T 1>
Controller 14, a time when the power generation portion 11 starts the power supply 20 to the power storage unit 12 is acquired by the timer 15 is recorded in the memory 19 the time as sunrise time T 1.
 <他無線装置2>
 他無線装置2は、例えば環境発電型無線装置1から無線送信されるデータを収集する基地局である。環境発電型に限定されるわけではなく、電池やケーブル等による電力供給でも構わない。
<Other wireless device 2>
The other wireless device 2 is a base station that collects data wirelessly transmitted from, for example, the energy-generating wireless device 1. It is not limited to the energy harvesting type, and power supply by a battery, a cable or the like may be used.
 <補足>
 図2、図3、図4では、実施例1を説明するために簡素化している。例えば、必ずしも日の入り時刻23が蓄電部12の電圧が最大となるわけではない。
<Supplement>
2, 3, and 4 are simplified for explaining the first embodiment. For example, the voltage of the power storage unit 12 does not necessarily become the maximum at the sunset time 23.
 実施例1の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The form of Example 1 should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 なお、以上の実施例では、蓄電部12にはキャパシタを想定した。キャパシタの場合には、<式2>や図4で説明したように、電圧降下率が線形のため、単純な計算で休止電圧V2を計算することができる。蓄電部11にキャパシタ以外の例えば蓄電池を用いた場合には、電圧降下率が非線形の場合もある。この場合には、予めシミュレーションや実験により、図4の起動時間Tから日の出時間Tまでの時間に対応した電圧降下分のデータを、テーブルとしてメモリ19に格納しておけばよい。 In the above embodiment, the power storage unit 12 is assumed to be a capacitor. In the case of a capacitor, as described in <Equation 2> and FIG. 4, since the voltage drop rate is linear, the pause voltage V2 can be calculated by a simple calculation. When, for example, a storage battery other than the capacitor is used for the power storage unit 11, the voltage drop rate may be nonlinear. In this case, data of a voltage drop corresponding to the time from the start time T s to the sunrise time T 1 in FIG. 4 may be stored in the memory 19 as a table in advance by simulation or experiment.
 もっとも、キャパシタは安価であり、またキャパシタの場合には、単純な計算機能を制御装置14に持たせておくだけでよいので、キャパシタと図5の制御方法の組合せでは、低価格とメンテナンスフリーのメリットがある。 However, the capacitor is inexpensive, and in the case of a capacitor, it is only necessary to provide the control device 14 with a simple calculation function. Therefore, the combination of the capacitor and the control method of FIG. There are benefits.
 <実施例2の概要>
 実施例1では、簡素化のために、起動状態(電圧監視部13、制御装置14、タイマ15、無線部16、メモリ19の全ての機能が起動している状態)のみ蓄電部12に蓄積されているエネルギーが消費されるものとし、休止状態(制御装置14が電圧監視部13、無線部16の各機能を休止させている状態)では、蓄電部12の電圧降下が生じないものとした。
<Overview of Example 2>
In the first embodiment, for simplification, only the activation state (the state in which all the functions of the voltage monitoring unit 13, the control device 14, the timer 15, the wireless unit 16, and the memory 19 are activated) is stored in the power storage unit 12. It is assumed that the voltage drop of the power storage unit 12 does not occur in the resting state (the state where the control device 14 pauses the functions of the voltage monitoring unit 13 and the wireless unit 16).
 実際は休止状態であっても微少電流が流れ続け、さらに蓄電部12自身も自然放電するので少しずつはあるが休止状態であっても電圧が降下する。 Actually, a very small current continues to flow even in the resting state, and the power storage unit 12 itself is also spontaneously discharged, so that the voltage drops little by little even in the resting state.
 その結果、例えば冬季においては、夜間帯において蓄電部12の電圧が起動電圧V1を下回った場合、起動時刻Tとなっても蓄電部12の電圧が起動電圧V1を下回るために、日の出時刻Tとなるまで環境発電型無線装置1を起動することができない。 As a result, for example, in winter, when the voltage of the power storage unit 12 falls below the starting voltage V1 at nighttime, because the voltage of the power storage unit 12 even if the activation time T s is less than the starting voltage V1, sunrise time T The energy harvesting type wireless device 1 cannot be activated until it becomes 1 .
 そこで実施例2では、休止状態の電圧降下を加味したときの環境発電型無線装置1の起動タイミングの制御方法及びプログラムの詳細について説明する。 Therefore, in the second embodiment, the details of the control method and program of the start timing of the energy harvesting type wireless device 1 when the voltage drop in the dormant state is taken into account will be described.
 <起動状態の電圧降下率>
 図6において、夜間帯(日の入りT後から日の出Tまでの時間帯)、かつ起動状態における単位時間当たりの蓄電部12の電圧降下の割合を、起動状態の電圧降下率と定義する。
<Voltage drop rate in startup state>
6, night-time (time period after sunset T 2 until sunrise T 1), and the ratio of the voltage drop of the power storage unit 12 per unit time in the activated state, is defined as the voltage drop rate of the activated state.
 <休止状態の電圧降下率>
 図6において、夜間帯(日の入りT後から日の出Tまでの時間帯)、かつ休止状態における単位時間当たりの蓄電部12の電圧降下の割合を、休止状態の電圧降下率という。ここで蓄電部12の自然放電による電圧降下と定義する。
<Rate voltage drop rate>
6, night-time (time period after sunset T 2 until sunrise T 1), and the ratio of the voltage drop of the power storage unit 12 per unit in the hibernation time, that the voltage drop rate of the hibernation. Here, it is defined as a voltage drop due to natural discharge of the power storage unit 12.
 <切替電圧V3>
 図6において、起動状態から休止状態に遷移する電圧を切替電圧V3と定義する。
<Switching voltage V3>
In FIG. 6, the voltage that transitions from the activated state to the inactive state is defined as a switching voltage V3.
 <切替時刻T>
 図6において、起動状態から休止状態に遷移する時刻を切替時刻Tと定義する。
<Switching time T 4>
6, defines the time of transition to the dormant state from the active state and change time T 4.
