WO2017046774A2 - Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu's arteritis - Google Patents

Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu's arteritis Download PDF

Info

Publication number
WO2017046774A2
WO2017046774A2 PCT/IB2016/055557 IB2016055557W WO2017046774A2 WO 2017046774 A2 WO2017046774 A2 WO 2017046774A2 IB 2016055557 W IB2016055557 W IB 2016055557W WO 2017046774 A2 WO2017046774 A2 WO 2017046774A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
antibody
variable region
chain variable
amino acid
Prior art date
Application number
PCT/IB2016/055557
Other languages
French (fr)
Other versions
WO2017046774A3 (en
Inventor
Kenneth Flanagan
Original Assignee
Prothena Biosciences Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prothena Biosciences Limited filed Critical Prothena Biosciences Limited
Publication of WO2017046774A2 publication Critical patent/WO2017046774A2/en
Publication of WO2017046774A3 publication Critical patent/WO2017046774A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3092Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated mucins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • ARTERITIS is 153 kilobytes. The information contained in this file is hereby incorporated by reference.
  • TH17 cells T helper 17 cells
  • EAE experimental autoimmune encephalomyelitis
  • the invention provides antibodies, compositions, formulations and the like described below and throughout the specification for use in treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis. Corresponding claims in method or Swiss style are also provided.
  • Some antibodies comprise a mature heavy chain variable region comprising the three Kabat CDRs of SEQ ID NO: 156, and being at least 97% identical to SEQ ID NO: 156, and a mature light chain variable region comprising the three Kabat CDRs of SEQ ID NO: 160, and being at least 97% identical to SEQ ID NO: 160.
  • the mature heavy chain variable region is at least 98% or 99% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 98% or 99% identical to SEQ ID NO: 160.
  • the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160.
  • position 93 (Kabat numbering) of the mature heavy chain variable region is occupied by T;
  • position 42 (Kabat numbering) of the mature heavy chain variable region is occupied by E;
  • position 43 (Kabat numbering) of the mature light chain variable region is occupied by S;
  • position 9 (Kabat numbering) of the mature light heavy chain variable region is occupied by S; position 19 (Kabat numbering) of the mature light heavy chain variable region is occupied by V.
  • position 93 (Kabat numbering) of the mature heavy chain variable region is occupied by T; position 42 (Kabat numbering) of the mature heavy chain variable region is occupied by E; position 3 (Kabat numbering) of the mature heavy chain variable region is occupied by K, position 43 (Kabat numbering) of the mature light chain variable region is occupied by S; position 9 (Kabat numbering) of the mature light heavy chain variable region is occupied by S; position 19 (Kabat numbering) of the mature light heavy chain variable region is occupied by V.
  • the heavy chain constant region has the amino acid sequence of SEQ ID NO: 173 or 174 and/or the light chain constant region has the amino acid sequence of SEQ ID NO: 170 or 171.
  • Some anti-MCAM antibodies bind to human MCAM (SEQ ID NO: 11) at an epitope including amino acid residue 318.
  • the epitope comprises amino acid residue 324.
  • the epitope comprises amino acid residue 326.
  • the epitope comprises at least five contiguous amino acids residues of human MCAM including amino acid residue 318.
  • the antibody is not an antibody selected from the group consisting of:
  • an antibody comprising CDRs substantially from the monoclonal antibodies 1174.1.3, 1414.1.2 , 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10.
  • the antibody is monoclonal.
  • the antibody is chimeric, humanized, veneered, or human.
  • the antibody is not an antibody selected from the group consisting of: (a) clone 15 having a mature heavy chain variable region corresponding to SEQ ID NO: 18 and a mature light chain variable region corresponding to SEQ ID NO: 13;
  • an antibody comprising CDRs substantially from the monoclonal antibodies 1174.1.3, 1414.1.2 , 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10.
  • the antibody is monoclonal.
  • the antibody is chimeric, humanized, veneered, or human.
  • composition comprising any of the above- mentioned antibodies.
  • an isolated peptide comprising an epitope for binding an anti- MCAM monoclonal antibody, wherein the peptide comprises 5-50 contiguous amino acid residues of human MCAM (SEQ ID NO: 11) including amino acid residue 318.
  • the peptide is linked to a carrier polypeptide.
  • the peptide is combined with an adjuvant.
  • FIG. 1 depicts the identification of critical clones.
  • FIG. 2 depicts a homology model of human MCAM, indicating the location of five residues identified as potentially critical binding sites for 1749.1.3, including C272, Y318, C320, V340, and W377.
  • FIG. 3 A depicts an alignment of the amino acid sequences of 1749.1.3 with the humanized 1749 light chain mature variable regions.
  • ABA71407.1 and CAI99800.1 are the human acceptor V L sequence.
  • CDR regions according to Kabat definition are highlighted in gray.
  • FIG. 3B depicts an alignment of the amino acid sequences of 1749.1.3 with the humanized 1749 heavy chain mature variable regions.
  • AAX82494.1 and ADX65676.1 are the human acceptor V H sequence.
  • CDR regions according to Kabat definition are highlighted in gray.
  • SEQ ID NO: l is the nucleic acid sequence encoding the mature light chain variable region of antibody clone 17.
  • SEQ ID NO:2 is the amino acid sequence of the mature light chain variable region of antibody clone 17.
  • SEQ ID NO:3 is the amino acid sequence of CDRL1 of the antibody clone 17.
  • SEQ ID NO:4 is the amino acid sequence of CDRL2 of the antibody clone 17.
  • SEQ ID NO:5 is the amino acid sequence of CDRL3 of the antibody clone 17.
  • SEQ ID NO:6 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody clone 17.
  • SEQ ID NO:7 is the amino acid sequence of the mature heavy chain variable region of antibody clone 17.
  • SEQ ID NO:8 is the amino acid sequence of CDRH1 of the antibody clone 17.
  • SEQ ID NO:9 is the amino acid sequence of CDRH2 of the antibody clone 17.
  • SEQ ID NO: 10 is the amino acid sequence of CDRH3 of the antibody clone 17.
  • SEQ ID NO: 11 is the amino acid sequence of human MCAM Accession No.
  • SEQ ID NO: 12 is the nucleic acid sequence encoding the mature light chain variable region of antibody clone 15.
  • SEQ ID NO: 13 is the amino acid sequence of the mature light chain variable region of antibody clone 15.
  • SEQ ID NO: 14 is the amino acid sequence of CDRL1 of the antibody clone 15.
  • SEQ ID NO: 15 is the amino acid sequence of CDRL2 of the antibody clone 15.
  • SEQ ID NO: 16 is the amino acid sequence of CDRL3 of the antibody clone 15.
  • SEQ ID NO: 17 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody clone 15.
  • SEQ ID NO: 18 is the amino acid sequence of the mature heavy chain variable region of antibody clone 15.
  • SEQ ID NO: 19 is the amino acid sequence of CDRH1 of the antibody clone 15.
  • SEQ ID NO:20 is the amino acid sequence of CDRH2 of the antibody clone 15.
  • SEQ ID NO:21 is the amino acid sequence of CDRH3 of the antibody clone 15.
  • SEQ ID NO:22 is the amino acid sequence of human MCAM domain 1 (residues 19- 129).
  • SEQ ID NO:23 is the amino acid sequence of human MCAM domain 2 (residues 139-242).
  • SEQ ID NO:24 is the amino acid sequence of human MCAM domain 3 (residues 244-321).
  • SEQ ID NO:25 is the amino acid sequence of human MCAM domain 4 (residues 355-424).
  • SEQ ID NO:26 is the amino acid sequence of human MCAM domain 5 (residues 430-510).
  • SEQ ID NO:27 is the amino acid sequence of an oc4-chain isoform of human laminin 411 (Accession No. NP001098676).
  • SEQ ID NO:28 is the amino acid sequence of an oc4-chain isoform of human laminin 411 (Accession No. CAA48332).
  • SEQ ID NO:29 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1174.1.3.
  • SEQ ID NO:30 is the amino acid sequence of the mature light chain variable region of antibody 1174.1.3.
  • SEQ ID NO:31 is the amino acid sequence of CDRL1 of antibody 1174.1.3.
  • SEQ ID NO:32 is the amino acid sequence of CDRL2 of antibody 1174.1.3.
  • SEQ ID NO:33 is the amino acid sequence of CDRL3 of antibody 1174.1.3.
  • SEQ ID NO:34 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1174.1.3.
  • SEQ ID NO:35 is the amino acid sequence of the mature heavy chain variable region of antibody 1174.1.3.
  • SEQ ID NO:36 is the amino acid sequence of CDRH1 of antibody 1174.1.3.
  • SEQ ID NO:37 is the amino acid sequence of CDRH2 of antibody 1174.1.3.
  • SEQ ID NO:38 is the amino acid sequence of CDRH3 of antibody 1174.1.3.
  • SEQ ID NO:39 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1414.1.2.
  • SEQ ID NO:40 is the amino acid sequence of the mature light chain variable region of antibody 1414.1.2.
  • SEQ ID NO:41 is the amino acid sequence of CDRL1 of antibody 1414.1.2.
  • SEQ ID NO:42 is the amino acid sequence of CDRL2 of antibody 1414.1.2.
  • SEQ ID NO:43 is the amino acid sequence of CDRL3 of antibody 1414.1.2.
  • SEQ ID NO:44 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1414.1.2.
  • SEQ ID NO:45 is the amino acid sequence of the mature heavy chain variable region of antibody 1414.1.2.
  • SEQ ID NO:46 is the amino acid sequence of CDRH1 of antibody 1414.1.2.
  • SEQ ID NO:47 is the amino acid sequence of CDRH2 of antibody 1414.1.2.
  • SEQ ID NO:48 is the amino acid sequence of CDRH3 of antibody 1414.1.2.
  • SEQ ID NO:49 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1415.1.1.
  • SEQ ID NO:50 is the amino acid sequence of the mature light chain variable region of antibody 1415.1.1.
  • SEQ ID NO:51 is the amino acid sequence of CDRL1 of antibody 1415.1.1.
  • SEQ ID NO:52 is the amino acid sequence of CDRL2 of antibody 1415.1.1.
  • SEQ ID NO:53 is the amino acid sequence of CDRL3 of antibody 1415.1.1.
  • SEQ ID NO:54 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1415.1.1.
  • SEQ ID NO:55 is the amino acid sequence of the mature heavy chain variable region of antibody 1415.1.1.
  • SEQ ID NO:56 is the amino acid sequence of CDRH1 of antibody 1415.1.1.
  • SEQ ID NO:57 is the amino acid sequence of CDRH2 of antibody 1415.1.1.
  • SEQ ID NO:58 is the amino acid sequence of CDRH3 of antibody 1415.1.1.
  • SEQ ID NO:59 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1749.1.3.
  • SEQ ID NO:60 is the amino acid sequence of the mature light chain variable region of antibody 1749.1.3.
  • SEQ ID NO:61 is the amino acid sequence of CDRL1 of antibody 1749.1.3.
  • SEQ ID NO:62 is the amino acid sequence of CDRL2 of antibody 1749.1.3.
  • SEQ ID NO:63 is the amino acid sequence of CDRL3 of antibody 1749.1.3.
  • SEQ ID NO:64 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1749.1.3.
  • SEQ ID NO:65 is the amino acid sequence of the mature heavy chain variable region of antibody 1749.1.3.
  • SEQ ID NO:66 is the amino acid sequence of CDRH1 of antibody 1749.1.3.
  • SEQ ID NO:67 is the amino acid sequence of CDRH2 of antibody 1749.1.3.
  • SEQ ID NO:68 is the amino acid sequence of CDRH3 of antibody 1749.1.3.
  • SEQ ID NO:69 is the nucleic acid sequence encoding a mature light chain variable region of antibody 2120.4.19.
  • SEQ ID NO:70 is the amino acid sequence of the mature light chain variable region of antibody 2120.4.19 set forth in SEQ ID NO:69.
  • SEQ ID NO:71 is the amino acid sequence of a mature light chain variable region of antibody 2120.4.19.
  • SEQ ID NO:72 is the amino acid sequence of a mature light chain variable region of antibody 2120.4.19.
  • SEQ ID NO:73 is the amino acid sequence of CDRL1 of antibody 2120.4.19.
  • SEQ ID NO:74 is the amino acid sequence of CDRL2 of antibody 2120.4.19.
  • SEQ ID NO:75 is the amino acid sequence of CDRL3 of antibody 2120.4.19.
  • SEQ ID NO:76 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 2120.4.19.
  • SEQ ID NO:77 is the amino acid sequence of the mature heavy chain variable region of antibody 2120.4.19.
  • SEQ ID NO:78 is the amino acid sequence of CDRH1 of antibody 2120.4.19.
  • SEQ ID NO:79 is the amino acid sequence of CDRH2 of antibody 2120.4.19.
  • SEQ ID NO:80 is the amino acid sequence of CDRH3 of antibody 2120.4.19.
  • SEQ ID NO:81 is a nucleic acid sequence encoding a mature light chain variable region of antibody 2107.4.10.
  • SEQ ID NO:82 is the amino acid sequence of the mature light chain variable region of antibody 2107.4.10 set forth in SEQ ID NO:81.
  • SEQ ID NO:83 is a nucleic acid sequence encoding a mature light chain variable region of antibody 2107.4.10.
  • SEQ ID NO:84 is the amino acid sequence of the mature light chain variable region of antibody 2107.4.10 set forth in SEQ ID NO:83.
  • SEQ ID NO:85 is the amino acid sequence of CDRL1 of antibody 2107.4.10.
  • SEQ ID NO:86 is the amino acid sequence of CDRL2 of antibody 2107.4.10.
  • SEQ ID NO:87 is the amino acid sequence of CDRL3 of antibody 2107.4.10.
  • SEQ ID NO:88 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 2107.4.10.
  • SEQ ID NO:89 is the amino acid sequence of the mature heavy chain variable region of antibody 2107.4.10.
  • SEQ ID NO:90 is the amino acid sequence of CDRH1 of antibody 2107.4.10.
  • SEQ ID NO:91 is the amino acid sequence of CDRH2 of antibody 2107.4.10.
  • SEQ ID NO:92 is the amino acid sequence of CDRH3 of antibody 2107.4.10.
  • SEQ ID NO:93 is the amino acid sequence of the mature heavy chain variable region of antibody 1749.1.3.
  • SEQ ID NO:94 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 1749 version 1 (VH1).
  • SEQ ID NO:95 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 1749 version 2 (VH2).
  • SEQ ID NO:96 is the amino acid sequence of the heavy chain variable framework donor U96282_VH.
  • SEQ ID NO:97 is the amino acid sequence of the mature light chain variable region of antibody 1749.1.3.
  • SEQ ID NO:98 is the amino acid sequence of the mature light chain variable region of humanized antibody 1749 version 1 (VL1).
  • SEQ ID NO:99 is the amino acid sequence of the mature light chain variable region of humanized antibody 1749 version 2 (VL2).
  • SEQ ID NO: 100 is the amino acid sequence of the light chain variable framework donor X02990_VL.
  • SEQ ID NO: 101 is the amino acid sequence of the mature heavy chain variable region of antibody 2107.4.10.18.
  • SEQ ID NO: 102 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 1 (VH1).
  • SEQ ID NO: 103 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 2 (VH2).
  • SEQ ID NO: 104 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 3 (VH3).
  • SEQ ID NO: 105 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 4A (VH4A).
  • SEQ ID NO: 106 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 5A (VH5A).
  • SEQ ID NO: 107 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 6 (VH6).
  • SEQ ID NO: 108 is the amino acid sequence of the heavy chain variable framework donor AF062133 VH.
  • SEQ ID NO: 109 is the amino acid sequence of the mature light chain variable region of antibody 2107.4.10.18.
  • SEQ ID NO: 110 is the amino acid sequence of the mature light chain variable region of humanized antibody 2107 version 1 (VL1).
  • SEQ ID NO: 111 is the amino acid sequence of the mature light chain variable region of humanized antibody 2107 version 2 (VL2).
  • SEQ ID NO: 112 is the amino acid sequence of the mature light chain variable region of humanized antibody 2107 version 3 (VL3).
  • SEQ ID NO: 113 is the amino acid sequence of the light chain variable framework donor U86803.
  • SEQ ID NO: 114 is the amino acid sequence of the mature heavy chain variable region of antibody 2120.4.19.6.
  • SEQ ID NO: 115 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 1 (VH1).
  • SEQ ID NO: 116 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 2 (VH2).
  • SEQ ID NO: 117 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 3 (VH3).
  • SEQ ID NO: 118 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 4 (VH4).
  • SEQ ID NO: 119 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 5 (VH5).
  • SEQ ID NO: 120 is the amino acid sequence of the mature light chain variable region of antibody 2120.4.19.6.
  • SEQ ID NO: 121 is the amino acid sequence of the mature light chain variable of humanized antibody 2120 version 1 (VL1).
  • SEQ ID NO: 122 is the amino acid sequence of the mature light chain variable region of humanized antibody 2120 version 2 (VL2).
  • SEQ ID NO: 123 is the amino acid sequence of the mature light chain variable region of humanized antibody 2120 version 3 (VL3).
  • SEQ ID NO: 124 is the amino acid sequence of the light chain variable framework donor X84343_VL.
  • SEQ ID NO: 125 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 126 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 127 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 128 is the amino acid sequence of a humanized heavy chain/light chain framework region.
  • SEQ ID NO: 129 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 130 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 131 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 132 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 133 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 134 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 135 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 136 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 137 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 138 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 139 is the amino acid sequence of CDRHl of humanized antibody 2120 version 3 (VH3).
  • SEQ ID NO: 140 is the amino acid sequence of CDRHl of humanized antibody 2120 version 4 (VH4).
  • SEQ ID NO: 141 is the amino acid sequence of CDRHl of humanized antibody 2120 version 5 (VH5).
  • SEQ ID NO: 142 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 143 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 144 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 145 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 146 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 147 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 148 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 149 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 150 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 151 is the amino acid sequence of CDRHl of humanized antibody 2107 version 1 (VH1).
  • SEQ ID NO: 152 is the amino acid sequence of CDRHl of humanized antibody 2107 version 4 (VH4).
  • SEQ ID NO: 153 is the amino acid sequence of CDRH3 of humanized antibody 2120 version 1-5 (VH1-VH5).
  • SEQ ID NO: 154 is the amino acid sequence of a humanized light chain framework region.
  • SEQ ID NO: 155 is the amino acid sequence of a humanized heavy chain framework region.
  • SEQ ID NO: 156 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 1749 version 3 (VH3).
  • SEQ ID NO: 157 is the amino acid sequence of the mouse heavy chain variable region structure template PBD#1HILVH.
  • SEQ ID NO: 158 is the amino acid sequence of the heavy chain variable acceptor framework ACC#AAX82494.1.
  • SEQ ID NO: 159 is the amino acid sequence of the heavy chain variable acceptor framework ACC#ADX65676.1.
  • SEQ ID NO: 160 is the amino acid sequence of the mature light chain variable region of humanized antibody 1749 version 3 (VL3).
  • SEQ ID NO: 161 is the amino acid sequence of the mouse light chain variable region structure template PDB#2LTQVL.
  • SEQ ID NO: 162 is the amino acid sequence of the light chain variable acceptor framework ACC#AB A71407.1.
  • SEQ ID NO: 163 is the amino acid sequence of the light chain variable acceptor framework CAI99800.1.
  • SEQ ID NO: 164 is the nucleic acid sequence encoding an exemplary signal peptide that can be fused to a mature heavy chain or mature light chain variable region.
  • SEQ ID NO: 165 is the amino acid sequence of the exemplary signal peptide encoded by the nucleic acid sequence of SEQ ID NO: 164.
  • SEQ ID NO: 166 is the nucleic acid sequence encoding an exemplary signal peptide that can be fused to a mature heavy chain or mature light chain variable region.
  • SEQ ID NO: 167 is the amino acid sequence of the exemplary signal peptide encoded by the nucleic acid sequence of SEQ ID NO: 166.
  • SEQ ID NO: 168 is the nucleic acid sequence encoding an exemplary signal peptide that can be fused to a mature heavy chain or mature light chain variable region.
  • SEQ ID NO: 169 is the amino acid sequence of the exemplary signal peptide encoded by the nucleic acid sequence of SEQ ID NO: 168.
  • SEQ ID NO: 170 is the amino acid sequence of a humanized 1749 light chain constant region, with Arginine at the N-terminus.
  • SEQ ID NO: 171 is the amino acid sequence of a humanized 1749 light chain constant region, without Arginine at the N-terminus.
  • SEQ ID NO: 172 is the amino acid sequence of a humanized 1749 heavy chain constant region.
  • SEQ ID NO: 173 is the amino acid sequence of a BIP version heavy chain Glm3 allotype constant region.
  • SEQ ID NO: 174 is the amino acid sequence of a BIP version heavy chain Glm3 allotype constant region.
  • SEQ ID NO: 175 is the amino acid sequence of a mature light chain region of humanized antibody 1749 version 3 (VL3 + light chain constant region).
  • SEQ ID NO: 176 is the amino acid sequence of a mature heavy chain region of humanized antibody 1749 version 3 (VH3 + BIP version heavy chain Glm3 allotype constant region).
  • SEQ ID NO: 177 is the amino acid sequence of a mature heavy chain region of humanized antibody 1749 version 3 (VH3 + BIP version heavy chain Glm3 allotype constant region).
  • SEQ ID NO: 178 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 4B (VH4B).
  • SEQ ID NO: 179 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 5B (VH5B).
  • Monoclonal antibodies are typically provided in isolated form. This means that an antibody is typically at least 50% w/w pure of proteins and other macromolecules arising from its production or purification but does not exclude the possibility that the monoclonal antibody is combined with an excess of pharmaceutical acceptable carrier(s) or other vehicle intended to facilitate its use. Sometimes monoclonal antibodies are at least 60%, 70%, 80%, 90%, 95 or 99% w/w pure of proteins and other macromolecules from production or purification.
  • Specific binding of a monoclonal antibody to its target antigen means an affinity of at least 10 6 , 10 7 , 10 s , 10 9 , or 10 10 M "1 . Specific binding is detectably higher in magnitude and distinguishable from non-specific binding occurring to at least one unrelated target. Specific binding can be the result of formation of bonds between particular functional groups or particular spatial fit (e.g., lock and key type) whereas nonspecific binding is usually the result of van der Waals forces. Specific binding does not however necessarily imply that a monoclonal antibody binds one and only one target.
  • the basic antibody structural unit is a tetramer of subunits.
  • Each tetramer includes two identical pairs of polypeptide chains, each pair having one "light” (about 25 kDa) and one "heavy" chain (about 50-70 kDa).
  • the amino-terminal portion of each chain includes variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. This variable region is initially expressed linked to a cleavable signal peptide.
  • the variable region without the signal peptide is sometimes referred to as a mature variable region.
  • a light chain mature variable region means a light chain variable region without the light chain signal peptide.
  • the carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function.
  • Light chains are classified as either kappa or lambda.
  • Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, and define the antibody's isotype as IgG, IgM, IgA, IgD and IgE, respectively.
  • the variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D” region of about 10 or more amino acids.
  • each light/heavy chain pair form the antibody binding site.
  • an intact antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are the same.
  • the chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs.
  • the CDRs from the two chains of each pair are aligned by the framework regions, enabling binding to a specific epitope.
  • FR1, CDR1 , FR2, CDR2, FR3, CDR3 and FR4 From N- terminal to C-terminal, both light and heavy chains comprise the domains FR1, CDR1 , FR2, CDR2, FR3, CDR3 and FR4.
  • Kabat Kabat, Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, MD, 1987 and 1991), or Chothia & Lesk, J. Mol. Biol. 196:901- 917 ( 1987); Chothia et al., Nature 342:878-883 ( 1989).
  • Kabat also provides a widely used numbering convention (Kabat numbering) in which corresponding residues between different heavy chains or between different light chains are assigned the same number (e.g., H83 means position 83 by Kabat numbering in the mature heavy chain variable region; likewise position L36 means position 36 by Kabat numbering in the mature light chain variable region).
  • Kabat numbering is used throughout in referring to positions in the variable region of an antibody unless explicitly stated otherwise.
  • antibody includes intact antibodies and antigen binding fragments thereof. Typically, fragments compete with the intact antibody from which they were derived for specific binding to the target including separate heavy chains, light chains Fab, Fab', F(ab') 2 , F(ab)c, diabodies, Dabs, nanobodies, and Fv. Fragments can be produced by recombinant DNA techniques, or by enzymatic or chemical separation of intact immunoglobulins.
  • antibody also includes a bispecific antibody, and/or a chimeric antibody, and/or a humanized antibody.
  • a bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites (see, e.g., Songsivilai and Lachmann, Clin. Exp. Immunol., 79:315-321 ( 1990); Kostelny et al., J.
  • the two different heavy/light chain pairs may include a humanized heavy chain/light chain pair and a heavy chain/light chain pair specific for a different epitope.
  • one heavy chain light chain pair is a humanized antibody as further disclosed below and the heavy light chain pair is from an antibody that binds to a receptor expressed on the blood brain barrier, such as an insulin receptor, an insulin-like growth factor (IGF) receptor, a leptin receptor, or a lipoprotein receptor, or a transferrin receptor (Friden et al., PNAS 88:4771-4775, 1991 ; Friden et al., Science 259:373-377, 1993).
  • a bispecific antibody can be transferred cross the blood brain barrier by receptor-mediated transcytosis. Brain uptake of the bispecific antibody can be further enhanced by engineering the bi-specific antibody to reduce its affinity to the blood brain barrier receptor.
  • Exemplary bispecific antibodies can also be (1) a dual- variable-do main antibody (DVD-Ig), where each light chain and heavy chain contains two variable domains in tandem through a short peptide linkage (Wu et al., Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-IgTM) Molecule, In: Antibody Engineering, Springer Berlin Heidelberg (2010)); (2) a Tandab, which is a fusion of two single chain diabodies resulting in a tetravalent bispecific antibody that has two binding sites for each of the target antigens; (3) a flexibody, which is a combination of scFvs with a diabody resulting in a multivalent molecule; (4) a so called “dock and lock” molecule, based on the "dimerization and docking domain" in Protein Kinase A, which, when applied to Fabs, can yield a trivalent bispecific binding protein consisting of two identical Fab fragments linked to
  • Examples of platforms useful for preparing bispecific antibodies include but are not limited to BiTE (Micromet), DART (MacroGenics), Fcab and Mab2 (F-star) , Fc-engineered IgGl (Xencor) or DuoBody (based on Fab arm exchange, Genmab).
  • epitope refers to a site on an antigen to which an antibody binds.
  • An epitope can be formed from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of one or more proteins. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents.
  • An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and 2- dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, in Methods in Molecular Biology, Vol. 66, Glenn E. Morris, Ed. (1996).
  • An "antagonist” antibody or other binding agent is one which inhibits a biological activity of the antigen it binds. Such antibodies may substantially or completely inhibit the biological activity of the antigen.
  • biological activity and “biologically active” with regard to MCAM refer to its ability to specifically bind its ligand (a laminin a4 chain, e.g. , the a4 chain of laminin 411) and/or to facilitate the infiltration of MCAM-expressing cells, e.g. , TH17 cells, into the CNS.
  • “Inhibit” means an agent decreases the biological activity of at least one target, for example MCAM. Such an inhibitor inhibits the activity of at least one target by at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 95% or at least about 100%.
  • a "subject” includes a human or other mammalian subject that receives either prophylactic or therapeutic treatment.
  • amino acids are grouped as follows: Group I (hydrophobic side chains): met, ala, val, leu, ile; Group II (neutral hydrophilic side chains): cys, ser, thr; Group III (acidic side chains): asp, glu; Group IV (basic side chains): asn, gin, his, lys, arg; Group V (residues influencing chain orientation): gly, pro; and Group VI (aromatic side chains): trp, tyr, phe. Conservative substitutions involve substitutions between amino acids in the same class. Non- conservative substitutions constitute exchanging a member of one of these classes for a member of another.
  • Percentage sequence identities are determined with antibody sequences maximally aligned by the Kabat numbering convention. After alignment, if a subject antibody region (e.g., the entire mature variable region of a heavy or light chain) is being compared with the same region of a reference antibody, the percentage sequence identity between the subject and reference antibody regions is the number of positions occupied by the same amino acid in both the subject and reference antibody region divided by the total number of aligned positions of the two regions, with gaps not counted, multiplied by 100 to convert to percentage.
  • a subject antibody region e.g., the entire mature variable region of a heavy or light chain
  • compositions or methods "comprising" one or more recited elements may include other elements not specifically recited.
  • a composition that comprises an antibody may contain the antibody alone or in combination with other ingredients.
  • Designation of a range of values includes all integers within or defining the range, and all subranges defined by integers within the range.
  • Antibodies with the useful property of inhibiting MCAM binding to the laminin a4 chain of laminin 411 are disclosed in WO/2012/170071 and PCT/US2013/058773.
  • PCT/IB2015/051786 filed March 12, 2015 provides among other things (a) provides new humanized forms of the 1749.1.3 antibody, (b) maps the epitopes to which the 1749.1.3 antibody binds, and (c) provides antibodies binding to the same epitope.
  • the present application discloses uses of the antibodies and formulations of PCT/IB2015/051786 for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis.
  • PMR polymyalgia rheumatica
  • 1749.1.3 refers to a mouse derived monoclonal antibody clone having a mature variable heavy chain corresponding to SEQ ID NO:93 and a mature variable light chain corresponding to SEQ ID NO:97.
  • Humanized 1749 or “hul749” refers humanized variants of the 1749.1.3 clone.
  • the humanized variant of 1749 having a mature heavy chain variable region corresponding to SEQ ID NO: 156 and a mature light chain variable region corresponding to SEQ ID NO: 160 is referred to herein as
  • Natural human wildtype MCAM (melanoma cell adhesion molecule, also known as CD146 and MUC18) is a peptide of 646 amino acids having the following amino acid sequence:
  • MCAM is a cell surface glycoprotein belonging to the immunoglobulin superfamily involved in cell adhesion, and in cohesion of the endothelial monolayer at intercellular junctions in vascular tissue. It also promotes tumor progression of many cancers, such as solid tumors, including melanoma and prostate cancer. It is known to interact in a homotypic/homophilic manner and may also bind to other ligands.
  • the human MCAM includes five immunoglobulin domains (1 : amino acid residues 19-129; 2: amino acid residues 139-242; 3: amino acid residues 244-321; 4: amino acid residues 335-424; and 5: amino acid residues 430-510), shown as SEQ ID NOs:22-26.
  • MCAM Unless otherwise apparent from the context, reference to MCAM or its fragments includes the natural human wildtype amino acid sequences indicated above, and human allelic variants thereof.
