WO2017047066A1 - Liquid jetting control device, liquid jetting system, and control method - Google Patents

Liquid jetting control device, liquid jetting system, and control method Download PDF

Info

Publication number
WO2017047066A1
WO2017047066A1 PCT/JP2016/004137 JP2016004137W WO2017047066A1 WO 2017047066 A1 WO2017047066 A1 WO 2017047066A1 JP 2016004137 W JP2016004137 W JP 2016004137W WO 2017047066 A1 WO2017047066 A1 WO 2017047066A1
Authority
WO
WIPO (PCT)
Prior art keywords
momentum
liquid
waveform
dial
rising
Prior art date
Application number
PCT/JP2016/004137
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 柄沢
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Publication of WO2017047066A1 publication Critical patent/WO2017047066A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor

Definitions

  • the present invention relates to a liquid ejection control device that controls a liquid ejection device that ejects liquid in pulses using a piezoelectric element.
  • a technique for cutting a workpiece by jetting a liquid in a pulse shape is known.
  • the ejection of the pulsed liquid is a jet of liquid ejected in a pulsating manner from the nozzle, and is appropriately referred to as “pulsed liquid jet” in the present specification.
  • Patent Document 1 proposes a technique that is used for surgery in the medical field.
  • the cutting object is a living tissue
  • the liquid is a physiological saline.
  • a mechanism using a piezoelectric element is known as one mechanism for generating a pulsed liquid jet.
  • This is a mechanism in which a pulsed drive voltage is applied to the piezoelectric element so that the piezoelectric element generates an instantaneous pressure in the working fluid (liquid) and jets the liquid in pulses. Therefore, when changing the strength of the pulsed liquid jet, the drive voltage applied to the piezoelectric element is controlled. Therefore, the characteristic value of the drive voltage applied to the piezoelectric element, for example, the amplitude of the drive voltage waveform (which is a voltage amplitude and can be said to be the magnitude of the drive voltage) is indicated by an operation unit such as an operation dial or an operation button.
  • an operation unit such as an operation dial or an operation button.
  • the cutting mode such as the cutting depth and the cutting volume of the cutting object cannot be changed as the user desires.
  • the voltage amplitude 2 times, 4 times, 1/2, or 1/4
  • the cutting depth and the cutting volume may not always change accordingly. I understood.
  • a pulsed liquid jet is used for a surgical operation, an operation according to an operator's operation feeling cannot be obtained, which may be a problem.
  • the injection period of the pulsed liquid jet is variable, the cutting depth and cutting volume per unit time can be increased and decreased, and the cutting speed of the cutting object can be adjusted.
  • the shape of the drive voltage waveform changes when the ejection cycle is changed, the strength of the liquid jet for one pulse can be changed. Therefore, even if the cutting depth or volume of the pulse liquid jet for one pulse changes before and after changing the injection cycle, the injection frequency is shortened, in other words, even if the injection frequency is increased, the injection frequency is as intended by the user. In some cases, proportional cutting speed could not be obtained.
  • the present invention has been devised in view of the above-described problems, and its object is to make it possible to set the strength of a pulsed liquid jet in accordance with the user's intention and to improve usability. Is to propose.
  • a pulsed liquid jet is repeatedly applied from a liquid ejecting apparatus that applies a given drive voltage waveform to a piezoelectric element and ejects the liquid in a pulse shape using the piezoelectric element.
  • a liquid ejection control device for controlling the ejection of the first operation unit for inputting a first instruction value relating to the momentum of the pulsed liquid jet, and a control unit for controlling the drive voltage waveform, And a control unit that changes a waveform shape (hereinafter referred to as “rise waveform shape”) related to the rising of the drive voltage waveform so that the momentum becomes the first instruction value.
  • a control method for controlling repetitive ejection of a pulsed liquid jet from a liquid ejecting apparatus that applies a given drive voltage waveform to a piezoelectric element and ejects liquid in a pulsed manner using the piezoelectric element
  • Input a first instruction value related to the momentum of the pulsed liquid jet, and change a waveform shape related to the rise of the drive voltage waveform so that the momentum becomes the first instruction value; It is good also as comprising the control method containing these.
  • the waveform shape related to the rise of the drive voltage waveform is changed so that the momentum becomes the first instruction value.
  • the cutting depth and the cutting volume are highly correlated with the momentum of the pulsed liquid jet. Therefore, by directly instructing the momentum of the pulsed liquid jet, it is possible to realize a cutting depth and a cutting volume corresponding to the user's intention and operational feeling, and to improve usability.
  • a second invention further includes a second operation unit for inputting a second instruction value related to the number of injections per unit time of the pulsed liquid jet in the first invention, and the control unit includes: In the liquid ejection control device, the drive voltage waveform is controlled such that the number of ejections per unit time of the pulsed liquid jet is the second instruction value.
  • the second aspect of the invention it is possible to instruct the number of injections of the pulsed liquid jet per unit time. According to this, for example, it is possible to increase or decrease the number of injections while maintaining the first instruction value.
  • the waveform shape related to the rise of the drive voltage waveform is controlled so that the momentum becomes the first indication value. Therefore, the cutting speed can be adjusted without changing the cutting depth or the cutting volume by the pulse liquid jet for one pulse before and after changing the number of injections, and the usability can be improved.
  • a third invention further includes a third operation unit for inputting a third instruction value related to a voltage amplitude of the drive voltage waveform in the first or second invention, wherein the control unit includes the control unit In the liquid ejection control device, the voltage amplitude of the drive voltage waveform is controlled based on the third instruction value.
  • the voltage amplitude of the drive voltage waveform can be indicated.
  • control unit further includes a fourth operation unit for inputting a fourth instruction value related to a rise time of the drive voltage waveform.
  • a fourth operation unit for inputting a fourth instruction value related to a rise time of the drive voltage waveform.
  • a liquid ejection control device that controls the rise time of the drive voltage based on the fourth instruction value.
  • the rise time of the drive voltage waveform can be indicated.
  • the fifth aspect of the invention is a liquid ejection control apparatus according to any one of the first to fourth aspects, further comprising a display control unit that performs control to display the first instruction value.
  • the first indication value relating to the momentum of the pulsed liquid jet can be displayed. According to this, the momentum of the current pulsed liquid jet instructed by the user can be visually confirmed. Therefore, usability can be further improved.
  • the momentum of the pulsed liquid jet is 2 [nNs (nanonewton seconds)] or more and 2 [mNs (millinewton seconds)] or less, or motion
  • the liquid ejecting control apparatus controls the liquid ejecting apparatus having an energy of 2 [nJ (nanojoule)] or more and 200 [mJ (millijoule)] or less.
  • the momentum of the pulsed liquid jet is 2 [nNs] or more and 2 [mNs] or less, or the kinetic energy is 2 [nJ] or more and 200 [mJ] or less, and the liquid ejecting apparatus is within that range.
  • a seventh invention is the liquid jet control device according to any one of the first to sixth inventions, wherein the liquid jet control device controls the liquid jet device for cutting a living tissue by the pulse liquid jet.
  • the strength of the pulsed liquid jet suitable for surgical use can be controlled.
  • the eighth invention is a liquid jet system including the liquid jet control device according to any one of the first to seventh inventions, a liquid jet device, and a liquid feed pump device.
  • the figure which shows the example of whole structure of a liquid injection system The figure which shows the internal structure of a liquid ejecting apparatus.
  • FIG. 3 is a diagram illustrating an operation panel of the liquid ejection control apparatus according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the first embodiment.
  • FIG. 3 is a flowchart illustrating a flow of processing performed by a control unit when jetting a pulsed liquid jet in the first embodiment.
  • FIG. 6 is a diagram illustrating an operation panel of a liquid ejection control apparatus in Embodiment 2.
  • FIG. 3 is a diagram illustrating an operation panel of the liquid ejection control apparatus according to the first embodiment.
  • FIG. 6 is a block diagram illustrating a functional configuration example of a liquid ejection control apparatus according to a second embodiment. The figure which shows the data structural example of the momentum conversion table in Example 2.
  • FIG. 9 is a flowchart illustrating a flow of processing performed by a control unit when jetting a pulsed liquid jet in the second embodiment.
  • FIG. 10 is a diagram illustrating an operation panel of a liquid ejection control apparatus in Embodiment 3.
  • FIG. 9 is a block diagram illustrating a functional configuration example of a liquid ejection control apparatus according to a third embodiment. The figure which shows the data structural example of the momentum conversion table in Example 3.
  • FIG. 9 is a flowchart illustrating a flow of processing performed by a control unit when jetting a pulsed liquid jet in the third embodiment.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a liquid ejection system 1 in the present embodiment.
  • This liquid ejecting system 1 is a flexible material, for example, for a surgical operation with a living tissue as a cutting object, for a food processing with a food as a cutting object, for processing a gel material, or for cutting a resin material such as rubber or plastic.
  • the momentum is 2 [nNs (nanonewton seconds)] or more and 2 [mNS (millinewton seconds)] or less, or the kinetic energy is 2 [nJ (nanojoules)] or more and 200 [ mJ (millijoule)]
  • the following pulse liquid jet is ejected to cut the object to be cut.
  • the liquid ejection system 1 is used for a surgical application and an affected part (living tissue) is incised, excised, or crushed (collectively referred to as “cutting”) will be exemplified.
  • the momentum flux and the momentum in the present embodiment will be described as referring to a scalar amount, that is, a magnitude considering only the jet direction component of the pulse liquid jet.
  • the liquid ejecting system 1 ejects liquid in a pulse shape toward a container 10 that stores the liquid, a liquid feeding pump device 20, and a cutting target (a living tissue in the present embodiment).
  • the liquid ejecting apparatus 30 and the liquid ejecting control apparatus 70 are provided.
  • the liquid ejecting control device 70 includes an operation panel 80 that is operated by an operator during surgery.
  • the operation panel 80 is for inputting various operations such as an exercise amount increase / decrease operation.
  • the liquid ejection control device 70 includes an ejection pedal 83 for the operator to step on the foot and switch between ejection start and ejection stop of the pulse liquid jet.
  • the container 10 contains a liquid such as water, physiological saline, or a chemical solution.
  • the liquid feed pump device 20 always supplies the liquid stored in the container 10 to the pulse flow generation unit 40 of the liquid ejecting device 30 through the connection tubes 91 and 93 at a predetermined pressure or a predetermined flow rate.
  • the liquid ejecting apparatus 30 is a part (hand piece) that is operated and held by an operator during surgery, and a pulse flow generating unit that generates a pulse flow by applying pulsation to the liquid supplied from the liquid feeding pump apparatus 20. 40 and a pipe-shaped injection pipe 50.
  • the liquid ejecting apparatus 30 ejects the pulse flow generated by the pulse flow generating unit 40 as a pulsed liquid jet from a liquid ejecting opening 61 (see FIG. 2) finally provided in the nozzle 60 through the ejection tube 50. .
  • the pulse flow means a pulsating flow of the liquid in which the flow velocity and pressure of the liquid are temporally large and rapidly change.
  • jetting liquid in a pulse form means pulsating jet of liquid in which the flow velocity of the liquid passing through the nozzle changes greatly with time.
  • a pulsed liquid jet generated by applying periodic pulsation to a steady flow is illustrated, but intermittent and intermittent pulsed liquid jet injection that repeats liquid injection and non-injection.
  • the present invention can be similarly applied.
  • FIG. 2 is a diagram showing a cut surface obtained by cutting the liquid ejecting apparatus 30 along the liquid ejecting direction. Note that the vertical and horizontal scales of the members and portions shown in FIG. 2 are different from actual ones for convenience of illustration.
  • the pulse flow generator 40 changes the volume of the pressure chamber 44 into a cylindrical internal space formed by the first case 41, the second case 42, and the third case 43. Therefore, a piezoelectric element 45 and a diaphragm 46 are provided.
  • the cases 41, 42, and 43 are joined and integrated on the surfaces facing each other.
  • the diaphragm 46 is a disk-shaped thin metal plate, and an outer peripheral portion thereof is sandwiched and fixed between the first case 41 and the second case 42.
  • the piezoelectric element 45 is, for example, a multilayer piezoelectric element, and one end is fixed to the diaphragm 46 between the diaphragm 46 and the third case 43 and the other end is fixed to the third case.
  • the pressure chamber 44 is a space surrounded by the diaphragm 46 and a recess 411 formed on the surface of the first case 41 facing the diaphragm 46.
  • an inlet channel 413 and an outlet channel 415 that communicate with the pressure chamber 44 are formed in the first case 41.
  • the inner diameter of the outlet channel 415 is formed larger than the inner diameter of the inlet channel 413.
  • the inlet channel 413 is connected to the connection tube 93 and introduces the liquid supplied from the liquid feed pump device 20 into the pressure chamber 44.
  • One end of the injection pipe 50 is connected to the outlet channel 415, and a liquid flowing in the pressure chamber 44 is introduced into the injection pipe 50.
  • a nozzle 60 having a liquid ejection opening 61 having an inner diameter that is smaller than the inner diameter of the ejection pipe 50 is inserted into the other end (tip) of the ejection pipe 50.
  • the liquid stored in the container 10 is connected to the connection tube 93 at a predetermined pressure or a predetermined flow rate by the liquid feed pump device 20 under the control of the liquid ejection control device 70.
  • the piezoelectric element 45 expands and contracts (arrow A in FIG. 2). Since the drive signal applied to the piezoelectric element 45 is repeatedly applied at a predetermined repetition frequency (for example, several tens [Hz] to several hundred [Hz]), the expansion and contraction of the piezoelectric element 45 are repeated every period. Become. As a result, a pulsation is imparted to the steady flow liquid flowing in the pressure chamber 44, and the pulsed liquid jet is repeatedly ejected from the liquid ejection opening 61.
  • FIG. 3A is a diagram showing an example of a drive voltage waveform L11 of a drive signal for one cycle applied to the piezoelectric element 45, and also shows a liquid flow velocity waveform L13 in the liquid ejection opening 61.
  • FIG. 3B is a diagram in which the main jet 3 which is the highest flow velocity waveform (main peak portion) is extracted from the peaks of the flow velocity waveform L13 shown in FIG.
  • Tp shown in FIG. 3A is a repetition period (a time corresponding to one period of the drive voltage waveform), and its reciprocal is the repetition frequency.
  • the repetition period Tp is about 1 [ms (milliseconds)] to 100 [ms]
  • the time required for the drive voltage waveform to rise to the maximum voltage (rise time) Tpr is 10 [ ⁇ s (microseconds)] to It is about 1000 [ ⁇ s].
  • the repetition period Tp is set as a time longer than the rise time Tpr.
  • the reciprocal of the rise time Tpr is set as the rise frequency
  • the repetition frequency is set as a frequency lower than the rise frequency.
  • the rise frequency and the rise time are both one of rise time index values related to the rise time of the drive voltage.
  • the rising frequency will be described as a representative example of the index value related to the rising time.
  • the piezoelectric element 45 expands when a positive voltage is applied, the piezoelectric element 45 rapidly expands at the rising time Tpr, and the diaphragm 46 is pushed by the piezoelectric element 45 and bends toward the pressure chamber 44 side.
  • the diaphragm 46 is bent toward the pressure chamber 44, the volume of the pressure chamber 44 is reduced, and the liquid in the pressure chamber 44 is pushed out from the pressure chamber 44.
  • the inner diameter of the outlet channel 415 is larger than the inner diameter of the inlet channel 413, the fluid inertance and fluid resistance of the outlet channel 415 are smaller than the fluid resistance of the inlet channel 413.
  • the drive voltage will drop slowly.
  • the piezoelectric element 45 contracts over a time longer than the rise time Tpr, and the diaphragm 46 is pulled by the piezoelectric element 45 and bent toward the third case 43 side.
  • the diaphragm 46 is bent toward the third case 43, the volume of the pressure chamber 44 is increased, and the liquid is introduced into the pressure chamber 44 from the inlet channel 413.
  • the liquid feed pump device 20 supplies the liquid to the pulse flow generation unit 40 at a predetermined pressure or a predetermined flow rate, the liquid flowing in the pressure chamber 44 (steady flow) unless the piezoelectric element 45 performs an expansion / contraction operation. Is introduced into the ejection pipe 50 through the outlet channel 415 and ejected from the liquid ejection opening 61. Since this injection is a constant-speed and low-speed liquid flow, it can be said that it is a steady flow.
  • the duration T of the main jet 3 peaks as the flow velocity waveform L13 increases from the steady flow velocity Ubg. It is the time until the original flow rate Ubg is returned after reaching.
  • the duration T is the sum of the flow velocity rise time Tr required for the flow velocity to reach a peak and the flow velocity fall time Tf required for the flow velocity to return from the peak.
  • the maximum flow velocity Um of the main jet 3 is the sum of the steady flow flow velocity Ubg and the maximum flow velocity amplitude ⁇ Um.
  • the value that characterizes the pulsed liquid jet is basically the flow velocity waveform L13 at the liquid ejection opening 61 of the jet for one pulse, which is shown together with the drive voltage waveform L11 in FIG.
  • the main jet 3 which is the main peak portion (the jet of the first wave) of the maximum flow velocity that occurs immediately after the rise of the drive voltage shown in FIG. 3B.
  • the other low peak is caused by the jet jetting incidentally as the wave of pressure fluctuation generated in the pressure chamber 44 when the piezoelectric element 45 extends is reflected back and forth in the jet pipe 50. It is the main jet 3 having the largest flow velocity that determines the cutting mode such as the cutting depth and the cutting volume of the object.
  • the drive voltage waveform of the piezoelectric element 45 is controlled.
  • the driving voltage waveform can be controlled by an operator instructing the rising frequency of the driving voltage waveform or the amplitude (voltage amplitude) of the driving voltage waveform as the voltage characteristic value.
  • a method in which the surgeon instructs the rising frequency (or the rising time Tpr) with the voltage amplitude fixed, or the voltage amplitude with the rising frequency fixed can be considered. This is because the voltage amplitude and its rising frequency (rise time Tpr) greatly affect the flow velocity waveform of the main jet 3.
  • the drive voltage during the gradual drop after the drive voltage rises to the maximum voltage does not significantly affect the flow velocity waveform of the main jet 3. Therefore, it seems that if the rising frequency is increased or the voltage amplitude is increased, the cutting depth becomes deeper and the cutting volume becomes larger in proportion to it.
  • the voltage amplitude is the maximum value of the drive voltage waveform L11.
  • the cutting depth and the cutting volume of the cutting object that are actually achieved may not always change in accordance with the increase or decrease of the voltage characteristic value, and may deteriorate the usability. For example, even if the surgeon doubles the voltage amplitude, the cutting depth and volume will not increase as expected, or even if the voltage amplitude is halved, the cutting depth and volume will not decrease as expected. There was a case where it happened. Therefore, the situation where the cutting depth and the cutting volume which an operator desires cannot be achieved may arise. This is a problem that may lead to prolonged operation time.
  • the driving voltage waveform changes. Therefore, even if the repetition frequency is changed, the cutting depth and the cutting volume per unit time do not change proportionally, and the operator may not be easy to use.
  • a method of changing the repetition frequency by simply scaling the entire drive voltage waveform in the time axis direction is conceivable.
  • the rising frequency that greatly affects the flow velocity waveform of the main jet 3 fluctuates, the strength of the pulsed liquid jet changes as described above. Therefore, the intended cutting speed proportional to the repetition frequency cannot be obtained.
  • the piezoelectric element 45 can be controlled with a driving voltage waveform that is optimal for achieving the cutting depth and the cutting volume according to the operator's sense of operation. It is.
  • the mass flux is a mass [kg / s] per unit time of the liquid passing through the liquid ejection opening 61.
  • the momentum flux is the momentum [N] per unit time of the liquid passing through the liquid ejection opening 61.
  • the energy flux is energy [W] per unit time of the liquid passing through the liquid ejection opening 61.
  • Energy refers to kinetic energy and is hereinafter abbreviated as “energy”.
  • FIG. 4 is a diagram showing mass flux Jm (A), momentum flux Jp (B), and energy flux Je (C) obtained from the flow velocity waveform of main jet 3 shown in FIG. 3 (B). . If each of the mass flux Jm, momentum flux Jp, and energy flux Je is integrated within the time (duration) T from the rise to the fall of the flow velocity waveform of the main jet 3, the liquid is ejected as the main jet 3. The mass, momentum, and energy of the liquid ejected from the opening 61 can be obtained.
  • mass flux Jm mass flux Jm
  • momentum flux Jp energy flux Je
  • mass, momentum, and energy calculated in the manner described above can determine the cutting depth and cutting volume by the jet for one pulse. Conceivable. However, both are physical quantities including a steady flow component, and what is important is a value obtained by subtracting the contribution of the steady flow component.
  • the outflow mass M [kg] indicated by hatching in FIG. 4A in which the steady flow component is removed from the mass of the liquid flowing out from the liquid ejection opening 61 as the main jet 3 is defined. To do.
  • the outflow mass M is expressed by the following formula (4).
  • the maximum momentum flux Jp_max [N] obtained by subtracting the steady momentum flux Jp_BG [N] from the peak value (maximum value) of the momentum flux Jp, and the main jet 3 two parameters of momentum P [Ns] indicated by hatching in FIG. 4B in which the steady flow component is removed from the momentum of the liquid flowing out from the liquid ejection opening 61 are defined.
  • the momentum P is expressed by the following equation (5).
  • the energy E is expressed by the following formula (6).
  • the integration interval in the above formulas (4), (5), and (6) is the time (duration) T from the rise to the fall of the main jet 3 in each flow velocity waveform.
  • the pulse liquid jet is a fluid
  • the object to be cut is a flexible elastic body. Therefore, in order to simulate the fracture behavior of an object to be cut by a pulsed liquid jet, an appropriate fracture threshold is set on the flexible elastic body side, and a so-called fluid and structure (here, flexible elastic body) are coupled.
  • Analysis fluid-structure interaction analysis (FSI)
  • FEM finite element method
  • SPH Smoothed Particle Particle
  • a finite element method a particle method represented by SPH (Smoothed Particle Particle)
  • the method etc. which combined these are mentioned.
  • the method to be applied is not particularly limited and will not be described in detail, an optimal method was selected in consideration of the stability of the analysis result, the calculation time, etc., and the simulation was performed.
  • the amplitude (maximum value of the flow velocity) is set to 12 [m / s] for three types of waveforms, a sine wave, a triangular wave, and a rectangular wave.
  • a total of 27 types were prepared by changing three types within the range of 76 [m / s] and the duration within the range of 63 [ ⁇ s] to 200 [ ⁇ s].
  • the flow rate of the steady flow is 1 [m / s].
  • FIG. 5 is a diagram showing a sine wave (A), a rectangular wave (B), and a triangular wave (C) given as flow velocity waveforms of the main jet 3 in the simulation, each having a duration of 63 [ ⁇ s] indicated by a solid line. And those having a duration of 125 [ ⁇ s] indicated by a one-dot chain line and those having a duration of 200 [ ⁇ s] indicated by a two-dot chain line were prepared. Then, a pulsed liquid jet is generated by giving the prepared waveform as the flow velocity waveform of the main jet 3, and the fracture behavior of the flexible elastic body when it is shot into the flexible elastic body is simulated to examine the cutting depth and the cutting volume. went.
  • the vertical axis represents the cutting depth of the object to be cut
  • the horizontal axis represents the maximum mass flux Jm_max (A), the outflow mass M (B), the maximum momentum flux Jp_max (C), the momentum P (D), the maximum It is the figure which plotted the result of the simulation made into energy flux Je_max (E) and energy E (F).
  • a simulation result when a sine wave having a duration of 63 [ ⁇ s] is given as a flow velocity waveform of the main jet 3 is plotted with “*”, and a simulation result when a sine wave of 125 [ ⁇ s] is given.
  • a plot of “ ⁇ ” and a simulation result when a sine wave of 200 [ ⁇ s] is given are shown by a plot of “ ⁇ ”.
  • the simulation result when a triangular wave having a duration of 63 [ ⁇ s] is given as the flow velocity waveform of the main jet 3 is plotted as “+”, and the simulation result when a triangular wave of 125 [ ⁇ s] is given as “ ⁇ ”.
  • a plot, the simulation result when a triangular wave of 200 [ ⁇ s] is given, is indicated by a plot of “ ⁇ ”.
  • the simulation result when the rectangular wave having a duration of 63 [ ⁇ s] is given as the flow velocity waveform of the main jet 3 is plotted with “ ⁇ ”
  • the simulation result when the rectangular wave of 125 [ ⁇ s] is given is blacked out.
  • a triangular plot of, and a simulation result when a rectangular wave of 200 [ ⁇ s] is given is shown by a “ ⁇ ” plot.
  • the outflow mass M and The relationship with the cutting depth largely varies depending on the waveform shape given as the flow velocity waveform of the main jet 3, and the correlation is low.
  • the variation due to the shape of the given waveform is small, and the respective plots are distributed almost on the same curve.
  • the momentum P has a smaller variation. Therefore, it can be said that the cutting depth is highly correlated with the momentum P and the energy E, and particularly well correlated with the momentum P.
  • the simulation is performed for the case where the diameter of the liquid ejection opening is 0.15 [mm] and the standoff distance is 0.5 [mm].
  • the standoff distance is 0.15 [mm]
  • other liquid ejection opening diameters and other stands are used.
  • a simulation was performed even at an off-distance, and it was confirmed that the qualitative tendency that the cutting depth was highly correlated with the momentum P and the energy E did not change significantly.
  • the vertical axis represents the cutting volume of the object to be cut
  • the horizontal axis represents the maximum mass flux Jm_max (A), the outflow mass M (B), the maximum momentum flux Jp_max (C), the momentum P (D), the maximum It is the figure which plotted the result of the simulation as energy flux Je_max (E) and energy E (F).
  • the relationship between the waveform given as the flow velocity waveform of the main jet 3 and the type of plot is the same as in FIG.
  • the relationship between the three parameters of the maximum mass flux Jm_max, the maximum momentum flux Jp_max, and the maximum energy flux Je_max and the cutting volume is Although not as much as the relationship with the cutting depth, it varies depending on the shape of the waveform given as the flow velocity waveform of the main jet 3, and the correlation between the two is considered to be low.
  • the outflow mass M and The relationship with the cutting volume varies greatly depending on the waveform shape given as the flow velocity waveform of the main jet 3 as well as the cutting depth, and the correlation is low.
  • the variation due to the waveform shape given is the same as the cutting depth, and each plot is distributed almost on the same straight line.
  • the energy E has a smaller variation than the momentum P. Therefore, it can be said that the cutting volume has a high correlation with the momentum P and the energy E, and particularly has a good correlation with the energy E.
  • the simulation is performed for the case where the diameter of the liquid ejection opening is 0.15 [mm] and the standoff distance is 0.5 [mm]. However, other liquid ejection opening diameters and other stands are used. A simulation was also performed at an off-distance, and it was confirmed that the qualitative tendency that the cutting volume was highly correlated with the momentum P and the energy E did not change significantly.
  • the present embodiment focuses on the momentum P. Then, a simulation is performed in advance on a typical drive voltage waveform actually applied to the piezoelectric element 45, and the correspondence between the momentum P and the control parameter defining the drive voltage waveform is acquired.
  • control parameters are assumed to be three, that is, the rising frequency, the voltage amplitude, and the repetition frequency. These control parameters were set to be variable, and the flow velocity waveform of the main jet 3 was obtained by simulation.
  • the simulation can be easily performed, for example, using a numerical simulation based on an equivalent circuit method based on a model in which the flow path system of the liquid ejecting apparatus is replaced with fluid (flow path) resistance, fluid inertance, fluid compliance, and the like. .
  • fluid simulation using a finite element method (FEM), a finite volume method (FVM), or the like may be used.
  • FEM finite element method
  • FVM finite volume method
  • FIG. 8A is a diagram illustrating an example of a given drive voltage waveform.
  • Each drive voltage waveform has a voltage amplitude of V2, a repetition period Tp of T2, and a rising time Tpr that is increased stepwise from T21 to T25 (the rising frequency is decreased stepwise).
  • FIG. 8B is a diagram showing a simulation result of the flow velocity waveform of the main jet 3 when the drive voltage waveforms having different rising frequencies shown in FIG. 8A are given.
  • the rising frequency is lowered (longer in terms of the rising time Tpr)
  • the flow velocity waveform of the main jet 3 has a longer duration while rising without changing the start timing of rising,
  • the flow velocity amplitude is also reduced.
  • FIG. 9A is a diagram illustrating an example of a given drive voltage waveform.
  • Each drive voltage waveform has a rise time Tpr of T31, a repetition period Tp of T33, and a voltage amplitude that is gradually reduced from V31 to V35.
  • FIG. 9B is a diagram showing a simulation result of the flow velocity waveform of the main jet 3 when the drive voltage waveforms having different voltage amplitudes shown in FIG. 9A are given.
  • the flow velocity waveform of the main jet 3 maintains the duration during the rise, unlike the case where the rise frequency is lowered, and the flow velocity amplitude (maximum value of the flow velocity). Becomes smaller.
  • FIG. 10A is a diagram illustrating an example of a given drive voltage waveform.
  • Each drive voltage waveform has a rise time Tpr of T4, a voltage amplitude of V4, and the falling period after the drive voltage rises to the maximum voltage is widened in the time axis direction so that the repetition period Tp is stepwise from T41 to T45. Longer (repetitive frequency is lowered stepwise).
  • FIG. 10B is a diagram showing a simulation result of the flow velocity waveform of the main jet 3 when the drive voltage waveforms having different repetition frequencies shown in FIG. 10A are given.
  • the repetition frequency is lowered (in the repetition period Tp, it is longer)
  • the flow velocity waveform of the main jet 3 is smaller than the case where the rising frequency is lowered, but the duration is long. become longer.
  • the flow velocity amplitude (maximum flow velocity) remained maintained.
  • the momentum P was obtained for each of the obtained flow velocity waveforms of the main jet 3.
  • the simulation when the rising frequency was fixed and the voltage amplitude was changed as described with reference to FIG. 9 was performed.
  • the momentum P of the flow velocity waveform of the main jet 3 obtained by each simulation was calculated
  • FIG. 11 is a diagram showing a correspondence relationship between the momentum P obtained at a predetermined repetition frequency (for example, expressed as “F51”), the rising frequency, and the voltage amplitude.
  • This FIG. 11 is obtained by drawing a contour line related to the momentum P in a coordinate space having the vertical axis as the rising frequency and the horizontal axis as the voltage amplitude.
  • the momentum P51, P52,... Of each contour line is lower in the lower left of FIG. 11, and increases by a predetermined amount toward the upper right.
  • momentum P obtained at another repetition frequency is plotted in the same coordinate space and contour lines are drawn, it corresponds to the correspondence between the momentum P at the repetition frequency and the rising frequency and voltage amplitude.
  • a contour map is obtained.
  • the momentum P does not change linearly with respect to the parameters in each coordinate axis direction.
  • the drive voltage waveform of the piezoelectric element 45 is controlled with the voltage amplitude fixed (for example, V5) and the rising frequency variable in the correspondence relationship between the momentum P, the rising frequency, and the voltage amplitude shown in FIG.
  • V5 the voltage amplitude fixed
  • a frequency change between the rising frequencies f52 and f53 is required between the momentum P52 and P53
  • a frequency change between the rising frequencies f53 and f54 is required between the momentum P53 and P54.
  • the frequency interval between the rising frequencies f52 to f53 is different from the frequency interval between the rising frequencies f53 to f54. Therefore, when the operation is performed with the voltage amplitude fixed and the rising frequency being changed by a certain amount, the momentum P does not change as expected, so that the cutting depth and the cutting volume do not change as intended or perceived by the operator. It can be said that such a situation can occur. The same can be said for an operation in which the rising frequency is fixed and the voltage amplitude is changed by a certain amount.
  • FIG. 1 An enlarged view of the rising portion of the drive voltage waveform is shown in FIG.
  • the inflection point R of the waveform curve in the rising portion the process from the driving voltage “0” to the inflection point R while increasing along the downwardly convex curve, and the inflection point R It can be seen that it is composed of two curve portions, a process of reaching the voltage amplitude Vm along the upwardly convex curve. Since the piezoelectric element 45 extends substantially linearly with respect to the drive voltage V, it can be said that the inflection point R corresponds to a peak in the flow velocity waveform L13 of the main jet 3.
  • first rising waveform shape the waveform shape from the driving voltage “0” to the inflection point R
  • Vm the waveform shape from the inflection point R to the voltage amplitude Vm
  • rupt startup can mean that the change in the voltage change rate between the start point r0 and the end point r1 is larger than that in the case of “slow startup”. It can also be said that the voltage change rate in the vicinity of the inflection point is larger than in the case of “starting slowly”. It can also be said that the slope of the drive voltage waveform in the vicinity of the inflection point is closer to 90 ° in the case of “starting up suddenly” than in the case of “starting up slowly”.
  • FIG. 12 shows, as an example, the correspondence between the value of N and the rising waveform shape of the reference waveform V (t) with N as a variable. Note that the waveform shape conforms to Equation (7) described later.
  • the flow velocity waveform of the main jet 3 becomes a flow velocity waveform in which the flow velocity increases more rapidly at the timing corresponding to the inflection point R.
  • FIG. 13 shows an overview of changes in the flow velocity waveform of the main jet 3 with respect to changes in the rising waveform shape.
  • two flow velocity waveforms are shown, where the solid flow velocity waveform is a case where the rising trend of the rising waveform shape is slow, and the broken flow velocity waveform is a case where the rising trend of the rising waveform shape is abrupt. It is.
  • the outflow mass M (see FIG. 4A) is the same, and the peak timing of the flow velocity is also the same.
  • the maximum flow velocity Um is different, and the overall shape of the flow velocity waveform is also different. Therefore, the half width is adopted as a value indicating the characteristics of the flow velocity waveform.
  • each variable of the calculation process of the half value width FWHM with respect to the flow velocity waveform of a broken line is shown.
  • the half-value width FWHM of the flow velocity waveform reaches a value (hereinafter referred to as “half-value”) obtained by adding half the value of the maximum velocity amplitude ⁇ Um ( ⁇ Um / 2) to the steady flow velocity Ubg during the increase of the flow velocity. The time from when the flow velocity is lowered to halfway to the halfway point.
  • a small half-value width FWHM indicates that the flow velocity waveform has a steep shape as a whole. Conversely, a large half-value width FWHM indicates that the flow velocity waveform has a gentle shape as a whole. .
  • the simulation was performed by the same calculation method as the simulation of the flow velocity waveform described above. That is, the pulse liquid jet is a fluid, and the object to be cut is a flexible elastic body. Therefore, simulation was performed as the fracture behavior of an object to be cut by a pulsed liquid jet.
  • the simulation calculation method sets an appropriate fracture threshold value on the flexible elastic body side, and then couples the fluid and the structure (here, the flexible elastic body) (fluid / structure training analysis (FSI)).
  • FEM Adopted Fluid Structure Interaction
  • FEM for example, a method using Finite Element Method (FEM), a method using particle method represented by SPH method (Smoothed Particle Particle Hydrodynamic), Finite Element Method and Particle A method combined with a method may be used.
  • the diameter of the liquid ejection opening 61 was set to 0.15 [mm]
  • the standoff distance distance from the liquid ejection opening 61 to the surface of the cutting object
  • the cutting object is assumed to be a flexible elastic body having a flat surface, and Mooney-Rivlin having an elastic modulus of about 9 [kPa] in terms of Young's modulus (about 3 [kPa] in terms of shear modulus) as a physical model thereof.
  • a superelastic body was obtained.
  • the flow velocity waveform L13 of the main jet 3 that strikes the cutting target material forcedly applied to the nozzle hole outlet has a maximum flow velocity Um of 50 [m / s], a duration T of 125 [ ⁇ s], and a half-value width FWHM of 61 [ ⁇ s].
  • the flow velocity waveform L13 is assumed to be a “reference flow velocity waveform”, the duration T and the outflow mass M being constant, and various FWHMs FWHM.
  • the half-value width FWHM of the flow velocity waveform was assumed to be six levels of 39 [ ⁇ s], 48 [ ⁇ s], 61 [ ⁇ s], 74 [ ⁇ s], 85 [ ⁇ s], and 124 [ ⁇ s].
  • the steady flow velocity Ubg was 1 [m / s].
  • FIGS. 14A to 14C show simulation results. 14A to 14C, only the horizontal axis is changed, and the vertical axis is the same. The horizontal axis will be described.
  • FIG. 14B shows the reference flow velocity waveform.
  • the left axis is the cutting depth and the right axis is the cutting volume.
  • white plot points indicate the case of the reference flow velocity waveform.
  • the cutting depth and the cutting volume both decrease with the increase of the specific RFWHM. Further, it can be seen that the cutting volume is more greatly reduced than the cutting depth, and the change width is large. According to FIGS. 14B and 14C, the cutting depth and the cutting volume both increase as the ratio REf and the ratio RAR increase. Moreover, it turns out that the cutting volume increases more greatly than the cutting depth, and the change width is large.
  • the cutting depth and the cutting volume increase, and the maximum flow velocity Um decreases.
  • the entire flow velocity waveform is gently shaped, it can be seen that the cutting depth and the cutting volume can be reduced. This means that the cutting depth and the cutting volume can be changed by changing the rising waveform shape of the drive voltage waveform so as to change the rate of increase and decrease.
  • FIGS. 15 (A) to (C) The horizontal axes of FIGS. 15A to 15C correspond to FIGS. 14A to 14C, respectively.
  • FIG. 15A is the ratio RFWHM
  • FIG. 15B is the ratio REf
  • FIG. (C) is the ratio RAR.
  • the left axis is the momentum P
  • the right axis is the energy E.
  • the white plot points indicate the case of the reference flow velocity waveform.
  • both the momentum P and the energy E decrease as the specific RFWHM increases. It can also be seen that the energy E decreases more than the momentum P, and the change width is large. According to FIGS. 15B and 15C, the momentum P and the energy E both increase as the ratio REf and the ratio RAR increase. Further, it can be seen that the energy E increases more than the momentum P, and the change width is large.
  • the rising waveform shape of the drive voltage waveform more specifically, the change in the increasing tendency of the drive voltage such as whether it rises slowly or suddenly (sudden) It was found that the cutting depth and the cutting volume can be effectively controlled by using.
  • the rising waveform shape of the drive voltage waveform L11 can be specified by, for example, the following equation (7), where time t is a variable and a reference waveform is V (t).
  • Vp is the drive voltage
  • Vm is the voltage amplitude
  • Tpr is the rise time
  • Vc is the drive voltage at the inflection point
  • Tpr is the time at the inflection point R (see FIG. 12).
  • N is a positive number larger than “0 (zero)”.
  • N in FIG. 12 is N in Expression (7).
  • N 1
  • the rising waveform shape of the drive voltage waveform L11 can be used as the reference waveform.
  • the drive voltage waveform rises sharply as the N is larger than 1 compared to the reference waveform.
  • N is made smaller than 1 and closer to 0 (zero)
  • the driving voltage waveform rises more slowly than the reference waveform, and gradually approaches a straight line connecting the rising start point r0 and the rising end point r1. .
  • variable N itself may not be used as the control target value, but another value correlated with the variable N may be determined, and this other value may be used as the control target value.
  • a method is conceivable in which the variable N is changed based on the above-described ratio RFWHM, ratio REf, and ratio RAR.
  • an effective rising time Tpr10_90 is determined as a time required to reach 10% to 90% of the voltage amplitude Vm.
  • the ratio RTpr10_90 of the effective rise time Tpr10_90 of the drive voltage waveform of 2) and the effective rise frequency ratio REf10_90 that is the reciprocal of the ratio RTpr10_90 of 2) 1) with respect to the effective slew rate of the reference drive voltage waveform ( Vm10_90 / Tpr10_90ref)
  • Vm10_90 is a voltage from 10% to 90% of the voltage amplitude Vm.
  • At least an increase / decrease operation of the momentum P and an increase / decrease operation of the repetition frequency are accepted as operations performed by the operator during the operation, and the operation is performed at the specified repetition frequency. It is assumed that the rising waveform shape so as to achieve the momentum P is determined and the driving of the piezoelectric element 45 is controlled. Therefore, the correspondence relationship between the momentum P, the repetition frequency, and the rising waveform shape is preliminarily created as a data table.
  • the rising waveform shape stored in the data table may be data of the shape itself, and for example, the value of N in Expression (7) can be used as the index value of the rising waveform shape. If the repetition frequency may be constant, the rising waveform shape may be determined by accepting only the increase / decrease operation of the momentum P without using the increase / decrease operation of the repetition frequency.
  • the index value of the rising waveform shape stored in the data table may be, for example, any one of the ratio RFWHM, the ratio REf, the ratio RAR, the ratio RTpr10_90, the effective rising frequency ratio REf10_90, and the effective slew rate ratio RSR10_90. .
  • FIG. 16 is a diagram illustrating an operation panel 80-1 provided in the liquid ejection control apparatus 70-1 according to the first embodiment.
  • the operation panel 80-1 includes a momentum dial 811 as a first operation unit, a repetition frequency dial 813 as a second operation unit, a power button 82, an injection button 84, A pump drive button 85 and a liquid crystal monitor 87 are provided.
  • the exercise amount dial 811 is used to input an instruction value (exercise amount instruction value) of the exercise amount P as the first instruction value.
  • an instruction value exercise amount instruction value
  • the dial number of 5 steps with scales “1” to “5” is provided. It is configured to be selectable.
  • the operator increases or decreases the amount of exercise P in five stages by switching the dial position of the amount of exercise dial 811.
  • a momentum instruction value is assigned in advance so as to increase by a certain amount in proportion to the value of the corresponding scale.
  • the number of steps of the dial position is not limited to five, and may be set as appropriate, such as three steps of “large”, “medium”, and “small”, or enabling stepless adjustment.
  • the repetition frequency dial 813 is used to input a repetition frequency instruction value (repetition frequency instruction value) as a second instruction value.
  • the repetition frequency dial 813 has five steps of “1” to “5” as in the exercise amount dial 811.
  • the dial position can be selected.
  • the repetition frequency dial 813 may be configured to include an activate switch for switching the validity / invalidity of the operation on the repetition frequency dial 813 on the assumption that the operator mainly performs an increase / decrease operation of the amount of exercise P.
  • the operator switches the dial position of the repetition frequency dial 813 to increase or decrease the repetition frequency (for example, several tens [Hz] to several hundred [Hz]) of the drive voltage waveform repeatedly applied to the piezoelectric element 45 in five steps. To do.
  • a frequency instruction value is repeatedly assigned to each dial position in advance so as to increase by a certain amount in proportion to the value of the corresponding scale.
  • the number of steps of the dial position is not limited to five, and the number of steps may be set as appropriate. Further, the number of steps may be different from that of the momentum dial 811. If the repetition frequency is set to a predetermined value and the increase / decrease operation of the repetition frequency is not required, the repetition frequency dial 813 need not be provided.
  • the operation performed by the surgeon during the operation is assumed to be two operations: an increase / decrease operation of the momentum P using the exercise amount dial 811 and an increase / decrease operation of the repetition frequency using the repetition frequency dial 813.
  • the voltage amplitude and the rising frequency are fixed, and the rising waveform shape of the driving voltage that gives the momentum P designated by the designated repetition frequency is made into a data table in advance.
  • the rising waveform shape to be converted into a data table may be data of the waveform shape itself, or may be an index value indicating the rising waveform shape (for example, the value of N in Expression (7)).
  • the power button 82 is for switching the power ON / OFF.
  • the injection button 84 is for switching the injection start and the injection stop of the pulsed liquid jet, and provides the same function as the injection pedal 83 shown in FIG.
  • the pump drive button 85 is for switching the start and stop of the supply of liquid from the liquid feed pump device 20 to the liquid ejecting device 30.
  • the liquid crystal monitor 87 displays the momentum P, that is, the momentum [ ⁇ Ns] 851 of the main jet 3 corresponding to one pulse, the repetition frequency [Hz] 853, and the unit frequency multiplied by these.
  • a display screen displaying the amount of exercise, that is, force [mN] 855 is displayed, and the current value of each value (hereinafter collectively referred to as “exercise amount information”) is updated and displayed.
  • what is displayed in the main jet momentum 851 is the current value of the momentum instruction value
  • what is displayed in the repetition frequency 853 is the repetition frequency instruction value.
  • the repetition frequency is set to a predetermined value without providing the repetition frequency dial 813, the predetermined value is displayed as the repetition frequency 853.
  • the surgeon works while grasping the current values such as the momentum P related to the pulsed liquid jet ejected from the liquid ejection opening 61, the repetition frequency, and the momentum (force) per unit time. be able to.
  • the momentum P may be displayed in addition to the momentum P and the repetition frequency.
  • at least one of the current rising frequency (or rising time Tpr) and voltage amplitude, or both may be displayed together.
  • the display of each value is not limited to the display of the numerical values shown in FIG. 16, but may be performed by a meter display, or the momentum P and the repetition frequency associated with the increase / decrease operation from the start of injection of the pulsed liquid jet. Such a change may be displayed in a graph.
  • the rising waveform shape determined by the dial position of the momentum dial 811 and the dial position of the repetition frequency dial 813 may be displayed in a graph, or an index value indicating the rising waveform shape may be displayed.
  • FIG. 17 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the first embodiment.
  • the liquid ejection control apparatus 70-1 includes an operation unit 71, a display unit 73, a control unit 75, and a storage unit 77.
  • the operation unit 71 is realized by various switches such as a button switch, a lever switch, a dial switch, and a pedal switch, a touch panel, a track pad, a mouse, and other input devices, and sends an operation signal corresponding to the operation input to the control unit 75. Output to.
  • the operation unit 71 includes a momentum dial 811 and a repetition frequency dial 813.
  • the operation unit 71 includes an injection pedal 83 in FIG. 1, a power button 82, an injection button 84, and a pump drive button 85 on the operation panel 80-1 shown in FIG.
  • the display unit 73 is realized by a display device such as an LCD (Liquid Crystal Display) or an EL display (Electroluminescence display), and the display screen shown in FIG. 16 based on a display signal input from the control unit 75. Various screens such as are displayed. For example, the liquid crystal monitor 87 shown in FIG.
  • the control unit 75 is realized by a control device such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or an arithmetic device. And comprehensively controls each part of the liquid ejecting system 1.
  • the control unit 75 includes a piezoelectric element control unit 751, a pump control unit 761, and a momentum display control unit 763 as a display control unit.
  • each part which comprises the control part 75 is good also as comprising with hardware, such as a dedicated module circuit.
  • the piezoelectric element control unit 751 includes a momentum setting unit 752, a repetition frequency setting unit 753, a voltage amplitude setting unit 754, a rising frequency setting unit 755, and a rising waveform shape setting unit 756.
  • the voltage amplitude setting unit 754 is a functional unit that sets the voltage amplitude of the drive voltage waveform to a predetermined fixed value.
  • the rising frequency setting unit 755 is a functional unit that sets the rising frequency as a value related to the rising time Tpr of the drive voltage waveform, and sets the rising frequency to a predetermined fixed value.
  • the momentum setting unit 752 sets a momentum according to the dial position of the momentum dial 811, and this becomes a target value for the momentum of the main jet 3 to be injected.
  • the repetition frequency setting unit 753 sets a repetition frequency according to the dial position of the repetition frequency dial 813.
  • the repetition period Tp is determined according to the repetition frequency.
  • the rising waveform shape setting unit 756 is a functional unit that sets the rising waveform shape so that the momentum of the pulse liquid jet becomes the momentum set by the momentum setting unit 752. More specifically, the voltage amplitude set by the voltage amplitude setting unit 754 is set as the maximum drive voltage, the rising time Tpr is set to a value corresponding to the rising frequency set by the rising frequency setting unit 755, and the rising time Tpr is repeatedly set as the frequency. Drive voltage waveform having a value corresponding to the repetition frequency set by the unit 753, and setting the rising waveform shape of the drive voltage waveform so that the momentum of the main jet 3 becomes the momentum set by the momentum setting unit 752 To do.
  • the piezoelectric element control unit 751 sets a driving voltage waveform according to the repetition frequency, voltage amplitude, rising frequency, and rising waveform shape set by the respective units 753, 754, 755, and 756, and the driving signal having the set waveform is set to the piezoelectric element 45.
  • the control to be applied to is performed.
  • the piezoelectric element control unit 751 causes the waveform shape (rising edge) of the driving voltage waveform to fall as shown in FIG. 10A so that the repetition frequency becomes the frequency set by the repetition frequency setting unit 753.
  • the pump control unit 761 outputs a drive signal to the liquid feed pump device 20 to drive the liquid feed pump device 20.
  • the momentum display control unit 763 displays the momentum indication value assigned to the dial position of the selected momentum dial 811 (that is, the current value of the momentum P) and the repetition frequency assigned to the dial position of the selected repetition frequency dial 813. Control is performed to display the instruction value (that is, the current value of the repetition frequency) and the amount of exercise per unit time obtained by multiplying them on the display unit 73.
  • the storage unit 77 is realized by various IC (Integrated Circuit) memory such as ROM (Read Only Memory), flash ROM, RAM (Random Access Memory), or a storage medium such as a hard disk.
  • IC Integrated Circuit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a program for operating the liquid ejecting system 1 and realizing various functions of the liquid ejecting system 1, data used during the execution of the program, and the like are stored in advance or processed. Is temporarily stored each time.
  • This momentum conversion table 771 is stored in the storage unit 77.
  • This momentum conversion table 771 is a data table that defines the rising waveform shape for each repetition frequency that gives a given momentum.
  • FIG. 18 is a diagram showing a data configuration example of the momentum conversion table 771.
  • the momentum conversion table 771 includes a dial position (scale) of the momentum dial 811, an exercise amount instruction value assigned to the dial position, a dial position (scale) of the repetition frequency dial 813, and the dial. It is a data table in which a repetition frequency instruction value assigned to a position and a rising waveform shape are associated with each other, and a rising edge for each repetition frequency that becomes an instructed momentum P with a voltage amplitude and a rising frequency as predetermined values.
  • the waveform shape is set.
  • the data of the rising waveform shape stored in the momentum conversion table 771 may be data of the shape itself, or may be an index value indicating the shape (for example, a value of N in Expression (7)).
  • the rising waveform shape setting unit 756 reads out and sets the rising waveform shape corresponding to the combination of the dial positions of the currently selected momentum dial 811 and the repetition frequency dial 813 from the momentum conversion table 771.
  • the rising waveform shape corresponding to the combination of the dial positions of the dials 811 and 813 is read from the momentum conversion table 771 and set. Update.
  • FIG. 19 is a flowchart showing the flow of processing performed by the control unit 75 when jetting a pulsed liquid jet.
  • the pump control unit 761 drives the liquid feed pump device 20, and the piezoelectric element control unit 751 drives the piezoelectric element 45 to start jetting a pulsed liquid jet (step S111).
  • the rising waveform shape setting unit 756 acquires the dial positions of the currently selected momentum dial 811 and the repetition frequency dial 813, and reads and sets the rising waveform shape corresponding to the combination from the momentum conversion table 771.
  • the voltage amplitude setting unit 754 sets a predetermined value as the voltage amplitude
  • the rising frequency setting unit 755 sets a predetermined value as the rising frequency.
  • the momentum setting unit 752 reads the momentum instruction value assigned to the dial position of the currently selected momentum dial 811 from the momentum conversion table 771, and sets the momentum.
  • the repetition frequency setting unit 753 reads the repetition frequency instruction value assigned to the dial position of the repetition frequency dial 813 being selected from the momentum conversion table 771 and sets the repetition frequency.
  • the piezoelectric element control unit 751 sets a driving voltage waveform according to the set repetition frequency, voltage amplitude, rising frequency, and rising waveform shape, and applies a driving signal having the set driving voltage waveform to the piezoelectric element 45.
  • the exercise amount display control unit 763 performs control to display the exercise amount information on the display unit 73 (step S113). For example, the momentum display control unit 763 reads the momentum instruction value assigned to the dial position of the momentum dial 811 from the momentum conversion table 771, and calculates the momentum per unit time that is the product of the repetition frequency instruction value read in step S111. calculate. Then, the exercise amount display control unit 763 displays on the display unit 73 a display screen that displays the exercise amount instruction value, the repetition frequency instruction value, and the exercise amount per unit time as exercise amount information. Note that the amount of exercise per unit time is not limited to the configuration calculated in the exercise amount information display control, but may be configured to be read out by setting it in the exercise amount conversion table 771.
  • control unit 75 monitors the operation of the momentum dial 811 in step S115 until it is determined that the injection of the pulsed liquid jet is terminated by the operation of the injection pedal 83 or the injection button 84 (step S301: NO).
  • step S123 the operation of the frequency dial 813 is monitored repeatedly.
  • the rising waveform shape setting unit 756 causes the rising corresponding to the combination of the selected dial position and the dial position of the selected repetition frequency dial 813.
  • the waveform shape is read from the momentum conversion table 771, and the setting of the rising waveform shape is updated (step S117).
  • the piezoelectric element control unit 751 resets the driving voltage waveform according to the set repetition frequency, voltage amplitude, rising frequency, and rising waveform shape, and applies the driving signal having the reset driving voltage waveform to the piezoelectric element 45. (Step S119).
  • the exercise amount display control unit 763 reads out the exercise amount instruction value assigned to the selected dial position from the exercise amount conversion table 771, and performs control to update the display of the display unit 73 (step S121).
  • the repetition frequency setting unit 753 reads the repetition frequency instruction value assigned to the selected dial position from the momentum conversion table 771, and repeats the repetition frequency.
  • the setting is updated (step S125).
  • the rising waveform shape setting unit 756 reads the rising waveform shape corresponding to the combination of the selected dial position and the dial position of the selected momentum dial 811 from the momentum conversion table 771, and updates the setting of the rising waveform shape. (Step S127).
  • the piezoelectric element control unit 751 resets the driving voltage waveform according to the set repetition frequency, voltage amplitude, rising frequency, and rising waveform shape, and applies the driving signal having the reset driving voltage waveform to the piezoelectric element 45. (Step S129).
  • the momentum display control unit 763 reads the repetition frequency assigned to the selected dial position from the momentum conversion table 771, and performs control to update the display on the display unit 73 (step S131).
  • a rising waveform shape corresponding to each momentum is set in advance, and an optimal rising waveform shape is achieved to achieve the cutting depth and the cutting volume according to the operational sense based on this correspondence.
  • the frequency can be repeatedly increased or decreased so that the momentum P becomes the momentum instruction value. Therefore, for example, if only the scale of the frequency dial 813 is moved without moving the scale of the momentum dial 811, the cutting depth and the cutting volume by one pulse of the pulse liquid jet are kept constant and proportional to the repetition frequency. It is possible to adjust the cutting speed as intended and improve usability.
  • FIG. 20 is a diagram illustrating an operation panel 80-2 included in the liquid ejection control apparatus 70-2 according to the second embodiment.
  • the operation panel 80-2 includes a momentum dial 811, a repetition frequency dial 813, a voltage amplitude dial 815a as a third operation unit, a power button 82, an injection button 84, a pump A drive button 85 and a liquid crystal monitor 87 are provided.
  • the voltage amplitude dial 815a is used to input a voltage amplitude instruction value (voltage amplitude instruction value) as a third instruction value.
  • the dial is a five-stage dial with scales “1” to “5”. The position is configured to be selectable.
  • the voltage amplitude dial 815a may also be configured to include an activate switch, similar to the repetition frequency dial 813. The operator increases or decreases the voltage amplitude in five steps by switching the dial position of the voltage amplitude dial 815a.
  • a voltage amplitude instruction value is assigned in advance to each dial position so as to increase by a certain amount in proportion to the value of the corresponding scale. Note that the number of steps of the dial position is not limited to five, and the number of steps may be set as appropriate. Further, the number of steps may be different from that of the momentum dial 811 and the repetition frequency dial 813.
  • the operations performed by the surgeon during the operation are the operation amount increase / decrease operation using the exercise amount dial 811, the repetition frequency increase / decrease operation using the repetition frequency dial 813, and the voltage amplitude dial 815a.
  • the voltage amplitude increase / decrease operation using the three is used, and the correspondence between the momentum P, the repetition frequency, the voltage amplitude, and the rising waveform shape is made into a data table in advance.
  • FIG. 21 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the second embodiment.
  • the liquid ejection control device 70-2 is different from the liquid ejection control device 70 of the first embodiment in that the operation unit 71 has a voltage amplitude dial 815a and the piezoelectric element control unit 751a.
  • the voltage amplitude setting unit 754a and the rising waveform shape setting unit 756a included in the storage unit 77 are different from the momentum conversion table 771a included in the storage unit 77.
  • the voltage amplitude setting unit 754a reads and sets the voltage amplitude corresponding to the dial position of the voltage amplitude dial 815a from the momentum conversion table 771a.
  • the rising waveform shape setting unit 756a is similar to the first embodiment in that the rising waveform shape is set so that the momentum of the pulse liquid jet becomes the momentum set by the momentum setting unit 752, but the momentum conversion table 771a is set. It differs in that it is set with reference.
  • FIG. 22 is a diagram illustrating a data configuration example of the momentum conversion table 771a according to the second embodiment.
  • the momentum conversion table 771a includes the dial position (scale) of the momentum dial 811, the momentum indication value assigned to the dial position, the dial position (scale) of the repetition frequency dial 813, and the dial.
  • It is a data table in which the repetition frequency instruction value assigned to the position, the dial position (scale) of the voltage amplitude dial 815a, the voltage amplitude instruction value assigned to the dial position, and the rising waveform shape are associated with each other.
  • the rising waveform is a data table in which a rising waveform shape having an instructed momentum P is set in association with a combination of a repetition frequency and a voltage amplitude, with the rising frequency as a predetermined value.
  • the rising waveform shape setting unit 756a determines the rising waveform shape corresponding to each dial position combination of the currently selected momentum dial 811, the repetition frequency dial 813, and the voltage amplitude dial 815a as the momentum conversion table. 771a is read and set, and when any one of the momentum dial 811, the repetition frequency dial 813, and the voltage amplitude dial 815a is operated, it corresponds to a combination of dial positions of the dials 811, 813, and 815a. The rising waveform shape is read from the momentum conversion table 771a and the setting is updated.
  • FIG. 23 is a flowchart illustrating a flow of processing performed by the control unit 75a when jetting a pulsed liquid jet in the second embodiment.
  • symbol is attached
  • step S111 the voltage amplitude setting unit 754a reads the voltage amplitude instruction value assigned to the dial position of the selected voltage amplitude dial 815a from the momentum conversion table 771a, and sets the voltage amplitude.
  • step S233 the operation of the voltage amplitude dial 815a is monitored.
  • the voltage amplitude setting unit 754a reads the voltage amplitude instruction value assigned to the selected dial position from the momentum conversion table 771a, and the voltage amplitude Is updated (step S235).
  • the rising waveform shape setting unit 756a reads the rising waveform shape corresponding to the selected combination of dial positions from the momentum conversion table 771a, and updates the setting of the rising waveform shape (step S237).
  • the piezoelectric element control unit 751a resets the drive voltage waveform according to the set repetition frequency, voltage amplitude, and rising waveform shape, and applies the drive signal having the set drive voltage waveform to the piezoelectric element 45 (step S239).
  • the momentum P becomes the momentum instruction value.
  • the drive voltage waveform of the piezoelectric element 45 can be controlled.
  • FIG. 24 is a diagram illustrating an operation panel 80-3 included in the liquid ejection control apparatus 70-3 according to the second embodiment.
  • the operation panel 80-3 includes a momentum dial 811, a repetition frequency dial 813, a voltage amplitude dial 815a, a rising frequency dial 816b as a fourth operation unit, a power button 82, An injection button 84, a pump drive button 85, and a liquid crystal monitor 87 are provided.
  • the rising frequency dial 816b is used to input a rising frequency instruction value (rising frequency instruction value) as a fourth instruction value.
  • the dial is a five-stage dial with scales “1” to “5”. The position is configured to be selectable.
  • the rising frequency dial 816b may also be configured to include an activate switch in the same manner as the repeated frequency dial 813.
  • the operator increases or decreases the voltage amplitude in five stages by switching the dial position of the rising frequency dial 816b.
  • Each dial position is assigned a rising frequency instruction value in advance so as to increase by a certain amount in proportion to the value of the corresponding scale.
  • the number of steps of the dial position is not limited to five, and the number of steps may be set as appropriate. Further, the number of steps may be different from that of the momentum dial 811, the repetition frequency dial 813, and the voltage amplitude dial 815a.
  • operations performed by the surgeon during the operation include the operation amount P increase / decrease operation using the exercise amount dial 811, the repetition frequency increase / decrease operation using the repetition frequency dial 813, and the voltage amplitude dial 815 a.
  • 4 is a voltage amplitude increase / decrease operation using the rising frequency dial 816b and a voltage amplitude increase / decrease operation using the rising frequency dial 816b, and the correspondence between the momentum P, the repetition frequency, the voltage amplitude, the rising frequency, and the rising waveform shape. The relationship is made into a data table in advance.
  • FIG. 25 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the third embodiment.
  • the liquid ejection control device 70-3 is different from the liquid ejection control device 70-2 in the second embodiment in that the operation unit 71 has a rising frequency dial 816b and the piezoelectric element control.
  • the rising frequency setting unit 755b and the rising waveform shape setting unit 756b included in the unit 751b are different from the momentum conversion table 771b included in the storage unit 77.
  • the rising frequency setting unit 755b reads out and sets the rising frequency corresponding to the dial position of the rising frequency dial 816b from the momentum conversion table 771b.
  • the rising waveform shape setting unit 756b is the same as the first and second embodiments in that the rising waveform shape is set so that the momentum of the pulse liquid jet becomes the momentum set by the momentum setting unit 752, but the momentum conversion table. 771b is different in setting.
  • FIG. 26 is a diagram illustrating a data configuration example of the momentum conversion table 771b according to the third embodiment.
  • the momentum conversion table 771b includes a dial position (scale) of the momentum dial 811, a momentum indication value assigned to the dial position, a dial position (scale) of the repetition frequency dial 813, and the dial.
  • It is a data table in which a rising frequency instruction value assigned to a position is associated with a rising waveform shape.
  • It is a data table in which a rising waveform shape that is an instructed amount of exercise P is set in association with a combination of a repetition frequency, a voltage amplitude, and a rising frequency.
  • the rising waveform shape setting unit 756b has a rising waveform corresponding to a combination of dial positions of the selected momentum dial 811, repetitive frequency dial 813, voltage amplitude dial 815a, and rising frequency dial 816b.
  • the shape is read from the momentum conversion table 771a and set. Also, when any one of the momentum dial 811, the repetition frequency dial 813, the voltage amplitude dial 815a, and the rising frequency dial 816b is operated, it corresponds to the combination of dial positions of the dials 811, 813, 815a, and 816b.
  • the rising waveform shape to be read is read from the momentum conversion table 771b and the setting is updated.
  • FIG. 27 is a flowchart illustrating a flow of processing performed by the control unit 75b when jetting a pulsed liquid jet in the third embodiment.
  • symbol is attached
  • step S111 the rising frequency setting unit 755b reads the rising frequency instruction value assigned to the dial position of the selected rising frequency dial 816b from the momentum conversion table 771b, and sets the rising frequency.
  • step S243 the operation of the rising frequency dial 816b is monitored.
  • the rising frequency setting unit 755b reads the rising frequency instruction value assigned to the selected dial position from the momentum conversion table 771b, and the rising frequency. Is updated (step S245).
  • the rising waveform shape setting unit 756b reads the rising waveform shape corresponding to the selected combination of dial positions from the momentum conversion table 771b, and updates the setting of the rising waveform shape (step S247).
  • the piezoelectric element control unit 751b resets the drive voltage waveform according to the set repetition frequency, voltage amplitude, and rising waveform shape, and applies the drive signal of the set drive voltage waveform to the piezoelectric element 45 (step S249).
  • the correspondence between the momentum P, the repetition frequency, the voltage amplitude, the rising frequency, and the rising waveform shape is set in advance, and even if the rising frequency is increased or decreased, the momentum P is the momentum.
  • the drive voltage waveform of the piezoelectric element 45 can be controlled so as to be the indicated value.
  • the falling shape is variably set in order to increase or decrease the repetition frequency.
  • the repetition frequency may be increased or decreased by simply closing or separating the entire drive voltage waveform in the time axis direction.
  • the rising frequency is exemplified as the rising time index value.
  • the rising time Tpr may be used.
  • the momentum dial 811, the repetition frequency dial 813, the voltage amplitude dial 815 a, and the rising frequency dial 816 b are not limited to being realized by a dial switch, and may be realized by, for example, a lever switch or a button switch.
  • the display unit 73 may be realized as a touch panel by a software key switch or the like. In this case, the user touches the touch panel which is the display unit 73 and inputs an exercise amount instruction value, a repetition frequency instruction value, and a voltage amplitude instruction value.
  • the repetition frequency is not variably set as a predetermined value. It is good to do.
  • the rising frequency can be variably set by dial operation in addition to the momentum, the repetition frequency, and the voltage amplitude
  • the repetition frequency and the voltage amplitude are predetermined values.
  • variable setting is not performed.
  • a configuration has been disclosed in which a pulse liquid jet having a momentum of 2 [nNs] to 2 [mNs] or less or a kinetic energy of 2 [nJ] to 200 [mJ] is ejected.
  • a configuration in which a pulse liquid jet having a momentum of 20 [nNs] to 200 [ ⁇ Ns] or a kinetic energy of 40 [nJ] to 10 [mJ] is ejected.
  • the driving voltage at the start point r0 is described as 0 (zero), but it may not be 0 (zero).
  • the bias voltage can be used as the voltage at the start point r0.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Forests & Forestry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Through the present invention, the intensity of a pulsed liquid jet can be set as a user intends, and the usability thereof is enhanced. A liquid jetting control device (70-1), wherein an operating unit (71) includes a momentum dial (811) for inputting a momentum indicated value pertaining to momentum of a pulsed liquid jet jetted from a liquid jetting device, and a repetition frequency dial (813) for inputting a repetition frequency indicated value pertaining to a number of jettings of the pulsed liquid jet per unit time. A control unit (75) is provided with a rising waveform setting unit (756) for setting a rising waveform of a drive voltage waveform so that the momentum has the momentum indicated value on the basis of the voltage amplitude of the drive voltage waveform and the repetition frequency indicated value. The repetition frequency dial (813) may also be omitted and the repetition frequency may have a pre-set value.

