WO2017046882A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2017046882A1
WO2017046882A1 PCT/JP2015/076237 JP2015076237W WO2017046882A1 WO 2017046882 A1 WO2017046882 A1 WO 2017046882A1 JP 2015076237 W JP2015076237 W JP 2015076237W WO 2017046882 A1 WO2017046882 A1 WO 2017046882A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic layer
current source
switch
emitting device
Prior art date
Application number
PCT/JP2015/076237
Other languages
French (fr)
Japanese (ja)
Inventor
石塚 真一
吉田 綾子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2015/076237 priority Critical patent/WO2017046882A1/en
Priority to JP2017540386A priority patent/JP6522766B2/en
Publication of WO2017046882A1 publication Critical patent/WO2017046882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting device.
  • An organic EL element is one of the light sources of a light emitting device.
  • the organic EL element has a configuration in which an organic layer is disposed between two electrodes.
  • Some organic EL elements have a plurality of organic layers between two electrodes. In recent years, for example, organic EL elements having a plurality of types of organic layers having different emission characteristics have been proposed.
  • Patent Document 1 discloses that a first electrode made of ITO, a first organic layer, a second electrode, a second organic layer, a third electrode, a third organic layer, and a fourth electrode are formed on a substrate. It has the structure which piled up in order.
  • the first electrode is grounded
  • the second electrode is connected to the output terminal of the first operational amplifier
  • the third electrode is connected to the output terminal of the second operational amplifier
  • the output terminals of the third operational amplifier are connected to the four electrodes.
  • the non-inverting input terminal of the first operational amplifier, the non-inverting input terminal of the second operational amplifier, and the non-inverting input terminal of the third operational amplifier are connected to different input terminals.
  • the output terminal of the first operational amplifier is connected to the non-inverting input terminal of the second operational amplifier, and the output terminal of the second operational amplifier is also connected to the non-inverting input terminal of the third operational amplifier.
  • Patent Document 2 in an organic EL device in which a first electrode, a first light emitting layer, an intermediate electrode layer, a second light emitting layer, and a second electrode are stacked in this order, the second electrode and the third electrode are connected to a variable resistor. It is described that the connection is made through. Patent Document 2 describes that the brightness of the second light emitting layer can be adjusted by adjusting the resistance of the variable resistor.
  • the luminance of each of the plurality of light emitting layers can be controlled independently of each other. It is preferable to do.
  • the amount of current in the second organic layer is increased by controlling the second operational amplifier, the amount of current flowing from the second organic layer to the first organic layer also increases. End up. For this reason, it is difficult to make the ratio of the luminance of the first organic layer to the luminance of the second organic layer below a certain value.
  • the brightness of the first organic layer is adjusted by reducing the amount of current flowing from the second organic layer to the first organic layer using a variable resistor. For this reason, even if the ratio of the luminance of the first organic layer to the luminance of the second organic layer can be reduced, this ratio cannot be made a certain value or more.
  • An example of a problem to be solved by the present invention is that the ratio of the luminance of the first organic layer to the luminance of the second organic layer can be controlled in a wide range.
  • the invention according to claim 1 is a first electrode; A second electrode overlapping the first electrode; A third electrode overlapping the second electrode; A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer; A second organic layer located between the second electrode and the third electrode and including a light emitting layer; A first current source connected to the first electrode; A switch connecting the second electrode and the third electrode; A second current source connected to the second electrode; A control unit for controlling the switch and the second current source; With The peak wavelength of the emission spectrum of the first organic layer is a light emitting device different from the peak wavelength of the emission spectrum of the second organic layer.
  • FIG. 2 is an equivalent circuit diagram of the light emitting device shown in FIG. 1. It is a figure for demonstrating the control mode of a control part. It is a figure for demonstrating a 1st mode. It is a figure for demonstrating a 1st mode. It is a figure for demonstrating a 2nd mode. It is a figure for demonstrating a 2nd mode. It is a figure for demonstrating a 2nd mode. It is a figure for demonstrating a 2nd mode. It is a figure for demonstrating the 3rd mode. It is a figure for demonstrating the 3rd mode.
  • FIG. 11 is a diagram for explaining the operation of a light emitting device according to Modification Example 1.
  • FIG. 10 is a diagram for explaining an operation of a control unit according to Modification 2.
  • FIG. 10 is a diagram for explaining an operation of a control unit according to Modification 2.
  • FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to an embodiment.
  • FIG. 2 is an equivalent circuit diagram of the light emitting device 10 shown in FIG.
  • the light emitting device 10 according to the embodiment includes a first electrode 110, a first organic layer 120, a second electrode 130, a second organic layer 140, a third electrode 150, a control unit 210, a first current source 220, a switch 230, and A second current source 240 is included.
  • the second electrode 130 overlaps the first electrode 110
  • the third electrode 150 overlaps the second electrode 130.
  • the first organic layer 120 is located between the first electrode 110 and the second electrode 130
  • the second organic layer 140 is located between the second electrode 130 and the third electrode 150.
  • the first current source 220 is connected to the first electrode 110, and the second current source 240 is connected to the second electrode 130.
  • the switch 230 connects the second electrode 130 and the third electrode 150.
  • the peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140. In other words, the emission color of the first organic layer 120 is different from the emission color of the second organic layer 140.
  • the controller 210 controls the first current source 220, the switch 230, and the second current source 240. Details will be described below.
  • the first electrode 110, the first organic layer 120, the second electrode 130, the second organic layer 140, and the third electrode 150 are formed on the first surface of the substrate 100.
  • the substrate 100 is formed of a light-transmitting material such as glass or a light-transmitting resin.
  • the substrate 100 is, for example, a polygon such as a rectangle.
  • the substrate 100 may have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed.
  • an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
  • the first electrode 110 and the second electrode 130 are transparent electrodes having optical transparency.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide) or the like. is there.
  • the thickness of the first electrode 110 and the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 and the second electrode 130 are formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 and the second electrode 130 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
  • the second electrode 130 has a structure in which a layer containing the material of the third electrode 150 described later is laminated on a layer containing these materials, or a structure in which the material of the third electrode 150 is arranged in a net shape. There may be.
  • the layer made of the material of the third electrode 150 is preferably 500 nm or less.
  • the third electrode 150 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the third electrode 150 has a light shielding property.
  • the thickness of the third electrode 150 is, for example, not less than 10 nm and not more than 500 nm. However, the third electrode 150 may be formed using the material exemplified as the material of the first electrode 110.
  • the third electrode 150 is formed using, for example, a sputtering method or a vapor deposition method.
  • Each of the first organic layer 120 and the second organic layer 140 has a configuration in which a hole injection layer, a light emitting layer, and an electron injection layer are laminated in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the first organic layer 120 and the second organic layer 140 may be formed by an evaporation method.
  • at least one layer of the first organic layer 120, for example, a layer in contact with the first electrode 110 may be formed by a coating method such as an inkjet method, a printing method, or a spray method.
  • At least one layer of the second organic layer 140 for example, a layer in contact with the second electrode 130 may be formed by a coating method such as an inkjet method, a printing method, or a spray method.