  • Laminin a4 refers to one of the polypeptide chains found in laminin molecules, which are expressed in the basal lamina (of the basement membrane), a protein network foundation for most cells and organs. Laminins are known to bind to cell membranes through plasma membrane molecules and contribute to cell attachment.
  • the laminin a4 chain typically forms a complex with a laminin ⁇ -chain, and a laminin ⁇ -chain.
  • the laminin a4 chain is found in numerous laminin molecules including laminin 41 1 (laminin 8 or ⁇ 4 ⁇ 1 ⁇ 1); laminin 421 (laminin 9 or ⁇ 4 ⁇ 2 ⁇ 1), and laminin 423 (laminin 14 or ⁇ 4 ⁇ 2 ⁇ 3).
  • Laminin 411 refers to a trimeric polypeptide complex made up of three polypeptide subunits or chains: a4-chain, a ⁇ -chain, and a ⁇ -chain.
  • Antagonist against MCAM include antibodies, fusion proteins of receptors or ligands to an IgG constant region other biologic binding molecules, and small molecules.
  • Antibodies can be monoclonal or polyclonal.
  • Antibodies can be nonhuman, such as mouse or rat, nonhuman primate or can be human.
  • Antibodies can be chimeric, veneered, humanized, primatized and the like.
  • An MCAM antagonist refers to an antagonist that fully or partially inhibits the ability of MCAM (i) to specifically bind its ligand: a laminin a4 chain, e.g. , the a4 chain of laminin 411 ; and/or (ii) to facilitate an MCAM-expressing cell, e.g. , a TH17 cell, to infiltrate into or migrate to a subject's tissue.
  • MCAM antagonists include antibodies or other antagonists binding to MCAM or to its ligand laminin alpha 4.
  • a humanized antibody is a genetically engineered antibody in which the CDRs from a non-human "donor” antibody are grafted into human "acceptor” antibody sequences (see, e.g., Queen et al., US 5,530, 101 and 5,585,089; Winter et al., US 5,225,539; Carter, US 6,407,213; Adair, US 5,859,205 and 6,881,557; and Foote, US 6,881,557).
  • the acceptor antibody sequences can be, for example, a mature human antibody variable region sequence, a composite of such sequences, a consensus sequence of human antibody variable region sequences (e.g., light and heavy chain variable region consensus sequences of Kabat, 1991, supra), or a germline variable region sequence.
  • acceptor sequence for the heavy chain are the human mature heavy chain variable regions with NCBI accession codes AAX82494.1 (GL62421461) and/or
  • ADX65676.1 (GL323432073).
  • a composite of these acceptors is used, as is the case in the present examples.
  • These acceptor sequences include two CDRs having the same canonical form and the same length CDR-H3 with a kinked base as ml749 heavy chain and AAX82494.1 has a 91% sequence identity and ADX65676.1 has an 83% sequence identity in the heavy chain variable region framework.
  • examples of an acceptor sequence are the light chain mature variable regions with NCBI accession codes ABA71407.1 (GL77379502) and/or CAI99800.1 (GL98956324).
  • a composite of these sequences is used, as is the case in the present examples.
  • These acceptor sequences include three CDRs having the same canonical form as a ml749 light chain and ABA71407.1 has an 85% sequence identity and CAI99800.1 has an 83% sequence identity in the light chain variable region framework.
  • the disclosure provides humanized antibodies having three light chain and three heavy chain CDRs as defined by Kabat entirely or substantially from the donor ml 749 antibody and mature variable region framework sequences and constant regions, if present, entirely or substantially from human antibody sequences.
  • a humanized heavy chain is a heavy chain having three heavy chain CDRs as defined by Kabat entirely or substantially from the heavy chain of the ml 749 antibody, and a mature heavy chain variable sequence and heavy chain constant region sequence, if present, entirely or substantially from human antibody heavy chain sequence.
  • a humanized light chain is a light chain having three light chain CDRs as defined by Kabat entirely or substantially from the light chain of the ml 749 antibody, and a mature light chain variable sequence and light chain constant region sequence, if present, entirely or substantially from human antibody light chain sequence.
  • Some antibodies comprise a humanized heavy chain comprising Kabat CDR1 of SEQ ID NO:66; SYIMS; Kabat CDR2 of SEQ ID NO:67: TISSGGSSTYYPDSVKG; Kabat CDR3 of SEQ ID NO:68:
  • Some antibodies comprise a humanized light chain comprising Kabat CDR1 of SEQ ID NO:61 : KSSRSLLNSRIRKNYLA; Kabat CDR2 of SEQ ID NO:62:
  • WASTRES Kabat CDR3 of SEQ ID NO:63: KQSYNLLT.
  • Some antibodies comprise a humanized heavy chain comprising the three Kabat CDRs of SEQ ID NOs:66, 67, and 68, and a humanized light chain comprising the three Kabat CDRs of SEQ ID NOs:61, 62, and 63.
  • a CDR is substantially from ml749 if at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% of residues are identical to the corresponding residues in the corresponding CDR of ml 749 except for CHRH2 Kabat positions 60-65 can be substituted.
  • the mature variable region framework sequences of an antibody chain or the constant region sequence of an antibody chain are substantially from a human mature variable region framework sequence or human constant region sequence respectively when at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% of corresponding residues defined by Kabat are identical.
  • variable region framework residues Certain amino acids from the human mature variable region framework residues can be selected for substitution based on their possible influence on CDR conformation and/or binding to antigen, mediating interaction between heavy and light chains, interaction with the constant region, being a site for desired or undesired post-translational modification, being an unusual residue for its position in a human variable region sequence and therefore potentially immunogenic, among other reasons.
  • the following six variable region framework positions were considered as candidates for substitutions for one or more of these reasons as further specified in the Examples (D9S, A19V, P43S, Q3K, G42E, A93T).
  • the first-mentioned residue is the residue of a humanized antibody formed by grafting Kabat CDRs into a human acceptor framework
  • the second-mentioned residue is a residue being considered for replacing such residue.
  • the first mentioned residue is human and within CDRs the first mentioned residue is mouse (e.g., C97S).
  • Amino acid substitutions can be made in the CDRs.
  • One possible variation is to substitute certain residues in the CDRs of the ml749 antibody with corresponding residues from human CDRs sequences, typically from the CDRs of the human acceptor sequences used in designing the exemplified humanized antibodies.
  • the SDRs are only part of the CDRs, namely the subset of CDR residues required for binding, termed the SDRs, are needed to retain binding in a humanized antibody.
  • CDR residues not contacting antigen and not in the SDRs can be identified based on previous studies (for example residues H60-H65 in CDR H2 are often not required), from regions of Kabat CDRs lying outside Chothia hypervariable loops (Chothia, J. Mol. Biol. 196:901, 1987), by molecular modeling and/or empirically, or as described in Gonzales et al., Mol. Immunol. 41 :863, 2004.
  • the amino acid occupying the position can be an amino acid occupying the corresponding position (by Kabat numbering) in the acceptor antibody sequence.
  • substitutions of acceptor for donor amino acids in the CDRs to include reflects a balance of competing considerations. Such substitutions are potentially advantageous in decreasing the number of mouse amino acids in a humanized antibody and consequently decreasing potential immunogenicity. However, substitutions can also cause changes of affinity, and significant reductions in affinity are preferably avoided. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically. [0225] One reason for performing a substitution within a CDR is that a mouse residue is a site of posttranslational modification that may interfere with expression or assembly of an antibody.
  • the disclosure provides variants of the humanized 1749 antibody in which the humanized heavy chain mature variable region shows at least 90%, 95%, 96%, 97%, 98% or 99% identity to SEQ ID NO: 156 and the humanized light chain mature variable region shows at least 90%, 95%, 96%, 97%, 98% or 99% sequence identity to SEQ ID NO: 160.
  • Some such humanized antibodies include three heavy and three light chain CDRs entirely or substantially identical to the CDR regions of hu 1749, which are the same as those of the mouse donor antibody.
  • the CDR regions can be defined by any conventional definition (e.g., Chothia) but are preferably as defined by Kabat.
  • the humanized 1749 antibody in which the humanized heavy chain mature variable region is SEQ ID NO: 156 and the humanized light chain mature variable region is SEQ ID NO: 160 is refered to as 1749VH3VL3.
  • Some variants of the humanized 1749VH3VL3 antibody retain some or all of the backmutations in hul749VH3VL3. In other words, at least 1, 2, 3, 4, 5, or preferably all 6 of the following are present: H3 is occupied by K, H42 is occupied by E, H93 is occupied by T, L9 is occupied by S, L19 is occupied by V, and L43 is occupied by S.
  • humanized 1749 antibodies may also contain additional backmutations in the variable region frameworks.
  • backmutations include include HI occupied by D, H10 occupied by D, HI 3 occupied by K, H19 occupied by K, HI 13 occupied by A, L5 occupied by S, LI 5 occupied by A, LI 8 occupied by K, L21 occupied by M, L63 occupied by T, L78 occupied by V, L83 occupied by L, LlOO occupied by A, L104 occupied by L, and/or L106 occupied by L.
  • backmutations for a therapeutic or diagnostic product one should take into account the degree to which they in general do not improve affinity and the degree to which introducing more mouse residues may give increased risk of immunogenicity.
  • the heavy and light chain variable regions of chimeric, veneered or humanized antibodies can be linked to at least a portion of a human constant region.
  • the choice of constant region depends, in part, whether antibody-dependent cell-mediated cytotoxicity, antibody dependent cellular phagocytosis and/or complement dependent cytotoxicity are desired.
  • human isotopes IgGl and IgG3 have complement-dependent cytotoxicity and human isotypes IgG2 and IgG4 do not.
  • Human IgGl and IgG3 also induce stronger cell mediated effector functions than human IgG2 and IgG4.
  • Light chain constant regions can be lambda or kappa.
  • One or several amino acids at the amino or carboxy terminus of the light and/or heavy chain may be missing or derivatized in a proportion or all of the molecules. Substitutions can be made in the constant regions to reduce or increase effector function such as complement-mediated cytotoxicity or ADCC (see, e.g., Winter et al., US Patent No. 5,624,821 ; Tso et al., US Patent No. 5,834,597; and Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005, 2006), or to prolong half-life in humans (see, e.g., Hinton et al., J. Biol.
  • substitutions include a Gin at position 250 and/or a Leu at position 428 (EU numbering is used in this paragraph for the constant region) for increasing the half-life of an antibody. Substitution at any or all of positions 234, 235, 236 and/or 237 reduces affinity for Fey receptors, particularly FcyRI receptor (see, e.g., US
  • alanine substitution at positions 234, 235, and 237 of human IgGl can be used for reducing effector functions.
  • Some antibodies have alanine substitution at positions 234, 235 and 237 of human IgGl for reducing effector functions.
  • positions 234, 236 and/or 237 in human IgG2 are substituted with alanine and position 235 with glutamine (see, e.g., US 5,624,821).
  • a mutation at one or more of positions 241 , 264, 265, 270, 296, 297, 322, 329, and 331 by EU numbering of human IgGl is used.
  • positions 234 and/or 235 are substituted with alanine and/or position 329 is substituted with glycine.
  • positions 234 and 235 are substituted with alanine, such as in SEQ ID NO: 174.
  • the isotype is human IgG2 or IgG4.
  • An exemplary human light chain kappa constant region has the amino acid sequence of SEQ ID NO: 170.
  • the N-terminal arginine of SEQ ID NO: 170 can be omitted, in which case light chain kappa constant region has the amino acid sequence of SEQ ID NO: 171.
  • An exemplary human IgGl heavy chain constant region has the amino acid sequence of SEQ ID NO: 172 (with or without the C-terminal lysine).
  • Antibodies can be expressed as tetramers containing two light and two heavy chains, as separate heavy chains, light chains, as Fab, Fab', F(ab')2, and Fv, or as single chain antibodies in which heavy and light chain mature variable domains are linked through a spacer.
  • Isoallotypes differ from allotypes in that sera recognizing an isoallotype bind to a non-polymorphic region of a one or more other isotypes.
  • another heavy chain constant region is of IgGl Glm3 allotype and has the amino acid sequence of SEQ ID NO: 173.
  • Another heavy chain constant region has the amino acid sequence of SEQ ID NO: 173 except that it lacks the C-terminal lysine.
  • Another heavy chain constant region has the amino acid sequence of SEQ ID NO: 174.
  • Yet another heavy chain constant region has the amino acid sequence of SEQ ID NO: 174 except that it lacks the C-terminal lysine.
  • the disclosure further provides nucleic acids encoding any of the above constant regions.
  • nucleic acids further encode a signal peptide and can be expressed with the signal peptide linked to the constant region.
  • Antibodies can be produced by recombinant expression.
  • Nucleic acids encoding the antibodies can be codon-optimized for expression in the desired cell-type (e.g., CHO or Sp2/0).
  • Recombinant nucleic acid constructs typically include an expression control sequence operably linked to the coding sequences of antibody chains, including naturally-associated or heterologous promoter regions.
  • the expression control sequences can be eukaryotic promoter systems in vectors capable of transforming or transfecting eukaryotic host cells. Once the vector has been incorporated into the appropriate host, the host is maintained under conditions suitable for high level expression of the nucleotide sequences, and the collection and purification of the crossreacting antibodies.
  • the vector or vectors encoding the antibody chains can also contain a selectable gene, such as dihydrofolate reductase, to allow amplification of copy number of the nucleic acids encoding the antibody chains.
  • E. coli is a prokaryotic host particularly useful for expressing antibodies, particularly antibody fragments.
  • Microbes, such as yeast are also useful for expression. Saccharomyces is an example of a yeast host, with suitable vectors having expression control sequences, an origin of replication, termination sequences and the like as desired.
  • Typical promoters include 3- phosphoglycerate kinase and other glycolytic enzymes.
  • Inducible yeast promoters include, among others, promoters from alcohol dehydrogenase, isocytochrome C, and enzymes responsible for maltose and galactose utilizations.
  • Mammalian cells can be used for expressing nucleotide segments encoding immunoglobulins or fragments thereof. See Winnacker, From Genes to Clones, (VCH
  • suitable host cell lines capable of secreting intact heterologous proteins have been developed in the art, and include CHO cell lines, various COS cell lines, HeLa cells, HEK293 cells, L cells, and non-antibody-producing myelomas including Sp2/0 and NSO. It can be advantageous to use nonhuman cells.
  • Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter, an enhancer (Queen et al., Immunol. Rev. 89:49 (1986)), and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites, and transcriptional terminator sequences.
  • Suitable expression control sequences are promoters derived from endogenous genes, cytomegalovirus, SV40, adenovirus, bovine papillomavirus, and the like. See Co et al., J. Immunol. 148: 1149 (1992).
  • cell pools can be screened for growth productivity and product quality in serum-free media. Top-producing cell pools can then be subjected to FACS-based single-cell cloning to generate monoclonal lines. Specific productivities above 50 pg or 100 pg per cell per day, which correspond to product titers of greater than 7.5 g/L culture, can be advantageous. Antibodies produced by single cell clones can also be tested for turbidity, filtration properties, PAGE, IEF, UV scan, HP-SEC, carbohydrate-oligosaccharide mapping, mass spectrometry, and binding assay, such as ELISA or Biacore. A selected clone can then be banked in multiple vials and stored frozen for subsequent use.
  • antibodies can be purified according to standard procedures of the art, including protein A capture, column chromatography (e.g., hydrophobic interaction or ion exchange), low-pH for viral inactivation and the like (see generally, Scopes, Protein Purification (Springer- Verlag, NY, 1982)).
  • the disclosure further provides nucleic acids encoding any of the heavy and light chains described above.
  • the nucleic acids also encode a signal peptide fused to the mature heavy and light chains (e.g., signal peptides having amino acid sequences of SEQ ID NOs: 165, 167, and 169 that can be encoded by SEQ ID NOs: 164, 166, and 168).
  • Coding sequences on nucleic acids can be in operable linkage with regulatory sequences to ensure expression of the coding sequences, such as a promoter, enhancer, ribosome binding site, transcription termination signal and the like.
  • the nucleic acids encoding heavy and light chains can occur in isolated form or can be cloned into one or more vectors.
  • the nucleic acids can be synthesized by for example, solid state synthesis or PCR of overlapping oligonucleotides.
  • Nucleic acids encoding heavy and light chains can be joined as one contiguous nucleic acid, e.g., within an expression vector, or can be separate, e.g., each cloned into its own expression vector.
  • MCAM Epitopes for Antibody Binding The disclosure provides monoclonal antibodies that bind to specific epitopes within the human MCAM protein. Some antibodies of the invention bind to the same or overlapping epitope as antibody designated 1749.1.3 (ml749).
  • the disclosure provides antibodies that bind to the same or overlapping epitope as antibody designated ml749. Mutations at residues 272, 318, 320, 340, and 377 of MCAM disrupts specific binding of ml749 (e.g., ⁇ 30% binding to mutant MCAM compared to a positive control wild type MCAM as described as the examples). Because relatively few residues affect binding and the residues are spaced more broadly than a typical linear epitope (e.g., 3-20 contiguous amino acids), these results provide an indication that ml749 binds to a
  • one or more of the residues affecting binding may do so allosterically without direct contact with the antibody.
  • Antibodies binding to an epitope including one or more of residues 272, 318, 320, 324, 326, 340, and 377 of MCAM, and particularly to an epitope including one or more of residues 318, 324, and 326, are likely to share useful inhibitory properties with ml749.
  • antibodies whose specific binding is inhibited by mutagenesis of one or more or residues 318, 324, and 326 and particularly residue 318 of MCAM are likely to share similar properties to ml749.
  • Some such antibodies bind to an epitope that includes or consists of residue 318, 324, and/or 326 of MCAM.
  • the epitope can be linear, such as an epitope (e.g., 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20, 5-30, 5-40, 5-50, 5-60, or 5-70 contiguous amino acids) including 1, 2, or 3 of the specified amino acids (318, 324, and 326) or be conformational including or consisting of 1 , 2, or 3 of the specified amino acids.
  • an epitope e.g., 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20, 5-30, 5-40, 5-50, 5-60, or 5-70 contiguous amino acids
  • an epitope e.g., 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20, 5-30, 5-40, 5-50, 5-60, or 5-70 contiguous amino acids
  • an epitope e.g., 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20,
  • Some antibodies of the disclosure bind to the same or overlapping epitope as the ml749 antibody.
  • the production of other non-human monoclonal antibodies, e.g., murine, guinea pig, primate, rabbit or rat, against human MCAM can be accomplished by, for example, immunizing the animal with human MCAM or a peptide fragment thereof including the desired epitope (the "immunogen"), and screening resulting antibodies for binding to MCAM, optionally in competition with ml 749 (See Harlow & Lane, Antibodies, A Laboratory Manual (CSHP NY, 1988) incorporated by reference for all purposes).
  • the immunogen is conjugated to carrier molecule.
  • the immunogen is administered with an adjuvant.
  • Several types of adjuvant can be used as described below. Complete Freund's adjuvant followed by incomplete adjuvant is preferred for immunization of laboratory animals. Rabbits or guinea pigs are typically used for making polyclonal antibodies. Mice are typically used for making monoclonal antibodies. Antibodies are screened for specific binding to a desired epitope within MCAM.
  • the disclosure provides peptide fragments of MCAM that are used to create antibodies directed to the above described epitopes.
  • peptides include a peptide that is between 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20, 5-30, 5-40, 5-50, 5-60, or 5-70 contiguous amino acids in length and includes at least one of amino acids residues 318, 324, and 326 of MCAM. In some of these peptides, the peptide includes all three of amino acid residue 318, 324, and 326.
  • Immunogens may be conjugated to carrier molecules, typically a carrier polypeptide, and thus help elicit an immune response against the fragment conjugated to the carrier.
  • carrier molecules typically a carrier polypeptide
  • a single agent can be linked to a single carrier, multiple copies of an agent can be linked to multiple copies of a carrier, which are in turn linked to each other, multiple copies of an agent can be linked to a single copy of a carrier, or a single copy of an agent can be linked to multiple copies of a carrier, or different carriers.
  • Suitable carriers include serum albumins, keyhole limpet hemocyanin, immunoglobulin molecules, thyroglobulin, ovalbumin, tetanus toxoid, or a toxoid from other pathogenic bacteria, such as diphtheria (e.g., CRM1 9 7), E. coli, cholera, or H. pylori, or an attenuated toxin derivative.
  • diphtheria e.g., CRM1 9 7
  • E. coli E. coli
  • cholera cholera
  • H. pylori or an attenuated toxin derivative.
  • Immunogens are often administered with pharmaceutically acceptable adjuvants.
  • the adjuvant increases the titer of induced antibodies and/or the binding affinity of induced antibodies relative to the situation if the peptide were used alone.
  • a variety of adjuvants can be used in combination with an immunogenic fragment of MCAM, to elicit an immune response.
  • Preferred adjuvants augment the intrinsic response to an immunogen without causing
  • Preferred adjuvants include aluminum hydroxide and aluminum phosphate, 3 De-O-acylated monophosphoryl lipid A (MPLTM) ⁇ see GB 2220211 (RIBI ImmunoChem Research Inc., Hamilton, Montana, now part of Corixa).
  • StimulonTM QS-21 is a triterpene glycoside or saponin isolated from the bark of the Quillaja Saponaria Molina tree found in South America ⁇ see Kensil et al, in Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman, Plenum Press, NY, 1995); US 5,057,540), (Aquila BioPharmaceuticals, Framingham, MA; now
  • adjuvants are oil in water emulsions (such as squalene or peanut oil), optionally in combination with immune stimulants, such as monophosphoryl lipid A ⁇ see Stoute et al, N. Engl. J. Med. 336, 86-91 (1997)), pluronic polymers, and killed mycobacteria.
  • immune stimulants such as monophosphoryl lipid A ⁇ see Stoute et al, N. Engl. J. Med. 336, 86-91 (1997)), pluronic polymers, and killed mycobacteria.
  • Another adjuvant is CpG (WO 98/40100).
  • Adjuvants can be administered as a component of a therapeutic composition with an active agent or can be administered separately, before, concurrently with, or after administration of the therapeutic agent.
  • Antibodies can be monoclonal or polyclonal. Antibodies can be nonhuman, such as mouse or rat, nonhuman primate or can be human. Antibodies can be chimeric, veneered, humanized, primatized and the like.
  • Monoclonal antibodies are humanized using the methods described above and the methods described in Queen, US 5,530, 101 and 5,585,089; Winter, US 5,225,539, Carter, US 6,407,213, Adair, US 5,859,205 6,881,557, Foote, US 6,881,557.
  • the disclosure further provides chimeric and veneered forms of non-human antibodies that bind specifically to the MCAM epitopes described above.
  • a chimeric antibody is an antibody in which the mature variable regions of light and heavy chains of a non-human antibody (e.g., a mouse) are combined with human light and heavy chain constant regions. Such antibodies substantially or entirely retain the binding specificity of the mouse antibody, and are about two-thirds human sequence.
  • a veneered antibody is a type of humanized antibody that retains some and usually all of the CDRs and some of the non-human variable region framework residues of a non-human antibody but replaces other variable region framework residues that may contribute to B- or T- cell epitopes, for example exposed residues with residues from the corresponding positions of a human antibody sequence (Padlan, Mol. Immunol. 28:489, 1991). The result is an antibody in which the CDRs are entirely or substantially from a non-human antibody and the variable region frameworks of the non-human antibody are made more human-like by the substitutions.
  • Human antibodies against MCAM are provided by a variety of techniques described below.
  • human antibodies are selected by competitive binding experiments, by the phage display method of Winter, above, or otherwise, to have the same epitope specificity as a particular mouse antibody, such as one of the mouse monoclonals described in the examples. Human antibodies can also be screened for a particular epitope specificity by using only a fragment of MCAM as the target antigen, and/or by screening antibodies against a collection of deletion mutants of MCAM.
  • Methods for producing human antibodies include the trioma method of Oestberg et al., Hybridoma 2:361-367 (1983); Oestberg, U.S. Patent No. 4,634,664; and Engleman et al., US Patent 4,634,666, use of transgenic mice including human immunoglobulin genes (see, e.g., Lonberg et al., W093/12227 (1993); US 5,877,397, US 5,874,299, US 5,814,318, US 5,789,650, US 5,770,429, US 5,661,016, US 5,633,425, US 5,625, 126, US 5,569,825, US 5,545,806, Nature 148, 1547-1553 (1994), Nature Biotechnology 14, 826 (1996), Kucherlapati, WO 91/10741 (1991) and phage display methods (see, e.g., Dower et al., WO 91/17271 and McCafferty et al., WO
  • Chimeric, humanized (including veneered) and human antibodies are typically produced by recombinant expression as described above.
  • Non-antibody binding molecules include, for example, anticalins, which are based upon the lipocalin scaffold, a protein structure characterized by a rigid beta-barrel that supports four hypervariable loops which form the ligand binding site. Novel binding specificities are engineered by targeted random mutagenesis in the loop regions, in combination with functional display and guided selection (Skerra (2008) FEBS J. 275: 2677-2683).
  • Other suitable scaffolds may include, for example, adnectins, or monobodies, based on the tenth extracellular domain of human fibronectin III (Koide and Koide (2007) Methods Mol. Biol.
  • the antibody is not any one of the antibodies or antibodies including CDRs (as defined by Kabat, Chothia, or a composite thereof) entirely or substantially from the antibodies described in WO/2012/170071 and PCT/US2013/058773, particularly the antibodies designated clone 15 (defined by SEQ ID NOs: 12-21) and clone 17 (defined by SEQ ID NOs: 1- 10) in WO/2012/170071 and the mouse anti-human MCAM monoclonal clones designated 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3, and the rat anti- human MCAM monoclonal antibody clones designated 2120.4.19 and 2107.4.10 described in PCT/US2013/058773.
  • CDRs as defined by Kabat, Chothia, or a composite thereof
  • the inhibitory activity of the MCAM antibodies described herein can be assayed by various methods including competitive binding assays with antibodies that bind the same or a substantially similar epitope (e.g., ml 749) and blocking of MCAM binding with its ligand, the laminin a4 chain of laminin 411.
  • a substantially similar epitope e.g., ml 749
  • MCAM-expressing cells are (a) incubating with a recombinant polypeptide comprising a laminin a4 chain, e.g. , an a4 chain of laminin 411, in the presence or absence of a candidate antibody; (b) monitoring the level of binding of the laminin a4 to the cells, e.g.
  • An alternate screening protocol involves the use of a population of cells expressing a laminin a4 chain, which can be incubated with MCAM, in the presence and absence of a candidate antibody, and binding of MCAM to the cell population monitored. If the binding of MCAM to the cell population in the presence of the candidate antibody is lower than in its absence, the candidate antibody is an MCAM antagonist.
  • FACS fluorescence-activated cell sorting
  • ELISA enzyme-linked immunosorbent assay
  • the MCAM antagonists identified based on their ability to inhibit the binding of MCAM to its ligand, e.g., a laminin a4 chain, are candidates for the treatment of inflammatory conditions characterized by infiltration of MCAM-expressing cells.
  • Conjugated antibodies that specifically bind to MCAM can be useful in targeting cancer or tumor cells for destruction or in targeting cells involved in autoimmune diseases or neuroinflammatory diseases. Such antibodies can also be useful in targeting any disease mediated at least in part by expression of MCAM. For example, such antibodies can be conjugated with other therapeutic agents, other proteins, other antibodies, and/or detectable labels. See WO 03/057838; US 8,455,622. Such therapeutic agents can be any agent that can be used to treat, combat, ameliorate, prevent, or improve an unwanted condition or disease in a patient, such as an autoimmune disease, a neuroinflammatory disease, or a cancer. Therapeutic agents can include cytotoxic agents, cytostatic agents, radiotherapeutic agents,
  • a cytotoxic agent can be any agent that is toxic to a cell.
  • a cytostatic agent can be any agent that inhibits cell proliferation.
  • An immunomodulator can be any agent that stimulates or inhibits the development or maintenance of an immunologic response.
  • a radiotherapeutic agent can be any molecule or compound that emits radiation. If such therapeutic agents are coupled to an MCAM-specific antibody, such as the antibodies described herein, the coupled therapeutic agents will have a specific affinity for MCAM-expressing cells (e.g., immune cells, such as TH17-expressing cells, or cancer cells, such as malignant melanocytes) over other cells. Consequently, administration of the conjugated antibodies directly targets MCAM-expressing cells with minimal effects on other surrounding cells and tissue. This can be particularly useful for therapeutic agents that are too toxic to be administered on their own. In addition, smaller quantities of the therapeutic agents can be used.
  • Antibodies can be modified to act as immunotoxins. See, e.g., U.S. Patent No.
  • ricin a cellular toxin derived from plants
  • Radioisotopes can also be linked to antibodies.
  • Preferred radioisotopes include yttrium 90 (90Y), indium 111 (l l lln), 131 I, "mTc, radiosilver- 111 , radiosilver-199, and Bismuth 213 .
  • Linkage of radioisotopes to antibodies may be performed with conventional bifunction chelates.
  • sulfur-based linkers may be used. See Hazra et al., Cell Biophys. 24-25: 1-7 (1994).
  • Linkage of silver radioisotopes may involve reducing the immunoglobulin with ascorbic acid.
  • ibritumomab tiuxetan For radioisotopes such as 11 lln and 90Y, ibritumomab tiuxetan can be used and will react with such isotopes to form 11 lln-ibritumomab tiuxetan and 90Y-ibritumomab tiuxetan, respectively. See Witzig, Cancer Chemother. Pharmacol., 48 Suppl LS91-S95 (2001).
  • Therapeutic agents may also be linked to antibodies.
  • Therapeutic agents are usually cytotoxic or cytostatic.
  • antibodies can be conjugated with toxic chemotherapeutic drugs such as maytansine, geldanamycin, tubulin inhibitors, such as auristatins, or minor groove binding agents, such as calicheamicin.