Description

液体噴射制御装置、液体噴射システム及び制御方法Liquid ejection control device, liquid ejection system, and control method
 本発明は、圧電素子を用いて液体をパルス状に噴射する液体噴射装置を制御する液体噴射制御装置等に関する。 The present invention relates to a liquid ejection control device that controls a liquid ejection device that ejects liquid in pulses using a piezoelectric element.
 液体をパルス状に噴射して切削対象物を切削する技術が知られている。パルス状の液体の噴射は、ノズルから脈動的に噴射される液体のジェット流であり、本明細書では適宜「パルス液体ジェット(Pulsed Liquid Jet)」と称する。 A technique for cutting a workpiece by jetting a liquid in a pulse shape is known. The ejection of the pulsed liquid is a jet of liquid ejected in a pulsating manner from the nozzle, and is appropriately referred to as “pulsed liquid jet” in the present specification.
 パルス液体ジェットの用途は様々であるが、例えば、特許文献1には、医療分野における外科手術用として利用する技術が提案されている。この場合には、切削対象物は、生体組織となり、液体は生理食塩水となる。 For example, Patent Document 1 proposes a technique that is used for surgery in the medical field. In this case, the cutting object is a living tissue, and the liquid is a physiological saline.
特開2005-152127号公報JP 2005-152127 A
 パルス液体ジェットを生成する機構の1つに、圧電素子を用いた機構が知られている。パルス波状の駆動電圧を圧電素子に加えることで、圧電素子が作動流体(液体)内に瞬間的な圧力を発生させて液体をパルス状に噴射する機構である。そのため、パルス液体ジェットの強さを変更する場合には、圧電素子に印加する駆動電圧を制御することとなる。そこで、圧電素子に印加する駆動電圧の特性値、例えば、駆動電圧波形の振幅(電圧振幅のことであり、駆動電圧の大きさとも言える)を、操作ダイヤルや操作ボタン等の操作部で指示することで、パルス液体ジェットの強さを変更する仕様が考えられる。 A mechanism using a piezoelectric element is known as one mechanism for generating a pulsed liquid jet. This is a mechanism in which a pulsed drive voltage is applied to the piezoelectric element so that the piezoelectric element generates an instantaneous pressure in the working fluid (liquid) and jets the liquid in pulses. Therefore, when changing the strength of the pulsed liquid jet, the drive voltage applied to the piezoelectric element is controlled. Therefore, the characteristic value of the drive voltage applied to the piezoelectric element, for example, the amplitude of the drive voltage waveform (which is a voltage amplitude and can be said to be the magnitude of the drive voltage) is indicated by an operation unit such as an operation dial or an operation button. Thus, a specification for changing the strength of the pulsed liquid jet can be considered.
 しかしながら、操作部で指示する駆動電圧の特性値を変化させても、切削対象物の切削深さや切削体積といった切削態様を、ユーザーが思うように変化させることができない場合があることが分かった。詳細は後述するが、例えば、ユーザーが電圧振幅を2倍や4倍、或いは1/2、1/4に変えたとしても、必ずしも切削深さや切削体積がその通りに変化するとは限らないことが分かった。パルス液体ジェットを外科手術用途で用いる場合には、術者の操作感覚通りの作用が得られず、問題となり得た。 However, it has been found that even if the characteristic value of the drive voltage indicated by the operation unit is changed, the cutting mode such as the cutting depth and the cutting volume of the cutting object cannot be changed as the user desires. Although details will be described later, for example, even if the user changes the voltage amplitude to 2 times, 4 times, 1/2, or 1/4, the cutting depth and the cutting volume may not always change accordingly. I understood. When a pulsed liquid jet is used for a surgical operation, an operation according to an operator's operation feeling cannot be obtained, which may be a problem.
 一方で、パルス液体ジェットの噴射周期を可変とすれば、単位時間当たりの切削深さや切削体積を増減させることができ、切削対象物を切削するスピードが調整可能となる。しかしながら、噴射周期を変えると駆動電圧波形の形状が変わることから、パルス1個分の液体ジェットの強さ等が変わり得た。そのため、噴射周期を変えた前後でパルス1個分のパルス液体ジェットによる切削深さや切削体積が変化し、噴射周期を短く、換言すると噴射周波数を高くしたとしても、ユーザーの意図通りの噴射周波数に比例した切削スピードが得られない場合が起こり得た。 On the other hand, if the injection period of the pulsed liquid jet is variable, the cutting depth and cutting volume per unit time can be increased and decreased, and the cutting speed of the cutting object can be adjusted. However, since the shape of the drive voltage waveform changes when the ejection cycle is changed, the strength of the liquid jet for one pulse can be changed. Therefore, even if the cutting depth or volume of the pulse liquid jet for one pulse changes before and after changing the injection cycle, the injection frequency is shortened, in other words, even if the injection frequency is increased, the injection frequency is as intended by the user. In some cases, proportional cutting speed could not be obtained.
 本発明は上述した課題に鑑みて考案されたものであり、その目的とするところは、パルス液体ジェットの強さを、ユーザーの意図に沿った設定とすることを可能とし、使い勝手を向上させる技術を提案することである。 The present invention has been devised in view of the above-described problems, and its object is to make it possible to set the strength of a pulsed liquid jet in accordance with the user's intention and to improve usability. Is to propose.
 以上の課題を解決するための第1の発明は、所与の駆動電圧波形を圧電素子に印加し、該圧電素子を用いて液体をパルス状に噴射する液体噴射装置からのパルス液体ジェットの繰り返しの噴射を制御する液体噴射制御装置であって、前記パルス液体ジェットの運動量に係る第1指示値を入力するための第1の操作部と、前記駆動電圧波形を制御する制御部であって、前記運動量が前記第1指示値となるように当該駆動電圧波形の立ち上がりに係る波形形状(以下「立ち上がり波形形状」という)を変更する制御部と、を備えた液体噴射制御装置である。 According to a first aspect of the present invention for solving the above problems, a pulsed liquid jet is repeatedly applied from a liquid ejecting apparatus that applies a given drive voltage waveform to a piezoelectric element and ejects the liquid in a pulse shape using the piezoelectric element. A liquid ejection control device for controlling the ejection of the first operation unit for inputting a first instruction value relating to the momentum of the pulsed liquid jet, and a control unit for controlling the drive voltage waveform, And a control unit that changes a waveform shape (hereinafter referred to as “rise waveform shape”) related to the rising of the drive voltage waveform so that the momentum becomes the first instruction value.
 また、他の発明として、所与の駆動電圧波形を圧電素子に印加し、該圧電素子を用いて液体をパルス状に噴射する液体噴射装置からのパルス液体ジェットの繰り返しの噴射を制御する制御方法であって、前記パルス液体ジェットの運動量に係る第1指示値を入力することと、前記運動量が前記第1指示値となるように前記駆動電圧波形の立ち上がりに係る波形形状を変更することと、を含む制御方法を構成することとしてもよい。 Further, as another invention, a control method for controlling repetitive ejection of a pulsed liquid jet from a liquid ejecting apparatus that applies a given drive voltage waveform to a piezoelectric element and ejects liquid in a pulsed manner using the piezoelectric element Input a first instruction value related to the momentum of the pulsed liquid jet, and change a waveform shape related to the rise of the drive voltage waveform so that the momentum becomes the first instruction value; It is good also as comprising the control method containing these.
 この第1の発明等によれば、パルス液体ジェットの運動量に係る第1指示値を入力すると、運動量が第1指示値となるように駆動電圧波形の立ち上がりに係る波形形状が変更される。後述するように、切削深さや切削体積は、パルス液体ジェットの運動量と相関が高い。そのため、パルス液体ジェットの運動量を直接指示することで、ユーザーの意図や操作感覚に見合った切削深さや切削体積を実現することができ、使い勝手を向上させることができる。 According to the first aspect of the present invention, when the first instruction value related to the momentum of the pulsed liquid jet is input, the waveform shape related to the rise of the drive voltage waveform is changed so that the momentum becomes the first instruction value. As will be described later, the cutting depth and the cutting volume are highly correlated with the momentum of the pulsed liquid jet. Therefore, by directly instructing the momentum of the pulsed liquid jet, it is possible to realize a cutting depth and a cutting volume corresponding to the user's intention and operational feeling, and to improve usability.
 また、第2の発明は、第1の発明において、前記パルス液体ジェットの単位時間当たりの噴射回数に係る第2指示値を入力するための第2の操作部を更に備え、前記制御部が、前記パルス液体ジェットの単位時間当たりの噴射回数を前記第2指示値とするように前記駆動電圧波形を制御する、液体噴射制御装置である。 In addition, a second invention further includes a second operation unit for inputting a second instruction value related to the number of injections per unit time of the pulsed liquid jet in the first invention, and the control unit includes: In the liquid ejection control device, the drive voltage waveform is controlled such that the number of ejections per unit time of the pulsed liquid jet is the second instruction value.
 この第2の発明によれば、パルス液体ジェットの単位時間当たりの噴射回数を指示することができる。これによれば、例えば、第1指示値を維持したまま噴射回数を増減させることが可能となる。勿論、噴射回数を変更したとしても、運動量が第1指示値となるように駆動電圧波形の立ち上がりに係る波形形状が制御される。したがって、噴射回数を変えた前後でパルス1個分のパルス液体ジェットによる切削深さや切削体積が変わることなく切削スピードを調整することができ、使い勝手の向上が図れる。 According to the second aspect of the invention, it is possible to instruct the number of injections of the pulsed liquid jet per unit time. According to this, for example, it is possible to increase or decrease the number of injections while maintaining the first instruction value. Of course, even if the number of injections is changed, the waveform shape related to the rise of the drive voltage waveform is controlled so that the momentum becomes the first indication value. Therefore, the cutting speed can be adjusted without changing the cutting depth or the cutting volume by the pulse liquid jet for one pulse before and after changing the number of injections, and the usability can be improved.
 また、第3の発明は、第1又は第2の発明において、前記駆動電圧波形の電圧振幅に係る第3指示値を入力するための第3の操作部を更に備え、前記制御部が、前記駆動電圧波形の電圧振幅を前記第3指示値に基づいて制御する、液体噴射制御装置である。 Further, a third invention further includes a third operation unit for inputting a third instruction value related to a voltage amplitude of the drive voltage waveform in the first or second invention, wherein the control unit includes the control unit In the liquid ejection control device, the voltage amplitude of the drive voltage waveform is controlled based on the third instruction value.
 この第3の発明によれば、駆動電圧波形の電圧振幅を指示することができる。 According to the third aspect of the invention, the voltage amplitude of the drive voltage waveform can be indicated.
 また、第4の発明は、第1~第3の何れかの発明において、前記駆動電圧波形の立ち上がり時間に係る第4指示値を入力するための第4の操作部を更に備え、前記制御部が、前記駆動電圧の立ち上がり時間を前記第4指示値に基づいて制御する、液体噴射制御装置である。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the control unit further includes a fourth operation unit for inputting a fourth instruction value related to a rise time of the drive voltage waveform. Is a liquid ejection control device that controls the rise time of the drive voltage based on the fourth instruction value.
 この第4の発明によれば、駆動電圧波形の立ち上がり時間を指示することができる。 According to the fourth aspect of the invention, the rise time of the drive voltage waveform can be indicated.
 また、第5の発明は、第1~第4の何れかの発明において、前記第1指示値を表示させる制御を行う表示制御部、を更に備えた液体噴射制御装置である。 The fifth aspect of the invention is a liquid ejection control apparatus according to any one of the first to fourth aspects, further comprising a display control unit that performs control to display the first instruction value.
 この第5の発明によれば、パルス液体ジェットの運動量に係る第1指示値を表示させることができる。これによれば、ユーザーが指示した現在のパルス液体ジェットの運動量を視覚的に確認することができる。したがって、使い勝手を更に向上させることができる。 According to the fifth aspect of the invention, the first indication value relating to the momentum of the pulsed liquid jet can be displayed. According to this, the momentum of the current pulsed liquid jet instructed by the user can be visually confirmed. Therefore, usability can be further improved.
 また、第6の発明は、第1~5の何れかの発明において、前記パルス液体ジェットの運動量が2[nNs(ナノニュートン秒)]以上2[mNs(ミリニュートン秒)]以下、又は、運動エネルギーが2[nJ(ナノジュール)]以上200[mJ(ミリジュール)]以下の前記液体噴射装置を制御する、液体噴射制御装置である。 According to a sixth invention, in any one of the first to fifth inventions, the momentum of the pulsed liquid jet is 2 [nNs (nanonewton seconds)] or more and 2 [mNs (millinewton seconds)] or less, or motion The liquid ejecting control apparatus controls the liquid ejecting apparatus having an energy of 2 [nJ (nanojoule)] or more and 200 [mJ (millijoule)] or less.
 この第6の発明によれば、パルス液体ジェットの運動量が2[nNs]以上2[mNs]以下、又は、運動エネルギーが2[nJ]以上200[mJ]以下であり、その範囲で液体噴射装置を制御することができる。よって、例えば、生体組織や食品、ゲル材料、ゴムやプラスチックなどの樹脂材料などの柔軟素材を切削するのに好適である。 According to the sixth aspect of the invention, the momentum of the pulsed liquid jet is 2 [nNs] or more and 2 [mNs] or less, or the kinetic energy is 2 [nJ] or more and 200 [mJ] or less, and the liquid ejecting apparatus is within that range. Can be controlled. Therefore, for example, it is suitable for cutting flexible materials such as living tissue, food, gel materials, resin materials such as rubber and plastic.
 また、第7の発明は、第1~第6の何れかの発明において、前記パルス液体ジェットによって生体組織を切削するための前記液体噴射装置を制御する、液体噴射制御装置である。 Further, a seventh invention is the liquid jet control device according to any one of the first to sixth inventions, wherein the liquid jet control device controls the liquid jet device for cutting a living tissue by the pulse liquid jet.
 この第7の発明によれば、例えば、外科手術用途に好適なパルス液体ジェットの強さを制御することができる。 According to the seventh aspect of the invention, for example, the strength of the pulsed liquid jet suitable for surgical use can be controlled.
 また、第8の発明は、第1~第7の何れかの発明の液体噴射制御装置と、液体噴射装置と、送液ポンプ装置とを具備した液体噴射システムである。 The eighth invention is a liquid jet system including the liquid jet control device according to any one of the first to seventh inventions, a liquid jet device, and a liquid feed pump device.
 この第8の発明によれば、第1~第7の発明の作用効果を奏する液体噴射システムを実現することができる。 According to the eighth aspect of the invention, it is possible to realize a liquid ejection system that exhibits the effects of the first to seventh aspects of the invention.
液体噴射システムの全体構成例を示す図。The figure which shows the example of whole structure of a liquid injection system. 液体噴射装置の内部構造を示す図。The figure which shows the internal structure of a liquid ejecting apparatus. 圧電素子の1周期分の駆動電圧波形及び液体噴射開口部における液体の流速波形を示す図。The figure which shows the drive voltage waveform for 1 period of a piezoelectric element, and the flow velocity waveform of the liquid in a liquid-jet opening part. 質量流束、運動量流束、及びエネルギー流束を示す図。The figure which shows mass flux, momentum flux, and energy flux. 切削対象物の切削態様についてのシミュレーションで用いた主ジェットの流速波形を示す図。The figure which shows the flow velocity waveform of the main jet used by the simulation about the cutting aspect of a cutting target object. シミュレーション結果(切削深さ)を示す図。The figure which shows a simulation result (cutting depth). シミュレーション結果(切削体積)を示す図。The figure which shows a simulation result (cutting volume). 立ち上がり周波数の異なる駆動電圧波形を与えた場合の主ジェットの流速波形のシミュレーション結果を示す図。The figure which shows the simulation result of the flow velocity waveform of the main jet at the time of giving the drive voltage waveform from which a rising frequency differs. 電圧振幅の異なる駆動電圧波形を与えた場合の主ジェットの流速波形のシミュレーション結果を示す図。The figure which shows the simulation result of the flow velocity waveform of the main jet at the time of giving the drive voltage waveform from which voltage amplitude differs. 繰り返し周波数の異なる駆動電圧波形を与えた場合の主ジェットの流速波形のシミュレーション結果を示す図。The figure which shows the simulation result of the flow velocity waveform of the main jet at the time of giving the drive voltage waveform from which a repetition frequency differs. 所定の繰り返し周波数でのエネルギーと立ち上がり周波数及び電圧振幅との対応関係を示す図。The figure which shows the correspondence of the energy in a predetermined repetition frequency, a rising frequency, and a voltage amplitude. 駆動電圧波形の立ち上がり部分の拡大図。The enlarged view of the rising part of a drive voltage waveform. 立ち上がり波形形状の変化に対する主ジェットの流速波形の変化を示す図。The figure which shows the change of the flow velocity waveform of the main jet with respect to the change of a rising waveform shape. 流速波形の半値幅を変更した場合の切削深さと切削体積のシミュレーション結果を示す図。The figure which shows the simulation result of the cutting depth at the time of changing the half value width of a flow velocity waveform, and a cutting volume. 流速波形の半値幅を変更した場合の運動量とエネルギーのシミュレーション結果を示す図。The figure which shows the simulation result of momentum and energy at the time of changing the half value width of a flow velocity waveform. 実施例1における液体噴射制御装置の操作パネルを示す図。FIG. 3 is a diagram illustrating an operation panel of the liquid ejection control apparatus according to the first embodiment. 実施例1における液体噴射制御装置の機能構成例を示すブロック図。FIG. 3 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the first embodiment. 実施例1における運動量変換テーブルのデータ構成例を示す図。The figure which shows the data structural example of the momentum conversion table in Example 1. FIG. 実施例1においてパルス液体ジェットの噴射に際し制御部が行う処理の流れを示すフローチャート。3 is a flowchart illustrating a flow of processing performed by a control unit when jetting a pulsed liquid jet in the first embodiment. 実施例2における液体噴射制御装置の操作パネルを示す図。FIG. 6 is a diagram illustrating an operation panel of a liquid ejection control apparatus in Embodiment 2. 実施例2における液体噴射制御装置の機能構成例を示すブロック図。FIG. 6 is a block diagram illustrating a functional configuration example of a liquid ejection control apparatus according to a second embodiment. 実施例2における運動量変換テーブルのデータ構成例を示す図。The figure which shows the data structural example of the momentum conversion table in Example 2. FIG. 実施例2においてパルス液体ジェットの噴射に際し制御部が行う処理の流れを示すフローチャート。9 is a flowchart illustrating a flow of processing performed by a control unit when jetting a pulsed liquid jet in the second embodiment. 実施例3における液体噴射制御装置の操作パネルを示す図。FIG. 10 is a diagram illustrating an operation panel of a liquid ejection control apparatus in Embodiment 3. 実施例3における液体噴射制御装置の機能構成例を示すブロック図。FIG. 9 is a block diagram illustrating a functional configuration example of a liquid ejection control apparatus according to a third embodiment. 実施例3における運動量変換テーブルのデータ構成例を示す図。The figure which shows the data structural example of the momentum conversion table in Example 3. FIG. 実施例3においてパルス液体ジェットの噴射に際し制御部が行う処理の流れを示すフローチャート。9 is a flowchart illustrating a flow of processing performed by a control unit when jetting a pulsed liquid jet in the third embodiment.
 以下、本発明の液体噴射制御装置、液体噴射システム及び制御方法を実施するための一形態について説明する。なお、以下説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。また、図面の記載において、同一部分には同一の符号を付す。 Hereinafter, an embodiment for carrying out the liquid ejection control device, the liquid ejection system, and the control method of the present invention will be described. It should be noted that the present invention is not limited to the embodiments described below, and modes to which the present invention can be applied are not limited to the following embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.
[全体構成]
 図1は、本実施形態における液体噴射システム1の全体構成例を示す図である。この液体噴射システム1は、柔軟素材、例えば、生体組織を切削対象物とした外科手術用、食品を切削対象物とした食品加工用、ゲル材料の加工用、ゴムやプラスチックといった樹脂材料の切削加工用等の用途で用いられるものであり、運動量が2[nNs(ナノニュートン秒)]以上2[mNS(ミリニュートン秒)]以下、又は、運動エネルギーが2[nJ(ナノジュール)]以上200[mJ(ミリジュール)]以下のパルス液体ジェットを噴射して切削対象物を切削する。以下では、液体噴射システム1を外科手術用の用途で用い、患部(生体組織)の切開、切除、又は破砕(これらを包括して「切削」という)を行う場合を例示する。また、本実施形態における運動量流束および運動量とは、パルス液体ジェットの噴射方向成分のみを考えたスカラー量、すなわち大きさを指すこととして説明する。
[overall structure]
FIG. 1 is a diagram illustrating an example of the overall configuration of a liquid ejection system 1 in the present embodiment. This liquid ejecting system 1 is a flexible material, for example, for a surgical operation with a living tissue as a cutting object, for a food processing with a food as a cutting object, for processing a gel material, or for cutting a resin material such as rubber or plastic. The momentum is 2 [nNs (nanonewton seconds)] or more and 2 [mNS (millinewton seconds)] or less, or the kinetic energy is 2 [nJ (nanojoules)] or more and 200 [ mJ (millijoule)] The following pulse liquid jet is ejected to cut the object to be cut. Hereinafter, a case where the liquid ejection system 1 is used for a surgical application and an affected part (living tissue) is incised, excised, or crushed (collectively referred to as “cutting”) will be exemplified. Further, the momentum flux and the momentum in the present embodiment will be described as referring to a scalar amount, that is, a magnitude considering only the jet direction component of the pulse liquid jet.
 図1に示すように、液体噴射システム1は、液体を収容する容器10と、送液ポンプ装置20と、切削対象物(本実施形態では生体組織)に向けて液体をパルス状に噴射するための液体噴射装置30と、液体噴射制御装置70とを備える。 As shown in FIG. 1, the liquid ejecting system 1 ejects liquid in a pulse shape toward a container 10 that stores the liquid, a liquid feeding pump device 20, and a cutting target (a living tissue in the present embodiment). The liquid ejecting apparatus 30 and the liquid ejecting control apparatus 70 are provided.
 この液体噴射システム1において、液体噴射制御装置70は、術者が手術の際に操作する操作パネル80を備える。操作パネル80は、運動量の増減操作等の各種操作を入力するためのものである。また、液体噴射制御装置70は、術者が足で踏んでパルス液体ジェットの噴射開始及び噴射停止を切り替えるための噴射ペダル83を備える。 In this liquid ejecting system 1, the liquid ejecting control device 70 includes an operation panel 80 that is operated by an operator during surgery. The operation panel 80 is for inputting various operations such as an exercise amount increase / decrease operation. Further, the liquid ejection control device 70 includes an ejection pedal 83 for the operator to step on the foot and switch between ejection start and ejection stop of the pulse liquid jet.
 容器10は、水や生理食塩水、薬液等の液体を収容する。送液ポンプ装置20は、容器10に収容された液体を、接続チューブ91,93を介して常時所定の圧力又は所定の流量で液体噴射装置30のパルス流発生部40に供給する。 The container 10 contains a liquid such as water, physiological saline, or a chemical solution. The liquid feed pump device 20 always supplies the liquid stored in the container 10 to the pulse flow generation unit 40 of the liquid ejecting device 30 through the connection tubes 91 and 93 at a predetermined pressure or a predetermined flow rate.
 液体噴射装置30は、手術に際して術者が手に持って操作する部分(ハンドピース)であり、送液ポンプ装置20から供給される液体に脈動を付与してパルス流を発生させるパルス流発生部40と、パイプ状の噴射管50とを備える。この液体噴射装置30は、パルス流発生部40によって発生させたパルス流を、噴射管50を通じ最終的にノズル60に設けられた液体噴射開口部61(図2参照)からパルス液体ジェットとして噴射する。 The liquid ejecting apparatus 30 is a part (hand piece) that is operated and held by an operator during surgery, and a pulse flow generating unit that generates a pulse flow by applying pulsation to the liquid supplied from the liquid feeding pump apparatus 20. 40 and a pipe-shaped injection pipe 50. The liquid ejecting apparatus 30 ejects the pulse flow generated by the pulse flow generating unit 40 as a pulsed liquid jet from a liquid ejecting opening 61 (see FIG. 2) finally provided in the nozzle 60 through the ejection tube 50. .
 ここで、パルス流とは、液体の流速や圧力が時間的に大きく且つ急激に変化する液体の脈動的な流れを意味する。同様に、液体をパルス状に噴射するとは、ノズルを通過する液体の流速が、時間的に大きく変化する、液体の脈動的な噴射を意味する。本実施形態では、定常流に周期的な脈動を付与することで生じるパルス液体ジェットを噴射する場合を例示するが、液体の噴射と非噴射とを繰り返す間欠的、断続的なパルス液体ジェットの噴射にも本発明は同様に適用できる。 Here, the pulse flow means a pulsating flow of the liquid in which the flow velocity and pressure of the liquid are temporally large and rapidly change. Similarly, jetting liquid in a pulse form means pulsating jet of liquid in which the flow velocity of the liquid passing through the nozzle changes greatly with time. In the present embodiment, a case where a pulsed liquid jet generated by applying periodic pulsation to a steady flow is illustrated, but intermittent and intermittent pulsed liquid jet injection that repeats liquid injection and non-injection. In addition, the present invention can be similarly applied.
 図2は、液体噴射装置30を液体の噴射方向に沿って切断した切断面を示す図である。なお、図2に示す部材や部分の縦横の縮尺は、図示の便宜上実際のものとは異なる。図2に示すように、パルス流発生部40は、第1ケース41と、第2ケース42と、第3ケース43とによって形成された円筒状の内部空間に、圧力室44の容積を変化させるための圧電素子45及びダイアフラム46が配設されて構成される。各ケース41,42,43は、互いに対向する面において接合され一体化されている。 FIG. 2 is a diagram showing a cut surface obtained by cutting the liquid ejecting apparatus 30 along the liquid ejecting direction. Note that the vertical and horizontal scales of the members and portions shown in FIG. 2 are different from actual ones for convenience of illustration. As shown in FIG. 2, the pulse flow generator 40 changes the volume of the pressure chamber 44 into a cylindrical internal space formed by the first case 41, the second case 42, and the third case 43. Therefore, a piezoelectric element 45 and a diaphragm 46 are provided. The cases 41, 42, and 43 are joined and integrated on the surfaces facing each other.
 ダイアフラム46は、円盤状の金属薄板であり、その外周部分が第1ケース41と第2ケース42との間に挟まれて固定されている。圧電素子45は、例えば積層型圧電素子であり、ダイアフラム46と第3ケース43との間で一端がダイアフラム46に固定され、他端が第3ケースに固定されている。 The diaphragm 46 is a disk-shaped thin metal plate, and an outer peripheral portion thereof is sandwiched and fixed between the first case 41 and the second case 42. The piezoelectric element 45 is, for example, a multilayer piezoelectric element, and one end is fixed to the diaphragm 46 between the diaphragm 46 and the third case 43 and the other end is fixed to the third case.
 圧力室44は、ダイアフラム46と、第1ケース41のダイアフラム46に対向する面に形成された凹部411とによって囲まれた空間である。第1ケース41には、圧力室44に各々連通する入口流路413と出口流路415とが形成されている。出口流路415の内径は、入口流路413の内径よりも大きく形成されている。入口流路413は接続チューブ93と接続され、送液ポンプ装置20から供給される液体を圧力室44に導入する。出口流路415には噴射管50の一端が接続され、圧力室44内を流動する液体を噴射管50に導入する。噴射管50の他端(先端)には、噴射管50の内径よりも縮小された内径の液体噴射開口部61を有するノズル60が挿着されている。 The pressure chamber 44 is a space surrounded by the diaphragm 46 and a recess 411 formed on the surface of the first case 41 facing the diaphragm 46. In the first case 41, an inlet channel 413 and an outlet channel 415 that communicate with the pressure chamber 44 are formed. The inner diameter of the outlet channel 415 is formed larger than the inner diameter of the inlet channel 413. The inlet channel 413 is connected to the connection tube 93 and introduces the liquid supplied from the liquid feed pump device 20 into the pressure chamber 44. One end of the injection pipe 50 is connected to the outlet channel 415, and a liquid flowing in the pressure chamber 44 is introduced into the injection pipe 50. A nozzle 60 having a liquid ejection opening 61 having an inner diameter that is smaller than the inner diameter of the ejection pipe 50 is inserted into the other end (tip) of the ejection pipe 50.
 以上のように構成される液体噴射システム1において、容器10に収容された液体は、液体噴射制御装置70の制御のもと、送液ポンプ装置20によって所定の圧力又は所定の流量で接続チューブ93を介してパルス流発生部40に供給される。一方で、液体噴射制御装置70の制御のもと圧電素子45に駆動信号が印加されると、圧電素子45が伸長・収縮する(図2の矢印A)。圧電素子45に印加される駆動信号は所定の繰り返し周波数(例えば数十[Hz]~数百[Hz])で繰り返し印加されるため、周期毎に圧電素子45の伸長と収縮が繰り返されることとなる。これにより圧力室44内を流動する定常流の液体に脈動が付与され、液体噴射開口部61からパルス液体ジェットが繰り返し噴射される。 In the liquid ejection system 1 configured as described above, the liquid stored in the container 10 is connected to the connection tube 93 at a predetermined pressure or a predetermined flow rate by the liquid feed pump device 20 under the control of the liquid ejection control device 70. To be supplied to the pulse flow generator 40. On the other hand, when a drive signal is applied to the piezoelectric element 45 under the control of the liquid ejection control device 70, the piezoelectric element 45 expands and contracts (arrow A in FIG. 2). Since the drive signal applied to the piezoelectric element 45 is repeatedly applied at a predetermined repetition frequency (for example, several tens [Hz] to several hundred [Hz]), the expansion and contraction of the piezoelectric element 45 are repeated every period. Become. As a result, a pulsation is imparted to the steady flow liquid flowing in the pressure chamber 44, and the pulsed liquid jet is repeatedly ejected from the liquid ejection opening 61.
 図3(A)は、圧電素子45に印加される1周期分の駆動信号の駆動電圧波形L11の一例を示す図であり、液体噴射開口部61における液体の流速波形L13を併せて示している。また、図3(B)は、図3(A)に示す流速波形L13のピークのうち、最も高いピークの流速波形(主ピーク部分)である主ジェット3を抜き出した図である。 FIG. 3A is a diagram showing an example of a drive voltage waveform L11 of a drive signal for one cycle applied to the piezoelectric element 45, and also shows a liquid flow velocity waveform L13 in the liquid ejection opening 61. . FIG. 3B is a diagram in which the main jet 3 which is the highest flow velocity waveform (main peak portion) is extracted from the peaks of the flow velocity waveform L13 shown in FIG.
 図3(A)に示すTpは繰り返し周期(駆動電圧波形の1周期分の時間)であり、その逆数が前記の繰り返し周波数である。なお、繰り返し周期Tpは1[ms(ミリ秒)]~100[ms]程度とされ、駆動電圧波形が最大電圧まで立ち上がるのに要する時間(立ち上がり時間)Tprは10[μs(マイクロ秒)]~1000[μs]程度とされる。繰り返し周期Tpは、立ち上がり時間Tprよりも長い時間として設定される。また、立ち上がり時間Tprの逆数を立ち上がり周波数としたとき、繰り返し周波数は、立ち上がり周波数よりも低い周波数として設定される。立ち上がり周波数及び立ち上がり時間は、ともに駆動電圧の立ち上がり時間に係る立ち上がり時間指標値の1つである。以下では、立ち上がり周波数を立ち上がり時間に係る指標値の代表例として説明する。 Tp shown in FIG. 3A is a repetition period (a time corresponding to one period of the drive voltage waveform), and its reciprocal is the repetition frequency. The repetition period Tp is about 1 [ms (milliseconds)] to 100 [ms], and the time required for the drive voltage waveform to rise to the maximum voltage (rise time) Tpr is 10 [μs (microseconds)] to It is about 1000 [μs]. The repetition period Tp is set as a time longer than the rise time Tpr. Further, when the reciprocal of the rise time Tpr is set as the rise frequency, the repetition frequency is set as a frequency lower than the rise frequency. The rise frequency and the rise time are both one of rise time index values related to the rise time of the drive voltage. Hereinafter, the rising frequency will be described as a representative example of the index value related to the rising time.