  • the remaining layers of the first organic layer 120 and the remaining layers of the second organic layer 140 are formed by an evaporation method.
  • all the layers of the 1st organic layer 120 and all the layers of the 2nd organic layer 140 may be formed using the apply
  • the peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140.
  • the first organic layer 120 has a peak in the red wavelength region
  • the second organic layer 140 has a peak on the shorter wavelength side (for example, the blue wavelength region) than red.
  • the light emission color of the light emitting device 10 is a color (for example, white) obtained by mixing the light emission color of the first organic layer 120 and the light emission color of the second organic layer 140.
  • the emission color of the light emitting device 10 can be changed by changing the ratio of the luminance of the second organic layer 140 to the luminance of the first organic layer 120. Note that the peak of the first organic layer 120 and the peak of the second organic layer 140 may be reversed.
  • the first electrode 110 serves as the anode of the first organic layer 120, and the output terminal of the first current source 220 is connected thereto.
  • the second electrode 130 serves as the cathode of the first organic layer 120 and serves as the anode of the second organic layer 140.
  • the output terminal of the second current source 240 is further connected to the second electrode 130.
  • the third electrode 150 is a cathode of the second organic layer 140 and is applied with a ground potential.
  • the first current source 220 and the second current source 240 are current sources and are controlled by the control unit 210.
  • the first current source 220 and the second current source 240 are, for example, switching regulators.
  • the first current source 220 and the second current source 240 may be current sources having other structures.
  • the light emitting device 10 has a switch 230.
  • the switch 230 is, for example, a power control transistor, and connects the second electrode 130 and the third electrode 150.
  • the control unit 210 controls opening and closing of the switch 230. As will be described in detail later, the control unit 210 controls the switch 230 by PWM (Pulse) width modulation).
  • the controller 210 causes the first organic layer 120 and the second organic layer 140 to emit light in three patterns of the first mode, the second mode, and the third mode.
  • the controller 210 turns on the first current source 220 and turns off the switch 230 and the second current source 240.
  • the same current flows through the first organic layer 120 and the second organic layer 140.
  • the controller 210 turns on the first current source 220, turns off the second current source 240, and performs PWM control of the switch 230.
  • the current flowing through the second organic layer 140 becomes equal to or less than the current flowing through the first organic layer 120.
  • the control unit 210 turns on the first current source 220 and the second current source 240 and turns off the switch 230. Accordingly, the current flowing through the second organic layer 140 is greater than the current flowing through the first organic layer 120. Details will be described below. In the following description, as shown in FIG. 2, the current flowing through the first current source 220 is I 1 , the current flowing through the second current source 240 is I 2 , the current flowing through the first organic layer 120 is I 01 , the second the current flowing through the organic layer 140 to I 02.
  • the controller 210 causes a current to flow from the first current source 220 to the first electrode 110.
  • the current I 01 flowing through the first organic layer 120 is equal to the current I 1 flowing from the first current source 220 as in the first mode.
  • the second current source 240 2 The current flowing through the organic layer 140 is I 1 ⁇ (1 ⁇ H / T) (duty ratio). Therefore, as shown in FIG. 8, the control unit 210 controls the current I 02 flowing through the second organic layer 140 to a desired value equal to or less than I 1 by controlling the duty ratio in the PWM control of the switch 230. can do.
  • the luminance of the second organic layer 140 decreases as the duty ratio in the PWM control of the switch 230 increases. Therefore, the brightness of the second organic layer 140 can be reduced while the brightness of the first organic layer 120 is fixed.
  • the control unit 210 turns on the first current source 220 and the second current source 240 with the switch 230 being opened.
  • the current I 01 flowing through the first organic layer 120 is equal to the current I 1 flowing from the first current source 220 as in the first mode.
  • the control unit 210 can control the luminance of the first organic layer 120 by controlling the magnitude of the current I 1 flowing from the first current source 220.
  • the controller 210 can control the brightness of the second organic layer 140 independently of the brightness of the first organic layer 120 by controlling the switch 230 and the second current source 240. At this time, the controller 210 can increase or decrease the luminance of the second current source 240. Therefore, the controller 210 can control the ratio of the luminance of the second organic layer 140 to the luminance of the first organic layer 120 in a wide range. As a result, the changeable range of the emission color of the light emitting device 10 is widened.
  • FIG. 12 is a diagram illustrating a configuration of the light emitting device 10 according to the first modification.
  • the light emitting device 10 shown in the figure has the same configuration as the light emitting device 10 according to the embodiment except that a Zener diode 250 is provided between the switch 230 and the third electrode 150.
  • the zener diode 250 is connected in the reverse direction between the switch 230 and the third electrode 150. Specifically, the negative electrode of the Zener diode 250 is connected to the switch 230, and the positive electrode of the Zener diode 250 is connected to the third electrode 150. As a result, the potential of the switch 230 becomes higher than the ground potential by the Zener potential.
  • FIG. 13 is a diagram for explaining a time lag from when a current starts to flow through the second organic layer 140 to when the second organic layer 140 shines in the embodiment.
  • the potential applied to the second organic layer 140 needs to be equal to or higher than the threshold voltage.
  • the stacked body of the second electrode 130, the second organic layer 140, and the third electrode 150 also functions as a capacitor, until the second organic layer 140 emits light after the current starts to flow through the second organic layer 140 (that is, A time lag occurs until the voltage between the second electrode 130 and the third electrode 150 becomes equal to or higher than the reference voltage.
  • a Zener diode 250 is connected between the switch 230 and the third electrode 150 in the reverse direction. Therefore, in the second mode, the voltage of the second electrode 130 is higher by the Zener potential of the Zener diode 250 while the switch 230 is closed (that is, before the current flows through the second organic layer 140). Therefore, after the switch 230 is opened and a current starts to flow through the second organic layer 140, the voltage applied to the second organic layer 140 (that is, the voltage between the second electrode 130 and the third electrode 150) is equal to or higher than the reference voltage. The time is shortened. Therefore, as compared with the embodiment, the time lag from when the current starts to flow through the second organic layer 140 to when the second organic layer 140 shines is shortened.
  • (Modification 2) 15 and 16 are diagrams for explaining the operation of the control unit 210 according to the second modification.
  • the second organic layer 140 shines after the current starts to flow through the second organic layer 140 (that is, until the voltage between the second electrode 130 and the third electrode 150 becomes equal to or higher than the reference voltage).
  • Has a time lag. Therefore, in the present modification, as shown in FIG. 15, in the second mode, when the switch 230 is opened and the current I 01 ( I 1 ) flowing through the first organic layer 120 starts to flow through the second organic layer 140.
  • the current I 2 from the second current source 240 is passed through the second organic layer 140 for a certain period.
  • the current flowing through the second organic layer 140 becomes I 1 + I 2 , and the rate at which charges are accumulated in the second organic layer 140 is increased.
  • the time from when the current starts to flow through the second organic layer 140 until the voltage applied to the second organic layer 140 becomes equal to or higher than the reference voltage is shortened. Accordingly, as shown in FIG. 16, the time lag from when the current starts to flow through the second organic layer 140 to when the second organic layer 140 shines is shorter than in the embodiment.