  • Other representative therapeutic agents include agents known to be useful for treatment, management, or amelioration of an autoimmune disease, a neuroinflammatory disease, or a cancer, or symptoms of an autoimmune disease, a neuroinflammatory disease, or a cancer. Examples of such therapeutic agents are disclosed elsewhere herein.
  • Antibodies can also be coupled with other proteins. For example, antibodies can be coupled with Fynomers.
  • Fynomers are small binding proteins (e.g., 7 kDa) derived from the human Fyn SH3 domain. They can be stable and soluble, and they can lack cysteine residues and disulfide bonds. Fynomers can be engineered to bind to target molecules with the same affinity and specificity as antibodies. They are suitable for creating multi- specific fusion proteins based on antibodies. For example, Fynomers can be fused to N-terminal and/or C- terminal ends of antibodies to create bi- and tri-specific FynomAbs with different architectures. Fynomers can be selected using Fynomer libraries through screening technologies using FACS, Biacore, and cell-based assays that allow efficient selection of Fynomers with optimal properties.
  • Fynomers can be selected using Fynomer libraries through screening technologies using FACS, Biacore, and cell-based assays that allow efficient selection of Fynomers with optimal properties.
  • Fynomers are disclosed in Grabulovski et al, J. Biol. Chem. 282:3196-3204 (2007); Bertschinger et al, Protein Eng. Des. Sel. 20:57-68 (2007); Schlatter et al, MAbs. 4:497-508 (2011); Banner et al., Acta. Crystallogr. D. Biol. Crystallogr. 69(Pt6): 1124-1137 (2013); and Brack et al, Mol. Cancer Ther. 13:2030-2039 (2014).
  • the antibodies disclosed herein can also be coupled or conjugated to one or more other antibodies (e.g., to form antibody heteroconjugates). Such other antibodies can bind to different epitopes within MCAM or can bind to a different target antigen.
  • Antibodies can also be coupled with a detectable label. Such antibodies can be used, for example, for diagnosing of an autoimmune disease, a neuroinflammatory disease, or a cancer, for monitoring progression of an autoimmune disease, a neuroinflammatory disease, or a cancer, and/or for assessing efficacy of treatment. Such antibodies can be useful for performing such determinations in subjects having or being susceptible to an autoimmune disease, a
  • Therapeutic agents, other proteins, other antibodies, and/or detectable labels may be coupled or conjugated, directly or indirectly through an intermediate (e.g., a linker), to a murine, chimeric, veneered, or humanized antibody using techniques known in the art. See e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy," in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery,” in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp.
  • an intermediate e.g., a linker
  • Suitable linkers include, for example, cleavable and non-cleavable linkers. Different linkers that release the drugs under acidic or reducing conditions or on exposure to specific proteases can be employed. Likewise, different linkers that release the coupled therapeutic agents, proteins, antibodies, and/or detectable labels under acidic or reducing conditions, on exposure to specific proteases, or under other defined conditions can be employed.
  • the antibodies or other antagonists disclosed herein can be used for treating or effecting prophylaxis of subjects having (e.g., meeting art -recognized criteria, such as those of the DSM-IV-TR or DSM-V) or at elevated risk relative to the general population of a disease disclosed herein. Elevated risk can be assessed from presence of one or more genetic or biochemical markers associated with the disease, or one or more symptoms consistent with the disease but insufficient to allow a definite diagnosis.
  • Some specific exemplary diseases treatable by the present methods include giant cell arteritis, polymyalgia rheumatica (PMR) and Takayasu's arteritis.
  • TH17 and THl cells are characterized by infiltration of TH17 and THl cells into blood vessel walls.
  • Cells expressing MCAM have been found to localize around blood vessels.
  • antibodies or other antagonists function at least in part by inhibiting the interaction of MCAM expressed on T cells (e.g., TH17 cells) and laminin a4 chain, e.g. , an a4 chain of laminin 411 expressed on the surface of an endothelial cell forming a blood vessel wall.
  • Antibody-drug conjugates can have additional mechanisms of action including the cytotoxic or cytostatic effect of the linked agent, typically after uptake within the targeted cell. Antibody- drug conjugates may also induce macrophage toxicity.
  • Giant-cell arteritis (GCA or temporal arteritis or cranial arteritis or Horton disease) is an inflammatory disease of blood vessels most commonly involving large and medium arteries of the head, predominantly the branches of the external carotid artery. The most serious complication is occlusion of the ophthalmic artery, which is a branch of the internal carotid. It can create a medical emergency which can cause irreversible ischemia and blindness if not treated promptly. GCA is conventionally treated with glucocorticoids, which reduce current symptoms of inflammation and prevent occlusion but has no effect on vessel wall pathology, resulting in subjects relapsing after recovery.
  • GGA onset occurs at age 50 onward with a mean age of diagnosis of 72. About 190,000 subjects present with the disease. This disease frequently manifests as an analgesic resistant headache (60-90%) and visual loss (12-40%). Symptoms show a dramatic initial response to glucocorticoids.
  • GCA is diagnosed from clinical presentation, patient characteristics, blood test markers of inflammation and most characteristically, presence of giant multinucleate cells in vessel wall biopsies most usually proximate to the internal elastic membrane.
  • GCA is caused by infiltration of THl 7 and THl cells into a blood vessel wall. Histo- pathological lesions are observed in all layers of the artery leading to segmental and focal panarteritis with a polymorphic cell infiltrate that includes T cells, macrophages and
  • THl 7 cells are the precursors of giant cells (Samson Clin Exp Rheumatol. 2013 Jan-Feb;31(l Suppl 75):S65-73. Epub 2013 Apr 19.). Therefore antibodies of the disclosure can inhibit GCA by inhibiting migration of TH17 or THl cells into blood vessel walls or conversion of TH17 cells to giant cells, among other mechanism.
  • An animal model for GCA is available for testing antibodies. The animal model is formed by transferring human temporal arterial specimens subcutaneously into SCID mice (Deng et aL, Circ. Res. 104, 488-495 (2009)).
  • a cellular model is also available for analyzing the effect of potential drugs on migration and proliferation of smooth muscle cells in the vasculature. This models uses smooth muscle cells on a MatrigelTM matrix.
  • PMR Polymyalgia rheumatica
  • GCA GCA
  • subjects have pain or stiffness, usually in the neck, shoulders, upper arms and hips, but which may occur all over the body.
  • the pain can be very sudden, or can occur gradually over a period. It may be caused by an inflammatory condition of blood vessels such as temporal arteritis.
  • Elevated ESR and C-reactive protein are characteristic of PMR as is a rapid response to low dose corticosteroids, which are the conventional treatment for PMR.
  • PMR can occur concurrently or separately than GCA. Approximately 15% of patients with PMR develop giant cell arteritis (GCA), and 40-50% of patients with GCA have associated PMR. Most inflammation is at the level of the synovium and bursae, with MRI studies revealing periarticular inflammation as well as bursitis in the bursae associated with both the shoulder and hip girdles. Systemic macrophage and T-cell activation are characteristic of both GCA and PMR. Patients often have an elevated IL-6 level which is likely responsible for the systemic
  • a decrease in the level of circulating IL-6 correlates with remission of clinical symptoms.
  • age of onset is 50 year or later with a mean of 72 years.
  • Takayasu's arteritis is a rare type of vasculitis related to GCA. It is a form of large vessel granulomatous vasculitis with massive intimal fibrosis and vascular narrowing, affecting often young or middle-aged women of Asian descent. It mainly affects the aorta (the main blood vessel leaving the heart) and its branches, as well as the pulmonary arteries. Females are about 8-9 times more likely to be affected than males. Those with the disease often notice symptoms between 15 and 30 years of age Takayasu's arteritis can also lead to arm or chest pain and high blood pressure and eventually to heart failure or stroke. The goal of treatment is to relieve inflammation in the arteries and prevent potential complications. Signs and symptoms of Takayasu's arteritis include: arm or leg weakness or pain with use (claudication),
  • MRA magnetic resonance angiography
  • CTA computed tomography angiography
  • DSA arterial angiography
  • Treatments include corticosteroids, methotrexate, azathioprine, adalimumab, etenercept, infliximab and tocilizumab.
  • Antibodies or other antagonists are administered in an effective regime meaning a dosage, route of administration and frequency of administration that delays the onset, reduces the severity, inhibits further deterioration, and/or ameliorates at least one sign or symptom of a disease being treated (e.g., giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis).
  • a disease e.g., giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis.
  • PMR polymyalgia rheumatica
  • the regime can be referred to as a therapeutically effective regime.
  • the regime can be referred to as a prophylactically effective regime.
  • therapeutic or prophylactic efficacy can be observed in an individual patient relative to historical controls or past experience in the same patient. In other instances, therapeutic or prophylactic efficacy can be demonstrated in a preclinical or clinical trial in a population of treated patients relative to a control population of untreated patients.
  • Exemplary dosages for an antibody are 0.1-20, or 0.5-5 mg kg body weight (e.g., 0.5, 1, 2, 3, 4 or 5 mg/kg) or 10-1500 mg as a fixed dosage. The dosage depends on the condition of the patient and response to prior treatment, if any, whether the treatment is prophylactic or therapeutic and whether the disorder is acute or chronic, among other factors.
  • Administration can be parenteral, intravenous, oral, subcutaneous, intra-arterial, intracranial, intrathecal, intraperitoneal, topical, intranasal or intramuscular. For some antibodies and under some circumstances, administration into the systemic circulation by intravenous or subcutaneous administration is preferred. Intravenous administration can be, for example, by infusion over a period such as 30-90 min.
  • the frequency of administration depends on the half- life of the antibody in the circulation, the condition of the patient and the route of administration among other factors.
  • the frequency can be daily, weekly, monthly, quarterly, or at irregular intervals in response to changes in the patient's condition or progression of the disorder being treated.
  • An exemplary frequency for intravenous administration is between weekly and quarterly over a continuous cause of treatment, although more or less frequent dosing is also possible.
  • an exemplary dosing frequency is daily to monthly, although more or less frequent dosing is also possible.
  • the number of dosages administered depends on whether the disorder is acute or chronic and the response of the disorder to the treatment. For acute disorders or acute exacerbations of a chronic disorder, between 1 and 10 doses are often sufficient. Sometimes a single bolus dose, optionally in divided form, is sufficient for an acute disorder or acute exacerbation of a chronic disorder. Treatment can be repeated for recurrence of an acute disorder or acute exacerbation. For chronic disorders, an antibody can be administered at regular intervals, e.g., weekly, fortnightly, monthly, quarterly, every six months for at least 1, 5 or 10 years, or the life of the patient.
  • Treatment with antibodies or other antagonists disclosed herein can be combined with other treatments effective against the disorder being treated. Combination treatments can be formulated for administered separately.
  • compositions for parenteral administration are preferably sterile and substantially isotonic and manufactured under GMP conditions.
  • Pharmaceutical compositions can be provided in unit dosage form (i.e., the dosage for a single administration).
  • compositions can be formulated using one or more physiologically and pharmaceutically acceptable carriers, diluents, excipients or auxiliaries.
  • the formulation depends on the route of administration chosen.
  • antibodies can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline or acetate buffer (to reduce discomfort at the site of injection).
  • physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline or acetate buffer (to reduce discomfort at the site of injection).
  • the solution can contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • antibodies can be in lyophilized form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • Treatment with antibodies of the disclosure can be combined with other treatments effective against the disorder being treated. Combination treatments can be formulated for administered separately. Additional therapeutic agents for treatment of multiple sclerosis include one or more of the following: teriflunomide, interferon beta- la, interferon beta- lb, glatiramer acetate, fingolimod, and mitoxantrone, or a corticosteroid, such as prednisone,
  • methylprednisolone or dexamethasone.
  • Additional therapeutic agents for cancer include alkylating agents such as carmustine, chlorambucil, cisplatin, carboplatin, oxaliplatin, procarbazine, and cyclophosphamide;
  • antimetabolites such as fluorouracil, floxuridine, fludarabine, gemcitabine, methotrexate and hydroxyurea
  • natural products including plant alkaloids and antibiotics such as bleomycin, doxorubicin, daunorubicin, idarubicin, etoposide, mitomycin, mitoxantrone, vinblastine, vincristine, and Taxol (paclitaxel) or related compounds such as TaxotereRTM.
  • topoisomerase 1 inhibitor irinotecan temozolomide and GliadelRTM, carmustine
  • inhibitors of tyrosine kinases such as Gleevec.RTM., Sutent.RTM. (sunitinib malate), Nexavar.RTM. (sorafenib) and Tarceva.RTM. (erlotinib) or Iressa.RTM. (gefitinib); inhibitors of angiogenesis; and monoclonal antibodies, including Herceptin.TM. against the HER2 antigen; Avastin.RTM. against VEGF; or antibodies to the Epidermal Growth Factor (EGF) receptor such as EGF, EGF, epiderb, etc.
  • EGF Epidermal Growth Factor
  • Erbitux.RTM cetuximab
  • Vectibix.RTM panitumumab
  • Additional agents for treating Parkinson's disease include including levodopa, benzaseride, carbidopa, dopamine agonists, non-ergot dopamine agonists, catechol-O-methyl (“COMT”) inhibitors such as, for example, entacopone or tolcopone, monoamine oxidase (“MAO”) inhibitors, such as, for example, rasagaline, amantadine, or anticholinergic agents V.
  • CCT catechol-O-methyl
  • MAO monoamine oxidase
  • kits comprising the MCAM antibodies or other antagonists of the disclosure and related materials, such as instructions for use (e.g., package insert).
  • the instructions for use may contain, for example, instructions for administration of the MCAM antagonists and optionally one or more additional agents.
  • the containers of MCAM antagonist(s) may be unit doses, bulk packages (e.g., multi-dose packages), or sub-unit doses.
  • Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage,
  • Kits can also include a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It can also include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • BWFI bacteriostatic water for injection
  • phosphate-buffered saline such as bacteriostatic water for injection (BWFI)
  • Ringer's solution such as phosphate-buffered saline
  • dextrose solution such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It can also include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • MCAM-Fc was generated by fusing the extracellular domain of murine MCAM to human IgG and produced in CHO cells using standard techniques. Lou/M rats were immunized with 100 ⁇ g of MCAM-Fc protein in CFA (1 : 1 volume). Rats were boosted two times at two week intervals with MCAM- Fc protein in incomplete Freund's adjuvant (IF A) (1 : 1 volume). Hybridomas were generated from immunized rats using standard protocols and clones were selected by Clonepix. CHO cells were transfected with the full length murine MCAM gene and selected for stable expression using neomycin and standard techniques.
  • IF A incomplete Freund's adjuvant
  • Parental CHO cells (MCAM negative) were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) using standard techniques and mixed at a 1: 1 ratio with unlabeled MCAM transfected CHO cells. Hybridoma supernatants were incubated with this mixture of cells for 30 minutes and binding of potential MCAM specific antibodies was detected with a fluorescently labeled anti-rat secondary antibody (Jackson Immuno) by flow cytometry.
  • CFSE carboxyfluorescein succinimidyl ester
  • hMCAM- Fc was generated by fusing the extracellular domain of human MCAM to human IgG and produced in CHO cells using standard techniques. Lou/M rats were immunized with 250 ⁇ g of hMCAM-Fc protein in CFA (1: 1 volume). Rats were boosted two times at two week intervals with hMCAM-Fc protein in incomplete Freund's adjuvant (IF A) (1: 1 volume). Hybridomas were generated from immunized rats using standard protocols and clones were selected by Clonepix. CHO cells were transfected with the full length human MCAM gene and selected for stable expression using neomycin and standard techniques.
  • Parental CHO cells (MCAM negative) were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) using standard techniques and mixed at a 1: 1 ratio with unlabeled human MCAM transfected CHO cells. Hybridoma supernatants were incubated with this mixture of cells for 30 minutes and binding of potential human MCAM specific antibodies was detected with a fluorescently labeled anti-rat secondary antibody (Jackson Immuno) by flow cytometry.
  • CFSE carboxyfluorescein succinimidyl ester
  • hMCAM-Fc was generated by fusing the extracellular domain of human MCAM to human IgG and produced in CHO cells using standard techniques.
  • Balb/c mice were immunized with 50 ⁇ g of hMCAM-Fc protein in CFA (1: 1 volume). Mice were boosted two times at two week intervals with hMCAM-Fc protein in incomplete Freund's adjuvant (IF A) (1: 1 volume).
  • IF A incomplete Freund's adjuvant
  • Hybridomas were generated from immunized mice using standard protocols and clones were selected by Clonepix. CHO cells were transfected with the full length human MCAM gene and selected for stable expression using neomycin and standard techniques. Parental CHO cells (MCAM negative) were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) using standard techniques and mixed at a 1 : 1 ratio with unlabeled human MCAM transfected CHO cells. Hybridoma supernatants were incubated with this mixture of cells for 30 minutes and binding of potential human MCAM specific antibodies was detected with a fluorescently labeled anti-mouse secondary antibody (Jackson Immuno) by flow cytometry.
  • CFSE carboxyfluorescein succinimidyl ester
  • RNA was isolated from hybridoma cells using RNAquous-4PCR kit (Ambion), and was used for cDNA synthesis.
  • First and second strand cDNA was synthesized using methods modified from Marathon cDNA amplification (Clontech) with the cDNA adaptor ligated to the 5'-end of the obtained dscDNA.
  • the reverse specific primer was designed based on the specific antibody isotype constant region sequence for both heavy and light chains, and was used along with the adaptor primer in the PCR amplification of both VL and VH fragments using Pfu Ultra DNA polymerase (Stratagene).
  • the amplified PCR product was cloned into pCR-Blunt-TOPO (Invitrogen), and the nucleotide sequence was determined. The sequences of the identified clones were compared for percent identity within the VL and VH sequences.
  • ELISA was performed using a commercial kit (R&D Systems).
  • Mouse and rat monoclonal antibodies directed against human MCAM protein were generated as described in Materials and Methods above. The specific binding between the monoclonal antibody and human MCAM was confirmed by assessing the monoclonal antibody's ability to bind to cells transfected with human MCAM. For this, untransfected cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) and mixed with unlabeled human MCAM transfected cells. Untransfected cells could, therefore, be differentiated.
  • CFSE carboxyfluorescein succinimidyl ester
  • the anti-human MCAM monoclonal antibodies were used to test their ability to block the binding of human MCAM to its ligand.
  • Human MCAM-Fc protein (5 ⁇ g/mL) was pre-incubated with isotype control antibody, or 10 ⁇ g/mL of the test monoclonal antibody for 30 minutes in PBS. The mixture was added to healthy spinal cord tissue sections and subsequently characterized by fluorescence microscopy as described in Materials and Methods above.
  • CHOK1 parental CHO cells
  • CHO cells transfected with a human MCAM gene were preincubated with CHO culture media (DMEM), recombinant laminin 411 (10 ⁇ g/ml), or recombinant laminin 511 (i.e., laminin 10 ( ⁇ 5 ⁇ 1 ⁇ 1)) ( 10 ⁇ g/ml) at 37°C for 45 minutes.
  • DMEM CHO culture media
  • laminin 411 10 ⁇ g/ml
  • laminin 511 i.e., laminin 10 ( ⁇ 5 ⁇ 1 ⁇ 1)
  • the 87 independent mouse fusion clones and 26 independent rat fusion clones described in Example 1 above as being capable of (i) binding to human MCAM, and (ii) blocking the interaction between human MCAM and the a-4 chain of laminin were further characterized as follows.
  • IC50 quantitation for the ability of the monoclonal antibody to block the binding of human MCAM to the a-4 chain of laminin was determined as follows. CHO cells expressing human MCAM were incubated with an anti-human MCAM antibody (at various concentrations) for 30 minutes at 4 degrees Celsius. Unbound antibody was then washed away, and the cells were incubated with recombinant human laminin 411 at 20 ug/ml for 45 minutes at 37 degrees Celsius.
  • Unbound laminin was then washed away, and the laminin bound to the surface of the cells was detected with fluorescently labeled anti- laminin antibodies. After washing, the amount of laminin bound to the surface was detected by flow cytometry, and IC50s were calculated based on the mean fluorescent intensity.
  • Amino acid and nucleic acid sequences of the heavy and light chains of these antibodies, and their hypervariable regions, are provided in SEQ ID NOs:29-92. More specifically, in the above assay, IC50s for the monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10 were determined to be 0.469 ug/ml, 0.431 ug/ml, 0.307 ug/ml, 0.545 ug/ml, 0.888 ug/ml, and 0.290 ug/ml, respectively.
  • ForteBio analysis was employed to determine the location of the antigen epitope on the human MCAM protein that is recognized and bound by monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10.
  • the following protocol was used: ForteBio anti-human IgG Fc biosensors were used to immobilize various MCAMhFc domains including full length MCAMhFc protein on to biosensor surface. These sensors were dipped into the MCAM specific 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, or 2107.4.10 antibody for detection of binding to these domains or full length protein.
  • the Octet Red was programmed as follows: 60 seconds for baseline #1; 180 seconds for loading various domains; 60 seconds for baseline #2; 180 seconds for association of antibody to domain; and 240 seconds for dissociation of antibody from domain.
  • Monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3 were all shown to bind to an antigenic epitope found on domain 3 of the human MCAM protein, defined specifically by amino acids 244-321 (SEQ ID NO:24) of the human MCAM protein. These monoclonal antibodies were not capable of binding to human MCAM domain 1 (namely amino acids 19-129, SEQ ID NO:22), domain 2 (namely amino acids 139-242, SEQ ID NO:23), or the combination of domains 1 and 2 (namely, amino acids 19-242). Hence, monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3 define a novel antigenic epitope located within domain 3 of the human MCAM protein.
  • Monoclonal antibody clones 2120.4.19, and 2107.4.10 were each shown to bind to an antigenic epitope defined by the combination of human MCAM domains 1 (namely amino acids 19-129, SEQ ID NO:22), and domain 2 (namely amino acids 139-242, SEQ ID NO:23). Neither of these two monoclonal antibodies bound to human MCAM domain 1 by itself. Hence, monoclonal antibody clones 2120.4.19 and 2107.4.10 define a novel antigenic epitope determined by the presence of both human MCAM protein domains 1 and 2.
  • antibodies which bind to human MCAM domain 2, human MCAM domain 3, and/or the combination thereof would find use as agents capable of blocking the interaction between human MCAM and a-4 laminin and, thereby, find use for inhibiting the various consequences described herein resulting from that interaction.
  • antibodies that bind to an antigenic epitope defined solely by human MCAM domain 1 are not useful for blocking the MCAM / a-4 laminin interaction and its various downstream biological consequences.
  • Table 1 shows a summary of the reagents and methods used to generate the shotgun mutagenesis library.
  • Full-length human MCAM was successfully codon-optimized, synthesized, and subcloned into a mammalian high-expression vector. This parental construct was then sequence- verified and validated for mammalian cell expression by immunodetection methods.
  • the MCAM mutation library was created and sequence verified, consisting of 545 clones (528/536 alanine mutants and 17/17 site-directed mutants), each bearing either a single residue substitution to alanine (alanine residues are substituted to serine) or a specified residue. Residues 35, 66, 161, 261, 342, 380, 414, and 435 are not represented in the library.
  • the mutation library was screened in triplicate by immunodetection for binding to mouse sera. This validates cell surface expression for each mutant clone.
  • the mutation library was screened in triplicate by immunodetection for binding to the 1749.1.3 antibody. Reactivity was quantified for each mutant to identify point mutants that exhibit loss of binding.
  • BHK cells were transfected with either wild-type (WT) MCAM or vector alone in a 384-well format, followed by immunodetection. Serial dilutions of each antibody (beginning with 4 ⁇ g/ml) were tested for immunoreactivity against WT or vector alone (Table 2). Each point represents the average of four replicates.
  • the mutation library was assayed for surface expression (mouse sera binding) and monoclonal antibody binding, in triplicate. Each raw data point was background-subtracted and normalized to the wild type MCAM reactivity values. The results are shown in Fig. 1.
  • the mean monoclonal antibody binding value for each clone is plotted as a function of its mean surface expression value (Fig. 1, gray diamonds). Thresholds of ⁇ 30% monoclonal antibody reactivity and >50% mouse sera binding were applied to identify clones (Fig. 1, black diamonds) that were negative for monoclonal antibody binding but positive for surface expression.
  • Critical residues for 1749.1.3 were identified by evaluating the mean monoclonal antibody reactivity of each clone compared to its overall surface expression (average serum reactivity). Residues involved in antibody binding were identified as those that were negative for monoclonal antibody binding ( ⁇ 30% WT) but positive for surface expression (>50% WT) (Table 4). The mean reactivity (and standard deviation) were determined for each critical residue.
  • the starting point or donor antibody for humanization is the mouse antibody 1749 produced by a hybridoma described in WO/2012/170071 and PCT/US2013/058773.
  • the mature heavy chain variable amino acid and nucleic acid sequence of mature ml 749 are provided as SEQ ID NOS:93 and 64, respectively.
  • the mature light chain variable amino acid and nucleic acid sequences of mature ml 749 are provided as SEQ ID NOS:97 and 59, respectively.
  • the heavy chain CDR1, CDR2, and CDR3 amino acid sequences are provided as SEQ ID NOs:66, 67, and 68, respectively.
  • the light chain CDR1, CDR2, and CDR3 amino acid sequences are provided as SEQ ID NOs:61, 62, and 63, respectively. Kabat numbering is used throughout in this Example.
  • variable kappa (Vk) of ml 749 belongs to mouse Kabat subgroup 1 which corresponds to human Kabat subgroup 4.
  • variable heavy (Vh) of ml749 belongs to mouse Kabat subgroup 3d which corresponds to human Kabat subgroup 3 (Kabat et al. Sequences of Proteins of Immunological Interest, Fifth Edition. NIH Publication No. 91-3242, 1991).
  • the 17 residue CDR-L1 belongs to canonical class 3
  • the 7 residue CDR-L2 belongs to canonical class 1
  • the 8 residue CDR-L3 belongs to canonical class 3 in Vk (Martin & Thornton, J Mol Biol. 263:800-15, 1996).
  • the 5 residue CDR-Hl belongs to canonical class 1
  • the 17 residue CDR-H2 belongs to canonical class 1 or 3
  • the CDR- H3 has no canonical classes, but the 11 residue loop probably has a kinked base according to the rules of Shirai et al., FEBS Lett. 455: 188-97 (1999).
  • the antibody directed against a peptide immunogen from influenza virus hemagglutinin has good overall sequence similarity to 1749 Vh structure. It also has a CDR-H3 of a similar length with a kinked base.
  • the structure of the antibody directed against a peptide immunogen from influenza virus hemagglutinin (IHIL; Rini et al., Science 255: 959-65, 1992; SEQ ID NO: 157) has reasonable resolution (2.0A), and was used for the Vh structure in the modeling.
  • CDRs-Hl and H2 of IHIL have the same canonical structures for CDR-Hl and CDR-H2 as that of 1749 Vh. BioLuminate ® was used to model a rough structure of 1749Fv.
  • a search of the non-redundant protein sequence database from NCBI allowed selection of suitable human frameworks into which to graft the murine CDRs.
  • Vk two human kappa light chains were chosen, the first with NCBI accession code ABA71407.1 (GL77379502 ; SEQ ID NO: 162) (Manske et al., Clin. Immunol. 120: 106-20, 2006) and the second with NCBI accession code CAI99800.1 (GL98956324; SEQ ID NO: 163) (Su et al., J. Immunol. 181 : 1264-71,2008 ).
  • ABA71407.1 has a sequence identity of 85% in the light chain variable region framework to murine 1749 light chain.
  • CAI99800.1 has a sequence identity of 83% in the light chain variable region framework to murine 1749 light chain.
  • AAX82494.1 GL62421461; SEQ ID NO: 158) (Lundquist, Infect. Immun. 74:3222-31, 2006) and the second with NCBI accession code ADX65676.1 (GL323432073; SEQ ID NO: 159) (unpublished). It shares the canonical form of 1749 CDR-Hl and H2, and H3 is 11 residues long with a predicted kinked base.
  • AAX82494.1 has a sequence identity of 91% in the variable region framework to murine 1749 heavy chain.
  • ADX65676.1 has a sequence identity of 83% in the variable region framework to murine 1749 heavy chain.
  • a humanized light chain variable region variant and a humanized heavy chain variable region variant were constructed containing the above substitutions (Hul749VHv3; SEQ ID NO: 156, and Hul749VLv3; SEQ ID NO: 160) (Figs. 3A & B).
  • the amino acids at H3, H42, H93, L9, L19, L43 in Hul749VHv3 and Hul749VLv3 are listed in Table 5.
  • Q3K (here as elsewhere for framework backmutations, the first mentioned residue is the human residue and the second the mouse residue): K contacts Y 102 in CDRH3. Therefore, it should be maintained in the framework.
  • G42E E has similar side chain as D in human acceptor AAX82494.1. E is more frequent than D in humans. This backmutation contributes to protein stability.
  • A93T This position is a Vk/Vh interface residue.
  • D9S This residue does not contact or affect CDRs and/or interface.
  • the frequency of S is greater than D in human framework regions.
  • A19V The frequency of V and A are similar in human framework regions.
  • P43S S contacts two interface residues in VH: Y91 and W103. Therefore, it is critical and should to be maintained in the framework.
  • Binding kinetics of the humanized 1749 antibody comprising the heavy chain Hul749VHv3 and the light chain Hul749VLv3 have been characterized.
  • Binding kinetic of humanized 1749 antibodies were measured by bio-layer interferometry (BLI) using a ForteBio Octet QK instrument (ForteBio, Menlo Park, CA).
  • binding kinetic parameters association rate, apparent ka, dissociation rate, apparent kd, and affinity constant, apparent KD were determined for chimeric 1749 and humanized 1749 antibodies (Table 6).

