WO2017046881A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2017046881A1
WO2017046881A1 PCT/JP2015/076236 JP2015076236W WO2017046881A1 WO 2017046881 A1 WO2017046881 A1 WO 2017046881A1 JP 2015076236 W JP2015076236 W JP 2015076236W WO 2017046881 A1 WO2017046881 A1 WO 2017046881A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic layer
current source
current
light emitting
Prior art date
Application number
PCT/JP2015/076236
Other languages
French (fr)
Japanese (ja)
Inventor
石塚 真一
吉田 綾子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2017540385A priority Critical patent/JPWO2017046881A1/en
Priority to PCT/JP2015/076236 priority patent/WO2017046881A1/en
Publication of WO2017046881A1 publication Critical patent/WO2017046881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces

Definitions

  • the present invention relates to a light emitting device.
  • An organic EL element is one of the light sources of a light emitting device.
  • the organic EL element has a configuration in which an organic layer is disposed between two electrodes.
  • Some organic EL elements have a plurality of organic layers between two electrodes.
  • organic EL elements having a plurality of types of organic layers having different emission characteristics such as emission color have also been proposed.
  • Patent Document 1 discloses that a first electrode made of ITO, a first organic layer, a second electrode, a second organic layer, a third electrode, a third organic layer, and a fourth electrode are formed on a substrate. It has the structure which piled up in order.
  • the first electrode is grounded
  • the second electrode is connected to the output terminal of the first operational amplifier
  • the third electrode is connected to the output terminal of the second operational amplifier
  • the output terminals of the third operational amplifier are connected to the four electrodes.
  • the non-inverting input terminal of the first operational amplifier, the non-inverting input terminal of the second operational amplifier, and the non-inverting input terminal of the third operational amplifier are connected to different input terminals.
  • the output terminal of the first operational amplifier is connected to the non-inverting input terminal of the second operational amplifier, and the output terminal of the second operational amplifier is also connected to the non-inverting input terminal of the third operational amplifier.
  • Patent Document 2 in an organic EL device in which a first electrode, a first light emitting layer, an intermediate electrode layer, a second light emitting layer, and a second electrode are stacked in this order, the second electrode and the third electrode are connected to a variable resistor. It is described that the connection is made through. Patent Document 2 describes that the brightness of the second light emitting layer can be adjusted by adjusting the resistance of the variable resistor.
  • the luminance of each of the plurality of light emitting layers can be controlled independently of each other.
  • the amount of current in the second organic layer is increased by controlling the second operational amplifier, the amount of current flowing from the second organic layer to the first organic layer also increases. End up. For this reason, it is difficult to increase the ratio of the luminance of the second organic layer to the luminance of the first organic layer.
  • the brightness of the second organic layer is adjusted by reducing the amount of current flowing from the first organic layer to the second organic layer using a variable resistor. For this reason, even if the ratio of the luminance of the second organic layer to the luminance of the first organic layer can be lowered, this ratio cannot be made a certain value or more.
  • An example of a problem to be solved by the present invention is that the ratio of the luminance of the second organic layer to the luminance of the first organic layer can be increased.
  • the invention according to claim 1 is a first electrode; A second electrode overlapping the first electrode; A third electrode overlapping the second electrode; A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer; A second organic layer located between the second electrode and the third electrode and including a light emitting layer; A first current source connected to the first electrode; A second current source connected to the second electrode and independent of the first current source; A controller for controlling the first current source and the second current source; With The peak wavelength of the emission spectrum of the first organic layer is a light emitting device different from the peak wavelength of the emission spectrum of the second organic layer.
  • the invention according to claim 4 is a first electrode; A second electrode overlapping the first electrode; A third electrode overlapping the second electrode; A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer; A second organic layer located between the second electrode and the third electrode and including a light emitting layer; With The peak wavelength of the emission spectrum of the first organic layer is different from the peak wavelength of the emission spectrum of the second organic layer, In the light-emitting device, independent current sources are connected to the first electrode and the second electrode.
  • FIG. 2 is an equivalent circuit diagram of the light emitting device shown in FIG. 1. It is a figure explaining operation
  • the color temperature of the light-emitting device is a diagram showing a first example of the relationship between the current I 2 flowing from the second current source.
  • the color temperature of the light-emitting device is a diagram illustrating a second example of the relationship between the current I 2 flowing from the second current source.
  • FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to an embodiment.
  • FIG. 2 is an equivalent circuit diagram of the light emitting device 10 shown in FIG.
  • the light emitting device 10 according to the embodiment includes a first electrode 110, a first organic layer 120, a second electrode 130, a second organic layer 140, a third electrode 150, a control unit 210, a first current source 220, and a second current.
  • a source 240 is included.
  • the second electrode 130 overlaps the first electrode 110, and the third electrode 150 overlaps the second electrode 130.
  • the first organic layer 120 is located between the first electrode 110 and the second electrode 130, and the second organic layer 140 is located between the second electrode 130 and the third electrode 150.
  • the first current source 220 is connected to the first electrode 110.
  • the second current source 240 is independent of the first current source 220 and is connected to the second electrode 130.
  • the controller 210 controls the first current source 220 and the second current source 240.
  • the peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140. In other words, the emission color of the first organic layer 120 is different from the emission color of the second organic layer 140. Details will be described below.
  • the first electrode 110, the first organic layer 120, the second electrode 130, the second organic layer 140, and the third electrode 150 are formed on the first surface of the substrate 100.
  • the substrate 100 is formed of a light-transmitting material such as glass or a light-transmitting resin.