  • control part 210 turns off the 2nd current source 240 at the timing (or timing before it) when the 2nd organic layer 140 began to shine.
  • control unit 210 controls the switch 230 to control the current I 2 from the second current source 240 to flow through the second organic layer 140 only for a predetermined period. Thereby, it can suppress that the brightness
  • the control unit 210 performs the above-described control with each pulse in the PWM control. Note that the control unit 210 may perform the same control as in FIG. 15 in the first mode.
  • a third organic layer and a fourth electrode may be provided on the surface of the third electrode 150 opposite to the second electrode 130, and the third electrode 150 and the fourth electrode may be connected to each other via a switch.
  • the relationship between the control of the switch and the emission color of light emitted from each organic layer uniquely corresponds to the control of the emission color.
  • the organic layers, electrodes, and switches may be further increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

According to the present invention, a second electrode (130) overlaps a first electrode (110), and a third electrode (150) overlaps the second electrode (130). A first organic layer (120) is located between the first electrode (110) and the second electrode (130), and a second organic layer (140) is located between the second electrode (130) and the third electrode (150). A first current source (220) is connected to the first electrode (110), and a second current source (240) is connected to the second electrode (130). A switch (230) connects the second electrode (130) and the third electrode (150). The peak wavelength of the emission spectrum of the first organic layer (120) is different from the peak wavelength of the emission spectrum of the second organic layer (140).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 発光装置の光源の一つに有機EL素子がある。有機EL素子は、2つの電極の間に有機層を配置した構成を有している。有機EL素子には、2つの電極の間に複数の有機層を有するものがある。近年は、例えば発光特性の異なる複数種類の有機層を有する有機EL素子も提案されている。 An organic EL element is one of the light sources of a light emitting device. The organic EL element has a configuration in which an organic layer is disposed between two electrodes. Some organic EL elements have a plurality of organic layers between two electrodes. In recent years, for example, organic EL elements having a plurality of types of organic layers having different emission characteristics have been proposed.
 例えば特許文献1には、基板の上にITOからなる第1電極、第1の有機層、第2電極、第2の有機層、第3電極、第3の有機層、及び第4電極をこの順に重ねた構成を有している。このような構成において、第1電極は接地され、第2電極には第1のオペアンプの出力端子が接続されており、第3電極には第2のオペアンプの出力端子が接続されており、第4電極には第3のオペアンプの出力端子が接続されている。第1のオペアンプの非反転入力端子、第2のオペアンプの非反転入力端子、及び第3のオペアンプの非反転入力端子は、それぞれ互いに異なる入力端子に接続している。また、第2のオペアンプの非反転入力端子には第1のオペアンプの出力端子も接続されており、第3のオペアンプの非反転入力端子には第2のオペアンプの出力端子も接続されている。 For example, Patent Document 1 discloses that a first electrode made of ITO, a first organic layer, a second electrode, a second organic layer, a third electrode, a third organic layer, and a fourth electrode are formed on a substrate. It has the structure which piled up in order. In such a configuration, the first electrode is grounded, the second electrode is connected to the output terminal of the first operational amplifier, the third electrode is connected to the output terminal of the second operational amplifier, The output terminals of the third operational amplifier are connected to the four electrodes. The non-inverting input terminal of the first operational amplifier, the non-inverting input terminal of the second operational amplifier, and the non-inverting input terminal of the third operational amplifier are connected to different input terminals. In addition, the output terminal of the first operational amplifier is connected to the non-inverting input terminal of the second operational amplifier, and the output terminal of the second operational amplifier is also connected to the non-inverting input terminal of the third operational amplifier.
 また特許文献2には、第1電極、第1発光層、中間電極層、第2発光層、及び第2電極をこの順に積層した有機EL装置において、第2電極と第3電極とを可変抵抗を介して接続することが記載されている。特許文献2において、可変抵抗の抵抗を調整することにより、第2発光層に輝度を調節することができる、と記載されている。 Further, in Patent Document 2, in an organic EL device in which a first electrode, a first light emitting layer, an intermediate electrode layer, a second light emitting layer, and a second electrode are stacked in this order, the second electrode and the third electrode are connected to a variable resistor. It is described that the connection is made through. Patent Document 2 describes that the brightness of the second light emitting layer can be adjusted by adjusting the resistance of the variable resistor.
特表2001-511296号公報JP 2001-511296 A 特開2014-150000号公報JP 2014-150000 A
 互いに発光色が異なる複数の発光層を積層した有機EL素子において、当該有機EL素子から発光される発光色を調整するためには、複数の発光層それぞれの輝度を互いに独立して制御できるようにすることが好ましい。しかし、特許文献1に記載の方法では、第2のオペアンプを制御して第2の有機層の電流量を増加させると、第2の有機層から第1の有機層に流れる電流量も増加してしまう。このため、第2の有機層の輝度に対する第1の有機層の輝度の比率を一定値以下にすることが難しい。 In an organic EL device in which a plurality of light emitting layers having different light emission colors are stacked, in order to adjust the light emission color emitted from the organic EL device, the luminance of each of the plurality of light emitting layers can be controlled independently of each other. It is preferable to do. However, in the method described in Patent Document 1, when the amount of current in the second organic layer is increased by controlling the second operational amplifier, the amount of current flowing from the second organic layer to the first organic layer also increases. End up. For this reason, it is difficult to make the ratio of the luminance of the first organic layer to the luminance of the second organic layer below a certain value.
 また、特許文献2に記載の方法では、可変抵抗を用いて第2の有機層から第1の有機層に流れる電流量を減らすことにより第1の有機層の輝度を調節している。このため、第2の有機層の輝度に対する第1の有機層の輝度の比率を下げることはできても、この比率を一定値以上にすることはできない。 In the method described in Patent Document 2, the brightness of the first organic layer is adjusted by reducing the amount of current flowing from the second organic layer to the first organic layer using a variable resistor. For this reason, even if the ratio of the luminance of the first organic layer to the luminance of the second organic layer can be reduced, this ratio cannot be made a certain value or more.
 本発明が解決しようとする課題としては、第2の有機層の輝度に対する第1の有機層の輝度の比率を広い範囲で制御できるようにすることが一例として挙げられる。 An example of a problem to be solved by the present invention is that the ratio of the luminance of the first organic layer to the luminance of the second organic layer can be controlled in a wide range.