Abstract

The invention provides anti-MCAM antibodies that inhibit the ability of human MCAM to bind a laminin alpha-4 chain and pharmaceutical compositions and pharmaceutical formulations incorporating the same for use in treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis, methods of generating such antibodies, and their use in the manufacture of medicaments for treatment of neuroinflammatory disease, autoimmune disease, or cancer.

Description

Use of Anti-MCAM Antibodies for Treatment or Prophylaxis of Giant Cell Arteritis, Polymyalgia Rheumatica or Takayasu's Arteritis
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims the benefit under 35 USC 119(e) of US Provisional
Application No. 62/219,611 filed September 16, 2015, the disclosure of which is herein incorporated by reference in its entirety. U.S. Provisional Application No. 61/952, 123, filed March 12, 2014, U.S. Provisional Application No. 62/023,698, filed July 11, 2014, and U.S. Provisional Application No. 62/068,438, filed October 24, 2014 and PCT/IB2015/051786 filed March 12, 2015 disclose related subject matters and is each incorporated in its entirety herein for all purposes.
REFERENCE TO A SEQUENCE LISTING,
A TABLE, OR A COMPUTER PROGRAM LISTING
[0002] The Sequence Listing written in file 481110_SEQLIST.txt, created on September 15, 2016, for "USE OF ANTI-MCAM ANTIBODIES FOR TREATMENT OR PROPHYLAXIS OF GIANT CELL ARTERITIS, POLYMYALGIA RHEUMATICA OR TAKAYASU'S
ARTERITIS" is 153 kilobytes. The information contained in this file is hereby incorporated by reference.
BACKGROUND
[0003] A subset of CD4+ T cells, termed TH17 cells (T helper 17 cells), has been implicated in the pathogenesis of a number of autoimmune diseases, particularly those neuroinflammatory conditions involving CNS infiltration of T cells, such as multiple sclerosis and the animal model, experimental autoimmune encephalomyelitis (EAE). TH17 cells have been reported to secrete a number of select cytokines including IL-17 and IL-22. TH17 cells have been reported to undergo specific recruitment and infiltration of tissue. MCAM has been reported to be expressed on TH17 cells and to bind laminin alpha-4 as a ligand. SUMMARY OF THE CLAIMED INVENTION
[0004] The invention provides antibodies, compositions, formulations and the like described below and throughout the specification for use in treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis. Corresponding claims in method or Swiss style are also provided.
[0005] Antibodies, and formulations for such uses and methods are described as follows. Some antibodies comprise a mature heavy chain variable region comprising the three Kabat CDRs of SEQ ID NO: 156, and being at least 97% identical to SEQ ID NO: 156, and a mature light chain variable region comprising the three Kabat CDRs of SEQ ID NO: 160, and being at least 97% identical to SEQ ID NO: 160. In some antibodies, the mature heavy chain variable region is at least 98% or 99% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 98% or 99% identical to SEQ ID NO: 160. In some antibodies, the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160. In some antibodies, position 93 (Kabat numbering) of the mature heavy chain variable region is occupied by T; position 42 (Kabat numbering) of the mature heavy chain variable region is occupied by E; position 43 (Kabat numbering) of the mature light chain variable region is occupied by S;
position 9 (Kabat numbering) of the mature light heavy chain variable region is occupied by S; position 19 (Kabat numbering) of the mature light heavy chain variable region is occupied by V. In some antibodies, position 93 (Kabat numbering) of the mature heavy chain variable region is occupied by T; position 42 (Kabat numbering) of the mature heavy chain variable region is occupied by E; position 3 (Kabat numbering) of the mature heavy chain variable region is occupied by K, position 43 (Kabat numbering) of the mature light chain variable region is occupied by S; position 9 (Kabat numbering) of the mature light heavy chain variable region is occupied by S; position 19 (Kabat numbering) of the mature light heavy chain variable region is occupied by V. In some antibodies, the heavy chain constant region has the amino acid sequence of SEQ ID NO: 173 or 174 and/or the light chain constant region has the amino acid sequence of SEQ ID NO: 170 or 171.
[0006] Some anti-MCAM antibodies bind to human MCAM (SEQ ID NO: 11) at an epitope including amino acid residue 318. In some such antibodies, the epitope comprises amino acid residue 324. In some such antibodies, the epitope comprises amino acid residue 326. In some antibodies, the epitope comprises at least five contiguous amino acids residues of human MCAM including amino acid residue 318. In some such antibodies, the antibody is not an antibody selected from the group consisting of:
(a) clone 15 having a mature heavy chain variable region corresponding to SEQ ID NO: 18 and a mature light chain variable region corresponding to SEQ ID NO: 13;
(b) clone 17 having a mature heavy chain variable region corresponding to SEQ ID NO:7 and a mature light chain variable region corresponding to SEQ ID NO:2;
(c) 1174.1.3 having a mature heavy chain variable region corresponding to SEQ ID NO:35 and a mature light chain variable region corresponding to SEQ ID NO: 30;
(d) 1414.1.2 having a mature heavy chain variable region corresponding to SEQ ID NO:45 and a mature light chain variable region corresponding to SEQ ID NO:40;
(e) 1415.1.1 having a mature heavy chain variable region corresponding to SEQ ID NO:55 and a mature light chain variable region corresponding to SEQ ID NO: 50;
(f) 1749.1.3 having a mature heavy chain variable region corresponding to SEQ ID NO: 65 and a mature light chain variable region corresponding to SEQ ID NO: 60;
(g) 2120.4.19 having a mature heavy chain variable region corresponding to SEQ ID NO:77 and a mature light chain variable region corresponding to SEQ ID NO:70;
(h) 2107.4.10 having a mature heavy chain variable region corresponding to SEQ ID NO: 89 and a mature light chain variable region corresponding to SEQ ID NO: 84: and
(i) an antibody comprising CDRs substantially from the monoclonal antibodies 1174.1.3, 1414.1.2 , 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10. In some such antibodies, the antibody is monoclonal. In some such antibodies, the antibody is chimeric, humanized, veneered, or human.
In some such antibodies, the antibody is not an antibody selected from the group consisting of: (a) clone 15 having a mature heavy chain variable region corresponding to SEQ ID NO: 18 and a mature light chain variable region corresponding to SEQ ID NO: 13;
(b) clone 17 having a mature heavy chain variable region corresponding to SEQ ID NO:7 and a mature light chain variable region corresponding to SEQ ID NO:2;
(c) 1174.1.3 having a mature heavy chain variable region corresponding to SEQ ID NO:35 and a mature light chain variable region corresponding to SEQ ID NO: 30;
(d) 1414.1.2 having a mature heavy chain variable region corresponding to SEQ ID NO:45 and a mature light chain variable region corresponding to SEQ ID NO:40;
(e) 1415.1.1 having a mature heavy chain variable region corresponding to SEQ ID NO:55 and a mature light chain variable region corresponding to SEQ ID NO: 50;
(f) 1749.1.3 having a mature heavy chain variable region corresponding to SEQ ID NO: 65 and a mature light chain variable region corresponding to SEQ ID NO: 60;
(g) 2120.4.19 having a mature heavy chain variable region corresponding to SEQ ID NO:77 and a mature light chain variable region corresponding to SEQ ID NO:70, 71, or 72;
(h) 2107.4.10 having a mature heavy chain variable region corresponding to SEQ ID NO:89 and a mature light chain variable region corresponding to SEQ ID NO:82 or 84: and
(i) an antibody comprising CDRs substantially from the monoclonal antibodies 1174.1.3, 1414.1.2 , 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10. In some such antibodies, the antibody is monoclonal. In some such antibodies, the antibody is chimeric, humanized, veneered, or human.
[0007] Also provided is a pharmaceutical composition comprising any of the above- mentioned antibodies.
[0008] Also provided is an isolated peptide comprising an epitope for binding an anti- MCAM monoclonal antibody, wherein the peptide comprises 5-50 contiguous amino acid residues of human MCAM (SEQ ID NO: 11) including amino acid residue 318. In some of these peptides, the peptide is linked to a carrier polypeptide. In some of these peptides, the peptide is combined with an adjuvant.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 depicts the identification of critical clones. The mean 1749.1.3 binding value plotted as a function of its mean surface expression value (gray diamonds). Thresholds of <30% monoclonal antibody reactivity and >50% mouse sera binding were applied to identify clones (black diamonds) that were negative for antibody binding but positive for surface expression
[0010] FIG. 2 depicts a homology model of human MCAM, indicating the location of five residues identified as potentially critical binding sites for 1749.1.3, including C272, Y318, C320, V340, and W377.
[0011] FIG. 3 A depicts an alignment of the amino acid sequences of 1749.1.3 with the humanized 1749 light chain mature variable regions. ABA71407.1 and CAI99800.1 are the human acceptor VL sequence. CDR regions according to Kabat definition are highlighted in gray.
[0012] FIG. 3B depicts an alignment of the amino acid sequences of 1749.1.3 with the humanized 1749 heavy chain mature variable regions. AAX82494.1 and ADX65676.1 are the human acceptor VH sequence. CDR regions according to Kabat definition are highlighted in gray.
BRIEF DESCRIPTION OF THE SEQUENCES
[0013] SEQ ID NO: l is the nucleic acid sequence encoding the mature light chain variable region of antibody clone 17.
[0014] SEQ ID NO:2 is the amino acid sequence of the mature light chain variable region of antibody clone 17.
[0015] SEQ ID NO:3 is the amino acid sequence of CDRL1 of the antibody clone 17. [0016] SEQ ID NO:4 is the amino acid sequence of CDRL2 of the antibody clone 17. [0017] SEQ ID NO:5 is the amino acid sequence of CDRL3 of the antibody clone 17. [0018] SEQ ID NO:6 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody clone 17.
[0019] SEQ ID NO:7 is the amino acid sequence of the mature heavy chain variable region of antibody clone 17.
[0020] SEQ ID NO:8 is the amino acid sequence of CDRH1 of the antibody clone 17.
[0021] SEQ ID NO:9 is the amino acid sequence of CDRH2 of the antibody clone 17.
[0022] SEQ ID NO: 10 is the amino acid sequence of CDRH3 of the antibody clone 17.
[0023] SEQ ID NO: 11 is the amino acid sequence of human MCAM Accession No.
CAA48332.
[0024] SEQ ID NO: 12 is the nucleic acid sequence encoding the mature light chain variable region of antibody clone 15.
[0025] SEQ ID NO: 13 is the amino acid sequence of the mature light chain variable region of antibody clone 15.
[0026] SEQ ID NO: 14 is the amino acid sequence of CDRL1 of the antibody clone 15.
[0027] SEQ ID NO: 15 is the amino acid sequence of CDRL2 of the antibody clone 15.
[0028] SEQ ID NO: 16 is the amino acid sequence of CDRL3 of the antibody clone 15.
[0029] SEQ ID NO: 17 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody clone 15.
[0030] SEQ ID NO: 18 is the amino acid sequence of the mature heavy chain variable region of antibody clone 15.
[0031] SEQ ID NO: 19 is the amino acid sequence of CDRH1 of the antibody clone 15.
[0032] SEQ ID NO:20 is the amino acid sequence of CDRH2 of the antibody clone 15.
[0033] SEQ ID NO:21 is the amino acid sequence of CDRH3 of the antibody clone 15. [0034] SEQ ID NO:22 is the amino acid sequence of human MCAM domain 1 (residues 19- 129).
[0035] SEQ ID NO:23 is the amino acid sequence of human MCAM domain 2 (residues 139-242).
[0036] SEQ ID NO:24 is the amino acid sequence of human MCAM domain 3 (residues 244-321).
[0037] SEQ ID NO:25 is the amino acid sequence of human MCAM domain 4 (residues 355-424).
[0038] SEQ ID NO:26 is the amino acid sequence of human MCAM domain 5 (residues 430-510).
[0039] SEQ ID NO:27 is the amino acid sequence of an oc4-chain isoform of human laminin 411 (Accession No. NP001098676).
[0040] SEQ ID NO:28 is the amino acid sequence of an oc4-chain isoform of human laminin 411 (Accession No. CAA48332).
[0041] SEQ ID NO:29 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1174.1.3.
[0042] SEQ ID NO:30 is the amino acid sequence of the mature light chain variable region of antibody 1174.1.3.
[0043] SEQ ID NO:31 is the amino acid sequence of CDRL1 of antibody 1174.1.3.
[0044] SEQ ID NO:32 is the amino acid sequence of CDRL2 of antibody 1174.1.3.
[0045] SEQ ID NO:33 is the amino acid sequence of CDRL3 of antibody 1174.1.3.
[0046] SEQ ID NO:34 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1174.1.3.
[0047] SEQ ID NO:35 is the amino acid sequence of the mature heavy chain variable region of antibody 1174.1.3. [0048] SEQ ID NO:36 is the amino acid sequence of CDRH1 of antibody 1174.1.3.
[0049] SEQ ID NO:37 is the amino acid sequence of CDRH2 of antibody 1174.1.3.
[0050] SEQ ID NO:38 is the amino acid sequence of CDRH3 of antibody 1174.1.3.
[0051] SEQ ID NO:39 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1414.1.2.
[0052] SEQ ID NO:40 is the amino acid sequence of the mature light chain variable region of antibody 1414.1.2.
[0053] SEQ ID NO:41 is the amino acid sequence of CDRL1 of antibody 1414.1.2.
[0054] SEQ ID NO:42 is the amino acid sequence of CDRL2 of antibody 1414.1.2.
[0055] SEQ ID NO:43 is the amino acid sequence of CDRL3 of antibody 1414.1.2.
[0056] SEQ ID NO:44 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1414.1.2.
[0057] SEQ ID NO:45 is the amino acid sequence of the mature heavy chain variable region of antibody 1414.1.2.
[0058] SEQ ID NO:46 is the amino acid sequence of CDRH1 of antibody 1414.1.2.
[0059] SEQ ID NO:47 is the amino acid sequence of CDRH2 of antibody 1414.1.2.
[0060] SEQ ID NO:48 is the amino acid sequence of CDRH3 of antibody 1414.1.2.
[0061] SEQ ID NO:49 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1415.1.1.
[0062] SEQ ID NO:50 is the amino acid sequence of the mature light chain variable region of antibody 1415.1.1.
[0063] SEQ ID NO:51 is the amino acid sequence of CDRL1 of antibody 1415.1.1.
[0064] SEQ ID NO:52 is the amino acid sequence of CDRL2 of antibody 1415.1.1. [0065] SEQ ID NO:53 is the amino acid sequence of CDRL3 of antibody 1415.1.1.
[0066] SEQ ID NO:54 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1415.1.1.
[0067] SEQ ID NO:55 is the amino acid sequence of the mature heavy chain variable region of antibody 1415.1.1.
[0068] SEQ ID NO:56 is the amino acid sequence of CDRH1 of antibody 1415.1.1.
[0069] SEQ ID NO:57 is the amino acid sequence of CDRH2 of antibody 1415.1.1.
[0070] SEQ ID NO:58 is the amino acid sequence of CDRH3 of antibody 1415.1.1.
[0071] SEQ ID NO:59 is the nucleic acid sequence encoding the mature light chain variable region of antibody 1749.1.3.
[0072] SEQ ID NO:60 is the amino acid sequence of the mature light chain variable region of antibody 1749.1.3.
[0073] SEQ ID NO:61 is the amino acid sequence of CDRL1 of antibody 1749.1.3.
[0074] SEQ ID NO:62 is the amino acid sequence of CDRL2 of antibody 1749.1.3.
[0075] SEQ ID NO:63 is the amino acid sequence of CDRL3 of antibody 1749.1.3.
[0076] SEQ ID NO:64 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 1749.1.3.
[0077] SEQ ID NO:65 is the amino acid sequence of the mature heavy chain variable region of antibody 1749.1.3.
[0078] SEQ ID NO:66 is the amino acid sequence of CDRH1 of antibody 1749.1.3.
[0079] SEQ ID NO:67 is the amino acid sequence of CDRH2 of antibody 1749.1.3.
[0080] SEQ ID NO:68 is the amino acid sequence of CDRH3 of antibody 1749.1.3. [0081] SEQ ID NO:69 is the nucleic acid sequence encoding a mature light chain variable region of antibody 2120.4.19.
[0082] SEQ ID NO:70 is the amino acid sequence of the mature light chain variable region of antibody 2120.4.19 set forth in SEQ ID NO:69.
[0083] SEQ ID NO:71 is the amino acid sequence of a mature light chain variable region of antibody 2120.4.19.
[0084] SEQ ID NO:72 is the amino acid sequence of a mature light chain variable region of antibody 2120.4.19.
[0085] SEQ ID NO:73 is the amino acid sequence of CDRL1 of antibody 2120.4.19.
[0086] SEQ ID NO:74 is the amino acid sequence of CDRL2 of antibody 2120.4.19.
[0087] SEQ ID NO:75 is the amino acid sequence of CDRL3 of antibody 2120.4.19.
[0088] SEQ ID NO:76 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 2120.4.19.
[0089] SEQ ID NO:77 is the amino acid sequence of the mature heavy chain variable region of antibody 2120.4.19.
[0090] SEQ ID NO:78 is the amino acid sequence of CDRH1 of antibody 2120.4.19.
[0091] SEQ ID NO:79 is the amino acid sequence of CDRH2 of antibody 2120.4.19.
[0092] SEQ ID NO:80 is the amino acid sequence of CDRH3 of antibody 2120.4.19.
[0093] SEQ ID NO:81 is a nucleic acid sequence encoding a mature light chain variable region of antibody 2107.4.10.
[0094] SEQ ID NO:82 is the amino acid sequence of the mature light chain variable region of antibody 2107.4.10 set forth in SEQ ID NO:81.
[0095] SEQ ID NO:83 is a nucleic acid sequence encoding a mature light chain variable region of antibody 2107.4.10. [0096] SEQ ID NO:84 is the amino acid sequence of the mature light chain variable region of antibody 2107.4.10 set forth in SEQ ID NO:83.
[0097] SEQ ID NO:85 is the amino acid sequence of CDRL1 of antibody 2107.4.10.
[0098] SEQ ID NO:86 is the amino acid sequence of CDRL2 of antibody 2107.4.10.
[0099] SEQ ID NO:87 is the amino acid sequence of CDRL3 of antibody 2107.4.10.
[0100] SEQ ID NO:88 is the nucleic acid sequence encoding the mature heavy chain variable region of antibody 2107.4.10.
[0101] SEQ ID NO:89 is the amino acid sequence of the mature heavy chain variable region of antibody 2107.4.10.
[0102] SEQ ID NO:90 is the amino acid sequence of CDRH1 of antibody 2107.4.10.
[0103] SEQ ID NO:91 is the amino acid sequence of CDRH2 of antibody 2107.4.10.
[0104] SEQ ID NO:92 is the amino acid sequence of CDRH3 of antibody 2107.4.10.
[0105] SEQ ID NO:93 is the amino acid sequence of the mature heavy chain variable region of antibody 1749.1.3.
[0106] SEQ ID NO:94 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 1749 version 1 (VH1).
[0107] SEQ ID NO:95 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 1749 version 2 (VH2).
[0108] SEQ ID NO:96 is the amino acid sequence of the heavy chain variable framework donor U96282_VH.
[0109] SEQ ID NO:97 is the amino acid sequence of the mature light chain variable region of antibody 1749.1.3.
[0110] SEQ ID NO:98 is the amino acid sequence of the mature light chain variable region of humanized antibody 1749 version 1 (VL1). [0111] SEQ ID NO:99 is the amino acid sequence of the mature light chain variable region of humanized antibody 1749 version 2 (VL2).
[0112] SEQ ID NO: 100 is the amino acid sequence of the light chain variable framework donor X02990_VL.
[0113] SEQ ID NO: 101 is the amino acid sequence of the mature heavy chain variable region of antibody 2107.4.10.18.
[0114] SEQ ID NO: 102 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 1 (VH1).
[0115] SEQ ID NO: 103 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 2 (VH2).
[0116] SEQ ID NO: 104 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 3 (VH3).
[0117] SEQ ID NO: 105 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 4A (VH4A).
[0118] SEQ ID NO: 106 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 5A (VH5A).
[0119] SEQ ID NO: 107 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 6 (VH6).
[0120] SEQ ID NO: 108 is the amino acid sequence of the heavy chain variable framework donor AF062133 VH.
[0121] SEQ ID NO: 109 is the amino acid sequence of the mature light chain variable region of antibody 2107.4.10.18.
[0122] SEQ ID NO: 110 is the amino acid sequence of the mature light chain variable region of humanized antibody 2107 version 1 (VL1). [0123] SEQ ID NO: 111 is the amino acid sequence of the mature light chain variable region of humanized antibody 2107 version 2 (VL2).
[0124] SEQ ID NO: 112 is the amino acid sequence of the mature light chain variable region of humanized antibody 2107 version 3 (VL3).
[0125] SEQ ID NO: 113 is the amino acid sequence of the light chain variable framework donor U86803.
[0126] SEQ ID NO: 114 is the amino acid sequence of the mature heavy chain variable region of antibody 2120.4.19.6.
[0127] SEQ ID NO: 115 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 1 (VH1).
[0128] SEQ ID NO: 116 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 2 (VH2).
[0129] SEQ ID NO: 117 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 3 (VH3).
[0130] SEQ ID NO: 118 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 4 (VH4).
[0131] SEQ ID NO: 119 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2120 version 5 (VH5).
[0132] SEQ ID NO: 120 is the amino acid sequence of the mature light chain variable region of antibody 2120.4.19.6.
[0133] SEQ ID NO: 121 is the amino acid sequence of the mature light chain variable of humanized antibody 2120 version 1 (VL1).
[0134] SEQ ID NO: 122 is the amino acid sequence of the mature light chain variable region of humanized antibody 2120 version 2 (VL2). [0135] SEQ ID NO: 123 is the amino acid sequence of the mature light chain variable region of humanized antibody 2120 version 3 (VL3).
[0136] SEQ ID NO: 124 is the amino acid sequence of the light chain variable framework donor X84343_VL.
[0137] SEQ ID NO: 125 is the amino acid sequence of a humanized heavy chain framework region.
[0138] SEQ ID NO: 126 is the amino acid sequence of a humanized heavy chain framework region.
[0139] SEQ ID NO: 127 is the amino acid sequence of a humanized heavy chain framework region.
[0140] SEQ ID NO: 128 is the amino acid sequence of a humanized heavy chain/light chain framework region.
[0141] SEQ ID NO: 129 is the amino acid sequence of a humanized light chain framework region.
[0142] SEQ ID NO: 130 is the amino acid sequence of a humanized light chain framework region.
[0143] SEQ ID NO: 131 is the amino acid sequence of a humanized light chain framework region.
[0144] SEQ ID NO: 132 is the amino acid sequence of a humanized light chain framework region.
[0145] SEQ ID NO: 133 is the amino acid sequence of a humanized heavy chain framework region.
[0146] SEQ ID NO: 134 is the amino acid sequence of a humanized heavy chain framework region. [0147] SEQ ID NO: 135 is the amino acid sequence of a humanized heavy chain framework region.
[0148] SEQ ID NO: 136 is the amino acid sequence of a humanized heavy chain framework region.
[0149] SEQ ID NO: 137 is the amino acid sequence of a humanized heavy chain framework region.
[0150] SEQ ID NO: 138 is the amino acid sequence of a humanized heavy chain framework region.
[0151] SEQ ID NO: 139 is the amino acid sequence of CDRHl of humanized antibody 2120 version 3 (VH3).
[0152] SEQ ID NO: 140 is the amino acid sequence of CDRHl of humanized antibody 2120 version 4 (VH4).
[0153] SEQ ID NO: 141 is the amino acid sequence of CDRHl of humanized antibody 2120 version 5 (VH5).
[0154] SEQ ID NO: 142 is the amino acid sequence of a humanized light chain framework region.
[0155] SEQ ID NO: 143 is the amino acid sequence of a humanized light chain framework region.
[0156] SEQ ID NO: 144 is the amino acid sequence of a humanized light chain framework region.
[0157] SEQ ID NO: 145 is the amino acid sequence of a humanized light chain framework region.
[0158] SEQ ID NO: 146 is the amino acid sequence of a humanized light chain framework region. [0159] SEQ ID NO: 147 is the amino acid sequence of a humanized light chain framework region.
[0160] SEQ ID NO: 148 is the amino acid sequence of a humanized light chain framework region.
[0161] SEQ ID NO: 149 is the amino acid sequence of a humanized light chain framework region.
[0162] SEQ ID NO: 150 is the amino acid sequence of a humanized light chain framework region.
[0163] SEQ ID NO: 151 is the amino acid sequence of CDRHl of humanized antibody 2107 version 1 (VH1).
[0164] SEQ ID NO: 152 is the amino acid sequence of CDRHl of humanized antibody 2107 version 4 (VH4).
[0165] SEQ ID NO: 153 is the amino acid sequence of CDRH3 of humanized antibody 2120 version 1-5 (VH1-VH5).
[0166] SEQ ID NO: 154 is the amino acid sequence of a humanized light chain framework region.
[0167] SEQ ID NO: 155 is the amino acid sequence of a humanized heavy chain framework region.
[0168] SEQ ID NO: 156 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 1749 version 3 (VH3).
[0169] SEQ ID NO: 157 is the amino acid sequence of the mouse heavy chain variable region structure template PBD#1HILVH.
[0170] SEQ ID NO: 158 is the amino acid sequence of the heavy chain variable acceptor framework ACC#AAX82494.1. [0171] SEQ ID NO: 159 is the amino acid sequence of the heavy chain variable acceptor framework ACC#ADX65676.1.
[0172] SEQ ID NO: 160 is the amino acid sequence of the mature light chain variable region of humanized antibody 1749 version 3 (VL3).
[0173] SEQ ID NO: 161 is the amino acid sequence of the mouse light chain variable region structure template PDB#2LTQVL.
[0174] SEQ ID NO: 162 is the amino acid sequence of the light chain variable acceptor framework ACC#AB A71407.1.
[0175] SEQ ID NO: 163 is the amino acid sequence of the light chain variable acceptor framework CAI99800.1.
[0176] SEQ ID NO: 164 is the nucleic acid sequence encoding an exemplary signal peptide that can be fused to a mature heavy chain or mature light chain variable region.
[0177] SEQ ID NO: 165 is the amino acid sequence of the exemplary signal peptide encoded by the nucleic acid sequence of SEQ ID NO: 164.
[0178] SEQ ID NO: 166 is the nucleic acid sequence encoding an exemplary signal peptide that can be fused to a mature heavy chain or mature light chain variable region.
[0179] SEQ ID NO: 167 is the amino acid sequence of the exemplary signal peptide encoded by the nucleic acid sequence of SEQ ID NO: 166.
[0180] SEQ ID NO: 168 is the nucleic acid sequence encoding an exemplary signal peptide that can be fused to a mature heavy chain or mature light chain variable region.
[0181] SEQ ID NO: 169 is the amino acid sequence of the exemplary signal peptide encoded by the nucleic acid sequence of SEQ ID NO: 168.
[0182] SEQ ID NO: 170 is the amino acid sequence of a humanized 1749 light chain constant region, with Arginine at the N-terminus. [0183] SEQ ID NO: 171 is the amino acid sequence of a humanized 1749 light chain constant region, without Arginine at the N-terminus.
[0184] SEQ ID NO: 172 is the amino acid sequence of a humanized 1749 heavy chain constant region.
[0185] SEQ ID NO: 173 is the amino acid sequence of a BIP version heavy chain Glm3 allotype constant region.
[0186] SEQ ID NO: 174 is the amino acid sequence of a BIP version heavy chain Glm3 allotype constant region.
[0187] SEQ ID NO: 175 is the amino acid sequence of a mature light chain region of humanized antibody 1749 version 3 (VL3 + light chain constant region).
[0188] SEQ ID NO: 176 is the amino acid sequence of a mature heavy chain region of humanized antibody 1749 version 3 (VH3 + BIP version heavy chain Glm3 allotype constant region).
[0189] SEQ ID NO: 177 is the amino acid sequence of a mature heavy chain region of humanized antibody 1749 version 3 (VH3 + BIP version heavy chain Glm3 allotype constant region).
[0190] SEQ ID NO: 178 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 4B (VH4B).
[0191] SEQ ID NO: 179 is the amino acid sequence of the mature heavy chain variable region of humanized antibody 2107 version 5B (VH5B).
DEFINITIONS
[0192] Monoclonal antibodies are typically provided in isolated form. This means that an antibody is typically at least 50% w/w pure of proteins and other macromolecules arising from its production or purification but does not exclude the possibility that the monoclonal antibody is combined with an excess of pharmaceutical acceptable carrier(s) or other vehicle intended to facilitate its use. Sometimes monoclonal antibodies are at least 60%, 70%, 80%, 90%, 95 or 99% w/w pure of proteins and other macromolecules from production or purification.
[0193] Specific binding of a monoclonal antibody to its target antigen means an affinity of at least 106, 107, 10s, 109, or 1010 M"1. Specific binding is detectably higher in magnitude and distinguishable from non-specific binding occurring to at least one unrelated target. Specific binding can be the result of formation of bonds between particular functional groups or particular spatial fit (e.g., lock and key type) whereas nonspecific binding is usually the result of van der Waals forces. Specific binding does not however necessarily imply that a monoclonal antibody binds one and only one target.
[0194] The basic antibody structural unit is a tetramer of subunits. Each tetramer includes two identical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" chain (about 50-70 kDa). The amino-terminal portion of each chain includes variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. This variable region is initially expressed linked to a cleavable signal peptide. The variable region without the signal peptide is sometimes referred to as a mature variable region. Thus, for example, a light chain mature variable region means a light chain variable region without the light chain signal peptide. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function.
[0195] Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, and define the antibody's isotype as IgG, IgM, IgA, IgD and IgE, respectively. Within light and heavy chains, the variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 or more amino acids. (See generally, Fundamental Immunology (Paul, W., ed., 2nd ed. Raven Press, N.Y., 1989, Ch. 7, incorporated by reference in its entirety for all purposes).
[0196] The mature variable regions of each light/heavy chain pair form the antibody binding site. Thus, an intact antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are the same. The chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. The CDRs from the two chains of each pair are aligned by the framework regions, enabling binding to a specific epitope. From N- terminal to C-terminal, both light and heavy chains comprise the domains FR1, CDR1 , FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is in accordance with the definitions of Kabat, Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, MD, 1987 and 1991), or Chothia & Lesk, J. Mol. Biol. 196:901- 917 ( 1987); Chothia et al., Nature 342:878-883 ( 1989). Kabat also provides a widely used numbering convention (Kabat numbering) in which corresponding residues between different heavy chains or between different light chains are assigned the same number (e.g., H83 means position 83 by Kabat numbering in the mature heavy chain variable region; likewise position L36 means position 36 by Kabat numbering in the mature light chain variable region). Kabat numbering is used throughout in referring to positions in the variable region of an antibody unless explicitly stated otherwise.
[0197] The term "antibody" includes intact antibodies and antigen binding fragments thereof. Typically, fragments compete with the intact antibody from which they were derived for specific binding to the target including separate heavy chains, light chains Fab, Fab', F(ab')2, F(ab)c, diabodies, Dabs, nanobodies, and Fv. Fragments can be produced by recombinant DNA techniques, or by enzymatic or chemical separation of intact immunoglobulins.