  • the substrate 100 is, for example, a polygon such as a rectangle.
  • the substrate 100 may have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed.
  • an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
  • the first electrode 110 and the second electrode 130 are transparent electrodes having optical transparency.
  • the transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide) or the like. is there.
  • the thickness of the first electrode 110 and the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm.
  • the first electrode 110 and the second electrode 130 are formed using, for example, a sputtering method or a vapor deposition method.
  • the first electrode 110 and the second electrode 130 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS.
  • the second electrode 130 has a structure in which a layer containing the material of the third electrode 150, which will be described later, is laminated on a layer containing these materials, or a structure in which the material of the third electrode 150 is arranged in a net shape. May be.
  • the layer made of the material of the third electrode 150 is preferably 500 nm or less.
  • the third electrode 150 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the third electrode 150 has a light shielding property.
  • the thickness of the third electrode 150 is, for example, not less than 10 nm and not more than 500 nm. However, the third electrode 150 may be formed using the material exemplified as the material of the first electrode 110.
  • the third electrode 150 is formed using, for example, a sputtering method or a vapor deposition method.
  • Each of the first organic layer 120 and the second organic layer 140 has a configuration in which a hole injection layer, a light emitting layer, and an electron injection layer are laminated in this order.
  • a hole transport layer may be formed between the hole injection layer and the light emitting layer.
  • an electron transport layer may be formed between the light emitting layer and the electron injection layer.
  • the first organic layer 120 and the second organic layer 140 may be formed by an evaporation method.
  • at least one layer of the first organic layer 120, for example, a layer in contact with the first electrode 110 may be formed by a coating method such as an inkjet method, a printing method, or a spray method.
  • At least one layer of the second organic layer 140 for example, a layer in contact with the second electrode 130 may be formed by a coating method such as an inkjet method, a printing method, or a spray method.
  • the remaining layers of the first organic layer 120 and the remaining layers of the second organic layer 140 are formed by an evaporation method.
  • all the layers of the 1st organic layer 120 and all the layers of the 2nd organic layer 140 may be formed using the apply
  • the peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140.
  • the first organic layer 120 has a peak in the red wavelength region
  • the second organic layer 140 has a peak on the shorter wavelength side (for example, the blue wavelength region) than red.
  • the light emission color of the light emitting device 10 is a color (for example, white) obtained by mixing the light emission color of the first organic layer 120 and the light emission color of the second organic layer 140.
  • the emission color of the light emitting device 10 can be changed by changing the ratio of the luminance of the second organic layer 140 to the luminance of the first organic layer 120. Note that the peak of the first organic layer 120 and the peak of the second organic layer 140 may be reversed.
  • the first electrode 110 serves as the anode of the first organic layer 120, and the output terminal of the first current source 220 is connected thereto.
  • the second electrode 130 serves as the cathode of the first organic layer 120 and serves as the anode of the second organic layer 140.
  • the output terminal of the second current source 240 is further connected to the second electrode 130.
  • the third electrode 150 is a cathode of the second organic layer 140 and is applied with a ground potential.
  • the first current source 220 and the second current source 240 are current sources and are controlled by the control unit 210.
  • the first current source 220 and the second current source 240 are, for example, switching regulators.
  • the first current source 220 and the second current source 240 may be current sources having other structures.
  • the controller 210 causes the first organic layer 120 and the second organic layer 140 to emit light in two patterns of the first mode and the second mode.
  • the controller 210 turns on the first current source 220 and turns off the second current source 240.
  • the control unit 210 turns on the first current source 220 and the second current source 240. Accordingly, the current flowing through the second organic layer 140 is greater than the current flowing through the first organic layer 120. Details will be described below.
  • the current flowing through the first current source 220 is I 1
  • the current flowing through the second current source 240 is I 2
  • the current flowing through the first organic layer 120 is I 01
  • the control unit 210 turns on the first current source 220 and the second current source 240.
  • the current I 01 flowing through the first organic layer 120 is equal to the current I 1 flowing from the first current source 220 as in the first mode.
  • the controller 210 can control the difference between the luminance of the first organic layer 120 and the luminance of the second organic layer 140 by controlling the current I 2 flowing from the second current source 240. Therefore, the control unit 210 can make the emission color of the light emitting device 10 in the second mode different from the emission color of the light emitting device 10 in the first mode. Then, the difference in the color, can be controlled by the current I 2 flowing from the second current source 240.
  • FIG. 8 is a diagram illustrating a first example of the relationship between the color temperature of the light emitting device 10 and the current I 2 flowing from the second current source 240.
  • the emission color of the first organic layer 120 is blue
  • the emission color of the second organic layer 140 is yellow.
  • the color temperature of the light emitting device 10 is 5000K
  • the light emission color of the light emitting device 10 is white, which has a high color temperature.
  • the second mode as I 2 increases, the color temperature of the light emitting device 10 decreases.
  • FIG. 9 is a diagram illustrating a second example of the relationship between the color temperature of the light emitting device 10 and the current I 2 flowing from the second current source 240.
  • the emission color of the first organic layer 120 is yellow
  • the emission color of the second organic layer 140 is blue.
  • the color temperature of the light emitting device 10 is 3000 K
  • the light emission color of the light emitting device 10 is white with a low color temperature.
  • the color temperature of the light emitting device 10 increases, for example, increases to 5000K.
  • the control unit 210 has the first mode and the second mode as the control mode of the light emitting device 10.