 <図6の説明>
 図6のグラフ27は、冬季(日の出時刻Tが起動時刻Tより遅い時期)において、休止状態の電圧降下を加味した蓄電部12の電圧変化の一例を示したものである。日の入り時刻T以降、発電部11が蓄電部12に電力供給20することができなくなるので、蓄電部12の電圧が急激に降下していく。この単位時間当たりの電圧降下の割合が起動状態の電圧降下率である。一方、切替時刻T(起動状態から休止状態に遷移した時刻)以降は、休止状態となるので緩やかに蓄電部12の電圧が降下していく。このように、単位時間当たりの休止状態における蓄電部12の電圧降下の割合を休止状態の電圧降下率という。
<Explanation of FIG. 6>
Graph 27 in FIG. 6, in the winter (sunrise T 1 is the time later than the activation time T s), illustrates an example of a voltage change in the power storage unit 12 in consideration of the voltage drop dormant. Sunset time T 2, and later, since the power generation unit 11 is no longer able to power 20 to the power storage unit 12, the voltage of power storage unit 12 is gradually drops sharply. The rate of voltage drop per unit time is the voltage drop rate in the activated state. On the other hand, after the switching time T 4 (the time when the start state is changed to the hibernation state), since the hibernation state is entered, the voltage of the power storage unit 12 gradually decreases. Thus, the rate of voltage drop of power storage unit 12 in the resting state per unit time is referred to as the resting state voltage drop rate.
 <切替電圧V3>
 切替電圧V3の最適な値を算出することにより、冬季(日の出時刻が起動時刻より遅い時期)であっても、確実に起動時刻Tに環境発電型無線装置1を起動させることができる。以下、切替電圧V3の算出を行う。
<Switching voltage V3>
By calculating the optimum value of the switching voltage V3, it is possible to reliably start the energy harvesting type wireless device 1 at the start time T s even in winter (when the sunrise time is later than the start time). Hereinafter, the switching voltage V3 is calculated.
 <切替電圧V3の算出>
ここで、切替電圧V3は、式3、式4から算出することができる。
<Calculation of switching voltage V3>
Here, the switching voltage V3 can be calculated from Equations 3 and 4.
 <式3>
 切替電圧V3 =起動電圧V1
+ (休止状態の電圧降下率)*(切替時刻T-起動時刻T)
+ (起動状態の電圧降下率)*(起動時刻T-日の出時刻T)
 <式4>
 切替時刻T=(日の入り時刻Tの電圧-切替電圧V3)/(起動状態の電圧降下率)
<Formula 3>
Switching voltage V3 = startup voltage V1
+ (Voltage drop rate in rest state) * (Switching time T 4 -Starting time T s )
+ (Voltage drop rate in startup state) * (Startup time T s -Sunrise time T 1 )
<Formula 4>
Switching time T 4 = (Voltage at sunset time T 2− Switching voltage V 3) / (Voltage drop rate in starting state)
 <データ取得方法>
 起動電圧V1、起動時刻Ts、休止状態の電圧降下率、起動状態の電圧降下率は、予めメモリ19に記憶しておく。
<Data acquisition method>
The starting voltage V1, the starting time Ts , the voltage drop rate in the hibernation state, and the voltage drop rate in the start state are stored in the memory 19 in advance.
 日の出時刻T1、日の入り時刻Tは以下のように取得する。制御装置14は、発電部11が蓄電部12に電力供給20を開始した時刻をタイマ15により取得し、その時刻を日の出時刻Tとしてメモリ19に記録する。また、制御装置14は、発電部11が蓄電部12に電力供給20を停止した時刻をタイマ15により取得し、その時刻を日の入り時刻Tとしてメモリ19に記録する。 Sunrise time T 1, sunset time T 2, is obtained as follows. Controller 14, a time when the power generation portion 11 starts the power supply 20 to the power storage unit 12 is acquired by the timer 15 is recorded in the memory 19 the time as sunrise time T 1. Further, the control unit 14, the time at which the power generation unit 11 stops power supply 20 to the power storage unit 12 is acquired by the timer 15 is recorded in the memory 19 the time as sunset time T 2.
 日の入り時刻Tの電圧は、上記の日の入り時刻T時点における電圧を電圧監視部13で取得し、制御装置14によってメモリ19に記憶しておく。 Voltage sunset time T 2, obtains the voltage at the sunset time T 2, the time of the voltage monitoring unit 13 and stored in the memory 19 by the controller 14.
 <補足>
 以上に説明したとおり、日の入り時刻Tの後、制御装置14は蓄電部12の電圧が切替電圧V3を下回った時点で起動状態から休止状態に遷移させることにより、確実に起動時刻Tに環境発電型無線装置1を起動させることができる。
<Supplement>
As explained above, after sunset time T 2, the control unit 14 by transitioning the dormant state from the active state when the voltage of the power storage unit 12 falls below the switching voltage V3, environmentally reliably start time T s The power generation type wireless device 1 can be activated.
 <補足>
 図6では、実施例2を説明するために簡素化している。例えば、必ずしも日の入り時刻Tに蓄電部12の電圧が最大となるわけではない。また、日の入り時刻Tから切替時刻T(起動状態から休止状態に遷移する時刻)までの蓄電部12の電圧降下率と、起動時刻Tから日の出時刻Tの電圧降下率が同一であるものとしたが、あくまで便宜的であり、異なっていても構わない。
<Supplement>
FIG. 6 is simplified for explaining the second embodiment. For example, not necessarily the voltage of power storage unit 12 to the sunset time T 2, is maximized. Further, the voltage drop rate of the power storage unit 12 from the sunset time T 2, to change time T 4 (time of transition from the activated state to a rest state) and the voltage drop rate of sunrise T 1 from the start time T s is the same However, it is just for convenience and may be different.