[0198] The term "antibody" also includes a bispecific antibody, and/or a chimeric antibody, and/or a humanized antibody. A bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites (see, e.g., Songsivilai and Lachmann, Clin. Exp. Immunol., 79:315-321 ( 1990); Kostelny et al., J.
Immunol. 148: 1547-53 ( 1992)). In some bispecific antibodies, the two different heavy/light chain pairs may include a humanized heavy chain/light chain pair and a heavy chain/light chain pair specific for a different epitope.
[0199] In some bispecific antibodies, one heavy chain light chain pair is a humanized antibody as further disclosed below and the heavy light chain pair is from an antibody that binds to a receptor expressed on the blood brain barrier, such as an insulin receptor, an insulin-like growth factor (IGF) receptor, a leptin receptor, or a lipoprotein receptor, or a transferrin receptor (Friden et al., PNAS 88:4771-4775, 1991 ; Friden et al., Science 259:373-377, 1993). Such a bispecific antibody can be transferred cross the blood brain barrier by receptor-mediated transcytosis. Brain uptake of the bispecific antibody can be further enhanced by engineering the bi-specific antibody to reduce its affinity to the blood brain barrier receptor. Reduced affinity for the receptor resulted in a broader distributioin in the brain (see, e.g., Atwal. et al. Sci. Trans. Med. 3, 84ra43, 2011 ; Yu et al. Sci. Trans. Med. 3, 84ra44, 2011).
[0200] Exemplary bispecific antibodies can also be (1) a dual- variable-do main antibody (DVD-Ig), where each light chain and heavy chain contains two variable domains in tandem through a short peptide linkage (Wu et al., Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-Ig™) Molecule, In: Antibody Engineering, Springer Berlin Heidelberg (2010)); (2) a Tandab, which is a fusion of two single chain diabodies resulting in a tetravalent bispecific antibody that has two binding sites for each of the target antigens; (3) a flexibody, which is a combination of scFvs with a diabody resulting in a multivalent molecule; (4) a so called "dock and lock" molecule, based on the "dimerization and docking domain" in Protein Kinase A, which, when applied to Fabs, can yield a trivalent bispecific binding protein consisting of two identical Fab fragments linked to a different Fab fragment; (5) a so-called Scorpion molecule, comprising, e.g., two scFvs fused to both termini of a human Fc-region. Examples of platforms useful for preparing bispecific antibodies include but are not limited to BiTE (Micromet), DART (MacroGenics), Fcab and Mab2 (F-star) , Fc-engineered IgGl (Xencor) or DuoBody (based on Fab arm exchange, Genmab).
[0201] The term "epitope" refers to a site on an antigen to which an antibody binds. An epitope can be formed from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of one or more proteins. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and 2- dimensional nuclear magnetic resonance. See, e.g., Epitope Mapping Protocols, in Methods in Molecular Biology, Vol. 66, Glenn E. Morris, Ed. (1996).
[0202] An "antagonist" antibody or other binding agent is one which inhibits a biological activity of the antigen it binds. Such antibodies may substantially or completely inhibit the biological activity of the antigen. [0203] The terms "biological activity" and "biologically active" with regard to MCAM refer to its ability to specifically bind its ligand (a laminin a4 chain, e.g. , the a4 chain of laminin 411) and/or to facilitate the infiltration of MCAM-expressing cells, e.g. , TH17 cells, into the CNS.
[0204] "Inhibit" means an agent decreases the biological activity of at least one target, for example MCAM. Such an inhibitor inhibits the activity of at least one target by at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 95% or at least about 100%.
[0205] A "subject" includes a human or other mammalian subject that receives either prophylactic or therapeutic treatment.
[0206] For purposes of classifying amino acids substitutions as conservative or
nonconservative, amino acids are grouped as follows: Group I (hydrophobic side chains): met, ala, val, leu, ile; Group II (neutral hydrophilic side chains): cys, ser, thr; Group III (acidic side chains): asp, glu; Group IV (basic side chains): asn, gin, his, lys, arg; Group V (residues influencing chain orientation): gly, pro; and Group VI (aromatic side chains): trp, tyr, phe. Conservative substitutions involve substitutions between amino acids in the same class. Non- conservative substitutions constitute exchanging a member of one of these classes for a member of another.
[0207] Percentage sequence identities are determined with antibody sequences maximally aligned by the Kabat numbering convention. After alignment, if a subject antibody region (e.g., the entire mature variable region of a heavy or light chain) is being compared with the same region of a reference antibody, the percentage sequence identity between the subject and reference antibody regions is the number of positions occupied by the same amino acid in both the subject and reference antibody region divided by the total number of aligned positions of the two regions, with gaps not counted, multiplied by 100 to convert to percentage.
[0208] Compositions or methods "comprising" one or more recited elements may include other elements not specifically recited. For example, a composition that comprises an antibody may contain the antibody alone or in combination with other ingredients. [0209] Designation of a range of values includes all integers within or defining the range, and all subranges defined by integers within the range.
[0210] Unless otherwise apparent from the context, the term "about" encompasses values within a standard margin of error of measurement (SEM) of a stated value.
[0211] Statistical significance means p<0.05.
DETAILED DESCRIPTION
I. GENERAL
[0212] Antibodies with the useful property of inhibiting MCAM binding to the laminin a4 chain of laminin 411 are disclosed in WO/2012/170071 and PCT/US2013/058773.
PCT/IB2015/051786 filed March 12, 2015 provides among other things (a) provides new humanized forms of the 1749.1.3 antibody, (b) maps the epitopes to which the 1749.1.3 antibody binds, and (c) provides antibodies binding to the same epitope. The present application discloses uses of the antibodies and formulations of PCT/IB2015/051786 for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis.
[0213] The terms "1749.1.3", "ml749", or "mouse 1749" antibody refer to a mouse derived monoclonal antibody clone having a mature variable heavy chain corresponding to SEQ ID NO:93 and a mature variable light chain corresponding to SEQ ID NO:97. "Humanized 1749" or "hul749" refers humanized variants of the 1749.1.3 clone. The humanized variant of 1749 having a mature heavy chain variable region corresponding to SEQ ID NO: 156 and a mature light chain variable region corresponding to SEQ ID NO: 160 is referred to herein as
"hul749VH3VL3".
II. TARGET MOLECULES
[0214] Natural human wildtype MCAM (melanoma cell adhesion molecule, also known as CD146 and MUC18) is a peptide of 646 amino acids having the following amino acid sequence:
MGLPRLVCAFLLAACCCCPRVAGVPGEAEQPAPELVEVEVGSTALLKCGLSQSQGNLS
HVDWFSVHKEKRTLIFRVRQGQGQSEPGEYEQRLSLQDRGATLALTQVTPQDERIFLCQ
GKRPRSQEYRIQLRVYKAPEEPNIQVNPLGIPVNSKEPEEVATCVGRNGYPIPQVIWYKN GRPLKEEKNRVHIQSSQTVESSGLYTLQSILKAQLVKEDKDAQFYCELNYRLPSGNHMK
ESREVTVPVFYPTEKVWLEVEPVGMLKEGDRVEIRCLADGNPPPHFSISKQNPSTREAEE
ETTNDNGVLVLEPARKEHSGRYECQAWNLDTMISLLSEPQELLVNYVSDVRVSPAAPER
QEGSSLTLTCEAESSQDLEFQWLREETDQVLERGPVLQLHDLKREAGGGYRCVASVPSI
PGLNRTQLVKLAIFGPPWMAFKERKVWVKENMVLNLSCEASGHPRPTISWNVNGTASE
QDQDPQRVLSTLNVLVTPELLETGVECTASNDLGKNTSILFLELVNLTTLTPDSNTTTGL
STSTASPHTRANSTSTERKLPEPESRGVVIVAVIVCILVLAVLGAVLYFLYKKGKLPCRRS
GKQEITLPPSRKTELVVEVKSDKLPEEMGLLQGSSGDKRAPGDQGEKYIDLRH (SEQ ID
NO: l l).
(GenBank database under Accession Number AAA20922.1 (CAA48332). MCAM is a cell surface glycoprotein belonging to the immunoglobulin superfamily involved in cell adhesion, and in cohesion of the endothelial monolayer at intercellular junctions in vascular tissue. It also promotes tumor progression of many cancers, such as solid tumors, including melanoma and prostate cancer. It is known to interact in a homotypic/homophilic manner and may also bind to other ligands. The human MCAM includes five immunoglobulin domains (1 : amino acid residues 19-129; 2: amino acid residues 139-242; 3: amino acid residues 244-321; 4: amino acid residues 335-424; and 5: amino acid residues 430-510), shown as SEQ ID NOs:22-26.
[0215] Unless otherwise apparent from the context, reference to MCAM or its fragments includes the natural human wildtype amino acid sequences indicated above, and human allelic variants thereof.
[0216] Laminin a4 refers to one of the polypeptide chains found in laminin molecules, which are expressed in the basal lamina (of the basement membrane), a protein network foundation for most cells and organs. Laminins are known to bind to cell membranes through plasma membrane molecules and contribute to cell attachment. The laminin a4 chain typically forms a complex with a laminin β-chain, and a laminin γ-chain. The laminin a4 chain is found in numerous laminin molecules including laminin 41 1 (laminin 8 or α4β1γ1); laminin 421 (laminin 9 or α4β2γ1), and laminin 423 (laminin 14 or α4β2γ3). There are two main isoforms of the human laminin a4-chain: GenBank Accession Nos. NP001098676 and CAA48332 (SEQ ID NOs:27 and 28). "Laminin 411" refers to a trimeric polypeptide complex made up of three polypeptide subunits or chains: a4-chain, a βΐ -chain, and a γΐ -chain. [0217] Antagonist against MCAM include antibodies, fusion proteins of receptors or ligands to an IgG constant region other biologic binding molecules, and small molecules. Antibodies can be monoclonal or polyclonal. Antibodies can be nonhuman, such as mouse or rat, nonhuman primate or can be human. Antibodies can be chimeric, veneered, humanized, primatized and the like.
[0218] An MCAM antagonist refers to an antagonist that fully or partially inhibits the ability of MCAM (i) to specifically bind its ligand: a laminin a4 chain, e.g. , the a4 chain of laminin 411 ; and/or (ii) to facilitate an MCAM-expressing cell, e.g. , a TH17 cell, to infiltrate into or migrate to a subject's tissue. MCAM antagonists include antibodies or other antagonists binding to MCAM or to its ligand laminin alpha 4.
III. ANTIBODIES
A. Humanized Forms of Anti-MCAM Antibody 1749
[0219] A humanized antibody is a genetically engineered antibody in which the CDRs from a non-human "donor" antibody are grafted into human "acceptor" antibody sequences (see, e.g., Queen et al., US 5,530, 101 and 5,585,089; Winter et al., US 5,225,539; Carter, US 6,407,213; Adair, US 5,859,205 and 6,881,557; and Foote, US 6,881,557). The acceptor antibody sequences can be, for example, a mature human antibody variable region sequence, a composite of such sequences, a consensus sequence of human antibody variable region sequences (e.g., light and heavy chain variable region consensus sequences of Kabat, 1991, supra), or a germline variable region sequence.
[0220] Examples of an acceptor sequence for the heavy chain are the human mature heavy chain variable regions with NCBI accession codes AAX82494.1 (GL62421461) and/or
ADX65676.1 (GL323432073). Preferably a composite of these acceptors is used, as is the case in the present examples. These acceptor sequences include two CDRs having the same canonical form and the same length CDR-H3 with a kinked base as ml749 heavy chain and AAX82494.1 has a 91% sequence identity and ADX65676.1 has an 83% sequence identity in the heavy chain variable region framework. For the light chain, examples of an acceptor sequence are the light chain mature variable regions with NCBI accession codes ABA71407.1 (GL77379502) and/or CAI99800.1 (GL98956324). Preferably a composite of these sequences is used, as is the case in the present examples. These acceptor sequences include three CDRs having the same canonical form as a ml749 light chain and ABA71407.1 has an 85% sequence identity and CAI99800.1 has an 83% sequence identity in the light chain variable region framework.
[0221] The disclosure provides humanized antibodies having three light chain and three heavy chain CDRs as defined by Kabat entirely or substantially from the donor ml 749 antibody and mature variable region framework sequences and constant regions, if present, entirely or substantially from human antibody sequences. Likewise a humanized heavy chain is a heavy chain having three heavy chain CDRs as defined by Kabat entirely or substantially from the heavy chain of the ml 749 antibody, and a mature heavy chain variable sequence and heavy chain constant region sequence, if present, entirely or substantially from human antibody heavy chain sequence. Likewise a humanized light chain is a light chain having three light chain CDRs as defined by Kabat entirely or substantially from the light chain of the ml 749 antibody, and a mature light chain variable sequence and light chain constant region sequence, if present, entirely or substantially from human antibody light chain sequence. Some antibodies comprise a humanized heavy chain comprising Kabat CDR1 of SEQ ID NO:66; SYIMS; Kabat CDR2 of SEQ ID NO:67: TISSGGSSTYYPDSVKG; Kabat CDR3 of SEQ ID NO:68:
DDDYDVKVFAY. Some antibodies comprise a humanized light chain comprising Kabat CDR1 of SEQ ID NO:61 : KSSRSLLNSRIRKNYLA; Kabat CDR2 of SEQ ID NO:62:
WASTRES; Kabat CDR3 of SEQ ID NO:63: KQSYNLLT. Some antibodies comprise a humanized heavy chain comprising the three Kabat CDRs of SEQ ID NOs:66, 67, and 68, and a humanized light chain comprising the three Kabat CDRs of SEQ ID NOs:61, 62, and 63. A CDR is substantially from ml749 if at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% of residues are identical to the corresponding residues in the corresponding CDR of ml 749 except for CHRH2 Kabat positions 60-65 can be substituted. The mature variable region framework sequences of an antibody chain or the constant region sequence of an antibody chain are substantially from a human mature variable region framework sequence or human constant region sequence respectively when at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% of corresponding residues defined by Kabat are identical.
[0222] Certain amino acids from the human mature variable region framework residues can be selected for substitution based on their possible influence on CDR conformation and/or binding to antigen, mediating interaction between heavy and light chains, interaction with the constant region, being a site for desired or undesired post-translational modification, being an unusual residue for its position in a human variable region sequence and therefore potentially immunogenic, among other reasons. The following six variable region framework positions were considered as candidates for substitutions for one or more of these reasons as further specified in the Examples (D9S, A19V, P43S, Q3K, G42E, A93T).
[0223] Here as elsewhere, the first-mentioned residue is the residue of a humanized antibody formed by grafting Kabat CDRs into a human acceptor framework, and the second-mentioned residue is a residue being considered for replacing such residue. Thus within variable region frameworks, the first mentioned residue is human and within CDRs the first mentioned residue is mouse (e.g., C97S).
[0224] Amino acid substitutions can be made in the CDRs. One possible variation is to substitute certain residues in the CDRs of the ml749 antibody with corresponding residues from human CDRs sequences, typically from the CDRs of the human acceptor sequences used in designing the exemplified humanized antibodies. In some antibodies only part of the CDRs, namely the subset of CDR residues required for binding, termed the SDRs, are needed to retain binding in a humanized antibody. CDR residues not contacting antigen and not in the SDRs can be identified based on previous studies (for example residues H60-H65 in CDR H2 are often not required), from regions of Kabat CDRs lying outside Chothia hypervariable loops (Chothia, J. Mol. Biol. 196:901, 1987), by molecular modeling and/or empirically, or as described in Gonzales et al., Mol. Immunol. 41 :863, 2004. In such humanized antibodies at positions in which one or more donor CDR residues is absent or in which an entire donor CDR is omitted, the amino acid occupying the position can be an amino acid occupying the corresponding position (by Kabat numbering) in the acceptor antibody sequence. The number of such substitutions of acceptor for donor amino acids in the CDRs to include reflects a balance of competing considerations. Such substitutions are potentially advantageous in decreasing the number of mouse amino acids in a humanized antibody and consequently decreasing potential immunogenicity. However, substitutions can also cause changes of affinity, and significant reductions in affinity are preferably avoided. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically. [0225] One reason for performing a substitution within a CDR is that a mouse residue is a site of posttranslational modification that may interfere with expression or assembly of an antibody.
[0226] The disclosure provides variants of the humanized 1749 antibody in which the humanized heavy chain mature variable region shows at least 90%, 95%, 96%, 97%, 98% or 99% identity to SEQ ID NO: 156 and the humanized light chain mature variable region shows at least 90%, 95%, 96%, 97%, 98% or 99% sequence identity to SEQ ID NO: 160. Some such humanized antibodies include three heavy and three light chain CDRs entirely or substantially identical to the CDR regions of hu 1749, which are the same as those of the mouse donor antibody. The CDR regions can be defined by any conventional definition (e.g., Chothia) but are preferably as defined by Kabat.
[0227] The humanized 1749 antibody in which the humanized heavy chain mature variable region is SEQ ID NO: 156 and the humanized light chain mature variable region is SEQ ID NO: 160 is refered to as 1749VH3VL3. Some variants of the humanized 1749VH3VL3 antibody retain some or all of the backmutations in hul749VH3VL3. In other words, at least 1, 2, 3, 4, 5, or preferably all 6 of the following are present: H3 is occupied by K, H42 is occupied by E, H93 is occupied by T, L9 is occupied by S, L19 is occupied by V, and L43 is occupied by S.
[0228] In addition to retaining at least 1, 2, 3, 4, 5, or preferably all 6 of the backmutations of hul749VH3VL3, humanized 1749 antibodies may also contain additional backmutations in the variable region frameworks. Examples of such backmutations include include HI occupied by D, H10 occupied by D, HI 3 occupied by K, H19 occupied by K, HI 13 occupied by A, L5 occupied by S, LI 5 occupied by A, LI 8 occupied by K, L21 occupied by M, L63 occupied by T, L78 occupied by V, L83 occupied by L, LlOO occupied by A, L104 occupied by L, and/or L106 occupied by L. For selection of backmutations for a therapeutic or diagnostic product, one should take into account the degree to which they in general do not improve affinity and the degree to which introducing more mouse residues may give increased risk of immunogenicity.
[0229] In any of the above antibodies, other amino acid substitutions can be made in the mature variable region framework, for example, in residues not in contact with the CDRs. Often the replacements made in the variant humanized sequences are conservative with respect to the replaced amino acids.
B, Selection of Constant Region
[0230] The heavy and light chain variable regions of chimeric, veneered or humanized antibodies can be linked to at least a portion of a human constant region. The choice of constant region depends, in part, whether antibody-dependent cell-mediated cytotoxicity, antibody dependent cellular phagocytosis and/or complement dependent cytotoxicity are desired. For example, human isotopes IgGl and IgG3 have complement-dependent cytotoxicity and human isotypes IgG2 and IgG4 do not. Human IgGl and IgG3 also induce stronger cell mediated effector functions than human IgG2 and IgG4. Light chain constant regions can be lambda or kappa.
[0231] One or several amino acids at the amino or carboxy terminus of the light and/or heavy chain, such as the C-terminal lysine of the heavy chain, may be missing or derivatized in a proportion or all of the molecules. Substitutions can be made in the constant regions to reduce or increase effector function such as complement-mediated cytotoxicity or ADCC (see, e.g., Winter et al., US Patent No. 5,624,821 ; Tso et al., US Patent No. 5,834,597; and Lazar et al., Proc. Natl. Acad. Sci. USA 103:4005, 2006), or to prolong half-life in humans (see, e.g., Hinton et al., J. Biol. Chem. 279:6213, 2004). Exemplary substitutions include a Gin at position 250 and/or a Leu at position 428 (EU numbering is used in this paragraph for the constant region) for increasing the half-life of an antibody. Substitution at any or all of positions 234, 235, 236 and/or 237 reduces affinity for Fey receptors, particularly FcyRI receptor (see, e.g., US
6,624,821). An alanine substitution at positions 234, 235, and 237 of human IgGl can be used for reducing effector functions. Some antibodies have alanine substitution at positions 234, 235 and 237 of human IgGl for reducing effector functions. Optionally, positions 234, 236 and/or 237 in human IgG2 are substituted with alanine and position 235 with glutamine (see, e.g., US 5,624,821). In some antibodies, a mutation at one or more of positions 241 , 264, 265, 270, 296, 297, 322, 329, and 331 by EU numbering of human IgGl is used. In some antibodies, a mutation at one or more of positions 318, 320, and 322 by EU numbering of human IgGl is used. In some antibodies, positions 234 and/or 235 are substituted with alanine and/or position 329 is substituted with glycine. In some antibodies, positions 234 and 235 are substituted with alanine, such as in SEQ ID NO: 174. In some antibodies, the isotype is human IgG2 or IgG4. An exemplary human light chain kappa constant region has the amino acid sequence of SEQ ID NO: 170. The N-terminal arginine of SEQ ID NO: 170 can be omitted, in which case light chain kappa constant region has the amino acid sequence of SEQ ID NO: 171. An exemplary human IgGl heavy chain constant region has the amino acid sequence of SEQ ID NO: 172 (with or without the C-terminal lysine). Antibodies can be expressed as tetramers containing two light and two heavy chains, as separate heavy chains, light chains, as Fab, Fab', F(ab')2, and Fv, or as single chain antibodies in which heavy and light chain mature variable domains are linked through a spacer.
[0232] Human constant regions show allotypic variation and isoallotypic variation between different individuals, that is, the constant regions can differ in different individuals at one or more polymorphic positions. Isoallotypes differ from allotypes in that sera recognizing an isoallotype bind to a non-polymorphic region of a one or more other isotypes. Thus, for example, another heavy chain constant region is of IgGl Glm3 allotype and has the amino acid sequence of SEQ ID NO: 173. Another heavy chain constant region has the amino acid sequence of SEQ ID NO: 173 except that it lacks the C-terminal lysine. Another heavy chain constant region has the amino acid sequence of SEQ ID NO: 174. Yet another heavy chain constant region has the amino acid sequence of SEQ ID NO: 174 except that it lacks the C-terminal lysine.
[0233] The disclosure further provides nucleic acids encoding any of the above constant regions. Optionally, such nucleic acids further encode a signal peptide and can be expressed with the signal peptide linked to the constant region.
C. Expression of Recombinant Antibodies
[0234] Antibodies can be produced by recombinant expression. Nucleic acids encoding the antibodies can be codon-optimized for expression in the desired cell-type (e.g., CHO or Sp2/0). Recombinant nucleic acid constructs typically include an expression control sequence operably linked to the coding sequences of antibody chains, including naturally-associated or heterologous promoter regions. The expression control sequences can be eukaryotic promoter systems in vectors capable of transforming or transfecting eukaryotic host cells. Once the vector has been incorporated into the appropriate host, the host is maintained under conditions suitable for high level expression of the nucleotide sequences, and the collection and purification of the crossreacting antibodies. The vector or vectors encoding the antibody chains can also contain a selectable gene, such as dihydrofolate reductase, to allow amplification of copy number of the nucleic acids encoding the antibody chains.
[0235] E. coli is a prokaryotic host particularly useful for expressing antibodies, particularly antibody fragments. Microbes, such as yeast are also useful for expression. Saccharomyces is an example of a yeast host, with suitable vectors having expression control sequences, an origin of replication, termination sequences and the like as desired. Typical promoters include 3- phosphoglycerate kinase and other glycolytic enzymes. Inducible yeast promoters include, among others, promoters from alcohol dehydrogenase, isocytochrome C, and enzymes responsible for maltose and galactose utilizations.
[0236] Mammalian cells can be used for expressing nucleotide segments encoding immunoglobulins or fragments thereof. See Winnacker, From Genes to Clones, (VCH
Publishers, NY, 1987). A number of suitable host cell lines capable of secreting intact heterologous proteins have been developed in the art, and include CHO cell lines, various COS cell lines, HeLa cells, HEK293 cells, L cells, and non-antibody-producing myelomas including Sp2/0 and NSO. It can be advantageous to use nonhuman cells. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter, an enhancer (Queen et al., Immunol. Rev. 89:49 (1986)), and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites, and transcriptional terminator sequences. Suitable expression control sequences are promoters derived from endogenous genes, cytomegalovirus, SV40, adenovirus, bovine papillomavirus, and the like. See Co et al., J. Immunol. 148: 1149 (1992).
[0237] Having introduced vector(s) encoding antibody heavy and light chains into cell culture, cell pools can be screened for growth productivity and product quality in serum-free media. Top-producing cell pools can then be subjected to FACS-based single-cell cloning to generate monoclonal lines. Specific productivities above 50 pg or 100 pg per cell per day, which correspond to product titers of greater than 7.5 g/L culture, can be advantageous. Antibodies produced by single cell clones can also be tested for turbidity, filtration properties, PAGE, IEF, UV scan, HP-SEC, carbohydrate-oligosaccharide mapping, mass spectrometry, and binding assay, such as ELISA or Biacore. A selected clone can then be banked in multiple vials and stored frozen for subsequent use.
[0238] Once expressed, antibodies can be purified according to standard procedures of the art, including protein A capture, column chromatography (e.g., hydrophobic interaction or ion exchange), low-pH for viral inactivation and the like (see generally, Scopes, Protein Purification (Springer- Verlag, NY, 1982)).
[0239] Methodology for commercial production of antibodies including codon optimization, selection of promoters, transcription elements, and terminators, serum- free single cell cloning, cell banking, use of selection markers for amplification of copy number, CHO terminator, serum free single cell cloning, improvement of protein titers (see, e.g., US 5,786,464, US 5,888,809, US 6,063,598, US 6, 114, 148, US 7,569,339, WO2004/050884, WO2005/019442,
WO2008/012142, WO2008/012142, WO2008/107388, and WO2009/027471).
D. Nucleic Acids
[0240] The disclosure further provides nucleic acids encoding any of the heavy and light chains described above. Typically, the nucleic acids also encode a signal peptide fused to the mature heavy and light chains (e.g., signal peptides having amino acid sequences of SEQ ID NOs: 165, 167, and 169 that can be encoded by SEQ ID NOs: 164, 166, and 168). Coding sequences on nucleic acids can be in operable linkage with regulatory sequences to ensure expression of the coding sequences, such as a promoter, enhancer, ribosome binding site, transcription termination signal and the like. The nucleic acids encoding heavy and light chains can occur in isolated form or can be cloned into one or more vectors. The nucleic acids can be synthesized by for example, solid state synthesis or PCR of overlapping oligonucleotides.
Nucleic acids encoding heavy and light chains can be joined as one contiguous nucleic acid, e.g., within an expression vector, or can be separate, e.g., each cloned into its own expression vector.
E. Characterization of MCAM Epitopes for Antibody Binding and Production of
Antibodies That Bind the Same
1. MCAM Epitopes for Antibody Binding [0241] The disclosure provides monoclonal antibodies that bind to specific epitopes within the human MCAM protein. Some antibodies of the invention bind to the same or overlapping epitope as antibody designated 1749.1.3 (ml749).
[0242] The disclosure provides antibodies that bind to the same or overlapping epitope as antibody designated ml749. Mutations at residues 272, 318, 320, 340, and 377 of MCAM disrupts specific binding of ml749 (e.g., <30% binding to mutant MCAM compared to a positive control wild type MCAM as described as the examples). Because relatively few residues affect binding and the residues are spaced more broadly than a typical linear epitope (e.g., 3-20 contiguous amino acids), these results provide an indication that ml749 binds to a
conformational epitope. Alternatively, one or more of the residues affecting binding may do so allosterically without direct contact with the antibody.
[0243] Antibodies binding to an epitope including one or more of residues 272, 318, 320, 324, 326, 340, and 377 of MCAM, and particularly to an epitope including one or more of residues 318, 324, and 326, are likely to share useful inhibitory properties with ml749. Thus, antibodies whose specific binding is inhibited by mutagenesis of one or more or residues 318, 324, and 326 and particularly residue 318 of MCAM are likely to share similar properties to ml749. Some such antibodies bind to an epitope that includes or consists of residue 318, 324, and/or 326 of MCAM. The epitope can be linear, such as an epitope (e.g., 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20, 5-30, 5-40, 5-50, 5-60, or 5-70 contiguous amino acids) including 1, 2, or 3 of the specified amino acids (318, 324, and 326) or be conformational including or consisting of 1 , 2, or 3 of the specified amino acids.
2. The Generation of Antibodies That Bind Specific MCAM Epitopes