  • the controller 210 operates only the first current source 220 in the first mode, and operates the first current source 220 and the second current source 240 in the second mode. Therefore, the brightness of the second organic layer 140 can be increased while the brightness of the first organic layer 120 is fixed. For this reason, the control part 210 can make the luminescent color of the light-emitting device 10 in a 2nd mode differ from the luminescent color of the light-emitting device 10 in a 1st mode. The color difference can be controlled by the current I 2 flowing from the second current source 240.

Abstract

A second electrode (130) overlaps a first electrode (110), and a third electrode (150) overlaps the second electrode (130). A first organic layer (120) is positioned between the first electrode (110) and the second electrode (130), and a second organic layer (140) is positioned between the second electrode (130) and the third electrode (150). A first current source (220) is connected to the first electrode (110), and a second current source (240) is connected to the second electrode (130). A control unit (210) controls the first current source (220) and the second current source (240). The peak wavelength of the emission spectrum of the first organic layer (120) differs from the peak wavelength of the emission spectrum of the second organic layer (140).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 発光装置の光源の一つに有機EL素子がある。有機EL素子は、2つの電極の間に有機層を配置した構成を有している。有機EL素子には、2つの電極の間に複数の有機層を有するものがある。近年は、例えば発光色など発光特性の異なる複数種類の有機層を有する有機EL素子も提案されている。 An organic EL element is one of the light sources of a light emitting device. The organic EL element has a configuration in which an organic layer is disposed between two electrodes. Some organic EL elements have a plurality of organic layers between two electrodes. In recent years, for example, organic EL elements having a plurality of types of organic layers having different emission characteristics such as emission color have also been proposed.
 例えば特許文献1には、基板の上にITOからなる第1電極、第1の有機層、第2電極、第2の有機層、第3電極、第3の有機層、及び第4電極をこの順に重ねた構成を有している。このような構成において、第1電極は接地され、第2電極には第1のオペアンプの出力端子が接続されており、第3電極には第2のオペアンプの出力端子が接続されており、第4電極には第3のオペアンプの出力端子が接続されている。第1のオペアンプの非反転入力端子、第2のオペアンプの非反転入力端子、及び第3のオペアンプの非反転入力端子は、それぞれ互いに異なる入力端子に接続している。また、第2のオペアンプの非反転入力端子には第1のオペアンプの出力端子も接続されており、第3のオペアンプの非反転入力端子には第2のオペアンプの出力端子も接続されている。 For example, Patent Document 1 discloses that a first electrode made of ITO, a first organic layer, a second electrode, a second organic layer, a third electrode, a third organic layer, and a fourth electrode are formed on a substrate. It has the structure which piled up in order. In such a configuration, the first electrode is grounded, the second electrode is connected to the output terminal of the first operational amplifier, the third electrode is connected to the output terminal of the second operational amplifier, The output terminals of the third operational amplifier are connected to the four electrodes. The non-inverting input terminal of the first operational amplifier, the non-inverting input terminal of the second operational amplifier, and the non-inverting input terminal of the third operational amplifier are connected to different input terminals. In addition, the output terminal of the first operational amplifier is connected to the non-inverting input terminal of the second operational amplifier, and the output terminal of the second operational amplifier is also connected to the non-inverting input terminal of the third operational amplifier.
 また特許文献2には、第1電極、第1発光層、中間電極層、第2発光層、及び第2電極をこの順に積層した有機EL装置において、第2電極と第3電極とを可変抵抗を介して接続することが記載されている。特許文献2において、可変抵抗の抵抗を調整することにより、第2発光層に輝度を調節することができる、と記載されている。 Further, in Patent Document 2, in an organic EL device in which a first electrode, a first light emitting layer, an intermediate electrode layer, a second light emitting layer, and a second electrode are stacked in this order, the second electrode and the third electrode are connected to a variable resistor. It is described that the connection is made through. Patent Document 2 describes that the brightness of the second light emitting layer can be adjusted by adjusting the resistance of the variable resistor.
特表2001-511296号公報JP 2001-511296 A 特開2014-150000号公報JP 2014-150000 A
 互いに発光色が異なる複数の発光層を積層した有機EL素子において、発光色を調整するためには、複数の発光層それぞれの輝度を互いに独立して制御できるようにすることが好ましい。しかし、特許文献1に記載の方法では、第2のオペアンプを制御して第2の有機層の電流量を増加させると、第2の有機層から第1の有機層に流れる電流量も増加してしまう。このため、第1の有機層の輝度に対する第2の有機層の輝度の比率を大きくしにくい。 In an organic EL element in which a plurality of light emitting layers having different light emission colors are stacked, in order to adjust the light emission color, it is preferable that the luminance of each of the plurality of light emitting layers can be controlled independently of each other. However, in the method described in Patent Document 1, when the amount of current in the second organic layer is increased by controlling the second operational amplifier, the amount of current flowing from the second organic layer to the first organic layer also increases. End up. For this reason, it is difficult to increase the ratio of the luminance of the second organic layer to the luminance of the first organic layer.
 また、特許文献2に記載の方法では、可変抵抗を用いて第1の有機層から第2の有機層に流れる電流量を減らすことにより第2の有機層の輝度を調節している。このため、第1の有機層の輝度に対する第2の有機層の輝度の比率を下げることはできても、この比率を一定値以上にすることはできない。 In the method described in Patent Document 2, the brightness of the second organic layer is adjusted by reducing the amount of current flowing from the first organic layer to the second organic layer using a variable resistor. For this reason, even if the ratio of the luminance of the second organic layer to the luminance of the first organic layer can be lowered, this ratio cannot be made a certain value or more.