 <日の出時刻T>
 実施例1、実施例2において、日の出時刻Tを取得する方法として、制御装置14は、発電部11が蓄電部12に電力供給20を開始した時刻をタイマ15により取得し、その時刻を日の出時刻Tとしメモリ19に記録した。年間を通して、予め日の出時刻Tをメモリ19に記録させておく方法でも構わない。
<Sunrise time T 1>
In Example 1, Example 2, as a method for obtaining the sunrise time T 1, the control unit 14, a time when the power generation portion 11 starts the power supply 20 to the power storage unit 12 is acquired by the timer 15, sunrise the time The time T 1 was recorded in the memory 19. Throughout the year, but it may be a method allowed to prerecorded sunrise time T 1 in the memory 19.
 <日の入り時刻T>
 実施例2において、日の入り時刻Tを取得する方法として、制御装置14は、発電部11が蓄電部12に電力供給20を停止した時刻をタイマ15により取得し、その時刻を日の入り時刻23としメモリ19に記録した。年間を通して、予め日の入り時刻Tをメモリ19に記録させておく方法でも構わない。
<Sunset time T 2>
In Example 2, as a method for obtaining the sunset time T 2, the control unit 14, the time at which the power generation unit 11 stops power supply 20 to the power storage unit 12 is acquired by the timer 15, and the time and sunset time 23 memory 19 recorded. Throughout the year, but it may be a way to keep to record in advance the sunset time T 2, the memory 19.
 実施例1の制御方法では、休止電圧V2を用いて制御を行う方法を説明した。ただし、図4から明らかなように、V2と、日の入り時刻Tの電圧値と、起動状態の電圧降下率が分かれば切替時刻Tを求めることもできる。よって、電圧監視を行わず、求めた切替時刻Tをメモリ19に記憶しておき、時間による制御を行ってもよい。 In the control method of the first embodiment, the method of performing control using the pause voltage V2 has been described. However, as is clear from FIG. 4, it can be the V2, the voltage value of the sunset time T 2, also determine the switching time T 4 when the voltage drop rate of the active state is known. Therefore, without voltage monitoring, the switching time T 4 obtained is stored in the memory 19 may be controlled by time.
 実施例2の制御方法では、休止電圧V3を用いて制御を行う方法を説明した。ただし、図6から明らかなように、V3と、日の入り時刻Tの電圧値と、起動状態の電圧降下率が分かれば切替時刻Tを求めることもできる。よって、電圧監視を行わず、求めた切替時刻Tをメモリ19に記憶しておき、時間による制御を行ってもよい。 In the control method of the second embodiment, the method of performing control using the pause voltage V3 has been described. However, as apparent from FIG. 6, it can also be obtained with V3, and the voltage value of the sunset time T 2, the change time T 4 when the voltage drop rate of the active state is known. Therefore, without voltage monitoring, the switching time T 4 obtained is stored in the memory 19 may be controlled by time.
 図2,3,4,6には表れていないが、発電部11の発電力が消費電力を上回るという前提で、蓄電部にキャパシタを用いる場合、以下のメリットがある。すなわち、キャパシタには容量の上限があり、日の入り時刻Tには容量いっぱいまで蓄電されていることが想定される。従って、最大電圧値をVMと仮定すれば、VMは既知であるためV2と起動状態の電圧降下率から休止電圧V3あるいは切替時刻Tを求めることができる。この方法によれば、実施例2,4のように日の入り時刻Tの電圧値を測定する必要がなく、式3,式4では、代わりにVMを用いればよい。よって、実施例4のように、求めた休止電圧V3または切替時刻Tをメモリ19に格納しておき、これを基準にして制御を行ってもよい。 Although not shown in FIGS. 2, 3, 4, and 6, when a capacitor is used for the power storage unit on the assumption that the power generated by the power generation unit 11 exceeds the power consumption, there are the following merits. That is, the capacitor has an upper limit of the capacity, the sunset time T 2, it is assumed that the power storage to full capacity. Thus, the maximum voltage value assuming VM, VM can be obtained pause voltage V3 or change time T 4 from the voltage drop rate of the V2 and activated state since it is known. According to this method, it is not necessary to measure the voltage value at sunset time T2 as in the second and fourth embodiments, and in the equations 3 and 4, a VM may be used instead. Therefore, as in Example 4, it may be stored resting voltage V3 or change time T 4 obtained in the memory 19, which may control, based on the.
 また、この知見を基にして、キャパシタ容量と切替時刻Tを調整することにより、必要な範囲でできるだけ小さなキャパシタを利用することができ、装置の低価格化を図ることができる。特に日の出時刻と起動時刻から予め蓄電部に蓄電しておくべき電力量を算出できるので、必要最低限の電気容量のキャパシタを用いた環境発電型無線装置1を提供できる。従って、従来の方式に対してキャパシタサイズを縮小できるため、省スペース化が図れ、環境発電型無線装置の小型化・軽量化を実現できる。 Also, by this finding based, by adjusting the capacitance and switching time T 4, it is possible to use the smallest possible capacitor in the required range, it is possible to reduce the cost of the apparatus. In particular, since the amount of power to be stored in the power storage unit in advance can be calculated from the sunrise time and the start time, it is possible to provide the energy harvesting type wireless device 1 using a capacitor having the minimum necessary electric capacity. Therefore, since the capacitor size can be reduced as compared with the conventional method, the space can be saved and the energy-saving wireless device can be reduced in size and weight.