[0244] Some antibodies of the disclosure bind to the same or overlapping epitope as the ml749 antibody. The production of other non-human monoclonal antibodies, e.g., murine, guinea pig, primate, rabbit or rat, against human MCAM can be accomplished by, for example, immunizing the animal with human MCAM or a peptide fragment thereof including the desired epitope (the "immunogen"), and screening resulting antibodies for binding to MCAM, optionally in competition with ml 749 (See Harlow & Lane, Antibodies, A Laboratory Manual (CSHP NY, 1988) incorporated by reference for all purposes). Optionally, the immunogen is conjugated to carrier molecule. Optionally, the immunogen is administered with an adjuvant. Several types of adjuvant can be used as described below. Complete Freund's adjuvant followed by incomplete adjuvant is preferred for immunization of laboratory animals. Rabbits or guinea pigs are typically used for making polyclonal antibodies. Mice are typically used for making monoclonal antibodies. Antibodies are screened for specific binding to a desired epitope within MCAM.
[0245] The disclosure provides peptide fragments of MCAM that are used to create antibodies directed to the above described epitopes. Examples of such peptides include a peptide that is between 2-5, 3-5, 3-10, 3-15, 3-20, 5-10, 5-15, 5-20, 5-30, 5-40, 5-50, 5-60, or 5-70 contiguous amino acids in length and includes at least one of amino acids residues 318, 324, and 326 of MCAM. In some of these peptides, the peptide includes all three of amino acid residue 318, 324, and 326.
[0246] Immunogens may be conjugated to carrier molecules, typically a carrier polypeptide, and thus help elicit an immune response against the fragment conjugated to the carrier. A single agent can be linked to a single carrier, multiple copies of an agent can be linked to multiple copies of a carrier, which are in turn linked to each other, multiple copies of an agent can be linked to a single copy of a carrier, or a single copy of an agent can be linked to multiple copies of a carrier, or different carriers. Suitable carriers include serum albumins, keyhole limpet hemocyanin, immunoglobulin molecules, thyroglobulin, ovalbumin, tetanus toxoid, or a toxoid from other pathogenic bacteria, such as diphtheria (e.g., CRM197), E. coli, cholera, or H. pylori, or an attenuated toxin derivative.
[0247] Immunogens are often administered with pharmaceutically acceptable adjuvants. The adjuvant increases the titer of induced antibodies and/or the binding affinity of induced antibodies relative to the situation if the peptide were used alone. A variety of adjuvants can be used in combination with an immunogenic fragment of MCAM, to elicit an immune response. Preferred adjuvants augment the intrinsic response to an immunogen without causing
conformational changes in the immunogen that affect the qualitative form of the response.
Preferred adjuvants include aluminum hydroxide and aluminum phosphate, 3 De-O-acylated monophosphoryl lipid A (MPL™) {see GB 2220211 (RIBI ImmunoChem Research Inc., Hamilton, Montana, now part of Corixa). Stimulon™ QS-21 is a triterpene glycoside or saponin isolated from the bark of the Quillaja Saponaria Molina tree found in South America {see Kensil et al, in Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman, Plenum Press, NY, 1995); US 5,057,540), (Aquila BioPharmaceuticals, Framingham, MA; now
Antigenics, Inc., New York, NY). Other adjuvants are oil in water emulsions (such as squalene or peanut oil), optionally in combination with immune stimulants, such as monophosphoryl lipid A {see Stoute et al, N. Engl. J. Med. 336, 86-91 (1997)), pluronic polymers, and killed mycobacteria. Another adjuvant is CpG (WO 98/40100). Adjuvants can be administered as a component of a therapeutic composition with an active agent or can be administered separately, before, concurrently with, or after administration of the therapeutic agent.
3. Types of Antibodies
[0248] Antibodies can be monoclonal or polyclonal. Antibodies can be nonhuman, such as mouse or rat, nonhuman primate or can be human. Antibodies can be chimeric, veneered, humanized, primatized and the like.
[0249] Monoclonal antibodies are humanized using the methods described above and the methods described in Queen, US 5,530, 101 and 5,585,089; Winter, US 5,225,539, Carter, US 6,407,213, Adair, US 5,859,205 6,881,557, Foote, US 6,881,557.
[0250] The disclosure further provides chimeric and veneered forms of non-human antibodies that bind specifically to the MCAM epitopes described above.
[0251] A chimeric antibody is an antibody in which the mature variable regions of light and heavy chains of a non-human antibody (e.g., a mouse) are combined with human light and heavy chain constant regions. Such antibodies substantially or entirely retain the binding specificity of the mouse antibody, and are about two-thirds human sequence.
[0252] A veneered antibody is a type of humanized antibody that retains some and usually all of the CDRs and some of the non-human variable region framework residues of a non-human antibody but replaces other variable region framework residues that may contribute to B- or T- cell epitopes, for example exposed residues with residues from the corresponding positions of a human antibody sequence (Padlan, Mol. Immunol. 28:489, 1991). The result is an antibody in which the CDRs are entirely or substantially from a non-human antibody and the variable region frameworks of the non-human antibody are made more human-like by the substitutions. [0253] Human antibodies against MCAM are provided by a variety of techniques described below. Some human antibodies are selected by competitive binding experiments, by the phage display method of Winter, above, or otherwise, to have the same epitope specificity as a particular mouse antibody, such as one of the mouse monoclonals described in the examples. Human antibodies can also be screened for a particular epitope specificity by using only a fragment of MCAM as the target antigen, and/or by screening antibodies against a collection of deletion mutants of MCAM.
[0254] Methods for producing human antibodies include the trioma method of Oestberg et al., Hybridoma 2:361-367 (1983); Oestberg, U.S. Patent No. 4,634,664; and Engleman et al., US Patent 4,634,666, use of transgenic mice including human immunoglobulin genes (see, e.g., Lonberg et al., W093/12227 (1993); US 5,877,397, US 5,874,299, US 5,814,318, US 5,789,650, US 5,770,429, US 5,661,016, US 5,633,425, US 5,625, 126, US 5,569,825, US 5,545,806, Nature 148, 1547-1553 (1994), Nature Biotechnology 14, 826 (1996), Kucherlapati, WO 91/10741 (1991) and phage display methods (see, e.g., Dower et al., WO 91/17271 and McCafferty et al., WO 92/01047, US 5,877,218, US 5,871,907, US 5,858,657, US 5,837,242, US 5,733,743 and US 5,565,332.
[0255] Chimeric, humanized (including veneered) and human antibodies are typically produced by recombinant expression as described above.
[0256] The disclosure further provides non-antibody binding molecules. Non-antibody binding molecules include, for example, anticalins, which are based upon the lipocalin scaffold, a protein structure characterized by a rigid beta-barrel that supports four hypervariable loops which form the ligand binding site. Novel binding specificities are engineered by targeted random mutagenesis in the loop regions, in combination with functional display and guided selection (Skerra (2008) FEBS J. 275: 2677-2683). Other suitable scaffolds may include, for example, adnectins, or monobodies, based on the tenth extracellular domain of human fibronectin III (Koide and Koide (2007) Methods Mol. Biol. 352: 95-109); affibodies, based on the Z domain of staphylococcal protein A (Nygren et al. (2008) FEBS J. 275: 2668-2676)); DARPins, based on ankyrin repeat proteins (Stumpp et al. (2008) Drug. Discov. Today 13: 695- 701); fynomers, based on the SH3 domain of the human Fyn protein kinase (Grabulovski et al. (2007) J. Biol. Chem. 282: 3196-3204); affitins, based on Sac7d from Sulfolobus acidolarius (Krehenbrink et al. (2008) J. Mol. Biol. 383: 1058-1068); affilins, based on human y-B-crystallin (Ebersbach et al. (2007) J. Mol. Biol. 372: 172-185); avimers, based on the A domains of membrane receptor proteins (Silverman et al. (2005) Biotechnol. 23: 1556- 1561); cysteine-rich knottin peptides (Kolmar (2008) FEBS J. 275: 2684-2690); and engineered Kunitz-type inhibitors (Nixon and Wood (2006) Curr. Opin. Drug. Discov. Dev. 9: 261-268). For review, see Gebauer and Skerra (2009) Curr. Opin. Chem. Biol. 13: 245-255.
[0257] In some of these antibodies, the antibody is not any one of the antibodies or antibodies including CDRs (as defined by Kabat, Chothia, or a composite thereof) entirely or substantially from the antibodies described in WO/2012/170071 and PCT/US2013/058773, particularly the antibodies designated clone 15 (defined by SEQ ID NOs: 12-21) and clone 17 (defined by SEQ ID NOs: 1- 10) in WO/2012/170071 and the mouse anti-human MCAM monoclonal clones designated 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3, and the rat anti- human MCAM monoclonal antibody clones designated 2120.4.19 and 2107.4.10 described in PCT/US2013/058773.
4. Methods of Screening Antibodies for Activity
[0258] The inhibitory activity of the MCAM antibodies described herein can be assayed by various methods including competitive binding assays with antibodies that bind the same or a substantially similar epitope (e.g., ml 749) and blocking of MCAM binding with its ligand, the laminin a4 chain of laminin 411.
[0259] For example, the activity of MCAM antibodies to inhibit the interaction between MCAM and the laminin a4 chain of laminin 411 can be screened as follows. MCAM-expressing cells are (a) incubating with a recombinant polypeptide comprising a laminin a4 chain, e.g. , an a4 chain of laminin 411, in the presence or absence of a candidate antibody; (b) monitoring the level of binding of the laminin a4 to the cells, e.g. by fluorescence microscopy or flow cytometry; and (c) identifying said candidate antibody as an inhibitor the MCAM/laminin a4 interaction if the level of laminin a4 binding is lower in the presence than in the absence of the candidate antibody. An alternate screening protocol involves the use of a population of cells expressing a laminin a4 chain, which can be incubated with MCAM, in the presence and absence of a candidate antibody, and binding of MCAM to the cell population monitored. If the binding of MCAM to the cell population in the presence of the candidate antibody is lower than in its absence, the candidate antibody is an MCAM antagonist.
[0260] Other methods of monitoring include fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA).
[0261] The MCAM antagonists identified based on their ability to inhibit the binding of MCAM to its ligand, e.g., a laminin a4 chain, are candidates for the treatment of inflammatory conditions characterized by infiltration of MCAM-expressing cells.
F. Conjugated Antibodies
[0262] Conjugated antibodies that specifically bind to MCAM can be useful in targeting cancer or tumor cells for destruction or in targeting cells involved in autoimmune diseases or neuroinflammatory diseases. Such antibodies can also be useful in targeting any disease mediated at least in part by expression of MCAM. For example, such antibodies can be conjugated with other therapeutic agents, other proteins, other antibodies, and/or detectable labels. See WO 03/057838; US 8,455,622. Such therapeutic agents can be any agent that can be used to treat, combat, ameliorate, prevent, or improve an unwanted condition or disease in a patient, such as an autoimmune disease, a neuroinflammatory disease, or a cancer. Therapeutic agents can include cytotoxic agents, cytostatic agents, radiotherapeutic agents,
immunomodulators, or any biologically active agents that facilitate or enhance the activity of the antibody. A cytotoxic agent can be any agent that is toxic to a cell. A cytostatic agent can be any agent that inhibits cell proliferation. An immunomodulator can be any agent that stimulates or inhibits the development or maintenance of an immunologic response. A radiotherapeutic agent can be any molecule or compound that emits radiation. If such therapeutic agents are coupled to an MCAM-specific antibody, such as the antibodies described herein, the coupled therapeutic agents will have a specific affinity for MCAM-expressing cells (e.g., immune cells, such as TH17-expressing cells, or cancer cells, such as malignant melanocytes) over other cells. Consequently, administration of the conjugated antibodies directly targets MCAM-expressing cells with minimal effects on other surrounding cells and tissue. This can be particularly useful for therapeutic agents that are too toxic to be administered on their own. In addition, smaller quantities of the therapeutic agents can be used.
[0263] Antibodies can be modified to act as immunotoxins. See, e.g., U.S. Patent No.
5, 194,594. For example, ricin, a cellular toxin derived from plants, can be coupled to antibodies by using the bifunctional reagents S-acetylmercaptosuccinic anhydride for the antibody and succinimidyl 3-(2-pyridyldithio)propionate for ricin. See Pietersz et al., Cancer Res.
48(16):4469-4476 (1998). The coupling results in loss of B-chain binding activity of ricin, while impairing neither the toxic potential of the A-chain of ricin nor the activity of the antibody. Similarly, saporin, an inhibitor of ribosomal assembly, can be coupled to antibodies via a disulfide bond between chemically inserted sulfhydryl groups. See Polito et al., Leukemia 18: 1215-1222 (2004).
[0264] Radioisotopes can also be linked to antibodies. Preferred radioisotopes include yttrium90 (90Y), indium111 (l l lln), 131I, "mTc, radiosilver- 111 , radiosilver-199, and Bismuth213. Linkage of radioisotopes to antibodies may be performed with conventional bifunction chelates. For radiosilver- 11 and radiosilver-199 linkage, sulfur-based linkers may be used. See Hazra et al., Cell Biophys. 24-25: 1-7 (1994). Linkage of silver radioisotopes may involve reducing the immunoglobulin with ascorbic acid. For radioisotopes such as 11 lln and 90Y, ibritumomab tiuxetan can be used and will react with such isotopes to form 11 lln-ibritumomab tiuxetan and 90Y-ibritumomab tiuxetan, respectively. See Witzig, Cancer Chemother. Pharmacol., 48 Suppl LS91-S95 (2001).
[0265] Other therapeutic agents may also be linked to antibodies. Therapeutic agents are usually cytotoxic or cytostatic. For example, antibodies can be conjugated with toxic chemotherapeutic drugs such as maytansine, geldanamycin, tubulin inhibitors, such as auristatins, or minor groove binding agents, such as calicheamicin. Other representative therapeutic agents include agents known to be useful for treatment, management, or amelioration of an autoimmune disease, a neuroinflammatory disease, or a cancer, or symptoms of an autoimmune disease, a neuroinflammatory disease, or a cancer. Examples of such therapeutic agents are disclosed elsewhere herein. [0266] Antibodies can also be coupled with other proteins. For example, antibodies can be coupled with Fynomers. Fynomers are small binding proteins (e.g., 7 kDa) derived from the human Fyn SH3 domain. They can be stable and soluble, and they can lack cysteine residues and disulfide bonds. Fynomers can be engineered to bind to target molecules with the same affinity and specificity as antibodies. They are suitable for creating multi- specific fusion proteins based on antibodies. For example, Fynomers can be fused to N-terminal and/or C- terminal ends of antibodies to create bi- and tri-specific FynomAbs with different architectures. Fynomers can be selected using Fynomer libraries through screening technologies using FACS, Biacore, and cell-based assays that allow efficient selection of Fynomers with optimal properties. Examples of Fynomers are disclosed in Grabulovski et al, J. Biol. Chem. 282:3196-3204 (2007); Bertschinger et al, Protein Eng. Des. Sel. 20:57-68 (2007); Schlatter et al, MAbs. 4:497-508 (2011); Banner et al., Acta. Crystallogr. D. Biol. Crystallogr. 69(Pt6): 1124-1137 (2013); and Brack et al, Mol. Cancer Ther. 13:2030-2039 (2014).
[0267] The antibodies disclosed herein can also be coupled or conjugated to one or more other antibodies (e.g., to form antibody heteroconjugates). Such other antibodies can bind to different epitopes within MCAM or can bind to a different target antigen.
[0268] Antibodies can also be coupled with a detectable label. Such antibodies can be used, for example, for diagnosing of an autoimmune disease, a neuroinflammatory disease, or a cancer, for monitoring progression of an autoimmune disease, a neuroinflammatory disease, or a cancer, and/or for assessing efficacy of treatment. Such antibodies can be useful for performing such determinations in subjects having or being susceptible to an autoimmune disease, a
neuroinflammatory disease, or a cancer, or in appropriate biological samples obtained from such subjects. Representative detectable labels that may be coupled or linked to an antibody include various enzymes, such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; prosthetic groups, such streptavidin/biotin and avidin/biotin; fluorescent materials, such as umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine,
dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as luminol; bioluminescent materials, such as luciferase, luciferin, and aequorin; radioactive materials, such as radio silver-I l l, radiosilver-199, Bismuth213, iodine (131I, 125I, 123I, 121I,), carbon (14C), sulfur (5S), tritium (3H), indium (115In, 113In, 112In, i nIn,), technetium (99Tc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru, 68Ge, 57Co, 65Zn, 85Sr, 32P, 153Gd, 169Yb, 51Cr, 54Mn, 75Se, 113Sn, and 117Tin; positron emitting metals using various positron emission tomographies; nonradioactive paramagnetic metal ions; and molecules that are radio labelled or conjugated to specific radioisotopes.
[0269] Therapeutic agents, other proteins, other antibodies, and/or detectable labels may be coupled or conjugated, directly or indirectly through an intermediate (e.g., a linker), to a murine, chimeric, veneered, or humanized antibody using techniques known in the art. See e.g., Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy," in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al., "Antibodies For Drug Delivery," in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review," in Monoclonal Antibodies 84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy," in
Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985); and Thorpe et al., Immunol. Rev., 62: 119-58 (1982). Suitable linkers include, for example, cleavable and non-cleavable linkers. Different linkers that release the drugs under acidic or reducing conditions or on exposure to specific proteases can be employed. Likewise, different linkers that release the coupled therapeutic agents, proteins, antibodies, and/or detectable labels under acidic or reducing conditions, on exposure to specific proteases, or under other defined conditions can be employed.
IV. METHODS OF TREATMENT AND PHARMACEUTICAL COMPOSITIONS
[0270] The antibodies or other antagonists disclosed herein can be used for treating or effecting prophylaxis of subjects having (e.g., meeting art -recognized criteria, such as those of the DSM-IV-TR or DSM-V) or at elevated risk relative to the general population of a disease disclosed herein. Elevated risk can be assessed from presence of one or more genetic or biochemical markers associated with the disease, or one or more symptoms consistent with the disease but insufficient to allow a definite diagnosis. Some specific exemplary diseases treatable by the present methods include giant cell arteritis, polymyalgia rheumatica (PMR) and Takayasu's arteritis. These diseases are characterized by infiltration of TH17 and THl cells into blood vessel walls. Cells expressing MCAM have been found to localize around blood vessels. Although practice of the methods is not dependent on understanding of mechanism, it is believed that in some methods antibodies or other antagonists function at least in part by inhibiting the interaction of MCAM expressed on T cells (e.g., TH17 cells) and laminin a4 chain, e.g. , an a4 chain of laminin 411 expressed on the surface of an endothelial cell forming a blood vessel wall. Antibody-drug conjugates can have additional mechanisms of action including the cytotoxic or cytostatic effect of the linked agent, typically after uptake within the targeted cell. Antibody- drug conjugates may also induce macrophage toxicity.
[0271] Giant-cell arteritis (GCA or temporal arteritis or cranial arteritis or Horton disease) is an inflammatory disease of blood vessels most commonly involving large and medium arteries of the head, predominantly the branches of the external carotid artery. The most serious complication is occlusion of the ophthalmic artery, which is a branch of the internal carotid. It can create a medical emergency which can cause irreversible ischemia and blindness if not treated promptly. GCA is conventionally treated with glucocorticoids, which reduce current symptoms of inflammation and prevent occlusion but has no effect on vessel wall pathology, resulting in subjects relapsing after recovery.
[0272] GGA onset occurs at age 50 onward with a mean age of diagnosis of 72. About 190,000 subjects present with the disease. This disease frequently manifests as an analgesic resistant headache (60-90%) and visual loss (12-40%). Symptoms show a dramatic initial response to glucocorticoids.
[0273] GCA is diagnosed from clinical presentation, patient characteristics, blood test markers of inflammation and most characteristically, presence of giant multinucleate cells in vessel wall biopsies most usually proximate to the internal elastic membrane.
[0274] GCA is caused by infiltration of THl 7 and THl cells into a blood vessel wall. Histo- pathological lesions are observed in all layers of the artery leading to segmental and focal panarteritis with a polymorphic cell infiltrate that includes T cells, macrophages and
multinucleated giant cells, a fragmented internal elastic lamina and intimal hyperplasia. THl 7 cells are the precursors of giant cells (Samson Clin Exp Rheumatol. 2013 Jan-Feb;31(l Suppl 75):S65-73. Epub 2013 Apr 19.). Therefore antibodies of the disclosure can inhibit GCA by inhibiting migration of TH17 or THl cells into blood vessel walls or conversion of TH17 cells to giant cells, among other mechanism. An animal model for GCA is available for testing antibodies. The animal model is formed by transferring human temporal arterial specimens subcutaneously into SCID mice (Deng et aL, Circ. Res. 104, 488-495 (2009)). A cellular model is also available for analyzing the effect of potential drugs on migration and proliferation of smooth muscle cells in the vasculature. This models uses smooth muscle cells on a Matrigel™ matrix.
[0275] Polymyalgia rheumatica abbreviated as PMR, is a related condition to GCA, in which subjects have pain or stiffness, usually in the neck, shoulders, upper arms and hips, but which may occur all over the body. The pain can be very sudden, or can occur gradually over a period. It may be caused by an inflammatory condition of blood vessels such as temporal arteritis.
Elevated ESR and C-reactive protein are characteristic of PMR as is a rapid response to low dose corticosteroids, which are the conventional treatment for PMR.
[0276] PMR can occur concurrently or separately than GCA. Approximately 15% of patients with PMR develop giant cell arteritis (GCA), and 40-50% of patients with GCA have associated PMR. Most inflammation is at the level of the synovium and bursae, with MRI studies revealing periarticular inflammation as well as bursitis in the bursae associated with both the shoulder and hip girdles. Systemic macrophage and T-cell activation are characteristic of both GCA and PMR. Patients often have an elevated IL-6 level which is likely responsible for the systemic
inflammatory response in both GCA and PMR. A decrease in the level of circulating IL-6 correlates with remission of clinical symptoms. As with GCA, age of onset is 50 year or later with a mean of 72 years.
[0277] Takayasu's arteritis is a rare type of vasculitis related to GCA. It is a form of large vessel granulomatous vasculitis with massive intimal fibrosis and vascular narrowing, affecting often young or middle-aged women of Asian descent. It mainly affects the aorta (the main blood vessel leaving the heart) and its branches, as well as the pulmonary arteries. Females are about 8-9 times more likely to be affected than males. Those with the disease often notice symptoms between 15 and 30 years of age Takayasu's arteritis can also lead to arm or chest pain and high blood pressure and eventually to heart failure or stroke. The goal of treatment is to relieve inflammation in the arteries and prevent potential complications. Signs and symptoms of Takayasu's arteritis include: arm or leg weakness or pain with use (claudication),
Lightheadedness or dizziness, fainting, headaches, memory problems, trouble thinking, shortness of breath, visual problems, high blood pressure, difference in blood pressure between arms, a difficult-to-find or absent pulse in the wrists; too few red blood cells (anemia), chest pain, abdominal pain. The condition is characterized by segmental and patchy granulomatous inflammation of the aorta and its major derivative branches. This inflammation leads to arterial stenosis, thrombosis, and aneurysms. There is also irregular fibrosis of the blood vessels due to chronic vasculitis, leading to sometimes massive intimal fibrosis (fibrosis of the inner section of the blood vessels). Prominent narrowing due to inflammation, granuloma, and fibrosis is often seen in arterial studies such as magnetic resonance angiography (MRA), computed tomography angiography (CTA), or arterial angiography (DSA). Treatments include corticosteroids, methotrexate, azathioprine, adalimumab, etenercept, infliximab and tocilizumab.
[0278] Antibodies or other antagonists are administered in an effective regime meaning a dosage, route of administration and frequency of administration that delays the onset, reduces the severity, inhibits further deterioration, and/or ameliorates at least one sign or symptom of a disease being treated (e.g., giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis). If a patient is already suffering from a disorder, the regime can be referred to as a therapeutically effective regime. If the patient is at elevated risk of the disorder relative to the general population but is not yet experiencing symptoms, the regime can be referred to as a prophylactically effective regime. In some instances, therapeutic or prophylactic efficacy can be observed in an individual patient relative to historical controls or past experience in the same patient. In other instances, therapeutic or prophylactic efficacy can be demonstrated in a preclinical or clinical trial in a population of treated patients relative to a control population of untreated patients.
[0279] Exemplary dosages for an antibody are 0.1-20, or 0.5-5 mg kg body weight (e.g., 0.5, 1, 2, 3, 4 or 5 mg/kg) or 10-1500 mg as a fixed dosage. The dosage depends on the condition of the patient and response to prior treatment, if any, whether the treatment is prophylactic or therapeutic and whether the disorder is acute or chronic, among other factors. [0280] Administration can be parenteral, intravenous, oral, subcutaneous, intra-arterial, intracranial, intrathecal, intraperitoneal, topical, intranasal or intramuscular. For some antibodies and under some circumstances, administration into the systemic circulation by intravenous or subcutaneous administration is preferred. Intravenous administration can be, for example, by infusion over a period such as 30-90 min.
[0281] The frequency of administration depends on the half- life of the antibody in the circulation, the condition of the patient and the route of administration among other factors. The frequency can be daily, weekly, monthly, quarterly, or at irregular intervals in response to changes in the patient's condition or progression of the disorder being treated. An exemplary frequency for intravenous administration is between weekly and quarterly over a continuous cause of treatment, although more or less frequent dosing is also possible. For subcutaneous administration, an exemplary dosing frequency is daily to monthly, although more or less frequent dosing is also possible.
[0282] The number of dosages administered depends on whether the disorder is acute or chronic and the response of the disorder to the treatment. For acute disorders or acute exacerbations of a chronic disorder, between 1 and 10 doses are often sufficient. Sometimes a single bolus dose, optionally in divided form, is sufficient for an acute disorder or acute exacerbation of a chronic disorder. Treatment can be repeated for recurrence of an acute disorder or acute exacerbation. For chronic disorders, an antibody can be administered at regular intervals, e.g., weekly, fortnightly, monthly, quarterly, every six months for at least 1, 5 or 10 years, or the life of the patient.
[0283] Treatment with antibodies or other antagonists disclosed herein can be combined with other treatments effective against the disorder being treated. Combination treatments can be formulated for administered separately.
[0284] Pharmaceutical compositions for parenteral administration are preferably sterile and substantially isotonic and manufactured under GMP conditions. Pharmaceutical compositions can be provided in unit dosage form (i.e., the dosage for a single administration).
Pharmaceutical compositions can be formulated using one or more physiologically and pharmaceutically acceptable carriers, diluents, excipients or auxiliaries. The formulation depends on the route of administration chosen. For injection, antibodies can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline or acetate buffer (to reduce discomfort at the site of injection). The solution can contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively antibodies can be in lyophilized form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
[0285] Treatment with antibodies of the disclosure can be combined with other treatments effective against the disorder being treated. Combination treatments can be formulated for administered separately. Additional therapeutic agents for treatment of multiple sclerosis include one or more of the following: teriflunomide, interferon beta- la, interferon beta- lb, glatiramer acetate, fingolimod, and mitoxantrone, or a corticosteroid, such as prednisone,
methylprednisolone, or dexamethasone.
[0286] Additional therapeutic agents for cancer include alkylating agents such as carmustine, chlorambucil, cisplatin, carboplatin, oxaliplatin, procarbazine, and cyclophosphamide;
antimetabolites such as fluorouracil, floxuridine, fludarabine, gemcitabine, methotrexate and hydroxyurea; natural products including plant alkaloids and antibiotics such as bleomycin, doxorubicin, daunorubicin, idarubicin, etoposide, mitomycin, mitoxantrone, vinblastine, vincristine, and Taxol (paclitaxel) or related compounds such as TaxotereRTM.; the
topoisomerase 1 inhibitor irinotecan; temozolomide and GliadelRTM, carmustine; and inhibitors of tyrosine kinases such as Gleevec.RTM., Sutent.RTM. (sunitinib malate), Nexavar.RTM. (sorafenib) and Tarceva.RTM. (erlotinib) or Iressa.RTM. (gefitinib); inhibitors of angiogenesis; and monoclonal antibodies, including Herceptin.TM. against the HER2 antigen; Avastin.RTM. against VEGF; or antibodies to the Epidermal Growth Factor (EGF) receptor such as