 請求項1に記載の発明は、第1電極と、
 前記第1電極と重なっている第2電極と、
 前記第2電極と重なっている第3電極と、
 前記第1電極と前記第2電極の間に位置していて発光層を含む第1有機層と、
 前記第2電極と前記第3電極の間に位置していて発光層を含む第2有機層と、
 前記第1電極に接続している第1電流源と、
 前記第2電極と前記第3電極とを接続するスイッチと、
 前記第2電極に接続している第2電流源と、
 前記スイッチ及び前記第2電流源を制御する制御部と、
を備え、
 前記第1有機層の発光スペクトルのピーク波長は、前記第2有機層の発光スペクトルのピーク波長と異なる発光装置である。
The invention according to claim 1 is a first electrode;
A second electrode overlapping the first electrode;
A third electrode overlapping the second electrode;
A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer;
A second organic layer located between the second electrode and the third electrode and including a light emitting layer;
A first current source connected to the first electrode;
A switch connecting the second electrode and the third electrode;
A second current source connected to the second electrode;
A control unit for controlling the switch and the second current source;
With
The peak wavelength of the emission spectrum of the first organic layer is a light emitting device different from the peak wavelength of the emission spectrum of the second organic layer.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on embodiment. 図1に示した発光装置の等価回路図である。FIG. 2 is an equivalent circuit diagram of the light emitting device shown in FIG. 1. 制御部の制御モードを説明するための図である。It is a figure for demonstrating the control mode of a control part. 第1モードを説明するための図である。It is a figure for demonstrating a 1st mode. 第1モードを説明するための図である。It is a figure for demonstrating a 1st mode. 第2モードを説明するための図である。It is a figure for demonstrating a 2nd mode. 第2モードを説明するための図である。It is a figure for demonstrating a 2nd mode. 第2モードを説明するための図である。It is a figure for demonstrating a 2nd mode. 第2モードを説明するための図である。It is a figure for demonstrating a 2nd mode. 第3モードを説明するための図である。It is a figure for demonstrating the 3rd mode. 第3モードを説明するための図である。It is a figure for demonstrating the 3rd mode. 変形例1に係る発光装置の構成を示す図である。It is a figure which shows the structure of the light-emitting device which concerns on the modification 1. FIG. 実施形態に係る発光装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the light-emitting device which concerns on embodiment. 変形例1に係る発光装置の動作を説明するための図である。FIG. 11 is a diagram for explaining the operation of a light emitting device according to Modification Example 1. 変形例2に係る制御部の動作を説明するための図である。FIG. 10 is a diagram for explaining an operation of a control unit according to Modification 2. 変形例2に係る制御部の動作を説明するための図である。FIG. 10 is a diagram for explaining an operation of a control unit according to Modification 2.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10の構成を示す断面図である。図2は、図1に示した発光装置10の等価回路図である。実施形態に係る発光装置10は、第1電極110、第1有機層120、第2電極130、第2有機層140、第3電極150、制御部210、第1電流源220、スイッチ230、及び第2電流源240を有している。第2電極130は第1電極110と重なっており、第3電極150は第2電極130と重なっている。第1有機層120は第1電極110と第2電極130の間に位置しており、第2有機層140は第2電極130と第3電極150の間に位置している。第1電流源220は第1電極110に接続しており、第2電流源240は第2電極130に接続している。また、スイッチ230は第2電極130と第3電極150とを接続している。そして、第1有機層120の発光スペクトルのピーク波長は、第2有機層140の発光スペクトルのピーク波長と異なる。言い換えると、第1有機層120の発光色は、第2有機層140の発光色と異なる。制御部210は、第1電流源220、スイッチ230、及び第2電流源240を制御する。以下、詳細に説明する。 FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to an embodiment. FIG. 2 is an equivalent circuit diagram of the light emitting device 10 shown in FIG. The light emitting device 10 according to the embodiment includes a first electrode 110, a first organic layer 120, a second electrode 130, a second organic layer 140, a third electrode 150, a control unit 210, a first current source 220, a switch 230, and A second current source 240 is included. The second electrode 130 overlaps the first electrode 110, and the third electrode 150 overlaps the second electrode 130. The first organic layer 120 is located between the first electrode 110 and the second electrode 130, and the second organic layer 140 is located between the second electrode 130 and the third electrode 150. The first current source 220 is connected to the first electrode 110, and the second current source 240 is connected to the second electrode 130. The switch 230 connects the second electrode 130 and the third electrode 150. The peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140. In other words, the emission color of the first organic layer 120 is different from the emission color of the second organic layer 140. The controller 210 controls the first current source 220, the switch 230, and the second current source 240. Details will be described below.
 第1電極110、第1有機層120、第2電極130、第2有機層140、及び第3電極150は、基板100の第1面に形成されている。 The first electrode 110, the first organic layer 120, the second electrode 130, the second organic layer 140, and the third electrode 150 are formed on the first surface of the substrate 100.
 基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されている。基板100は、例えば矩形などの多角形である。ここで、基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特に基板100をガラス材料で可撓性を持たせる場合、基板100の厚さは、例えば200μm以下である。基板100を樹脂材料で可撓性を持たせる場合は、基板100の材料として、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを含ませて形成されている。また、基板100が樹脂材料を含む場合、水分が基板100を透過することを抑制するために、基板100の少なくとも発光面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されている。 The substrate 100 is formed of a light-transmitting material such as glass or a light-transmitting resin. The substrate 100 is, for example, a polygon such as a rectangle. Here, the substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 is made of a glass material and has flexibility, the thickness of the substrate 100 is, for example, 200 μm or less. In the case where the substrate 100 is made of a resin material and is flexible, the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed. In the case where the substrate 100 includes a resin material, an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
 第1電極110及び第2電極130は、光透過性を有する透明電極である。透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110及び第2電極130の厚さは、例えば10nm以上500nm以下である。第1電極110及び第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110及び第2電極130は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。また、特に第2電極130は、これらの材料を含む層の上に、後述する第3電極150の材料を含む層との積層した構造や、第3電極150の材料を網状に配置した構造であってもよい。この場合、第3電極150の材料からなる層は500nm以下であることが好ましい。 The first electrode 110 and the second electrode 130 are transparent electrodes having optical transparency. The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide) or the like. is there. The thickness of the first electrode 110 and the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 and the second electrode 130 are formed using, for example, a sputtering method or a vapor deposition method. The first electrode 110 and the second electrode 130 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS. In particular, the second electrode 130 has a structure in which a layer containing the material of the third electrode 150 described later is laminated on a layer containing these materials, or a structure in which the material of the third electrode 150 is arranged in a net shape. There may be. In this case, the layer made of the material of the third electrode 150 is preferably 500 nm or less.
 第3電極150は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この場合、第3電極150は遮光性を有している。第3電極150の厚さは、例えば10nm以上500nm以下である。ただし、第3電極150は、第1電極110の材料として例示した材料を用いて形成されていてもよい。第3電極150は、例えばスパッタリング法又は蒸着法を用いて形成される。 The third electrode 150 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the third electrode 150 has a light shielding property. The thickness of the third electrode 150 is, for example, not less than 10 nm and not more than 500 nm. However, the third electrode 150 may be formed using the material exemplified as the material of the first electrode 110. The third electrode 150 is formed using, for example, a sputtering method or a vapor deposition method.