 図7に本発明の適用例である、実施形態の一例を示す。図7の例は実施例1~5で説明した環境発電型無線装置1を電送線(電線)70の保守に用いた例である。電送線70は例えば、導電部材の劣化や過電流が発生すると、発熱により温度が上昇する。このような異常を温度センサ71で検知し、検知したデータは環境発電型無線装置1の制御装置14で処理され、メモリ15に蓄積され、起動状態時に無線部16から他無線装置2に送信される。 FIG. 7 shows an example of an embodiment which is an application example of the present invention. The example of FIG. 7 is an example in which the energy harvesting type wireless device 1 described in the first to fifth embodiments is used for maintenance of the transmission line (electric wire) 70. For example, when the conductive member deteriorates or overcurrent occurs, the temperature of the transmission line 70 increases due to heat generation. Such an abnormality is detected by the temperature sensor 71, and the detected data is processed by the control device 14 of the energy harvesting wireless device 1, stored in the memory 15, and transmitted from the wireless unit 16 to the other wireless device 2 in the activated state. The
 図7のような応用例では、環境発電型無線装置1自体を人手で保守するのは高コストとなるため、環境発電型無線装置1は可能な限り自律的に動作することが望ましい。また、図7では環境発電型無線装置1とセンサ71は一対のみ示しているが、実際には、非常に多くの場所に多数の装置が配置されている。 In the application example as shown in FIG. 7, it is expensive to manually maintain the energy-generating wireless device 1 itself. Therefore, it is desirable that the energy-generating wireless device 1 operates as autonomously as possible. In FIG. 7, only one pair of the energy-generating wireless device 1 and the sensor 71 is shown, but in reality, a large number of devices are arranged in a very large number of places.
 他無線装置2に送信されたデータは、有線または無線の経路72を経て、データ集積センタ73に集積される。センタ73に集積されたデータは、構内通信網74等を経由して、管理端末75でモニタ、利用することができる。 The data transmitted to the other wireless device 2 is accumulated in the data accumulation center 73 via a wired or wireless path 72. The data accumulated in the center 73 can be monitored and used by the management terminal 75 via the local communication network 74 or the like.
 図8は、図7に示した環境発電型無線装置1の具体例である。図1の構成と同様の構成には同じ符号を付し、説明は省略する。 FIG. 8 is a specific example of the energy harvesting type radio apparatus 1 shown in FIG. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
 図8特有の構成について説明する。図8の例ではセンサ71は環境発電型無線装置1に内蔵しているが、外付けでもよい。発電部11には太陽光パネルを、蓄電部12にはキャパシタを用いている。制御装置14は1チップのマイクロコンピュータで、入出力部801と処理部802を含む。制御装置14はこのほかメモリを内蔵してもよい。記憶部19には不揮発性の半導体メモリを用いた。半導体メモリには、起動時間803、日の出時間804、日の入り時電圧またはキャパシタ容量805、起動状態電圧降下率806、休止状態電圧降下率807、センサデータ808等が格納される。処理部802は、環境発電型無線装置1の全体の制御、センサデータ808の処理、記憶部19のデータを用いた各種計算を行う。装置全体の制御としては、起動状態と休止状態の切替制御がある。 The configuration unique to FIG. 8 will be described. In the example of FIG. 8, the sensor 71 is built in the energy-generating wireless device 1, but may be externally attached. The power generation unit 11 uses a solar panel, and the power storage unit 12 uses a capacitor. The control device 14 is a one-chip microcomputer and includes an input / output unit 801 and a processing unit 802. In addition, the control device 14 may incorporate a memory. A nonvolatile semiconductor memory was used for the storage unit 19. The semiconductor memory stores a startup time 803, a sunrise time 804, a sunset time voltage or capacitor capacity 805, a startup state voltage drop rate 806, a dormant state voltage drop rate 807, sensor data 808, and the like. The processing unit 802 performs overall control of the energy-generating wireless device 1, processing of sensor data 808, and various calculations using data in the storage unit 19. Control of the entire apparatus includes switching control between an active state and a hibernation state.
 起動時間803、日の出時間804、日の入り時電圧またはキャパシタ容量805、起動状態電圧降下率806、休止状態電圧降下率807等は、予め格納しておいてもよい。ただし、使用環境における実態を反映するためには、環境発電型無線装置1が自律的にデータを取得する方式にメリットがある。 Starting time 803, sunrise time 804, sunset voltage or capacitor capacity 805, starting state voltage drop rate 806, resting state voltage drop rate 807, etc. may be stored in advance. However, in order to reflect the actual situation in the usage environment, there is an advantage in the method in which the energy-generating wireless device 1 autonomously acquires data.
 日の出時間804や日の入り時電圧805は、電圧監視部13の出力を基に取得すると、発電部(太陽光パネル)11への太陽光の照射条件を反映することができる。先述のように、起動状態電圧降下率806は、キャパシタに蓄積されている電力でシステムを起動状態とする際の、単位時間当たりのキャパシタの電圧降下率である。また、休止状態電圧降下率807は、キャパシタに蓄積されている電力でシステムを休止状態とする際の単位時間当たりのキャパシタの電圧降下率である。起動状態電圧降下率806、休止状態電圧降下率807は、蓄電部12にキャパシタを用いた場合は、線形の降下率が想定されるので、予め記憶させてもよいが、電圧監視部13の出力を基に定期的に値を取得すると、経年的な特性変化にも対応することができる。起動時間803は一つまたは条件に応じて使用する複数を予め定めて記憶してもよいし、無線部16が受信可能であれば、受信したデータから起動時間を得て、記憶装置19に記憶してもよい。 When the sunrise time 804 and the sunset voltage 805 are acquired based on the output of the voltage monitoring unit 13, it is possible to reflect the irradiation condition of sunlight on the power generation unit (solar panel) 11. As described above, the startup state voltage drop rate 806 is a voltage drop rate of the capacitor per unit time when the system is started up with the power stored in the capacitor. The hibernating voltage drop rate 807 is a voltage drop rate of the capacitor per unit time when the system is put into hibernation with the electric power stored in the capacitor. The startup state voltage drop rate 806 and the dormant state voltage drop rate 807 may be stored in advance because a linear drop rate is assumed when a capacitor is used for the power storage unit 12. If a value is periodically acquired based on the above, it is possible to cope with a change in characteristics over time. One or a plurality of activation times 803 may be stored in advance according to conditions. If the wireless unit 16 can receive the activation time 803, the activation time is obtained from the received data and stored in the storage device 19. May be.
 センサデータ808はセンサ71で取得されたデータであり、纏めて、あるいは、逐次、無線部16から起動状態時に送信される。 Sensor data 808 is data acquired by the sensor 71, and is transmitted collectively or sequentially from the wireless unit 16 in the activated state.