 例えば、圧電素子45は、正の電圧が印加されると伸長するものとすると、立ち上がり時間Tprで急激に伸長し、ダイアフラム46が圧電素子45に押されて圧力室44側に撓む。ダイアフラム46が圧力室44側へと撓むと圧力室44の容積が小さくなり、圧力室44内の液体は圧力室44から押し出される。ここで、出口流路415の内径は入口流路413の内径よりも大きいため、出口流路415の流体イナータンス及び流体抵抗は、入口流路413の流体抵抗よりも小さい。したがって、圧電素子45が急激に伸長することで圧力室44から押し出される液体の大部分は出口流路415を通って噴射管50に導入され、その内径よりも小径の液体噴射開口部61によりパルス状の液滴、すなわちパルス液体ジェットとなって高速噴射される。 For example, assuming that the piezoelectric element 45 expands when a positive voltage is applied, the piezoelectric element 45 rapidly expands at the rising time Tpr, and the diaphragm 46 is pushed by the piezoelectric element 45 and bends toward the pressure chamber 44 side. When the diaphragm 46 is bent toward the pressure chamber 44, the volume of the pressure chamber 44 is reduced, and the liquid in the pressure chamber 44 is pushed out from the pressure chamber 44. Here, since the inner diameter of the outlet channel 415 is larger than the inner diameter of the inlet channel 413, the fluid inertance and fluid resistance of the outlet channel 415 are smaller than the fluid resistance of the inlet channel 413. Therefore, most of the liquid pushed out from the pressure chamber 44 due to the rapid expansion of the piezoelectric element 45 is introduced into the ejection pipe 50 through the outlet channel 415 and is pulsed by the liquid ejection opening 61 having a smaller diameter than the inner diameter. Shaped droplets, that is, pulsed liquid jets, which are ejected at high speed.
 最大電圧まで上昇した後は、駆動電圧は緩やかに降下する。その際、圧電素子45は、立ち上がり時間Tprよりも長い時間をかけて収縮し、ダイアフラム46が圧電素子45に引かれて第3ケース43側に撓む。ダイアフラム46が第3ケース43側に撓むと圧力室44の容積が大きくなり、入口流路413から圧力室44内に液体が導入される。 ∙ After rising to the maximum voltage, the drive voltage will drop slowly. At that time, the piezoelectric element 45 contracts over a time longer than the rise time Tpr, and the diaphragm 46 is pulled by the piezoelectric element 45 and bent toward the third case 43 side. When the diaphragm 46 is bent toward the third case 43, the volume of the pressure chamber 44 is increased, and the liquid is introduced into the pressure chamber 44 from the inlet channel 413.
 なお、送液ポンプ装置20は所定圧力又は所定流量で液体をパルス流発生部40に供給しているため、圧電素子45が伸縮動作を行わなければ、圧力室44を流動する液体(定常流)は出口流路415を経て噴射管50に導入され、液体噴射開口部61から噴射される。この噴射は定速かつ低速の液流であるため、定常流といえる。 Since the liquid feed pump device 20 supplies the liquid to the pulse flow generation unit 40 at a predetermined pressure or a predetermined flow rate, the liquid flowing in the pressure chamber 44 (steady flow) unless the piezoelectric element 45 performs an expansion / contraction operation. Is introduced into the ejection pipe 50 through the outlet channel 415 and ejected from the liquid ejection opening 61. Since this injection is a constant-speed and low-speed liquid flow, it can be said that it is a steady flow.
 図3(B)を参照して、主ジェット3の流速波形について特徴値を説明すると、まず、主ジェット3の継続時間Tは、流速波形L13が定常流の流速Ubgよりも増加してピークに達した後、元の流速Ubgに戻るまでの時間である。継続時間Tは、流速がピークを迎えるまでに要する流速立ち上がり時間Trと、流速がピークから元に戻るまでに要する流速立ち下がり時間Tfとの和となる。また、主ジェット3の最大流速Umは、定常流の流速Ubgと、流速最大振幅△Umとの和となる。 With reference to FIG. 3 (B), the characteristic value of the flow velocity waveform of the main jet 3 will be described. First, the duration T of the main jet 3 peaks as the flow velocity waveform L13 increases from the steady flow velocity Ubg. It is the time until the original flow rate Ubg is returned after reaching. The duration T is the sum of the flow velocity rise time Tr required for the flow velocity to reach a peak and the flow velocity fall time Tf required for the flow velocity to return from the peak. The maximum flow velocity Um of the main jet 3 is the sum of the steady flow flow velocity Ubg and the maximum flow velocity amplitude ΔUm.
[原理その1]
 パルス液体ジェットを特徴付ける値として基本となるのは、図3(A)において駆動電圧波形L11と併せて示したパルス1個分のジェットの液体噴射開口部61における流速波形L13である。そのうち、注目すべきなのは、図3(B)に抜き出して示した駆動電圧の立ち上がり直後に発生する最大流速の主ピーク部分(先頭波のジェット)である主ジェット3である。その他の低いピークは、圧電素子45の伸長時に圧力室44内に生じた圧力変動の波が噴射管50内を反射往復することで付随的に噴射されるジェットに起因するものであるが、切削対象物の切削深さや切削体積といった切削態様を決定付けるのは、流速が最も大きい主ジェット3である。
[Principle 1]
The value that characterizes the pulsed liquid jet is basically the flow velocity waveform L13 at the liquid ejection opening 61 of the jet for one pulse, which is shown together with the drive voltage waveform L11 in FIG. Of particular note is the main jet 3, which is the main peak portion (the jet of the first wave) of the maximum flow velocity that occurs immediately after the rise of the drive voltage shown in FIG. 3B. The other low peak is caused by the jet jetting incidentally as the wave of pressure fluctuation generated in the pressure chamber 44 when the piezoelectric element 45 extends is reflected back and forth in the jet pipe 50. It is the main jet 3 having the largest flow velocity that determines the cutting mode such as the cutting depth and the cutting volume of the object.
 ところで、パルス液体ジェットの強さを変えて切削対象物の切削深さや切削体積を変化させたい場合には、圧電素子45の駆動電圧波形を制御することになる。この駆動電圧波形の制御は、その電圧特性値として駆動電圧波形の立ち上がり周波数や駆動電圧波形の振幅(電圧振幅)を術者が指示することによって行う方法が考えられる。例えば、電圧振幅を固定にした状態で術者が立ち上がり周波数(立ち上がり時間Tprでもよい)を指示したり、立ち上がり周波数を固定にした状態で電圧振幅を指示する方法が考えられる。これは、電圧振幅やその立ち上がり周波数(立ち上がり時間Tpr)が主ジェット3の流速波形に大きく影響するためである。駆動電圧が最大電圧まで上昇した後の緩やかに降下している間の駆動電圧は、主ジェット3の流速波形にさほど影響しない。そのため、立ち上がり周波数を高くし、或いは電圧振幅を大きくすれば、それに比例するように切削深さは深く、切削体積は大きくなると思われた。なお、電圧振幅とは、駆動電圧波形L11の最大値のことである。 Incidentally, when it is desired to change the cutting depth or the cutting volume of the object to be cut by changing the strength of the pulse liquid jet, the drive voltage waveform of the piezoelectric element 45 is controlled. The driving voltage waveform can be controlled by an operator instructing the rising frequency of the driving voltage waveform or the amplitude (voltage amplitude) of the driving voltage waveform as the voltage characteristic value. For example, a method in which the surgeon instructs the rising frequency (or the rising time Tpr) with the voltage amplitude fixed, or the voltage amplitude with the rising frequency fixed can be considered. This is because the voltage amplitude and its rising frequency (rise time Tpr) greatly affect the flow velocity waveform of the main jet 3. The drive voltage during the gradual drop after the drive voltage rises to the maximum voltage does not significantly affect the flow velocity waveform of the main jet 3. Therefore, it seems that if the rising frequency is increased or the voltage amplitude is increased, the cutting depth becomes deeper and the cutting volume becomes larger in proportion to it. The voltage amplitude is the maximum value of the drive voltage waveform L11.
 しかしながら、実際に達成される切削対象物の切削深さや切削体積は、必ずしも電圧特性値の増減に見合って変化しない場合があり、使い勝手を悪化させる場合があることが判明した。例えば、術者が電圧振幅を2倍にしても切削深さや切削体積が期待通りに増加しなかったり、或いは電圧振幅を1/2にしても切削深さや切削体積が思ったように減少しなかったりする場合が起こり得た。そのため、術者が所望する切削深さや切削体積が達成されない事態が生じ得た。これは手術時間の長期化を招きかねない問題である。 However, it has been found that the cutting depth and the cutting volume of the cutting object that are actually achieved may not always change in accordance with the increase or decrease of the voltage characteristic value, and may deteriorate the usability. For example, even if the surgeon doubles the voltage amplitude, the cutting depth and volume will not increase as expected, or even if the voltage amplitude is halved, the cutting depth and volume will not decrease as expected. There was a case where it happened. Therefore, the situation where the cutting depth and the cutting volume which an operator desires cannot be achieved may arise. This is a problem that may lead to prolonged operation time.
 また、パルス液体ジェットの強さとは別に、切削スピードを調整したい場合がある。そのための仕様として、駆動電圧波形の繰り返し周波数を術者が指示する方法が考えられる。例えば、繰り返し周波数を高くするということはパルス液体ジェットの単位時間当たりの噴射回数を多くするということであり、最終的に達成される切削深さや切削体積は変わってくる。 Also, there are cases where it is desired to adjust the cutting speed separately from the strength of the pulsed liquid jet. As a specification for that purpose, a method in which the surgeon instructs the repetition frequency of the drive voltage waveform can be considered. For example, increasing the repetition frequency means increasing the number of injections of the pulsed liquid jet per unit time, and the finally achieved cutting depth and cutting volume vary.
 しかしながら、繰り返し周波数を変えると駆動電圧波形が変わることから、繰り返し周波数を変えたとしても単位時間当たりの切削深さや切削体積が比例して変化せず、術者にとって使い勝手が悪い場合があった。具体的には、例えば、駆動電圧波形全体を単純に時間軸方向に拡縮することで繰り返し周波数を変える方法が考えられる。しかし、この方法では、主ジェット3の流速波形に大きく影響する立ち上がり周波数が変動してしまうため、上記したようにパルス液体ジェットの強さが変わってしまう。そのため、繰り返し周波数に比例した意図通りの切削スピードが得られない。 However, when the repetition frequency is changed, the driving voltage waveform changes. Therefore, even if the repetition frequency is changed, the cutting depth and the cutting volume per unit time do not change proportionally, and the operator may not be easy to use. Specifically, for example, a method of changing the repetition frequency by simply scaling the entire drive voltage waveform in the time axis direction is conceivable. However, in this method, since the rising frequency that greatly affects the flow velocity waveform of the main jet 3 fluctuates, the strength of the pulsed liquid jet changes as described above. Therefore, the intended cutting speed proportional to the repetition frequency cannot be obtained.
 そこで、主ジェット3の流速波形に着目し、この主ジェット3の流速波形によって定まるいくつかのパラメーターについて切削深さ及び切削体積との相関を検討した。切削深さや切削体積との相関が高いパラメーターが見つかれば、術者の操作感覚通りの切削深さや切削体積を達成するのに最適な駆動電圧波形で圧電素子45を制御することが可能となるからである。 Therefore, paying attention to the flow velocity waveform of the main jet 3, the correlation between the cutting depth and the cutting volume was examined for several parameters determined by the flow velocity waveform of the main jet 3. If a parameter having a high correlation with the cutting depth and the cutting volume is found, the piezoelectric element 45 can be controlled with a driving voltage waveform that is optimal for achieving the cutting depth and the cutting volume according to the operator's sense of operation. It is.
 そのために、先ず、液体噴射開口部61における主ジェット3の流速波形v[m/s]に基づいて、液体噴射開口部61を通過する主ジェット3の質量流束[kg/s]、運動量流束[N]、及びエネルギー流束[W]について検討した。質量流束は、液体噴射開口部61を通過する液体の単位時間当たりの質量[kg/s]である。運動量流束は、液体噴射開口部61を通過する液体の単位時間当たりの運動量[N]である。エネルギー流束は、液体噴射開口部61を通過する液体の単位時間当たりのエネルギー[W]である。なお、エネルギーとは運動エネルギーのことを指し、以下「エネルギー」と略称する。 For this purpose, first, based on the flow velocity waveform v [m / s] of the main jet 3 in the liquid jet opening 61, the mass flux [kg / s] of the main jet 3 passing through the liquid jet opening 61, the momentum flow. The bundle [N] and the energy flux [W] were examined. The mass flux is a mass [kg / s] per unit time of the liquid passing through the liquid ejection opening 61. The momentum flux is the momentum [N] per unit time of the liquid passing through the liquid ejection opening 61. The energy flux is energy [W] per unit time of the liquid passing through the liquid ejection opening 61. Energy refers to kinetic energy and is hereinafter abbreviated as “energy”.
 液体噴射開口部61では液体が自由空間に解放されるため、圧力をほぼ「0」とみなすことができる。また、液体のジェット噴射方向に直交する方向(液体噴射開口部61の径方向)の速度についてもほぼ「0」とみなすことができる。液体噴射開口部61の径方向において液体の速度分布がないと仮定すると、液体噴射開口部61を通過する質量流束Jm[kg/s]、運動量流束Jp[N]、及びエネルギー流束Je[W]は、次式(1),(2),(3)で求めることができる。S[m]はノズル断面積を表し、ρ[kg/m]は作動流体密度を表す。
 Jm=S・ρ・v ・・・(1)
 Jp=S・ρ・v ・・・(2)
 Je=1/2・ρ・S・v ・・・(3)
Since the liquid is released into the free space at the liquid ejection opening 61, the pressure can be regarded as almost “0”. Also, the velocity in the direction orthogonal to the liquid jetting direction (the radial direction of the liquid jetting opening 61) can be regarded as almost “0”. Assuming that there is no liquid velocity distribution in the radial direction of the liquid ejection opening 61, the mass flux Jm [kg / s], the momentum flux Jp [N], and the energy flux Je passing through the liquid ejection opening 61 are assumed. [W] can be obtained by the following equations (1), (2), and (3). S [m 2 ] represents the nozzle cross-sectional area, and ρ [kg / m 3 ] represents the working fluid density.
Jm = S · ρ · v (1)
Jp = S · ρ · v 2 (2)
Je = 1/2 · ρ · S · v 3 (3)
 図4は、図3(B)に示した主ジェット3の流速波形から求めた質量流束Jm(A)、運動量流束Jp(B)、及びエネルギー流束Je(C)を示す図である。これら質量流束Jm、運動量流束Jp、及びエネルギー流束Jeのそれぞれを主ジェット3の流速波形の立ち上がりから立ち下がりまでの時間(継続時間)T内で積分すれば、主ジェット3として液体噴射開口部61から噴射される液体の質量、運動量、及びエネルギーを求めることができる。 FIG. 4 is a diagram showing mass flux Jm (A), momentum flux Jp (B), and energy flux Je (C) obtained from the flow velocity waveform of main jet 3 shown in FIG. 3 (B). . If each of the mass flux Jm, momentum flux Jp, and energy flux Je is integrated within the time (duration) T from the rise to the fall of the flow velocity waveform of the main jet 3, the liquid is ejected as the main jet 3. The mass, momentum, and energy of the liquid ejected from the opening 61 can be obtained.
 上記した要領で算出した質量流束Jm、運動量流束Jp、エネルギー流束Je、質量、運動量、及びエネルギーの各値は、パルス1個分のジェットによる切削深さ及び切削体積を決定付け得ると考えられる。ただし、何れも定常流分を含んだ物理量であり、重要なのは、定常流の寄与分を差し引いた値である。 The values of mass flux Jm, momentum flux Jp, energy flux Je, mass, momentum, and energy calculated in the manner described above can determine the cutting depth and cutting volume by the jet for one pulse. Conceivable. However, both are physical quantities including a steady flow component, and what is important is a value obtained by subtracting the contribution of the steady flow component.
 そこで、図4(A)の質量流束Jmに関し、質量流束Jmのピーク値(最大値)から定常流の質量流束Jm_BG[kg/s]を減算した最大質量流束Jm_max[kg/s]と、主ジェット3として液体噴射開口部61から流出する液体の質量から定常流分を除いた図4(A)中にハッチングを付して示す流出質量M[kg]の2つのパラメーターを定義する。流出質量Mは、次式(4)で表される。
Figure JPOXMLDOC01-appb-M000001
Therefore, regarding the mass flux Jm in FIG. 4A, the maximum mass flux Jm_max [kg / s] obtained by subtracting the steady mass flux Jm_BG [kg / s] from the peak value (maximum value) of the mass flux Jm. And the outflow mass M [kg] indicated by hatching in FIG. 4A in which the steady flow component is removed from the mass of the liquid flowing out from the liquid ejection opening 61 as the main jet 3 is defined. To do. The outflow mass M is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000001
 図4(B)の運動量流束Jpに関しては、運動量流束Jpのピーク値(最大値)から定常流の運動量流束Jp_BG[N]を減算した最大運動量流束Jp_max[N]と、主ジェット3として液体噴射開口部61から流出する液体の運動量から定常流分を除いた図4(B)中にハッチングを付して示す運動量P[Ns]の2つのパラメーターを定義する。運動量Pは、次式(5)で表される。
Figure JPOXMLDOC01-appb-M000002
With respect to the momentum flux Jp in FIG. 4B, the maximum momentum flux Jp_max [N] obtained by subtracting the steady momentum flux Jp_BG [N] from the peak value (maximum value) of the momentum flux Jp, and the main jet 3, two parameters of momentum P [Ns] indicated by hatching in FIG. 4B in which the steady flow component is removed from the momentum of the liquid flowing out from the liquid ejection opening 61 are defined. The momentum P is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000002
 図4(C)のエネルギー流束Jeに関しては、エネルギー流束Jeのピーク値(最大値)から定常流のエネルギー流束Je_BG[W]を減算した最大エネルギー流束Je_max[W]と、主ジェット3として液体噴射開口部61から流出する液体のエネルギーから定常流分を除いた図4(C)中にハッチングを付して示すエネルギーE[J]の2つのパラメーターを定義する。エネルギーEは、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000003
Regarding the energy flux Je in FIG. 4C, the maximum energy flux Je_max [W] obtained by subtracting the steady-state energy flux Je_BG [W] from the peak value (maximum value) of the energy flux Je, and the main jet 3, two parameters of energy E [J] shown by hatching in FIG. 4C in which the steady flow component is removed from the energy of the liquid flowing out from the liquid ejection opening 61 are defined. The energy E is expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000003
 ただし、上記式(4),(5),(6)における積分区間は、各流速波形において主ジェット3の立ち上がりから立ち下がりまでの時間(継続時間)Tである。 However, the integration interval in the above formulas (4), (5), and (6) is the time (duration) T from the rise to the fall of the main jet 3 in each flow velocity waveform.
 そして、数値シミュレーションを利用して、最大質量流束Jm_max、流出質量M、最大運動量流束Jp_max、運動量P、最大エネルギー流束Je_max、及びエネルギーEの6つのパラメーターが、それぞれ切削深さ及び切削体積とどの程度相関するのかを検討した。 Then, using numerical simulation, the six parameters of maximum mass flux Jm_max, outflow mass M, maximum momentum flux Jp_max, momentum P, maximum energy flux Je_max, and energy E are respectively determined as cutting depth and cutting volume. And how much it correlates.
 ここで、パルス液体ジェットは流体であり、切削対象物は柔軟な弾性体である。したがって、パルス液体ジェットによる切削対象物の破壊挙動のシミュレーションを行うためには、柔軟弾性体側に適切な破壊閾値を設定した上で、いわゆる流体と構造体(ここでは柔軟弾性体)との連成解析(流体・構造連成解析(FSI))を行わなければならない。シミュレーションの計算手法としては、例えば、有限要素法(FEM:Finite Element Method)を用いた手法や、SPH(Smoothed Particle Hydrodynamics)等に代表される粒子法を用いた手法、有限要素法と粒子法とを組み合わせた手法等が挙げられる。適用する手法は特に限定されるものではないため詳述しないが、解析結果の安定性や計算時間等を考慮して最適な手法を選択し、シミュレーションを行った。 Here, the pulse liquid jet is a fluid, and the object to be cut is a flexible elastic body. Therefore, in order to simulate the fracture behavior of an object to be cut by a pulsed liquid jet, an appropriate fracture threshold is set on the flexible elastic body side, and a so-called fluid and structure (here, flexible elastic body) are coupled. Analysis (fluid-structure interaction analysis (FSI)) must be performed. As a simulation calculation method, for example, a method using a finite element method (FEM), a method using a particle method represented by SPH (Smoothed Particle Particle), a finite element method and a particle method The method etc. which combined these are mentioned. Although the method to be applied is not particularly limited and will not be described in detail, an optimal method was selected in consideration of the stability of the analysis result, the calculation time, etc., and the simulation was performed.
 シミュレーションに際し、流体密度=1[g/cm]、液体噴射開口部61の直径=0.15[mm]、スタンドオフ距離(液体噴射開口部61から切削対象物表面までの距離)=0.5[mm]に設定した。また、切削対象物を表面が平坦な柔軟弾性体と仮定し、その物理モデルとして、密度=1[g/cm]、ヤング率換算で9[kPa]程度(せん断弾性率換算で3[kPa]程度)の弾性率を有するMooney-Rivlin超弾性体を用いた。破壊閾値には、偏差相当ひずみ=0.7を使用した。 In the simulation, fluid density = 1 [g / cm 3 ], diameter of the liquid ejection opening 61 = 0.15 [mm], standoff distance (distance from the liquid ejection opening 61 to the surface of the cutting object) = 0. It was set to 5 [mm]. Further, it is assumed that the object to be cut is a flexible elastic body having a flat surface. As a physical model, density = 1 [g / cm 3 ], about 9 [kPa] in terms of Young's modulus (3 [kPa in terms of shear modulus) A Mooney-Rivlin superelastic body having an elastic modulus of about]. As the fracture threshold, deviation equivalent strain = 0.7 was used.
 主ジェット3の流速波形については、様々な主ジェット3の流速波形を想定し、正弦波、三角波、及び矩形波の3種類の波形について、振幅(流速の最大値)を12[m/s]~76[m/s]の範囲内、継続時間を63[μs]~200[μs]の範囲内で3種類変更したものを、合計27種類用意した。なお、定常流の流速は1[m/s]としている。 As for the flow velocity waveform of the main jet 3, assuming various flow velocity waveforms of the main jet 3, the amplitude (maximum value of the flow velocity) is set to 12 [m / s] for three types of waveforms, a sine wave, a triangular wave, and a rectangular wave. A total of 27 types were prepared by changing three types within the range of 76 [m / s] and the duration within the range of 63 [μs] to 200 [μs]. The flow rate of the steady flow is 1 [m / s].
 図5は、シミュレーションで主ジェット3の流速波形として与えた正弦波(A)、矩形波(B)、及び三角波(C)を示す図であり、それぞれ実線で示す継続時間が63[μs]のものと、一点鎖線で示す継続時間が125[μs]のものと、二点鎖線で示す継続時間が200[μs]のものとを用意した。そして、用意した波形を主ジェット3の流速波形として与えてパルス液体ジェットを生成し、前記の柔軟弾性体に撃ち込んだときの柔軟弾性体の破壊挙動についてシミュレーションを行い切削深さや切削体積の検討を行った。 FIG. 5 is a diagram showing a sine wave (A), a rectangular wave (B), and a triangular wave (C) given as flow velocity waveforms of the main jet 3 in the simulation, each having a duration of 63 [μs] indicated by a solid line. And those having a duration of 125 [μs] indicated by a one-dot chain line and those having a duration of 200 [μs] indicated by a two-dot chain line were prepared. Then, a pulsed liquid jet is generated by giving the prepared waveform as the flow velocity waveform of the main jet 3, and the fracture behavior of the flexible elastic body when it is shot into the flexible elastic body is simulated to examine the cutting depth and the cutting volume. went.
 図6は、縦軸を切削対象物の切削深さとし、横軸を最大質量流束Jm_max(A)、流出質量M(B)、最大運動量流束Jp_max(C)、運動量P(D)、最大エネルギー流束Je_max(E)、及びエネルギーE(F)としたシミュレーションの結果をプロットした図である。図6中、主ジェット3の流速波形として継続時間が63[μs]の正弦波を与えたときのシミュレーション結果を「*」のプロット、125[μs]の正弦波を与えたときのシミュレーション結果を「◆」のプロット、200[μs]の正弦波を与えたときのシミュレーション結果を「-」のプロットで示している。また、主ジェット3の流速波形として継続時間が63[μs]の三角波を与えたときのシミュレーション結果を「+」のプロット、125[μs]の三角波を与えたときのシミュレーション結果を「×」のプロット、200[μs]の三角波を与えたときのシミュレーション結果を「■」のプロットで示している。また、主ジェット3の流速波形として継続時間が63[μs]の矩形波を与えたときのシミュレーション結果を「●」のプロット、125[μs]の矩形波を与えたときのシミュレーション結果を黒色塗りつぶしの三角形のプロット、200[μs]の矩形波を与えたときのシミュレーション結果を「-」のプロットで示している。 In FIG. 6, the vertical axis represents the cutting depth of the object to be cut, and the horizontal axis represents the maximum mass flux Jm_max (A), the outflow mass M (B), the maximum momentum flux Jp_max (C), the momentum P (D), the maximum It is the figure which plotted the result of the simulation made into energy flux Je_max (E) and energy E (F). In FIG. 6, a simulation result when a sine wave having a duration of 63 [μs] is given as a flow velocity waveform of the main jet 3 is plotted with “*”, and a simulation result when a sine wave of 125 [μs] is given. A plot of “♦” and a simulation result when a sine wave of 200 [μs] is given are shown by a plot of “−”. In addition, the simulation result when a triangular wave having a duration of 63 [μs] is given as the flow velocity waveform of the main jet 3 is plotted as “+”, and the simulation result when a triangular wave of 125 [μs] is given as “×”. A plot, the simulation result when a triangular wave of 200 [μs] is given, is indicated by a plot of “■”. Also, the simulation result when the rectangular wave having a duration of 63 [μs] is given as the flow velocity waveform of the main jet 3 is plotted with “●”, and the simulation result when the rectangular wave of 125 [μs] is given is blacked out. A triangular plot of, and a simulation result when a rectangular wave of 200 [μs] is given is shown by a “−” plot.
 上段の図6(A),(C),(E)に示すように、最大質量流束Jm_max、最大運動量流束Jp_max、及び最大エネルギー流束Je_maxの3つの各パラメーターと切削深さとの関係は、主ジェット3の流速波形として与えた波形の形状によって大きくばらついており、双方の相関は低いことがわかった。とりわけ質量流束は、流速に比例する値であることから、切削深さは主ジェット3の最大流速のみからは決まらないことを示唆している。 As shown in FIGS. 6 (A), (C), and (E) in the upper stage, the relationship between the three parameters, the maximum mass flux Jm_max, the maximum momentum flux Jp_max, and the maximum energy flux Je_max, and the cutting depth is It was found that there was a large variation depending on the shape of the waveform given as the flow velocity waveform of the main jet 3, and the correlation between the two was low. In particular, since the mass flux is a value proportional to the flow velocity, it is suggested that the cutting depth is not determined only from the maximum flow velocity of the main jet 3.
 次に、下段の図6(B),(D),(F)に示す流出質量M、運動量P、及びエネルギーEの3つの各パラメーターと切削深さとの関係をみてみると、流出質量Mと切削深さとの関係については、主ジェット3の流速波形として与えた波形の形状によって大きくばらついており、相関が低い。これに対し、運動量PやエネルギーEとの関係では、与えた波形の形状によるばらつきは小さく、各プロットが概ね同一曲線上に分布している。運動量PとエネルギーEとでは、運動量Pの方がよりばらつきが小さい。したがって、切削深さは運動量PやエネルギーEと相関が高く、特に運動量Pと良く相関するといえる。 Next, looking at the relationship between the three parameters of outflow mass M, momentum P, and energy E shown in FIGS. 6B, 6D, and 6F and the cutting depth, the outflow mass M and The relationship with the cutting depth largely varies depending on the waveform shape given as the flow velocity waveform of the main jet 3, and the correlation is low. On the other hand, in relation to the momentum P and the energy E, the variation due to the shape of the given waveform is small, and the respective plots are distributed almost on the same curve. In the momentum P and the energy E, the momentum P has a smaller variation. Therefore, it can be said that the cutting depth is highly correlated with the momentum P and the energy E, and particularly well correlated with the momentum P.
 なお、ここでは液体噴射開口部の直径を0.15[mm]、スタンドオフ距離を0.5[mm]とした場合についてシミュレーションを行っているが、他の液体噴射開口部直径や他のスタンドオフ距離においてもシミュレーションを行い、切削深さが運動量PやエネルギーEと相関が高い、という定性的な傾向は大きく変わらなかったことを確認した。 Here, the simulation is performed for the case where the diameter of the liquid ejection opening is 0.15 [mm] and the standoff distance is 0.5 [mm]. However, other liquid ejection opening diameters and other stands are used. A simulation was performed even at an off-distance, and it was confirmed that the qualitative tendency that the cutting depth was highly correlated with the momentum P and the energy E did not change significantly.
 図7は、縦軸を切削対象物の切削体積とし、横軸を最大質量流束Jm_max(A)、流出質量M(B)、最大運動量流束Jp_max(C)、運動量P(D)、最大エネルギー流束Je_max(E)、及びエネルギーE(F)としてシミュレーションの結果をプロットした図である。主ジェット3の流速波形として与えた波形とプロットの種類との関係は図6と同様である。 In FIG. 7, the vertical axis represents the cutting volume of the object to be cut, and the horizontal axis represents the maximum mass flux Jm_max (A), the outflow mass M (B), the maximum momentum flux Jp_max (C), the momentum P (D), the maximum It is the figure which plotted the result of the simulation as energy flux Je_max (E) and energy E (F). The relationship between the waveform given as the flow velocity waveform of the main jet 3 and the type of plot is the same as in FIG.
 上段の図7(A),(C),(E)に示すように、最大質量流束Jm_max、最大運動量流束Jp_max、及び最大エネルギー流束Je_maxの3つの各パラメーターと切削体積との関係は、切削深さとの関係ほどではないものの、主ジェット3の流速波形として与えた波形の形状によってばらついており、双方の相関は低いと考えられる。 As shown in FIGS. 7 (A), (C), and (E) in the upper stage, the relationship between the three parameters of the maximum mass flux Jm_max, the maximum momentum flux Jp_max, and the maximum energy flux Je_max and the cutting volume is Although not as much as the relationship with the cutting depth, it varies depending on the shape of the waveform given as the flow velocity waveform of the main jet 3, and the correlation between the two is considered to be low.
 次に、下段の図7(B),(D),(F)に示す流出質量M、運動量P、及びエネルギーEの3つの各パラメーターと切削体積との関係をみてみると、流出質量Mと切削体積との関係については、切削深さと同様に主ジェット3の流速波形として与えた波形の形状によって大きくばらついており、相関が低い。一方、運動量PやエネルギーEとの関係では、切削深さと同様に与えた波形の形状によるばらつきは小さく、各プロットが概ね同一直線上に分布している。また、運動量Pと比べてエネルギーEの方がよりばらつきが小さい。したがって、切削体積は運動量PやエネルギーEと相関が高く、特にエネルギーEと良く相関するといえる。 Next, looking at the relationship between the three parameters of outflow mass M, momentum P, and energy E shown in FIGS. 7B, 7D, and 7F and the cutting volume, the outflow mass M and The relationship with the cutting volume varies greatly depending on the waveform shape given as the flow velocity waveform of the main jet 3 as well as the cutting depth, and the correlation is low. On the other hand, in relation to the momentum P and the energy E, the variation due to the waveform shape given is the same as the cutting depth, and each plot is distributed almost on the same straight line. Further, the energy E has a smaller variation than the momentum P. Therefore, it can be said that the cutting volume has a high correlation with the momentum P and the energy E, and particularly has a good correlation with the energy E.