 第1有機層120及び第2有機層140は、いずれも、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。第1有機層120及び第2有機層140は蒸着法で形成されてもよい。また、第1有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。また、第2有機層140のうち少なくとも一つの層、例えば第2電極130と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、第1有機層120の残りの層及び第2有機層140の残りの層は、蒸着法によって形成されている。また、第1有機層120のすべての層及び第2有機層140のすべての層が、塗布法を用いて形成されていてもよい。 Each of the first organic layer 120 and the second organic layer 140 has a configuration in which a hole injection layer, a light emitting layer, and an electron injection layer are laminated in this order. A hole transport layer may be formed between the hole injection layer and the light emitting layer. In addition, an electron transport layer may be formed between the light emitting layer and the electron injection layer. The first organic layer 120 and the second organic layer 140 may be formed by an evaporation method. In addition, at least one layer of the first organic layer 120, for example, a layer in contact with the first electrode 110 may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In addition, at least one layer of the second organic layer 140, for example, a layer in contact with the second electrode 130 may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the first organic layer 120 and the remaining layers of the second organic layer 140 are formed by an evaporation method. Moreover, all the layers of the 1st organic layer 120 and all the layers of the 2nd organic layer 140 may be formed using the apply | coating method.
 上記したように、第1有機層120の発光スペクトルのピーク波長は、第2有機層140の発光スペクトルのピーク波長と異なる。例えば、第1有機層120は赤色の波長域にピークを有しており、第2有機層140は赤色より短波長側(例えば青色の波長域)にピークを有している。このため、発光装置10の発光色は、第1有機層120の発光色と第2有機層140の発光色を混ぜた色(例えば白色)になる。そして、発光装置10の発光色は、第1有機層120の輝度に対する第2有機層140の輝度の比率を変更することにより、変更することができる。なお、第1有機層120が有するピークと第2有機層140が有するピークは逆であってもよい。 As described above, the peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140. For example, the first organic layer 120 has a peak in the red wavelength region, and the second organic layer 140 has a peak on the shorter wavelength side (for example, the blue wavelength region) than red. For this reason, the light emission color of the light emitting device 10 is a color (for example, white) obtained by mixing the light emission color of the first organic layer 120 and the light emission color of the second organic layer 140. The emission color of the light emitting device 10 can be changed by changing the ratio of the luminance of the second organic layer 140 to the luminance of the first organic layer 120. Note that the peak of the first organic layer 120 and the peak of the second organic layer 140 may be reversed.
 そして、第1電極110は第1有機層120の陽極となっており、かつ、第1電流源220の出力端子が接続されている。また、第2電極130は第1有機層120の陰極となっており、かつ第2有機層140の陽極になっている。第2電極130は、さらに、第2電流源240の出力端子が接続されている。そして第3電極150は第2有機層140の陰極であり、かつ、接地電位が印加されている。 The first electrode 110 serves as the anode of the first organic layer 120, and the output terminal of the first current source 220 is connected thereto. The second electrode 130 serves as the cathode of the first organic layer 120 and serves as the anode of the second organic layer 140. The output terminal of the second current source 240 is further connected to the second electrode 130. The third electrode 150 is a cathode of the second organic layer 140 and is applied with a ground potential.
 第1電流源220及び第2電流源240は電流源であり、制御部210によって制御されている。第1電流源220及び第2電流源240は、例えばスイッチングレギュレータである。ただし、第1電流源220及び第2電流源240は、他の構造の電流源であってもよい。 The first current source 220 and the second current source 240 are current sources and are controlled by the control unit 210. The first current source 220 and the second current source 240 are, for example, switching regulators. However, the first current source 220 and the second current source 240 may be current sources having other structures.
 また、発光装置10はスイッチ230を有している。スイッチ230は、例えば電力制御用のトランジスタであり、第2電極130及び第3電極150を接続している。制御部210は、スイッチ230の開閉を制御している。詳細を後述するように、制御部210は、スイッチ230をPWM(Pulse width modulation)制御する。 Further, the light emitting device 10 has a switch 230. The switch 230 is, for example, a power control transistor, and connects the second electrode 130 and the third electrode 150. The control unit 210 controls opening and closing of the switch 230. As will be described in detail later, the control unit 210 controls the switch 230 by PWM (Pulse) width modulation).
 次に、制御部210の動作について説明する。制御部210は、図3に示すように、第1有機層120及び第2有機層140を、第1モード、第2モード、及び第3モードの3パターンで発光させる。第1モードでは、制御部210は、第1電流源220をオンにして、スイッチ230及び第2電流源240をオフにする。その結果、第1有機層120と第2有機層140には同じ大きさの電流が流れる。第2モードでは、制御部210は、第1電流源220をオンにして、第2電流源240をオフにして、スイッチ230をPWM制御する。これにより、第2有機層140に流れる電流は第1有機層120に流れる電流以下になる。第3モードでは、制御部210は、第1電流源220及び第2電流源240をオンにして、スイッチ230をオフにする。これにより、第2有機層140に流れる電流は第1有機層120に流れる電流よりも多くなる。以下、詳細に説明する。以下の説明において、図2に示すように、第1電流源220が流す電流をI、第2電流源240が流す電流をI、第1有機層120に流れる電流をI01、第2有機層140に流れる電流をI02とする。 Next, the operation of the control unit 210 will be described. As illustrated in FIG. 3, the controller 210 causes the first organic layer 120 and the second organic layer 140 to emit light in three patterns of the first mode, the second mode, and the third mode. In the first mode, the controller 210 turns on the first current source 220 and turns off the switch 230 and the second current source 240. As a result, the same current flows through the first organic layer 120 and the second organic layer 140. In the second mode, the controller 210 turns on the first current source 220, turns off the second current source 240, and performs PWM control of the switch 230. As a result, the current flowing through the second organic layer 140 becomes equal to or less than the current flowing through the first organic layer 120. In the third mode, the control unit 210 turns on the first current source 220 and the second current source 240 and turns off the switch 230. Accordingly, the current flowing through the second organic layer 140 is greater than the current flowing through the first organic layer 120. Details will be described below. In the following description, as shown in FIG. 2, the current flowing through the first current source 220 is I 1 , the current flowing through the second current source 240 is I 2 , the current flowing through the first organic layer 120 is I 01 , the second the current flowing through the organic layer 140 to I 02.
 まず、図4及び図5を用いて、第1モードについて説明する。第1モードにおいて、制御部210は、スイッチ230を開いた状態で第1電流源220から第1電極110に電流を流す。この際、制御部210は第2電流源240を動作させない。すなわちI=0にする。これにより、第1電極110から第3電極150に電流Iが流れる。その結果、第1有機層120に流れる電流I01と第2有機層140が流れる電流I02はいずれもIになる。このため、図4及び図5に示すように、第1電流源220からの電流Iが大きくなると、Iに比例して電流I01及び電流I02は大きくなり、その結果、第1有機層120が発光する光の強度(輝度)及び第2有機層140が発光する光の強度(輝度)も大きくなる。一方、第1電流源220からの電流Iが小さくなると、Iに比例して電流I01及び電流I02は小さくなり、その結果、第1有機層120が発光する光の強度(輝度)及び第2有機層140が発光する光の強度(輝度)も小さくなる。 First, the first mode will be described with reference to FIGS. 4 and 5. In the first mode, the control unit 210 causes a current to flow from the first current source 220 to the first electrode 110 with the switch 230 open. At this time, the controller 210 does not operate the second current source 240. That is, I 2 = 0. As a result, a current I 1 flows from the first electrode 110 to the third electrode 150. As a result, the current I 01 flowing through the first organic layer 120 and the current I 02 flowing through the second organic layer 140 are both I 1 . For this reason, as shown in FIGS. 4 and 5, when the current I 1 from the first current source 220 increases, the current I 01 and the current I 02 increase in proportion to I 1, and as a result, the first organic The intensity (luminance) of light emitted from the layer 120 and the intensity (luminance) of light emitted from the second organic layer 140 are also increased. On the other hand, when the current I 1 from the first current source 220 is reduced, the current I 01 and the current I 02 in proportion to I 1 decreases, the intensity of that light first organic layer 120 emits light (luminance) In addition, the intensity (luminance) of light emitted from the second organic layer 140 is also reduced.