 <補足>
 本明細書において単数形で表される構成要素は、特段文脈で明らかに示されない限り、複数形を含むものとする。
<Supplement>
Any component expressed in the singular herein shall include the plural unless the context clearly dictates otherwise.
 以上の実施例において、制御装置14は、単体のコンピュータで構成してもよいし、あるいは、入力装置、出力装置、処理装置、記憶装置の任意の部分が、他のコンピュータで構成されてもよい。また、実施例では、記録装置19に格納したソフトウェアにより、制御装置14のハードウェアを制御することにより、発明の機能を実現する例を想定している。ただし、本実施例中、ソフトウェアで構成した機能と同等の機能は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウェアでも実現できる。そのような態様も実施例の範囲に含まれる。 In the above embodiment, the control device 14 may be configured by a single computer, or any part of the input device, output device, processing device, and storage device may be configured by another computer. . In the embodiment, it is assumed that the functions of the invention are realized by controlling the hardware of the control device 14 by software stored in the recording device 19. However, in this embodiment, functions equivalent to those configured by software can be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit). Such an embodiment is also included in the scope of the examples.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 センサを実装した無線装置(センサノード)による、ワイヤレスセンサネットワーク等に利用可能である。 It can be used for wireless sensor networks, etc., by wireless devices (sensor nodes) equipped with sensors.
1:環境発電型無線装置
2:他無線装置
11:発電部
12:蓄電部
13:電圧監視部
14:制御装置
15:タイマ
16:無線部
:日の出時刻
19:メモリ
20:電力供給
:起動時刻
:日の入時刻
:バッテリー切れ時刻
V1:起動電圧
V2:休止電圧
27:蓄電部12の電圧の変化
:切替時刻(起動状態から休止状態に遷移する時刻)
V3:切替電圧(起動状態から休止状態に遷移する電圧)
S51:スタート
S52:日の出時刻22と起動時刻21を対比
S53:起動時刻21から日の出時刻22までの時間を算出
S54:起動時刻21から日の出時刻22までに必要な電力量(キャパシタ電圧)を算出
S55:キャパシタ電圧を計測
S56:休止電圧以下?
S58:夜間休止処理
S59:起動時刻?
S60:起動開始処理
1: Energy generation type wireless device 2: Other wireless device 11: Power generation unit 12: Power storage unit 13: Voltage monitoring unit 14: Control device 15: Timer 16: Radio unit T 1 : Sunrise time 19: Memory 20: Power supply T s : Startup time T 2 : Sunset time T 3 : Battery dead time V1: Startup voltage V2: Pause voltage 27: Change in voltage of power storage unit T 4 : Switching time (time of transition from the startup state to the pause state)
V3: Switching voltage (voltage that transitions from the start state to the sleep state)
S51: Start S52: Comparison of sunrise time 22 and activation time 21 S53: Calculation of time from activation time 21 to sunrise time 22 S54: Calculation of electric energy (capacitor voltage) required from activation time 21 to sunrise time 22 S55 : Measure capacitor voltage S56: Less than rest voltage?
S58: Night sleep process S59: Startup time?
S60: Startup start processing

Claims (15)

  1.  センサで取得したデータをそのまま、もしくは、加工して、無線により送信する環境発電型無線システムであって、
     太陽光を受光して電力を発生させる発電部と、
     前記電力を蓄積するキャパシタと、
     前記キャパシタの電圧を監視する電圧監視部と、
     前記キャパシタに蓄積された電力によって、無線により前記データを送出する無線部と、
     制御装置と、
     前記制御装置で用いる情報を格納する記憶装置と、を有し、
     前記制御装置は、
     前記無線部が無線により前記データを送出可能な起動状態と、前記起動状態よりも消費電力が少ない休止状態の少なくとも2つの状態にシステムを制御する第1の手段と、
     前記電圧監視部の出力に基づいて日の出時刻を判定し、前記記憶装置に格納する第2の手段と、
     前記記憶装置に格納された前記起動状態の開始時刻(起動時刻)を取得する第3の手段と、
     前記記憶装置に格納された、前記起動時刻と前記日の出時刻の前後関係を判定する第4の手段と、
     前記起動時刻が前記日の出時刻と同時もしくは遅い場合には、前記電圧監視部で監視された電圧が第1の閾値を下回るか、あるいは、予め定められた時刻となることを条件に、前記起動状態から前記休止状態に切り替える第5の手段と、
     前記起動時刻が前記日の出時刻より早い場合には、前記電圧監視部で監視された電圧が前記第1の閾値より大きい第2の閾値を下回るか、あるいは、前記電圧監視部で監視された電圧が前記第2の閾値を下回る時刻となることを条件に、前記起動状態から前記休止状態に切り替える第6の手段と、
     前記第1の閾値に、前記起動時刻と前記日の出時刻の時間間隔を基に計算された値を加算し、前記第2の閾値を生成して前記記憶装置に格納する第7の手段と、を有する、
     環境発電型無線システム。
    An energy harvesting wireless system that transmits the data acquired by the sensor as it is or after processing it wirelessly,
    A power generation unit that receives sunlight and generates electric power;
    A capacitor for storing the power;
    A voltage monitoring unit for monitoring the voltage of the capacitor;
    A wireless unit that wirelessly transmits the data by the electric power stored in the capacitor;
    A control device;
    A storage device for storing information used in the control device,
    The control device includes:
    A first means for controlling the system to at least two states: an active state in which the wireless unit can transmit the data wirelessly; and a sleep state in which power consumption is lower than the active state;
    A second means for determining a sunrise time based on the output of the voltage monitoring unit and storing it in the storage device;
    Third means for obtaining a start time (start time) of the start state stored in the storage device;
    A fourth means for determining the anteroposterior relationship between the activation time and the sunrise time stored in the storage device;
    When the activation time is the same as or later than the sunrise time, the activation state is set on condition that the voltage monitored by the voltage monitoring unit falls below a first threshold or reaches a predetermined time. A fifth means for switching to the dormant state,
    If the activation time is earlier than the sunrise time, the voltage monitored by the voltage monitoring unit falls below a second threshold value that is greater than the first threshold value, or the voltage monitored by the voltage monitoring unit is Sixth means for switching from the activated state to the hibernated state on the condition that the time falls below the second threshold;
    A seventh means for adding a value calculated based on a time interval between the activation time and the sunrise time to the first threshold, generating the second threshold, and storing the second threshold in the storage device; Have
    Energy generation wireless system.