 本発明が解決しようとする課題としては、第1の有機層の輝度に対する第2の有機層の輝度の比率を上げる方向に制御できるようにすることが一例として挙げられる。 An example of a problem to be solved by the present invention is that the ratio of the luminance of the second organic layer to the luminance of the first organic layer can be increased.
 請求項1に記載の発明は、第1電極と、
 前記第1電極と重なっている第2電極と、
 前記第2電極と重なっている第3電極と、
 前記第1電極と前記第2電極の間に位置していて発光層を含む第1有機層と、
 前記第2電極と前記第3電極の間に位置していて発光層を含む第2有機層と、
 前記第1電極に接続している第1電流源と、
 前記第2電極に接続しており、前記第1電流源から独立している第2電流源と、
 前記第1電流源及び前記第2電流源を制御する制御部と、
を備え、
 前記第1有機層の発光スペクトルのピーク波長は、前記第2有機層の発光スペクトルのピーク波長と異なる発光装置である。
The invention according to claim 1 is a first electrode;
A second electrode overlapping the first electrode;
A third electrode overlapping the second electrode;
A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer;
A second organic layer located between the second electrode and the third electrode and including a light emitting layer;
A first current source connected to the first electrode;
A second current source connected to the second electrode and independent of the first current source;
A controller for controlling the first current source and the second current source;
With
The peak wavelength of the emission spectrum of the first organic layer is a light emitting device different from the peak wavelength of the emission spectrum of the second organic layer.
 請求項4に記載の発明は、第1電極と、
 前記第1電極と重なっている第2電極と、
 前記第2電極と重なっている第3電極と、
 前記第1電極と前記第2電極の間に位置していて発光層を含む第1有機層と、
 前記第2電極と前記第3電極の間に位置していて発光層を含む第2有機層と、
を備え、
 前記第1有機層の発光スペクトルのピーク波長は、前記第2有機層の発光スペクトルのピーク波長と異なり、
 前記第1電極及び前記第2電極には、互いに独立した電流源が接続される発光装置である。
The invention according to claim 4 is a first electrode;
A second electrode overlapping the first electrode;
A third electrode overlapping the second electrode;
A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer;
A second organic layer located between the second electrode and the third electrode and including a light emitting layer;
With
The peak wavelength of the emission spectrum of the first organic layer is different from the peak wavelength of the emission spectrum of the second organic layer,
In the light-emitting device, independent current sources are connected to the first electrode and the second electrode.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on embodiment. 図1に示した発光装置の等価回路図である。FIG. 2 is an equivalent circuit diagram of the light emitting device shown in FIG. 1. 制御部の動作について説明する図である。It is a figure explaining operation | movement of a control part. 制御部の第1モードについて説明する図である。It is a figure explaining the 1st mode of a control part. 制御部の第1モードについて説明する図である。It is a figure explaining the 1st mode of a control part. 制御部の第2モードについて説明する図である。It is a figure explaining the 2nd mode of a control part. 制御部の第2モードについて説明する図である。It is a figure explaining the 2nd mode of a control part. 発光装置の色温度と、第2電流源から流れる電流Iの関係の第1例を示す図である。The color temperature of the light-emitting device is a diagram showing a first example of the relationship between the current I 2 flowing from the second current source. 発光装置の色温度と、第2電流源から流れる電流Iの関係の第2例を示す図である。The color temperature of the light-emitting device is a diagram illustrating a second example of the relationship between the current I 2 flowing from the second current source.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10の構成を示す断面図である。図2は、図1に示した発光装置10の等価回路図である。実施形態に係る発光装置10は、第1電極110、第1有機層120、第2電極130、第2有機層140、第3電極150、制御部210、第1電流源220、及び第2電流源240を有している。第2電極130は第1電極110と重なっており、第3電極150は第2電極130と重なっている。第1有機層120は第1電極110と第2電極130の間に位置しており、第2有機層140は第2電極130と第3電極150の間に位置している。第1電流源220は第1電極110に接続している。第2電流源240は第1電流源220から独立しており、第2電極130に接続している。制御部210は第1電流源220及び第2電流源240を制御する。そして、第1有機層120の発光スペクトルのピーク波長は、第2有機層140の発光スペクトルのピーク波長と異なる。言い換えると、第1有機層120の発光色は、第2有機層140の発光色と異なる。以下、詳細に説明する。 FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 10 according to an embodiment. FIG. 2 is an equivalent circuit diagram of the light emitting device 10 shown in FIG. The light emitting device 10 according to the embodiment includes a first electrode 110, a first organic layer 120, a second electrode 130, a second organic layer 140, a third electrode 150, a control unit 210, a first current source 220, and a second current. A source 240 is included. The second electrode 130 overlaps the first electrode 110, and the third electrode 150 overlaps the second electrode 130. The first organic layer 120 is located between the first electrode 110 and the second electrode 130, and the second organic layer 140 is located between the second electrode 130 and the third electrode 150. The first current source 220 is connected to the first electrode 110. The second current source 240 is independent of the first current source 220 and is connected to the second electrode 130. The controller 210 controls the first current source 220 and the second current source 240. The peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140. In other words, the emission color of the first organic layer 120 is different from the emission color of the second organic layer 140. Details will be described below.
 第1電極110、第1有機層120、第2電極130、第2有機層140、及び第3電極150は、基板100の第1面に形成されている。 The first electrode 110, the first organic layer 120, the second electrode 130, the second organic layer 140, and the third electrode 150 are formed on the first surface of the substrate 100.