 次に、図6、図7、図8、及び図9を用いて、第2モードについて説明する。第2モードにおいて、制御部210は、第1電流源220から第1電極110に電流を流す。また、制御部210は、スイッチ230の開閉を繰り返してPWM制御を行う。この際、第2電流源240は動作しない。すなわちI=0である。 Next, the second mode will be described with reference to FIGS. 6, 7, 8, and 9. In the second mode, the controller 210 causes a current to flow from the first current source 220 to the first electrode 110. The control unit 210 performs PWM control by repeatedly opening and closing the switch 230. At this time, the second current source 240 does not operate. That is, I 2 = 0.
 まず、図6に示すように、第1有機層120に流れる電流I01は、第1モードと同様に第1電流源220から流れる電流Iに等しい。 First, as shown in FIG. 6, the current I 01 flowing through the first organic layer 120 is equal to the current I 1 flowing from the first current source 220 as in the first mode.
 次に、図7及び図8を用いて、第2有機層140に流れる電流I02について説明する。スイッチ230が開いている間、第2有機層140を流れてきた電流I01(=I)は第2電極130及び第2有機層140を介して第3電極150に流れる。一方、スイッチ230が閉じている間、第1有機層120を流れてきた電流I01は第2電極130からスイッチ230を介して第3電極150に直接流れるため、第2有機層140には流れない。このため、図7に示すようにスイッチ230の開閉の一周期の長さをT、一周期においてスイッチ230が閉じている(オン)期間の長さをHとすると、第2電流源240から第2有機層140に流れる電流は、I×(1-H/T)(デューティ比)となる。このため、図8に示すように、制御部210は、スイッチ230のPWM制御におけるデューティ比を制御することにより、第2有機層140に流れる電流I02を、I以下の所望の値に制御することができる。 Next, the current I 02 flowing through the second organic layer 140 will be described with reference to FIGS. While the switch 230 is open, the current I 01 (= I 1 ) flowing through the second organic layer 140 flows to the third electrode 150 through the second electrode 130 and the second organic layer 140. On the other hand, since the current I 01 flowing through the first organic layer 120 flows directly from the second electrode 130 to the third electrode 150 via the switch 230 while the switch 230 is closed, it flows into the second organic layer 140. Absent. For this reason, as shown in FIG. 7, when the length of one cycle of opening / closing of the switch 230 is T and the length of the period during which the switch 230 is closed (on) in one cycle is H, the second current source 240 2 The current flowing through the organic layer 140 is I 1 × (1−H / T) (duty ratio). Therefore, as shown in FIG. 8, the control unit 210 controls the current I 02 flowing through the second organic layer 140 to a desired value equal to or less than I 1 by controlling the duty ratio in the PWM control of the switch 230. can do.
 その結果、図9に示すように、スイッチ230のPWM制御におけるデューティ比が大きくなるにつれて、第2有機層140の輝度は小さくなる。従って、第1有機層120の輝度を固定したまま、第2有機層140の輝度を小さくすることができる。 As a result, as shown in FIG. 9, the luminance of the second organic layer 140 decreases as the duty ratio in the PWM control of the switch 230 increases. Therefore, the brightness of the second organic layer 140 can be reduced while the brightness of the first organic layer 120 is fixed.
 次に、第3モードについて、図10及び図11を用いて説明する。第3モードでは、上記したように、制御部210は、スイッチ230を開いた状態で第1電流源220及び第2電流源240をオンにする。これにより、図10に示すように、第1有機層120に流れる電流I01は、第1モードと同様に第1電流源220から流れる電流Iに等しい。一方、図11に示すように、第2有機層140に流れる電流I02は、第1有機層120を流れてきた電流I01(=I)に、第2電流源240から流れてきた電流Iを加えた量になる。従って、第1有機層120の輝度を固定したまま、第2有機層140の輝度を大きくすることができる。 Next, the third mode will be described with reference to FIGS. In the third mode, as described above, the control unit 210 turns on the first current source 220 and the second current source 240 with the switch 230 being opened. Thereby, as shown in FIG. 10, the current I 01 flowing through the first organic layer 120 is equal to the current I 1 flowing from the first current source 220 as in the first mode. On the other hand, as shown in FIG. 11, the current I 02 flowing through the second organic layer 140 is equal to the current I 01 (= I 1 ) flowing through the first organic layer 120 and the current flowing from the second current source 240. I 2 is added. Therefore, the brightness of the second organic layer 140 can be increased while the brightness of the first organic layer 120 is fixed.
 以上の通り、本実施形態によれば、制御部210は、第1電流源220から流れる電流Iの大きさを制御することにより、第1有機層120の輝度を制御することができる。また、制御部210は、スイッチ230及び第2電流源240を制御することにより、第2有機層140の輝度を、第1有機層120の輝度から独立して制御することができる。この際、制御部210は、第2電流源240の輝度を大きくすることもでき、かつ小さくすることもできる。従って、制御部210は、第1有機層120の輝度に対する第2有機層140の輝度の比率を広い範囲で制御できる。その結果、発光装置10の発光色の変更可能範囲は広くなる。 As described above, according to the present embodiment, the control unit 210 can control the luminance of the first organic layer 120 by controlling the magnitude of the current I 1 flowing from the first current source 220. The controller 210 can control the brightness of the second organic layer 140 independently of the brightness of the first organic layer 120 by controlling the switch 230 and the second current source 240. At this time, the controller 210 can increase or decrease the luminance of the second current source 240. Therefore, the controller 210 can control the ratio of the luminance of the second organic layer 140 to the luminance of the first organic layer 120 in a wide range. As a result, the changeable range of the emission color of the light emitting device 10 is widened.
(変形例1)
 図12は、変形例1に係る発光装置10の構成を示す図である。本図に示す発光装置10は、スイッチ230と第3電極150の間にツェナーダイオード250を有している点を除いて、実施形態に係る発光装置10と同様の構成である。
(Modification 1)
FIG. 12 is a diagram illustrating a configuration of the light emitting device 10 according to the first modification. The light emitting device 10 shown in the figure has the same configuration as the light emitting device 10 according to the embodiment except that a Zener diode 250 is provided between the switch 230 and the third electrode 150.