 なお、ここでは液体噴射開口部の直径を0.15[mm]、スタンドオフ距離を0.5[mm]とした場合についてシミュレーションを行っているが、他の液体噴射開口部直径や他のスタンドオフ距離においてもシミュレーションを行い、切削体積が運動量PやエネルギーEと相関が高い、という定性的な傾向は大きく変わらなかったことを確認した。 Here, the simulation is performed for the case where the diameter of the liquid ejection opening is 0.15 [mm] and the standoff distance is 0.5 [mm]. However, other liquid ejection opening diameters and other stands are used. A simulation was also performed at an off-distance, and it was confirmed that the qualitative tendency that the cutting volume was highly correlated with the momentum P and the energy E did not change significantly.
 以上の検討結果に基づき、本実施形態では、運動量Pに着目する。そして、実際に圧電素子45に印加する駆動電圧波形として代表的なものについて事前にシミュレーションを行い、運動量Pと、駆動電圧波形を定義する制御パラメーターとの対応関係を取得しておく。 Based on the above examination results, the present embodiment focuses on the momentum P. Then, a simulation is performed in advance on a typical drive voltage waveform actually applied to the piezoelectric element 45, and the correspondence between the momentum P and the control parameter defining the drive voltage waveform is acquired.
 制御パラメーターは各種考えられるが、「原理その1」として、ここでは制御パラメーターを、立ち上がり周波数、電圧振幅、及び繰り返し周波数の3つとする。これらの制御パラメーターを可変に設定して主ジェット3の流速波形をシミュレーションにより求めた。シミュレーションは、例えば、液体噴射装置の流路系を、流体(流路)抵抗、流体イナータンス、流体コンプライアンス等に置き換えたモデルに基づく、等価回路法による数値シミュレーションを利用して容易に行うことができる。又は、より精度を求めるならば、有限要素法(FEM)や有限体積法(FVM)等を用いた流体シミュレーションを利用してもよい。 Although various control parameters can be considered, as “Principle 1”, here, the control parameters are assumed to be three, that is, the rising frequency, the voltage amplitude, and the repetition frequency. These control parameters were set to be variable, and the flow velocity waveform of the main jet 3 was obtained by simulation. The simulation can be easily performed, for example, using a numerical simulation based on an equivalent circuit method based on a model in which the flow path system of the liquid ejecting apparatus is replaced with fluid (flow path) resistance, fluid inertance, fluid compliance, and the like. . Alternatively, if more accuracy is required, fluid simulation using a finite element method (FEM), a finite volume method (FVM), or the like may be used.
 第1に、電圧振幅及び繰り返し周波数を固定し、立ち上がり周波数を段階的に変えた駆動電圧波形を与えて主ジェット3の流速波形をシミュレーションにより求めた。図8(A)は、与えた駆動電圧波形の一例を示す図である。各駆動電圧波形は、電圧振幅をV2、繰り返し周期TpをT2とし、立ち上がり時間TprをT21~T25まで段階的に長く(立ち上がり周波数を段階的に低く)したものである。 First, the flow velocity waveform of the main jet 3 was obtained by simulation by giving a drive voltage waveform with the voltage amplitude and repetition frequency fixed and the rising frequency changed stepwise. FIG. 8A is a diagram illustrating an example of a given drive voltage waveform. Each drive voltage waveform has a voltage amplitude of V2, a repetition period Tp of T2, and a rising time Tpr that is increased stepwise from T21 to T25 (the rising frequency is decreased stepwise).
 図8(B)は、図8(A)に示した立ち上がり周波数の異なる各駆動電圧波形を与えた場合の主ジェット3の流速波形のシミュレーション結果を示す図である。図8(B)に示すように、立ち上がり周波数を低く(立ち上がり時間Tprでいえば長く)すると、主ジェット3の流速波形は、立ち上がりの開始タイミングは変わらずに立ち上がる間の継続時間が長くなり、流速振幅(流速の最大値)も小さくなる。 FIG. 8B is a diagram showing a simulation result of the flow velocity waveform of the main jet 3 when the drive voltage waveforms having different rising frequencies shown in FIG. 8A are given. As shown in FIG. 8B, when the rising frequency is lowered (longer in terms of the rising time Tpr), the flow velocity waveform of the main jet 3 has a longer duration while rising without changing the start timing of rising, The flow velocity amplitude (maximum value of the flow velocity) is also reduced.
 第2に、立ち上がり周波数及び繰り返し周波数を固定し、電圧振幅を段階的に変えた駆動電圧波形を与えて主ジェット3の流速波形をシミュレーションにより求めた。図9(A)は、与えた駆動電圧波形の一例を示す図である。各駆動電圧波形は、立ち上がり時間TprをT31、繰り返し周期TpをT33とし、電圧振幅をV31~V35まで段階的に小さくしたものである。 Second, the flow velocity waveform of the main jet 3 was obtained by simulation by fixing the rising frequency and the repetition frequency and giving a driving voltage waveform in which the voltage amplitude was changed stepwise. FIG. 9A is a diagram illustrating an example of a given drive voltage waveform. Each drive voltage waveform has a rise time Tpr of T31, a repetition period Tp of T33, and a voltage amplitude that is gradually reduced from V31 to V35.
 図9(B)は、図9(A)に示した電圧振幅の異なる駆動電圧波形を与えた場合の主ジェット3の流速波形のシミュレーション結果を示す図である。図9(B)に示すように、電圧振幅を小さくすると、主ジェット3の流速波形は、立ち上がり周波数を低くした場合と違い立ち上がる間の継続時間は維持したまま、流速振幅(流速の最大値)が小さくなる。 FIG. 9B is a diagram showing a simulation result of the flow velocity waveform of the main jet 3 when the drive voltage waveforms having different voltage amplitudes shown in FIG. 9A are given. As shown in FIG. 9B, when the voltage amplitude is reduced, the flow velocity waveform of the main jet 3 maintains the duration during the rise, unlike the case where the rise frequency is lowered, and the flow velocity amplitude (maximum value of the flow velocity). Becomes smaller.
 第3に、立ち上がり周波数及び電圧振幅を固定し、繰り返し周波数を段階的に変えた駆動電圧波形を与えて主ジェット3の流速波形をシミュレーションにより求めた。図10(A)は、与えた駆動電圧波形の一例を示す図である。各駆動電圧波形は、立ち上がり時間TprをT4、電圧振幅をV4とし、駆動電圧が最大電圧まで上昇した後の立ち下がり形状を時間軸方向に広げることによって繰り返し周期TpをT41~T45まで段階的に長く(繰り返し周波数を段階的に低く)したものである。 Third, the flow velocity waveform of the main jet 3 was obtained by simulation by giving a driving voltage waveform with the rising frequency and voltage amplitude fixed and the repetition frequency changed stepwise. FIG. 10A is a diagram illustrating an example of a given drive voltage waveform. Each drive voltage waveform has a rise time Tpr of T4, a voltage amplitude of V4, and the falling period after the drive voltage rises to the maximum voltage is widened in the time axis direction so that the repetition period Tp is stepwise from T41 to T45. Longer (repetitive frequency is lowered stepwise).
 図10(B)は、図10(A)に示した繰り返し周波数の異なる駆動電圧波形を与えた場合の主ジェット3の流速波形のシミュレーション結果を示す図である。図10(B)に示すように、繰り返し周波数を低く(繰り返し周期Tpでいえば長く)すると、主ジェット3の流速波形は、立ち上がり周波数を低くした場合と比べると程度は小さいものの、継続時間が長くなる。流速振幅(流速の最大値)は維持したままであった。 FIG. 10B is a diagram showing a simulation result of the flow velocity waveform of the main jet 3 when the drive voltage waveforms having different repetition frequencies shown in FIG. 10A are given. As shown in FIG. 10 (B), when the repetition frequency is lowered (in the repetition period Tp, it is longer), the flow velocity waveform of the main jet 3 is smaller than the case where the rising frequency is lowered, but the duration is long. become longer. The flow velocity amplitude (maximum flow velocity) remained maintained.
 続いて、得られた主ジェット3の流速波形のそれぞれについて運動量Pを求めた。詳細には、図10を参照して説明した要領で繰り返し周波数を変えながら、各々の繰り返し周波数毎に、図8を参照して説明した要領で電圧振幅を固定し立ち上がり周波数を変えた場合のシミュレーションと、図9を参照して説明した要領で立ち上がり周波数を固定し電圧振幅を変えた場合のシミュレーションとを行った。そして、各シミュレーションで得られた主ジェット3の流速波形の運動量Pを求めた。 Subsequently, the momentum P was obtained for each of the obtained flow velocity waveforms of the main jet 3. In detail, while changing the repetition frequency in the manner described with reference to FIG. 10, the simulation in the case where the voltage amplitude is fixed and the rising frequency is changed in the manner described with reference to FIG. 8 for each repetition frequency. And the simulation when the rising frequency was fixed and the voltage amplitude was changed as described with reference to FIG. 9 was performed. And the momentum P of the flow velocity waveform of the main jet 3 obtained by each simulation was calculated | required.
 図11は、所定の繰り返し周波数(例えば「F51」と表記する)で得られた運動量Pと立ち上がり周波数及び電圧振幅との対応関係を示す図である。この図11は、縦軸を立ち上がり周波数とし、横軸を電圧振幅とする座標空間に運動量Pに関する等高線を描くことにより得られる。各等高線の運動量P51,P52,…は、図11の左下が低くなっており、右上に向かうほど、所定量ずつ大きくなっている。なお、図示しないが、別の繰り返し周波数で得られた運動量Pを同様の座標空間にプロットして等高線を描けば、その繰り返し周波数での運動量Pと立ち上がり周波数及び電圧振幅との対応関係に応じた等高線図が得られる。 FIG. 11 is a diagram showing a correspondence relationship between the momentum P obtained at a predetermined repetition frequency (for example, expressed as “F51”), the rising frequency, and the voltage amplitude. This FIG. 11 is obtained by drawing a contour line related to the momentum P in a coordinate space having the vertical axis as the rising frequency and the horizontal axis as the voltage amplitude. The momentum P51, P52,... Of each contour line is lower in the lower left of FIG. 11, and increases by a predetermined amount toward the upper right. Although not shown, if momentum P obtained at another repetition frequency is plotted in the same coordinate space and contour lines are drawn, it corresponds to the correspondence between the momentum P at the repetition frequency and the rising frequency and voltage amplitude. A contour map is obtained.
 ここで、注目すべきなのは、各座標軸方向のパラメーターに対して運動量Pは線形的に変化しないことである。例えば、図11に示す運動量Pと立ち上がり周波数及び電圧振幅との対応関係において、電圧振幅を固定(例えばV5)とし立ち上がり周波数を可変として圧電素子45の駆動電圧波形を制御する場合を考える。運動量Pの変化量を一定にしようとする場合、運動量P52~P53間は立ち上がり周波数f52~f53間の周波数変化が必要となり、運動量P53~P54間は立ち上がり周波数f53~f54間の周波数変化が必要となる。しかし、立ち上がり周波数f52~f53の周波数間隔と、立ち上がり周波数f53~f54の周波数間隔とは異なる。したがって、電圧振幅を固定とし、立ち上がり周波数を一定量ずつ変化させる操作をする場合に、運動量Pが思ったように変化しないため、切削深さや切削体積が術者の意図通り・感覚通りに変化しないといった事態が起こり得るといえる。立ち上がり周波数を固定とし、電圧振幅を一定量ずつ変化させる操作をする場合にも同様のことがいえる。 Here, it should be noted that the momentum P does not change linearly with respect to the parameters in each coordinate axis direction. For example, let us consider a case in which the drive voltage waveform of the piezoelectric element 45 is controlled with the voltage amplitude fixed (for example, V5) and the rising frequency variable in the correspondence relationship between the momentum P, the rising frequency, and the voltage amplitude shown in FIG. In order to keep the amount of change of the momentum P constant, a frequency change between the rising frequencies f52 and f53 is required between the momentum P52 and P53, and a frequency change between the rising frequencies f53 and f54 is required between the momentum P53 and P54. Become. However, the frequency interval between the rising frequencies f52 to f53 is different from the frequency interval between the rising frequencies f53 to f54. Therefore, when the operation is performed with the voltage amplitude fixed and the rising frequency being changed by a certain amount, the momentum P does not change as expected, so that the cutting depth and the cutting volume do not change as intended or perceived by the operator. It can be said that such a situation can occur. The same can be said for an operation in which the rising frequency is fixed and the voltage amplitude is changed by a certain amount.
[原理その2]
 次に、前述した駆動電圧波形を定義する3つの制御パラメーターに加えて、更なる制御パラメーターを導入する。駆動電圧波形の立ち上がりに係る波形形状(以下「立ち上がり波形形状」という)というパラメーターである。
[Principle 2]
Next, in addition to the three control parameters that define the drive voltage waveform described above, additional control parameters are introduced. It is a parameter called a waveform shape related to the rise of the drive voltage waveform (hereinafter referred to as “rise waveform shape”).
 まず、駆動電圧波形の立ち上がり部分の拡大図を図12に示す。
 立ち上がり部分を波形曲線の変曲点Rに着目して見ると、駆動電圧「0」から下に凸な曲線に沿って増加しながら変曲点Rへ至るまでの過程と、変曲点Rから上に凸な曲線に沿って電圧振幅Vmへ至る過程と、の2つの曲線部分から成り立っていることがわかる。圧電素子45は、駆動電圧Vに対してほぼリニアに伸長するので、変曲点Rは主ジェット3の流速波形L13におけるピークに相当すると言える。よって、駆動電圧「0」から変曲点Rに至るまでの波形形状(以下「立ち上がり前半波形形状」という)と、変曲点Rから電圧振幅Vmに至るまでの波形形状(以下「立ち上がり後半波形形状」という)とを調整することで、流速ピークタイミングを変化させずに主ジェット3の流速波形を変化させることができる。
First, an enlarged view of the rising portion of the drive voltage waveform is shown in FIG.
Looking at the inflection point R of the waveform curve in the rising portion, the process from the driving voltage “0” to the inflection point R while increasing along the downwardly convex curve, and the inflection point R It can be seen that it is composed of two curve portions, a process of reaching the voltage amplitude Vm along the upwardly convex curve. Since the piezoelectric element 45 extends substantially linearly with respect to the drive voltage V, it can be said that the inflection point R corresponds to a peak in the flow velocity waveform L13 of the main jet 3. Therefore, the waveform shape from the driving voltage “0” to the inflection point R (hereinafter referred to as “first rising waveform shape”) and the waveform shape from the inflection point R to the voltage amplitude Vm (hereinafter “rising second half waveform”). By adjusting the “shape”, the flow velocity waveform of the main jet 3 can be changed without changing the flow velocity peak timing.
 具体的には、立ち上がり波形形状を変化させる効果を検証するため、電圧振幅、繰り返し周波数、及び立ち上がり周波数の3つの制御パラメーターを固定とすることを考える。すなわち、駆動電圧波形の「立ち上がり開始点r0(駆動電圧=0の点)」と、「立ち上がり終了点r1(駆動電圧=電圧振幅)」と、変曲点Rとの位置(タイミング及び駆動電圧)を固定として、緩慢に立ち上げるか、急激に立ち上げるかといった、電圧の増加傾向を変えることで立ち上がり波形形状を変化させることを考える。 Specifically, in order to verify the effect of changing the rising waveform shape, let us consider fixing the three control parameters of voltage amplitude, repetition frequency, and rising frequency. That is, the positions (timing and drive voltage) of “rise start point r0 (drive voltage = 0 point)”, “rise end point r1 (drive voltage = voltage amplitude)”, and inflection point R of the drive voltage waveform. Let us consider changing the rising waveform shape by changing the increasing tendency of voltage, such as whether to start up slowly or suddenly.
 なお、「急激に立ち上げる」とは、開始点r0から終了点r1の間における電圧の変化率の変化が「緩慢に立ち上げる」場合に比べて大きい、ということもできる。また、変曲点近傍での電圧の変化率が「緩慢に立ち上げる」場合に比べて大きい、ということもできる。また、変曲点近傍での駆動電圧波形の傾きが、「緩慢に立ち上げる」場合よりも「急激に立ち上げる」場合の方が90°に近い、ということもできる。 It should be noted that “abrupt startup” can mean that the change in the voltage change rate between the start point r0 and the end point r1 is larger than that in the case of “slow startup”. It can also be said that the voltage change rate in the vicinity of the inflection point is larger than in the case of “starting slowly”. It can also be said that the slope of the drive voltage waveform in the vicinity of the inflection point is closer to 90 ° in the case of “starting up suddenly” than in the case of “starting up slowly”.
 例えば、変曲点Rが、駆動電圧波形と、駆動電圧波形の立ち上がり開始点r0と立ち上がり終了点r1とを結ぶ線分との交点に位置する場合を考える。図12は、一例として、Nを変数とする基準波形V(t)の、Nの値と立ち上がり波形形状との対応関係を示している。なお、波形形状については後述の式(7)に従っている。図12中のN=3.0の波形からN=0.3の波形に近づくように、立ち上がり波形形状を直線形状に漸近させてゆくと、主ジェット3の流速波形は、より緩やかに増加する波形となる。一方、図12中のN=0.3の波形からN=3.0の波形に近づくように、立ち上がり波形形状を変曲点Rで駆動電圧を急激に増加させるような波形(例えば、階段形状(ステップ形状ともいえる)の波形)に漸近させてゆくと、主ジェット3の流速波形は、変曲点Rに対応するタイミングでより急激に流速が増加する流速波形となる。 For example, consider a case where the inflection point R is located at the intersection of a drive voltage waveform and a line segment connecting the rise start point r0 and the rise end point r1 of the drive voltage waveform. FIG. 12 shows, as an example, the correspondence between the value of N and the rising waveform shape of the reference waveform V (t) with N as a variable. Note that the waveform shape conforms to Equation (7) described later. When the rising waveform shape is made asymptotic to a linear shape so as to approach the waveform of N = 0.3 from the waveform of N = 3.0 in FIG. 12, the flow velocity waveform of the main jet 3 increases more gradually. It becomes a waveform. On the other hand, a waveform (for example, a staircase shape) in which the drive voltage is suddenly increased at the inflection point R so as to approach the waveform of N = 3.0 from the waveform of N = 0.3 in FIG. Asymptotically, the flow velocity waveform of the main jet 3 becomes a flow velocity waveform in which the flow velocity increases more rapidly at the timing corresponding to the inflection point R.
 立ち上がり波形形状の変化に対する主ジェット3の流速波形の変化について概観した図が図13である。図13では、2つの流速波形を示しており、実線の流速波形が、立ち上がり波形形状の増加傾向を緩慢とした場合であり、破線の流速波形が、立ち上がり波形形状の増加傾向を急激とした場合である。何れも、流出質量M(図4(A)参照)は同じであり、流速のピークタイミングも同じである。ただし、最大流速Umが異なり、また、流速波形の全体形状も異なる。そこで、流速波形の特徴を示す値として半値幅を採用する。図13には、破線の流速波形に対する半値幅FWHMの算出過程の各変数を示している。流速波形の半値幅FWHMは、流速の上昇途中で、定常流の流速Ubgに流速最大振幅△Umの半分の値(△Um/2)を加えた値(以下「半値」という)に達した時点から、流速の下降途中で半値に至った時点までの時間である。 FIG. 13 shows an overview of changes in the flow velocity waveform of the main jet 3 with respect to changes in the rising waveform shape. In FIG. 13, two flow velocity waveforms are shown, where the solid flow velocity waveform is a case where the rising trend of the rising waveform shape is slow, and the broken flow velocity waveform is a case where the rising trend of the rising waveform shape is abrupt. It is. In any case, the outflow mass M (see FIG. 4A) is the same, and the peak timing of the flow velocity is also the same. However, the maximum flow velocity Um is different, and the overall shape of the flow velocity waveform is also different. Therefore, the half width is adopted as a value indicating the characteristics of the flow velocity waveform. In FIG. 13, each variable of the calculation process of the half value width FWHM with respect to the flow velocity waveform of a broken line is shown. The half-value width FWHM of the flow velocity waveform reaches a value (hereinafter referred to as “half-value”) obtained by adding half the value of the maximum velocity amplitude ΔUm (ΔUm / 2) to the steady flow velocity Ubg during the increase of the flow velocity. The time from when the flow velocity is lowered to halfway to the halfway point.
 半値幅FWHMが小さいことは、流速波形が全体として急峻な形状であることを示しており、逆に、半値幅FWHMが大きいことは、流速波形が全体としてなだらかな形状であることを示している。 A small half-value width FWHM indicates that the flow velocity waveform has a steep shape as a whole. Conversely, a large half-value width FWHM indicates that the flow velocity waveform has a gentle shape as a whole. .
 次に、流速波形の半値幅FWHMを変更した場合の切削深さと切削体積のシミュレーションを行ったので、その結果を説明する。 Next, the simulation of the cutting depth and the cutting volume when the half-width FWHM of the flow velocity waveform was changed was performed, and the result will be described.
 シミュレーションは、前記した流速波形のシミュレーションと同様の計算手法で行った。すなわち、パルス液体ジェットは流体であり切削対象物は柔軟な弾性体である。そこで、パルス液体ジェットによる切削対象物の破壊挙動としてシミュレーションした。シミュレーションの計算手法は本実施形態では、柔軟弾性体側に適切な破壊閾値を設定した上で、流体と構造体(ここでは柔軟弾性体)との連成解析(流体・構造練成解析(FSI:Fluid Structure Interaction)を採用したが、例えば有限要素法(FEM:Finite Element Method)を用いた手法や、SPH法(Smoothed Particle Hydrodynamic)などに代表される粒子法を用いた手法、有限要素法と粒子法とを組み合わせた手法、などを用いるとしてもよい。 The simulation was performed by the same calculation method as the simulation of the flow velocity waveform described above. That is, the pulse liquid jet is a fluid, and the object to be cut is a flexible elastic body. Therefore, simulation was performed as the fracture behavior of an object to be cut by a pulsed liquid jet. In this embodiment, the simulation calculation method sets an appropriate fracture threshold value on the flexible elastic body side, and then couples the fluid and the structure (here, the flexible elastic body) (fluid / structure training analysis (FSI)). Adopted Fluid Structure Interaction (FEM), for example, a method using Finite Element Method (FEM), a method using particle method represented by SPH method (Smoothed Particle Particle Hydrodynamic), Finite Element Method and Particle A method combined with a method may be used.
 シミュレーションに際しては、液体噴射開口部61の直径=0.15[mm]、スタンドオフ距離(液体噴射開口部61から切削対象物表面までの距離)=1.0[mm]に設定した。また、切削対象物は、表面が平坦な柔軟弾性体と仮定し、その物理モデルとしてヤング率換算で9[kPa]程度(せん断弾性率換算3[kPa]程度)の弾性率を有するMooney-Rivlin超弾性体とした。破壊閾値は、偏差相当歪み=0.7とした。液体の密度及び柔軟弾性体の密度はともに1[g/cm]とした。 In the simulation, the diameter of the liquid ejection opening 61 was set to 0.15 [mm], and the standoff distance (distance from the liquid ejection opening 61 to the surface of the cutting object) was set to 1.0 [mm]. Further, the cutting object is assumed to be a flexible elastic body having a flat surface, and Mooney-Rivlin having an elastic modulus of about 9 [kPa] in terms of Young's modulus (about 3 [kPa] in terms of shear modulus) as a physical model thereof. A superelastic body was obtained. The destruction threshold was set to deviation equivalent strain = 0.7. Both the density of the liquid and the density of the flexible elastic body were 1 [g / cm 3 ].
 ノズル孔出口に強制付与する切削対象物質に撃ち込む主ジェット3の流速波形L13は、最大流速Umを50[m/s]、継続時間Tを125[μs]、半値幅FWHMを61[μs]とする流速波形を「基準流速波形」とし、継続時間T及び流出質量Mを一定として、様々な半値幅FWHMをとるような流速波形L13を想定した。具体的には、流速波形の半値幅FWHMを39[μs]、48[μs]、61[μs]、74[μs]、85[μs]、124[μs]の6水準を想定した。なお、定常流の流速Ubgは1[m/s]とした。 The flow velocity waveform L13 of the main jet 3 that strikes the cutting target material forcedly applied to the nozzle hole outlet has a maximum flow velocity Um of 50 [m / s], a duration T of 125 [μs], and a half-value width FWHM of 61 [μs]. The flow velocity waveform L13 is assumed to be a “reference flow velocity waveform”, the duration T and the outflow mass M being constant, and various FWHMs FWHM. Specifically, the half-value width FWHM of the flow velocity waveform was assumed to be six levels of 39 [μs], 48 [μs], 61 [μs], 74 [μs], 85 [μs], and 124 [μs]. The steady flow velocity Ubg was 1 [m / s].
 図14(A)~(C)にシミュレーション結果を示す。図14(A)~(C)は横軸を変更しただけで、縦軸は同一である。横軸について説明すると、図14(A)は、基準流速波形の半値幅FWHMrefに対する各流速波形の半値幅FWHMの比RFWHM(=FWHM/FWHMref)であり、図14(B)は、基準流速波形の半値幅の逆数(1/FWHMref)に対する各流速波形の半値幅の逆数(1/FWHM)の比REf(=1/RFWHM)であり、図14(C)は、基準流速波形における流速最大振幅ΔUmrefと半値幅FWHMrefとの比に対する、各流速波形の流速最大振幅ΔUmと半値幅FWHMとの比の、比RAR(=(△Um/FWHM)/(△Umref/FWHMref))である。
 図14(A)~(C)の縦軸は、左軸が切削深さ、右軸が切削体積である。
 なお、図14(A)~(C)において、白抜きプロット点は、基準流速波形の場合を示している。
FIGS. 14A to 14C show simulation results. 14A to 14C, only the horizontal axis is changed, and the vertical axis is the same. The horizontal axis will be described. FIG. 14A shows a ratio RFWHM (= FWHM / FWHMref) of the half width FWHM of each flow velocity waveform to the half width FWHMref of the reference flow velocity waveform, and FIG. 14B shows the reference flow velocity waveform. 14 is a ratio REf (= 1 / RFWHM) of the reciprocal of the half-value width (1 / FWHM) of each flow velocity waveform to the reciprocal of the half-value width (1 / FWHMref), and FIG. The ratio RAR (= (ΔUm / FWHM) / (ΔUmref / FWHMref)) of the ratio of the flow velocity maximum amplitude ΔUm and the half-value width FWHM of each flow velocity waveform to the ratio of ΔUmref and the half-value width FWHMref.
In the vertical axes of FIGS. 14A to 14C, the left axis is the cutting depth and the right axis is the cutting volume.
In FIGS. 14A to 14C, white plot points indicate the case of the reference flow velocity waveform.
 図14(A)によると、比RFWHMの増加に伴い切削深さ及び切削体積が双方共に減少している。また、切削深さよりも切削体積の方がより大きく減少し、その変化幅が大きいことが分かる。図14(B)、(C)によると、比REf及び比RARの増加に伴い切削深さ及び切削体積が双方共に増加している。また、また、切削深さよりも切削体積の方がより大きく増加し、その変化幅が大きいことが分かる。 According to FIG. 14 (A), the cutting depth and the cutting volume both decrease with the increase of the specific RFWHM. Further, it can be seen that the cutting volume is more greatly reduced than the cutting depth, and the change width is large. According to FIGS. 14B and 14C, the cutting depth and the cutting volume both increase as the ratio REf and the ratio RAR increase. Moreover, it turns out that the cutting volume increases more greatly than the cutting depth, and the change width is large.
 すなわち、継続時間T及び流出質量Mを一定としながら、主ジェット3の最大流速Umを大きくして流速波形全体を急峻な形状とすると、切削深さ及び切削体積が大きくなり、最大流速Umを小さくして流速波形全体をなだらなか形状とすると、切削深さ及び切削体積を小さくすることができることが分かる。これは、駆動電圧波形の立ち上がり波形形状として、増加傾向の緩急を変えるように変更することで、切削深さ及び切削体積を変更できることを意味する。 That is, if the maximum flow velocity Um of the main jet 3 is increased and the entire flow velocity waveform has a steep shape while keeping the duration T and the outflow mass M constant, the cutting depth and the cutting volume increase, and the maximum flow velocity Um decreases. When the entire flow velocity waveform is gently shaped, it can be seen that the cutting depth and the cutting volume can be reduced. This means that the cutting depth and the cutting volume can be changed by changing the rising waveform shape of the drive voltage waveform so as to change the rate of increase and decrease.
 次に、前記の流速波形の6水準について、運動量P及びエネルギーEを算出した結果を図15(A)~(C)に示す。図15(A)~(C)の横軸は、それぞれ図14(A)~(C)に対応しており、図15(A)が比RFWHM、図15(B)が比REf、図15(C)が比RARである。縦軸は左軸が運動量P、右軸がエネルギーEである。なお、図15(A)~(C)において、白抜きプロット点は、基準流速波形の場合を示している。 Next, the results of calculating the momentum P and the energy E for the six levels of the flow velocity waveform are shown in FIGS. 15 (A) to (C). The horizontal axes of FIGS. 15A to 15C correspond to FIGS. 14A to 14C, respectively. FIG. 15A is the ratio RFWHM, FIG. 15B is the ratio REf, and FIG. (C) is the ratio RAR. In the vertical axis, the left axis is the momentum P and the right axis is the energy E. In FIGS. 15A to 15C, the white plot points indicate the case of the reference flow velocity waveform.
 図15(A)によると、比RFWHMの増加に伴い運動量P及びエネルギーEが双方共に減少している。また運動量PよりもエネルギーEの方がより大きく減少し、その変化幅が大きいことが分かる。図15(B)、(C)によると、比REf及び比RARの増加に伴い運動量P及びエネルギーEが双方共に増加している。また、また、運動量PよりもエネルギーEの方がより大きく増加し、その変化幅が大きいことが分かる。 According to FIG. 15 (A), both the momentum P and the energy E decrease as the specific RFWHM increases. It can also be seen that the energy E decreases more than the momentum P, and the change width is large. According to FIGS. 15B and 15C, the momentum P and the energy E both increase as the ratio REf and the ratio RAR increase. Further, it can be seen that the energy E increases more than the momentum P, and the change width is large.
 図15(A)~(C)の比RFWHM、比REf、比RARに対する運動量P及びエネルギーEの変化の様子は、図14(A)~(C)に示した比RFWHM、比REf、比RARに対する切削深さ及び切削体積の変化の様子に非常によく対応している。切削深さ及び切削体積が、運動量PやエネルギーEと良く相関することは、前述した通りである。 Changes in the momentum P and the energy E with respect to the ratio RFWHM, the ratio REf, and the ratio RAR in FIGS. 15A to 15C are shown in the ratio RFWHM, the ratio REf, and the ratio RAR shown in FIGS. It corresponds very well to the change of the cutting depth and the cutting volume with respect to. As described above, the cutting depth and the cutting volume correlate well with the momentum P and the energy E.
 以上の通り、駆動電圧波形を定義する制御パラメーターとして、駆動電圧波形の立ち上がり波形形状、より具体的には、緩慢に立ち上げるか、急激に立ち上げるかといった駆動電圧の増加傾向の変化(緩急)を用いることで、切削深さや切削体積を効果的に制御できることが分かった。 As described above, as the control parameter that defines the drive voltage waveform, the rising waveform shape of the drive voltage waveform, more specifically, the change in the increasing tendency of the drive voltage such as whether it rises slowly or suddenly (sudden) It was found that the cutting depth and the cutting volume can be effectively controlled by using.
 駆動電圧波形L11の立ち上がり波形形状は、時刻tを変数とし、ある基準波形をV(t)とすると、例えば次の式(7)で特定することができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、Vpは駆動電圧、Vmは電圧振幅、Tprは立ち上がり時間、Vcは変曲点での駆動電圧、Tprcは変曲点Rでの時刻である(図12参照)。また、Nは「0(ゼロ)」より大きい正の数とする。
The rising waveform shape of the drive voltage waveform L11 can be specified by, for example, the following equation (7), where time t is a variable and a reference waveform is V (t).
Figure JPOXMLDOC01-appb-M000004
Here, Vp is the drive voltage, Vm is the voltage amplitude, Tpr is the rise time, Vc is the drive voltage at the inflection point, and Tpr is the time at the inflection point R (see FIG. 12). N is a positive number larger than “0 (zero)”.
 図12におけるNが、式(7)のNである。N=1とすることで、駆動電圧波形L11の立ち上がり波形形状を基準波形とすることができる。Nを1より大きくすればするほど、駆動電圧波形は基準波形に比べて鋭く立ち上がる。逆に、Nを1より小さく0(ゼロ)に近づければ近づけるほど、駆動電圧波形は基準波形に比べて緩慢に立ち上がり、立ち上がり開始点r0と立ち上がり終了点r1とを結ぶ直線に漸近してゆく。 N in FIG. 12 is N in Expression (7). By setting N = 1, the rising waveform shape of the drive voltage waveform L11 can be used as the reference waveform. The drive voltage waveform rises sharply as the N is larger than 1 compared to the reference waveform. Conversely, as N is made smaller than 1 and closer to 0 (zero), the driving voltage waveform rises more slowly than the reference waveform, and gradually approaches a straight line connecting the rising start point r0 and the rising end point r1. .
 式(7)によれば、変数Nを変更することで、駆動電圧波形L11の立ち上がり波形形状を制御することができることが分かる。但し、これは一例であり、別の関数を用いることとしてもよい。 According to Expression (7), it can be seen that the rising waveform shape of the drive voltage waveform L11 can be controlled by changing the variable N. However, this is an example, and another function may be used.