 基板100は、例えばガラスや透光性の樹脂などの透光性の材料で形成されている。基板100は、例えば矩形などの多角形である。ここで、基板100は可撓性を有していてもよい。基板100が可撓性を有している場合、基板100の厚さは、例えば10μm以上1000μm以下である。特に基板100をガラス材料で可撓性を持たせる場合、基板100の厚さは、例えば200μm以下である。基板100を樹脂材料で可撓性を持たせる場合は、基板100の材料として、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)、又はポリイミドを含ませて形成されている。また、基板100が樹脂材料を含む場合、水分が基板100を透過することを抑制するために、基板100の少なくとも発光面(好ましくは両面)に、SiNやSiONなどの無機バリア膜が形成されている。 The substrate 100 is formed of a light-transmitting material such as glass or a light-transmitting resin. The substrate 100 is, for example, a polygon such as a rectangle. Here, the substrate 100 may have flexibility. In the case where the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. In particular, when the substrate 100 is made of a glass material and has flexibility, the thickness of the substrate 100 is, for example, 200 μm or less. In the case where the substrate 100 is made of a resin material and is flexible, the material of the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. Is formed. In the case where the substrate 100 includes a resin material, an inorganic barrier film such as SiN x or SiON is formed on at least the light emitting surface (preferably both surfaces) of the substrate 100 in order to suppress moisture from passing through the substrate 100. ing.
 第1電極110及び第2電極130は、光透過性を有する透明電極である。透明電極を構成する透明導電材料は、金属を含む材料、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)、ZnO(Zinc Oxide)等の金属酸化物である。第1電極110及び第2電極130の厚さは、例えば10nm以上500nm以下である。第1電極110及び第2電極130は、例えばスパッタリング法又は蒸着法を用いて形成される。なお、第1電極110及び第2電極130は、カーボンナノチューブ、又はPEDOT/PSSなどの導電性有機材料であってもよい。また、第2電極130は、これらの材料を含む層の上に、後述する第3電極150の材料を含む層との積層した構造や、第3電極150の材料を網状に配置した構造であってもよい。この場合、第3電極150の材料からなる層は500nm以下であることが好ましい。 The first electrode 110 and the second electrode 130 are transparent electrodes having optical transparency. The transparent conductive material constituting the transparent electrode is a metal-containing material, for example, a metal oxide such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide), ZnO (Zinc Oxide) or the like. is there. The thickness of the first electrode 110 and the second electrode 130 is, for example, not less than 10 nm and not more than 500 nm. The first electrode 110 and the second electrode 130 are formed using, for example, a sputtering method or a vapor deposition method. The first electrode 110 and the second electrode 130 may be a carbon nanotube or a conductive organic material such as PEDOT / PSS. The second electrode 130 has a structure in which a layer containing the material of the third electrode 150, which will be described later, is laminated on a layer containing these materials, or a structure in which the material of the third electrode 150 is arranged in a net shape. May be. In this case, the layer made of the material of the third electrode 150 is preferably 500 nm or less.
 第3電極150は、例えば、Al、Au、Ag、Pt、Mg、Sn、Zn、及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金からなる金属層を含んでいる。この場合、第3電極150は遮光性を有している。第3電極150の厚さは、例えば10nm以上500nm以下である。ただし、第3電極150は、第1電極110の材料として例示した材料を用いて形成されていてもよい。第3電極150は、例えばスパッタリング法又は蒸着法を用いて形成される。 The third electrode 150 is made of, for example, a metal selected from the first group consisting of Al, Au, Ag, Pt, Mg, Sn, Zn, and In, or an alloy of a metal selected from the first group. Contains a metal layer. In this case, the third electrode 150 has a light shielding property. The thickness of the third electrode 150 is, for example, not less than 10 nm and not more than 500 nm. However, the third electrode 150 may be formed using the material exemplified as the material of the first electrode 110. The third electrode 150 is formed using, for example, a sputtering method or a vapor deposition method.
 第1有機層120及び第2有機層140は、いずれも、正孔注入層、発光層、及び電子注入層をこの順に積層させた構成を有している。正孔注入層と発光層との間には正孔輸送層が形成されていてもよい。また、発光層と電子注入層との間には電子輸送層が形成されていてもよい。第1有機層120及び第2有機層140は蒸着法で形成されてもよい。また、第1有機層120のうち少なくとも一つの層、例えば第1電極110と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。また、第2有機層140のうち少なくとも一つの層、例えば第2電極130と接触する層は、インクジェット法、印刷法、又はスプレー法などの塗布法によって形成されてもよい。なお、この場合、第1有機層120の残りの層及び第2有機層140の残りの層は、蒸着法によって形成されている。また、第1有機層120のすべての層及び第2有機層140のすべての層が、塗布法を用いて形成されていてもよい。 Each of the first organic layer 120 and the second organic layer 140 has a configuration in which a hole injection layer, a light emitting layer, and an electron injection layer are laminated in this order. A hole transport layer may be formed between the hole injection layer and the light emitting layer. In addition, an electron transport layer may be formed between the light emitting layer and the electron injection layer. The first organic layer 120 and the second organic layer 140 may be formed by an evaporation method. In addition, at least one layer of the first organic layer 120, for example, a layer in contact with the first electrode 110 may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In addition, at least one layer of the second organic layer 140, for example, a layer in contact with the second electrode 130 may be formed by a coating method such as an inkjet method, a printing method, or a spray method. In this case, the remaining layers of the first organic layer 120 and the remaining layers of the second organic layer 140 are formed by an evaporation method. Moreover, all the layers of the 1st organic layer 120 and all the layers of the 2nd organic layer 140 may be formed using the apply | coating method.