 ツェナーダイオード250はスイッチ230と第3電極150の間に、逆方向に接続している。具体的には、ツェナーダイオード250の負極はスイッチ230に接続しており、ツェナーダイオード250の正極は第3電極150に接続している。これにより、スイッチ230の電位は、グラウンド電位に対してツェナー電位分高くなる。 The zener diode 250 is connected in the reverse direction between the switch 230 and the third electrode 150. Specifically, the negative electrode of the Zener diode 250 is connected to the switch 230, and the positive electrode of the Zener diode 250 is connected to the third electrode 150. As a result, the potential of the switch 230 becomes higher than the ground potential by the Zener potential.
 次に、本変形例に係る発光装置10の動作について、図13及び図14を用いて説明する。図13は、実施形態において、第2有機層140に電流を流し始めてから第2有機層140が光るまでのタイムラグを説明するための図である。第2有機層140が光るためには、第2有機層140に加わる電位が閾値電圧以上になる必要がある。一方、第2電極130、第2有機層140、及び第3電極150の積層体はキャパシタとしても機能するため、第2有機層140に電流を流し始めてから第2有機層140が光るまで(すなわち第2電極130と第3電極150の間の電圧が基準電圧以上になるまで)には、タイムラグが発生する。 Next, the operation of the light emitting device 10 according to this modification will be described with reference to FIGS. FIG. 13 is a diagram for explaining a time lag from when a current starts to flow through the second organic layer 140 to when the second organic layer 140 shines in the embodiment. In order for the second organic layer 140 to emit light, the potential applied to the second organic layer 140 needs to be equal to or higher than the threshold voltage. On the other hand, since the stacked body of the second electrode 130, the second organic layer 140, and the third electrode 150 also functions as a capacitor, until the second organic layer 140 emits light after the current starts to flow through the second organic layer 140 (that is, A time lag occurs until the voltage between the second electrode 130 and the third electrode 150 becomes equal to or higher than the reference voltage.
 一方、図14に示すように、本変形例では、スイッチ230と第3電極150の間にはツェナーダイオード250が逆方向に接続されている。このため、第2モードにおいて、スイッチ230を閉じている間(すなわち第2有機層140に電流を流す前)、第2電極130の電圧はツェナーダイオード250のツェナー電位分高くなっている。従って、スイッチ230を開いて第2有機層140に電流を流し始めてから、第2有機層140に加わる電圧(すなわち第2電極130と第3電極150の間の電圧)が基準電圧以上になるまでの時間は短くなる。従って、実施形態と比較して、第2有機層140に電流を流し始めてから第2有機層140が光るまでのタイムラグは短くなる。 On the other hand, as shown in FIG. 14, in this modification, a Zener diode 250 is connected between the switch 230 and the third electrode 150 in the reverse direction. Therefore, in the second mode, the voltage of the second electrode 130 is higher by the Zener potential of the Zener diode 250 while the switch 230 is closed (that is, before the current flows through the second organic layer 140). Therefore, after the switch 230 is opened and a current starts to flow through the second organic layer 140, the voltage applied to the second organic layer 140 (that is, the voltage between the second electrode 130 and the third electrode 150) is equal to or higher than the reference voltage. The time is shortened. Therefore, as compared with the embodiment, the time lag from when the current starts to flow through the second organic layer 140 to when the second organic layer 140 shines is shortened.
(変形例2)
 図15及び図16は、変形例2に係る制御部210の動作を説明するための図である。変形例1で説明したように、第2有機層140に電流を流し始めてから第2有機層140が光るまで(すなわち第2電極130と第3電極150の間の電圧が基準電圧以上になるまで)には、タイムラグが発生する。そこで本変形例では、図15に示すように、第2モードにおいて、スイッチ230を開いて第1有機層120を流れてきた電流I01(=I)を第2有機層140に流し始めると、第2電流源240からの電流Iを一定期間第2有機層140に流す。これにより、第2有機層140を流れる電流はI+Iとなり、第2有機層140に電荷が蓄積する速度は速くなる。その結果、第2有機層140に電流を流し始めてから第2有機層140に加わる電圧が基準電圧以上になるまでの時間は短くなる。従って、図16に示すように、実施形態と比較して、第2有機層140に電流を流し始めてから第2有機層140が光るまでのタイムラグは短くなる。
(Modification 2)
15 and 16 are diagrams for explaining the operation of the control unit 210 according to the second modification. As described in the first modification, until the second organic layer 140 shines after the current starts to flow through the second organic layer 140 (that is, until the voltage between the second electrode 130 and the third electrode 150 becomes equal to or higher than the reference voltage). ) Has a time lag. Therefore, in the present modification, as shown in FIG. 15, in the second mode, when the switch 230 is opened and the current I 01 (= I 1 ) flowing through the first organic layer 120 starts to flow through the second organic layer 140. The current I 2 from the second current source 240 is passed through the second organic layer 140 for a certain period. Accordingly, the current flowing through the second organic layer 140 becomes I 1 + I 2 , and the rate at which charges are accumulated in the second organic layer 140 is increased. As a result, the time from when the current starts to flow through the second organic layer 140 until the voltage applied to the second organic layer 140 becomes equal to or higher than the reference voltage is shortened. Accordingly, as shown in FIG. 16, the time lag from when the current starts to flow through the second organic layer 140 to when the second organic layer 140 shines is shorter than in the embodiment.
 そして、第2有機層140が光り始めたタイミング(またはそれより前のタイミング)で、制御部210は、第2電流源240をオフにする。あるいは、制御部210は、スイッチ230を制御することにより、予め決定された一定期間のみ第2電流源240からの電流Iを第2有機層140に流す制御を行う。これにより、第2有機層140の輝度が高くなることを抑制できる。 And the control part 210 turns off the 2nd current source 240 at the timing (or timing before it) when the 2nd organic layer 140 began to shine. Alternatively, the control unit 210 controls the switch 230 to control the current I 2 from the second current source 240 to flow through the second organic layer 140 only for a predetermined period. Thereby, it can suppress that the brightness | luminance of the 2nd organic layer 140 becomes high.
 制御部210は、PWM制御における各パルスで上記した制御を行う。なお、制御部210は、第1モードにおいて、図15と同様の制御を行ってもよい。 The control unit 210 performs the above-described control with each pulse in the PWM control. Note that the control unit 210 may perform the same control as in FIG. 15 in the first mode.