 また、変数Nの変更方法としては、変数Nそのものを制御対象値とするのではなく、変数Nに相関する別の値を定めて、この別の値を制御対象値としてもよい。例えば、前述の比RFWHM、比REf、比RARに基づいて変数Nを変更する方法が考えられる。また、駆動電圧波形L11の立ち上がり波形において、電圧振幅Vmの10%から90%に達するまでに要する時間として、実効的立ち上がり時間Tpr10_90を定め、1)基準駆動電圧波形の実効的立ち上がり時間Tpr10_90refに対する所望の駆動電圧波形の実効的立ち上がり時間Tpr10_90の比RTpr10_90や、2)1)の比RTpr10_90の逆数である実効立ち上がり周波数比REf10_90、3)基準駆動電圧波形の実効的スルーレート(=Vm10_90/Tpr10_90ref)に対する所望の駆動電圧波形の実効的スルーレート(=Vm10_90/Tpr10_90)の比である実効的スルーレート比RSR10_90、の何れかとしてもよい。Vm10_90とは、電圧振幅Vmの10%から90%までの電圧である。 Further, as a method of changing the variable N, the variable N itself may not be used as the control target value, but another value correlated with the variable N may be determined, and this other value may be used as the control target value. For example, a method is conceivable in which the variable N is changed based on the above-described ratio RFWHM, ratio REf, and ratio RAR. Further, in the rising waveform of the drive voltage waveform L11, an effective rising time Tpr10_90 is determined as a time required to reach 10% to 90% of the voltage amplitude Vm. 1) Desired with respect to the effective rising time Tpr10_90ref of the reference driving voltage waveform The ratio RTpr10_90 of the effective rise time Tpr10_90 of the drive voltage waveform of 2) and the effective rise frequency ratio REf10_90 that is the reciprocal of the ratio RTpr10_90 of 2) 1) with respect to the effective slew rate of the reference drive voltage waveform (= Vm10_90 / Tpr10_90ref) An effective slew rate ratio RSR10_90 that is a ratio of an effective slew rate (= Vm10_90 / Tpr10_90) of a desired drive voltage waveform may be used. Vm10_90 is a voltage from 10% to 90% of the voltage amplitude Vm.
 さて、原理について説明したが、本実施形態では、手術中に術者が行う操作として、少なくとも運動量Pの増減操作と、繰り返し周波数の増減操作とを受け付けることとし、指定された繰り返し周波数で、指定された運動量Pとなるような立ち上がり波形形状を決定し、圧電素子45の駆動を制御することとする。そこで、運動量Pと、繰り返し周波数と、立ち上がり波形形状との対応関係を、予めデータテーブル化しておくこととする。データテーブルに格納する立ち上がり波形形状については、形状そのもののデータであってもよいし、例えば、式(7)のNの値などを、立ち上がり波形形状の指標値とすることができる。なお、繰り返し周波数を一定としてよいのであれば、繰り返し周波数の増減操作を不用として、運動量Pの増減操作のみを受け付けて、立ち上がり波形形状を決定することとしてもよい。 Although the principle has been described, in this embodiment, at least an increase / decrease operation of the momentum P and an increase / decrease operation of the repetition frequency are accepted as operations performed by the operator during the operation, and the operation is performed at the specified repetition frequency. It is assumed that the rising waveform shape so as to achieve the momentum P is determined and the driving of the piezoelectric element 45 is controlled. Therefore, the correspondence relationship between the momentum P, the repetition frequency, and the rising waveform shape is preliminarily created as a data table. The rising waveform shape stored in the data table may be data of the shape itself, and for example, the value of N in Expression (7) can be used as the index value of the rising waveform shape. If the repetition frequency may be constant, the rising waveform shape may be determined by accepting only the increase / decrease operation of the momentum P without using the increase / decrease operation of the repetition frequency.
 また、データテーブルに格納する立ち上がり波形形状の指標値として、例えば、比RFWHM、比REf、比RARや、比RTpr10_90、実効立ち上がり周波数比REf10_90、実効的スルーレート比RSR10_90の何れかとすることとしてもよい。 The index value of the rising waveform shape stored in the data table may be, for example, any one of the ratio RFWHM, the ratio REf, the ratio RAR, the ratio RTpr10_90, the effective rising frequency ratio REf10_90, and the effective slew rate ratio RSR10_90. .
(実施例1)
 先ず、実施例1について説明する。図16は、実施例1における液体噴射制御装置70-1が備える操作パネル80-1を示す図である。図16に示すように、操作パネル80-1には、第1の操作部としての運動量ダイヤル811と、第2の操作部としての繰り返し周波数ダイヤル813と、電源ボタン82と、噴射ボタン84と、ポンプ駆動ボタン85と、液晶モニター87とが配設されている。
Example 1
First, Example 1 will be described. FIG. 16 is a diagram illustrating an operation panel 80-1 provided in the liquid ejection control apparatus 70-1 according to the first embodiment. As shown in FIG. 16, the operation panel 80-1 includes a momentum dial 811 as a first operation unit, a repetition frequency dial 813 as a second operation unit, a power button 82, an injection button 84, A pump drive button 85 and a liquid crystal monitor 87 are provided.
 運動量ダイヤル811は、第1指示値としての運動量Pの指示値(運動量指示値)を入力するためのものであり、例えば「1」~「5」の目盛りが付された5段階のダイヤル位置が選択可能に構成されている。術者は、運動量ダイヤル811のダイヤル位置を切り替えることによって、運動量Pを5段階で増減操作する。ダイヤル各位置には、例えば、対応する目盛りの数値に比例して一定量ずつ大きくなるように予め運動量指示値が割り当てられている。なお、ダイヤル位置の段階数は5段階に限定されるものではなく、「大」「中」「小」の3段階としたり、無段階の調整を可能とする等、適宜設定してよい。 The exercise amount dial 811 is used to input an instruction value (exercise amount instruction value) of the exercise amount P as the first instruction value. For example, the dial number of 5 steps with scales “1” to “5” is provided. It is configured to be selectable. The operator increases or decreases the amount of exercise P in five stages by switching the dial position of the amount of exercise dial 811. For each dial position, for example, a momentum instruction value is assigned in advance so as to increase by a certain amount in proportion to the value of the corresponding scale. The number of steps of the dial position is not limited to five, and may be set as appropriate, such as three steps of “large”, “medium”, and “small”, or enabling stepless adjustment.
 繰り返し周波数ダイヤル813は、第2指示値としての繰り返し周波数の指示値(繰り返し周波数指示値)を入力するためのものであり、運動量ダイヤル811と同様に例えば「1」~「5」の5段階のダイヤル位置が選択可能に構成されている。なお、繰り返し周波数ダイヤル813は、術者が主として運動量Pの増減操作を行うことを想定して、繰り返し周波数ダイヤル813に対する操作の有効/無効を切り替えるためのアクティベートスイッチを備えた構成としてもよい。術者は、繰り返し周波数ダイヤル813のダイヤル位置を切り替えることによって、圧電素子45に繰り返し印加される駆動電圧波形の繰り返し周波数(例えば数十[Hz]~数百[Hz])を5段階で増減操作する。ダイヤル各位置には、例えば、対応する目盛りの数値に比例して一定量ずつ高くなるように予め繰り返し周波数指示値が割り当てられている。なお、ダイヤル位置の段階数は5段階に限定されるものではなく、段数は適宜設定してよい。また、運動量ダイヤル811と異なる段数であってもよい。また、繰り返し周波数を所定値として繰り返し周波数の増減操作を不用とするならば、繰り返し周波数ダイヤル813を設ける必要がない。 The repetition frequency dial 813 is used to input a repetition frequency instruction value (repetition frequency instruction value) as a second instruction value. For example, the repetition frequency dial 813 has five steps of “1” to “5” as in the exercise amount dial 811. The dial position can be selected. Note that the repetition frequency dial 813 may be configured to include an activate switch for switching the validity / invalidity of the operation on the repetition frequency dial 813 on the assumption that the operator mainly performs an increase / decrease operation of the amount of exercise P. The operator switches the dial position of the repetition frequency dial 813 to increase or decrease the repetition frequency (for example, several tens [Hz] to several hundred [Hz]) of the drive voltage waveform repeatedly applied to the piezoelectric element 45 in five steps. To do. For example, a frequency instruction value is repeatedly assigned to each dial position in advance so as to increase by a certain amount in proportion to the value of the corresponding scale. Note that the number of steps of the dial position is not limited to five, and the number of steps may be set as appropriate. Further, the number of steps may be different from that of the momentum dial 811. If the repetition frequency is set to a predetermined value and the increase / decrease operation of the repetition frequency is not required, the repetition frequency dial 813 need not be provided.
 このように、実施例1では、手術中に術者が行う操作を、運動量ダイヤル811を用いた運動量Pの増減操作と、繰り返し周波数ダイヤル813を用いた繰り返し周波数の増減操作の2つとする。そして、電圧振幅及び立ち上がり周波数については固定とし、指定された繰り返し周波数で指定された運動量Pとなるような駆動電圧の立ち上がり波形形状を予めデータテーブル化しておく。データテーブル化する立ち上がり波形形状は、波形形状そのもののデータでもよいし、立ち上がり波形形状を示す指標値(例えば、式(7)のNの値など)としてもよい。 As described above, in the first embodiment, the operation performed by the surgeon during the operation is assumed to be two operations: an increase / decrease operation of the momentum P using the exercise amount dial 811 and an increase / decrease operation of the repetition frequency using the repetition frequency dial 813. Then, the voltage amplitude and the rising frequency are fixed, and the rising waveform shape of the driving voltage that gives the momentum P designated by the designated repetition frequency is made into a data table in advance. The rising waveform shape to be converted into a data table may be data of the waveform shape itself, or may be an index value indicating the rising waveform shape (for example, the value of N in Expression (7)).
 電源ボタン82は、電源のON/OFFを切り替えるためのものである。噴射ボタン84は、パルス液体ジェットの噴射開始及び噴射停止を切り替えるためのものであり、図1に示した噴射ペダル83と同様の機能を提供する。ポンプ駆動ボタン85は、送液ポンプ装置20から液体噴射装置30への液体の供給開始及び供給停止を切り替えるためのものである。 The power button 82 is for switching the power ON / OFF. The injection button 84 is for switching the injection start and the injection stop of the pulsed liquid jet, and provides the same function as the injection pedal 83 shown in FIG. The pump drive button 85 is for switching the start and stop of the supply of liquid from the liquid feed pump device 20 to the liquid ejecting device 30.
 また、操作パネル80-1において、液晶モニター87には、運動量Pすなわちパルス1個分の主ジェット3の運動量[μNs]851と、繰り返し周波数[Hz]853と、これらを乗じた単位時間当たりの運動量、すなわち力[mN]855とを表示した表示画面が表示され、各値(以下包括して「運動量情報」という)の現在値が更新表示される。ここで、主ジェット運動量851に表示されるのは運動量指示値の現在値であり、繰り返し周波数853に表示されるのは繰り返し周波数指示値である。繰り返し周波数ダイヤル813を設けずに、繰り返し周波数を所定値とする場合には、その所定値が繰り返し周波数853に表示される。この表示画面により、手術中、術者は、液体噴射開口部61から噴射されるパルス液体ジェットに係る運動量Pや繰り返し周波数や単位時間当たりの運動量(力)等の現在値を把握しながら作業することができる。 Further, on the operation panel 80-1, the liquid crystal monitor 87 displays the momentum P, that is, the momentum [μNs] 851 of the main jet 3 corresponding to one pulse, the repetition frequency [Hz] 853, and the unit frequency multiplied by these. A display screen displaying the amount of exercise, that is, force [mN] 855 is displayed, and the current value of each value (hereinafter collectively referred to as “exercise amount information”) is updated and displayed. Here, what is displayed in the main jet momentum 851 is the current value of the momentum instruction value, and what is displayed in the repetition frequency 853 is the repetition frequency instruction value. When the repetition frequency is set to a predetermined value without providing the repetition frequency dial 813, the predetermined value is displayed as the repetition frequency 853. Through this display screen, during the operation, the surgeon works while grasping the current values such as the momentum P related to the pulsed liquid jet ejected from the liquid ejection opening 61, the repetition frequency, and the momentum (force) per unit time. be able to.
 なお、手術中の表示画面には、図16のように運動量P、繰り返し周波数、及び単位時間当たりの運動量の3つを全て表示する必要はなく、運動量Pのみを表示する構成としてもよい。また、運動量Pや繰り返し周波数等に加え、現在の立ち上がり周波数(又は立ち上がり時間Tpr)や電圧振幅のうち少なくとも一方、又は両方を併せて表示させてもよい。また、各値の表示は、図16に示した数値の表示によって行う場合に限らず、メーター表示によって行ってもよいし、又はパルス液体ジェットの噴射開始からの増減操作に伴う運動量Pや繰り返し周波数等の変化をグラフ表示することとしてもよい。また、運動量ダイヤル811のダイヤル位置及び繰り返し周波数ダイヤル813のダイヤル位置によって決定される立ち上がり波形形状をグラフ表示したり、立ち上がり波形形状を示す指標値を表示させることとしてもよい。 Note that it is not necessary to display all three of the momentum P, the repetition frequency, and the momentum per unit time as shown in FIG. 16 on the display screen during the operation, and only the momentum P may be displayed. In addition to the momentum P and the repetition frequency, at least one of the current rising frequency (or rising time Tpr) and voltage amplitude, or both may be displayed together. The display of each value is not limited to the display of the numerical values shown in FIG. 16, but may be performed by a meter display, or the momentum P and the repetition frequency associated with the increase / decrease operation from the start of injection of the pulsed liquid jet. Such a change may be displayed in a graph. The rising waveform shape determined by the dial position of the momentum dial 811 and the dial position of the repetition frequency dial 813 may be displayed in a graph, or an index value indicating the rising waveform shape may be displayed.
 図17は、実施例1における液体噴射制御装置の機能構成例を示すブロック図である。図17に示すように、液体噴射制御装置70-1は、操作部71と、表示部73と、制御部75と、記憶部77とを備える。 FIG. 17 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the first embodiment. As shown in FIG. 17, the liquid ejection control apparatus 70-1 includes an operation unit 71, a display unit 73, a control unit 75, and a storage unit 77.
 操作部71は、ボタンスイッチやレバースイッチ、ダイヤルスイッチ、ペダルスイッチ等の各種スイッチ、タッチパネル、トラックパッド、マウス等の入力装置によって実現されるものであり、操作入力に応じた操作信号を制御部75に出力する。この操作部71は、運動量ダイヤル811と、繰り返し周波数ダイヤル813とを備える。また、操作部71は、図示しないが、図1の噴射ペダル83、図16に示した操作パネル80-1上の電源ボタン82や噴射ボタン84、ポンプ駆動ボタン85を含む。 The operation unit 71 is realized by various switches such as a button switch, a lever switch, a dial switch, and a pedal switch, a touch panel, a track pad, a mouse, and other input devices, and sends an operation signal corresponding to the operation input to the control unit 75. Output to. The operation unit 71 includes a momentum dial 811 and a repetition frequency dial 813. Although not shown, the operation unit 71 includes an injection pedal 83 in FIG. 1, a power button 82, an injection button 84, and a pump drive button 85 on the operation panel 80-1 shown in FIG.
 表示部73は、LCD(Liquid Crystal Display)やELディスプレイ(Electroluminescence display)等の表示装置によって実現されるものであり、制御部75から入力される表示信号をもとに図16に示した表示画面等の各種画面を表示する。例えば、図16の液晶モニター87がこれに該当する。 The display unit 73 is realized by a display device such as an LCD (Liquid Crystal Display) or an EL display (Electroluminescence display), and the display screen shown in FIG. 16 based on a display signal input from the control unit 75. Various screens such as are displayed. For example, the liquid crystal monitor 87 shown in FIG.
 制御部75は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等のマイクロプロセッサー、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等の制御装置及び演算装置によって実現されるものであり、液体噴射システム1の各部を統括的に制御する。この制御部75は、圧電素子制御部751と、ポンプ制御部761と、表示制御部としての運動量表示制御部763とを備える。なお、制御部75を構成する各部は、専用のモジュール回路等のハードウェアで構成することとしてもよい。 The control unit 75 is realized by a control device such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or an arithmetic device. And comprehensively controls each part of the liquid ejecting system 1. The control unit 75 includes a piezoelectric element control unit 751, a pump control unit 761, and a momentum display control unit 763 as a display control unit. In addition, each part which comprises the control part 75 is good also as comprising with hardware, such as a dedicated module circuit.
 圧電素子制御部751は、運動量設定部752と、繰り返し周波数設定部753と、電圧振幅設定部754と、立ち上がり周波数設定部755と、立ち上がり波形形状設定部756と備える。このうち、電圧振幅設定部754は、駆動電圧波形の電圧振幅を所定の固定値に設定する機能部である。立ち上がり周波数設定部755は、駆動電圧波形の立ち上がり時間Tprに係る値として、立ち上がり周波数を設定する機能部であり、立ち上がり周波数を所定の固定値に設定する。
 運動量設定部752は、運動量ダイヤル811のダイヤル位置に応じた運動量を設定し、これが、噴射される主ジェット3の運動量の目標値となる。繰り返し周波数設定部753は、繰り返し周波数ダイヤル813のダイヤル位置に応じた繰り返し周波数を設定する。この繰り返し周波数に応じて繰り返し周期Tpが決定される。
The piezoelectric element control unit 751 includes a momentum setting unit 752, a repetition frequency setting unit 753, a voltage amplitude setting unit 754, a rising frequency setting unit 755, and a rising waveform shape setting unit 756. Among these, the voltage amplitude setting unit 754 is a functional unit that sets the voltage amplitude of the drive voltage waveform to a predetermined fixed value. The rising frequency setting unit 755 is a functional unit that sets the rising frequency as a value related to the rising time Tpr of the drive voltage waveform, and sets the rising frequency to a predetermined fixed value.
The momentum setting unit 752 sets a momentum according to the dial position of the momentum dial 811, and this becomes a target value for the momentum of the main jet 3 to be injected. The repetition frequency setting unit 753 sets a repetition frequency according to the dial position of the repetition frequency dial 813. The repetition period Tp is determined according to the repetition frequency.
 立ち上がり波形形状設定部756は、パルス液体ジェットの運動量が、運動量設定部752により設定された運動量となるように立ち上がり波形形状を設定する機能部である。より詳細には、電圧振幅設定部754により設定された電圧振幅を最大駆動電圧とし、立ち上がり時間Tprを立ち上がり周波数設定部755により設定された立ち上がり周波数に応じた値とし、立ち上がり時間Tprを繰り返し周波数設定部753により設定された繰り返し周波数に応じた値とする駆動電圧波形であって、主ジェット3の運動量が、運動量設定部752により設定された運動量となるような駆動電圧波形の立ち上がり波形形状を設定する。 The rising waveform shape setting unit 756 is a functional unit that sets the rising waveform shape so that the momentum of the pulse liquid jet becomes the momentum set by the momentum setting unit 752. More specifically, the voltage amplitude set by the voltage amplitude setting unit 754 is set as the maximum drive voltage, the rising time Tpr is set to a value corresponding to the rising frequency set by the rising frequency setting unit 755, and the rising time Tpr is repeatedly set as the frequency. Drive voltage waveform having a value corresponding to the repetition frequency set by the unit 753, and setting the rising waveform shape of the drive voltage waveform so that the momentum of the main jet 3 becomes the momentum set by the momentum setting unit 752 To do.
 この圧電素子制御部751は、各部753,754,755,756が設定した繰り返し周波数、電圧振幅、立ち上がり周波数、及び立ち上がり波形形状に従って駆動電圧波形を設定し、設定した波形の駆動信号を圧電素子45に印加させる制御を行う。その際、圧電素子制御部751は、繰り返し周波数が繰り返し周波数設定部753により設定された周波数となるように、図10(A)に示した要領で駆動電圧波形の立ち下がり部分の波形形状(立ち下がり波形)を可変に設定する。 The piezoelectric element control unit 751 sets a driving voltage waveform according to the repetition frequency, voltage amplitude, rising frequency, and rising waveform shape set by the respective units 753, 754, 755, and 756, and the driving signal having the set waveform is set to the piezoelectric element 45. The control to be applied to is performed. At that time, the piezoelectric element control unit 751 causes the waveform shape (rising edge) of the driving voltage waveform to fall as shown in FIG. 10A so that the repetition frequency becomes the frequency set by the repetition frequency setting unit 753. Set the falling waveform to be variable.
 ポンプ制御部761は、送液ポンプ装置20に駆動信号を出力して送液ポンプ装置20を駆動する。運動量表示制御部763は、選択中の運動量ダイヤル811のダイヤル位置に割り当てられた運動量指示値(すなわち、運動量Pの現在値)と、選択中の繰り返し周波数ダイヤル813のダイヤル位置に割り当てられた繰り返し周波数指示値(すなわち、繰り返し周波数の現在値)と、これらを乗じて求めた単位時間当たりの運動量とを表示部73に表示する制御を行う。 The pump control unit 761 outputs a drive signal to the liquid feed pump device 20 to drive the liquid feed pump device 20. The momentum display control unit 763 displays the momentum indication value assigned to the dial position of the selected momentum dial 811 (that is, the current value of the momentum P) and the repetition frequency assigned to the dial position of the selected repetition frequency dial 813. Control is performed to display the instruction value (that is, the current value of the repetition frequency) and the amount of exercise per unit time obtained by multiplying them on the display unit 73.
 記憶部77は、ROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)等の各種IC(Integrated Circuit)メモリーやハードディスク等の記憶媒体により実現されるものである。記憶部77には、液体噴射システム1を動作させ、この液体噴射システム1が備える種々の機能を実現するためのプログラムや、このプログラムの実行中に使用されるデータ等が予め記憶され、或いは処理の都度一時的に記憶される。 The storage unit 77 is realized by various IC (Integrated Circuit) memory such as ROM (Read Only Memory), flash ROM, RAM (Random Access Memory), or a storage medium such as a hard disk. In the storage unit 77, a program for operating the liquid ejecting system 1 and realizing various functions of the liquid ejecting system 1, data used during the execution of the program, and the like are stored in advance or processed. Is temporarily stored each time.
 また、記憶部77には、運動量変換テーブル771が記憶される。この運動量変換テーブル771は、所与の運動量となる繰り返し周波数毎の立ち上がり波形形状を定めたデータテーブルである。 In addition, the momentum conversion table 771 is stored in the storage unit 77. This momentum conversion table 771 is a data table that defines the rising waveform shape for each repetition frequency that gives a given momentum.
 図18は、運動量変換テーブル771のデータ構成例を示す図である。図18に示すように、運動量変換テーブル771は、運動量ダイヤル811のダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた運動量指示値と、繰り返し周波数ダイヤル813のダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた繰り返し周波数指示値と、立ち上がり波形形状とが対応付けられたデータテーブルであり、電圧振幅及び立ち上がり周波数を予め定められた値として、指示された運動量Pとなる繰り返し周波数毎の立ち上がり波形形状が設定されている。運動量変換テーブル771に格納される立ち上がり波形形状のデータは形状そのもののデータであってもよいし、形状を示す指標値(例えば式(7)のNの値など)であってもよい。 FIG. 18 is a diagram showing a data configuration example of the momentum conversion table 771. As shown in FIG. 18, the momentum conversion table 771 includes a dial position (scale) of the momentum dial 811, an exercise amount instruction value assigned to the dial position, a dial position (scale) of the repetition frequency dial 813, and the dial. It is a data table in which a repetition frequency instruction value assigned to a position and a rising waveform shape are associated with each other, and a rising edge for each repetition frequency that becomes an instructed momentum P with a voltage amplitude and a rising frequency as predetermined values. The waveform shape is set. The data of the rising waveform shape stored in the momentum conversion table 771 may be data of the shape itself, or may be an index value indicating the shape (for example, a value of N in Expression (7)).
 この運動量変換テーブル771を参照し、立ち上がり波形形状設定部756は、選択中の運動量ダイヤル811及び繰り返し周波数ダイヤル813の各ダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771から読み出して設定するとともに、運動量ダイヤル811及び繰り返し周波数ダイヤル813のうちの何れか一つが操作された場合に、各ダイヤル811,813のダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771から読み出してその設定を更新する。 With reference to the momentum conversion table 771, the rising waveform shape setting unit 756 reads out and sets the rising waveform shape corresponding to the combination of the dial positions of the currently selected momentum dial 811 and the repetition frequency dial 813 from the momentum conversion table 771. In addition, when any one of the momentum dial 811 and the repetition frequency dial 813 is operated, the rising waveform shape corresponding to the combination of the dial positions of the dials 811 and 813 is read from the momentum conversion table 771 and set. Update.
[処理の流れ]
 図19は、パルス液体ジェットの噴射に際して制御部75が行う処理の流れを示すフローチャートである。先ず、ポンプ制御部761が送液ポンプ装置20を駆動し、圧電素子制御部751が圧電素子45を駆動してパルス液体ジェットの噴射を開始する(ステップS111)。このとき、立ち上がり波形形状設定部756は、選択中の運動量ダイヤル811及び繰り返し周波数ダイヤル813のダイヤル位置を取得し、その組合せに対応する立ち上がり波形形状を運動量変換テーブル771から読み出して設定する。また、電圧振幅設定部754は、予め定められた値を電圧振幅に設定し、立ち上がり周波数設定部755は、予め定められた値を立ち上がり周波数に設定する。更に、運動量設定部752は、選択中の運動量ダイヤル811のダイヤル位置に割り当てられた運動量指示値を運動量変換テーブル771から読み出して運動量を設定する。また、繰り返し周波数設定部753は、選択中の繰り返し周波数ダイヤル813のダイヤル位置に割り当てられた繰り返し周波数指示値を運動量変換テーブル771から読み出し、繰り返し周波数を設定する。そして、圧電素子制御部751は、設定された繰り返し周波数、電圧振幅、立ち上がり周波数、及び立ち上がり波形形状に従って駆動電圧波形を設定し、設定した駆動電圧波形の駆動信号を圧電素子45に印加する。
[Process flow]
FIG. 19 is a flowchart showing the flow of processing performed by the control unit 75 when jetting a pulsed liquid jet. First, the pump control unit 761 drives the liquid feed pump device 20, and the piezoelectric element control unit 751 drives the piezoelectric element 45 to start jetting a pulsed liquid jet (step S111). At this time, the rising waveform shape setting unit 756 acquires the dial positions of the currently selected momentum dial 811 and the repetition frequency dial 813, and reads and sets the rising waveform shape corresponding to the combination from the momentum conversion table 771. The voltage amplitude setting unit 754 sets a predetermined value as the voltage amplitude, and the rising frequency setting unit 755 sets a predetermined value as the rising frequency. Further, the momentum setting unit 752 reads the momentum instruction value assigned to the dial position of the currently selected momentum dial 811 from the momentum conversion table 771, and sets the momentum. In addition, the repetition frequency setting unit 753 reads the repetition frequency instruction value assigned to the dial position of the repetition frequency dial 813 being selected from the momentum conversion table 771 and sets the repetition frequency. The piezoelectric element control unit 751 sets a driving voltage waveform according to the set repetition frequency, voltage amplitude, rising frequency, and rising waveform shape, and applies a driving signal having the set driving voltage waveform to the piezoelectric element 45.
 また、運動量表示制御部763が、運動量情報を表示部73に表示させる制御を行う(ステップS113)。例えば、運動量表示制御部763は、運動量ダイヤル811のダイヤル位置に割り当てられた運動量指示値を運動量変換テーブル771から読み出し、ステップS111で読み出した繰り返し周波数指示値との積である単位時間当たりの運動量を算出する。そして、運動量表示制御部763は、これら運動量指示値、繰り返し周波数指示値、及び単位時間当たりの運動量を運動量情報として表示した表示画面を表示部73に表示処理する。なお、単位時間当たりの運動量については、運動量情報の表示制御に際して算出する構成に限らず、運動量変換テーブル771に設定しておく等してそれを読み出す構成としてもよい。 Also, the exercise amount display control unit 763 performs control to display the exercise amount information on the display unit 73 (step S113). For example, the momentum display control unit 763 reads the momentum instruction value assigned to the dial position of the momentum dial 811 from the momentum conversion table 771, and calculates the momentum per unit time that is the product of the repetition frequency instruction value read in step S111. calculate. Then, the exercise amount display control unit 763 displays on the display unit 73 a display screen that displays the exercise amount instruction value, the repetition frequency instruction value, and the exercise amount per unit time as exercise amount information. Note that the amount of exercise per unit time is not limited to the configuration calculated in the exercise amount information display control, but may be configured to be read out by setting it in the exercise amount conversion table 771.
 その後は、制御部75は、噴射ペダル83や噴射ボタン84の操作によってパルス液体ジェットの噴射を終了すると判定するまでの間(ステップS301:NO)、ステップS115において運動量ダイヤル811の操作を監視するとともに、ステップS123において繰り返し周波数ダイヤル813の操作を監視する。 Thereafter, the control unit 75 monitors the operation of the momentum dial 811 in step S115 until it is determined that the injection of the pulsed liquid jet is terminated by the operation of the injection pedal 83 or the injection button 84 (step S301: NO). In step S123, the operation of the frequency dial 813 is monitored repeatedly.
 そして、運動量ダイヤル811が操作された場合には(ステップS115:YES)、立ち上がり波形形状設定部756が、選択されたダイヤル位置と選択中の繰り返し周波数ダイヤル813のダイヤル位置との組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771から読み出し、立ち上がり波形形状の設定を更新する(ステップS117)。その後、圧電素子制御部751は、設定された繰り返し周波数、電圧振幅、立ち上がり周波数、及び立ち上がり波形形状に従って駆動電圧波形を再設定し、再設定した駆動電圧波形の駆動信号を圧電素子45に印加する(ステップS119)。 When the momentum dial 811 is operated (step S115: YES), the rising waveform shape setting unit 756 causes the rising corresponding to the combination of the selected dial position and the dial position of the selected repetition frequency dial 813. The waveform shape is read from the momentum conversion table 771, and the setting of the rising waveform shape is updated (step S117). Thereafter, the piezoelectric element control unit 751 resets the driving voltage waveform according to the set repetition frequency, voltage amplitude, rising frequency, and rising waveform shape, and applies the driving signal having the reset driving voltage waveform to the piezoelectric element 45. (Step S119).
 また、運動量表示制御部763が、選択されたダイヤル位置に割り当てられた運動量指示値を運動量変換テーブル771から読み出し、表示部73の表示を更新する制御を行う(ステップS121)。 Further, the exercise amount display control unit 763 reads out the exercise amount instruction value assigned to the selected dial position from the exercise amount conversion table 771, and performs control to update the display of the display unit 73 (step S121).