 上記したように、第1有機層120の発光スペクトルのピーク波長は、第2有機層140の発光スペクトルのピーク波長と異なる。例えば、第1有機層120は赤色の波長域にピークを有しており、第2有機層140は赤色より短波長側(例えば青色の波長域)にピークを有している。このため、発光装置10の発光色は、第1有機層120の発光色と第2有機層140の発光色を混ぜた色(例えば白色)になる。そして、発光装置10の発光色は、第1有機層120の輝度に対する第2有機層140の輝度の比率を変更することにより、変更することができる。なお、第1有機層120が有するピークと第2有機層140が有するピークは逆であってもよい。 As described above, the peak wavelength of the emission spectrum of the first organic layer 120 is different from the peak wavelength of the emission spectrum of the second organic layer 140. For example, the first organic layer 120 has a peak in the red wavelength region, and the second organic layer 140 has a peak on the shorter wavelength side (for example, the blue wavelength region) than red. For this reason, the light emission color of the light emitting device 10 is a color (for example, white) obtained by mixing the light emission color of the first organic layer 120 and the light emission color of the second organic layer 140. The emission color of the light emitting device 10 can be changed by changing the ratio of the luminance of the second organic layer 140 to the luminance of the first organic layer 120. Note that the peak of the first organic layer 120 and the peak of the second organic layer 140 may be reversed.
 そして、第1電極110は第1有機層120の陽極となっており、かつ、第1電流源220の出力端子が接続されている。また、第2電極130は第1有機層120の陰極となっており、かつ第2有機層140の陽極になっている。第2電極130は、さらに、第2電流源240の出力端子が接続されている。そして第3電極150は第2有機層140の陰極であり、かつ、接地電位が印加されている。 The first electrode 110 serves as the anode of the first organic layer 120, and the output terminal of the first current source 220 is connected thereto. The second electrode 130 serves as the cathode of the first organic layer 120 and serves as the anode of the second organic layer 140. The output terminal of the second current source 240 is further connected to the second electrode 130. The third electrode 150 is a cathode of the second organic layer 140 and is applied with a ground potential.
 第1電流源220及び第2電流源240は電流源であり、制御部210によって制御されている。第1電流源220及び第2電流源240は、例えばスイッチングレギュレータである。ただし、第1電流源220及び第2電流源240は、他の構造の電流源であってもよい。 The first current source 220 and the second current source 240 are current sources and are controlled by the control unit 210. The first current source 220 and the second current source 240 are, for example, switching regulators. However, the first current source 220 and the second current source 240 may be current sources having other structures.
 次に、制御部210の動作について説明する。制御部210は、図3に示すように、第1有機層120及び第2有機層140を、第1モード及び第2モードの2パターンで発光させる。第1モードでは、制御部210は、第1電流源220をオンにして、第2電流源240をオフにする。その結果、第1有機層120と第2有機層140には同じ大きさの電流が流れる。第2モードでは、制御部210は、第1電流源220及び第2電流源240をオンにする。これにより、第2有機層140に流れる電流は第1有機層120に流れる電流よりも多くなる。以下、詳細に説明する。以下の説明において、図2に示すように、第1電流源220が流す電流をI、第2電流源240が流す電流をI、第1有機層120に流れる電流をI01、第2有機層140に流れる電流をI02とする。 Next, the operation of the control unit 210 will be described. As shown in FIG. 3, the controller 210 causes the first organic layer 120 and the second organic layer 140 to emit light in two patterns of the first mode and the second mode. In the first mode, the controller 210 turns on the first current source 220 and turns off the second current source 240. As a result, the same current flows through the first organic layer 120 and the second organic layer 140. In the second mode, the control unit 210 turns on the first current source 220 and the second current source 240. Accordingly, the current flowing through the second organic layer 140 is greater than the current flowing through the first organic layer 120. Details will be described below. In the following description, as shown in FIG. 2, the current flowing through the first current source 220 is I 1 , the current flowing through the second current source 240 is I 2 , the current flowing through the first organic layer 120 is I 01 , the second the current flowing through the organic layer 140 to I 02.
 まず、図4及び図5を用いて、第1モードについて説明する。第1モードにおいて、制御部210は、第1電流源220から第1電極110に電流を流す。この際、制御部210は第2電流源240を動作させない。すなわちI=0にする。これにより、第1電極110から第3電極150に電流Iが流れる。その結果、第1有機層120に流れる電流I01と第2有機層140が流れる電流I02はいずれもIになる。このため、図4及び図5に示すように、第1電流源220からの電流Iが大きくなると、Iに比例して電流I01及び電流I02は大きくなり、その結果、第1有機層120が発光する光の強度(輝度)及び第2有機層140が発光する光の強度(輝度)も大きくなる。一方、第1電流源220からの電流Iが小さくなると、Iに比例して電流I01及び電流I02は小さくなり、その結果、第1有機層120が発光する光の強度(輝度)及び第2有機層140が発光する光の強度(輝度)も小さくなる。 First, the first mode will be described with reference to FIGS. 4 and 5. In the first mode, the controller 210 causes a current to flow from the first current source 220 to the first electrode 110. At this time, the controller 210 does not operate the second current source 240. That is, I 2 = 0. As a result, a current I 1 flows from the first electrode 110 to the third electrode 150. As a result, the current I 01 flowing through the first organic layer 120 and the current I 02 flowing through the second organic layer 140 are both I 1 . For this reason, as shown in FIGS. 4 and 5, when the current I 1 from the first current source 220 increases, the current I 01 and the current I 02 increase in proportion to I 1, and as a result, the first organic The intensity (luminance) of light emitted from the layer 120 and the intensity (luminance) of light emitted from the second organic layer 140 are also increased. On the other hand, when the current I 1 from the first current source 220 is reduced, the current I 01 and the current I 02 in proportion to I 1 decreases, the intensity of that light first organic layer 120 emits light (luminance) In addition, the intensity (luminance) of light emitted from the second organic layer 140 is also reduced.