 また、第3電極150のうち第2電極130とは逆側の面に、第3有機層及び第4電極を設け、第3電極150と第4電極をスイッチを介して互いに接続してもよい。この場合、第1有機層120、第2有機層140、及び第3有機層を、例えば、R,G,B、のそれぞれに発光のピークを有する有機層にしてもよい。このような構成にすることにより、スイッチの制御と、個々の有機層の発光の発光色との関係が一義的に対応することとなり、発光色の制御が容易となる。また、有機層、電極、及びスイッチをさらに増やしてもよい。 Further, a third organic layer and a fourth electrode may be provided on the surface of the third electrode 150 opposite to the second electrode 130, and the third electrode 150 and the fourth electrode may be connected to each other via a switch. . In this case, you may make the 1st organic layer 120, the 2nd organic layer 140, and the 3rd organic layer into an organic layer which has an emission peak in each of R, G, B, for example. By adopting such a configuration, the relationship between the control of the switch and the emission color of light emitted from each organic layer uniquely corresponds to the control of the emission color. Further, the organic layers, electrodes, and switches may be further increased.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (5)

  1.  第1電極と、
     前記第1電極と重なっている第2電極と、
     前記第2電極と重なっている第3電極と、
     前記第1電極と前記第2電極の間に位置していて発光層を含む第1有機層と、
     前記第2電極と前記第3電極の間に位置していて発光層を含む第2有機層と、
     前記第1電極に接続している第1電流源と、
     前記第2電極と前記第3電極とを接続するスイッチと、
     前記第2電極に接続している第2電流源と、
     前記スイッチ及び前記第2電流源を制御する制御部と、
    を備え、
     前記第1有機層の発光スペクトルのピーク波長は、前記第2有機層の発光スペクトルのピーク波長と異なる発光装置。
    A first electrode;
    A second electrode overlapping the first electrode;
    A third electrode overlapping the second electrode;
    A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer;
    A second organic layer located between the second electrode and the third electrode and including a light emitting layer;
    A first current source connected to the first electrode;
    A switch connecting the second electrode and the third electrode;
    A second current source connected to the second electrode;
    A control unit for controlling the switch and the second current source;
    With
    The peak wavelength of the emission spectrum of the first organic layer is different from the peak wavelength of the emission spectrum of the second organic layer.
  2.  請求項1に記載の発光装置において、
     前記制御部は、制御モードとして、
      前記第2電流源及び前記スイッチをオフにする第1モードと、
      前記第2電流源をオフにして、前記スイッチのオンおよびオフを繰り返すことによりパルス幅変調を行う第2モードと、
    を有する発光装置。
    The light-emitting device according to claim 1.
    The control unit, as a control mode,
    A first mode for turning off the second current source and the switch;
    A second mode in which the second current source is turned off and pulse width modulation is performed by repeatedly turning on and off the switch;
    A light emitting device.
  3.  請求項2に記載の発光装置において、
     前記制御部は、制御モードとして、さらに、前記スイッチをオフにして前記第2電流源をオンにする第3モードを有する発光装置。
    The light-emitting device according to claim 2.
    The control unit is a light emitting device having a third mode as a control mode, further turning off the switch and turning on the second current source.
  4.  請求項2又は3に記載の発光装置において、
     前記制御部は、前記第2モードにおいて、前記第2有機層の発光を開始するときに前記第2電流源をオンにし、かつ、前記第2有機層が発光したとき又はその前に、前記第2電流源をオフにする発光装置。
    The light emitting device according to claim 2 or 3,
    In the second mode, the control unit turns on the second current source when starting light emission of the second organic layer, and before or before the second organic layer emits light. 2 Light-emitting device that turns off the current source.
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記スイッチと前記第3電極に間に設けられ、負極が前記スイッチ側に接続していて正極が前記第3電極側に接続しているツェナーダイオードを備える発光装置。
    The light emitting device according to any one of claims 1 to 4,
    A light emitting device comprising a Zener diode provided between the switch and the third electrode, a negative electrode connected to the switch side and a positive electrode connected to the third electrode side.
PCT/JP2015/076237 2015-09-16 2015-09-16 Light-emitting device WO2017046882A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/076237 WO2017046882A1 (en) 2015-09-16 2015-09-16 Light-emitting device
JP2017540386A JP6522766B2 (en) 2015-09-16 2015-09-16 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076237 WO2017046882A1 (en) 2015-09-16 2015-09-16 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2017046882A1 true WO2017046882A1 (en) 2017-03-23

Family

ID=58288260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076237 WO2017046882A1 (en) 2015-09-16 2015-09-16 Light-emitting device

Country Status (2)

Country Link
JP (1) JP6522766B2 (en)
WO (1) WO2017046882A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311970A (en) * 1998-04-30 1999-11-09 Sony Corp Matrix driving method for current type display elements and matrix driving device for current type display elements
WO2005091266A1 (en) * 2004-03-24 2005-09-29 Rohm Co., Ltd Organic el drive circuit and organic el display using same
JP2005310996A (en) * 2004-04-20 2005-11-04 Sony Corp Fixed current driving device, back light optical source equipment, and color liquid crystal display device
JP2010092676A (en) * 2008-10-07 2010-04-22 Sharp Corp Planar lighting system, and display device equipped with the same
JP2010524221A (en) * 2007-04-02 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Driving method of light emitting diode
JP2010218903A (en) * 2009-03-17 2010-09-30 Canon Inc Light emitting apparatus
JP2014112149A (en) * 2012-12-05 2014-06-19 Nippon Seiki Co Ltd Driving device and driving method of organic el panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311970A (en) * 1998-04-30 1999-11-09 Sony Corp Matrix driving method for current type display elements and matrix driving device for current type display elements
WO2005091266A1 (en) * 2004-03-24 2005-09-29 Rohm Co., Ltd Organic el drive circuit and organic el display using same
JP2005310996A (en) * 2004-04-20 2005-11-04 Sony Corp Fixed current driving device, back light optical source equipment, and color liquid crystal display device
JP2010524221A (en) * 2007-04-02 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Driving method of light emitting diode
JP2010092676A (en) * 2008-10-07 2010-04-22 Sharp Corp Planar lighting system, and display device equipped with the same
JP2010218903A (en) * 2009-03-17 2010-09-30 Canon Inc Light emitting apparatus
JP2014112149A (en) * 2012-12-05 2014-06-19 Nippon Seiki Co Ltd Driving device and driving method of organic el panel

Also Published As

Publication number Publication date
JPWO2017046882A1 (en) 2018-07-05
JP6522766B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2018121067A5 (en)
KR100745759B1 (en) Organic light emitting display providing transparent cathode
CN107004695B (en) Organic light emitting device
KR20160029243A (en) Organic light emitting display panel and method for fabricating the same
US20120080668A1 (en) Organic el lighting device and method of manufacturing the same
JP2006210848A (en) Light-emitting device and driving method of organic electroluminescent element
JP2009252458A (en) Organic electroluminescent element
Jacobs et al. Drivers for oleds
WO2017046882A1 (en) Light-emitting device
US20130020952A1 (en) AC Direct Drive Organic Light Emitting Diode Assembly
KR101707991B1 (en) Organic light emitting device and illuminator using the same
JP2019117806A (en) Light emitting device
US20200028107A1 (en) Organic el device
WO2017046881A1 (en) Light-emitting device
JP2011060482A (en) Organic el display device
KR100571004B1 (en) Filed organic electroluminescent display device
KR101635533B1 (en) Optical storage apparatus
JP2007201333A (en) Light emitting panel and light emitting device
JP6661418B2 (en) Light emitting device
JP6457065B2 (en) Light emitting device
WO2017119068A1 (en) Light emitting device
WO2015079542A1 (en) Light emitting device
KR20180128253A (en) Organic Light Emitting Device
WO2014162446A1 (en) Joining structure and light-emitting device
WO2017203788A1 (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904071

Country of ref document: EP

Kind code of ref document: A1