 一方、繰り返し周波数ダイヤル813が操作された場合には(ステップS123:YES)、繰り返し周波数設定部753が、選択されたダイヤル位置に割り当てられた繰り返し周波数指示値を運動量変換テーブル771から読み出し、繰り返し周波数の設定を更新する(ステップS125)。続いて、立ち上がり波形形状設定部756が、選択されたダイヤル位置と選択中の運動量ダイヤル811のダイヤル位置との組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771から読み出し、立ち上がり波形形状の設定を更新する(ステップS127)。その後、圧電素子制御部751は、設定された繰り返し周波数、電圧振幅、立ち上がり周波数、及び立ち上がり波形形状に従って駆動電圧波形を再設定し、再設定した駆動電圧波形の駆動信号を圧電素子45に印加する(ステップS129)。 On the other hand, when the repetition frequency dial 813 is operated (step S123: YES), the repetition frequency setting unit 753 reads the repetition frequency instruction value assigned to the selected dial position from the momentum conversion table 771, and repeats the repetition frequency. The setting is updated (step S125). Subsequently, the rising waveform shape setting unit 756 reads the rising waveform shape corresponding to the combination of the selected dial position and the dial position of the selected momentum dial 811 from the momentum conversion table 771, and updates the setting of the rising waveform shape. (Step S127). Thereafter, the piezoelectric element control unit 751 resets the driving voltage waveform according to the set repetition frequency, voltage amplitude, rising frequency, and rising waveform shape, and applies the driving signal having the reset driving voltage waveform to the piezoelectric element 45. (Step S129).
 また、運動量表示制御部763が、選択されたダイヤル位置に割り当てられた繰り返し周波数を運動量変換テーブル771から読み出し、表示部73の表示を更新する制御を行う(ステップS131)。 Also, the momentum display control unit 763 reads the repetition frequency assigned to the selected dial position from the momentum conversion table 771, and performs control to update the display on the display unit 73 (step S131).
 この実施例1によれば、各運動量に対応する立ち上がり波形形状を予め設定しておき、この対応関係に基づいて、操作感覚通りの切削深さ及び切削体積を達成するのに最適な立ち上がり波形形状を設定して圧電素子45の駆動電圧波形を制御することができる。例えば、運動量ダイヤル811を1目盛り動かせば、目盛り間隔に相当する分だけ運動量Pが変化するため、ユーザーの意図や操作感覚に見合った切削深さや切削体積を実現することができ、使い勝手を向上させることができる。 According to the first embodiment, a rising waveform shape corresponding to each momentum is set in advance, and an optimal rising waveform shape is achieved to achieve the cutting depth and the cutting volume according to the operational sense based on this correspondence. To control the drive voltage waveform of the piezoelectric element 45. For example, if the momentum dial 811 is moved by one scale, the momentum P changes by an amount corresponding to the scale interval, so that it is possible to realize a cutting depth and a cutting volume that match the user's intention and operational feeling, and improve usability. be able to.
 また、運動量Pが運動量指示値となるように繰り返し周波数を増減させることができる。したがって、例えば、運動量ダイヤル811の目盛りは動かさずに繰り返し周波数ダイヤル813の目盛りだけを動かせば、パルス1個分のパルス液体ジェットによる切削深さや切削体積を一定に保ったままで、繰り返し周波数に比例するような意図通りの切削スピードに調整でき、使い勝手の向上が図れる。 Further, the frequency can be repeatedly increased or decreased so that the momentum P becomes the momentum instruction value. Therefore, for example, if only the scale of the frequency dial 813 is moved without moving the scale of the momentum dial 811, the cutting depth and the cutting volume by one pulse of the pulse liquid jet are kept constant and proportional to the repetition frequency. It is possible to adjust the cutting speed as intended and improve usability.
(実施例2)
 次に、実施例2について説明する。実施例1と同様の部分には同一の符号を付し、実施例1と異なる点を中心に説明する。図20は、実施例2における液体噴射制御装置70-2が備える操作パネル80-2を示す図である。図20に示すように、操作パネル80-2には、運動量ダイヤル811と、繰り返し周波数ダイヤル813と、第3の操作部としての電圧振幅ダイヤル815aと、電源ボタン82と、噴射ボタン84と、ポンプ駆動ボタン85と、液晶モニター87とが配設されている。
(Example 2)
Next, Example 2 will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and different points from the first embodiment will be mainly described. FIG. 20 is a diagram illustrating an operation panel 80-2 included in the liquid ejection control apparatus 70-2 according to the second embodiment. As shown in FIG. 20, the operation panel 80-2 includes a momentum dial 811, a repetition frequency dial 813, a voltage amplitude dial 815a as a third operation unit, a power button 82, an injection button 84, a pump A drive button 85 and a liquid crystal monitor 87 are provided.
 電圧振幅ダイヤル815aは、第3指示値としての電圧振幅の指示値(電圧振幅指示値)を入力するためのものであり、例えば「1」~「5」の目盛りが付された5段階のダイヤル位置が選択可能に構成されている。この電圧振幅ダイヤル815aも、繰り返し周波数ダイヤル813と同様にアクティベートスイッチを備えた構成としてもよい。術者は、電圧振幅ダイヤル815aのダイヤル位置を切り替えることによって、電圧振幅を5段階で増減操作する。ダイヤル各位置には、対応する目盛りの数値に比例して一定量ずつ大きくなるように予め電圧振幅指示値が割り当てられている。なお、ダイヤル位置の段階数は5段階に限定されるものではなく、段数は適宜設定してよい。また、運動量ダイヤル811や繰り返し周波数ダイヤル813と異なる段数であってもよい。 The voltage amplitude dial 815a is used to input a voltage amplitude instruction value (voltage amplitude instruction value) as a third instruction value. For example, the dial is a five-stage dial with scales “1” to “5”. The position is configured to be selectable. The voltage amplitude dial 815a may also be configured to include an activate switch, similar to the repetition frequency dial 813. The operator increases or decreases the voltage amplitude in five steps by switching the dial position of the voltage amplitude dial 815a. A voltage amplitude instruction value is assigned in advance to each dial position so as to increase by a certain amount in proportion to the value of the corresponding scale. Note that the number of steps of the dial position is not limited to five, and the number of steps may be set as appropriate. Further, the number of steps may be different from that of the momentum dial 811 and the repetition frequency dial 813.
 このように、実施例2では、手術中に術者が行う操作を、運動量ダイヤル811を用いた運動量Pの増減操作と、繰り返し周波数ダイヤル813を用いた繰り返し周波数の増減操作と、電圧振幅ダイヤル815aを用いた電圧振幅の増減操作の3つとし、運動量Pと、繰り返し周波数と、電圧振幅と、立ち上がり波形形状との対応関係を予めデータテーブル化しておく。 As described above, in the second embodiment, the operations performed by the surgeon during the operation are the operation amount increase / decrease operation using the exercise amount dial 811, the repetition frequency increase / decrease operation using the repetition frequency dial 813, and the voltage amplitude dial 815a. The voltage amplitude increase / decrease operation using the three is used, and the correspondence between the momentum P, the repetition frequency, the voltage amplitude, and the rising waveform shape is made into a data table in advance.
 図21は、実施例2における液体噴射制御装置の機能構成例を示すブロック図である。図21に示すように、液体噴射制御装置70-2は、実施例1の液体噴射制御装置70に対して、操作部71が電圧振幅ダイヤル815aを有している点と、圧電素子制御部751aが有する電圧振幅設定部754a及び立ち上がり波形形状設定部756aと、記憶部77が有する運動量変換テーブル771aとが異なる。 FIG. 21 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the second embodiment. As shown in FIG. 21, the liquid ejection control device 70-2 is different from the liquid ejection control device 70 of the first embodiment in that the operation unit 71 has a voltage amplitude dial 815a and the piezoelectric element control unit 751a. The voltage amplitude setting unit 754a and the rising waveform shape setting unit 756a included in the storage unit 77 are different from the momentum conversion table 771a included in the storage unit 77.
 電圧振幅設定部754aは、電圧振幅ダイヤル815aのダイヤル位置に応じた電圧振幅を、運動量変換テーブル771aから読み出して設定する。
 立ち上がり波形形状設定部756aは、パルス液体ジェットの運動量が、運動量設定部752により設定された運動量となるように立ち上がり波形形状を設定する点では実施例1と同様であるが、運動量変換テーブル771aを参照して設定する点で異なる。
The voltage amplitude setting unit 754a reads and sets the voltage amplitude corresponding to the dial position of the voltage amplitude dial 815a from the momentum conversion table 771a.
The rising waveform shape setting unit 756a is similar to the first embodiment in that the rising waveform shape is set so that the momentum of the pulse liquid jet becomes the momentum set by the momentum setting unit 752, but the momentum conversion table 771a is set. It differs in that it is set with reference.
 図22は、実施例2における運動量変換テーブル771aのデータ構成例を示す図である。図22に示すように、運動量変換テーブル771aは、運動量ダイヤル811のダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた運動量指示値と、繰り返し周波数ダイヤル813のダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた繰り返し周波数指示値と、電圧振幅ダイヤル815aのダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた電圧振幅指示値と、立ち上がり波形形状とが対応付けられたデータテーブルである。立ち上がり周波数を予め定められた値として、指示された運動量Pとなる立ち上がり波形形状が、繰り返し周波数及び電圧振幅の組み合わせと対応付けて設定されたデータテーブルである。 FIG. 22 is a diagram illustrating a data configuration example of the momentum conversion table 771a according to the second embodiment. As shown in FIG. 22, the momentum conversion table 771a includes the dial position (scale) of the momentum dial 811, the momentum indication value assigned to the dial position, the dial position (scale) of the repetition frequency dial 813, and the dial. It is a data table in which the repetition frequency instruction value assigned to the position, the dial position (scale) of the voltage amplitude dial 815a, the voltage amplitude instruction value assigned to the dial position, and the rising waveform shape are associated with each other. The rising waveform is a data table in which a rising waveform shape having an instructed momentum P is set in association with a combination of a repetition frequency and a voltage amplitude, with the rising frequency as a predetermined value.
 この運動量変換テーブル771aを参照し、立ち上がり波形形状設定部756aは、選択中の運動量ダイヤル811、繰り返し周波数ダイヤル813、及び電圧振幅ダイヤル815aの各ダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771aから読み出して設定するとともに、運動量ダイヤル811、繰り返し周波数ダイヤル813、及び電圧振幅ダイヤル815aのうちの何れか一つが操作された場合に、各ダイヤル811,813,815aのダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771aから読み出してその設定を更新する。 With reference to this momentum conversion table 771a, the rising waveform shape setting unit 756a determines the rising waveform shape corresponding to each dial position combination of the currently selected momentum dial 811, the repetition frequency dial 813, and the voltage amplitude dial 815a as the momentum conversion table. 771a is read and set, and when any one of the momentum dial 811, the repetition frequency dial 813, and the voltage amplitude dial 815a is operated, it corresponds to a combination of dial positions of the dials 811, 813, and 815a. The rising waveform shape is read from the momentum conversion table 771a and the setting is updated.
[処理の流れ]
 図23は、実施例2において、パルス液体ジェットの噴射に際して制御部75aが行う処理の流れを示すフローチャートである。なお、図19と同様の処理工程には、同一の符号を付している。
[Process flow]
FIG. 23 is a flowchart illustrating a flow of processing performed by the control unit 75a when jetting a pulsed liquid jet in the second embodiment. In addition, the same code | symbol is attached | subjected to the processing process similar to FIG.
 実施例2では、ステップS111において、電圧振幅設定部754aが、選択中の電圧振幅ダイヤル815aのダイヤル位置に割り当てられた電圧振幅指示値を運動量変換テーブル771aから読み出し、電圧振幅を設定する。 In Example 2, in step S111, the voltage amplitude setting unit 754a reads the voltage amplitude instruction value assigned to the dial position of the selected voltage amplitude dial 815a from the momentum conversion table 771a, and sets the voltage amplitude.
 また、ステップS233において電圧振幅ダイヤル815aの操作を監視する。そして、電圧振幅ダイヤル815aが操作された場合には(ステップS233:YES)、電圧振幅設定部754aが、選択されたダイヤル位置に割り当てられた電圧振幅指示値を運動量変換テーブル771aから読み出し、電圧振幅の設定を更新する(ステップS235)。続いて、立ち上がり波形形状設定部756aが、選択されたダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771aから読み出し、立ち上がり波形形状の設定を更新する(ステップS237)。その後、圧電素子制御部751aは、設定した繰り返し周波数、電圧振幅及び立ち上がり波形形状に従って駆動電圧波形を再設定し、設定した駆動電圧波形の駆動信号を圧電素子45に印加する(ステップS239)。 In step S233, the operation of the voltage amplitude dial 815a is monitored. When the voltage amplitude dial 815a is operated (step S233: YES), the voltage amplitude setting unit 754a reads the voltage amplitude instruction value assigned to the selected dial position from the momentum conversion table 771a, and the voltage amplitude Is updated (step S235). Subsequently, the rising waveform shape setting unit 756a reads the rising waveform shape corresponding to the selected combination of dial positions from the momentum conversion table 771a, and updates the setting of the rising waveform shape (step S237). Thereafter, the piezoelectric element control unit 751a resets the drive voltage waveform according to the set repetition frequency, voltage amplitude, and rising waveform shape, and applies the drive signal having the set drive voltage waveform to the piezoelectric element 45 (step S239).
 この実施例2によれば、予め運動量Pと、繰り返し周波数と、電圧振幅と、立ち上がり波形形状との対応関係を設定しておき、電圧振幅を増減させても、運動量Pが運動量指示値となるように圧電素子45の駆動電圧波形を制御することができる。 According to the second embodiment, even if the correspondence between the momentum P, the repetition frequency, the voltage amplitude, and the rising waveform shape is set in advance and the voltage amplitude is increased or decreased, the momentum P becomes the momentum instruction value. Thus, the drive voltage waveform of the piezoelectric element 45 can be controlled.
(実施例3)
 次に、実施例3について説明する。実施例2と同様の部分には同一の符号を付し、実施例2と異なる点を中心に説明する。図24は、実施例2における液体噴射制御装置70-3が備える操作パネル80-3を示す図である。図24に示すように、操作パネル80-3には、運動量ダイヤル811と、繰り返し周波数ダイヤル813と、電圧振幅ダイヤル815aと、第4の操作部としての立ち上がり周波数ダイヤル816bと、電源ボタン82と、噴射ボタン84と、ポンプ駆動ボタン85と、液晶モニター87とが配設されている。
(Example 3)
Next, Example 3 will be described. The same parts as those in the second embodiment are denoted by the same reference numerals, and different points from the second embodiment will be mainly described. FIG. 24 is a diagram illustrating an operation panel 80-3 included in the liquid ejection control apparatus 70-3 according to the second embodiment. As shown in FIG. 24, the operation panel 80-3 includes a momentum dial 811, a repetition frequency dial 813, a voltage amplitude dial 815a, a rising frequency dial 816b as a fourth operation unit, a power button 82, An injection button 84, a pump drive button 85, and a liquid crystal monitor 87 are provided.
 立ち上がり周波数ダイヤル816bは、第4指示値としての立ち上がり周波数の指示値(立ち上がり周波数指示値)を入力するためのものであり、例えば「1」~「5」の目盛りが付された5段階のダイヤル位置が選択可能に構成されている。この立ち上がり周波数ダイヤル816bも、繰り返し周波数ダイヤル813と同様にアクティベートスイッチを備えた構成としてもよい。術者は、立ち上がり周波数ダイヤル816bのダイヤル位置を切り替えることによって、電圧振幅を5段階で増減操作する。ダイヤル各位置には、対応する目盛りの数値に比例して一定量ずつ大きくなるように予め立ち上がり周波数指示値が割り当てられている。なお、ダイヤル位置の段階数は5段階に限定されるものではなく、段数は適宜設定してよい。また、運動量ダイヤル811や繰り返し周波数ダイヤル813、電圧振幅ダイヤル815aと異なる段数であってもよい。 The rising frequency dial 816b is used to input a rising frequency instruction value (rising frequency instruction value) as a fourth instruction value. For example, the dial is a five-stage dial with scales “1” to “5”. The position is configured to be selectable. The rising frequency dial 816b may also be configured to include an activate switch in the same manner as the repeated frequency dial 813. The operator increases or decreases the voltage amplitude in five stages by switching the dial position of the rising frequency dial 816b. Each dial position is assigned a rising frequency instruction value in advance so as to increase by a certain amount in proportion to the value of the corresponding scale. Note that the number of steps of the dial position is not limited to five, and the number of steps may be set as appropriate. Further, the number of steps may be different from that of the momentum dial 811, the repetition frequency dial 813, and the voltage amplitude dial 815a.
 このように、実施例3では、手術中に術者が行う操作を、運動量ダイヤル811を用いた運動量Pの増減操作と、繰り返し周波数ダイヤル813を用いた繰り返し周波数の増減操作と、電圧振幅ダイヤル815aを用いた電圧振幅の増減操作と、立ち上がり周波数ダイヤル816bを用いた電圧振幅の増減操作との4つとし、運動量Pと、繰り返し周波数と、電圧振幅と、立ち上がり周波数と、立ち上がり波形形状との対応関係を予めデータテーブル化しておく。 As described above, in the third embodiment, operations performed by the surgeon during the operation include the operation amount P increase / decrease operation using the exercise amount dial 811, the repetition frequency increase / decrease operation using the repetition frequency dial 813, and the voltage amplitude dial 815 a. 4 is a voltage amplitude increase / decrease operation using the rising frequency dial 816b and a voltage amplitude increase / decrease operation using the rising frequency dial 816b, and the correspondence between the momentum P, the repetition frequency, the voltage amplitude, the rising frequency, and the rising waveform shape. The relationship is made into a data table in advance.
 図25は、実施例3における液体噴射制御装置の機能構成例を示すブロック図である。図25に示すように、液体噴射制御装置70-3は、実施例2の液体噴射制御装置70-2に対して、操作部71が立ち上がり周波数ダイヤル816bを有している点と、圧電素子制御部751bが有する立ち上がり周波数設定部755b及び立ち上がり波形形状設定部756bと、記憶部77が有する運動量変換テーブル771bとが異なる。 FIG. 25 is a block diagram illustrating a functional configuration example of the liquid ejection control apparatus according to the third embodiment. As shown in FIG. 25, the liquid ejection control device 70-3 is different from the liquid ejection control device 70-2 in the second embodiment in that the operation unit 71 has a rising frequency dial 816b and the piezoelectric element control. The rising frequency setting unit 755b and the rising waveform shape setting unit 756b included in the unit 751b are different from the momentum conversion table 771b included in the storage unit 77.
 立ち上がり周波数設定部755bは、立ち上がり周波数ダイヤル816bのダイヤル位置に応じた立ち上がり周波数を、運動量変換テーブル771bから読み出して設定する。
 立ち上がり波形形状設定部756bは、パルス液体ジェットの運動量が、運動量設定部752により設定された運動量となるように立ち上がり波形形状を設定する点では実施例1,2と同様であるが、運動量変換テーブル771bを参照して設定する点で異なる。
The rising frequency setting unit 755b reads out and sets the rising frequency corresponding to the dial position of the rising frequency dial 816b from the momentum conversion table 771b.
The rising waveform shape setting unit 756b is the same as the first and second embodiments in that the rising waveform shape is set so that the momentum of the pulse liquid jet becomes the momentum set by the momentum setting unit 752, but the momentum conversion table. 771b is different in setting.
 図26は、実施例3における運動量変換テーブル771bのデータ構成例を示す図である。図26に示すように、運動量変換テーブル771bは、運動量ダイヤル811のダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた運動量指示値と、繰り返し周波数ダイヤル813のダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた繰り返し周波数指示値と、電圧振幅ダイヤル815aのダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた電圧振幅指示値と、立ち上がり周波数ダイヤル816bのダイヤル位置(目盛り)と、そのダイヤル位置に割り当てられた立ち上がり周波数指示値と、立ち上がり波形形状とが対応付けられたデータテーブルである。指示された運動量Pとなる立ち上がり波形形状が、繰り返し周波数、電圧振幅及び立ち上がり周波数の組み合わせと対応付けて設定されたデータテーブルである。 FIG. 26 is a diagram illustrating a data configuration example of the momentum conversion table 771b according to the third embodiment. As shown in FIG. 26, the momentum conversion table 771b includes a dial position (scale) of the momentum dial 811, a momentum indication value assigned to the dial position, a dial position (scale) of the repetition frequency dial 813, and the dial. The repetition frequency indication value assigned to the position, the dial position (scale) of the voltage amplitude dial 815a, the voltage amplitude indication value assigned to the dial position, the dial position (scale) of the rising frequency dial 816b, and the dial It is a data table in which a rising frequency instruction value assigned to a position is associated with a rising waveform shape. It is a data table in which a rising waveform shape that is an instructed amount of exercise P is set in association with a combination of a repetition frequency, a voltage amplitude, and a rising frequency.
 この運動量変換テーブル771bを参照し、立ち上がり波形形状設定部756bは、選択中の運動量ダイヤル811、繰り返し周波数ダイヤル813、電圧振幅ダイヤル815a、及び立ち上がり周波数ダイヤル816bの各ダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771aから読み出して設定する。また、運動量ダイヤル811、繰り返し周波数ダイヤル813、電圧振幅ダイヤル815a、及び立ち上がり周波数ダイヤル816bのうちの何れか一つが操作された場合に、各ダイヤル811,813,815a,816bのダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771bから読み出してその設定を更新する。 With reference to this momentum conversion table 771b, the rising waveform shape setting unit 756b has a rising waveform corresponding to a combination of dial positions of the selected momentum dial 811, repetitive frequency dial 813, voltage amplitude dial 815a, and rising frequency dial 816b. The shape is read from the momentum conversion table 771a and set. Also, when any one of the momentum dial 811, the repetition frequency dial 813, the voltage amplitude dial 815a, and the rising frequency dial 816b is operated, it corresponds to the combination of dial positions of the dials 811, 813, 815a, and 816b. The rising waveform shape to be read is read from the momentum conversion table 771b and the setting is updated.
[処理の流れ]
 図27は、実施例3において、パルス液体ジェットの噴射に際して制御部75bが行う処理の流れを示すフローチャートである。なお、図23と同様の処理工程には、同一の符号を付している。
[Process flow]
FIG. 27 is a flowchart illustrating a flow of processing performed by the control unit 75b when jetting a pulsed liquid jet in the third embodiment. In addition, the same code | symbol is attached | subjected to the processing process similar to FIG.
 実施例3では、ステップS111において、立ち上がり周波数設定部755bが、選択中の立ち上がり周波数ダイヤル816bのダイヤル位置に割り当てられた立ち上がり周波数指示値を運動量変換テーブル771bから読み出し、立ち上がり周波数を設定する。 In Example 3, in step S111, the rising frequency setting unit 755b reads the rising frequency instruction value assigned to the dial position of the selected rising frequency dial 816b from the momentum conversion table 771b, and sets the rising frequency.
 また、ステップS243において立ち上がり周波数ダイヤル816bの操作を監視する。そして、立ち上がり周波数ダイヤル816bが操作された場合には(ステップS243:YES)、立ち上がり周波数設定部755bが、選択されたダイヤル位置に割り当てられた立ち上がり周波数指示値を運動量変換テーブル771bから読み出し、立ち上がり周波数の設定を更新する(ステップS245)。続いて、立ち上がり波形形状設定部756bが、選択されたダイヤル位置の組み合わせに対応する立ち上がり波形形状を運動量変換テーブル771bから読み出し、立ち上がり波形形状の設定を更新する(ステップS247)。その後、圧電素子制御部751bは、設定した繰り返し周波数、電圧振幅及び立ち上がり波形形状に従って駆動電圧波形を再設定し、設定した駆動電圧波形の駆動信号を圧電素子45に印加する(ステップS249)。 In step S243, the operation of the rising frequency dial 816b is monitored. When the rising frequency dial 816b is operated (step S243: YES), the rising frequency setting unit 755b reads the rising frequency instruction value assigned to the selected dial position from the momentum conversion table 771b, and the rising frequency. Is updated (step S245). Subsequently, the rising waveform shape setting unit 756b reads the rising waveform shape corresponding to the selected combination of dial positions from the momentum conversion table 771b, and updates the setting of the rising waveform shape (step S247). Thereafter, the piezoelectric element control unit 751b resets the drive voltage waveform according to the set repetition frequency, voltage amplitude, and rising waveform shape, and applies the drive signal of the set drive voltage waveform to the piezoelectric element 45 (step S249).
 この実施例3によれば、予め運動量Pと、繰り返し周波数と、電圧振幅と、立ち上がり周波数と、立ち上がり波形形状との対応関係を設定しておき、立ち上がり周波数を増減させても、運動量Pが運動量指示値となるように圧電素子45の駆動電圧波形を制御することができる。 According to the third embodiment, the correspondence between the momentum P, the repetition frequency, the voltage amplitude, the rising frequency, and the rising waveform shape is set in advance, and even if the rising frequency is increased or decreased, the momentum P is the momentum. The drive voltage waveform of the piezoelectric element 45 can be controlled so as to be the indicated value.
(変形例)
 なお、上記の実施形態では、運動量ダイヤル811によって運動量Pを段階的に増減操作する場合や、繰り返し周波数ダイヤル813によって繰り返し周波数を段階的に増減操作する場合、電圧振幅ダイヤル815aによって電圧振幅を段階的に増減操作する場合、立ち上がり周波数ダイヤル816bによって立ち上がり周波数を段階的に増減操作する場合を説明した。これに対し、各ダイヤル811,813,815a,816bは、目盛りの付されたダイヤル位置間(中間的位置)においても運動量指示値や繰り返し周波数指示値、電圧振幅指示値、立ち上がり周波数指示値を無段階に調整可能なもので構成してもよい。
(Modification)
In the above embodiment, when the momentum P is increased / decreased stepwise by the momentum dial 811 or when the repetition frequency is increased / decreased stepwise by the repetition frequency dial 813, the voltage amplitude is stepped by the voltage amplitude dial 815 a. In the case of performing the increase / decrease operation, the case where the rise frequency is increased / decreased stepwise by the rise frequency dial 816b has been described. On the other hand, the dials 811, 813, 815a, and 816b have no momentum instruction value, repeated frequency instruction value, voltage amplitude instruction value, and rising frequency instruction value even between dial positions with a scale (intermediate position). You may comprise by what can be adjusted to a step.
 また、上記した実施形態では、図10(A)を参照して説明したように、繰り返し周波数を増減するために立ち下がり形状を可変に設定することとした。これに対し、駆動電圧波形の全体を時間軸方向に単純に詰めたり離したりすることによって繰り返し周波数を増減するようにしてもよい。 In the above-described embodiment, as described with reference to FIG. 10A, the falling shape is variably set in order to increase or decrease the repetition frequency. On the other hand, the repetition frequency may be increased or decreased by simply closing or separating the entire drive voltage waveform in the time axis direction.
 また、上記の実施形態では、立ち上がり時間指標値として立ち上がり周波数を例示した。これに対し、立ち上がり周波数に代えて、立ち上がり時間Tprを用いるようにしてもよい。 In the above embodiment, the rising frequency is exemplified as the rising time index value. On the other hand, instead of the rising frequency, the rising time Tpr may be used.
 また、運動量ダイヤル811や繰り返し周波数ダイヤル813、電圧振幅ダイヤル815a、立ち上がり周波数ダイヤル816bは、ダイヤルスイッチによって実現する場合に限らず、例えば、レバースイッチやボタンスイッチ等により実現してもよい。また、表示部73をタッチパネルとして、ソフトウェアによるキースイッチ等により実現してもよい。この場合、ユーザーは、表示部73であるタッチパネルをタッチ操作して、運動量指示値や繰り返し周波数指示値、電圧振幅指示値を入力する。 Further, the momentum dial 811, the repetition frequency dial 813, the voltage amplitude dial 815 a, and the rising frequency dial 816 b are not limited to being realized by a dial switch, and may be realized by, for example, a lever switch or a button switch. Further, the display unit 73 may be realized as a touch panel by a software key switch or the like. In this case, the user touches the touch panel which is the display unit 73 and inputs an exercise amount instruction value, a repetition frequency instruction value, and a voltage amplitude instruction value.
 また、上記の実施例2では、運動量及び繰り返し周波数に加えて、電圧振幅をダイヤル操作で可変設定可能な例を説明したが、繰り返し周波数については予め定められた値として可変設定を行わない構成とすることとしてもよい。 In the second embodiment, the example in which the voltage amplitude can be variably set by dial operation in addition to the momentum and the repetition frequency has been described. However, the repetition frequency is not variably set as a predetermined value. It is good to do.
 同様に、実施例3では、運動量、繰り返し周波数及び電圧振幅に加えて、立ち上がり周波数をダイヤル操作で可変設定可能な例を説明したが、繰り返し周波数及び電圧振幅の一方又は両方を予め定められた値として可変設定を行わない構成とすることとしてもよい。 Similarly, in the third embodiment, the example in which the rising frequency can be variably set by dial operation in addition to the momentum, the repetition frequency, and the voltage amplitude has been described. However, one or both of the repetition frequency and the voltage amplitude are predetermined values. As a configuration, variable setting is not performed.
 また、上記の実施形態では、運動量が2[nNs]以上2[mNs]以下、又は、運動エネルギーが2[nJ]以上200[mJ]以下のパルス液体ジェットを噴射する構成を開示したが、より好ましくは、運動量が20[nNs]以上200[μNs]以下、又は、運動エネルギーが40[nJ]以上10[mJ]以下のパルス液体ジェットを噴射する構成が好ましい。こうすることで、生体組織やゲル材料を好適に切削することができる。 In the above embodiment, a configuration has been disclosed in which a pulse liquid jet having a momentum of 2 [nNs] to 2 [mNs] or less or a kinetic energy of 2 [nJ] to 200 [mJ] is ejected. Preferably, a configuration in which a pulse liquid jet having a momentum of 20 [nNs] to 200 [μNs] or a kinetic energy of 40 [nJ] to 10 [mJ] is ejected. By carrying out like this, a biological tissue and gel material can be cut suitably.
 また、上記の実施形態では、開始点r0の駆動電圧を0(ゼロ)として説明したが、0(ゼロ)でなくてもよい。例えば、一定電圧のバイアスの下、駆動電圧波形を生成・印加する形態であれば、そのバイアス電圧を開始点r0の電圧とすることができる。 In the above embodiment, the driving voltage at the start point r0 is described as 0 (zero), but it may not be 0 (zero). For example, if the drive voltage waveform is generated and applied under a constant voltage bias, the bias voltage can be used as the voltage at the start point r0.
 1…液体噴射システム、30…液体噴射装置、70,70-1,70-2…液体噴射制御装置、811…運動量ダイヤル、813…繰り返し周波数ダイヤル、815a…電圧振幅ダイヤル、816b…立ち上がり周波数ダイヤル、73…表示部、75,75a,75b…制御部、751,751a,751b…圧電素子制御部、752…運動量設定部、753…繰り返し周波数設定部、754,754a…電圧振幅設定部、755,755b…立ち上がり周波数設定部、756,756a,756b…立ち上がり波形形状設定部、771,771a,771b…運動量変換テーブル DESCRIPTION OF SYMBOLS 1 ... Liquid ejecting system, 30 ... Liquid ejecting apparatus, 70, 70-1, 70-2 ... Liquid ejecting control apparatus, 811 ... Momentum dial, 813 ... Repeat frequency dial, 815a ... Voltage amplitude dial, 816b ... Rising frequency dial, 73: Display unit, 75, 75a, 75b ... Control unit, 751, 751a, 751b ... Piezoelectric element control unit, 752 ... Momentum setting unit, 753 ... Repeat frequency setting unit, 754, 754a ... Voltage amplitude setting unit, 755, 755b ... rise frequency setting unit, 756, 756a, 756b ... rise waveform shape setting unit, 771, 771a, 771b ... momentum conversion table