  2.  前記記憶装置は、
     前記キャパシタに蓄積されている電力でシステムを前記起動状態とする際の、単位時間当たりの前記キャパシタの電圧降下率を起動状態電圧降下率として記憶し、
     前記第7の手段は、
     前記起動状態電圧降下率を用いて、前記第2の閾値を生成する、
     請求項1記載の環境発電型無線システム。
    The storage device
    Storing the voltage drop rate of the capacitor per unit time as the startup state voltage drop rate when the system is in the startup state with the power stored in the capacitor;
    The seventh means includes
    Generating the second threshold using the startup state voltage drop rate;
    The energy generation type wireless system according to claim 1.
  3.  前記第7の手段は、
     前記起動時刻と前記日の出時刻の時間間隔に、前記起動状態電圧降下率を積算し、さらに0以上の正の値を余裕度として加算し、前記第2の閾値を生成する、
     請求項2記載の環境発電型無線システム。
    The seventh means includes
    The activation state voltage drop rate is integrated in the time interval between the activation time and the sunrise time, and a positive value of 0 or more is added as a margin to generate the second threshold value.
    The energy generation type wireless system according to claim 2.
  4.  前記制御装置は、
     前記電圧監視部の出力に基づいて日の入り時刻を判定し、前記日の入り時刻における前記キャパシタの電圧を前記記憶装置に格納し、
     前記記憶装置は、
     前記キャパシタに蓄積されている電力でシステムを前記休止状態とする際の、単位時間当たりの前記キャパシタの電圧降下率を休止状態電圧降下率として記憶し、
     前記第7の手段は、
     前記日の入り時刻における前記キャパシタの電圧と前記休止状態電圧降下率をさらに用いて、前記第2の閾値を生成する、
     請求項3記載の環境発電型無線システム。
    The control device includes:
    Determining the sunset time based on the output of the voltage monitoring unit, storing the voltage of the capacitor at the sunset time in the storage device;
    The storage device
    Storing the voltage drop rate of the capacitor per unit time as a dormant voltage drop rate when the system is put into the dormant state with the power stored in the capacitor;
    The seventh means includes
    Further using the voltage of the capacitor and the quiescent voltage drop rate at the sunset time to generate the second threshold;
    The energy generation type wireless system according to claim 3.
  5.  前記制御装置は、
     前記第2の閾値と、前記日の入り時刻における前記キャパシタの電圧と、前記起動状態電圧降下率から、前記電圧監視部で監視された電圧が前記第2の閾値を下回る時刻を計算し、該下回る時刻を前記記憶装置に記憶し、
     前記第6の手段は、
     前記記憶装置に記憶された前記下回る時刻を用いて、前記起動状態から前記休止状態に切り替える、
     請求項4記載の環境発電型無線システム。
    The control device includes:
    The time when the voltage monitored by the voltage monitoring unit falls below the second threshold is calculated from the second threshold, the voltage of the capacitor at the sunset time, and the starting state voltage drop rate, and the time when the voltage falls below the second threshold. Is stored in the storage device,
    The sixth means includes
    Switch from the activated state to the dormant state using the time less than that stored in the storage device,
    The energy generation type wireless system according to claim 4.
  6.  前記記憶装置は、
     前記キャパシタに蓄積されている電力でシステムを前記休止状態とする際の、単位時間当たりの前記キャパシタの電圧降下率を休止状態電圧降下率として記憶し、
     前記キャパシタに蓄積可能な最大電圧をキャパシタ最大電圧として記憶し、
     前記第7の手段は、
     前記キャパシタ最大電圧と前記休止状態電圧降下率をさらに用いて、前記第2の閾値を生成する、
     請求項3記載の環境発電型無線システム。
    The storage device
    Storing the voltage drop rate of the capacitor per unit time as a dormant voltage drop rate when the system is put into the dormant state with the power stored in the capacitor;
    Storing the maximum voltage that can be stored in the capacitor as the capacitor maximum voltage;
    The seventh means includes
    Using the capacitor maximum voltage and the quiescent voltage drop rate further to generate the second threshold;
    The energy generation type wireless system according to claim 3.
  7.  前記制御装置は、
     前記第2の閾値と、前記キャパシタ最大電圧と、前記起動状態電圧降下率から、前記電圧監視部で監視された電圧が前記第2の閾値を下回る時刻を計算し、該下回る時刻を前記記憶装置に記憶し、
     前記第6の手段は、
     前記記憶装置に記憶された前記下回る時刻を用いて、前記起動状態から前記休止状態に切り替える、
     請求項6記載の環境発電型無線システム。
    The control device includes:
    The time when the voltage monitored by the voltage monitoring unit falls below the second threshold is calculated from the second threshold, the capacitor maximum voltage, and the startup state voltage drop rate, and the time when the voltage is lower is the storage device. Remember
    The sixth means includes
    Switch from the activated state to the dormant state using the time less than that stored in the storage device,
    The energy generation type wireless system according to claim 6.
  8.  前記第2の手段は、
     定期的に前記日の出時刻を判定し、
     前記第4の手段は、
     定期的に前記日の出時刻の前後関係を判定し、
     前記第7の手段は、
     定期的に前記第2の閾値を生成して前記記憶装置に格納する、
     請求項3記載の環境発電型無線システム。
    The second means includes
    Periodically determine the sunrise time,
    The fourth means includes
    Periodically determine the context of the sunrise time,
    The seventh means includes
    Periodically generating the second threshold and storing it in the storage device;
    The energy generation type wireless system according to claim 3.