Erbitux.RTM. (cetuximab) and Vectibix.RTM. (panitumumab).
[0287] Additional agents for treating Parkinson's disease include including levodopa, benzaseride, carbidopa, dopamine agonists, non-ergot dopamine agonists, catechol-O-methyl ("COMT") inhibitors such as, for example, entacopone or tolcopone, monoamine oxidase ("MAO") inhibitors, such as, for example, rasagaline, amantadine, or anticholinergic agents V. KITS
[0288] The disclosure further provides kits (e.g., containers) comprising the MCAM antibodies or other antagonists of the disclosure and related materials, such as instructions for use (e.g., package insert). The instructions for use may contain, for example, instructions for administration of the MCAM antagonists and optionally one or more additional agents. The containers of MCAM antagonist(s) may be unit doses, bulk packages (e.g., multi-dose packages), or sub-unit doses.
[0289] Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage,
administration, contraindications and/or warnings concerning the use of such therapeutic products
[0290] Kits can also include a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It can also include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
[0291] All patent filings, websites, other publications, accession numbers and the like cited above or below are incorporated by reference in their entirety for all purposes to the same extent as if each individual item were specifically and individually indicated to be so incorporated by reference. If different versions of a sequence are associated with an accession number at different times, the version associated with the accession number at the effective filing date of this application is meant. The effective filing date means the earlier of the actual filing date or filing date of a priority application referring to the accession number if applicable. Likewise if different versions of a publication, website or the like are published at different times, the version most recently published at the effective filing date of the application is meant unless otherwise indicated. Any feature, step, element, embodiment, or aspect of the invention can be used in combination with any other unless specifically indicated otherwise. Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. EXAMPLES
Materials and Methods
Antibody generation / characterization
[0292] For the generation of antibodies capable of binding to murine MCAM, MCAM-Fc was generated by fusing the extracellular domain of murine MCAM to human IgG and produced in CHO cells using standard techniques. Lou/M rats were immunized with 100 μg of MCAM-Fc protein in CFA (1 : 1 volume). Rats were boosted two times at two week intervals with MCAM- Fc protein in incomplete Freund's adjuvant (IF A) (1 : 1 volume). Hybridomas were generated from immunized rats using standard protocols and clones were selected by Clonepix. CHO cells were transfected with the full length murine MCAM gene and selected for stable expression using neomycin and standard techniques. Parental CHO cells (MCAM negative) were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) using standard techniques and mixed at a 1: 1 ratio with unlabeled MCAM transfected CHO cells. Hybridoma supernatants were incubated with this mixture of cells for 30 minutes and binding of potential MCAM specific antibodies was detected with a fluorescently labeled anti-rat secondary antibody (Jackson Immuno) by flow cytometry.
[0293] Supernatants from hybridomas that screened positive for MCAM specific antibodies were pre-incubated with fluorescently labeled mouse MCAM-Fc protein (5 μg/mL) for 30 minutes before addition to the laminin a4 expressing cell line WM2664 and neutralization of binding of the MCAM-Fc protein to the cell line was determined by flow cytometry.
[0294] For the generation of rat antibodies capable of binding to human MCAM, hMCAM- Fc was generated by fusing the extracellular domain of human MCAM to human IgG and produced in CHO cells using standard techniques. Lou/M rats were immunized with 250 μg of hMCAM-Fc protein in CFA (1: 1 volume). Rats were boosted two times at two week intervals with hMCAM-Fc protein in incomplete Freund's adjuvant (IF A) (1: 1 volume). Hybridomas were generated from immunized rats using standard protocols and clones were selected by Clonepix. CHO cells were transfected with the full length human MCAM gene and selected for stable expression using neomycin and standard techniques. Parental CHO cells (MCAM negative) were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) using standard techniques and mixed at a 1: 1 ratio with unlabeled human MCAM transfected CHO cells. Hybridoma supernatants were incubated with this mixture of cells for 30 minutes and binding of potential human MCAM specific antibodies was detected with a fluorescently labeled anti-rat secondary antibody (Jackson Immuno) by flow cytometry.
[0295] For the generation of mouse antibodies capable of binding to human MCAM, hMCAM-Fc was generated by fusing the extracellular domain of human MCAM to human IgG and produced in CHO cells using standard techniques. Balb/c mice were immunized with 50 μg of hMCAM-Fc protein in CFA (1: 1 volume). Mice were boosted two times at two week intervals with hMCAM-Fc protein in incomplete Freund's adjuvant (IF A) (1: 1 volume).
Hybridomas were generated from immunized mice using standard protocols and clones were selected by Clonepix. CHO cells were transfected with the full length human MCAM gene and selected for stable expression using neomycin and standard techniques. Parental CHO cells (MCAM negative) were fluorescently labeled with carboxyfluorescein succinimidyl ester (CFSE) using standard techniques and mixed at a 1 : 1 ratio with unlabeled human MCAM transfected CHO cells. Hybridoma supernatants were incubated with this mixture of cells for 30 minutes and binding of potential human MCAM specific antibodies was detected with a fluorescently labeled anti-mouse secondary antibody (Jackson Immuno) by flow cytometry.
[0296] Supernatants from hybridomas that screened positive for human MCAM specific antibodies were pre-incubated with fluorescently labeled hMCAM-Fc protein (5 μg/mL) for 30 minutes before addition to the laminin a4 expressing cell line WM2664 and neutralization of binding of the hMCAM-Fc protein to the cell line was determined by flow cytometry.
Nucleic Acid and protein manipulation
[0297] For determination of CDRs, total RNA was isolated from hybridoma cells using RNAquous-4PCR kit (Ambion), and was used for cDNA synthesis. First and second strand cDNA was synthesized using methods modified from Marathon cDNA amplification (Clontech) with the cDNA adaptor ligated to the 5'-end of the obtained dscDNA. The reverse specific primer was designed based on the specific antibody isotype constant region sequence for both heavy and light chains, and was used along with the adaptor primer in the PCR amplification of both VL and VH fragments using Pfu Ultra DNA polymerase (Stratagene). The amplified PCR product was cloned into pCR-Blunt-TOPO (Invitrogen), and the nucleotide sequence was determined. The sequences of the identified clones were compared for percent identity within the VL and VH sequences.
[0298] For determination of IL- 17 concentrations in the supernatant, ELISA was performed using a commercial kit (R&D Systems).
Example 1. Generation of anti-MCAM monoclonal antibodies
[0299] Mouse and rat monoclonal antibodies directed against human MCAM protein were generated as described in Materials and Methods above. The specific binding between the monoclonal antibody and human MCAM was confirmed by assessing the monoclonal antibody's ability to bind to cells transfected with human MCAM. For this, untransfected cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) and mixed with unlabeled human MCAM transfected cells. Untransfected cells could, therefore, be differentiated.
[0300] Using these techniques, 823 independent mouse fusions clones were isolated and shown to express an antibody capable of binding to human MCAM. Additionally, 152 independent rat fusions clones were isolated and shown to express an antibody capable of binding to human MCAM.
[0301] Next, the anti-human MCAM monoclonal antibodies were used to test their ability to block the binding of human MCAM to its ligand. Human MCAM-Fc protein (5 μg/mL) was pre-incubated with isotype control antibody, or 10 μg/mL of the test monoclonal antibody for 30 minutes in PBS. The mixture was added to healthy spinal cord tissue sections and subsequently characterized by fluorescence microscopy as described in Materials and Methods above.
Furthermore, parental CHO cells (CHOK1) or CHO cells transfected with a human MCAM gene were preincubated with CHO culture media (DMEM), recombinant laminin 411 (10 μg/ml), or recombinant laminin 511 (i.e., laminin 10 (α5β1γ1)) ( 10 μg/ml) at 37°C for 45 minutes. Cells were washed, and specific binding of laminin 41 1, but not laminin 511, to MCAM was detected with a pan-laminin antibody by flow cytometry. Pre-incubation of human MCAM transfected CHO cells with the anti-MCAM antibody (at 20 μg/ml), prior to laminin incubation, abolished the binding of human MCAM to laminin 411. [0302] Using this technique, it was shown that 87 of the 823 independent mouse fusion clones and 26 of the 152 independent rat fusion clones described above expressed an antibody that was capable of blocking the interaction between human MCAM protein and its ligand, a-4 chain of laminin.
Example 2. Further characterization of anti-MCAM monoclonal antibodies
[0303] The 87 independent mouse fusion clones and 26 independent rat fusion clones described in Example 1 above as being capable of (i) binding to human MCAM, and (ii) blocking the interaction between human MCAM and the a-4 chain of laminin were further characterized as follows. First, IC50 quantitation for the ability of the monoclonal antibody to block the binding of human MCAM to the a-4 chain of laminin was determined as follows. CHO cells expressing human MCAM were incubated with an anti-human MCAM antibody (at various concentrations) for 30 minutes at 4 degrees Celsius. Unbound antibody was then washed away, and the cells were incubated with recombinant human laminin 411 at 20 ug/ml for 45 minutes at 37 degrees Celsius. Unbound laminin was then washed away, and the laminin bound to the surface of the cells was detected with fluorescently labeled anti- laminin antibodies. After washing, the amount of laminin bound to the surface was detected by flow cytometry, and IC50s were calculated based on the mean fluorescent intensity.
[0304] Using the above described assay, six independent anti-human MCAM monoclonal antibody clones were identified as binding to human MCAM and having the greatest ability to block the interaction between human MCAM expressed on the surface of cells and its binding ligand, human laminin 411. These six anti-MCAM monoclonal antibody clones are herein referred to as (i) the mouse anti-human MCAM monoclonal clones 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3, and (ii) the rat anti-human MCAM monoclonal antibody clones 2120.4.19 and 2107.4.10. Amino acid and nucleic acid sequences of the heavy and light chains of these antibodies, and their hypervariable regions, are provided in SEQ ID NOs:29-92. More specifically, in the above assay, IC50s for the monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10 were determined to be 0.469 ug/ml, 0.431 ug/ml, 0.307 ug/ml, 0.545 ug/ml, 0.888 ug/ml, and 0.290 ug/ml, respectively. Moreover, experiments performed to determine the specific binding affinity of each monoclonal antibody demonstrated that each was capable of binding to human MCAM protein with high affinity (data not shown). As such, each of these specific monoclonal antibodies was very capable of binding to human MCAM and inhibiting the interaction of cell-expressed human MCAM with its a-4 laminin binding ligand. In contrast, two control antibodies, a non-specific human IgGl antibody and a previously described, fully human anti-MCAM antibody referred to as ABX-MA1 (e.g., see Mills et al., Cancer Res. 62:5106 (2002), and US Patent Nos. 6,924,360, 7,067, 131, and 7,090,844) were both incapable of blocking the binding interaction between human MCAM and its laminin 411 counterpart. As such, the six specific monoclonal antibodies identified above possess the novel ability to both (i) bind with high affinity to human MCAM on the surface of living cells, and (ii) block the interaction of cell expressed human MCAM with a laminin protein comprising an a-4 laminin polypeptide chain.
Example 3. Domain binding analysis for anti-MCAM monoclonal antibodies
[0305] ForteBio analysis was employed to determine the location of the antigen epitope on the human MCAM protein that is recognized and bound by monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10. The following protocol was used: ForteBio anti-human IgG Fc biosensors were used to immobilize various MCAMhFc domains including full length MCAMhFc protein on to biosensor surface. These sensors were dipped into the MCAM specific 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, or 2107.4.10 antibody for detection of binding to these domains or full length protein. After loading these samples into a black 96 well plate, the Octet Red was programmed as follows: 60 seconds for baseline #1; 180 seconds for loading various domains; 60 seconds for baseline #2; 180 seconds for association of antibody to domain; and 240 seconds for dissociation of antibody from domain.
Reagents and supplies used:
1. MCAMhFc final concentration @ 5 ug/ml
2. antibody clones 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, and
2107.4.10 clones @ 5 ug/ml
3. ForteBio anti-human IgG Fc Capture (AHC) biosensors for kinetics
experiments, cat# 18-5060 4. Block 96 well plate from Greiner Bio-one, cat# 655209
5. ForteBio Octet Red machine
6. Fresh tissue culture medium, DMEM with 20% FCS, was used as buffer for dilution
The results from these analyses are as follows.
[0306] Monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3 were all shown to bind to an antigenic epitope found on domain 3 of the human MCAM protein, defined specifically by amino acids 244-321 (SEQ ID NO:24) of the human MCAM protein. These monoclonal antibodies were not capable of binding to human MCAM domain 1 (namely amino acids 19-129, SEQ ID NO:22), domain 2 (namely amino acids 139-242, SEQ ID NO:23), or the combination of domains 1 and 2 (namely, amino acids 19-242). Hence, monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, and 1749.1.3 define a novel antigenic epitope located within domain 3 of the human MCAM protein.
[0307] Monoclonal antibody clones 2120.4.19, and 2107.4.10 were each shown to bind to an antigenic epitope defined by the combination of human MCAM domains 1 (namely amino acids 19-129, SEQ ID NO:22), and domain 2 (namely amino acids 139-242, SEQ ID NO:23). Neither of these two monoclonal antibodies bound to human MCAM domain 1 by itself. Hence, monoclonal antibody clones 2120.4.19 and 2107.4.10 define a novel antigenic epitope determined by the presence of both human MCAM protein domains 1 and 2.
[0308] In contrast to the above, the previously described fully human anti-MCAM antibody ABX-MA1 binds to a different antigenic epitope than those described above, namely an antigenic epitope that is fully defined and encompassed within human MCAM domain 1 only.
[0309] Given these results, since each of monoclonal antibody clones 1174.1.3, 1414.1.2, 1415.1.1, 1749.1.3, 2120.4.19, and 2107.4.10 are capable of both (i) binding to human MCAM, and (ii) blocking the interaction between human MCAM and an a-4 laminin containing protein, whereas the ABX-MA1 antibody is capable of only binding to human MCAM, but not blocking the interaction between human MCAM and an a-4 laminin containing protein, these results demonstrate that human MCAM domain 2, human MCAM domain 3, and the combination thereof play a role in the binding interaction with a-4 laminin chain. Given this, it is clear that antibodies which bind to human MCAM domain 2, human MCAM domain 3, and/or the combination thereof would find use as agents capable of blocking the interaction between human MCAM and a-4 laminin and, thereby, find use for inhibiting the various consequences described herein resulting from that interaction. In contrast, antibodies that bind to an antigenic epitope defined solely by human MCAM domain 1 (such as the ABX-MA1 antibody described herein) are not useful for blocking the MCAM / a-4 laminin interaction and its various downstream biological consequences.
Example 4. Shotgun Mutagenesis Epitope Mapping
[0310] Various amino acid residue of interest for anti-MCAM antibody binding were identified using shotgun mutagenesis and high-throughput cellular expression technology that enables the expression and analysis of large libraries of mutated target proteins within eukaryotic cells. Every residue in the human MCAM protein was individually mutated to an alanine, or other specified residue, to assay changes in function. Proteins were expressed within standard mammalian cell lines.
[0311] Table 1 shows a summary of the reagents and methods used to generate the shotgun mutagenesis library.
Table 1
Figure imgf000055_0001
[0312] Full-length human MCAM was successfully codon-optimized, synthesized, and subcloned into a mammalian high-expression vector. This parental construct was then sequence- verified and validated for mammalian cell expression by immunodetection methods.
[0313] Detection of 1749.1.3 antibody and mouse sera binding to MCAM by
immunofluorescence was successfully optimized for the high-throughput shotgun mutagenesis format. Serial dilutions of each primary antibody were tested with a single dilution of secondary antibody in a 384-well format. Antibodies were tested for detection of 293T and BHK cells expressing human MCAM. Optimal assay conditions were selected for screening the complete mutation library.
[0314] The MCAM mutation library was created and sequence verified, consisting of 545 clones (528/536 alanine mutants and 17/17 site-directed mutants), each bearing either a single residue substitution to alanine (alanine residues are substituted to serine) or a specified residue. Residues 35, 66, 161, 261, 342, 380, 414, and 435 are not represented in the library. The mutation library was screened in triplicate by immunodetection for binding to mouse sera. This validates cell surface expression for each mutant clone.
[0315] Multiple rounds of optimization were performed to determine conditions that are suitable for mapping. The following variables were evaluated: multiple laminin concentrations and anti- laminin secondary antibody concentrations, various blocking buffers to reduce nonspecific binding, multiple cell types, and multiple washing steps.
[0316] The mutation library was screened in triplicate by immunodetection for binding to the 1749.1.3 antibody. Reactivity was quantified for each mutant to identify point mutants that exhibit loss of binding.
[0317] Monoclonal antibody and sera reactivity were quantified for each mutant clone to identify point mutants that exhibit loss of binding without impacting surface expression. The critical residues for each antibody were identified by comparison of the monoclonal antibody binding profile to the sera binding profile of each mutant clone.
[0318] BHK cells were transfected with either wild-type (WT) MCAM or vector alone in a 384-well format, followed by immunodetection. Serial dilutions of each antibody (beginning with 4 μg/ml) were tested for immunoreactivity against WT or vector alone (Table 2). Each point represents the average of four replicates.
Table 2
Primary Ab cone MAb 1749.1.3 Ms Sera Ms Sera (ug/mL) Cone
S/B Z S/B Z' (ug/mL)
4.00 13.11 0.69 6.49 0.19 1: 100
2.00 27.98 0.58 7.69 0.53 1:200
1.00 27.92 0.76 8.32 0.74 1:400
0.50 40.47 0.68 7.91 0.55 1:800
0.25 33.53 0.72 11.65 0.50 1 : 1600
0.13 29.95 0.79 16.29 0.50 1 :3200
0.06 18.22 0.34 10.87 0.54 1 :6400
0.03 10.41 0.62 10.22 0.39 1: 12800
0.02 4.91 0.79 7.29 -0.19 1:25600
0.00 0.31 -4.83 1.77 -5.95 0.00
[0319] Optimal screening conditions for the immunodetection and epitope mapping of 1749.1.3 and Ms Sera were determined. Using these conditions, each antibody demonstrated a robust signal, high signal-to-background values, and low variability between replicates. These data indicate that these conditions are suitable for successful high-throughput epitope mapping. Final screening concentrations of 0.5 μg/mL for 1749.1.3 and a 1:800 dilution of the Ms Sera were used. Secondary antibodies from Jackson ImmunoResearch were used at 1 :400 for MAb and sera detection. Table 3 shows the experimental parameters optimized for high-throughput immunodetection.
Table 3
Experimental Parameter MAb 1749.1.3 Ms Sera
Cells Fixative BHK-S 4% PFA BHK-S 4% PFA
Blocking Buffer 10% Goat Serum 10% Goat Serum
Primary Ab 1749 Sera Table 3
Figure imgf000058_0001
[0320] The mutation library was assayed for surface expression (mouse sera binding) and monoclonal antibody binding, in triplicate. Each raw data point was background-subtracted and normalized to the wild type MCAM reactivity values. The results are shown in Fig. 1. The mean monoclonal antibody binding value for each clone is plotted as a function of its mean surface expression value (Fig. 1, gray diamonds). Thresholds of <30% monoclonal antibody reactivity and >50% mouse sera binding were applied to identify clones (Fig. 1, black diamonds) that were negative for monoclonal antibody binding but positive for surface expression.
[0321] Critical residues for 1749.1.3 were identified by evaluating the mean monoclonal antibody reactivity of each clone compared to its overall surface expression (average serum reactivity). Residues involved in antibody binding were identified as those that were negative for monoclonal antibody binding (<30% WT) but positive for surface expression (>50% WT) (Table 4). The mean reactivity (and standard deviation) were determined for each critical residue.
Table 4
Residue ID Mutations P tfAb 1749.1.3 Ms Sera
272 C272A f '. i4 i 54.5 (55.8) Table 4
Figure imgf000059_0001
[0322] The critical amino acids identified by shotgun mutagenesis mapping suggest binding sites for the 1749.1.3 antibody. The data indicate that 1749.1.3 binds a conformationally complex epitope at the third Ig domain of MCAM.
[0323] Critical residues appear largely dependent upon structural stabilization contributed by disulfide bonds of the second and/or third Ig domains. Mutation to either cysteine 272 or 320 abolishes antibody binding, suggesting the shared disulfide bond of the third Ig domain plays a significant role in stabilizing the epitope.
Example 5. Confirmatory MCAM Epitope Mapping for Antibody and Laminin Binding
[0324] In order to identify 1749.1.3 binding sites on human MCAM, a homology model of human MCAM Ig3 was built up on pdb 3KVQ_A, 3V2A_R, 2IEP_A and 2YD1_A by using Schrodinger Maestro (Fig. 2). Twenty point mutants based on the structure information and shotgun mutagenesis information were designed and generated. These mutants were displayed on mammalian cells and FACS was used to test the binding of 1749.1.3 and laminin a-4 to the MCAM mutants. Three MCAM single mutants, 1141 A, D216A and Y318A, demonstrated a complete loss of laminin a-4 binding. The Y318A mutant demonstrated a complete loss of 1749.1.3 binding.
[0325] To further confirm the data, stable cell lines expressing 1141 A, PI 45V, D216A and Y318 A respectively were generated. Fortebio assays were performed with the purified proteins as described above. The control ABX-MA1 antibody bound to wild type MCAM and the MCAM mutants. The 1749.1.3 antibody did not show significant binding to the MCAM Y318A mutant. Example 6. Humanization of 1749.1.3 antibodies
[0326] The starting point or donor antibody for humanization is the mouse antibody 1749 produced by a hybridoma described in WO/2012/170071 and PCT/US2013/058773. The mature heavy chain variable amino acid and nucleic acid sequence of mature ml 749 are provided as SEQ ID NOS:93 and 64, respectively. The mature light chain variable amino acid and nucleic acid sequences of mature ml 749 are provided as SEQ ID NOS:97 and 59, respectively. The heavy chain CDR1, CDR2, and CDR3 amino acid sequences are provided as SEQ ID NOs:66, 67, and 68, respectively. The light chain CDR1, CDR2, and CDR3 amino acid sequences are provided as SEQ ID NOs:61, 62, and 63, respectively. Kabat numbering is used throughout in this Example.
[0327] The variable kappa (Vk) of ml 749 belongs to mouse Kabat subgroup 1 which corresponds to human Kabat subgroup 4. The variable heavy (Vh) of ml749 belongs to mouse Kabat subgroup 3d which corresponds to human Kabat subgroup 3 (Kabat et al. Sequences of Proteins of Immunological Interest, Fifth Edition. NIH Publication No. 91-3242, 1991). The 17 residue CDR-L1 belongs to canonical class 3, the 7 residue CDR-L2 belongs to canonical class 1, the 8 residue CDR-L3 belongs to canonical class 3 in Vk (Martin & Thornton, J Mol Biol. 263:800-15, 1996). The 5 residue CDR-Hl belongs to canonical class 1, the 17 residue CDR-H2 belongs to canonical class 1 or 3 (Martin & Thornton, J Mol Biol. 263:800-15, 1996). The CDR- H3 has no canonical classes, but the 11 residue loop probably has a kinked base according to the rules of Shirai et al., FEBS Lett. 455: 188-97 (1999).
[0328] The residues at the interface between the Vk and Vh domains are the ones commonly found. A search was made over the protein sequences in the PDB database (Deshpande et al., Nucleic Acids Res. 33: D233-7, 2005) to find structures which would provide a rough structural model of 1749. The antibody against integral membrane protein DsbB in E. coli because has good overall sequence similarity to ml 749 Vk, retaining the same canonical structures for the loops. The X-ray crystal structure of the anti-DsbB antibody (pdb code 2LTQ; Tang et al., J. Mol. Biol. 425: 1670-82, 2013; SEQ ID NO: 161) was used for the Vk structure in the modeling. The antibody directed against a peptide immunogen from influenza virus hemagglutinin has good overall sequence similarity to 1749 Vh structure. It also has a CDR-H3 of a similar length with a kinked base. The structure of the antibody directed against a peptide immunogen from influenza virus hemagglutinin (IHIL; Rini et al., Science 255: 959-65, 1992; SEQ ID NO: 157) has reasonable resolution (2.0A), and was used for the Vh structure in the modeling. In addition, CDRs-Hl and H2 of IHIL have the same canonical structures for CDR-Hl and CDR-H2 as that of 1749 Vh. BioLuminate® was used to model a rough structure of 1749Fv.
[0329] A search of the non-redundant protein sequence database from NCBI allowed selection of suitable human frameworks into which to graft the murine CDRs. For Vk, two human kappa light chains were chosen, the first with NCBI accession code ABA71407.1 (GL77379502 ; SEQ ID NO: 162) (Manske et al., Clin. Immunol. 120: 106-20, 2006) and the second with NCBI accession code CAI99800.1 (GL98956324; SEQ ID NO: 163) (Su et al., J. Immunol. 181 : 1264-71,2008 ). This has the same canonical classes for CDR-L1, L2, and L3. ABA71407.1 has a sequence identity of 85% in the light chain variable region framework to murine 1749 light chain. CAI99800.1 has a sequence identity of 83% in the light chain variable region framework to murine 1749 light chain.
[0330] For Vh, two human Ig heavy chains were chosen, the first with NCBI accession code AAX82494.1 (GL62421461; SEQ ID NO: 158) (Lundquist, Infect. Immun. 74:3222-31, 2006) and the second with NCBI accession code ADX65676.1 (GL323432073; SEQ ID NO: 159) (unpublished). It shares the canonical form of 1749 CDR-Hl and H2, and H3 is 11 residues long with a predicted kinked base. AAX82494.1 has a sequence identity of 91% in the variable region framework to murine 1749 heavy chain. ADX65676.1 has a sequence identity of 83% in the variable region framework to murine 1749 heavy chain.
[0331] A humanized light chain variable region variant and a humanized heavy chain variable region variant were constructed containing the above substitutions (Hul749VHv3; SEQ ID NO: 156, and Hul749VLv3; SEQ ID NO: 160) (Figs. 3A & B). The amino acids at H3, H42, H93, L9, L19, L43 in Hul749VHv3 and Hul749VLv3 are listed in Table 5. Table 5
Kabat Numbering of Some Framework Residues for Backmutation in Humanized 1749 Antibodies
Figure imgf000062_0001
[0332] The rationales for selection of the above positions as candidates for substitution are as follows.
[0333] Q3K (here as elsewhere for framework backmutations, the first mentioned residue is the human residue and the second the mouse residue): K contacts Y 102 in CDRH3. Therefore, it should be maintained in the framework.
[0334] G42E: E has similar side chain as D in human acceptor AAX82494.1. E is more frequent than D in humans. This backmutation contributes to protein stability.
[0335] A93T: This position is a Vk/Vh interface residue.
[0336] D9S: This residue does not contact or affect CDRs and/or interface. The frequency of S is greater than D in human framework regions.
[0337] A19V: The frequency of V and A are similar in human framework regions. [0338] P43S: S contacts two interface residues in VH: Y91 and W103. Therefore, it is critical and should to be maintained in the framework.
[0339] >Hul749VHv3
EVKLVESGGGLVOPGGSLRLSCAASGFTFSSYIMSWVROTPEKRLEWVATISSGGSSTY
YPDSVKGRFTISRDNAKNTLYLQMSSLKSEDTAMYYCTRDDDYDVKVFAYWGOGTLV
TVSS
[0340] >Hul749VLv3
DIVMTOSPSSLAVSLGERVTINCKSSRSLLNSRIRKNYLAWYOOKPGOSPKLLIYWAST RESG VPDRFS GS GS GTDFTLTIS SLQ AED V A V Y YCKQSYNLLTFGQGTKVEI KR
Example 7. Characterization of variant the humanized 1749H3L3 antibody
[0341] Binding kinetics of the humanized 1749 antibody comprising the heavy chain Hul749VHv3 and the light chain Hul749VLv3 have been characterized.
[0342] Binding kinetic of humanized 1749 antibodies were measured by bio-layer interferometry (BLI) using a ForteBio Octet QK instrument (ForteBio, Menlo Park, CA).
Detailed binding kinetic parameters (association rate, apparent ka, dissociation rate, apparent kd, and affinity constant, apparent KD) were determined for chimeric 1749 and humanized 1749 antibodies (Table 6). Apparent ka, apparent kd and apparent KD are binding kinetic parameters obtained using ForteBio assay formats.
[0343] The hul749H3L3 variant was found to give the lowest dissociation constant (highest association constant), the same as 1749.1.3 within the SEM.
Table 6
Binding Kinetic Parameters of Murine 1749, Chimeric 1749,
and Humanized 1749 Antibodies
Figure imgf000064_0001
[0344] In addition, Analysis with Dynamic Light Scattering (DLS) shows a level of polydiversity (%PD) of the M749H3L3 antibody similar to that of the parental ml 749 antibody (Table 7). Dynamic Light Scattering measurements were taken in a Wyatt DynaPro Nanostar Dynamic Light Scattering instrument, in 10 microliter size volumes within a quartz cuvette. All measurements were obtained at 37°C with each measurement having 10 acquisitions with an acquisition time of 5 seconds. Regularization was done by the Wyatt Technology Dynamics 7.0 software using a Rayleigh Spheres model.
Table 7
DLS Analysis of 1749 Variants niAb %Pd hl749 WT 68.8 hl749 P43S 64.6 ml749 10.2 chl749 19.6 hl749H3L3 22.0