Claims (9)

  1.  所与の駆動電圧波形を圧電素子に印加し、該圧電素子を用いて液体をパルス状に噴射する液体噴射装置からのパルス液体ジェットの繰り返しの噴射を制御する液体噴射制御装置であって、
     前記パルス液体ジェットの運動量に係る第1指示値を入力するための第1の操作部と、
     前記駆動電圧波形を制御する制御部であって、前記運動量が前記第1指示値となるように当該駆動電圧波形の立ち上がりに係る波形形状(以下「立ち上がり波形形状」という)を変更する制御部と、
     を備えた液体噴射制御装置。
    A liquid ejection control device that applies a given drive voltage waveform to a piezoelectric element and controls repeated ejection of a pulsed liquid jet from a liquid ejection device that ejects liquid in a pulsed manner using the piezoelectric element,
    A first operation unit for inputting a first instruction value relating to the momentum of the pulsed liquid jet;
    A control unit for controlling the drive voltage waveform, wherein the control unit changes a waveform shape (hereinafter referred to as a “rise waveform shape”) related to a rise of the drive voltage waveform so that the momentum becomes the first instruction value; ,
    A liquid ejection control apparatus comprising:
  2.  請求項1において、
     前記パルス液体ジェットの単位時間当たりの噴射回数に係る第2指示値を入力するための第2の操作部を更に備え、
     前記制御部は、前記パルス液体ジェットの単位時間当たりの噴射回数を前記第2指示値とするように前記駆動電圧波形を制御する、
     液体噴射制御装置。
    In claim 1,
    A second operation unit for inputting a second instruction value relating to the number of times of ejection of the pulsed liquid jet per unit time;
    The control unit controls the drive voltage waveform so that the number of ejections per unit time of the pulsed liquid jet is the second instruction value.
    Liquid ejection control device.
  3.  請求項1又は2において、
     前記駆動電圧波形の電圧振幅に係る第3指示値を入力するための第3の操作部を更に備え、
     前記制御部は、前記駆動電圧波形の電圧振幅を前記第3指示値に基づいて制御する、
     液体噴射制御装置。
    In claim 1 or 2,
    A third operation unit for inputting a third indication value relating to the voltage amplitude of the drive voltage waveform;
    The controller controls the voltage amplitude of the drive voltage waveform based on the third instruction value;
    Liquid ejection control device.
  4.  請求項1~3の何れか一項において、
     前記駆動電圧波形の立ち上がり時間に係る第4指示値を入力するための第4の操作部を更に備え、
     前記制御部は、前記駆動電圧の立ち上がり時間を前記第4指示値に基づいて制御する、
     液体噴射制御装置。
    In any one of claims 1 to 3,
    A fourth operation unit for inputting a fourth instruction value related to a rise time of the drive voltage waveform;
    The control unit controls a rise time of the drive voltage based on the fourth instruction value;
    Liquid ejection control device.
  5.  請求項1~4の何れか一項において、
     前記第1指示値を表示させる制御を行う表示制御部、
     を更に備えた液体噴射制御装置。
    In any one of claims 1 to 4,
    A display control unit for performing control to display the first instruction value;
    A liquid ejection control apparatus further comprising:
  6.  請求項1~5の何れか一項において、
     前記パルス液体ジェットの運動量が2[nNs(ナノニュートン秒)]以上2[mNs(ミリニュートン秒)]以下、又は、運動エネルギーが2[nJ(ナノジュール)]以上200[mJ(ミリジュール)]以下の前記液体噴射装置を制御する、
     液体噴射制御装置。
    In any one of claims 1 to 5,
    The momentum of the pulsed liquid jet is 2 [nNs (nanonewton seconds)] to 2 [mNs (millinewton seconds)] or less, or the kinetic energy is 2 [nJ (nanojoules)] to 200 [mJ (millijoules)]. Controlling the following liquid ejecting apparatus,
    Liquid ejection control device.
  7.  請求項1~6の何れか一項において、
     前記パルス液体ジェットによって生体組織を切削するための前記液体噴射装置を制御する、
     液体噴射制御装置。
    In any one of claims 1 to 6,
    Controlling the liquid ejection device for cutting biological tissue by the pulsed liquid jet;
    Liquid ejection control device.
  8.  請求項1~7の何れか一項に記載の液体噴射制御装置と、液体噴射装置と、送液ポンプ装置とを具備した液体噴射システム。 A liquid ejection system comprising the liquid ejection control device according to any one of claims 1 to 7, a liquid ejection device, and a liquid feed pump device.
  9.  所与の駆動電圧波形を圧電素子に印加し、該圧電素子を用いて液体をパルス状に噴射する液体噴射装置からのパルス液体ジェットの繰り返しの噴射を制御する制御方法であって、
     前記パルス液体ジェットの運動量に係る第1指示値を入力することと、
     前記運動量が前記第1指示値となるように前記駆動電圧波形の立ち上がりに係る波形形状を変更することと、
     を含む制御方法。
    A control method for controlling repetitive ejection of a pulsed liquid jet from a liquid ejecting apparatus that applies a given driving voltage waveform to a piezoelectric element and ejects liquid in pulses using the piezoelectric element,
    Inputting a first indication value relating to the momentum of the pulsed liquid jet;
    Changing the waveform shape related to the rise of the drive voltage waveform so that the momentum becomes the first indication value;
    Control method.
PCT/JP2016/004137 2015-09-18 2016-09-12 Liquid jetting control device, liquid jetting system, and control method WO2017047066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-185399 2015-09-18
JP2015185399A JP2017056113A (en) 2015-09-18 2015-09-18 Liquid injection control device, liquid injection system and control method