 次に、第2モードについて、図6及び図7を用いて説明する。第2モードでは、上記したように、制御部210は第1電流源220及び第2電流源240をオンにする。これにより、図6に示すように、第1有機層120に流れる電流I01は、第1モードと同様に第1電流源220から流れる電流Iに等しい。一方、図7に示すように、第2有機層140に流れる電流I02は、第1有機層120を流れてきた電流I01(=I)に、第2電流源240から流れてきた電流Iを加えた量になる。従って、第1有機層120の輝度を固定したまま、第2有機層140の輝度を大きくすることができる。そして、制御部210は、第1有機層120の輝度と第2有機層140の輝度の差は、第2電流源240から流れる電流Iを制御することにより、制御できる。従って、制御部210は、第2モードにおける発光装置10の発光色を、第1モードにおける発光装置10の発光色と異ならせることができる。そして、その色の差を、第2電流源240から流れる電流Iにより制御することができる。 Next, the second mode will be described with reference to FIGS. In the second mode, as described above, the control unit 210 turns on the first current source 220 and the second current source 240. Thereby, as shown in FIG. 6, the current I 01 flowing through the first organic layer 120 is equal to the current I 1 flowing from the first current source 220 as in the first mode. On the other hand, as shown in FIG. 7, the current I 02 flowing through the second organic layer 140 is equal to the current I 01 (= I 1 ) flowing through the first organic layer 120 and the current flowing from the second current source 240. I 2 is added. Therefore, the brightness of the second organic layer 140 can be increased while the brightness of the first organic layer 120 is fixed. The controller 210 can control the difference between the luminance of the first organic layer 120 and the luminance of the second organic layer 140 by controlling the current I 2 flowing from the second current source 240. Therefore, the control unit 210 can make the emission color of the light emitting device 10 in the second mode different from the emission color of the light emitting device 10 in the first mode. Then, the difference in the color, can be controlled by the current I 2 flowing from the second current source 240.
 図8は、発光装置10の色温度と、第2電流源240から流れる電流Iの関係の第1例を示す図である。本図に示す例において、第1有機層120の発光色は青色であり、第2有機層140の発光色は黄色である。第1モード(すなわちI=0)において、発光装置10の色温度は5000Kであり、発光装置10の発光色は色温度が高い白になる。ここで第2モードでは、Iが増えるにつれて、発光装置10の色温度は下がっていく。 FIG. 8 is a diagram illustrating a first example of the relationship between the color temperature of the light emitting device 10 and the current I 2 flowing from the second current source 240. In the example shown in this figure, the emission color of the first organic layer 120 is blue, and the emission color of the second organic layer 140 is yellow. In the first mode (that is, I 2 = 0), the color temperature of the light emitting device 10 is 5000K, and the light emission color of the light emitting device 10 is white, which has a high color temperature. Here, in the second mode, as I 2 increases, the color temperature of the light emitting device 10 decreases.
 図9は、発光装置10の色温度と、第2電流源240から流れる電流Iの関係の第2例を示す図である。本図に示す例において、第1有機層120の発光色は黄色であり、第2有機層140の発光色は青色である。第1モード(すなわちI=0)において、発光装置10の色温度は3000Kであり、発光装置10の発光色は色温度が低い白になる。ここで第2モードでは、Iが増えるにつれて、発光装置10の色温度は上がっていき、例えば5000Kまで上がる。 FIG. 9 is a diagram illustrating a second example of the relationship between the color temperature of the light emitting device 10 and the current I 2 flowing from the second current source 240. In the example shown in this figure, the emission color of the first organic layer 120 is yellow, and the emission color of the second organic layer 140 is blue. In the first mode (that is, I 2 = 0), the color temperature of the light emitting device 10 is 3000 K, and the light emission color of the light emitting device 10 is white with a low color temperature. Here, in the second mode, as I 2 increases, the color temperature of the light emitting device 10 increases, for example, increases to 5000K.
 以上、本実施形態によれば、制御部210は、発光装置10の制御モードとして第1モード及び第2モードを有している。制御部210は、第1モードでは第1電流源220のみを動作させ、第2モードでは第1電流源220及び第2電流源240を動作させる。従って、第1有機層120の輝度を固定したまま、第2有機層140の輝度を大きくすることができる。このため、制御部210は、第2モードにおける発光装置10の発光色を、第1モードにおける発光装置10の発光色と異ならせることができる。そして、その色の差を、第2電流源240から流れる電流Iにより制御することができる。 As described above, according to the present embodiment, the control unit 210 has the first mode and the second mode as the control mode of the light emitting device 10. The controller 210 operates only the first current source 220 in the first mode, and operates the first current source 220 and the second current source 240 in the second mode. Therefore, the brightness of the second organic layer 140 can be increased while the brightness of the first organic layer 120 is fixed. For this reason, the control part 210 can make the luminescent color of the light-emitting device 10 in a 2nd mode differ from the luminescent color of the light-emitting device 10 in a 1st mode. The color difference can be controlled by the current I 2 flowing from the second current source 240.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (4)

  1.  第1電極と、
     前記第1電極と重なっている第2電極と、
     前記第2電極と重なっている第3電極と、
     前記第1電極と前記第2電極の間に位置していて発光層を含む第1有機層と、
     前記第2電極と前記第3電極の間に位置していて発光層を含む第2有機層と、
     前記第1電極に接続している第1電流源と、
     前記第2電極に接続しており、前記第1電流源から独立している第2電流源と、
     前記第1電流源及び前記第2電流源を制御する制御部と、
    を備え、
     前記第1有機層の発光スペクトルのピーク波長は、前記第2有機層の発光スペクトルのピーク波長と異なる発光装置。
    A first electrode;
    A second electrode overlapping the first electrode;
    A third electrode overlapping the second electrode;
    A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer;
    A second organic layer located between the second electrode and the third electrode and including a light emitting layer;
    A first current source connected to the first electrode;
    A second current source connected to the second electrode and independent of the first current source;
    A controller for controlling the first current source and the second current source;
    With
    The peak wavelength of the emission spectrum of the first organic layer is different from the peak wavelength of the emission spectrum of the second organic layer.