Claims

WHAT IS CLAIMED IS:
1. A humanized antibody comprising:
(a) a mature heavy chain variable region comprising the three Kabat CDRs of SEQ ID NO: 156, and being at least 97% identical to SEQ ID NO: 156; and
(b) a mature light chain variable region comprising the three Kabat CDRs of SEQ ID NO: 160, and being at least 97% identical to SEQ ID NO: 160, for use in treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis.
2. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 98% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 97% identical to SEQ ID NO: 160.
3. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 99% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 97% identical to SEQ ID NO: 160.
4. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region is at 97% identical to SEQ ID NO: 160.
5. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 97% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 98% identical to SEQ ID NO: 160.
6. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 97% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 99% identical to SEQ ID NO: 160.
7. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 97% identical to SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160.
8. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 98% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 98% identical to SEQ ID NO: 160.
9. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region is at least 99% identical to SEQ ID NO: 156 and the mature light chain variable region is at least 99% identical to SEQ ID NO: 160.
10. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160.
11. The humanized antibody of any preceding claim for the use of claim 1 , , further provided that position 3 (Kabat numbering) of the mature heavy chain variable region is occupied by K.
12. The humanized antibody of any preceding claim for the use of claim 1, further provided that position 93 (Kabat numbering) of the mature heavy chain variable region is occupied by T.
13. The humanized antibody of any preceding claim for the use of claim
1 further provided that position 42 (Kabat numbering) of the mature heavy chain variable region is occupied by E.
14. The humanized antibody of any preceding claim for the use of claim 1, further provided that position 43 (Kabat numbering) of the mature light chain variable region is occupied by S.
15. The humanized antibody of any preceding claim for the use of claim 1, further provided that position 9 (Kabat numbering) of the mature light heavy chain variable region is occupied by S.
16. The humanized antibody of any preceding claim for the use of claim 1 , further provided that position 19 (Kabat numbering) of the mature light heavy chain variable region is occupied by V.
17. The humanized antibody of any preceding claim for the use of claim 1, which is an antigen-binding fragment.
18. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160, and wherein the humanized antibody comprises a heavy chain constant region having the amino acid sequence of SEQ ID NO: 173 and a light chain constant region having the amino acid sequence of SEQ ID NO: 170.
19. The humanized antibody of claim 1 for the use of claim 1, wherein the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160, and wherein the humanized antibody comprises a heavy chain constant region having the amino acid sequence of SEQ ID NO: 173 and a light chain constant region having the amino acid sequence of SEQ ID NO: 171.
20. The humanized antibody of claim 1 for the use of claim 1 , wherein the mature heavy chain variable region has the amino acid sequence of SEQ ID NO: 156 and the mature light chain variable region has the amino acid sequence of SEQ ID NO: 160, and wherein the humanized antibody comprises a heavy chain constant region having the amino acid sequence of SEQ ID NO: 174 and a light chain constant region having the amino acid sequence of SEQ ID NO: 171.
21. An isolated antibody that binds to human MCAM (SEQ ID NO: 11) at an epitope including amino acid residue 318, for use in treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu's arteritis.
22. The isolated antibody of claim 21 for the use of claim 21, wherein the epitope comprises amino acid residue 324.
23. The isolated antibody of claim 21 or claim 2 for the use of claim 21 , wherein the epitope comprises amino acid residue 326.
24. The isolated antibody of any one of claims 21-23 18-20 that includes at least five contiguous residues of MCAM including amino acid residue 318.
25. The isolated antibody of any one of claims 21-24 for the use of claim 21, wherein the antibody is not monoclonal antibody 1749.1.3 or an antibody comprising CDRs substantially from monoclonal antibody 1749.1.3.
26. The isolated antibody of any one of claims 21-25 for the use of claim 21, wherein the antibody is monoclonal.
27. The isolated antibody of any one of claims 21-26 for the use of claim 21, wherein the antibody is chimeric, humanized, veneered, or human.
28. The isolated antibody of any one of claims 21-27 for the use of claim 21, wherein the antibody is an antigen-binding fragment.
29. The antibody any preceding claim for use in treatment or prophylaxis of giant cell arteritis.
30. The antibody of any preceding claim for use in treatment or prophylaxis of
PMR.
31. The antibody of any preceding claim for use in treatment or prophylaxis of Takayasu' s arteritis.
32. A pharmaceutical composition comprising an antibody antibody of any one of claims 1-31 for the use of claim 1.
33. Use of the humanized antibody or the isolated anti-MCAM antibody of any one of claims 1-31, in the manufacture of a medicament for the treatment of giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu' s arteritis .
34. A method for treating giant cell arteritis, polymyalgia rheumatica (PMR) or Takayasu' s arteritis comprising administering to a mammalian subject in need thereof an effective amount of an antibody according to any one of claims 1-31.
35. The method of claim 34, wherein the MCAM-expressing cells are TH17 cells.
36. The method or use of any preceding claim, wherein the mammalian subject is a human.
37. An isolated peptide comprising an epitope for binding an MCAM monoclonal antibody, wherein the peptide comprises 5-50 contiguous amino acid residues of human MCAM (SEQ ID NO: 11) including amino acid residue 318.
38. The isolated peptide of claim 37, wherein the peptide is linked to a carrier polypeptide.
39. The isolated peptide of claim 37 or claim 38, wherein the peptide is combined with an adjuvant.
PCT/IB2016/055557 2015-09-16 2016-09-16 Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu's arteritis WO2017046774A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562219611P 2015-09-16 2015-09-16
US62/219,611 2015-09-16

Publications (2)

Publication Number Publication Date
WO2017046774A2 true WO2017046774A2 (en) 2017-03-23
WO2017046774A3 WO2017046774A3 (en) 2017-05-04

Family

ID=56990687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/055557 WO2017046774A2 (en) 2015-09-16 2016-09-16 Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu's arteritis

Country Status (1)

Country Link
WO (1) WO2017046774A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059761B2 (en) 2014-03-12 2018-08-28 Prothena Biosciences Limited Anti-Laminin4 antibodies specific for LG4-5
WO2019137309A1 (en) * 2018-01-09 2019-07-18 南京任诺药业有限公司 Humanized anti-human cd146 monoclonal antibody having high neutralizing activity
US10407507B2 (en) 2012-09-10 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10407506B2 (en) 2014-03-12 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
WO2022253805A1 (en) * 2021-06-01 2022-12-08 Symphogen A/S Anti-nkg2a antibodies and compositions
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses

Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634664A (en) 1982-01-22 1987-01-06 Sandoz Ltd. Process for the production of human mono-clonal antibodies
US4634666A (en) 1984-01-06 1987-01-06 The Board Of Trustees Of The Leland Stanford Junior University Human-murine hybridoma fusion partner
GB2220211A (en) 1988-06-29 1990-01-04 Ribi Immunochem Research Inc Modified lipopolysaccharides
WO1991010741A1 (en) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
WO1991017271A1 (en) 1990-05-01 1991-11-14 Affymax Technologies N.V. Recombinant library screening methods
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5194594A (en) 1990-09-07 1993-03-16 Techniclone, Inc. Modified antibodies
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5786464A (en) 1994-09-19 1998-07-28 The General Hospital Corporation Overexpression of mammalian and viral proteins
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
WO1998040100A1 (en) 1997-03-10 1998-09-17 Ottawa Civic Loeb Research Institute USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE AS AN ADJUVANT
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5834597A (en) 1996-05-20 1998-11-10 Protein Design Labs, Inc. Mutated nonactivating IgG2 domains and anti CD3 antibodies incorporating the same
US5837242A (en) 1992-12-04 1998-11-17 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
US5858657A (en) 1992-05-15 1999-01-12 Medical Research Council Methods for producing members of specific binding pairs
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US5871907A (en) 1991-05-15 1999-02-16 Medical Research Council Methods for producing members of specific binding pairs
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5877218A (en) 1994-01-10 1999-03-02 Teva Pharmaceutical Industries, Ltd. Compositions containing and methods of using 1-aminoindan and derivatives thereof and process for preparing optically active 1-aminoindan derivatives
US5888809A (en) 1997-05-01 1999-03-30 Icos Corporation Hamster EF-1α transcriptional regulatory DNA
US6063598A (en) 1995-10-24 2000-05-16 Dr. Karl Thomae Gmbh Strong homologous promoter obtained from hamsters
US6114148A (en) 1996-09-20 2000-09-05 The General Hospital Corporation High level expression of proteins
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
WO2003057838A2 (en) 2001-12-28 2003-07-17 Abgenix, Inc. Antibodies against the muc18 antigen
US6624821B1 (en) 1999-02-05 2003-09-23 Samsung Electronics Co., Ltd. Image texture retrieving method and apparatus thereof
WO2004050884A2 (en) 2002-11-29 2004-06-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel neomycin phosphotransferase genes and method for the selection of high-producing recombinant cells
WO2005019442A2 (en) 2003-08-19 2005-03-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Method for recloning production cells
US6881557B2 (en) 2001-07-12 2005-04-19 Arrowsmith Technologies Llp Super humanized antibodies
US7067131B2 (en) 2001-12-28 2006-06-27 Abgenix, Inc. Methods for using anti-MUC18 antibodies
US7090844B2 (en) 2001-12-28 2006-08-15 Abgenix, Inc. Use of antibodies against the MUC18 antigen
WO2008012142A1 (en) 2006-07-26 2008-01-31 Boehringer Ingelheim Pharma Gmbh & Co. Kg Regulatory nucleic acid elements
WO2008107388A1 (en) 2007-03-02 2008-09-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Improvement of protein production
WO2009027471A1 (en) 2007-08-29 2009-03-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Methods for increasing protein titers
US7569339B2 (en) 2004-11-10 2009-08-04 Boehringer Ingelheim Pharma Gmbh & Co., Kg Use of flow-cytrometric analysis to optimize cell banking strategies for CHO cells
WO2012170071A1 (en) 2011-06-06 2012-12-13 Elan Pharmaceuticas, Inc Mcam antagonists and methods of treatment
US8455622B2 (en) 2006-12-01 2013-06-04 Seattle Genetics, Inc. Variant target binding agents and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595007B (en) * 2012-09-10 2017-08-11 Neotope Biosciences Ltd Anti-mcam antibodies and associated methods of use
PT3116911T (en) * 2014-03-12 2019-09-04 Prothena Biosciences Ltd Anti-mcam (cd146, muc16) antibodies and associated methods of use

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634664A (en) 1982-01-22 1987-01-06 Sandoz Ltd. Process for the production of human mono-clonal antibodies
US4634666A (en) 1984-01-06 1987-01-06 The Board Of Trustees Of The Leland Stanford Junior University Human-murine hybridoma fusion partner
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
GB2220211A (en) 1988-06-29 1990-01-04 Ribi Immunochem Research Inc Modified lipopolysaccharides
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5585089A (en) 1988-12-28 1996-12-17 Protein Design Labs, Inc. Humanized immunoglobulins
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
WO1991010741A1 (en) 1990-01-12 1991-07-25 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1991017271A1 (en) 1990-05-01 1991-11-14 Affymax Technologies N.V. Recombinant library screening methods
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5874299A (en) 1990-08-29 1999-02-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5569825A (en) 1990-08-29 1996-10-29 Genpharm International Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5789650A (en) 1990-08-29 1998-08-04 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5814318A (en) 1990-08-29 1998-09-29 Genpharm International Inc. Transgenic non-human animals for producing heterologous antibodies
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5194594A (en) 1990-09-07 1993-03-16 Techniclone, Inc. Modified antibodies
US5871907A (en) 1991-05-15 1999-02-16 Medical Research Council Methods for producing members of specific binding pairs
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
US5565332A (en) 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5858657A (en) 1992-05-15 1999-01-12 Medical Research Council Methods for producing members of specific binding pairs
US5837242A (en) 1992-12-04 1998-11-17 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
US5877218A (en) 1994-01-10 1999-03-02 Teva Pharmaceutical Industries, Ltd. Compositions containing and methods of using 1-aminoindan and derivatives thereof and process for preparing optically active 1-aminoindan derivatives
US5786464A (en) 1994-09-19 1998-07-28 The General Hospital Corporation Overexpression of mammalian and viral proteins
US5786464C1 (en) 1994-09-19 2012-04-24 Gen Hospital Corp Overexpression of mammalian and viral proteins
US6063598A (en) 1995-10-24 2000-05-16 Dr. Karl Thomae Gmbh Strong homologous promoter obtained from hamsters
US5834597A (en) 1996-05-20 1998-11-10 Protein Design Labs, Inc. Mutated nonactivating IgG2 domains and anti CD3 antibodies incorporating the same
US6114148A (en) 1996-09-20 2000-09-05 The General Hospital Corporation High level expression of proteins
US6114148C1 (en) 1996-09-20 2012-05-01 Gen Hospital Corp High level expression of proteins
WO1998040100A1 (en) 1997-03-10 1998-09-17 Ottawa Civic Loeb Research Institute USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE AS AN ADJUVANT
US5888809A (en) 1997-05-01 1999-03-30 Icos Corporation Hamster EF-1α transcriptional regulatory DNA
US6624821B1 (en) 1999-02-05 2003-09-23 Samsung Electronics Co., Ltd. Image texture retrieving method and apparatus thereof
US6881557B2 (en) 2001-07-12 2005-04-19 Arrowsmith Technologies Llp Super humanized antibodies
US6924360B2 (en) 2001-12-28 2005-08-02 Abgenix, Inc. Antibodies against the MUC18 antigen
US7067131B2 (en) 2001-12-28 2006-06-27 Abgenix, Inc. Methods for using anti-MUC18 antibodies
US7090844B2 (en) 2001-12-28 2006-08-15 Abgenix, Inc. Use of antibodies against the MUC18 antigen
WO2003057838A2 (en) 2001-12-28 2003-07-17 Abgenix, Inc. Antibodies against the muc18 antigen
WO2004050884A2 (en) 2002-11-29 2004-06-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel neomycin phosphotransferase genes and method for the selection of high-producing recombinant cells
WO2005019442A2 (en) 2003-08-19 2005-03-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Method for recloning production cells
US7569339B2 (en) 2004-11-10 2009-08-04 Boehringer Ingelheim Pharma Gmbh & Co., Kg Use of flow-cytrometric analysis to optimize cell banking strategies for CHO cells
WO2008012142A1 (en) 2006-07-26 2008-01-31 Boehringer Ingelheim Pharma Gmbh & Co. Kg Regulatory nucleic acid elements
US8455622B2 (en) 2006-12-01 2013-06-04 Seattle Genetics, Inc. Variant target binding agents and uses thereof
WO2008107388A1 (en) 2007-03-02 2008-09-12 Boehringer Ingelheim Pharma Gmbh & Co. Kg Improvement of protein production
WO2009027471A1 (en) 2007-08-29 2009-03-05 Boehringer Ingelheim Pharma Gmbh & Co. Kg Methods for increasing protein titers
WO2012170071A1 (en) 2011-06-06 2012-12-13 Elan Pharmaceuticas, Inc Mcam antagonists and methods of treatment

Non-Patent Citations (62)

* Cited by examiner, † Cited by third party
Title
ARNON ET AL.: "Monoclonal Antibodies And Cancer Therapy", 1985, ALAN R. LISS, INC., article "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", pages: 243 - 56
ATWAL ET AL., SCI. TRANS. MED., vol. 3, 2011, pages 84RA43
BALDWIN ET AL.: "Monoclonal Antibodies For Cancer Detection And Therapy", 1985, ACADEMIC PRESS, article "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", pages: 303 - 16
BANNER ET AL., ACTA. CRYSTALLOGR. D. BIOL. CRYSTALLOGR., vol. 69, no. PT6, 2013, pages 1124 - 1137
BERTSCHINGER ET AL., PROTEIN ENG. DES. SEL., vol. 20, 2007, pages 57 - 68
BRACK ET AL., MOL. CANCER THER., vol. 13, 2014, pages 2030 - 2039
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 878 - 883
CHOTHIA, J., MOL. BIOL., vol. 196, 1987, pages 901
CHOTHIA; LESK, J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
CO ET AL., J. IMMUNOL., vol. 148, 1992, pages 1149
DENG ET AL., CIRC. RES., vol. 104, 2009, pages 488 - 495
DESHPANDE ET AL., NUCLEIC ACIDS RES., vol. 33, 2005, pages D233 - 7
EBERSBACH ET AL., J. MOL. BIOL., vol. 372, 2007, pages 172 - 185
FRIDEN ET AL., PNAS, vol. 88, 1991, pages 4771 - 4775
FRIDEN ET AL., SCIENCE, vol. 259, 1993, pages 373 - 377
GEBAUER; SKERRA, CURR. OPIN. CHEM. BIOL., vol. 13, 2009, pages 245 - 255
GLENN E. MORRIS,: "Methods in Molecular Biology", vol. 66, 1996, article "Epitope Mapping Protocols"
GONZALES ET AL., MOL. IMMUNOL., vol. 41, 2004, pages 863
GRABULOVSKI ET AL., J. BIOL. CHEM., vol. 282, 2007, pages 3196 - 3204
HARLOW; LANE: "Antibodies, A Laboratory Manual", 1988, CSHP
HAZRA ET AL., CELL BIOPHYS, vol. 24-25, 1994, pages 1 - 7
HELLSTROM ET AL.: "Controlled Drug Delivery (2nd Ed.),", 1987, MARCEL DEKKER, INC., article "Antibodies For Drug Delivery", pages: 623 - 53
HINTON ET AL., J. BIOL. CHEM., vol. 279, 2004, pages 6213
KABAT ET AL.: "Sequences of Proteins of Immunological Interest, Fifth Edition", 1991, NIH PUBLICATION NO. 91-3242
KABAT: "Sequences of Proteins of Immunological Interest", 1987, NATIONAL INSTITUTES OF HEALTH
KENSIL ET AL.: "Vaccine Design: The Subunit and Adjuvant Approach", 1995, PLENUM PRESS
KOIDE; KOIDE, METHODS MOL. BIOL., vol. 352, 2007, pages 95 - 109
KOLMAR, FEBS J., vol. 275, 2008, pages 2684 - 2690
KOSTELNY ET AL., J. IMMUNOL., vol. 148, 1992, pages 1547 - 53
KREHENBRINK ET AL., J. MOL. BIOL., vol. 383, 2008, pages 1058 - 1068
LAZAR ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 4005
LUNDQUIST, INFECT. IMMUN., vol. 74, 2006, pages 3222 - 31
MANSKE ET AL., CLIN. IMMUNOL, vol. 120, 2006, pages 106 - 20
MARTIN; THORNTON, J MOL BIOL., vol. 263, 1996, pages 800 - 15
MILLS ET AL., CANCER RES., vol. 62, 2002, pages 5106
NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 826
NATURE, vol. 148, 1994, pages 1547 - 1553
NIXON; WOOD, CURR. OPIN. DRUG. DISCOV. DEV., vol. 9, 2006, pages 261 - 268
NYGREN ET AL., FEBS J., vol. 275, 2008, pages 2668 - 2676
OESTBERG ET AL., HYBRIDOMA, vol. 2, 1983, pages 361 - 367
PADLAN, MOL. IMMUNOL., vol. 28, 1991, pages 489
PAUL, W.,: "Fundamental Immunology, 2nd ed.", 1989, RAVEN PRESS
PIETERSZ ET AL., CANCER RES., vol. 48, no. 16, 1998, pages 4469 - 4476
POLITO ET AL., LEUKEMIA, vol. 18, 2004, pages 1215 - 1222
QUEEN ET AL., IMMUNOL. REV., vol. 89, 1986, pages 49
RINI ET AL., SCIENCE, vol. 255, 1992, pages 959 - 65
SAMSON, CLIN EXP RHEUMATOL, vol. 31, no. 1, 19 April 2013 (2013-04-19), pages S65 - 73
SCHLATTER ET AL., MABS, vol. 4, 2011, pages 497 - 508
SCOPES: "Protein Purification", 1982, SPRINGER-VERLAG
SHIRAI ET AL., FEBS LETT., vol. 455, 1999, pages 188 - 97
SILVERMAN ET AL., BIOTECHNOL., vol. 23, 2005, pages 1556 - 1561
SKERRA, FEBS J., vol. 275, 2008, pages 2677 - 2683
SONGSIVILAI; LACHMANN, CLIN. EXP. IMMUNOL., 1990, pages 315 - 321
STOUTE ET AL., N. ENGL. J. MED., vol. 336, 1997, pages 86 - 91
STUMPP ET AL., DRUG. DISCOV. TODAY, vol. 13, 2008, pages 695 - 701
SU ET AL., J. IMMUNOL, vol. 181, 2008, pages 1264 - 71
TANG ET AL., J. MOL. BIOL., vol. 425, 2013, pages 1670 - 82
THORPE ET AL., IMMUNOL. REV., vol. 62, 1982, pages 119 - 58
THORPE ET AL.: "Monoclonal Antibodies 84: Biological And Clinical Applications", 1985, article "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", pages: 475 - 506
WITZIG, CANCER CHEMOTHER. PHARMACOL., vol. 48, no. 1, 2001, pages S91 - S95
WU ET AL.: "Antibody Engineering", 2010, SPRINGER, article "Generation and Characterization of a Dual Variable Domain Immunoglobulin (DVD-IgTM) Molecule"
YU ET AL., SCI. TRANS. MED., vol. 3, 2011, pages 84RA44

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407507B2 (en) 2012-09-10 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10414825B2 (en) 2012-09-10 2019-09-17 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10584177B2 (en) 2012-09-10 2020-03-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10059761B2 (en) 2014-03-12 2018-08-28 Prothena Biosciences Limited Anti-Laminin4 antibodies specific for LG4-5
US10407506B2 (en) 2014-03-12 2019-09-10 Prothena Biosciences Limited Anti-MCAM antibodies and associated methods of use
US10654920B2 (en) 2014-03-12 2020-05-19 Prothena Biosciences Limited Anti-laminin4 antibodies specific for LG4-5
US10889636B2 (en) 2014-03-12 2021-01-12 Prothena Biosciences Limited Anti-Laminin4 antibodies specific for LG4-5
WO2019137309A1 (en) * 2018-01-09 2019-07-18 南京任诺药业有限公司 Humanized anti-human cd146 monoclonal antibody having high neutralizing activity
WO2022253805A1 (en) * 2021-06-01 2022-12-08 Symphogen A/S Anti-nkg2a antibodies and compositions
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses

Also Published As

Publication number Publication date
WO2017046774A3 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
US20200010563A1 (en) Anti-mcam antibodies and associated methods of use
US20150259419A1 (en) Anti-MCAM Antibodies and Associated Methods of Use
WO2017046774A2 (en) Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu&#39;s arteritis
US10654920B2 (en) Anti-laminin4 antibodies specific for LG4-5
EP3350226A2 (en) Use of anti-mcam antibodies for treatment or prophylaxis of giant cell arteritis, polymyalgia rheumatica or takayasu&#39;s arteritis
US20170101470A1 (en) Use of Anti-MCAM Antibodies for Treatment or Prophylaxis of Giant Cell Arteritis, Polymyalgia Rheumatica or Takayasus Arteritis
US20170129954A1 (en) Use of Anti-MCAM Antibodies for Treatment or Prophylaxis of Giant Cell Arteritis, Polymyalgia Rheumatica or Takayasus Arteritis
US20170158755A1 (en) Anti-laminin4 antibodies specific for lg1-3
WO2017149513A1 (en) Anti-mcam antibodies and associated methods of use
CN116249717A (en) Antibodies recognizing sortilin
WO2017153953A1 (en) Use of anti-mcam antibodies for treatment or prophylaxis of granulomatous lung diseases
WO2017153955A1 (en) Use of anti-mcam antibodies for treatment or prophylaxis of granulomatous lung diseases
US10442855B2 (en) Antibodies recognizing medin
JP2018508193A (en) Antibodies that recognize medin
WO2023122766A2 (en) Antibodies recognizing sortilin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16770569

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16770569

Country of ref document: EP

Kind code of ref document: A2