  9.  前記第2の手段は、
     1日に1回前記日の出時刻を判定し、
     前記第4の手段は、
     1日に1回前記日の出時刻の前後関係を判定し、
     前記第7の手段は、
     1日に1回前記第2の閾値を生成して前記記憶装置に格納する、
     請求項8記載の環境発電型無線システム。
    The second means includes
    Determine the sunrise time once a day,
    The fourth means includes
    Once a day, determine the context of the sunrise time,
    The seventh means includes
    Generating the second threshold value once a day and storing it in the storage device;
    The energy generation type wireless system according to claim 8.
  10.  太陽光をエネルギー源として電力を発生させる発電部と、
     前記電力を蓄積する蓄電部と、
     無線により信号を送出する無線部と、
     前記無線部を制御する制御装置と、
     前記制御装置で用いる情報を格納する記憶装置と
     時間を測定可能なタイマと、を有し、
     前記制御装置は、
     前記無線部が無線により信号を送出する起動状態と、前記起動状態よりも消費電力が少ない休止状態の少なくとも2つの状態に装置を制御する第1の手段と、
     前記記憶装置に格納された前記起動状態の開始時刻(起動時刻)を取得する第2の手段と、
     日の出時刻を取得する第3の手段と、
     前記起動時刻と前記日の出時刻とに基づいて、前記休止状態の開始タイミングを制御する第4の手段と、
     を有する環境発電型無線装置。
    A power generation unit that generates power using sunlight as an energy source;
    A power storage unit for storing the power;
    A wireless unit for transmitting signals wirelessly;
    A control device for controlling the radio unit;
    A storage device for storing information used in the control device and a timer capable of measuring time;
    The control device includes:
    A first means for controlling the apparatus to at least two states: an active state in which the wireless unit transmits a signal wirelessly; and a sleep state in which power consumption is lower than the active state;
    A second means for acquiring a start time (start time) of the start state stored in the storage device;
    A third means for obtaining the sunrise time;
    A fourth means for controlling the start timing of the hibernation state based on the activation time and the sunrise time;
    An energy generation type wireless device having
  11.  前記蓄電部の電圧を監視する電圧監視部を備え、
     前記第4の手段は、
     前記起動時刻と前記日の出時刻の前後関係を判定する手段と、
     前記起動時刻が前記日の出時刻より早い場合には、前記起動時刻から前記日の出時刻までに前記起動状態を維持するために必要な電力量を算出する手段と、
     前記必要な電力量に基づいて、前記休止状態の開始の条件となる蓄電部の電圧(休止電圧)を算出する手段と、
     前記電圧監視部により前記蓄電部の電圧が前記休止電圧以下になったと判定されたタイミングで、前記休止状態を開始する手段と、を有する、
     請求項10記載の環境発電型無線装置。
    A voltage monitoring unit for monitoring the voltage of the power storage unit;
    The fourth means includes
    Means for determining the anteroposterior relationship between the activation time and the sunrise time;
    If the activation time is earlier than the sunrise time, means for calculating the amount of power required to maintain the activation state from the activation time to the sunrise time;
    Means for calculating a voltage (resting voltage) of the power storage unit that is a condition for starting the hibernation state based on the required electric energy;
    Means for starting the hibernation state at a timing when the voltage monitoring unit determines that the voltage of the power storage unit is equal to or lower than the hibernation voltage,
    The energy generation type wireless device according to claim 10.
  12.  前記第3の手段は、
     前記発電部の発電状態に基づいて日の出時刻を判定し、
     前記判定した日の出時刻を前記記憶装置に日々格納し、
     前記第4の手段は、
     前記記憶装置に格納された最新の日の出時刻を用いて処理を行う、
     請求項11記載の環境発電型無線装置。
    The third means includes
    Determine the sunrise time based on the power generation state of the power generation unit,
    The determined sunrise time is stored in the storage device every day,
    The fourth means includes
    Processing using the latest sunrise time stored in the storage device;
    The energy-generating wireless device according to claim 11.
  13.  前記第4の手段は、
     前記起動時刻が前記日の出時刻より遅い場合には、前記休止電圧より低い起動電圧を用い、前記電圧監視部により前記蓄電部の電圧が前記起動電圧以下になったと判定されたタイミングで、前記休止状態を開始する手段と、を有する、
     請求項12記載の環境発電型無線装置。
    The fourth means includes
    When the start time is later than the sunrise time, the start state is lower than the stop voltage, and at the timing when the voltage monitoring unit determines that the voltage of the power storage unit is equal to or lower than the start voltage, the stop state Means for initiating
    The energy generation type wireless device according to claim 12.
  14.  前記蓄電部はキャパシタであり、
     前記記憶装置は、
     前記日の出時刻前に起動状態にあるキャパシタの起動電圧降下率を記憶しており、
     前記第4の手段は、
     前記起動電圧降下率と、前記起動時刻と、前記日の出時刻を用いた計算により前記必要な電力量を算出し、
     前記起動電圧に、少なくとも前記必要な電力量に相当する電圧を加算した値を前記休止電圧として算出する、
     請求項13記載の環境発電型無線装置。
    The power storage unit is a capacitor,
    The storage device
    Stores the starting voltage drop rate of the capacitor in the starting state before the sunrise time,
    The fourth means includes
    Calculate the required power amount by calculation using the startup voltage drop rate, the startup time, and the sunrise time,
    A value obtained by adding a voltage corresponding to at least the required power amount to the starting voltage is calculated as the resting voltage.
    The energy generation type wireless device according to claim 13.