  2.  請求項1に記載の発光装置において、
     前記第1電極、前記第1有機層、前記第2電極、前記第2有機層、及び前記第3電極は、透光性の基板の上に形成されており、
     前記第1電極は透光性の電極である発光装置。
    The light-emitting device according to claim 1.
    The first electrode, the first organic layer, the second electrode, the second organic layer, and the third electrode are formed on a translucent substrate,
    The light emitting device, wherein the first electrode is a translucent electrode.
  3.  請求項1又は2に記載の発光装置において、
     前記制御部は、動作モードとして、
      前記第1電流源から電流を供給して前記第2電流源から電流を供給しない第1モードと、
      前記第1電流源及び前記第2電流源のそれぞれから電流を供給する第2モードと、
    を有する発光装置。
    The light-emitting device according to claim 1 or 2,
    The control unit has an operation mode as follows:
    A first mode in which current is supplied from the first current source and current is not supplied from the second current source;
    A second mode for supplying current from each of the first current source and the second current source;
    A light emitting device.
  4.  第1電極と、
     前記第1電極と重なっている第2電極と、
     前記第2電極と重なっている第3電極と、
     前記第1電極と前記第2電極の間に位置していて発光層を含む第1有機層と、
     前記第2電極と前記第3電極の間に位置していて発光層を含む第2有機層と、
    を備え、
     前記第1有機層の発光スペクトルのピーク波長は、前記第2有機層の発光スペクトルのピーク波長と異なり、
     前記第1電極及び前記第2電極には、互いに独立した電流源が接続される発光装置。
    A first electrode;
    A second electrode overlapping the first electrode;
    A third electrode overlapping the second electrode;
    A first organic layer that is located between the first electrode and the second electrode and includes a light emitting layer;
    A second organic layer located between the second electrode and the third electrode and including a light emitting layer;
    With
    The peak wavelength of the emission spectrum of the first organic layer is different from the peak wavelength of the emission spectrum of the second organic layer,
    A light emitting device in which independent current sources are connected to the first electrode and the second electrode.
PCT/JP2015/076236 2015-09-16 2015-09-16 Light-emitting device WO2017046881A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017540385A JPWO2017046881A1 (en) 2015-09-16 2015-09-16 Light emitting device
PCT/JP2015/076236 WO2017046881A1 (en) 2015-09-16 2015-09-16 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076236 WO2017046881A1 (en) 2015-09-16 2015-09-16 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2017046881A1 true WO2017046881A1 (en) 2017-03-23

Family

ID=58288254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076236 WO2017046881A1 (en) 2015-09-16 2015-09-16 Light-emitting device

Country Status (2)

Country Link
JP (1) JPWO2017046881A1 (en)
WO (1) WO2017046881A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524221A (en) * 2007-04-02 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Driving method of light emitting diode
JP2010218903A (en) * 2009-03-17 2010-09-30 Canon Inc Light emitting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010524221A (en) * 2007-04-02 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Driving method of light emitting diode
JP2010218903A (en) * 2009-03-17 2010-09-30 Canon Inc Light emitting apparatus

Also Published As

Publication number Publication date
JPWO2017046881A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
KR100745759B1 (en) Organic light emitting display providing transparent cathode
CN107004695B (en) Organic light emitting device
EP2055149A1 (en) Electroluminescent device having a variable color point
WO2017046881A1 (en) Light-emitting device
KR101707991B1 (en) Organic light emitting device and illuminator using the same
JP6522766B2 (en) Light emitting device
JP2019117806A (en) Light emitting device
JP6457065B2 (en) Light emitting device
JP6661418B2 (en) Light emitting device
KR100571004B1 (en) Filed organic electroluminescent display device
WO2017119068A1 (en) Light emitting device
JP6837045B2 (en) Light emitting device
JP2022002227A (en) Light emitting device
WO2015079542A1 (en) Light emitting device
WO2016151772A1 (en) Light emitting device
WO2016151718A1 (en) Light emitting device
JP2011165781A (en) Organic el element
WO2018211934A1 (en) Light emission device
JP2017076467A (en) Light emitting device
JP2024023606A (en) light emitting device
WO2017203788A1 (en) Organic electroluminescent element
WO2013168228A1 (en) Organic electroluminescence device
WO2016143141A1 (en) Light emitting device
KR20130021224A (en) Color tunable organic light emitting diode
JP2016122608A (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904070

Country of ref document: EP

Kind code of ref document: A1