Publications (1)

Publication Number Publication Date
WO2017047066A1 true WO2017047066A1 (en) 2017-03-23

Family

ID=58288604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004137 WO2017047066A1 (en) 2015-09-18 2016-09-12 Liquid jetting control device, liquid jetting system, and control method

Country Status (2)

Country Link
JP (1) JP2017056113A (en)
WO (1) WO2017047066A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152127A (en) * 2003-11-21 2005-06-16 Seiko Epson Corp Fluid injection device and its driving method
JP2010071088A (en) * 2008-09-16 2010-04-02 Seiko Epson Corp Fluid injection device, drive device for fluid injection device, method for driving fluid injection device, and apparatus for surgery
JP2016027838A (en) * 2014-07-11 2016-02-25 セイコーエプソン株式会社 Liquid injection control device, liquid injection system, and control method
JP2016120067A (en) * 2014-12-25 2016-07-07 セイコーエプソン株式会社 Liquid injection control device, and liquid injection system and control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152127A (en) * 2003-11-21 2005-06-16 Seiko Epson Corp Fluid injection device and its driving method
JP2010071088A (en) * 2008-09-16 2010-04-02 Seiko Epson Corp Fluid injection device, drive device for fluid injection device, method for driving fluid injection device, and apparatus for surgery
JP2016027838A (en) * 2014-07-11 2016-02-25 セイコーエプソン株式会社 Liquid injection control device, liquid injection system, and control method
JP2016120067A (en) * 2014-12-25 2016-07-07 セイコーエプソン株式会社 Liquid injection control device, and liquid injection system and control method

Also Published As

Publication number Publication date
JP2017056113A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP2016120066A (en) Liquid injection control device, and liquid injection system and control method
JP2016120024A (en) Liquid injection control device, and liquid injection system and control method
EP3037049A1 (en) Liquid ejection control device, liquid ejection system, and control method
US9469106B2 (en) Liquid ejection control device, liquid ejection system, and control method
WO2016006218A1 (en) Liquid injection control device, liquid injection system, and control method
JP2016140552A (en) Liquid ejection control device, liquid ejection system, and control method
WO2016006214A1 (en) Liquid-ejection control device, liquid-ejection system, and control method
JP2016140551A (en) Liquid ejection control device, liquid ejection system, and control method
US9669625B2 (en) Liquid ejection control apparatus, liquid ejection system, and control method
WO2017047066A1 (en) Liquid jetting control device, liquid jetting system, and control method
JP2017056112A (en) Liquid injection control device, liquid injection system and control method
US9694578B2 (en) Liquid ejection control apparatus, liquid ejection system, and control method
JP2018086041A (en) Liquid injection device
WO2017122488A1 (en) Liquid jetting device and liquid jetting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845940

Country of ref document: EP

Kind code of ref document: A1