  15.  太陽光のエネルギーから無線装置を駆動させる電力を得る発電部と、
     前記発電部で発電した電力を蓄電するための蓄電部と、
     前記蓄電部に蓄電されている電力量を計測し電圧情報を出力する電圧監視部と、
     時刻情報を出力するタイマと、
     他無線装置と通信を行うための無線部と、
     日の出時刻と起動時刻を記録するメモリと、
     前記発電部、前記蓄電部、前記電圧監視部、前記タイマ、前記無線部、および、前記メモリを制御する制御装置を有し、
     前記制御装置は、
     前記日の出時刻を算出して前記メモリに記録する手段と、
     前記起動時刻から前記日の出時刻までに前記発電部、前記蓄電部、前記電圧監視部、前記タイマ、前記無線部、前記メモリ、および、前記制御装置が起動状態に消費する電力量を算出する手段と、
     前記電圧監視部、前記タイマ、前記無線部、前記メモリ、および、前記制御装置の一部機能を停止することにより前記蓄電部の電力消費を抑制する休止状態に消費する電力量を算出する手段と、
     前記蓄電部に蓄電されているエネルギーのみで前記起動状態とする場合に、単位時間当たりの前記蓄電部の電圧降下率を計測する手段と、
     前記蓄電部に蓄電されているエネルギーのみで前記休止状態とする場合に、単位時間当たりの前記蓄電部の電圧降下率を計測する手段と、
     を有する環境発電型無線装置。
    A power generation unit for obtaining power for driving the wireless device from the energy of sunlight;
    A power storage unit for storing the power generated by the power generation unit;
    A voltage monitoring unit that measures the amount of power stored in the power storage unit and outputs voltage information;
    A timer that outputs time information;
    A wireless unit for communicating with other wireless devices;
    A memory that records the sunrise time and start-up time;
    The power generation unit, the power storage unit, the voltage monitoring unit, the timer, the radio unit, and a control device for controlling the memory,
    The control device includes:
    Means for calculating the sunrise time and recording it in the memory;
    Means for calculating the amount of power consumed by the power generation unit, the power storage unit, the voltage monitoring unit, the timer, the radio unit, the memory, and the control device in the startup state from the startup time to the sunrise time; ,
    Means for calculating the amount of power consumed in a sleep state that suppresses power consumption of the power storage unit by stopping a part of functions of the voltage monitoring unit, the timer, the radio unit, the memory, and the control device; ,
    Means for measuring a voltage drop rate of the power storage unit per unit time when only the energy stored in the power storage unit is in the activated state;
    Means for measuring a voltage drop rate of the power storage unit per unit time when only the energy stored in the power storage unit is in the dormant state;
    An energy generation type wireless device having
PCT/JP2016/076365 2015-09-17 2016-09-08 Energy-harvesting wireless device and system WO2017047480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015183872A JP2018207551A (en) 2015-09-17 2015-09-17 Energy harvesting type radio device and system
JP2015-183872 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017047480A1 true WO2017047480A1 (en) 2017-03-23

Family

ID=58289209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076365 WO2017047480A1 (en) 2015-09-17 2016-09-08 Energy-harvesting wireless device and system

Country Status (2)

Country Link
JP (1) JP2018207551A (en)
WO (1) WO2017047480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018083806A1 (en) * 2016-11-07 2019-07-18 富士通株式会社 Control device, control system and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022014195A (en) * 2020-07-06 2022-01-19 キヤノン株式会社 Information acquisition device and information acquisition system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261980A (en) * 1999-03-10 2000-09-22 Sumitomo Electric Ind Ltd Source power supply system
JP2011228884A (en) * 2010-04-19 2011-11-10 Sony Corp Imaging device and method for controlling imaging device
JP2012080622A (en) * 2010-09-30 2012-04-19 Nec Embedded Products Ltd Sensor node power predictive control device, sensor node power predictive control method, and program
US20120245890A1 (en) * 2009-03-31 2012-09-27 Commonwealth Scientific And Industrial Research Organisation Energy management for wireless sensor networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261980A (en) * 1999-03-10 2000-09-22 Sumitomo Electric Ind Ltd Source power supply system
US20120245890A1 (en) * 2009-03-31 2012-09-27 Commonwealth Scientific And Industrial Research Organisation Energy management for wireless sensor networks
JP2011228884A (en) * 2010-04-19 2011-11-10 Sony Corp Imaging device and method for controlling imaging device
JP2012080622A (en) * 2010-09-30 2012-04-19 Nec Embedded Products Ltd Sensor node power predictive control device, sensor node power predictive control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018083806A1 (en) * 2016-11-07 2019-07-18 富士通株式会社 Control device, control system and control method

Also Published As

Publication number Publication date
JP2018207551A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US9973832B2 (en) Sensor node and method of controlling sensor node
US11223300B2 (en) Energy-harvesting sensor system and method therefor
US9651971B2 (en) Control device, power control system, and power control method
US7400911B2 (en) Wireless node and method of powering a wireless node employing ambient light to charge an energy store
JP6018980B2 (en) Free standing power system
US10234157B2 (en) Management system and management method
US20120091968A1 (en) Method and apparatus for tracking maximum power point
KR20150019153A (en) Gateway system and driving method thereof in sensor network
JP6511929B2 (en) Remote monitoring system and terminal device
US20170054322A1 (en) System and Method for Using Capacitors in Wireless Networks
CN111480279B (en) Hybrid power control system, corresponding method and sensor device
US10256662B2 (en) Method for dynamically controlling a piece of electrical equipment
JP6356109B2 (en) Data collection device for photovoltaic power generation equipment
WO2017047480A1 (en) Energy-harvesting wireless device and system
KR101374830B1 (en) Apparatus and Method for Controlling Energy Supply with Sensor Node
KR20180121451A (en) Floricultural pot management system using solar energy
JP2018038229A (en) Power storage system
KR101376532B1 (en) Low-power automatic meter reading system and method using solar repeater and battery node
JP2018074613A (en) Electronic device
JP6708475B2 (en) DC power supply system controller
JP6649861B2 (en) Power generation amount prediction device and power generation amount prediction method
JP2019154108A (en) Power storage system
JP2019154109A (en) Power storage system
US20200303952A1 (en) Sensor, corresponding system and operating method
Shahani et al. The Enhanced Optimization Model for Low Cost Power Backup Model for Solar Energy Harvesting in WSN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP