WO2017045499A1 - 一种信息的传输方法、终端和基站 - Google Patents

一种信息的传输方法、终端和基站 Download PDF

Info

Publication number
WO2017045499A1
WO2017045499A1 PCT/CN2016/094961 CN2016094961W WO2017045499A1 WO 2017045499 A1 WO2017045499 A1 WO 2017045499A1 CN 2016094961 W CN2016094961 W CN 2016094961W WO 2017045499 A1 WO2017045499 A1 WO 2017045499A1
Authority
WO
WIPO (PCT)
Prior art keywords
last
harq
terminal
dai
ack
Prior art date
Application number
PCT/CN2016/094961
Other languages
English (en)
French (fr)
Inventor
梁春丽
戴博
杨维维
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017045499A1 publication Critical patent/WO2017045499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present application relates to, but is not limited to, a wireless communication technology, and more particularly to a method for transmitting information, a terminal, and a base station.
  • the uplink channel of the terminal includes a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), and a Physical Random Access Channel ( Physical Ramdom Acess Channel (PRACH), further transmitting data information, Scheduling Request (SR), Hybrid Automatic Repeat Request ACKnowledgement (HARQ-ACK) information, and channel state information (Channel State) in the PUSCH Information, CSI), the PUCCH may transmit SR, HARQ-ACK, and CSI, where the HARQ-ACK indicates a physical downlink shared channel (PDSCH) or a Semi-Persistent Scheduling (SPS) release.
  • the response message of the physical downlink control channel/physical downlink control channel Physical Downlink Control Channel/Enhanced PDCCH, PDCCH/EPDCCH).
  • LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • a carrier that performs aggregation is called a component carrier (CC), which is also called a serving cell.
  • CC component carrier
  • PCC/PCell Primary Component Carrier/Cell
  • SCC/SCell Secondary Component Carrier/Cell
  • at least one primary serving cell and a secondary serving cell are included, wherein the primary serving cell is always in an active state.
  • the protocol defines a variety of PUCCH formats to suit different scenarios.
  • the various PUCCH formats include:
  • PUCCH format 1 bears the SR
  • PUCCH format 1a/1b carrying 1/2 bit HARQ-ACK, or 1/2 bit HARQ-ACK and SR;
  • PUCCH format 2a/2b carrying 1/2 bit HARQ-ACK and periodic CSI
  • PUCCH format 2 bearer period CSI or bearer period CSI and HARQ-ACK;
  • PUCCH format 3 bears HARQ-ACK, or carries HARQ-ACK and SR, or carries HARQ-ACK and CSI, or carries HARQ-ACK, SR, and CSI.
  • PUCCH format 3 itself can carry up to 22 bits, and the related protocol specifies up to 20-bit HARQ-ACK, or 20-bit HARQ-ACK and 1-bit SR, or 10-bit HARQ and 11-bit CSI and 1 The SR of the bit.
  • the numbers 1, 2, and 3 in the PUCCH formats 1, 2, and 3 are used to distinguish three different channel formats, where the channel format refers to the position of the reference signal and the channelization process, and the letters a and b.
  • Binary Phase Shift Keying (BPSK) modulation and Quadrature Phase Shift Keyin (QPSK) modulation are used respectively.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keyin
  • PUCCH format 4 Two possible structural diagrams of the candidate PUCCH format 4 are shown in Figures 4a and 4b, respectively. If more than one new physical uplink control channel is subsequently introduced, it can be distinguished by PUCCH formats 4a, 4b, ..., etc., and different new PUCCH formats have different capabilities for carrying information bits.
  • this format can be regarded as the frequency domain extension of PUCCH format 3 as shown in FIG. 3.
  • the difference from PUCCH format 3 is that the frequency domain occupies 2 physical resources. Physical Resource Block (PRB).
  • PRB Physical Resource Block
  • its ability to carry information bits is doubled with respect to PUCCH format 3, which can carry up to 22 information bits, and this structure can carry 44 information bits. If the PRB occupied by the frequency domain increases, the information bits that can be carried also increase accordingly.
  • the symbols 0, 1, 2, 4, 5, and 6 in each slot can be used for data transmission, and thus can carry up to 144 modulation symbols (D0 ⁇ ).
  • D143 if QPSK modulation is employed, the new PUCCH format shown in Figure 4a can carry 288 encoded bits. If the channel coding rate is considered to be no more than 0.5, the new PUCCH format shown in Figure 4a can carry 144 information bits.
  • the current number of HARQ-ACK feedback bits is determined based on the configured parameters.
  • the terminal determines the number of bits of the HARQ-ACK to be fed back and a feedback HARQ according to the configured number of serving cells and the transmission mode configured by the serving cell.
  • the uplink subframe of the ACK, the corresponding downlink serving cell constitutes a binding window, and FIG.
  • the terminal determines the number of HARQ-ACK bits to be fed back according to the configured number of serving cells, the transmission mode configured by the serving cell, and the uplink and downlink configuration of the serving cell, and a feedback HARQ-ACK uplink.
  • the subframe, the corresponding downlink serving cell and the downlink subframe form a binding window, and FIG.
  • FIG. 6 shows a schematic diagram of the HARQ-ACK binding window in the aggregation system of the Time Division Duplexing (TDD) of the primary serving cell.
  • TDD Time Division Duplexing
  • the above-mentioned HARQ-ACK bit number determining method has a problem in that a large number of serving cells are configured in a scenario in which the FDD is a primary serving cell, or a plurality of serving cells and subframes are configured in a scenario in which the TDD is a primary serving cell.
  • the base station side actually schedules the need to feed back HARQ-ACK.
  • the serving cell (corresponding to FDD) or the serving cell and the subframe (corresponding to TDD) are relatively small, the terminal will feed back a large amount of useless HARQ-ACK.
  • These useless HARQ-ACK information affects the receiving performance of the HARQ-ACK on the base station side, and on the other hand, the terminal needs more transmission power and/or more uplink resources to transmit HARQ-ACK.
  • the embodiments of the present invention provide a method for transmitting information, a terminal, and a base station, which can improve the efficiency of feedback information of the terminal, reduce the impact on the receiving performance of the base station, and reduce the transmission power when the terminal feeds back information and reduce the occupied uplink resources.
  • An embodiment of the present invention provides a method for transmitting information, including:
  • the terminal receives a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH), and a physical downlink shared channel (PDSCH);
  • PDCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal determines a hybrid automatic repeat request response (HARQ-ACK) codebook and a resource for carrying the HARQ-ACK according to at least one of the following parameters; wherein the parameter includes: the terminal receives the Downlink control information (DCI) carried on the PDCCH or the EPDCCH, the number of PDCCHs or EPDCCHs received by the terminal, or the number of PDSCHs received by the terminal;
  • DCI Downlink control information
  • a state of the HARQ-ACK according to a detection result of the received PDSCH or PDCCH or an EPDCCH, where the state of the HARQ-ACK refers to a state of a bit sequence in the HARQ-ACK codebook, The status of each bit is acknowledgment (ACK) or non-acknowledgement (NACK);
  • the terminal determines the HARQ-ACK codebook that is fed back, including:
  • DCI downlink allocation index
  • the terminal Determining, by the terminal, the HARQ-ACK codebook according to the number of received PDSCHs and PDCCHs;
  • the terminal Determining, by the terminal, the HARQ-ACK codebook according to the number of received PDSCHs and EPDCCHs;
  • the terminal determines the HARQ-ACK codebook according to the DAI and the number of received PDSCHs and EPDCCHs.
  • the DAI is pre-agreed by the terminal and the base station, and the DAI is one of the following manners:
  • Manner 1 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset order, indicating that the base station that is in the first preset sequence is down to the current serving cell has been scheduled.
  • Manner 2 In the binding window, according to the DAI in the first Nm DCIs in the second preset order, indicating that the current serving cell and the current downlink subframe base station have been scheduled to have a corresponding PDCCH according to the second preset sequence.
  • the PDSCH of the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release according to the DAI in the last m DCIs in the second preset sequence, indicating the PDSCH with the corresponding PDCCH or EPDCCH scheduled by the base station in the binding window and indicating the SPS release.
  • Manner 3 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of the PDCCH or the EPDCCH indicating the SPS release according to the DAI in the last m DCIs in the first preset sequence, indicating that the current downlink subframe base station has a corresponding PDCCH scheduled.
  • Manner 4 In the binding window, according to the DAI in the foregoing Nm DCIs in the second preset sequence, indicating that the current serving cell and the current downlink subframe base station have been scheduled according to the second preset sequence
  • the codeword corresponding to the PDSCH of the PDCCH or the EPDCCH and the number of the PDCCH or the EPDCCH indicating the SPS release according to the DAI in the last m DCIs in the second preset sequence, indicating that the corresponding PDCCH or EPDCCH is scheduled by the base station in the binding window.
  • Manner 5 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell a PDSCH corresponding to the PDCCH or the EPDCCH and a number of PDCCHs or EPDCCHs indicating the release of the SPS, and the DAIs in the last m DCIs according to the first preset sequence are repetitions of the DAIs of the scheduled Nm serving cells;
  • Manner 6 In the binding window, according to the DAI in the first Nm DCIs in the second preset sequence, indicating that the current serving cell and the current subframe base station have been scheduled according to the second preset sequence have corresponding PDCCHs. Or the PDSCH of the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release, and the DAI in the last m DCIs according to the second preset sequence is a repetition of the DAI in the scheduled Nm DCIs;
  • Manner 7 On each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of PDCCHs or EPDCCHs indicating the release of the SPS, and the DAI in the last m DCIs according to the first preset sequence is the repetition of the DAI of the scheduled Nm serving cells. ;
  • Manner 8 In the binding window, according to the DAI in the first Nm DCIs in the second preset sequence, indicating that the current serving cell and the current downlink subframe base station have been scheduled according to the second preset sequence a codeword corresponding to a PDSCH of the PDCCH or the EPDCCH and a number of PDCCHs or EPDCCHs indicating the SPS release, and the DAI in the last m DCIs according to the second preset sequence is a repetition of the DAI in the scheduled Nm DCIs;
  • the DAI in the first Nm DCIs according to the first preset sequence or the DAI in the foregoing Nm DCIs in the second preset order are all defined as a counter type DAI, and the foregoing Nm DCIs.
  • the value of the DAI in the increment is or is decreased; the according to the first preset
  • the values of the DAIs in the last m DCIs or the DAIs in the last m DCIs in the second preset order are the same; for the modes 1, 2, 3 or 4, the last m values are the same.
  • the DAI is defined as the total type DAI. For the mode 5, 6, 7, or 8, the last m DAIs with the same value are defined as the duplicate DAI;
  • N represents the number of DCIs that the base station schedules for the terminal in each downlink subframe in the binding window; for mode 2, 4, 6, or 8, N represents Determining, in the binding window, the number of DCIs that the base station schedules to the terminal; and N is greater than m.
  • the m is a value that is agreed between the terminal and the base station, or is a predetermined value, or the base station indicates the value of the terminal by using high layer signaling.
  • the first preset sequence is an order according to a serving cell index from low to high or high to low; and the second preset sequence is sequentially according to a serving cell index in each subframe in the binding window.
  • the order obtained by sorting from low to high or high to low and concatenating the sorts within each sub-frame.
  • the HARQ-ACK codebook includes a sorting manner of the HARQ-ACK codebook size and a bit sequence in the HARQ-ACK codebook, where the HARQ-ACK codebook size refers to the HARQ- The number of bits of the ACK.
  • the terminal determines the HARQ-ACK codebook to be fed back, including:
  • the terminal Determining, by the terminal, the number of bits of the HARQ-ACK and the HARQ-ACK bit sequence that need to be fed back in each downlink subframe in the binding window according to the DAI received on each downlink subframe in the binding window.
  • the HARQ-ACK of the PDSCH of the SPS is concatenated at the end of the HARQ-ACK bit sequence of the downlink subframe according to the first preset sequence, and then bound
  • the HARQ-ACK bit sequence of each downlink subframe in the window is cascaded in the order of the subframes as the HARQ-ACK codebook.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the terminal If the terminal does not receive any base station scheduling in the downlink subframe corresponding to the binding window, the terminal sets the HARQ-ACK corresponding to the downlink subframe to a first preset number of NACKs.
  • the first preset number takes a value of 4; and for mode 3 or mode 7, the first preset number takes a value of 8.
  • the terminal determines the state of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH, including:
  • the terminal When the terminal receives a PDSCH that includes two codewords, the terminal spatially binds the HARQ-ACK corresponding to the two codewords to the HARQ-ACK corresponding to the PDSCH, where the space is bound.
  • the logical AND operation is performed on the HARQ-ACK of the two codewords.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines the number of bits of the HARQ-ACK that need to be fed back for each downlink subframe in the binding window in the following manner;
  • the method is: the terminal determines the received value of the last count type DAI according to the first preset sequence. Corresponding And determining, by the terminal, the value of the last total type DAI received according to the first preset sequence The number of bits of the HARQ-ACK that need to be fed back for each downlink subframe is greater than And corresponding Minimum value, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the DAI contains 2 bits of information
  • the terminal determines the location.
  • the PDCCH or EPDCCH loss does not occur on the last two serving cells scheduled by the base station.
  • the last two DAIs with the same value are the total type DAI, and the third last DAI is the last counter type DAI received.
  • the terminal sets a state of the last two HARQ-ACKs according to the detection result of the last two serving cells, and if the PDSCH includes two codewords, the HARQ corresponding to the PDSCH that includes the two codewords - ACK performs spatial bundling; if the values of the last two DAIs are not the same, the terminal determines that PDCCH or EPDCCH loss occurs on the last two serving cells scheduled by the base station, and the last received DAI is received. For the total type of DAI, The second last DAI is the last counter type DAI received, and the terminal sets the state of the last two HARQ-ACKs to be NACK;
  • the value of the last counter type DAI is the same as the value of the total type DAI.
  • the terminal determines that no PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the last four DAIs with the same value are the total DAI.
  • the fifth last DAI is the last counter type DAI received, and the terminal sets the state of the last four HARQ-ACKs according to the detection result of the last four serving cells, if the PDSCH includes two a codeword, where the HARQ-ACK corresponding to the PDSCH including the 2 codewords is spatially bound;
  • the terminal determines that PDCCH or EPDCCH loss occurs on the last five serving cells scheduled by the base station, and the terminal sets the last counter type DAI and the total type DAI to the last. 1 DAI value, at the same time, the terminal sets the state of the last 5 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last two or five in the HARQ-ACK codebook, the terminal is set to ACK or NACK according to the detection result of the PDSCH, and if the PDSCH includes two codewords, The terminal performs spatial binding on the HARQ-ACK of the two codewords; the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines the number of HARQ-ACK bits that need to be fed back for each downlink subframe in the binding window as follows:
  • the method is: if the terminal determines, according to the previously received DAI, the value of the last DAI in the downlink subframe. corresponding The number of HARQ-ACK bits that need to be fed back for each downlink subframe is Plus m, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the terminal For mode 5, for each downlink subframe in the binding window, if the terminal receives If the value of the last m+1 DAIs is the same, the terminal determines that no PDCCH or EPDCCH loss occurs on the last m+1 serving cells, and the terminal detects the last m+1 serving cells according to the As a result, the state of the last m+1 HARQ-ACKs is set; if the values of the last m+1 DAIs are not the same, the terminal sets the state of the last m+1 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last m+1 in the HARQ-ACK codebook, the terminal is set to ACK or NACK according to the detection result of the PDSCH, and if the PDSCH includes 2 codewords, the The terminal spatially binds the HARQ-ACK of the 2 codewords; the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines, according to the manner, the number of HARQ-ACK bits that need to be fed back for each downlink subframe in the binding window;
  • the method is: the terminal determines the received value of the last count type DAI according to the first preset sequence. Corresponding Determining, by the terminal, the last total DAI value received according to the first preset sequence The number of HARQ-ACK bits that need to be fed back in each downlink subframe is greater than And corresponding Minimum value, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the DAI value of the last m serving cells that the base station and the terminal have agreed to schedule are determined according to each service cell scheduling only one codeword:
  • the terminal determines that no PDCCH or EPDCCH loss occurs on the last two serving cells scheduled by the base station, and the last two DAIs with the same value are the total type DAI, and the third last DAI is the last received one.
  • the counter type DAI at the same time, the terminal sets the state of the last two HARQ-ACKs according to the detection result of the last two serving cells, and when the last two serving cells have scheduled the PDSCH including two codewords, Emptying the HARQ-ACK of the two codewords If the values of the last two DAIs are different, the terminal determines that PDCCH or EPDCCH loss occurs on the last two serving cells scheduled by the base station, and the last received DAI is a total-type DAI.
  • the second last DAI is the last counter type DAI received, and the terminal sets the state of the last two HARQ-ACKs to be NACK;
  • the terminal determines that no PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the last four DAIs with the same value are the total number.
  • DAI the last 5th DAI is the last counter type DAI received, and the terminal sets the state of the last 4 HARQ-ACKs according to the detection result of the last 4 serving cells, when the last 4 If the serving cell has a PDSCH that contains 2 codewords, the HARQ-ACK of the 2 codewords is spatially bound; if the values of the last 5 DAIs are different, the terminal determines the last scheduled base station.
  • the PDCCH or EPDCCH is lost on the five serving cells, and the last DAI is the total type DAI.
  • the DAI that is different from the last one and the last DAI is the last counter type DAI received.
  • the terminal sets the state of the last five HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last two or five in the HARQ-ACK codebook, the terminal is set to ACK or NACK according to the detection result of the PDSCH, and if the PDSCH includes two codewords, The terminal performs spatial binding on the HARQ-ACK of the two codewords; and for the HARQ-ACK without the corresponding PDSCH, the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the base station and the terminal agree that the DAI value of the last m scheduled serving cells is determined according to scheduling 2 code words per serving cell:
  • the terminal determines that no PDCCH or EPDCCH loss occurs on the last two serving cells scheduled by the base station, and the last two DAIs having the same value are the total type DAI, and the third last DAI is Receiving the last counter type DAI, at the same time, the terminal sets the state of the last 4 HARQ-ACKs according to the detection result of the last 2 serving cells, when only the single codeword is scheduled in the last 2 serving cells For the PDSCH, the second HARQ-ACK corresponding to the serving cell is set to NACK; if the values of the last two DAIs are different, the terminal determines that the PDCCH or EPDCCH has occurred on the last two serving cells scheduled by the base station. Loss, the last received DAI is a total type DAI, the second last DAI is the last counter type DAI received, and the terminal sets the
  • the terminal determines that no PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the last four DAIs with the same value are the total number.
  • DAI the last 5th DAI is the last counter type DAI received, and the terminal sets the state of the last 8 HARQ-ACKs according to the detection result of the last 4 serving cells, when the last 4 The serving cell has a PDSCH with only a single codeword scheduled, and the second HARQ-ACK corresponding to the serving cell is set to NACK;
  • the terminal determines that PDCCH or EPDCCH loss occurs on the last five serving cells scheduled by the base station, and the terminal sets the last counter type DAI and the total type DAI to the last one DAI.
  • the value of the terminal at the same time, the terminal sets the state of the last 8 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last 4 or 8 in the HARQ-ACK codebook, the terminal is set to ACK or NACK according to the corresponding codeword detection result of the PDSCH; and for the HARQ without the corresponding PDSCH. - ACK, the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines, according to the manner, the number of HARQ-ACK bits that need to be fed back for each downlink subframe in the binding window;
  • the method is: if the terminal determines, according to the previously received DAI, the value of the last DAI in the downlink subframe. corresponding
  • the number of HARQ-ACK bits that need to be fed back for each downlink subframe is Plus m or 2m, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the base station and the terminal agree that the last m scheduled serving cells are in accordance with HARQ-ACK feedback of 1 bit per serving cell, for each of the bound windows. If the value of the last m+1 DAIs received by the terminal is the same, the terminal determines that no PDCCH or EPDCCH is lost on the last m+1 serving cells, and the terminal is The detection result of the last m+1 serving cells sets the state of the last m+1 HARQ-ACKs; if the values of the last m+1 DAIs are not the same, the terminal sets the last m+1 HARQ-ACKs.
  • the state of the HARQ-ACK other than the last m+1 HARQ-ACKs in the HARQ-ACK codebook is set to ACK or NACK according to the detection result of the PDSCH, and if the PDSCH includes two codewords, And performing spatial binding on the HARQ-ACK of the 2 codewords; the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK;
  • the base station and the terminal agree that the last m scheduled serving cells are in accordance with the HARQ-ACK feedback of 2 bits per serving cell, for each downlink subframe in the binding window. If the value of the last m+1 DAIs received by the terminal is the same, the terminal determines that no PDCCH or EPDCCH loss occurs on the last m+1 serving cells, and the terminal is based on the last m The detection result of the serving cell sets the state of the last 2m HARQ-ACKs; if the value of the last m+1 DAIs is not the same, the terminal sets the state of the last 2m HARQ-ACKs to be NACK; for the HARQ-ACK code The state of the other HARQ-ACKs except the last 2m HARQ-ACKs is set to ACK or NACK according to the detection result of the corresponding codeword of the PDSCH; and for the HARQ-ACK without the corresponding PDSCH, the terminal will have no corresponding PDSCH.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the HARQ-ACK of the PDSCH of the SPS is in accordance with the second preset sequence level At the end of the HARQ-ACK bit sequence.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines the number of HARQ-ACK bits that need to be fed back in the binding window in the following manner;
  • the method is: the terminal determines the received value of the last count type DAI according to the second preset sequence. Corresponding Determining, by the terminal, the last total DAI value received according to the second preset sequence The number of HARQ-ACK bits that the binding window needs to feed back is greater than And corresponding Minimum value, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the DAI contains 2 bits of information
  • the terminal determines, according to the last 3 DAIs received in the binding window, if the values of the last two DAIs are the same, the terminal determines that the last two DCIs scheduled by the base station are not Lost, the last two DAIs having the same value are the total type DAI, and the third last DAI is the last counter type DAI received, and the terminal is based on the detection result of the last two PDSCHs.
  • the terminal determines that one of the last two DCIs scheduled by the base station is lost, and the last received DAI is a total type DAI, the second last DAI is the last counter type DAI received, and the terminal sets the state of the last two HARQ-ACKs to be NACK;
  • the terminal determines that the last five DCIs scheduled by the base station are not lost, and the last four DAIs having the same value are the total type DAI, and the last number is 5 DAIs are the last counter type DAI received, and the terminal sets the state of the last 4 HARQ-ACKs according to the detection result of the last 4 PDSCHs; if the values of the last 5 DAIs are different
  • the terminal determines that at least one of the last five DCIs scheduled by the base station is lost, and the terminal sets the last counter type DAI and the total type DAI. All are set to the value of the last 1 DAI, and the terminal sets the state of the last 5 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last two or five in the HARQ-ACK codebook, the terminal is set to ACK or NACK according to the detection result of the PDSCH, and if the PDSCH includes two codewords, The terminal performs spatial binding on the HARQ-ACK of the two codewords; and for the HARQ-ACK without the corresponding PDSCH, the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines the number of HARQ-ACK bits that need to be fed back in the binding window in the following manner;
  • the method is: if the terminal determines the value of the last DAI according to the previously received DAI in the binding window. corresponding The number of HARQ-ACK bits that the binding window needs to feed back is Plus m, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the terminal determines that the last m+1 DCIs are not lost, and the terminal is based on the last m+1
  • the detection result of the PDSCH is set to the state of the last m+1 HARQ-ACKs; otherwise, the terminal sets the state of the last m+1 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last m+1 HARQ-ACKs in the HARQ-ACK codebook, the terminal is set to ACK or NACK according to the detection result of the PDSCH, and if the PDSCH includes two codewords, The terminal performs spatial binding on the HARQ-ACK of the two codewords; the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the terminal determines the HARQ-ACK codebook that is fed back, including:
  • the terminal determines the number of HARQ-ACK bits that need to be fed back in the binding window in the following manner;
  • the method is: the terminal determines the received value of the last count type DAI according to the second preset sequence. Corresponding Determining, by the terminal, a value of the last total type DAI received according to the second preset sequence The number of HARQ-ACK bits that the binding window needs to feed back is greater than And corresponding Minimum value, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the base station and the terminal agree that the value of the DAI in the last m scheduled DCIs is determined by scheduling only one codeword per PDSCH:
  • the terminal determines, according to the last 3 DAIs received in the binding window, if the values of the last 2 DAIs are the same, the terminal determines the last 2 scheduled by the base station.
  • the DCI is not lost, the last two DAIs having the same value are the total type DAI, and the third last DAI is the last counter type DAI received, and the terminal is based on the last two PDSCHs.
  • the state of the last two HARQ-ACKs is set.
  • the terminal determines that one of the last two DCIs scheduled by the base station is lost, and the last received DAI is a total type DAI, and the second last DAI is the last counter type DAI received.
  • the terminal sets the state of the last two HARQ-ACKs to be NACK;
  • the terminal determines that the last five DCIs scheduled by the base station are not lost, and the last four DAIs having the same value are the total type DAI, and the last number is The five DAIs are the last counter type DAI received, and the terminal sets the state of the last four HARQ-ACKs according to the detection result of the last four PDSCHs, when the last four PDSCHs contain two codes. If the value of the last five DAIs is different, the terminal determines that at least one of the last five DCIs scheduled by the base station is lost. The terminal sets the last counter type DAI and the total type DAI to the value of the last 1 DAI, and the terminal sets the state of the last 5 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last two or five in the HARQ-ACK codebook, the terminal sets the ACK or NACK according to the detection result of the PDSCH, if The PDSCH includes two codewords, and then spatially binds the HARQ-ACK of the two codewords; the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the base station and the terminal agree that the value of the DAI in the last m scheduled DCIs is determined according to two codewords per PDSCH:
  • the terminal determines, according to the last 3 DAIs received in the binding window, if the values of the last 2 DAIs are the same, the terminal determines the last 2 DCIs scheduled by the base station. Without loss, the last two DAIs with the same value are the total type DAI, the third last DAI is the last counter type DAI received, and the terminal detects the last two PDSCHs according to the second PDSCH. As a result, the state of the last four HARQ-ACKs is set.
  • the second HARQ-ACK corresponding to the PDSCH is set to NACK; if the values of the last two DAIs are If the terminal is different, the terminal determines that one of the last two DCIs scheduled by the base station is lost, and the last received DAI is a total type DAI, and the second last DAI is the last counter type DAI received. At the same time, the terminal sets the state of the last four HARQ-ACKs to be NACK;
  • the terminal determines that the last five DCIs scheduled by the base station are not lost, and the last four DAIs having the same value are the total type DAI, and the last number is 5 DAIs are the last counter type DAI received, and the terminal sets the state of the last 8 HARQ-ACKs according to the detection result of the last 4 PDSCHs, when only the last 4 PDSCHs are scheduled. If the codeword is used, the second HARQ-ACK corresponding to the PDSCH is set to NACK; if the values of the last five DAIs are different, the terminal determines that at least one of the last five DCIs scheduled by the base station is lost. The terminal sets the last counter type DAI and the total type DAI to the value of the last 1 DAI, and the terminal sets the state of the last 8 HARQ-ACKs to be NACK;
  • the terminal For the state of the HARQ-ACK other than the last four or eight in the HARQ-ACK codebook, the terminal sets the ACK or NACK according to the detection result of the PDSCH corresponding codeword; For a HARQ-ACK without a corresponding PDSCH, the terminal sets the state of the HARQ-ACK without the corresponding PDSCH to NACK.
  • the terminal determines the feedback HARQ-ACK codebook, including:
  • the terminal determines the number of HARQ-ACK bits that need to be fed back in the binding window in the following manner;
  • the method is: if the terminal determines the value of the last DAI according to the previously received DAI in the binding window. corresponding The number of HARQ-ACK bits that the binding window needs to feed back is Plus m or 2m, where versus The corresponding relationship is that the terminal and the base station agree.
  • the determining, by the terminal, the status of the HARQ-ACK according to the detection result of the received PDSCH or the PDCCH or the EPDCCH including:
  • the base station and the terminal agree that the last m scheduled PDSCHs feed back 1-bit HARQ-ACK according to each PDSCH, for the binding window, if If the value of the last m+1 DAIs received by the terminal is the same, the terminal determines that the last m+1 DCIs are not lost, and the terminal sets the last according to the detection result of the last m+1 PDSCHs.
  • the base station and the terminal agree that the last m scheduled PDSCHs feed back 2 bits of HARQ-ACK per PDSCH, if the terminal receives the last m+1 DAIs. If the value is the same, the terminal determines that the last m+1 DCIs are not lost, and the terminal sets the state of the last 2m HARQ-ACKs according to the detection result of the last m PDSCHs, when the last m PDSCHs have If only a single codeword is scheduled, the second HARQ-ACK corresponding to the PDSCH is set to NACK; if the value of the last m+1 DAIs is not the same, the terminal sets the state of the last 2m HARQ-ACK to NACK;
  • the terminal For the state of the HARQ-ACK other than the last m+1 or 2m in the HARQ-ACK codebook, the terminal sets the ACK or NACK according to the detection result of the PDSCH corresponding codeword; the terminal will not have The state of the HARQ-ACK corresponding to the PDSCH is set to NACK.
  • the resource used for carrying the HARQ-ACK is a physical uplink control channel. (PUCCH) resource or Physical Uplink Shared Channel (PUSCH) resource.
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal determines, by the terminal, the resource used to carry the HARQ-ACK, including:
  • the terminal determines that the PUCCH format used is PUCCH format 3; otherwise, the terminal determines that the used PUCCH format is Defining the PUCCH format;
  • the first preset value is a value agreed by the terminal and the base station, or the maximum number of information bits that can be carried by the PUCCH format 3, or a value of a high-level configuration.
  • the redefined PUCCH format includes a total of N formats from the first to the Nth new PUCCH formats
  • the terminal determines that the used PUCCH format is PUCCH format 3;
  • the terminal determines that the used PUCCH format is the first new PUCCH format
  • the terminal determines that the used PUCCH format is the second new PUCCH format
  • the terminal determines that the used PUCCH format is the Nth new PUCCH format
  • the second to N+1 preset values are respectively the maximum number of information bits that can be carried by the first to the Nth new PUCCH formats, or are predetermined for the terminal and the base station. Value, or a value configured for a higher layer.
  • the terminal determines, by the terminal, the resource used to carry the HARQ-ACK, including:
  • the terminal determines the number of resource units (REs) occupied by the HARQ-ACK in the PUSCH.
  • REs resource units
  • the embodiment of the invention further provides a method for transmitting information, including:
  • the base station sends a DCI to the terminal, where the DCI includes a control domain for the terminal to determine the HARQ-ACK codebook;
  • the base station receives the HARQ-ACK sent by the terminal.
  • control domain used by the terminal to determine the HARQ-ACK codebook is a DAI.
  • the DAI is one of the following ways:
  • Manner 1 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset order, indicating that the base station that is in the first preset sequence is down to the current serving cell has been scheduled.
  • Manner 2 In the binding window, according to the DAI in the first Nm DCIs in the second preset order, indicating that the current serving cell and the current downlink subframe base station have been scheduled to have a corresponding PDCCH according to the second preset sequence.
  • the PDSCH of the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release according to the DAI in the last m DCIs in the second preset sequence, indicating the PDSCH with the corresponding PDCCH or EPDCCH scheduled by the base station in the binding window and indicating the SPS release.
  • Manner 3 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of the PDCCH or the EPDCCH indicating the SPS release according to the DAI in the last m DCIs in the first preset sequence, indicating that the current downlink subframe base station has a corresponding PDCCH scheduled.
  • Manner 4 In the binding window, according to the DAI in the foregoing Nm DCIs in the second preset sequence, indicating that the current serving cell and the current downlink subframe base station have been scheduled according to the second preset sequence a codeword corresponding to a PDSCH of a PDCCH or an EPDCCH and a number of PDCCHs or EPDCCHs indicating SPS release, according to a DAI in the last m DCIs in the second preset sequence, Decoding a codeword corresponding to a PDSCH corresponding to a PDCCH or an EPDCCH scheduled by a base station in a binding window, and a total number of PDCCHs or EPDCCHs indicating SPS release;
  • Manner 5 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell a PDSCH corresponding to the PDCCH or the EPDCCH and a number of PDCCHs or EPDCCHs indicating the release of the SPS, and the DAIs in the last m DCIs according to the first preset sequence are repetitions of the DAIs of the scheduled Nm serving cells;
  • Manner 6 In the binding window, according to the DAI in the first Nm DCIs in the second preset sequence, indicating that the current serving cell and the current subframe base station have been scheduled according to the second preset sequence have corresponding PDCCHs. Or the PDSCH of the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release, and the DAI in the last m DCIs according to the second preset sequence is a repetition of the DAI in the scheduled Nm DCIs;
  • Manner 7 On each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of PDCCHs or EPDCCHs indicating the release of the SPS, and the DAI in the last m DCIs according to the first preset sequence is the repetition of the DAI of the scheduled Nm serving cells. ;
  • Manner 8 In the binding window, according to the DAI in the first Nm DCIs in the second preset sequence, indicating that the current serving cell and the current downlink subframe base station have been scheduled according to the second preset sequence a codeword corresponding to a PDSCH of the PDCCH or the EPDCCH and a number of PDCCHs or EPDCCHs indicating the SPS release, and the DAI in the last m DCIs according to the second preset sequence is a repetition of the DAI in the scheduled Nm DCIs;
  • Determining the DAI in the first Nm DCIs according to the first preset sequence or the DAI in the foregoing Nm DCIs in the second preset order is defined as a counter type DAI, and the DAI in the foregoing Nm DCIs The value is incremented or decremented; the value of the DAI in the last m DCIs according to the first preset sequence or the DAIs in the last m DCIs in the second preset order is the same; For mode 1, 2, 3 or 4, the last m DAIs with the same value are defined as the total type DAI, and for the mode 5, 6, 7, or 8, the last m DAIs with the same value are defined as the duplicate DAI;
  • N represents the number of DCIs that the base station schedules for the terminal in each downlink subframe in the binding window; for mode 2, 4, 6, or 8, N represents Determining, in the binding window, the number of DCIs that the base station schedules to the terminal; and N is greater than m.
  • the m is a value that is agreed between the terminal and the base station, or is a predetermined value, or the base station indicates the terminal by using high layer signaling.
  • the first preset sequence is an order according to a serving cell index from low to high or high to low; and the second preset sequence is sequentially according to a serving cell index in each subframe in the binding window.
  • the order obtained by sorting from low to high or high to low and concatenating the sorts within each sub-frame.
  • the HARQ-ACK codebook includes a sorting manner of the HARQ-ACK codebook size and a HARQ-ACK bit sequence in the HARQ-ACK codebook, where the HARQ-ACK codebook size refers to The number of bits of the HARQ-ACK.
  • the number of bits included in the DAI is 2 bits or 3 bits.
  • the value of the DAI has a preset mapping relationship with the scheduled PDSCH with a corresponding PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs that indicate SPS release.
  • the embodiment of the invention provides a terminal, including:
  • a receiving unit configured to receive a PDCCH or an EPDCCH, and a PDSCH;
  • a first determining unit configured to determine a feedback HARQ-ACK codebook and a resource for carrying the HARQ-ACK according to at least one of the following parameters, where the parameter includes: the PDCCH or the EPDCCH received by the terminal The number of DCIs received, the number of PDCCHs or EPDCCHs received by the terminal, or the number of PDSCHs received by the terminal;
  • a second determining unit configured to determine a state of the HARQ-ACK according to a detection result of the received PDSCH or PDCCH or an EPDCCH, where the state of the HARQ-ACK refers to a bit in the HARQ-ACK codebook
  • the state of the sequence, the state of each bit is ACK or NACK;
  • a sending unit configured to send the HARQ-ACK on the resource used to carry the HARQ-ACK according to the determined HARQ-ACK codebook and the state of the HARQ-ACK.
  • An embodiment of the present invention provides a base station, including:
  • a sending unit configured to send a DCI to the terminal, where the DCI includes a control domain for the terminal to determine the HARQ-ACK codebook
  • the receiving unit is configured to receive the HARQ-ACK sent by the terminal.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when the computer executable instructions are executed.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a method for transmitting the above information applied to a base station side.
  • An embodiment of the present invention provides a method for transmitting information, a terminal, and a base station, where the method includes: receiving, by a terminal, a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH), and a physical downlink shared channel (PDSCH);
  • the terminal determines a hybrid automatic repeat request response (HARQ-ACK) codebook and a resource for carrying the HARQ-ACK according to at least one of the following parameters; wherein the parameter includes: the PDCCH received by the terminal Or downlink control information (DCI) carried on the EPDCCH, the number of PDCCHs or EPDCCHs received by the terminal, or the number of PDSCHs received by the terminal; the terminal according to the received PDSCH or PDCCH or EPDCCH
  • DCI downlink control information
  • the detection result determines a state of the HARQ-ACK; wherein the state of the HARQ-ACK refers to a state of a bit sequence in the HARQ-ACK codebook, and
  • FIG. 1 is a schematic diagram of a time-frequency structure of a PUCCH format 1/1a/1b in the related art
  • FIG. 2 is a schematic diagram of a time-frequency structure of a PUCCH format 2 in the related art
  • FIG. 3 is a schematic diagram of a time-frequency structure of a PUCCH format 3 in the related art
  • 4a is a schematic diagram of a time-frequency structure of a candidate PUCCH format 4 in the related art
  • FIG. 4b is a schematic diagram of another time-frequency structure of a candidate PUCCH format 4 in the related art.
  • FIG. 5 is a schematic diagram of a HARQ-ACK binding window when FDD is used as a primary serving cell
  • FIG. 6 is a schematic diagram of a HARQ-ACK binding window when TDD is used as a primary serving cell
  • FIG. 7 is a schematic flowchart diagram of a method for transmitting information according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of another method for transmitting information according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a HARQ-ACK fed back by a terminal in the related art.
  • FIG. 10 is another schematic diagram of a HARQ-ACK fed back by a terminal in the related art.
  • FIG. 11 is a schematic diagram of a terminal feeding back a HARQ-ACK to a base station in a hypothetical case
  • FIG. 12 is a diagram showing that the DAI control field is 2 bits when the first embodiment of the present invention is present. versus a schematic diagram of the mapping relationship;
  • FIG. 13 is a schematic diagram of the DAI control field given in the first embodiment of the present invention when the bit is 3 bits. versus a schematic diagram of the mapping relationship;
  • FIG. 14 is a schematic diagram of the value of DAI sent by the base station side when the DAI adopts mode 1 according to the second embodiment of the present invention.
  • FIG. 15 is a schematic diagram of receiving data by a terminal when DAI adopts mode 1 according to Embodiment 2 of the present invention.
  • 16 is a schematic diagram of a terminal receiving data on a subframe 9 when the DAI adopts mode 1 according to the second embodiment of the present invention.
  • 17 is a schematic diagram of a terminal receiving data on a subframe 0 when the DAI adopts mode 1 according to the second embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a terminal receiving data on a subframe 1 when the DAI adopts mode 1 according to the second embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a terminal receiving data on a subframe 3 when the DAI adopts mode 1 according to the second embodiment of the present invention.
  • FIG. 20 is a schematic diagram of the value of the DAI sent by the base station side when the DAI adopts mode 1 in the third embodiment of the present invention.
  • FIG. 21 is a schematic diagram of receiving data by a terminal when DAI adopts mode 1 according to Embodiment 3 of the present invention.
  • FIG. 22 is a schematic diagram of a terminal receiving data on a subframe 9 when the DAI adopts mode 1 according to Embodiment 3 of the present invention.
  • FIG. 23 is a schematic diagram of a terminal receiving data on a subframe 0 when the DAI adopts mode 1 according to Embodiment 3 of the present invention.
  • FIG. 24 is a schematic diagram of a terminal receiving data on a subframe 1 when the DAI adopts mode 1 according to Embodiment 3 of the present invention.
  • 25 is a schematic diagram of a terminal receiving data on a subframe 3 when the DAI adopts mode 1 according to Embodiment 3 of the present invention.
  • FIG. 26 is a schematic diagram of the value of DAI sent by the base station side when the DAI adopts mode 5 according to the fourth embodiment of the present invention.
  • FIG. 27 is a schematic diagram of receiving data by a terminal when DAI adopts mode 5 according to Embodiment 4 of the present invention.
  • FIG. 28 is a schematic diagram of a terminal receiving data on a subframe 9 when the DAI adopts mode 5 according to Embodiment 4 of the present invention.
  • FIG. 29 is a schematic diagram of a terminal receiving data on a subframe 0 when the DAI adopts mode 5 according to Embodiment 4 of the present invention.
  • FIG. 30 is a schematic diagram of a terminal receiving data on a subframe 1 when the DAI adopts mode 5 according to Embodiment 4 of the present invention.
  • FIG. 31 is a diagram showing, when the DAI adopts mode 5, the terminal receives data on the subframe 3 according to the fourth embodiment of the present invention; a schematic diagram of
  • FIG. 33 is a schematic diagram of receiving data by a terminal when DAI adopts mode 3 according to Embodiment 5 of the present invention.
  • FIG. 34 is a schematic diagram of a terminal receiving data on a subframe 9 when the DAI adopts mode 3 according to Embodiment 5 of the present invention.
  • 35 is a schematic diagram of a terminal receiving data on a subframe 0 when the DAI adopts mode 3 in Embodiment 5 of the present invention.
  • FIG. 36 is a schematic diagram of a terminal receiving data on a subframe 1 when the DAI adopts mode 3 in Embodiment 5 of the present invention.
  • FIG. 37 is a schematic diagram of a terminal receiving data on a subframe 3 when the DAI adopts mode 3 according to Embodiment 5 of the present invention.
  • FIG. 38 is a schematic diagram of the value of DAI sent by the base station side when the DAI adopts mode 3 in Embodiment 6 of the present invention.
  • 39 is a schematic diagram of receiving data by a terminal when DAI adopts mode 3 according to Embodiment 6 of the present invention.
  • FIG. 40 is a schematic diagram of a terminal receiving data on a subframe 9 when the DAI adopts mode 3 in Embodiment 6 of the present invention.
  • 41 is a schematic diagram of a terminal receiving data on a subframe 0 when the DAI adopts mode 3 according to Embodiment 6 of the present invention.
  • FIG. 42 is a schematic diagram of a terminal receiving data on a subframe 1 when the DAI adopts mode 3 in Embodiment 6 of the present invention.
  • FIG. 43 is a schematic diagram of a terminal receiving data on a subframe 3 when the DAI adopts mode 3 in Embodiment 6 of the present invention.
  • FIG. 46 is another schematic diagram of receiving data by the terminal when the DAI adopts mode 2 in Embodiment 9 of the present invention.
  • FIG. 48 is a schematic diagram of receiving data by a terminal when DAI adopts mode 2 in Embodiment 10 of the present invention.
  • FIG. 49 is another schematic diagram of receiving data by the terminal when the DAI adopts mode 2 in Embodiment 10 of the present invention.
  • Figure 50 is a schematic diagram of the value of DAI sent by the base station side when the DAI adopts mode 6 in the eleventh embodiment of the present invention.
  • FIG. 51 is a schematic diagram of receiving data by a terminal when the DAI adopts mode 6 in Embodiment 11 of the present invention.
  • FIG. 52 is another schematic diagram of receiving data by the terminal when the DAI adopts mode 6 in Embodiment 11 of the present invention.
  • FIG. 53 is a schematic diagram of the value of DAI sent by the base station side when the DAI adopts mode 4 in Embodiment 12 of the present invention.
  • FIG. 54 is a schematic diagram of receiving data by a terminal when DAI adopts mode 4 according to Embodiment 12 of the present invention.
  • FIG. 55 is another schematic diagram of receiving data by a terminal when DAI adopts mode 4 in Embodiment 12 of the present invention.
  • FIG. 56 is a schematic diagram of the value of DAI sent by the base station side when the DAI adopts mode 4 in Embodiment 13 of the present invention.
  • 57 is a schematic diagram of receiving data by a terminal when DAI adopts mode 4 in Embodiment 13 of the present invention.
  • FIG. 58 is another embodiment of receiving data by the terminal when the DAI adopts mode 4 in Embodiment 13 of the present invention. schematic diagram;
  • FIG. 59 is a schematic diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 60 is a schematic diagram of a base station according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for transmitting information, which is based on a terminal (or may be referred to as a user equipment UE). As shown in FIG. 7, the method includes:
  • Step 101 The terminal receives a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH), and a physical downlink shared channel (PDSCH);
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • PDSCH physical downlink shared channel
  • Step 102 The terminal determines a hybrid automatic repeat request response (HARQ-ACK) codebook and a resource for carrying the HARQ-ACK according to at least one of the following parameters, where the parameter includes: the terminal Downlink control information (DCI) carried on the received PDCCH or EPDCCH, the number of PDCCHs or EPDCCHs received by the terminal, or the number of PDSCHs received by the terminal;
  • DCI Downlink control information
  • Step 103 The terminal determines a state of the HARQ-ACK according to a detection result of the received PDSCH or PDCCH or an EPDCCH, where the state of the HARQ-ACK refers to a bit sequence in the HARQ-ACK codebook. State, the status of each bit is acknowledgment (ACK) or non-acknowledgement (NACK);
  • Step 104 The terminal sends the HARQ-ACK on the resource used to carry the HARQ-ACK according to the determined HARQ-ACK codebook and the status of the HARQ-ACK.
  • the HARQ-ACK codebook includes a sorting manner of the HARQ-ACK codebook size and a bit sequence in the HARQ-ACK codebook, where the HARQ-ACK codebook size refers to The number of bits of the HARQ-ACK.
  • the terminal receives a PDCCH or an EPDCCH, and a PDSCH; the terminal determines a feedback HARQ-ACK codebook and resources for carrying the HARQ-ACK according to at least one of the following parameters:
  • the parameter includes: a DCI carried on the PDCCH or the EPDCCH received by the terminal, a number of PDCCHs or EPDCCHs received by the terminal, or a number of PDSCHs received by the terminal; Determining, by the detection result of the received PDSCH or PDCCH or EPDCCH, the state of the HARQ-ACK; wherein the state of the HARQ-ACK refers to a state of a bit sequence in the HARQ-ACK codebook, each bit The status is ACK or NACK; the terminal sends the HARQ-ACK on the resource for carrying the HARQ-ACK according to the determined HARQ-ACK codebook and the status of the HARQ-ACK.
  • An embodiment of the present invention further provides a method for transmitting information, which is based on a base station side, as shown in FIG. 8, the method includes:
  • Step 201 The base station sends downlink control information (DCI) to the terminal, where the DCI includes a control domain for the terminal to determine the HARQ-ACK codebook.
  • DCI downlink control information
  • Step 202 The base station receives a HARQ-ACK sent by the terminal.
  • control domain used by the terminal to determine the HARQ-ACK codebook is a downlink allocation index (DAI).
  • DAI downlink allocation index
  • the HARQ-ACK codebook includes a sorting manner of the HARQ-ACK codebook size and a HARQ-ACK bit sequence in the HARQ-ACK codebook, where the HARQ-ACK codebook size refers to The number of bits of the HARQ-ACK.
  • the number of bits included in the DAI is 2 bits or 3 bits.
  • the value of the DAI has a preset mapping relationship with the scheduled PDSCH with a corresponding PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs that indicate SPS release.
  • the base station sends a DCI to the terminal, where the DCI includes a control domain for the terminal to determine the HARQ-ACK codebook, where the The terminal determines that the control domain of the HARQ-ACK codebook is DAI; and the base station receives the HARQ-ACK sent by the terminal.
  • the solution of the embodiment of the present invention can improve the efficiency of the feedback information of the terminal, reduce the impact on the receiving performance of the base station, and reduce the transmit power when the terminal feeds back information and reduce the occupied uplink resources.
  • the codebook size of the HARQ-ACK fed back by the terminal is determined according to the configured parameters.
  • Figure 9 shows a schematic diagram. In this example, it is assumed that the base station configures 16 downlink serving cells for the terminal, assuming that the serving cell index is from 0 to 15. On subframe n, the base station schedules a total of 11 serving cells ⁇ 0, 1, 2, 5, 7, 9, 10, 11, 13, 14, 15 ⁇ . The terminal received a total of 8 service cells ⁇ 0, 1, 5, 7, 10, 11, 13, 15 ⁇ , and lost the two ⁇ 2, 9, 14 ⁇ , but the terminal itself did not know. However, when the terminal feeds back the HARQ-ACK, the codebook size of the HARQ-ACK is determined according to the configured number of serving cells.
  • the base station configures 16 serving cells, and it is assumed that each serving cell is configured.
  • the transmission mode of the single codeword is determined. Therefore, the terminal determines that 16 HARQ-ACKs need to be fed back according to the configuration parameters, and then corresponds to HARQ-ACK(0) to HARQ-ACK(15) according to the serving cell index from low to high.
  • the detected serving cell is directly mapped to the corresponding bit corresponding to the HARQ-ACK, and is set for the HARQ-ACK bit corresponding to the serving cell that is not detected (including the base station not scheduled and the terminal is missed). Its HARQ-ACK status is NACK.
  • the base station and the terminal have a consistent understanding of the size of the HARQ-ACK codebook and the ordering of the HARQ-ACK bit sequence in the codebook, there is no problem that the base station and the terminal understand inconsistency, even if the terminal has missed detection.
  • the base station actually only schedules 11 serving cells, and among the 16 HARQ-ACK bits fed back by the terminal, only 11 bits are valid, and the other 5 bits of information are useless information.
  • the terminal needs to feed back a large amount of useless HARQ-ACK. This problem becomes more in a system supporting up to 32 carrier aggregations. Indeed, for this reason, it is necessary to consider a method of reducing the number of feedback HARQ-ACK bits.
  • One possible solution is to determine the codebook size of the feedback HARQ-ACK according to the number of actually scheduled PDSCHs.
  • Fig. 10 shows an example in which the scheduling situation on the base station side is the same as the previous example, and the serving cell ⁇ 0, 1, 2, 5, 7, 9, 10, 11, 13, 14, 15 is scheduled. ⁇ A total of 11.
  • the terminal receives, if the missed detection does not occur, the terminal will determine according to the HARQ-ACK codebook size of 11.
  • the terminal When the base station detects, since the base station schedules 11 serving cells, the terminal also transmits according to 11 bits. Therefore, there is no inconsistency between the sending and receiving parties.
  • the terminal reception situation is as shown in FIG. 11, the terminal does not detect the serving cell 2, 9, 14, the terminal determines that the codebook size of the HARQ-ACK is 8 according to the received condition, and then gives the HARQ-ACK according to the detection result.
  • the base station schedules 11 serving cells, then the base station will detect according to the codebook size of the HARQ-ACK, but in fact, the terminal transmits according to 8 bits, which causes the base station and the terminal to send and receive both sides.
  • the HARQ-ACK codebook is inconsistent in understanding, resulting in an error.
  • the base station sends downlink control information (DCI) to the terminal, where the downlink control information includes a control domain, a downlink allocation index (DAI), for determining, by the terminal, the HARQ-ACK codebook.
  • DCI downlink control information
  • DAI downlink allocation index
  • the DAI is one of the following:
  • Manner 1 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset order, indicating that the base station that is in the first preset sequence is down to the current serving cell has been scheduled.
  • the number of PDCCHs or EPDCCHs corresponding to the PDCCH or the EPDCCH and the PDCCH or the EPDCCH indicating the semi-persistent scheduling (SPS) release according to the DAI in the last m DCIs in the first preset sequence, indicating that the current downlink subframe base station has a corresponding PDCCH or The PDSCH of the EPDCCH and the total number of PDCCHs or EPDCCHs indicating SPS release;
  • Manner 2 In the binding window, according to the DAI in the first Nm DCIs in the second preset order, indicating that the current serving cell and the current downlink subframe base station have been scheduled to have a corresponding PDCCH according to the second preset sequence.
  • the PDSCH of the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release according to the DAI in the last m DCIs in the second preset sequence, indicating the PDSCH with the corresponding PDCCH or EPDCCH scheduled by the base station in the binding window and indicating the SPS release.
  • Manner 3 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of the PDCCH or the EPDCCH indicating the SPS release according to the DAI in the last m DCIs in the first preset sequence, indicating that the current downlink subframe base station has a corresponding PDCCH scheduled.
  • Manner 4 In the binding window, according to the DAI in the foregoing Nm DCIs in the second preset sequence, indicating that the current serving cell and the current downlink subframe base station have been scheduled according to the second preset sequence
  • the codeword corresponding to the PDSCH of the PDCCH or the EPDCCH and the number of the PDCCH or the EPDCCH indicating the SPS release according to the DAI in the last m DCIs in the second preset sequence, indicating that the corresponding PDCCH or EPDCCH is scheduled by the base station in the binding window.
  • Manner 5 In each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell a PDSCH corresponding to the PDCCH or the EPDCCH and a number of PDCCHs or EPDCCHs indicating the release of the SPS, and the DAIs in the last m DCIs according to the first preset sequence are repetitions of the DAIs of the scheduled Nm serving cells;
  • Manner 6 In the binding window, according to the DAI in the first Nm DCIs in the second preset sequence, indicating that the current serving cell and the current subframe base station have been scheduled according to the second preset sequence have corresponding PDCCHs. Or the PDSCH of the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release, and the DAI in the last m DCIs according to the second preset sequence is a repetition of the DAI in the scheduled Nm DCIs;
  • Manner 7 On each downlink subframe in the binding window, according to the DAI in the first Nm DCIs in the first preset sequence, indicating that the base station in the first preset sequence is down to the current serving cell
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of PDCCHs or EPDCCHs indicating the release of the SPS, and the DAI in the last m DCIs according to the first preset sequence is the repetition of the DAI of the scheduled Nm serving cells. ;
  • Manner 8 In the binding window, according to the DAI in the first N-m DCIs in the second preset order, indicating that the current serving cell and the current downlink subframe are scheduled according to the second preset sequence.
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release, and the DAI in the last m DCIs according to the second preset sequence is the repetition of the DAI in the scheduled Nm DCIs ;
  • the DAI in the first Nm DCIs according to the first preset sequence or the DAI in the foregoing Nm DCIs in the second preset order are all defined as a counter type DAI, and the foregoing Nm DCIs.
  • the value of the DAI in the DAI is incremented or decremented; the DAI in the last m DCIs according to the first preset sequence or the value of the DAI in the last m DCIs in the second preset order It is the same; for mode 1, 2, 3 or 4, the last m DAIs with the same value are defined as the total type DAI, and the last m values of the same m in the mode 5, 6, 7, or 8 are defined as duplicates.
  • N represents the number of DCIs that the base station schedules for the terminal in each downlink subframe in the binding window; for mode 2, 4, 6, or 8, N represents Determining, in the binding window, the number of DCIs that the base station schedules to the terminal; and N is greater than m.
  • the m is a value that is agreed between the terminal and the base station, or a value that is specified in the standard, that is, a predetermined value, or the base station indicates by the high layer signaling. Terminal's.
  • the m when the m is a value agreed by the terminal and the base station or a value specified in the standard, the m may be selected as 4.
  • the main consideration here is that the probability of consecutively detecting 4 PDCCHs or EPDCCHs is negligible. This design has been considered in Rel-8TDD. Therefore, the DAI index of Rel-8 TDD system is 2 bits, which is considered.
  • the probability of consecutively dropping 4 downlink subframes is negligible. If it is in the carrier aggregation system, although the PDCCH or EPDCCH on the 4 serving cells is continuously missed and the PDCCH or EPDCCH on the 4 subframes may be continuously missed, it may be considered as a small probability event and neglected. . However, the latter analysis can find that the value of m also affects the performance of the downlink throughput. Therefore, the value of m can also be indicated to the terminal by the base station according to the actual situation through high-level signaling.
  • the first preset sequence is an order from low to high or high to low according to the serving cell index.
  • the order here is as long as the base station and the terminal agree on it, and thus the other order is not excluded.
  • the second preset sequence is obtained by sequentially sorting the serving cell index from low to high or high to low within each subframe in the binding window, and concatenating the sorts in each subframe. order.
  • the number of bits included in the DAI control field is 2 bits or 3 bits, and when DAI adopts modes 1, 2, 5 or 6, 2 bits are suitable, and when DAI adopts modes 3, 4, 7 or At 8 o'clock, it is more appropriate to use 3 bits.
  • the value of the DAI has a preset mapping relationship with the scheduled PDSCH with a corresponding PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs that indicate SPS release.
  • FIG. 12 and FIG. 13 respectively show the mapping relationship between the value of DAI and the scheduled PDSCH with corresponding PDCCH or EPDCCH and the number of PDCCH or EPDCCH indicating SPS release when the DAI control field is 2 bits and 3 bits.
  • Figure 14 shows a schematic diagram of the DAI adoption mode 1.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • the situation of base station scheduling is as shown in FIG. 14.
  • the sequence of low to high ends up to the PDSCH of the corresponding PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release that the base station of the current serving cell has scheduled (the DAI here belongs to the counter type DAI described in the above), such as a service
  • the value of the DAI of the cell #0 is 1, and the value of the DAI of the serving cell #1 is 2.
  • the total number of PDCCHs or EPDCCHs with the corresponding PDCCH or EPDCCH and the PDCCH or EPDCCH indicating the release of the SPS (the DAI here belongs to the total type DAI described in the above content), that is, 14 is obtained by the subframe base station scheduling, as shown in FIG. Table, determine the service area 14 and 15 has a DAI value of 2.
  • the base station side determines that the value of the DAI of the scheduling serving cell is in the same manner, and finally obtains a value map of the DAI sent by the base station side as shown in FIG.
  • the DAI does not count the PDSCH of the SPS regardless of the counter type DAI or the total type DAI.
  • the reception situation is as shown in FIG.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that need to be fed back in the subframe is greater than And corresponding Minimum value.
  • a PDCCH or EPDCCH loss occurs on the serving cell (ie, the DCI is lost), the last DAI received is a total type DAI, and the second last DAI is the last counter type DAI received, and The terminal sets the state of the last two HARQ-ACKs to be NACK.
  • the receiving situation of the terminal is as shown in FIG. 16, and the last three DAIs received by the terminal on subframe 9 are respectively (3, 4, 2), due to the last two DAIs.
  • the value of the signal is different, so the terminal determines that the last two serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the last received DAI is the total type DAI, and The second last is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 9 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 2/6/10/14/18/22..., where the minimum value greater than 12 is 14, and thus the terminal determines that the HARQ-ACK codebook size required for sub-frame 9 feedback is 14.
  • the terminal can determine that the serving cell corresponding to HARQ-ACK (3) and HARQ-ACK (5) is lost, and thus its state can also be set to NACK, and For the HARQ-ACK corresponding to the other received serving cell, the corresponding ACK or NACK may be set according to the detection result of the PDSCH.
  • the terminal since the serving cell #4 of the subframe 9 has the PDSCH of the SPS, the terminal places the HARQ-ACK corresponding to the PDSCH of the SPS at the end of the previously determined HARQ-ACK bit sequence, and finally the terminal determines that the feedback is needed on the subframe 9.
  • the HARQ-ACK codebook size is 15.
  • the terminal For subframe 0 (current radio frame), the terminal receives as shown in Figure 17, and the last 3 DAIs received by the terminal on subframe 0 are (3, 1, 1), respectively, due to the last 2 DAIs.
  • the value is the same, so the terminal determines that the last two serving cells scheduled by the base station do not have PDCCH or EPDCCH loss, and the last two identical DAIs received are the total type DAI, and The third last count is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 0 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 1/5/9/13/17/21..., where the minimum value greater than 11 is 13, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back for subframe 0 is 13.
  • the terminal determines that the last two serving cells do not have PDCCH or EPDCCH loss. Therefore, the terminal according to the last received two serving cells As a result of the detection, the last two bits of the HARQ-ACK are set to be ACK or NACK. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (7) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the receiving situation of the terminal is as shown in FIG. 18, and the last three DAIs received by the terminal in subframe 1 are respectively (4, 1, 3), due to the last two DAIs.
  • the value is different, so the terminal determines that the last two serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the last received DAI is the total type DAI, and The second last is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 1 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 3/7/11/15/19/23..., where the minimum value greater than 9 is 11, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back to subframe 1 is 11.
  • the terminal judges that one of the last two serving cells scheduled by the base station is lost, but it cannot be determined which one is lost. Because the terminal receives the serving cell 12 or the serving cell 13, the last two The values are all 1,3. For this case, since the terminal cannot distinguish, the terminal sets the last two bits of HARQ-ACK to NACK. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (3) is lost, and thus can also set its state to NACK, and for other received serving cells. The corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the receiving situation of the terminal is as shown in FIG. 19, and the last three DAIs received by the terminal in subframe 3 are (2, 4, 4) respectively, due to the last two DAIs.
  • the value is the same, so the terminal determines that the last two serving cells scheduled by the base station do not have PDCCH or EPDCCH loss, and the last two identical DAIs received are the total type DAI, and The third last count is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that subframe 3 needs to feed back is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 4/8/12/16/20/24..., where the minimum value greater than 10 is 12, and thus the terminal determines that the HARQ-ACK codebook size that subframe 3 needs to feed back to is 12.
  • the terminal judges that the last two serving cells do not have PDCCH or EPDCCH loss, therefore, the terminal will receive the last two serving cells.
  • the last two bits of the HARQ-ACK are set to be ACK or NACK.
  • the terminal can determine that the serving cell corresponding to the HARQ-ACK (1) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the HARQ-ACK codebook of each subframe can also be determined if one of the last two is lost, but when one of the last two has a loss, it cannot be determined because Which one, so the last two HARQ-ACK bits need to be set to NACK, which will have a certain impact on the performance of the downlink throughput. This requires a compromise between the robustness of the downlink control information and the performance of the downstream throughput.
  • Figure 20 shows a schematic diagram of Mode 1 of DAI adoption.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • the sequence from low to high ends up to the PDSCH of the corresponding PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release that the base station of the current serving cell has scheduled (the DAI here belongs to the counter type DAI described in the above), such as The DAI of the serving cell #0 is 1 and the DAI of the serving cell #1 is 2.
  • the base station side determines that the value of the DAI of the scheduling serving cell is in the same manner, and finally obtains a value map of the DAI sent by the base station side as shown in FIG.
  • the reception situation is as shown in FIG. 21.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that need to be fed back in the subframe is greater than And corresponding Minimum value.
  • the terminal determines that no PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the last four DAIs with the same value are the total number.
  • DAI the last 5th DAI is the last counter type DAI received, and the terminal sets the state of the last 4 HARQ-ACKs according to the detection result of the last 4 serving cells;
  • the terminal determines that PDCCH or EPDCCH loss occurs on the last five serving cells scheduled by the base station, and the terminal sets the last counter type DAI and the total type DAI to the last one DAI.
  • the value of the terminal at the same time, the terminal sets the state of the last five HARQ-ACKs to be NACK.
  • the receiving situation of the terminal is as shown in FIG. 22, and the last five DAI values received by the terminal on the subframe 9 are both 2, and the terminal determines the last 5 scheduled by the base station. No PDCCH or EPDCCH loss occurs on the serving cell, and the last four DAIs with the same value are the total DAI.
  • the fifth last DAI is the last counter type DAI received, corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 9 is greater than And corresponding
  • the minimum value can be determined by checking the correspondence table as shown in Fig. 12. corresponding The value is 2/6/10/14/18/22..., where the minimum value greater than 10 is 14, and thus the terminal determines that the HARQ-ACK codebook size required for the subframe 9 to be fed back is 14.
  • the terminal sets the state of the last four HARQ-ACKs according to the detection results of the last four serving cells.
  • the corresponding ACK or NACK may be set according to the detection result of the PDSCH.
  • the receiving situation of the terminal is as shown in FIG. 23, and the values of the last five DAIs received by the terminal in subframe 0 are (4, 1, 1, 1, 1), respectively.
  • the value of the last one of the last five serving cells scheduled by the base station is lost, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI. Is corresponding
  • the number of HARQ-ACK bits that need to be fed back in subframe 0 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 1/5/9/13/17/21..., where the minimum value greater than 9 is 13, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back for subframe 0 is 13.
  • the terminal judges that part of the last five serving cells scheduled by the base station is lost, but cannot determine which one or which ones are lost. For this case, since the terminal cannot distinguish, the terminal sets the last 5 bits of HARQ-ACK to NACK. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (7) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the receiving situation of the terminal is as shown in FIG. 24, and the values of the last five DAIs received by the terminal in subframe 1 are (1, 2, 3, 3, 3), respectively.
  • the value of the last one of the last five serving cells scheduled by the base station is lost, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI. Is corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 1 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 3/7/11/15/19/23..., where the minimum value greater than 7 is 11, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back to subframe 1 is 11.
  • the terminal judges that part of the last five serving cells scheduled by the base station is lost, but cannot determine which one or which ones are lost. For this case, since the terminal cannot distinguish, the terminal sets the last 5 bits of HARQ-ACK to NACK. For the other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that no serving cell is lost. Therefore, for the HARQ-ACK corresponding to the previously received serving cell, the corresponding ACK is set according to the detection result of the PDSCH. NACK can be.
  • the receiving situation of the terminal is as shown in FIG. 25, and the values of the last five DAIs received by the terminal in subframe 3 are (1, 2, 3, 4, 4), respectively.
  • the value of the last one of the last five serving cells scheduled by the base station is lost, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI. Is corresponding Then the number of HARQ-ACK bits that subframe 3 needs to feed back is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 4/8/12/16/20/24..., where the minimum value greater than 8 is 12, and thus the terminal determines that the HARQ-ACK codebook size that subframe 3 needs to feed back to is 12.
  • the terminal judges that part of the last five serving cells scheduled by the base station is lost, but cannot determine which one or which ones are lost. For this case, since the terminal cannot distinguish, the terminal sets the last 5 bits of HARQ-ACK to NACK. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (1) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the base station can set the m value according to the actual channel environment; when the channel condition is better, the probability of continuous loss of the PDCCH or the EPDCCH is relatively low, and thus the m value can be set to be relatively small. Therefore, the optional solution is that the base station can reasonably configure the value of m according to the actual application scenario, so that a good compromise between the HARQ-ACK codebook robustness and the downlink throughput performance is achieved. In addition, the m value can be notified to the UE by means of semi-static configuration.
  • Figure 26 shows a schematic diagram of the DAI adoption mode 5.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • base station scheduling is as shown in Fig. 26.
  • DAI adopts mode 5
  • Each subframe is scheduled according to the serving cell index from low to high.
  • the number of PDCCHs or EPDCCHs with the corresponding PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release (the DAI here belongs to the counter type DAI described in the above), such as the serving cell, up to the high order, to the base station of the current serving cell
  • the DAI of the #1 is 1 and the DAI of the serving cell #1 is 2.
  • the repetition of the DAI of the Nm serving cells, that is, the DAI of the last two serving cells is the repetition of the 12th scheduled DAI, and determines that the DAI values of the serving cells 14 and 15 are 4.
  • the base station side determines that the value of the DAI of the scheduling serving cell is in the same manner, and finally obtains a value map of the DAI sent by the base station side as shown in FIG.
  • the reception situation is as shown in FIG.
  • the method for the terminal to determine the HARQ-ACK codebook is:
  • the terminal Setting the terminal to determine the value of the last DAI in the downlink subframe according to the previously received DAI. corresponding The number of HARQ-ACK bits that need to be fed back in the subframe is Plus m, where, versus The corresponding relationship is that the terminal and the base station agree.
  • the terminal determines that the PDCCH does not occur on the last m+1 serving cells. Or the EPDCCH is lost, the terminal sets the state of the last m+1 HARQ-ACKs according to the detection result of the last m+1 serving cells; if the value of the last m+1 DAIs is not the same, the terminal Set the state of the last m+1 HARQ-ACKs to NACK.
  • the receiving situation of the terminal is as shown in FIG. 28, and the terminal determines the value of the last DAI according to the previously received DAI in the subframe 9 frame. corresponding 12, then the number of HARQ-ACK bits that need to be fed back in subframe 9 is With m added, the terminal determines that the HARQ-ACK codebook size that needs to be fed back in subframe 9 is 14.
  • the terminal judges that one of the last three serving cells scheduled by the base station is lost, but cannot determine which one was lost. For this case, since the terminal cannot distinguish, the terminal sets the last two bits of HARQ-ACK to NACK. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to HARQ-ACK (3) and HARQ-ACK (5) is lost, and thus its state can also be set to NACK, and For the HARQ-ACK corresponding to the other received serving cell, the corresponding ACK or NACK may be set according to the detection result of the PDSCH.
  • the receiving situation of the terminal is as shown in FIG. 29, and the terminal determines the value of the last DAI according to the previously received DAI in the subframe 0 frame. corresponding 11 is the number of HARQ-ACK bits that need to be fed back in subframe 0. With m added, the terminal determines that the HARQ-ACK codebook size that needs to be fed back in subframe 0 is 13.
  • the terminal determines that the last three serving cells do not have PDCCH or EPDCCH loss. Therefore, the terminal sets the last two bits of HARQ-ACK as ACK or NACK according to the detection result of the two received serving cells. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (7) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the receiving situation of the terminal is as shown in FIG. 30, and the terminal determines the value of the last DAI according to the previously received DAI in the subframe 1 frame. corresponding 9, the number of HARQ-ACK bits that need to be fed back in subframe 1 is With m added, the terminal determines that the HARQ-ACK codebook size that needs to be fed back in subframe 1 is 11.
  • the terminal judges that one of the last three serving cells scheduled by the base station is lost, but cannot determine which one was lost. For this case, since the terminal cannot distinguish, the terminal sets the last two bits of HARQ-ACK to NACK. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (3) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the receiving situation of the terminal is as shown in FIG. 31, and the terminal determines the value of the last DAI according to the previously received DAI in the subframe 3 frame. corresponding 10, then the number of HARQ-ACK bits that need to be fed back in subframe 0 is With m added, the terminal determines that the HARQ-ACK codebook size that subframe 3 needs to feed back to is 12.
  • the terminal determines that the last three serving cells do not have PDCCH or EPDCCH loss. Therefore, the terminal sets the last two bits of HARQ-ACK as ACK or NACK according to the detection result of the two received serving cells. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the serving cell corresponding to the HARQ-ACK (1) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK is set according to the detection result of the PDSCH, and the corresponding ACK or NACK is set.
  • the codebook size of HARQ-ACK is equal to Add m, and then judge whether the values of the last m+1 DAIs are the same. If they are the same, then the last m+1 are not lost. Otherwise, if there is any loss, the last m+1 HARQ-ACK states are set to NACK. can.
  • the base station can configure the value of m according to the actual channel environment.
  • the probability of continuous loss of the PDCCH or the EPDCCH is relatively low, and thus the m value can be set to be relatively small. Therefore, the optional solution is that the base station can reasonably configure the value of m according to the actual application scenario, so that a good compromise between the HARQ-ACK codebook robustness and the downlink throughput performance is achieved.
  • the m value can be notified to the UE by means of semi-static configuration.
  • Figure 32 shows a schematic diagram of the DAI adoption mode 3.
  • the base station configures 16 TDD serving cells 1, 2, 4, 5, 7, 9, 10, 12, 13 of the uplink and downlink configuration configuration 2 with double code words (double code words also That is, the transmission mode of 2 codewords, the other serving cells are configured with a single codeword transmission mode, wherein the serving cell according to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame, and the subframe 0 of the current radio frame
  • the HARQ-ACK of 1,3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional Binding window, circled in the figure.
  • DAI adopts mode 3
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or EPDCCH and the number of PDCCHs or EPDCCHs indicating the release of the SPS are scheduled according to the sequence of the serving cell index from low to high.
  • the DAI in the above content belongs to the above content.
  • the counter type DAI for example, the DAI of the serving cell #0 is 1 and the DAI of the serving cell #1 is 3, wherein the serving cell #1 contains 2 code words for the last two scheduled services.
  • the DAI here belongs to the above content.
  • the total number of types of DAI as shown in the serving cell #12, has been scheduled to have a corresponding PDCCH or EPDCCH.
  • the total number of codewords corresponding to the PDSCH and the PDCCH or EPDCCH indicating the release of the SPS is 19, and the value of the DAI of the last two scheduled serving cells is determined according to only one codeword per serving cell, and therefore, the total number is 21.
  • the DAI values of the serving cells 14 and 15 are 1.
  • the base station side determines that the value of the DAI of the scheduling serving cell is in the same manner, and finally obtains a value map of the DAI sent by the base station side as shown in FIG.
  • the reception situation is as shown in FIG.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that need to be fed back in the subframe is greater than And corresponding Minimum value.
  • the base station and the terminal agree that the DAI value of the last m scheduled serving cells is determined according to each service cell scheduling only one codeword:
  • the terminal is based on the last 3 DAIs received in the subframe, if the values of the last 2 DAIs are If the same, the terminal determines that no PDCCH or EPDCCH is lost on the last two serving cells scheduled by the base station, and the last two DAIs with the same value are the total type DAI, and the third last DAI is the last received. a counter type DAI. At the same time, the terminal sets the state of the last two HARQ-ACKs according to the detection result of the last two serving cells.
  • the pair The HARQ-ACK corresponding to the PDSCH of the dual codeword is spatially bound; if the values of the last two DAIs are different, the terminal determines that the PDCCH or the EPDCCH is lost on the last two serving cells scheduled by the base station, The last DAI received is a total type DAI, and the second last DAI is the last counter type DAI received, and the terminal sets the state of the last two HARQ-ACKs to NACK.
  • the receiving situation of the terminal is as shown in FIG. 34, and the last three DAIs received by the terminal on subframe 9 are respectively (1, 3, 1), due to the last two DAIs.
  • the value of the signal is different, so the terminal determines that the last two serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the last received DAI is the total type DAI, and The second last is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 9 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 1/5/9/13/17/21..., where the minimum value greater than 19 is 21, and thus the terminal determines that the HARQ-ACK codebook size required for the subframe 9 to be fed back is 21.
  • the terminal can determine that the serving cell corresponding to HARQ-ACK (5) and HARQ-ACK (8) is lost, and thus its state can also be set to NACK, and For the HARQ-ACK corresponding to the other received serving cell, the corresponding ACK or NACK may be set according to the detection result of the PDSCH.
  • the receiving situation of the terminal is as shown in FIG. 35, and the last three DAIs received by the terminal in subframe 0 are respectively (1, 3, 3), due to the last two DAIs.
  • the value is the same, so the terminal determines that the last two serving cells scheduled by the base station do not have PDCCH or EPDCCH loss, and the last two identical DAIs received are the total type DAI, and The third last count is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 0 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 3/7/11/15/19/23..., where the minimum value greater than 17 is 19, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back for subframe 0 is 19.
  • the terminal judges that the last two serving cells do not have PDCCH or EPDCCH loss, therefore, the terminal according to the last two services received.
  • the result of the cell detection is that the last two bits of the HARQ-ACK are ACK or NACK.
  • the HARQ-ACK corresponding to the PDSCH of the dual codeword is performed. Space binding.
  • the terminal can determine that the serving cell corresponding to the HARQ-ACK (12) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK may be set according to the detection result of the codeword of the PDSCH, and the corresponding ACK or NACK may be set.
  • the receiving situation of the terminal is as shown in FIG. 36, and the last three DAIs received by the terminal in subframe 1 are respectively (4, 2, 4), due to the last two DAIs.
  • the value is different, so the terminal determines that the last two serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the last received DAI is the total type DAI, and The second last is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 1 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 4/8/12/16/20/24..., where the minimum value greater than 14 is 16, so the terminal determines that the HARQ-ACK codebook size that needs to be fed back for subframe 1 is 16.
  • the terminal sets the state of HARQ-ACK (7) and HARQ-ACK (8) to NACK, and for other received
  • the HARQ-ACK corresponding to the serving cell may be set according to the detection result of the codeword of the PDSCH, and the corresponding ACK or NACK may be set.
  • the receiving situation of the terminal is as shown in FIG. 37, and the last three DAIs received by the terminal in subframe 3 are respectively (4, 2, 2), due to the last two DAIs.
  • the value is the same, so the terminal determines that the last two serving cells scheduled by the base station do not have PDCCH or EPDCCH loss, and the last two identical DAIs received are the total type DAI, and The third last count is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that subframe 3 needs to feed back is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 2/6/10/14/18/22..., where the minimum value greater than 16 is 18, and thus the terminal determines that the HARQ-ACK codebook size required for subframe 3 is 18.
  • the terminal judges that the last two serving cells do not have PDCCH or EPDCCH loss, therefore, the terminal according to the last two services received.
  • the result of the cell detection is that the last two bits of the HARQ-ACK are ACK or NACK.
  • the HARQ-ACK corresponding to the PDSCH of the dual codeword is performed. Space binding.
  • the terminal can determine that the serving cell corresponding to the HARQ-ACK (12) is lost, and thus can also set its state to NACK, and for other received serving cells.
  • the corresponding HARQ-ACK may be set according to the detection result of the codeword of the PDSCH, and the corresponding ACK or NACK may be set.
  • Figure 38 shows a schematic diagram of the DAI adoption mode 3.
  • the base station configures 16 TDD serving cells 1, 2, 4, 5, 7, 9, 10, 12, 13 of the uplink and downlink configuration configuration 2 to configure a dual codeword transmission mode, and other
  • the serving cell is configured with a single codeword transmission mode, wherein the serving cell according to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame, and the HARQ-ACK of the subframe 0, 1, and 3 of the current radio frame will be currently
  • the sub-frame 7 performs feedback, and the subframe 9 of the previous radio frame and the sub-frames 0, 1, 3, and 16 serving cells of the current radio frame form a time-frequency two-dimensional binding window, and the frame circle is used in the figure. Show instructions.
  • the codeword corresponding to the PDSCH of the PDCCH or the EPDCCH and the number of PDCCHs or EPDCCHs indicating the SPS release (the DAI here belongs to the counter type DAI described in the above content), for example, the DAI of the serving cell #0 takes the value 1, the serving cell The value of the DAI of #1 is 3, where the serving cell #1 contains 2 codewords.
  • the DAI of the last 4 serving cells in the first preset sequence indicates the current downlink subframe.
  • the codeword corresponding to the PDSCH corresponding to the PDCCH or EPDCCH and the total number of PDCCHs or EPDCCHs indicating the SPS release (the DAI here belongs to the total type DAI described in the above content) scheduled by the base station, in this embodiment, the service is terminated Cell #10, already scheduled
  • the total number of PDCCHs or EPDCCHs corresponding to the PDSCH corresponding to the PDCCH or EPDCCH and the SPS release is 16, and the DAI values of the last 4 scheduled serving cells are determined according to only one codeword per serving cell. Therefore, the total number is 20, and the DAI value of the serving cells 14 and 15 is determined to be 4 by looking up the table shown in FIG.
  • the base station side determines that the value of the DAI of the scheduling serving cell is in the same manner, and finally obtains a value map of the DAI sent by the base station side as shown in FIG.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that need to be fed back in the subframe is greater than And corresponding Minimum value.
  • the base station and the terminal agree that the DAI value of the last m scheduled serving cells is determined according to each service cell scheduling only one codeword:
  • the terminal determines that no PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the last four DAIs with the same value are the total number.
  • DAI the last 5th DAI is the last counter type DAI received, and the terminal sets the state of the last 4 HARQ-ACKs according to the detection result of the last 4 serving cells;
  • the terminal determines that PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the terminal puts the last counter type DAI and the total type DAI. Set to the value of the last 1 DAI, and the terminal sets the state of the last 5 HARQ-ACKs to NACK.
  • the receiving situation of the terminal is as shown in FIG. 40, and the value of the last five DAIs received by the terminal on the subframe 9 is 4, so the terminal judges the last 5 scheduled by the base station.
  • the PDCCH or EPDCCH is not lost in the serving cell, and the last DAI received is the total type DAI, and The fifth last count is the last counter type DAI received, and corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 9 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 4/8/12/16/20/24..., where the minimum value greater than 16 is 20, and thus the terminal determines that the HARQ-ACK codebook size required for the subframe 9 to be fed back is 20.
  • the terminal determines that the last four serving cells scheduled by the base station do not have PDCCH or EPDCCH loss, and the terminal sets the state of the last four HARQ-ACKs according to the detection result of the last four serving cells. For other HARQ-ACK bits, based on the previous counter type DAI, the terminal can determine that the codeword corresponding to HARQ-ACK (9), HARQ-ACK (13), and HARQ-ACK (14) is lost, and thus can be The state is also set to NACK, and for the HARQ-ACK corresponding to the other received serving cell, the corresponding ACK or NACK may be set according to the detection result of the codeword corresponding to the PDSCH.
  • the receiving situation of the terminal is as shown in FIG. 41, and the last five DAIs received by the terminal in subframe 0 are respectively (4, 2, 2, 2, 2), due to the last The values of the five DAIs are different. Therefore, the terminal determines that the last five serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI, that is, corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 0 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 2/6/10/14/18/22..., where the minimum value greater than 14 is 18, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back to subframe 0 is 18.
  • the terminal judges that the last five serving cells are PDCCH or EPDCCH lost, and therefore, the terminal sets the last five HARQ-ACKs to NACK.
  • a corresponding ACK or NACK may be set according to the detection result of the codeword of the PDSCH.
  • the receiving situation of the terminal is as shown in FIG. 42 , and the last five DAIs received by the terminal in subframe 1 are respectively (1, 3, 3, 3, 3), due to the last The values of the five DAIs are different. Therefore, the terminal determines that the last five serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI, that is, corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 1 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 3/7/11/15/19/23..., where the minimum value greater than 11 is 15, and thus the terminal determines that the HARQ-ACK codebook size that needs to be fed back to subframe 1 is 15.
  • the terminal judges that the last five serving cells are PDCCH or EPDCCH lost, and therefore, the terminal sets the last five HARQ-ACKs to NACK.
  • a corresponding ACK or NACK may be set according to the detection result of the codeword of the PDSCH.
  • the receiving situation of the terminal is as shown in FIG. 43, and the last three DAIs received by the terminal in subframe 3 are respectively (4, 1, 1, 1, 1), due to the last The values of the five DAIs are different. Therefore, the terminal determines that the last five serving cells scheduled by the base station have lost PDCCH or EPDCCH, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI, that is, corresponding Then the number of HARQ-ACK bits that need to be fed back in subframe 1 is greater than And corresponding Minimum value, then it can be determined by checking the correspondence table shown in Figure 12. corresponding The value is 1/5/9/13/17/21..., where the minimum value greater than 9 is 13, and thus the terminal determines that the HARQ-ACK codebook size required for subframe 1 to be fed back is 13.
  • the terminal judges that the last five serving cells are PDCCH or EPDCCH lost, and therefore, the terminal sets the last five HARQ-ACKs to NACK.
  • a corresponding ACK or NACK may be set according to the detection result of the codeword of the PDSCH.
  • the base station can configure the m value according to the actual channel environment; when the channel condition is relatively good, the probability of continuous loss of the PDCCH or the EPDCCH is relatively low, and thus the m value can be set to be relatively small. Therefore, the optional solution is that the base station can reasonably configure the value of m according to the actual application scenario, so that a good compromise between the HARQ-ACK codebook robustness and the downlink throughput performance is achieved.
  • the m value can be notified to the UE by means of semi-static configuration.
  • the value of the counter type DAI is determined according to the codeword of the scheduling, and the rest of the process is basically similar to that of the mode 5.
  • the fourth embodiment and details are not described herein again.
  • Figure 44 shows a schematic diagram of the DAI adoption mode 2.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • the situation of base station scheduling is as shown in FIG. 44.
  • the DAI of the last two serving cells is set to the total number of PDSCHs scheduled in the binding window, where a total of 50 PDSCHs are scheduled, so the values of the last two DAIs are determined by the table shown in FIG. Is 2.
  • the DAI does not count the PDSCH of the SPS regardless of the counter type DAI or the total type DAI.
  • the reception status is as shown in FIG.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that the binding window needs to feed back is greater than And corresponding Minimum value.
  • the terminal determines, according to the last 3 DAIs received in the binding window, if the values of the last 2 DAIs are the same, the terminal determines the last 2 scheduled by the base station.
  • the DCI is not lost, the last two DAIs having the same value are the total type DAI, and the third last DAI is the last counter type DAI received, and at the same time, the terminal is according to the
  • the detection result of the last two PDSCHs is set to the state of the last two HARQ-ACKs; if the values of the last two DAIs are not the same, the terminal determines that one of the last two DCIs scheduled by the base station is lost, and the receiving The last DAI to be the total DAI, the second last DAI is the last counter type DAI received, and the terminal sets the state of the last 2 HARQ-ACKs to NACK.
  • the values of the three DAIs received by the terminal in the binding window are (4, 2, 2), and the values of the last two DAIs are the same.
  • the terminal determines the last two scheduled by the base station. There is no PDCCH or EPDCCH loss on the serving cell, and the last two DAIs with the same value are the total DAI.
  • the third last DAI is the last counter type DAI received, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • the value is 2/6/.../42/46/50/54..., where the minimum value greater than 48 is 50, and thus the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 50, and at the same time, The terminal sets the state of the last two HARQ-ACKs according to the detection result of the last two PDSCHs. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the values of the three DAIs received by the terminal in the binding window are (2, 4, 2), respectively.
  • the values of the last two DAIs are different, and the terminal determines the last two scheduled by the base station.
  • a PDCCH or an EPDCCH is lost on the serving cell, and the last DAI having the same value is a total-type DAI.
  • the second last DAI is the last counter type DAI received, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • the value is 2/6/.../42/46/50/54..., where the minimum value greater than 48 is 50, and thus the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 50, and at the same time, The terminal sets the state of the last 2 HARQ-ACKs to NACK. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the terminal since the serving cell #4 of the subframe 9 in the binding window has the PDSCH of the SPS, the terminal places the HARQ-ACK corresponding to the PDSCH of the SPS at the end of the previously determined HARQ-ACK bit sequence. If the binding window has multiple serving cells with SPS PDSCH, then the terminal The HARQ-ACK corresponding to the PDSCH of the plurality of SPSs may be placed at the end of the previously determined HARQ-ACK bit sequence in a second preset order.
  • Figure 47 shows a schematic diagram of the DAI adoption mode 2.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • the situation of base station scheduling is shown in Figure 47.
  • the DAI of the last four serving cells is set to the total number of PDSCHs scheduled in the binding window, where a total of 50 PDSCHs are scheduled, so the values of the last four DAIs are determined by the table shown in FIG. Is 2.
  • the reception status is as shown in FIG.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that the binding window needs to feed back is greater than And corresponding Minimum value.
  • the terminal determines the base station The PDCCH or EPDCCH loss does not occur on the last five serving cells of the scheduling.
  • the last four DAIs with the same value are the total type DAI, and the fifth last DAI is the last counter type DAI received.
  • the terminal sets the state of the last four HARQ-ACKs according to the detection result of the last four PDSCHs;
  • the terminal determines that PDCCH or EPDCCH loss occurs on the last five serving cells scheduled by the base station, and the terminal sets the last counter type DAI and the total type DAI to the last one DAI.
  • the value of the terminal at the same time, the terminal sets the state of the last five HARQ-ACKs to be NACK.
  • the values of the last five DAIs received by the terminal in the binding window are (1, 2, 2, 2, 2), and the values of the last five DAIs are different.
  • the PDCCH or EPDCCH is lost on the last five serving cells, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI, that is, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • corresponding The value is 2/6/.../42/46/50/54..., wherein the minimum value greater than 46 is 50, so the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 50, and at the same time,
  • the terminal sets the state of the last five HARQ-ACKs to NACK. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • DAI is the total type of DAI
  • the fifth last DAI is the last counter type DAI received, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • the value is 2/6/.../42/46/50/54..., wherein the minimum value greater than 46 is 50, so the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 50, and at the same time, The terminal sets the state of the last five HARQ-ACKs according to the detection result of the PDSCH on the last five serving cells. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the base station can configure the m value according to the actual channel environment; when the channel condition is relatively good, the probability of continuous loss of the PDCCH or the EPDCCH is relatively low, and thus the m value can be set to be relatively small. Therefore, the optional solution is that the base station can reasonably configure the value of m according to the actual application scenario, so that a good compromise between the HARQ-ACK codebook robustness and the downlink throughput performance is achieved.
  • the m value can be notified to the UE by means of semi-static configuration.
  • Figure 50 shows a schematic diagram of the DAI adoption mode 6.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • the situation of base station scheduling is shown in Figure 50.
  • the serving cell 10 of subframe 3 the number of PDSCHs that have been scheduled is 48, and the DAI value is 4, so the DAI of the last two serving cells in subframe 3 is set to the repetition of the last counter type DAI.
  • the method for determining the HARQ-ACK codebook by the terminal is:
  • the terminal determines that no PDCCH or EPDCCH is lost on the last m+1 serving cells, and the terminal is based on the last m+
  • the result of the detection of one PDSCH sets the state of the last m+1 HARQ-ACKs; if the values of the last m+1 DAIs are not the same, the terminal sets the state of the last m+1 HARQ-ACKs to be NACK.
  • the ACK or NACK is set according to the detection result of the PDSCH, and if the PDSCH includes the double codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound. And for the HARQ-ACK without the corresponding PDSCH, the terminal sets its corresponding HARQ-ACK state to NACK.
  • the values of the three DAIs received by the terminal in the binding window are respectively (4, 4, 4), and the values of the last three DAIs are the same, and the terminal determines the base station.
  • the PDCCH or EPDCCH is not lost on the last three serving cells of the scheduling, and the terminal determines the value of the last DAI according to the previously received DAI in the binding window. corresponding That is correspond
  • the number of HARQ-ACK bits that the bound window needs to feed back is Plus m, which is 50.
  • the terminal sets the state of the last three HARQ-ACKs according to the detection result of the last three PDSCHs. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the values of the three DAIs received by the terminal in the binding window are respectively (3, 4, 4), and the values of the last three DAIs are different, and the terminal determines the last three scheduled by the base station.
  • the terminal sets the state of the last 3 HARQ-ACKs to NACK. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the codebook size of HARQ-ACK is equal to Add m, and then judge whether the values of the last m+1 DAIs are the same. If they are the same, then the last m+1 are not lost. Otherwise, if there is any loss, the last m+1 HARQ-ACK states are set to NACK. can.
  • the base station can configure the m value according to the actual channel environment; when the channel condition is relatively good, the probability of continuous loss of the PDCCH or the EPDCCH is relatively low, and thus the m value can be set relatively small. Therefore, the optional solution is that the base station can reasonably configure the value of m according to the actual application scenario, so that a good compromise between the HARQ-ACK codebook robustness and the downlink throughput performance is achieved.
  • the m value can be notified to the UE by means of semi-static configuration.
  • Figure 53 shows a schematic diagram of the DAI adoption mode 4.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • DAI adopts mode 4
  • the subframe 0 is scheduled, and the subframe 0 is also scheduled according to the serving cell index from low to high, followed by the subframe 1, and finally the subframe 3.
  • the value of the DAI is according to the scheduling.
  • the codeword corresponding to the PDSCH is determined.
  • the DAI of the last two serving cells is set to the total number of codewords corresponding to the PDSCH scheduled in the binding window, and it is assumed that the DAI values of the last two scheduled serving cells are scheduled according to each serving cell.
  • the word is determined, a total of 78 PDSCH codewords are scheduled here, so the value of the last two DAIs is determined to be 2 by the table shown in FIG.
  • the method for the terminal to determine the HARQ-ACK codebook is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that need to be fed back in the subframe is greater than And corresponding Minimum value.
  • the base station and the terminal agree that the value of the DAI in the last m scheduled DCIs is determined according to only one codeword per PDSCH:
  • the terminal determines, according to the last 3 DAIs received in the binding window, if the values of the last 2 DAIs are the same, the terminal determines the last 2 scheduled by the base station.
  • the PDCCH or the EPDCCH is not lost on the serving cell, and the last two DAIs having the same value are the total type DAI, and the third last DAI is the last counter type DAI received, and the terminal is based on the opposite
  • the detection result of the last two PDSCHs is set to the state of the last two HARQ-ACKs.
  • the HARQ-ACK corresponding to the PDSCH of the dual codewords is performed.
  • the terminal determines that the PDCCH or EPDCCH is lost on the last two serving cells scheduled by the base station, and the last received DAI is a total-type DAI.
  • the second last DAI is the last counter type DAI received, and the terminal sets the state of the last two HARQ-ACKs to be NACK.
  • the values of the three DAIs received by the terminal in the binding window are respectively (4, 2, 2), and the values of the last two DAIs are the same, and the terminal determines The PDCCH or EPDCCH is not lost on the last two serving cells scheduled by the base station, and the last two DAIs with the same value are the total DAI.
  • the third last DAI is the last counter type DAI received, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • the value is 2/6/.../74/78/82/86..., where the minimum value greater than 76 is 78, so the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 78, and at the same time, The terminal sets the state of the last two HARQ-ACKs according to the detection result of the last two PDSCHs. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the values of the three DAIs received by the terminal in the binding window are respectively (2, 4, 2), and the values of the last two DAIs are different, and the terminal determines The PDCCH or the EPDCCH is lost on the last two serving cells scheduled by the base station, and the last DAI having the same value is the total DAI.
  • the second last DAI is the last counter type DAI received, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • the value is 2/6/.../74/78/82/86..., where the minimum value greater than 76 is 78, so the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 78, and at the same time, The terminal sets the state of the last 2 HARQ-ACKs to NACK. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • Figure 56 shows a schematic diagram of the DAI adoption mode 4.
  • the base station configures 16 TDD serving cells configured as the configuration 2 in the uplink and downlink.
  • the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame According to the timing relationship of the TDD configuration 2, the subframe 9 of the previous radio frame and the subframe 0, 1 of the current radio frame.
  • the HARQ-ACK of 3 will be fed back on the current subframe 7, and the subframe 9 of the previous radio frame and the subframes 0, 1, 3 and 16 of the current radio frame form a time-frequency two-dimensional binding. Set the window, and circle it in the figure.
  • the situation of base station scheduling is shown in Figure 56.
  • the value of the DAI is determined according to the codeword corresponding to the scheduled PDSCH.
  • the DAI of the last four serving cells is set to the total number of PDSCHs scheduled in the binding window, and it is assumed that the DAI values of the last four scheduled serving cells are determined according to each serving cell scheduling one codeword.
  • a total of 76 PDSCH codewords are scheduled, so the value of the last two DAIs is determined to be 4 by the table shown in FIG.
  • the reception status is as shown in FIG. 57.
  • the method for the terminal to determine the HARQ-ACK codebook is:
  • the terminal determines the value of the last counter type DAI received Corresponding The terminal determines the last total DAI value received The number of HARQ-ACK bits that need to be fed back in the subframe is greater than And corresponding Minimum value.
  • the terminal determines that no PDCCH or EPDCCH is lost on the last five serving cells scheduled by the base station, and the last four DAIs with the same value are the total number.
  • DAI the last 5th DAI is the last counter type DAI received, and the terminal sets the state of the last 4 HARQ-ACKs according to the detection result of the last 4 PDSCHs;
  • the terminal determines that PDCCH or EPDCCH loss occurs on the last five serving cells scheduled by the base station, and the terminal sets the last counter type DAI and the total type DAI to the last one DAI.
  • the value of the terminal at the same time, the terminal sets the state of the last five HARQ-ACKs to be NACK.
  • the values of the last five DAIs received by the terminal in the binding window are respectively (1, 4, 4, 4, 4), and the values of the last five DAIs are different, and the terminal determines the base station scheduling.
  • the PDCCH or EPDCCH is lost on the last five serving cells, and the terminal sets the last counter type DAI and the total type DAI to the value of the last DAI, that is, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined.
  • the value is 4/8/.../68/72/76/80..., wherein the minimum value greater than 72 is 76, so the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 76, and at the same time, The terminal sets the state of the last five HARQ-ACKs to NACK. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the terminal receives the same five DAI values in the binding window, and the terminal determines that no PDCCH or EPDCCH loss occurs on the last five serving cells scheduled by the base station, and the last four values are the same.
  • DAI is the total type of DAI
  • the fifth last DAI is the last counter type DAI received, corresponding Then, by checking the correspondence table shown in Figure 12, it can be determined. corresponding The value is 4/8/.../68/72/76/80..., wherein the minimum value greater than 72 is 76, so the terminal determines that the HARQ-ACK codebook size required to be fed back in the binding window is 76, and at the same time,
  • the terminal sets the state of the last five HARQ-ACKs to NACK. For other HARQ-ACK bits, the corresponding ACK or NACK may be set according to the detection result of the PDSCH. If the PDSCH includes the dual codeword, the HARQ-ACK corresponding to the PDSCH double codeword is spatially bound.
  • the base station can configure the m value according to the actual channel environment; when the channel condition is relatively good, the probability of continuous loss of the PDCCH or the EPDCCH is relatively low, and thus the m value can be set to be relatively small. Therefore, the optional solution is that the base station can reasonably configure the value of m according to the actual application scenario, so that a good compromise between the HARQ-ACK codebook robustness and the downlink throughput performance is achieved.
  • the m value can be notified to the UE by means of semi-static configuration.
  • the rest of the processing is substantially the same as that of the method 6.
  • the eleventh embodiment is omitted.
  • the terminal After the terminal determines the HARQ-ACK codebook, it is further necessary to further determine resources for carrying the HARQ-ACK.
  • the resource used for carrying the HARQ-ACK is a PUCCH resource or a PUSCH resource.
  • the terminal transmits the HARQ-ACK on the PUCCH when the terminal does not transmit the PUSCH on the subframe to which the HARQ-ACK is to be fed back, or the high layer signaling allows the PUCCH and the PUSCH to transmit simultaneously and the current subframe has the PUSCH transmitted simultaneously; otherwise The terminal transmits the HARQ-ACK on the PUSCH.
  • the terminal When the resource for carrying the HARQ-ACK is a PUCCH resource, the terminal further determines a used PUCCH format according to the determined HARQ-ACK codebook, where the PUCCH format includes: a PUCCH format 3 and a redefined PUCCH format.
  • the terminal Determining that the used PUCCH format is PUCCH format 3, otherwise, the terminal determines that the used PUCCH format is the redefined PUCCH format; wherein the first preset value is that the terminal and the base station agree on the Or the maximum number of information bits that can be carried by the PUCCH format 3, or the upper layer configuration; the first preset value may be 22, that is, the maximum number of information bits that the PUCCH format 3 can carry.
  • the terminal determines that the used PUCCH format is the first new PUCCH format as shown in FIG. 4a. ;
  • the terminal determines that the used PUCCH format is the second new PUCCH format as shown in FIG. 4b;
  • the first preset value may be 22, and the second preset value may be 44.
  • the redefined PUCCH format includes a total of N formats from the first to the Nth new PUCCH formats
  • the end The terminal determines to use the PUCCH format as PUCCH format 3;
  • the terminal determines that the used PUCCH format is the first new PUCCH format
  • the terminal determines that the used PUCCH format is the second new PUCCH format
  • the terminal determines that the used PUCCH format is the Nth new PUCCH format
  • the second to N+1 preset values are respectively the maximum number of information bits that can be carried by the first to the Nth new PUCCH formats, or are predetermined for the terminal and the base station. Value, or a value configured for a higher layer.
  • the terminal needs to further determine the number of resource elements (Resource Element, RE) occupied by the HARQ-ACK in the PUSCH.
  • an embodiment of the present invention provides a terminal 10, where the terminal 10 includes:
  • the receiving unit 11 is configured to receive a PDCCH or an EPDCCH, and a PDSCH;
  • the first determining unit 12 is configured to determine a feedback HARQ-ACK codebook and a resource for carrying the HARQ-ACK according to at least one of the following parameters, where the parameter includes: a PDCCH or an EPDCCH received by the terminal The DCI carried on, the number of PDCCHs or EPDCCHs received by the terminal, or the number of PDSCHs received by the terminal;
  • the second determining unit 13 is configured to determine a state of the HARQ-ACK according to a detection result of the received PDSCH or PDCCH or an EPDCCH, where the state of the HARQ-ACK refers to the HARQ-ACK codebook
  • the state of the bit sequence, the state of each bit is ACK or NACK;
  • the sending unit 14 is configured to send the HARQ-ACK on the resource for carrying the HARQ-ACK according to the determined HARQ-ACK codebook and the status of the HARQ-ACK.
  • a terminal provided by the embodiment of the present invention receives a PDCCH or an EPDCCH, and a PDSCH; the terminal determines a feedback HARQ-ACK codebook and a resource for carrying the HARQ-ACK according to at least one of the following parameters;
  • the parameter includes: the DCI carried on the PDCCH or the EPDCCH received by the terminal, the number of PDCCHs or EPDCCHs received by the terminal, or the number of PDSCHs received by the terminal;
  • the detection result of the PDSCH or PDCCH or EPDCCH determines the state of the HARQ-ACK; wherein the state of the HARQ-ACK refers to the state of the bit sequence in the HARQ-ACK codebook, and the state of each bit is ACK Or NACK;
  • the terminal sends the HARQ-ACK on the resource for carrying the HARQ-ACK according to the determined HARQ-ACK codebook and the status of the HARQ-ACK.
  • the solution of the embodiment of the present invention can improve the efficiency
  • an embodiment of the present invention provides a base station 20, where the base station 20 includes:
  • the sending unit 21 is configured to send a DCI to the terminal, where the DCI includes a control domain for the terminal to determine the HARQ-ACK codebook;
  • the receiving unit 22 is configured to receive the HARQ-ACK sent by the terminal.
  • a base station is provided by the base station, where the base station sends a DCI to the terminal, where the DCI includes a control domain for the terminal to determine the HARQ-ACK codebook, and the terminal is used to determine the control domain of the HARQ-ACK codebook.
  • the DAI; the base station receives the HARQ-ACK sent by the terminal.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a method for transmitting the above information applied to a terminal side.
  • the embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented to implement a method for transmitting the above information applied to a base station side.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any specific combination of hardware and software.
  • the embodiment of the present invention provides a method for transmitting information, a terminal, and a base station, which can improve the efficiency of feedback information of the terminal, reduce the impact on the receiving performance of the base station, and reduce the transmission power when the terminal feeds back information and reduce the occupied uplink resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息的传输方法,包括:终端接收PDCCH或EPDCCH、以及PDSCH;所述终端根据以下至少一种参数确定反馈的HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:终端接收到的DCI、PDCCH或EPDCCH的数量、或PDSCH的数量;终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,HARQ-ACK的状态指HARQ-ACK码本中的比特序列的状态;终端根据确定的HARQ-ACK码本以及HARQ-ACK的状态在用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。

Description

一种信息的传输方法、终端和基站 技术领域
本申请涉及但不限于无线通信技术,尤指一种信息的传输方法、终端和基站。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,终端的上行信道包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理随机接入信道(Physical Ramdom Acess Channel,PRACH),进一步PUSCH中可以传输数据信息、调度请求(Scheduling Request,SR)、混合自动重传请求应答(Hybrid Automatic Repeat request ACKnowledgement,HARQ-ACK)信息和信道状态信息(Channel State Information,CSI),PUCCH中可以传输SR、HARQ-ACK和CSI,其中,HARQ-ACK表示对物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或表示半持续调度(Semi-Persistent Scheduling,SPS)释放的物理下行控制信道/增强物理下行控制信道(Physical Downlink Control Channel/Enhanced PDCCH,PDCCH/EPDCCH)的应答消息。
为了满足高级国际电信联盟(International Telecommunication Union-Advanced,ITU-Advanced)的要求,作为LTE的演进标准的高级长期演进(Long Term Evolution Advanced,LTE-A)系统需要支持更大的系统带宽(最高可达100MHz),并需要后向兼容LTE相关的标准。在相关的LTE系统的基础上,可以将LTE系统的带宽进行合并来获得更大的带宽,这种技术称为载波聚合(Carrier Aggregation,CA)技术,该技术能够提高LTE-A系统的频谱利用率、缓解频谱资源紧缺,进而优化频谱资源的利用。
在引入了载波聚合技术的系统中,进行聚合的载波称为分量载波(Component Carrier,CC),也称为一个服务小区(Serving Cell)。同时,还提出了主分量载波/小区(Primary Component Carrier/Cell,PCC/PCell)和辅分量载波/小区(Secondary Component Carrier/Cell,SCC/SCell)的概念, 在进行了载波聚合的系统中,至少包含一个主服务小区和辅服务小区,其中,主服务小区一直处于激活状态。
在相关的载波聚合系统中,对于SR、HARQ-ACK以及周期CSI,当没有PUSCH同时发送时,上述信息只能在PCell的PUCCH上发送。同时,协议定义了多种PUCCH格式(format),以适应不同的场景。所述的多种PUCCH格式包括:
PUCCH格式1:承载SR;
PUCCH格式1a/1b:承载1/2比特的HARQ-ACK、或1/2比特的HARQ-ACK以及SR;
PUCCH格式2a/2b:承载1/2比特的HARQ-ACK以及周期CSI;
PUCCH格式2:承载周期CSI或者承载周期CSI和HARQ-ACK;
PUCCH格式3:承载HARQ-ACK,或承载HARQ-ACK和SR,或承载HARQ-ACK和CSI,或承载HARQ-ACK、SR和CSI。PUCCH格式3本身最多可以承载22比特,而相关协议规定最多可以承载20比特的HARQ-ACK,或者20比特的HARQ-ACK和1比特的SR,或者是10比特的HARQ和11比特的CSI以及1比特的SR。
其中,PUCCH格式1、2、3中的数字1、2、3是用于区分三种不同的信道格式,这里的信道格式指的是参考信号的位置,以及信道化过程,而字母a和b分别表示采用了二进制相移键控(Binary Phase Shift Keying,BPSK)调制和正交相移键控(Quadrature Phase Shift Keyin,QPSK)调制。图1至图3分别给出了这三种不同的PUCCH格式。
考虑到后续版本中,支持至多32个服务小区的载波聚合技术导致需要发送的HARQ-ACK比特数远超过10/20比特,PUCCH格式3将无法承载。为此,目前业界讨论的结果是至少引入一种新的物理上行控制信道来承载更多的HARQ-ACK,可将其称之为PUCCH格式4。图4a和图4b分别给出了候选的PUCCH格式4的两种可能的结构示意图。如果后续引入多于1种新的物理上行控制信道,可以用PUCCH格式4a,4b,…等来区分,不同的新的PUCCH格式承载信息比特的能力不同。
在如图4a所示的新的PUCCH格式中,这种格式可以看做是如图3所示的PUCCH格式3的频域扩展,与PUCCH格式3不同的地方在于频域占用了2个物理资源块(Physical Resource Block,PRB)。因而,其承载信息比特的能力相对于PUCCH格式3来说加倍,PUCCH格式3最多能够承载22个信息比特,则这种结构可以承载44个信息比特。如果频域占用的PRB增加,那么可以承载的信息比特也相应的增加。
而在如图4b所示的新的PUCCH格式中,每个时隙中的符号0,1,2,4,5,6都可以用于数据传输,因此最多可以承载144个调制符号(D0~D143),如果采用QPSK调制,那么图4a所示的新的PUCCH格式可以携带288个编码后的比特。如果考虑信道编码码率不超过0.5,那么图4a所示的新的PUCCH格式可以携带144个信息比特。
当前的HARQ-ACK反馈比特数是基于配置的参数确定的。对于主服务小区为频分双工(Frequency Division Duplexing,FDD)的聚合系统,终端要根据配置的服务小区数,以及服务小区配置的传输模式来确定反馈的HARQ-ACK的比特数以及一个反馈HARQ-ACK的上行子帧,对应的下行服务小区构成一个绑定窗,图5给出了主服务小区为FDD的聚合系统中HARQ-ACK绑定窗的一个示意图,在该示意图中,下行子帧0的HARQ-ACK将在上行子帧4上发送,FDD的绑定窗只包含服务小区数这一维度。对于主服务小区为TDD的聚合系统,终端要根据配置的服务小区数、服务小区配置的传输模式,以及服务小区的上下行配置来确定反馈的HARQ-ACK比特数,一个反馈HARQ-ACK的上行子帧,对应的下行服务小区以及下行子帧构成一个绑定窗,图6给出了主服务小区为时分双工(Time Division Duplexing,TDD)的聚合系统中HARQ-ACK绑定窗的一个示意图,在该示意图中,假设TDD服务小区的上下行配置相同,且都为上下行配置2,那么下行子帧9、0、1以及3的HARQ-ACK将在上行子帧7上发送,TDD的绑定窗包括服务小区数以及子帧数两个维度。
采用上述HARQ-ACK比特数确定方法,存在的问题是:在FDD为主服务小区的场景中当配置的服务小区很多,或在TDD为主服务小区的场景中当配置的服务小区和子帧很多,而基站侧实际调度了需要反馈HARQ-ACK 的服务小区(对应FDD)、或服务小区和子帧(对应TDD)相对比较少的时候,终端将会反馈大量无用的HARQ-ACK。这些无用的HARQ-ACK信息,一方面会影响基站侧对于HARQ-ACK的接收性能,另一方面也会导致终端需要更大的发送功率和/或更多的上行资源来发送HARQ-ACK。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种信息的传输方法、终端和基站,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。
本发明实施例提供一种信息的传输方法,包括:
终端接收物理下行控制信道(PDCCH)或增强物理下行控制信道(EPDCCH)、以及物理下行共享信道(PDSCH);
所述终端根据以下至少一种参数确定反馈的混合自动重传请求应答(HARQ-ACK)码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的下行控制信息(DCI)、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;
所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为确认(ACK)或非确认(NACK);
所述终端根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。
可选地,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端根据所述DCI中的下行分配索引(DAI)确定所述HARQ-ACK码本;或,
所述终端根据接收到的PDSCH和PDCCH的数量确定所述HARQ-ACK码本;或,
所述终端根据接收到的PDSCH和EPDCCH的数量确定所述HARQ-ACK码本;或,
所述终端根据所述DAI、以及接收到的PDSCH和PDCCH的数量,确定所述HARQ-ACK码本;或,
所述终端根据所述DAI、以及接收到的PDSCH和EPDCCH的数量,确定所述HARQ-ACK码本。
可选地,所述DAI为所述终端与基站预先约定的且所述DAI为以下方式之一:
方式1:在绑定窗内的每个下行子帧上,按照第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示半持续调度SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
方式2:在绑定窗内,按照第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
方式3:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
方式4:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
方式5:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
方式6:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
方式7:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
方式8:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
其中,所述按照所述第一预设顺序的前面N-m个DCI中的DAI或者所述按照所述第二预设顺序的前面N-m个DCI中的DAI均定义为计数器型DAI,前述N-m个DCI中的DAI的取值是递增或递减的;所述按照所述第一预设 顺序最后m个DCI中的DAI或所述按照所述第二预设顺序最后m个DCI中的DAI的取值是相同的;对于方式1、2、3或4中,最后m个取值相同的DAI定义为总数型DAI,对于方式5、6、7或8中,最后m个取值相同的DAI定义为重复型DAI;
对于方式1、3、5或7,N表示所述绑定窗内每个下行子帧所述基站调度给所述终端的DCI的个数;对于方式2、4、6或8,N表示所述绑定窗内所述基站调度给所述终端的DCI的个数;且N大于m。
可选地,所述m为所述终端与所述基站约定好的取值,或者是预先规定好的取值,或者是所述基站通过高层信令指示所述终端的取值。
可选地,所述第一预设顺序为按照服务小区索引从低到高或者从高到低的顺序;所述第二预设顺序为依次在绑定窗内每个子帧内按照服务小区索引从低到高或从高到低排序、并将所述每个子帧内的排序串接后得到的顺序。
可选地,所述HARQ-ACK码本包含所述HARQ-ACK码本大小和所述HARQ-ACK码本中的比特序列的排序方式,所述HARQ-ACK码本大小是指所述HARQ-ACK的比特数。
可选地,当所述DAI采用方式1、方式3、方式5或方式7时,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端根据在绑定窗内每个下行子帧上接收到的所述DAI,确定所述绑定窗内每个下行子帧需要反馈的HARQ-ACK的比特数以及HARQ-ACK比特序列,当所述下行子帧有SPS的PDSCH时,所述SPS的PDSCH的HARQ-ACK按照所述第一预设顺序级联在所述下行子帧的HARQ-ACK比特序列的末尾,然后将绑定窗内每个下行子帧的HARQ-ACK比特序列按照子帧的先后顺序级联起来作为所述HARQ-ACK码本。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
如果所述终端在所述绑定窗对应的下行子帧上,没有接收到任何基站调度,则所述终端将所述下行子帧对应的HARQ-ACK设置为第一预设数量的NACK。
可选地,对于方式1或方式5,所述第一预设数量取值为4;对于方式3或方式7,所述第一预设数量取值为8。
可选地,当所述DAI采用方式1、方式2、方式5或方式6时,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
当所述终端接收到包含2个码字的PDSCH时,所述终端将所述2个码字对应的HARQ-ACK进行空间绑定后作为所述PDSCH对应的HARQ-ACK,所述空间绑定为对所述2个码字的HARQ-ACK进行逻辑与操作。
可选地,对于方式1,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定所述绑定窗内的每个下行子帧需要反馈的HARQ-ACK的比特数;
所述方式为:所述终端确定接收到的按照所述第一预设顺序最后一个计数型DAI的值
Figure PCTCN2016094961-appb-000001
所对应的
Figure PCTCN2016094961-appb-000002
以及所述终端确定接收到的按照所述第一预设顺序最后一个总数型DAI的值
Figure PCTCN2016094961-appb-000003
则所述每个下行子帧需要反馈的HARQ-ACK的比特数为大于
Figure PCTCN2016094961-appb-000004
的且与
Figure PCTCN2016094961-appb-000005
对应的
Figure PCTCN2016094961-appb-000006
最小值,其中
Figure PCTCN2016094961-appb-000007
Figure PCTCN2016094961-appb-000008
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式1,所述DAI包含2比特信息,
当所述m取值为2时,对于所述绑定窗内的每个下行子帧,如果所述终端在子帧上接收到的最后2个DAI的取值相同,则所述终端判断所述基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个服务小区的检测结果,设置最后2个HARQ-ACK的状态,如果PDSCH包含2个码字,则对所述包含2个码字的PDSCH所对应的HARQ-ACK进行空间绑定;如果所述最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI, 所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK;
当所述m的取值为4时,最后一个计数器型DAI的取值与总数型DAI的取值是相同的,对于所述绑定窗内的每个下行子帧,如果所述终端在子帧上接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态,如果PDSCH包含2个码字,则对所述包含2个码字的PDSCH所对应的HARQ-ACK进行空间绑定;
如果所述最后5个DAI的取值不相同,则所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,对于方式5,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内的每个下行子帧需要反馈的HARQ-ACK比特数:
所述方式为:如果所述终端在所述下行子帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000009
对应的
Figure PCTCN2016094961-appb-000010
则所述每个下行子帧需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000011
再加上m,其中
Figure PCTCN2016094961-appb-000012
Figure PCTCN2016094961-appb-000013
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式5,对于所述绑定窗内的每个下行子帧,如果所述终端接收到 的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m+1个服务小区的检测结果,设置最后m+1个HARQ-ACK的状态;如果所述最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后m+1个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,对于方式3,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内的每个下行子帧需要反馈的HARQ-ACK比特数;
所述方式为:所述终端确定接收到的按照所述第一预设顺序最后一个计数型DAI的值
Figure PCTCN2016094961-appb-000014
所对应的
Figure PCTCN2016094961-appb-000015
所述终端确定接收到的按照所述第一预设顺序最后一个总数型DAI值
Figure PCTCN2016094961-appb-000016
则所述每个下行子帧需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000017
的且与
Figure PCTCN2016094961-appb-000018
对应的
Figure PCTCN2016094961-appb-000019
最小值,其中
Figure PCTCN2016094961-appb-000020
Figure PCTCN2016094961-appb-000021
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式3,当所述DAI包含2比特信息,所述基站与所述终端约定调度的最后m个服务小区的DAI取值按照每个服务小区只调度一个码字来确定:
当所述m的取值为2时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个服务小区的检测结果,设置最后2个HARQ-ACK的状态,当最后2个服务小区有调度了包含2个码字的PDSCH,则对所述2个码字的HARQ-ACK进行空 间绑定;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK;
当所述m的取值为4时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态,当最后4个服务小区有调度了包含2个码字的PDSCH,则对所述2个码字的HARQ-ACK进行空间绑定;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述最后1个DAI为总数型DAI,从最后往前第一个与最后一个DAI取值不同的DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后5个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式3,当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的服务小区的DAI取值按照每个服务小区调度2个码字来确定:
当所述m的取值为2时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为 接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个服务小区的检测结果,设置最后4个HARQ-ACK的状态,当最后2个服务小区有只调度了单码字的PDSCH,则对该服务小区对应的第2个HARQ-ACK设置为NACK;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后4个HARQ-ACK的状态为NACK;
当所述m的取值为4时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个服务小区的检测结果,设置最后8个HARQ-ACK的状态,当最后4个服务小区有只调度了单码字的PDSCH,则对该服务小区对应的第2个HARQ-ACK设置为NACK;
如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后8个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后4个或8个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH相应的码字检测结果设为ACK或NACK;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,对于方式7,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内的每个下行子帧需要反馈的HARQ-ACK比特数;
所述方式为:如果所述终端在所述下行子帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000022
对应的
Figure PCTCN2016094961-appb-000023
则所述每个下行子帧需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000024
再加上m或者2m,其中
Figure PCTCN2016094961-appb-000025
Figure PCTCN2016094961-appb-000026
的对应关系 为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式7,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的服务小区按照每个服务小区1比特的HARQ-ACK反馈,对于所述绑定窗内的每个下行子帧,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m+1个服务小区的检测结果,设置最后m+1个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;对于HARQ-ACK码本中除最后m+1个HARQ-ACK以外的其他HARQ-ACK的状态,则根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK;
当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的服务小区按照每个服务小区2比特的HARQ-ACK反馈,对于所述绑定窗内的每个下行子帧,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m个服务小区的检测结果,设置最后2m个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后2m个HARQ-ACK的状态为NACK;对于HARQ-ACK码本中除最后2m个HARQ-ACK以外的其他HARQ-ACK的状态,则根据PDSCH相应码字的检测结果设为ACK或NACK;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,当所述DAI采用所述方式2或方式4或方式6或方式8时,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端根据在绑定窗内接收到的DAI,确定绑定窗内需要反馈的HARQ-ACK的比特数以及HARQ-ACK比特序列,当所述绑定窗内有SPS的PDSCH时,所述SPS的PDSCH的HARQ-ACK按照所述第二预设顺序级 联在所述HARQ-ACK比特序列的末尾。
可选地,对于方式2,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数;
所述方式为:所述终端确定接收到的按照所述第二预设顺序最后一个计数型DAI的值
Figure PCTCN2016094961-appb-000027
所对应的
Figure PCTCN2016094961-appb-000028
所述终端确定接收到的按照所述第二预设顺序最后一个总数型DAI值
Figure PCTCN2016094961-appb-000029
则所述绑定窗需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000030
的且与
Figure PCTCN2016094961-appb-000031
对应的
Figure PCTCN2016094961-appb-000032
最小值,其中
Figure PCTCN2016094961-appb-000033
Figure PCTCN2016094961-appb-000034
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式2,所述DAI包含2比特信息,
当所述m取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI中有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK;
当所述的m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个DCI没有丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个PDSCH的检测结果,设置最后4个HARQ-ACK的状态;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个DCI中至少有一个丢失了,所述终端把最后一个计数器型DAI以及总数型DAI 都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,对于方式6,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数;
所述方式为:如果所述终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000035
对应的
Figure PCTCN2016094961-appb-000036
则所述绑定窗需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000037
再加上m,其中
Figure PCTCN2016094961-appb-000038
Figure PCTCN2016094961-appb-000039
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式6,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个DCI没有丢失,所述终端根据对所述最后m+1个PDSCH的检测结果,设置最后m+1个HARQ-ACK的状态;否则,所述终端设置最后m+1个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除最后m+1个HARQ-ACK以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,对于方式4,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数采;
所述方式为:所述终端确定接收到的按照所述第二预设顺序最后一个计数型DAI的值
Figure PCTCN2016094961-appb-000040
所对应的
Figure PCTCN2016094961-appb-000041
所述终端确定接收到的按照所述第二预设顺序最后一个总数型DAI的值
Figure PCTCN2016094961-appb-000042
则所述绑定窗需要反馈的 HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000043
的且与
Figure PCTCN2016094961-appb-000044
对应的
Figure PCTCN2016094961-appb-000045
最小值,其中
Figure PCTCN2016094961-appb-000046
Figure PCTCN2016094961-appb-000047
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式4,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的DCI中的DAI的取值按照每个PDSCH只调度一个码字来确定:
当所述的m的取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态,当最后2个PDSCH有包含2个码字的,则对所述2个码字HARQ-ACK进行空间绑定;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK;
当所述的m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个DCI没有丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个PDSCH的检测结果,设置最后4个HARQ-ACK的状态,当最后4个PDSCH有包含2个码字的,则对所述2个码字HARQ-ACK进行空间绑定;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个DCI中至少有一个丢失了,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果 PDSCH包含2个码字,则对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式4,当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的DCI中的DAI的取值按照每个PDSCH调度2个码字来确定:
当所述m的取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个PDSCH的检测结果,设置最后4个HARQ-ACK的状态,当最后2个PDSCH有只调度了单码字的,则对该PDSCH对应的第2个HARQ-ACK设置为NACK;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后4个HARQ-ACK的状态为NACK;
当所述m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个DCI没有丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个PDSCH的检测结果,设置最后8个HARQ-ACK的状态,当最后4个PDSCH有只调度了单码字的,则对该PDSCH对应的第2个HARQ-ACK设置为NACK;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个DCI至少有1个丢失了,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后8个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后4个或8个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH对应码字的检测结果设为ACK或NACK; 而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,对于方式8,所述终端确定反馈的HARQ-ACK码本,包括:
所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数;
所述方式为:如果所述终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000048
对应的
Figure PCTCN2016094961-appb-000049
则所述绑定窗需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000050
再加上m或者2m,其中
Figure PCTCN2016094961-appb-000051
Figure PCTCN2016094961-appb-000052
的对应关系为所述终端与所述基站约定好的。
可选地,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
对于方式8,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的PDSCH按照每个PDSCH反馈1比特的HARQ-ACK,对于所述绑定窗内,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个DCI没有丢失,所述终端根据对所述最后m+1个PDSCH的检测结果,设置最后m+1个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;
当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的PDSCH按照每个PDSCH反馈2比特的HARQ-ACK,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个DCI没有丢失,所述终端根据对所述最后m个PDSCH的检测结果,设置最后2m个HARQ-ACK的状态,当最后m个PDSCH有只调度了单码字的,则对该PDSCH对应的第2个HARQ-ACK设置为NACK;如果最后m+1个DAI的取值不相同,所述终端设置最后2m个HARQ-ACK的状态为NACK;
对于HARQ-ACK码本中除所述最后m+1个或2m个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH对应码字的检测结果设为ACK或NACK;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
可选地,所述用于承载HARQ-ACK的资源为物理上行链路控制信道 (PUCCH)资源或物理上行共享信道(PUSCH)资源。
可选地,当所述用于承载HARQ-ACK的资源为PUCCH资源时,所述终端确定用于承载所述HARQ-ACK的资源,包括:
所述终端根据所述确定的HARQ-ACK码本确定使用的PUCCH格式,所述的PUCCH格式包括:PUCCH格式3以及重新定义的PUCCH格式。
可选地,当所述确定的HARQ-ACK码本大小小于或等于第一预设值时,所述终端确定使用的PUCCH格式为PUCCH格式3;否则,所述终端确定使用的PUCCH格式为所述重新定义的PUCCH格式;
其中,所述第一预设值为所述终端与所述基站约定好的值,或者是所述PUCCH格式3能够承载的最大信息比特数,或者是高层配置的值。
可选地,如果所述重新定义的PUCCH格式包含第一种到第N种新的PUCCH格式共N种格式,
当所述确定的HARQ-ACK码本大小小于或等于第一预设值时,所述终端确定使用的PUCCH格式为PUCCH格式3;
当所述确定的HARQ-ACK码本大小大于第一预设值,小于或等于第二预设值时,所述终端确定使用的PUCCH格式为第一种新的PUCCH格式;
当所述确定的HARQ-ACK码本大小大于第二预设值,小于或等于第三预设值时,所述终端确定使用的PUCCH格式为第二种新的PUCCH格式;
如此类推,当所述确定的HARQ-ACK码本大小大于第N预设值,小于或等于第N+1预设值时,所述终端确定使用的PUCCH格式为第N种新的PUCCH格式;
其中,所述的第二到第N+1预设值分别为所述第一种到第N种新的PUCCH格式能够承载的最大信息比特数,或者为所述终端与所述基站预定好的值,或者为高层配置的值。
可选地,当所述用于承载HARQ-ACK的资源为PUSCH资源时,所述终端确定用于承载所述HARQ-ACK的资源,包括:
所述终端确定HARQ-ACK在PUSCH中所占的资源单元(RE)数量。
本发明实施例还提供一种信息的传输方法,包括:
基站向终端发送DCI,其中,所述DCI中包含用于终端确定HARQ-ACK码本的控制域;
所述基站接收所述终端发送的HARQ-ACK。
可选地,所述用于终端确定HARQ-ACK码本的控制域为DAI。
可选地,所述DAI为以下方式之一:
方式1:在绑定窗内的每个下行子帧上,按照第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示半持续调度SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
方式2:在绑定窗内,按照第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
方式3:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
方式4:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI, 表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
方式5:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
方式6:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
方式7:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
方式8:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
按照所述第一预设顺序的前面N-m个DCI中的DAI或者所述按照所述第二预设顺序的前面N-m个DCI中的DAI均定义为计数器型DAI,前述N-m个DCI中的DAI的取值是递增或递减的;所述按照所述第一预设顺序最后m个DCI中的DAI或所述按照所述第二预设顺序最后m个DCI中的DAI的取值是相同的;对于方式1、2、3或4中,最后m个取值相同的DAI定义为总数型DAI,对于方式5、6、7或8中,最后m个取值相同的DAI定义为重复型DAI;
对于方式1、3、5或7,N表示所述绑定窗内每个下行子帧所述基站调度给所述终端的DCI的个数;对于方式2、4、6或8,N表示所述绑定窗内所述基站调度给所述终端的DCI的个数;且N大于m。
可选地,所述m为所述终端与所述基站约定好的取值,或者是预先规定好的取值,或者是所述基站通过高层信令指示所述终端的。
可选地,所述第一预设顺序为按照服务小区索引从低到高或者从高到低的顺序;所述第二预设顺序为依次在绑定窗内每个子帧内按照服务小区索引从低到高或从高到低排序、并将所述每个子帧内的排序串接后得到的顺序。
可选地,所述的HARQ-ACK码本包含所述HARQ-ACK码本大小和所述HARQ-ACK码本中的HARQ-ACK比特序列的排序方式,所述HARQ-ACK码本大小是指所述HARQ-ACK的比特数。
可选地,所述DAI所包含的比特数为2比特或3比特。
可选地,所述DAI的取值与调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量有预设的映射关系。
本发明实施例提供一种终端,包括:
接收单元,设置为接收PDCCH或EPDCCH、以及PDSCH;
第一确定单元,设置为根据以下至少一种参数确定反馈的HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的DCI、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;
第二确定单元,设置为根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为ACK或NACK;
发送单元,设置为根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。
本发明实施例提供一种基站,包括:
发送单元,设置为向终端发送DCI,其中,所述DCI中包含用于终端确定HARQ-ACK码本的控制域;
接收单元,设置为接收所述终端发送的HARQ-ACK。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于终端侧的上述信息的传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于基站侧的上述信息的传输方法。
本发明实施例提供一种信息的传输方法、终端和基站,所述方法包括:终端接收物理下行控制信道(PDCCH)或增强物理下行控制信道(EPDCCH)、以及物理下行共享信道(PDSCH);所述终端根据以下至少一种参数确定反馈的混合自动重传请求应答(HARQ-ACK)码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的下行控制信息(DCI)、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为确认(ACK)或非确认(NACK);所述终端根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。通过本发明实施例的方案,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部 分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为相关技术中的PUCCH格式1/1a/1b的时频结构示意图;
图2为相关技术中的PUCCH格式2的时频结构示意图;
图3为相关技术中的PUCCH格式3的时频结构示意图;
图4a为相关技术中候选的PUCCH格式4的一种时频结构示意图;
图4b为相关技术中候选的PUCCH格式4的另一种时频结构示意图;
图5为FDD作为主服务小区时HARQ-ACK绑定窗的一个示意图;
图6为TDD作为主服务小区时HARQ-ACK绑定窗的一个示意图;
图7为本发明实施例提供的一种信息的传输方法的流程示意图;
图8为本发明实施例提供的另一种信息的传输方法的流程示意图;
图9为相关技术中终端反馈的HARQ-ACK的一个示意图;
图10为相关技术中终端反馈的HARQ-ACK的另一个示意图;
图11为假设的一种情况下终端向基站反馈HARQ-ACK的一个示意图;
图12为本发明实施例一中给出的DAI控制域为2比特时
Figure PCTCN2016094961-appb-000053
Figure PCTCN2016094961-appb-000054
的映射关系的一个示意图;
图13为本发明实施例一中给出的DAI控制域为3比特时
Figure PCTCN2016094961-appb-000055
Figure PCTCN2016094961-appb-000056
的映射关系的一个示意图;
图14为本发明实施例二中DAI采用方式1时基站侧发送的DAI的取值的一个示意图;
图15为本发明实施例二中DAI采用方式1时终端接收数据的一个示意图;
图16为本发明实施例二中DAI采用方式1时终端在子帧9上接收数据的一个示意图;
图17为本发明实施例二中DAI采用方式1时终端在子帧0上接收数据的一个示意图;
图18为本发明实施例二中DAI采用方式1时终端在子帧1上接收数据的一个示意图;
图19为本发明实施例二中DAI采用方式1时终端在子帧3上接收数据的一个示意图;
图20为本发明实施例三中DAI采用方式1时基站侧发送的DAI的取值的一个示意图;
图21为本发明实施例三中DAI采用方式1时终端接收数据的一个示意图;
图22为本发明实施例三中DAI采用方式1时终端在子帧9上接收数据的一个示意图;
图23为本发明实施例三中DAI采用方式1时终端在子帧0上接收数据的一个示意图;
图24为本发明实施例三中DAI采用方式1时终端在子帧1上接收数据的一个示意图;
图25为本发明实施例三中DAI采用方式1时终端在子帧3上接收数据的一个示意图;
图26为本发明实施例四中DAI采用方式5时基站侧发送的DAI的取值的一个示意图;
图27为本发明实施例四中DAI采用方式5时终端接收数据的一个示意图;
图28为本发明实施例四中DAI采用方式5时终端在子帧9上接收数据的一个示意图;
图29为本发明实施例四中DAI采用方式5时终端在子帧0上接收数据的一个示意图;
图30为本发明实施例四中DAI采用方式5时终端在子帧1上接收数据的一个示意图;
图31为本发明实施例四中DAI采用方式5时终端在子帧3上接收数据 的一个示意图;
图32为本发明实施例五中DAI采用方式3时基站侧发送的DAI的取值的一个示意图;
图33为本发明实施例五中DAI采用方式3时终端接收数据的一个示意图;
图34为本发明实施例五中DAI采用方式3时终端在子帧9上接收数据的一个示意图;
图35为本发明实施例五中DAI采用方式3时终端在子帧0上接收数据的一个示意图;
图36为本发明实施例五中DAI采用方式3时终端在子帧1上接收数据的一个示意图;
图37为本发明实施例五中DAI采用方式3时终端在子帧3上接收数据的一个示意图;
图38为本发明实施例六中DAI采用方式3时基站侧发送的DAI的取值的一个示意图;
图39为本发明实施例六中DAI采用方式3时终端接收数据的一个示意图;
图40为本发明实施例六中DAI采用方式3时终端在子帧9上接收数据的一个示意图;
图41为本发明实施例六中DAI采用方式3时终端在子帧0上接收数据的一个示意图;
图42为本发明实施例六中DAI采用方式3时终端在子帧1上接收数据的一个示意图;
图43为本发明实施例六中DAI采用方式3时终端在子帧3上接收数据的一个示意图;
图44为本发明实施例九中DAI采用方式2时基站侧发送的DAI的取值的一个示意图;
图45为本发明实施例九中DAI采用方式2时终端接收数据的一个示意图;
图46为本发明实施例九中DAI采用方式2时终端接收数据的另一个示意图;
图47为本发明实施例十中DAI采用方式2时基站侧发送的DAI的取值的一个示意图;
图48为本发明实施例十中DAI采用方式2时终端接收数据的一个示意图;
图49为本发明实施例十中DAI采用方式2时终端接收数据的另一个示意图;
图50为本发明实施例十一中DAI采用方式6时基站侧发送的DAI的取值的一个示意图;
图51为本发明实施例十一中DAI采用方式6时终端接收数据的一个示意图;
图52为本发明实施例十一中DAI采用方式6时终端接收数据的另一个示意图;
图53为本发明实施例十二中DAI采用方式4时基站侧发送的DAI的取值的一个示意图;
图54为本发明实施例十二中DAI采用方式4时终端接收数据的一个示意图;
图55为本发明实施例十二中DAI采用方式4时终端接收数据的另一个示意图;
图56为本发明实施例十三中DAI采用方式4时基站侧发送的DAI的取值的一个示意图;
图57为本发明实施例十三中DAI采用方式4时终端接收数据的一个示意图;
图58为本发明实施例十三中DAI采用方式4时终端接收数据的另一个 示意图;
图59为本发明实施例提供的终端的示意图;
图60为本发明实施例提供的基站的示意图。
本发明的实施方式
下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供一种信息的传输方法,基于终端(或者也可以称为用户设备UE)侧,如图7所示,该方法包括:
步骤101、终端接收物理下行控制信道(PDCCH)或增强物理下行控制信道(EPDCCH)、以及物理下行共享信道(PDSCH);
步骤102、所述终端根据以下至少一种参数确定反馈的混合自动重传请求应答(HARQ-ACK)码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的下行控制信息(DCI)、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;
步骤103、所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为确认(ACK)或非确认(NACK);
步骤104、所述终端根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。
可选地,所述HARQ-ACK码本包含所述HARQ-ACK码本大小和所述HARQ-ACK码本中的比特序列的排序方式,所述HARQ-ACK码本大小是指 所述HARQ-ACK的比特数。
本发明实施例提供的一种信息的传输方法,终端接收PDCCH或EPDCCH、以及PDSCH;所述终端根据以下至少一种参数确定反馈的HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的DCI、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为ACK或NACK;所述终端根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。通过本发明实施例的方案,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。
本发明实施例还提供一种信息的传输方法,基于基站侧,如图8所示,该方法包括:
步骤201、基站向终端发送下行控制信息(DCI),其中,所述DCI中包含用于终端确定HARQ-ACK码本的控制域;
步骤202、所述基站接收所述终端发送的HARQ-ACK。
可选地,所述用于终端确定HARQ-ACK码本的控制域为下行分配索引(DAI)。
可选地,所述HARQ-ACK码本包含所述HARQ-ACK码本大小和所述HARQ-ACK码本中的HARQ-ACK比特序列的排序方式,所述HARQ-ACK码本大小是指所述HARQ-ACK的比特数。
可选地,所述DAI所包含的比特数为2比特或3比特。
可选地,所述DAI的取值与调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量有预设的映射关系。
本发明实施例提供的另一种信息的传输方法,基站向终端发送DCI,其中,所述DCI中包含用于终端确定HARQ-ACK码本的控制域,所述用于终 端确定HARQ-ACK码本的控制域为DAI;所述基站接收所述终端发送的HARQ-ACK。通过本发明实施例的方案,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。
下面通过具体的实施例,对本申请提供的技术方案进行详细说明。
在详细介绍本申请提供的技术方案之前,先对相关技术做简要介绍,以方便技术人员更清楚地了解本申请的技术方案。
相关机制中,终端反馈的HARQ-ACK的码本大小是根据配置的参数来确定的。图9给出了一个示意图。在该实例中,假设基站给终端配置了16个下行服务小区,假设服务小区索引从0到15。在子帧n上,基站调度了服务小区{0,1,2,5,7,9,10,11,13,14,15}一共11个。终端接收到服务小区{0,1,5,7,10,11,13,15}一共8个,丢掉了{2,9,14}这三个,但是终端自己并不能知道。不过终端反馈HARQ-ACK的时候,HARQ-ACK的码本大小是根据配置的服务小区数来确定的,在本实施例中,基站配置了16个服务小区,且假设每个服务小区都是配置了单码字的传输模式,因而终端根据配置参数,确定需要反馈16个HARQ-ACK,然后根据服务小区索引从低到高,依次对应HARQ-ACK(0)~HARQ-ACK(15),对于检测到的服务小区,直接映射到相应的HARQ-ACK对应的比特位,而对于没有检测到的(包括基站没有调度的,以及终端漏检的)服务小区对应的HARQ-ACK比特位,则设置其HARQ-ACK状态为NACK。由于基站与终端对于HARQ-ACK码本的大小,以及码本里面HARQ-ACK比特序列的排序都有一致的理解,因而不会有基站与终端理解不一致的问题,即使终端发生了漏检。不过从这个例子也可以看出,基站实际只调度了11个服务小区,终端反馈的16个HARQ-ACK比特中,只有11比特是有效的,其他的5比特信息是无用信息。
如果配置的服务小区数相对比较大,而实际调度的服务小区数相对比较小,那么终端就需要反馈大量无用的HARQ-ACK,这个问题在最多支持32个载波聚合的系统里就变得更为严重了,为此,需要考虑减少反馈HARQ-ACK比特数的方法。一种可能的解决方案就是根据实际调度的PDSCH的数量来确定反馈的HARQ-ACK的码本大小。
图10给出一个示例,在该示例中,基站侧的调度情况还是跟前面的示例一样,调度了服务小区{0,1,2,5,7,9,10,11,13,14,15}一共11个。终端接收的时候,如果没有发生漏检,那么终端就会按照HARQ-ACK码本大小为11来确定,基站检测的时候,由于基站是调度了11个服务小区,终端也是按照11比特来发送,因而收发双方不存在理解不一致的地方。但是,如果终端接收情况如图11所示,终端没有检测到服务小区2,9,14,那么终端根据接收到的情况确定HARQ-ACK的码本大小为8,然后按照检测结果给HARQ-ACK设置相应的状态。在基站接收端,基站调度了11个服务小区,那么基站会根据HARQ-ACK的码本大小为11进行检测,但是实际上终端是按照8比特来发送,这样就会导致基站和终端收发双方对于HARQ-ACK的码本理解不一致,从而导致错误发生。
为了解决上述相关机制中所示的问题,需要考虑相应的机制来解决所述问题,以下用详细实施例来说明本发明实施例的技术方案。
实施例一
基站给终端发送下行控制信息(DCI),其中,下行控制信息中包含用于终端确定HARQ-ACK码本的控制域——下行分配索引(DAI)。
可选地,DAI为如下方式之一:
方式1:在绑定窗内的每个下行子帧上,按照第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示半持续调度(SPS)释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
方式2:在绑定窗内,按照第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
方式3:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
方式4:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
方式5:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
方式6:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
方式7:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
方式8:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度 的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
其中,所述按照所述第一预设顺序的前面N-m个DCI中的DAI或者所述按照所述第二预设顺序的前面N-m个DCI中的DAI均定义为计数器型DAI,前述N-m个DCI中的DAI的取值是递增或递减的;所述按照所述第一预设顺序最后m个DCI中的DAI或所述按照所述第二预设顺序最后m个DCI中的DAI的取值是相同的;对于方式1、2、3或4中,最后m个取值相同的DAI定义为总数型DAI,对于方式5、6、7或8中最后m个取值相同的DAI定义为重复型DAI;
对于方式1、3、5或7,N表示所述绑定窗内每个下行子帧所述基站调度给所述终端的DCI的个数;对于方式2、4、6或8,N表示所述绑定窗内所述基站调度给所述终端的DCI的个数;且N大于m。
其中,所述的m为所述终端与所述基站约定好的取值,或者在标准中规定好的取值也即预先规定好的取值,或者是所述基站通过高层信令指示所述终端的。
其中,当所述的m为所述终端与所述基站约定好的取值或在标准中规定好的取值时,所述的m可选取值为4。这里主要是考虑,连续漏检了4个PDCCH或EPDCCH的概率可以忽略不计,这种设计在Rel-8TDD的时候就已经这么考虑,因而Rel-8的TDD系统中DAI索引为2比特,就是考虑连续丢了4个下行子帧的概率可以忽略不计。如果是在载波聚合系统中,虽然连续漏检4个服务小区上的PDCCH或EPDCCH跟连续漏检了4个子帧上的PDCCH或EPDCCH可能有所不同,不过都可以认为是小概率事件而忽略不计。不过后面分析可以发现,m的取值也会对下行吞吐量的性能有影响,因而,m的取值也可以由基站根据实际情况通过高层信令指示给终端。
其中,所述第一预设顺序为按照服务小区索引从低到高,或者从高到低的顺序。这里的顺序只要基站和终端约定好即可,因而不排除其他的顺序。
其中,所述第二预设顺序为依次在绑定窗内每个子帧内按照服务小区索引从低到高或从高到低排序、并将所述每个子帧内的排序串接后得到的顺序。
其中,所述的DAI控制域所包含的比特数为2比特或3比特,当DAI采用方式1、2、5或6时,采用2比特比较合适,而当DAI采用方式3、4、7或8时,采用3比特比较合适。
可选地,所述的DAI的取值与调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量有预设的映射关系。图12和图13分别给出了DAI控制域为2比特和3比特时,DAI的取值与调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量的映射关系。
实施例二
图14给出了DAI采用方式1的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图14所示,当DAI采用了方式1,且假定m=2,也就是说,在上一个无线帧的子帧9以及当前无线帧的子帧0,1,3上,每个子帧都按照服务小区索引从低到高的顺序进行调度,对于子帧9,当前子帧一共调度了14个服务小区,那么前面N-m=12个服务小区的DAI,表示按照服务小区索引从低到高的顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量(这里的DAI属于上述内容中所述的计数器型DAI),如服务小区#0的DAI取值为1,服务小区#1的DAI取值为2,对于最后两个调度的服务小区,按照所述第一预设顺序最后m=2个服务小区的DAI表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数(这里的DAI属于上述内容中所述的总数型DAI),也就是14个,通过查图12所示的表,确定服务小区14和15的DAI值为2。
对于其余子帧,基站侧确定调度服务小区的DAI的取值均按照相同的方式,最后得到如图14所示的基站侧发送的DAI的取值示意图。
同时假设在子帧9的服务小区#4上有SPS的PDSCH,需要注意的是,所述的DAI无论计数器型DAI还是总数型DAI是没有把SPS的PDSCH计算在内的。
对于终端接收,其接收情况如图15所示。
针对每个子帧的接收情况,进一步来描述终端如何确定反馈的HARQ-ACK码本。
对于方式1,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000057
所对应的
Figure PCTCN2016094961-appb-000058
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000059
则所述子帧需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000060
的且与
Figure PCTCN2016094961-appb-000061
对应的
Figure PCTCN2016094961-appb-000062
最小值。
而当m=2时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个服务小区的检测结果,设置最后2个HARQ-ACK的状态;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失(也即DCI丢失了),所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK。
对于子帧9(上一个无线帧的),终端的接收情况如图16所示,终端在子帧9上接收到的最后3个DAI分别为(3,4,2),由于最后2个DAI的取值不同,因而终端判断基站调度的最后2个服务小区发生了PDCCH或EPDCCH丢失,接收到的最后一个DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000063
倒数第二个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000064
对应的
Figure PCTCN2016094961-appb-000065
那么子帧9需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000066
的且与
Figure PCTCN2016094961-appb-000067
对应的
Figure PCTCN2016094961-appb-000068
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000069
对应的
Figure PCTCN2016094961-appb-000070
值为2/6/10/14/18/22……,其中大于12的最小值为14,因而终端确定 子帧9需要反馈的HARQ-ACK码本大小为14。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000071
的值分别为4,2,不是2个(这里m=2)相同的DAI取值,因而终端判断丢了基站调度的最后2个服务小区中的其中一个,但是无法判断是丢失了哪一个,因为无论终端是接收到服务小区14,还是接收到服务小区15,最后两个
Figure PCTCN2016094961-appb-000072
的取值都是4,2。对于这种情况,由于终端无法区分,因此,终端将最后两比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(3)和HARQ-ACK(5)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
此外,由于子帧9的服务小区#4上有SPS的PDSCH,因而终端把SPS的PDSCH对应的HARQ-ACK置于前面确定的HARQ-ACK比特序列的最后,最终终端确定子帧9上需要反馈的HARQ-ACK码本大小为15。
对于子帧0(当前无线帧的),终端的接收情况如图17所示,终端在子帧0上接收到的最后3个DAI分别为(3,1,1),由于最后2个DAI的取值相同,因而终端判断基站调度的最后2个服务小区没有发生PDCCH或EPDCCH丢失,接收到的最后2个相同的DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000073
倒数第3个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000074
对应的
Figure PCTCN2016094961-appb-000075
那么子帧0需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000076
的且与
Figure PCTCN2016094961-appb-000077
对应的
Figure PCTCN2016094961-appb-000078
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000079
对应的
Figure PCTCN2016094961-appb-000080
值为1/5/9/13/17/21……,其中大于11的最小值为13,因而终端确定子帧0需要反馈的HARQ-ACK码本大小为13。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000081
的值分别为1,1,最后2个(这里m=2)相同的DAI取值,因而终端判断最后2个服务小区没有发生PDCCH或EPDCCH丢失,因此,终端根据最后接收到的两个服务小区的检测结果,设置最后两比特的HARQ-ACK为ACK或NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(7)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或 NACK即可。
对于子帧1(当前无线帧的),终端的接收情况如图18所示,终端在子帧1上接收到的最后3个DAI分别为(4,1,3),由于最后2个DAI的取值不同,因而终端判断基站调度的最后2个服务小区发生了PDCCH或EPDCCH丢失,接收到的最后一个DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000082
倒数第二个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000083
对应的
Figure PCTCN2016094961-appb-000084
那么子帧1需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000085
的且与
Figure PCTCN2016094961-appb-000086
对应的
Figure PCTCN2016094961-appb-000087
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000088
对应的
Figure PCTCN2016094961-appb-000089
值为3/7/11/15/19/23……,其中大于9的最小值为11,因而终端确定子帧1需要反馈的HARQ-ACK码本大小为11。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000090
的值分别为1,3,不是2个(这里m=2)相同的DAI取值,因而终端判断丢了基站调度的最后2个服务小区中的其中一个,但是无法判断是丢失了哪一个,因为无论终端是接收到服务小区12,还是接收到服务小区13,最后两个的取值都是1,3。对于这种情况,由于终端无法区分,因此,终端将最后两比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(3)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧3(当前无线帧的),终端的接收情况如图19所示,终端在子帧3上接收到的最后3个DAI分别为(2,4,4),由于最后2个DAI的取值相同,因而终端判断基站调度的最后2个服务小区没有发生PDCCH或EPDCCH丢失,接收到的最后2个相同的DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000092
倒数第3个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000093
对应的
Figure PCTCN2016094961-appb-000094
那么子帧3需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000095
的且与
Figure PCTCN2016094961-appb-000096
对应的
Figure PCTCN2016094961-appb-000097
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000098
对应的
Figure PCTCN2016094961-appb-000099
值为4/8/12/16/20/24……,其中大于10的最小值为12,因而终端确定子帧3需要反馈的HARQ-ACK码本大小为12。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000100
的值分别为4,4,最后2个(这里m=2) DAI取值相同,因而终端判断最后2个服务小区没有发生PDCCH或EPDCCH丢失,因此,终端将最后接收到的两个服务小区的检测结果,设置最后两比特的HARQ-ACK为ACK或NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(1)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
采用方式1,当m=2时,可以解决最后两个其中有一个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后两个有一个丢失的时候,由于不能确定是哪一个,因而需要把最后两个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在下行控制信息的鲁棒性与下行吞吐量的性能之间找一个折中。
实施例三
图20给出了DAI采用方式1的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图20所示,当DAI采用了方式1,且假定m=4,也就是说,在上一个无线帧的子帧9以及当前无线帧的子帧0,1,3上,每个子帧都按照服务小区索引从低到高的顺序进行调度,对于子帧9,当前子帧一共调度了14个服务小区,那么前面N-4=10个服务小区的DAI表示按照服务小区索引从低到高的顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量(这里的DAI属于上述内容中所述的计数器型DAI),如服务小区#0的DAI取值为1,服务小区#1的DAI取值为2,对于最后4个调度的服务小区,按照所述第一预设顺序最后m=4个服务小区的DAI表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数(这里的DAI属于上述内容中所述的总数型DAI),也就是 14个,通过查图12所示的表,确定服务小区11、13、14和15的DAI值都为2。
对于其余子帧,基站侧确定调度服务小区的DAI的取值均按照相同的方式,最后得到如图20所示的基站侧发送的DAI的取值示意图。
对于终端接收,其接收情况如图21所示。
针对每个子帧的接收情况,进一步来描述终端如何确定反馈的HARQ-ACK码本。
对于方式1,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000101
所对应的
Figure PCTCN2016094961-appb-000102
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000103
则所述子帧需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000104
的且与
Figure PCTCN2016094961-appb-000105
对应的
Figure PCTCN2016094961-appb-000106
最小值。
当所述的m的取值为4时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态;
如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK。
对于子帧9(上一个无线帧的),终端的接收情况如图22所示,终端在子帧9上接收到的最后5个DAI取值都为2,则终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000107
所述倒数第5个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000108
对应的
Figure PCTCN2016094961-appb-000109
那么子帧9需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000110
的且与
Figure PCTCN2016094961-appb-000111
对应的
Figure PCTCN2016094961-appb-000112
最小值,那么通过查如图12所 示的对应表可以确定
Figure PCTCN2016094961-appb-000113
对应的
Figure PCTCN2016094961-appb-000114
值为2/6/10/14/18/22……,其中大于10的最小值为14,因而终端确定子帧9需要反馈的HARQ-ACK码本大小为14。
同时,由于最后4个总数型DAI都没有丢失,因此终端根据对最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态。而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧0(当前无线帧的),终端的接收情况如图23所示,终端在子帧0上接收到的最后5个DAI的取值分别为(4,1,1,1,1),不是5个相同的取值,因此,终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也就是
Figure PCTCN2016094961-appb-000115
对应的
Figure PCTCN2016094961-appb-000116
那么子帧0需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000117
的且与
Figure PCTCN2016094961-appb-000118
对应的
Figure PCTCN2016094961-appb-000119
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000120
对应的
Figure PCTCN2016094961-appb-000121
值为1/5/9/13/17/21……,其中大于9的最小值为13,因而终端确定子帧0需要反馈的HARQ-ACK码本大小为13。
另外,由于最后没有接收到的5个相同的
Figure PCTCN2016094961-appb-000122
因而终端判断丢了基站调度的最后5个服务小区中的部分,但是无法判断是丢失了哪个或哪几个。对于这种情况,由于终端无法区分,因此,终端将最后5比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(7)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧1(当前无线帧的),终端的接收情况如图24所示,终端在子帧1上接收到的最后5个DAI的取值分别为(1,2,3,3,3),不是5个相同的取值,因此,终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也就是
Figure PCTCN2016094961-appb-000123
对应的
Figure PCTCN2016094961-appb-000124
那么子帧1需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000125
的且与
Figure PCTCN2016094961-appb-000126
对应的
Figure PCTCN2016094961-appb-000127
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000128
对应的
Figure PCTCN2016094961-appb-000129
值为3/7/11/15/19/23……,其中大于7的最小值为11,因而终端确定子帧1需要反馈的HARQ-ACK码本大小为11。
另外,由于最后没有接收到的5个相同的
Figure PCTCN2016094961-appb-000130
因而终端判断丢了基站调度的最后5个服务小区中的部分,但是无法判断是丢失了哪个或哪几个。对于这种情况,由于终端无法区分,因此,终端将最后5比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断没有服务小区丢失了,因而对于前面接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧3(当前无线帧的),终端的接收情况如图25所示,终端在子帧3上接收到的最后5个DAI的取值分别为(1,2,3,4,4),不是5个相同的取值,因此,终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也就是
Figure PCTCN2016094961-appb-000131
对应的
Figure PCTCN2016094961-appb-000132
那么子帧3需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000133
的且与
Figure PCTCN2016094961-appb-000134
对应的
Figure PCTCN2016094961-appb-000135
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000136
对应的
Figure PCTCN2016094961-appb-000137
值为4/8/12/16/20/24……,其中大于8的最小值为12,因而终端确定子帧3需要反馈的HARQ-ACK码本大小为12。
另外,由于最后没有接收到的5个相同的
Figure PCTCN2016094961-appb-000138
因而终端判断丢了基站调度的最后5个服务小区中的部分,但是无法判断是丢失了哪个或哪几个。对于这种情况,由于终端无法区分,因此,终端将最后5比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(1)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
采用方式1,当m=4时,最后5个DAI的取值是相同的,可以解决最后最多有4个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后4个有丢失(丢失1个或2个或3个或4个)的时候,由于不能确定是哪一个,因而需要把最后5个HARQ-ACK比特都置为NACK,这样对下行吞 吐量的性能会有一定的影响。这个需要在HARQ-ACK码本的鲁棒性与下行吞吐量的性能之间找一个折中,这种方案相对于m=2来说,HARQ-ACK码本的鲁棒性好,但是对下行吞吐量的性能要比m=2要大一些。
基站可以根据实际的信道环境,设置m值;当信道条件比较好时,PDCCH或EPDCCH的连续丢失的概率比较低,因而m值可以设置得比较小。因此,可选的方案是基站可以根据实际应用场景合理配置m的取值,从而在HARQ-ACK码本鲁棒性与下行吞吐量性能之间取得较好的折中。另外,m值可以通过半静态配置的方式通知UE。
实施例四
图26给出了DAI采用方式5的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图26所示,当DAI采用了方式5,且假定m=2,也就是说,在上一个无线帧的子帧9以及当前无线帧的子帧0,1,3上,每个子帧都按照服务小区索引从低到高的顺序进行调度,对于子帧9,当前子帧一共调度了14个服务小区,那么前面N-m=12个服务小区的DAI表示按照服务小区索引从低到高的顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量(这里的DAI属于上述内容中所述的计数器型DAI),如服务小区#1的DAI取值为1,服务小区#1的DAI取值为2,对于最后两个调度的服务小区,按照所述第一预设顺序最后m=2个服务小区的DAI为调度的第N-m个服务小区的DAI的重复,也就是最后两个服务小区的DAI为调度的第12个的DAI的重复,确定服务小区14和15的DAI值为4。
对于其余子帧,基站侧确定调度服务小区的DAI的取值均按照相同的方式,最后得到如图26所示的基站侧发送的DAI的取值示意图。
对于终端接收,其接收情况如图27所示。
针对每个子帧的接收情况,进一步来描述终端如何确定反馈的HARQ-ACK码本。
对于方式5,终端确定HARQ-ACK码本的方法为:
设所述终端在所述下行子帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000139
对应的
Figure PCTCN2016094961-appb-000140
则所述子帧需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000141
再加上m,其中,
Figure PCTCN2016094961-appb-000142
Figure PCTCN2016094961-appb-000143
的对应关系为所述终端与所述基站约定好的。
对于所述绑定窗内的每个下行子帧,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m+1个服务小区的检测结果,设置最后m+1个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK。
对于子帧9(上一个无线帧的),终端的接收情况如图28所示,终端在子帧9帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000144
对应的
Figure PCTCN2016094961-appb-000145
为12,那么子帧9需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000146
加上m,因而终端确定子帧9需要反馈的HARQ-ACK码本大小为14。
另外,由于最后没有接收到3个相同
Figure PCTCN2016094961-appb-000147
值,因而终端判断丢了基站调度的最后3个服务小区中的其中一个,但是无法判断是丢失了哪一个。对于这种情况,由于终端无法区分,因此,终端将最后两比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(3)和HARQ-ACK(5)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧0(当前无线帧的),终端的接收情况如图29所示,终端在子帧0帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000148
对应的
Figure PCTCN2016094961-appb-000149
为11,那么子帧0需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000150
加上m,因而终端确定子帧0需要反馈的HARQ-ACK码本大小为13。
另外,由于最后接收到3个相同的
Figure PCTCN2016094961-appb-000151
值,因而终端判断最后3个服务小区没有发生PDCCH或EPDCCH丢失,因此,终端根据最后接收到的两个 服务小区的检测结果,设置最后两比特的HARQ-ACK为ACK或NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(7)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧1(当前无线帧的),终端的接收情况如图30所示,终端在子帧1帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000152
对应的
Figure PCTCN2016094961-appb-000153
为9,那么子帧1需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000154
加上m,因而终端确定子帧1需要反馈的HARQ-ACK码本大小为11。
另外,由于最后没有接收到3个相同
Figure PCTCN2016094961-appb-000155
值,因而终端判断丢了基站调度的最后3个服务小区中的其中一个,但是无法判断是丢失了哪一个。对于这种情况,由于终端无法区分,因此,终端将最后两比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(3)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧3(当前无线帧的),终端的接收情况如图31所示,终端在子帧3帧根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000156
对应的
Figure PCTCN2016094961-appb-000157
为10,那么子帧0需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000158
加上m,因而终端确定子帧3需要反馈的HARQ-ACK码本大小为12。
另外,由于最后接收到3个相同的
Figure PCTCN2016094961-appb-000159
值,因而终端判断最后3个服务小区没有发生PDCCH或EPDCCH丢失,因此,终端根据最后接收到的两个服务小区的检测结果,设置最后两比特的HARQ-ACK为ACK或NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(1)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于m取其他值,与m=2相同,都是根据前面的表示计数器的DAI确定最后一个DAI值对应的
Figure PCTCN2016094961-appb-000160
然后HARQ-ACK的码本大小就等于
Figure PCTCN2016094961-appb-000161
加上m,然后再判断最后m+1个DAI的取值是否相同,若相同,则最后m+1个没有丢失,否则有丢失,则将最后m+1个HARQ-ACK状态置为NACK即可。
与实施例二和三类似,基站可以根据实际的信道环境配置m的取值,当信道条件比较好时,PDCCH或EPDCCH的连续丢失的概率比较低,因而m值可以设置得比较小。因此,可选的方案是基站可以根据实际应用场景合理配置m的取值,从而在HARQ-ACK码本鲁棒性与下行吞吐量性能之间取得较好的折中。另外,m值可以通过半静态配置的方式通知UE。
实施例五
图32给出了DAI采用方式3的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区1,2,4,5,7,9,10,12,13配置了双码字(双码字也即2个码字)的传输模式,其他服务小区配置了单码字的传输模式,其中,服务小区根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图32所示,当DAI采用了方式3,DAI用2比特表示且假定m=2,也就是说,在上一个无线帧的子帧9以及当前无线帧的子帧0,1,3上,每个子帧都按照服务小区索引从低到高的顺序进行调度,对于子帧9,当前子帧一共调度了14个服务小区,那么前面N-m=12个服务小区的DAI,表示按照服务小区索引从低到高的顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH所对应的码字和指示SPS释放的PDCCH或EPDCCH的数量(这里的DAI属于上述内容中所述的计数器型DAI),如服务小区#0的DAI取值为1,服务小区#1的DAI取值为3,其中服务小区#1包含了2个码字,对于最后两个调度的服务小区,按照所述第一预设顺序最后m=2个服务小区的DAI表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH所对应的码字和指示SPS释放的PDCCH或EPDCCH的总数(这里的DAI属于上述内容中所述的总数型DAI),在本实施例中,截止到服务小区#12,已经调度的有对应PDCCH或EPDCCH的 PDSCH所对应的码字和指示SPS释放的PDCCH或EPDCCH的总数为19,而最后2个调度的服务小区的DAI取值按照每个服务小区只调度一个码字来确定,因此,总数为21,通过查图12所示的表,确定服务小区14和15的DAI值为1。
对于其余子帧,基站侧确定调度服务小区的DAI的取值均按照相同的方式,最后得到如图32所示的基站侧发送的DAI的取值示意图。
对于终端接收,其接收情况如图33所示。
针对每个子帧的接收情况,进一步来描述终端如何确定反馈的HARQ-ACK码本。
对于方式3,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000162
所对应的
Figure PCTCN2016094961-appb-000163
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000164
则所述子帧需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000165
的且与
Figure PCTCN2016094961-appb-000166
对应的
Figure PCTCN2016094961-appb-000167
最小值。
当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的服务小区的DAI取值按照每个服务小区只调度一个码字来确定:
当所述的m的取值为2时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个服务小区的检测结果,设置最后2个HARQ-ACK的状态,当最后2个服务小区有调度了双码字的PDSCH,则对所述双码字的PDSCH所对应的HARQ-ACK进行空间绑定;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK。
对于子帧9(上一个无线帧的),终端的接收情况如图34所示,终端在 子帧9上接收到的最后3个DAI分别为(1,3,1),由于最后2个DAI的取值不同,因而终端判断基站调度的最后2个服务小区发生了PDCCH或EPDCCH丢失,接收到的最后一个DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000168
倒数第二个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000169
对应的
Figure PCTCN2016094961-appb-000170
那么子帧9需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000171
的且与
Figure PCTCN2016094961-appb-000172
对应的
Figure PCTCN2016094961-appb-000173
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000174
对应的
Figure PCTCN2016094961-appb-000175
值为1/5/9/13/17/21……,其中大于19的最小值为21,因而终端确定子帧9需要反馈的HARQ-ACK码本大小为21。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000176
的值分别为3,1,不是2个(这里m=2)相同的DAI取值,因而终端判断丢了基站调度的最后2个服务小区中的其中一个,但是无法判断是丢失了哪一个,因为无论终端是接收到服务小区14,还是接收到服务小区15,最后两个
Figure PCTCN2016094961-appb-000177
的取值都是3,1。对于这种情况,由于终端无法区分,因此,终端将最后两比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(5)和HARQ-ACK(8)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的检测结果设置相应ACK或NACK即可。
对于子帧0(当前无线帧的),终端的接收情况如图35所示,终端在子帧0上接收到的最后3个DAI分别为(1,3,3),由于最后2个DAI的取值相同,因而终端判断基站调度的最后2个服务小区没有发生PDCCH或EPDCCH丢失,接收到的最后2个相同的DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000178
倒数第3个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000179
对应的
Figure PCTCN2016094961-appb-000180
那么子帧0需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000181
的且与
Figure PCTCN2016094961-appb-000182
对应的
Figure PCTCN2016094961-appb-000183
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000184
对应的
Figure PCTCN2016094961-appb-000185
值为3/7/11/15/19/23……,其中大于17的最小值为19,因而终端确定子帧0需要反馈的HARQ-ACK码本大小为19。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000186
的值分别为3,3,最后是2个(这里m=2)相同的DAI取值,因而终端判断最后2个服务小区没有发生PDCCH或EPDCCH丢失,因此,终端根据最后接收到的两个服务小区的检测结果, 设置最后两比特的HARQ-ACK为ACK或NACK,当最后2个服务小区有调度了双码字的PDSCH时,则对所述双码字的PDSCH所对应的HARQ-ACK进行空间绑定。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(12)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的码字的检测结果设置相应ACK或NACK即可。
对于子帧1(当前无线帧的),终端的接收情况如图36所示,终端在子帧1上接收到的最后3个DAI分别为(4,2,4),由于最后2个DAI的取值不同,因而终端判断基站调度的最后2个服务小区发生了PDCCH或EPDCCH丢失,接收到的最后一个DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000187
倒数第二个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000188
对应的
Figure PCTCN2016094961-appb-000189
那么子帧1需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000190
的且与
Figure PCTCN2016094961-appb-000191
对应的
Figure PCTCN2016094961-appb-000192
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000193
对应的
Figure PCTCN2016094961-appb-000194
值为4/8/12/16/20/24……,其中大于14的最小值为16,因而终端确定子帧1需要反馈的HARQ-ACK码本大小为16。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000195
的值分别为2,4,不是2个(这里m=2)相同的DAI取值,因而终端判断丢了基站调度的最后2个服务小区中的其中一个,但是无法判断是丢失了哪一个,因为无论终端是接收到服务小区12,还是接收到服务小区13,最后两个
Figure PCTCN2016094961-appb-000196
的取值都是2,4。对于这种情况,由于终端无法区分,因此,终端将最后两比特的HARQ-ACK置为NACK。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断在DAI=2和DAI=1之间丢了一个DAI=4的调度了双码字的服务小区或者是丢失了DAI=3和DAI=4的调度了单码字的两个服务小区,不过不管是哪种情况,终端都对HARQ-ACK(7)和HARQ-ACK(8)的状态设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的码字的检测结果设置相应ACK或NACK即可。
对于子帧3(当前无线帧的),终端的接收情况如图37所示,终端在子帧3上接收到的最后3个DAI分别为(4,2,2),由于最后2个DAI的取值相同,因而终端判断基站调度的最后2个服务小区没有发生PDCCH或 EPDCCH丢失,接收到的最后2个相同的DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000197
倒数第3个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000198
对应的
Figure PCTCN2016094961-appb-000199
那么子帧3需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000200
的且与
Figure PCTCN2016094961-appb-000201
对应的
Figure PCTCN2016094961-appb-000202
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000203
对应的
Figure PCTCN2016094961-appb-000204
值为2/6/10/14/18/22……,其中大于16的最小值为18,因而终端确定子帧3需要反馈的HARQ-ACK码本大小为18。
另外,由于最后接收到的两个
Figure PCTCN2016094961-appb-000205
的值分别为2,2,最后是2个(这里m=2)相同的DAI取值,因而终端判断最后2个服务小区没有发生PDCCH或EPDCCH丢失,因此,终端根据最后接收到的两个服务小区的检测结果,设置最后两比特的HARQ-ACK为ACK或NACK,当最后2个服务小区有调度了双码字的PDSCH时,则对所述双码字的PDSCH所对应的HARQ-ACK进行空间绑定。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(12)对应的服务小区丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH的码字的检测结果设置相应ACK或NACK即可。
采用方式3,当m=2时,可以解决最后两个其中有一个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后两个有一个丢失的时候,由于不能确定是哪一个,因而需要把最后两个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在下行控制信息的鲁棒性与下行吞吐量的性能之间找一个折中。
实施例六
图38给出了DAI采用方式3的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区1,2,4,5,7,9,10,12,13配置了双码字的传输模式,其他服务小区配置了单码字的传输模式,其中,服务小区根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图38所示,当DAI采用了方式3,DAI用2比特表 示且假定m=4,也就是说,在上一个无线帧的子帧9以及当前无线帧的子帧0,1,3上,每个子帧都按照服务小区索引从低到高的顺序进行调度,对于子帧9,当前子帧一共调度了14个服务小区,那么前面N-m=12个服务小区的DAI表示按照服务小区索引从低到高的顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH所对应的码字和指示SPS释放的PDCCH或EPDCCH的数量(这里的DAI属于上述内容中所述的计数器型DAI),如服务小区#0的DAI取值为1,服务小区#1的DAI取值为3,其中服务小区#1包含了2个码字,对于最后4个调度的服务小区,按照所述第一预设顺序最后4个服务小区的DAI表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH所对应的码字和指示SPS释放的PDCCH或EPDCCH的总数(这里的DAI属于上述内容中所述的总数型DAI),在本实施例中,截止到服务小区#10,已经调度的有对应PDCCH或EPDCCH的PDSCH所对应的码字和指示SPS释放的PDCCH或EPDCCH的总数为16,而最后4个调度的服务小区的DAI取值按照每个服务小区只调度一个码字来确定,因此,总数为20,通过查图12所示的表,确定服务小区14和15的DAI值为4。
对于其余子帧,基站侧确定调度服务小区的DAI的取值均按照相同的方式,最后得到如图38所示的基站侧发送的DAI的取值示意图。
对于终端接收,其接收情况如图39所示。
针对每个子帧的接收情况,进一步来描述终端如何确定反馈的HARQ-ACK码本。
对于方式3,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000206
所对应的
Figure PCTCN2016094961-appb-000207
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000208
则所述子帧需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000209
的且与
Figure PCTCN2016094961-appb-000210
对应的
Figure PCTCN2016094961-appb-000211
最小值。
当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的服务小区的DAI取值按照每个服务小区只调度一个码字来确定:
当所述的m的取值为4时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态;
如果所述终端接收到的最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK。
对于子帧9(上一个无线帧的),终端的接收情况如图40所示,终端在子帧9上接收到的最后5个DAI的取值均为4,因而终端判断基站调度的最后5个服务小区没有发生了PDCCH或EPDCCH丢失,接收到的最后一个DAI为总数型DAI,且
Figure PCTCN2016094961-appb-000212
倒数第5个为接收到的最后一个计数器型DAI,且
Figure PCTCN2016094961-appb-000213
对应的
Figure PCTCN2016094961-appb-000214
那么子帧9需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000215
的且与
Figure PCTCN2016094961-appb-000216
对应的
Figure PCTCN2016094961-appb-000217
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000218
对应的
Figure PCTCN2016094961-appb-000219
值为4/8/12/16/20/24……,其中大于16的最小值为20,因而终端确定子帧9需要反馈的HARQ-ACK码本大小为20。
另外,由于终端判断基站调度的最后5个服务小区没有发生PDCCH或EPDCCH丢失,终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态。对于其他的HARQ-ACK比特,基于前面的计数器型DAI,终端可以判断出HARQ-ACK(9)、HARQ-ACK(13)、HARQ-ACK(14)对应的码字丢失了,因而可以将其状态也设置为NACK,而对于其他接收到的服务小区所对应的HARQ-ACK,则根据对PDSCH对应的码字的检测结果设置相应ACK或NACK即可。
对于子帧0(当前无线帧的),终端的接收情况如图41所示,终端在子帧0上接收到的最后5个DAI分别为(4,2,2,2,2),由于最后5个DAI的取值不同,因而终端判断基站调度的最后5个服务小区发生了PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最 后1个DAI的值,也即
Figure PCTCN2016094961-appb-000220
对应的
Figure PCTCN2016094961-appb-000221
那么子帧0需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000222
的且与
Figure PCTCN2016094961-appb-000223
对应的
Figure PCTCN2016094961-appb-000224
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000225
对应的
Figure PCTCN2016094961-appb-000226
值为2/6/10/14/18/22……,其中大于14的最小值为18,因而终端确定子帧0需要反馈的HARQ-ACK码本大小为18。
另外,由于终端最后接收到的5个
Figure PCTCN2016094961-appb-000227
的值不同,因而终端判断最后5个服务小区发生PDCCH或EPDCCH丢失,因此,终端将最后5个HARQ-ACK设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的码字的检测结果设置相应ACK或NACK即可。
对于子帧1(当前无线帧的),终端的接收情况如图42所示,终端在子帧1上接收到的最后5个DAI分别为(1,3,3,3,3),由于最后5个DAI的取值不同,因而终端判断基站调度的最后5个服务小区发生了PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也即
Figure PCTCN2016094961-appb-000228
对应的
Figure PCTCN2016094961-appb-000229
那么子帧1需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000230
的且与
Figure PCTCN2016094961-appb-000231
对应的
Figure PCTCN2016094961-appb-000232
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000233
对应的
Figure PCTCN2016094961-appb-000234
值为3/7/11/15/19/23……,其中大于11的最小值为15,因而终端确定子帧1需要反馈的HARQ-ACK码本大小为15。
另外,由于终端最后接收到的5个
Figure PCTCN2016094961-appb-000235
的值不同,因而终端判断最后5个服务小区发生PDCCH或EPDCCH丢失,因此,终端将最后5个HARQ-ACK设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的码字的检测结果设置相应ACK或NACK即可。
对于子帧3(当前无线帧的),终端的接收情况如图43所示,终端在子帧3上接收到的最后3个DAI分别为(4,1,1,1,1),由于最后5个DAI的取值不同,因而终端判断基站调度的最后5个服务小区发生了PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也即
Figure PCTCN2016094961-appb-000236
对应的
Figure PCTCN2016094961-appb-000237
那么子帧1需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000238
的且与
Figure PCTCN2016094961-appb-000239
对应的
Figure PCTCN2016094961-appb-000240
最小值,那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000241
对应的
Figure PCTCN2016094961-appb-000242
值 为1/5/9/13/17/21……,其中大于9的最小值为13,因而终端确定子帧1需要反馈的HARQ-ACK码本大小为13。
另外,由于终端最后接收到的5个
Figure PCTCN2016094961-appb-000243
的值不同,因而终端判断最后5个服务小区发生PDCCH或EPDCCH丢失,因此,终端将最后5个HARQ-ACK设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的码字的检测结果设置相应ACK或NACK即可。
采用方式3,当m=4时,最后5个DAI的取值时相同的,可以解决最后最多有3个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后3个有丢失(丢失1个或2个或丢3个)的时候,由于不能确定是哪一个,因而需要把最后5个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在HARQ-ACK码本的鲁棒性与下行吞吐量的性能之间找一个折中,这种方案相对于m=2来说,HARQ-ACK码本的鲁棒性好,但是对下行吞吐量的性能要比m=2要大一些。
基站可以根据实际的信道环境,配置m值;当信道条件比较好时,PDCCH或EPDCCH的连续丢失的概率比较低,因而m值可以设置得比较小。因此,可选的方案是基站可以根据实际应用场景合理配置m的取值,从而在HARQ-ACK码本鲁棒性与下行吞吐量性能之间取得较好的折中。另外,m值可以通过半静态配置的方式通知UE。
与方式1相比,当采用方式3且DAI为2比特时,由于计数器型DAI是根据码字来计数的,因此,如果服务小区为双码字时,连续丢了两个双码字的服务小区终端也是无法判断的,因此考虑到前面计数器型DAI只能解决1个服务小区丢失的问题,取m=2比较合适。
实施例七
对于方式3,当DAI为3比特时,基站和终端的处理过程,除了三比特的DAI、
Figure PCTCN2016094961-appb-000244
Figure PCTCN2016094961-appb-000245
三者的对应关系将采用如图13所示的表格来确定外,其余的处理跟实施例五和六基本相同,这里不再赘述。
相对于2比特的DAI,3比特的计数器型DAI可以区分不超过4个服务小区的丢失,因而取m=4会相对合适些。
实施例八
对于方式7,除了计数器型DAI的取值是根据调度的码字来确定,其余的处理过程跟方式5基本类似,可以参考实施例四,这里不再赘述。
实施例九
图44给出了DAI采用方式2的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图44所示,当DAI采用了方式2,且假定m=2,也就是说,在整个绑定窗内,按照服务小区索引从低到高的顺序调度,调度完子帧9后调度子帧0,子帧0同样按照服务小区索引从低到高的顺序进行调度,再之后是子帧1,最后是子帧3。在子帧3中,最后两个服务小区的DAI设置为绑定窗内调度的PDSCH的总数,这里一共调度了50个PDSCH,因此通过图12所示的表格,确定最后两个DAI的取值为2。
同时假设在子帧9的服务小区#4上有SPS的PDSCH,需要注意的是,所述的DAI无论计数器型DAI还是总数型DAI是没有把SPS的PDSCH计算在内的。
对于终端接收,其接收情况如图45所示。
对于方式2,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000246
所对应的
Figure PCTCN2016094961-appb-000247
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000248
则所述绑定窗需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000249
的且与
Figure PCTCN2016094961-appb-000250
对应的
Figure PCTCN2016094961-appb-000251
最小值。
当所述的m取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述 最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI中有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK。
如图45所示,终端在绑定窗内最后接收到的3个DAI的取值分别为(4,2,2),最后两个DAI的取值相同,则终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000252
所述倒数第3个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000253
对应的
Figure PCTCN2016094961-appb-000254
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000255
对应的
Figure PCTCN2016094961-appb-000256
值为2/6/…/42/46/50/54……,其中大于48的最小值为50,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为50,同时,所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
如图46所示,终端在绑定窗内最后接收到的3个DAI的取值分别为(2,4,2),最后两个DAI的取值不同,则终端判断基站调度的最后2个服务小区上发生PDCCH或EPDCCH丢失,所述最后1个取值相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000257
所述倒数第2个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000258
对应的
Figure PCTCN2016094961-appb-000259
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000260
对应的
Figure PCTCN2016094961-appb-000261
值为2/6/…/42/46/50/54……,其中大于48的最小值为50,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为50,同时,所述终端将最后2个HARQ-ACK的状态设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
此外,由于绑定窗内的子帧9的服务小区#4上有SPS的PDSCH,因而终端把SPS的PDSCH对应的HARQ-ACK置于前面确定的HARQ-ACK比特序列的最后即可。如果绑定窗有多个服务小区有SPS的PDSCH,那么终端 将所述多个SPS的PDSCH对应的HARQ-ACK按照第二预设顺序置于前面确定的HARQ-ACK比特序列的最后即可。
采用方式2,当m=2时,可以解决最后两个其中有一个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后两个有一个丢失的时候,由于不能确定是哪一个,因而需要把最后两个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在下行控制信息的鲁棒性与下行吞吐量的性能之间找一个折中。
实施例十
图47给出了DAI采用方式2的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图47所示,当DAI采用了方式2,且假定m=4,也就是说,在整个绑定窗内,按照服务小区索引从低到高的顺序调度,调度完子帧9后调度子帧0,子帧0同样按照服务小区索引从低到高的顺序进行调度,再之后是子帧1,最后是子帧3。在子帧3中,最后4个服务小区的DAI设置为绑定窗内调度的PDSCH的总数,这里一共调度了50个PDSCH,因此通过图12所示的表格,确定最后4个DAI的取值为2。
对于终端接收,其接收情况如图48所示。
对于方式2,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000262
所对应的
Figure PCTCN2016094961-appb-000263
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000264
则所述绑定窗需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000265
的且与
Figure PCTCN2016094961-appb-000266
对应的
Figure PCTCN2016094961-appb-000267
最小值。
当所述的m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站 调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个PDSCH的检测结果,设置最后4个HARQ-ACK的状态;
如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK。
如图48所示,终端在绑定窗内最后接收到的5个DAI的取值分别为(1,2,2,2,2),最后5个DAI的取值不同,则终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也即
Figure PCTCN2016094961-appb-000268
对应的
Figure PCTCN2016094961-appb-000269
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000270
对应的
Figure PCTCN2016094961-appb-000271
值为2/6/…/42/46/50/54……,其中大于46的最小值为50,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为50,同时,所述终端将最后5个HARQ-ACK的状态设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
如图49所示,终端在绑定窗内最后接收到的5个DAI值相同,则终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000272
所述倒数第5个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000273
对应的
Figure PCTCN2016094961-appb-000274
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000275
对应的
Figure PCTCN2016094961-appb-000276
值为2/6/…/42/46/50/54……,其中大于46的最小值为50,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为50,同时,所述终端根据最后5个服务小区上PDSCH的检测结果,设置最后5个HARQ-ACK的状态。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
采用方式2,当m=4时,最后5个DAI的取值时相同的,可以解决最后最多有3个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后3个有丢失(丢失1个或2个或丢3个)的时候,由于不能确定是哪一个,因而需要把最后5个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在HARQ-ACK码本的鲁棒性与下行吞吐量的性能之间找一个折中,这种方案相对于m=2来说,HARQ-ACK码本的鲁棒性好,但是对下行吞吐量的性能要比m=2要大一些。
基站可以根据实际的信道环境,配置m值;当信道条件比较好时,PDCCH或EPDCCH的连续丢失的概率比较低,因而m值可以设置得比较小。因此,可选的方案是基站可以根据实际应用场景合理配置m的取值,从而在HARQ-ACK码本鲁棒性与下行吞吐量性能之间取得较好的折中。另外,m值可以通过半静态配置的方式通知UE。
实施例十一
图50给出了DAI采用方式6的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图50所示,当DAI采用了方式6,且假定m=2,也就是说,在整个绑定窗内,按照服务小区索引从低到高的顺序调度,调度完子帧9后调度子帧0,子帧0同样按照服务小区索引从低到高的顺序进行调度,再之后是子帧1,最后是子帧3。截止到子帧3的服务小区10,已经调度的PDSCH的个数是48,DAI值为4,因此在子帧3中最后两个服务小区的DAI设置为最后一个计数器型DAI的重复。
对于方式6,终端确定HARQ-ACK码本的方法为:
设所述终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000277
对应的
Figure PCTCN2016094961-appb-000278
则所述绑定窗需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000279
再加上m。
如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m+1个PDSCH的检测结果,设置最后m+1个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK。
对于HARQ-ACK码本中的其他HARQ-ACK的状态,则根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定;而对于没有对应PDSCH的HARQ-ACK,终端将其对应的HARQ-ACK状态设置为NACK。
在如图51所示的终端接收情况,终端在绑定窗内最后接收到的3个DAI的取值分别为(4,4,4),最后3个DAI的取值相同,则终端判断基站调度的最后3个服务小区上没有发生PDCCH或EPDCCH丢失,终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000280
对应的
Figure PCTCN2016094961-appb-000281
也就是有
Figure PCTCN2016094961-appb-000282
对应
Figure PCTCN2016094961-appb-000283
那么绑定窗需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000284
再加上m,也就是50。同时,所述终端根据对所述最后3个PDSCH的检测结果,设置最后3个HARQ-ACK的状态。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
如图52所示,终端在绑定窗内最后接收到的3个DAI的取值分别为(3,4,4),最后3个DAI的取值不同,则终端判断基站调度的最后3个服务小区上发生PDCCH或EPDCCH丢失,终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
Figure PCTCN2016094961-appb-000285
对应的
Figure PCTCN2016094961-appb-000286
也就是有
Figure PCTCN2016094961-appb-000287
对应
Figure PCTCN2016094961-appb-000288
=48,那么绑定窗需要反馈的HARQ-ACK比特数为
Figure PCTCN2016094961-appb-000289
再加上m,也就是50。同时,所述终端将最后3个HARQ-ACK的状态设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
对于m取其他值,与m=2相同,都是根据前面的表示计数器的DAI确 定最后一个DAI值对应的
Figure PCTCN2016094961-appb-000290
然后HARQ-ACK的码本大小就等于
Figure PCTCN2016094961-appb-000291
加上m,然后再判断最后m+1个DAI的取值是否相同,若相同,则最后m+1个没有丢失,否则有丢失,则将最后m+1个HARQ-ACK状态置为NACK即可。
与实施例九和十类似,基站可以根据实际的信道环境,配置m值;当信道条件比较好时,PDCCH或EPDCCH的连续丢失的概率比较低,因而m值可以设置得比较小。因此,可选的方案是基站可以根据实际应用场景合理配置m的取值,从而在HARQ-ACK码本鲁棒性与下行吞吐量性能之间取得较好的折中。另外,m值可以通过半静态配置的方式通知UE。
实施例十二
图53给出了DAI采用方式4的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图53所示,当DAI采用了方式4,DAI用2比特表示且假定m=2,也就是说,在整个绑定窗内,按照服务小区索引从低到高的顺序调度,调度完子帧9后调度子帧0,子帧0同样按照服务小区索引从低到高的顺序进行调度,再之后是子帧1,最后是子帧3,DAI的取值时根据调度的PDSCH对应的码字确定的。在子帧3中,最后两个服务小区的DAI设置为绑定窗内调度的PDSCH对应的码字总数,且假定最后两个调度的服务小区的DAI取值按照每个服务小区调度1个码字来确定,这里一共调度了78个PDSCH码字,因此通过图12所示的表格,确定最后两个DAI的取值为2。
对于终端接收,其接收情况如图54所示。
对于方式4,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000292
所对应的
Figure PCTCN2016094961-appb-000293
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000294
则所述子帧需要反馈的 HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000295
的且与
Figure PCTCN2016094961-appb-000296
对应的
Figure PCTCN2016094961-appb-000297
最小值。
更进一步的,对于方式4,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的DCI中的DAI的取值按照每个PDSCH只调度一个码字来确定:
当所述的m的取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态,当最后2个服务小区有调度了双码字的PDSCH,则对所述双码字的PDSCH所对应的HARQ-ACK进行空间绑定;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,同时,所述终端设置最后2个HARQ-ACK的状态为NACK。
在如图54所示的终端接收示意图中,终端在绑定窗内最后接收到的3个DAI的取值分别为(4,2,2),最后两个DAI的取值相同,则终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000298
所述倒数第3个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000299
对应的
Figure PCTCN2016094961-appb-000300
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000301
对应的
Figure PCTCN2016094961-appb-000302
值为2/6/…/74/78/82/86……,其中大于76的最小值为78,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为78,同时,所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
在如图55所示的终端接收示意图中,终端在绑定窗内最后接收到的3个DAI的取值分别为(2,4,2),最后两个DAI的取值不同,则终端判断基站调度的最后2个服务小区上发生PDCCH或EPDCCH丢失,所述最后1个取值 相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000303
所述倒数第2个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000304
对应的
Figure PCTCN2016094961-appb-000305
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000306
对应的
Figure PCTCN2016094961-appb-000307
值为2/6/…/74/78/82/86……,其中大于76的最小值为78,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为78,同时,所述终端将最后2个HARQ-ACK的状态设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
采用方式2,当m=2时,可以解决最后两个其中有一个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后两个有一个丢失的时候,由于不能确定是哪一个,因而需要把最后两个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在下行控制信息的鲁棒性与下行吞吐量的性能之间找一个折中。
实施例十三
图56给出了DAI采用方式4的一个示意图。在该示意图中,假设基站给终端配置了16个上下行配置为配置2的TDD服务小区,根据TDD配置2的定时关系,上一个无线帧的子帧9、当前无线帧的子帧0,1,3的HARQ-ACK将在当前子帧7上进行反馈,上一个无线帧的子帧9和当前无线帧的子帧0,1,3以及16个服务小区组成了一个时频二维的绑定窗,图中用方框圈出示意。
基站调度的情况如图56所示,当DAI采用了方式4,且假定m=4,也就是说,在整个绑定窗内,按照服务小区索引从低到高的顺序调度,调度完子帧9后调度子帧0,子帧0同样按照服务小区索引从低到高的顺序进行调度,再之后是子帧1,最后是子帧3。DAI的取值时根据调度的PDSCH对应的码字确定的。在子帧3中,最后4个服务小区的DAI设置为绑定窗内调度的PDSCH的总数,且假定最后4个调度的服务小区的DAI取值按照每个服务小区调度1个码字来确定,这里一共调度了76个PDSCH码字,因此通过图12所示的表格,确定最后两个DAI的取值为4。
对于终端接收,其接收情况如图57所示。
对于方式4,终端确定HARQ-ACK码本的方法为:
所述终端确定接收到的最后一个计数器型DAI的值
Figure PCTCN2016094961-appb-000308
所对应的
Figure PCTCN2016094961-appb-000309
所述终端确定接收到的最后一个总数型DAI值
Figure PCTCN2016094961-appb-000310
则所述子帧需要反馈的HARQ-ACK比特数为大于
Figure PCTCN2016094961-appb-000311
的且与
Figure PCTCN2016094961-appb-000312
对应的
Figure PCTCN2016094961-appb-000313
最小值。
当所述的m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,同时,所述终端根据对所述最后4个PDSCH的检测结果,设置最后4个HARQ-ACK的状态;
如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,同时,所述终端设置最后5个HARQ-ACK的状态为NACK。
如图57所示,终端在绑定窗内最后接收到的5个DAI的取值分别为(1,4,4,4,4),最后5个DAI的取值不同,则终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,也即
Figure PCTCN2016094961-appb-000314
对应的
Figure PCTCN2016094961-appb-000315
那么通过查如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000316
对应的
Figure PCTCN2016094961-appb-000317
值为4/8/…/68/72/76/80……,其中大于72的最小值为76,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为76,同时,所述终端将最后5个HARQ-ACK的状态设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
如图58所示,终端在绑定窗内最后接收到的5个DAI值相同,则终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,
Figure PCTCN2016094961-appb-000318
所述倒数第5个DAI为接收到的最后一个计数器型DAI,
Figure PCTCN2016094961-appb-000319
对应的
Figure PCTCN2016094961-appb-000320
那么通过查 如图12所示的对应表可以确定
Figure PCTCN2016094961-appb-000321
对应的
Figure PCTCN2016094961-appb-000322
值为4/8/…/68/72/76/80……,其中大于72的最小值为76,因而终端确定绑定窗内需要反馈的HARQ-ACK码本大小为76,同时,所述终端将最后5个HARQ-ACK的状态设置为NACK。对于其他的HARQ-ACK比特,则根据对PDSCH的检测结果设置相应ACK或NACK即可,如果PDSCH包含双码字,则对PDSCH双码字所对应的HARQ-ACK进行空间绑定。
采用方式2,当m=4时,最后5个DAI的取值时相同的,可以解决最后最多有3个丢失的情况下也能确定每个子帧的HARQ-ACK码本,不过当最后3个有丢失(丢失1个或2个或丢3个)的时候,由于不能确定是哪一个,因而需要把最后5个HARQ-ACK比特都置为NACK,这样对下行吞吐量的性能会有一定的影响。这个需要在HARQ-ACK码本的鲁棒性与下行吞吐量的性能之间找一个折中,这种方案相对于m=2来说,HARQ-ACK码本的鲁棒性好,但是对下行吞吐量的性能要比m=2要大一些。
基站可以根据实际的信道环境,配置m值;当信道条件比较好时,PDCCH或EPDCCH的连续丢失的概率比较低,因而m值可以设置得比较小。因此,可选的方案是基站可以根据实际应用场景合理配置m的取值,从而在HARQ-ACK码本鲁棒性与下行吞吐量性能之间取得较好的折中。另外,m值可以通过半静态配置的方式通知UE。
实施例十四
对于方式4,当DAI为3比特时,基站和终端的处理过程,除了三比特的DAI、
Figure PCTCN2016094961-appb-000323
Figure PCTCN2016094961-appb-000324
三者的对应关系将采用如图13所示的表格来确定外,其余的处理跟实施例十二和十三基本相同,这里不再赘述。
相对于2比特的DAI,3比特的计数器型DAI可以区分不超过4个服务小区的丢失,因而取m=4会相对合适些。
实施例十五
对于方式8,除了计数器型DAI的取值是根据调度的码字来确定,其余的处理过程跟方式6基本相同,可以参考实施例十一,这里不再赘述。
实施例十六
终端确定好HARQ-ACK码本后,还需要进一步确定用于承载HARQ-ACK的资源。
其中,用于承载HARQ-ACK的资源为PUCCH资源或PUSCH资源。
当终端在要反馈HARQ-ACK的子帧上没有PUSCH发送,或者高层信令允许PUCCH和PUSCH同传且当前子帧有PUSCH同时发送时,所述终端在PUCCH上发送所述HARQ-ACK;否则,终端在PUSCH上发送所述HARQ-ACK。
当用于承载HARQ-ACK的资源为PUCCH资源时,终端进一步根据所述确定的HARQ-ACK码本确定使用的PUCCH格式,所述的PUCCH格式包括:PUCCH格式3以及重新定义的PUCCH格式。
如果重新定义的PUCCH格式只有一种时,比如,如图4b所示的新的PUCCH格式时,则当所述确定的HARQ-ACK码本大小小于或等于第一预设值时,所述终端确定使用的PUCCH格式为PUCCH格式3,否则,所述终端确定使用的PUCCH格式为所述重新定义的PUCCH格式;其中,所述第一预设值为所述终端与所述基站约定好的,或者所述PUCCH格式3能够承载的最大信息比特数,或者高层配置的;所述第一预设值可选为22,也即PUCCH格式3能够承载的最大信息比特数。
如果新的PUCCH格式有两种时,比如,如图4a和图4b所示的重新定义的PUCCH格式均被支持时,那么:
当所述确定的HARQ-ACK码本大小大于第一预设值,小于或等于第二预设值时,所述终端确定使用的PUCCH格式为如图4a所示的第一种新的PUCCH格式;
否则,所述终端确定使用的PUCCH格式为如图4b所示的第二种新的PUCCH格式;
其中,所述第一预设值可选为22,所述第二预设值可选为44。
如果所述重新定义的PUCCH格式包含第一种到第N种新的PUCCH格式共N种格式,
当所述确定的HARQ-ACK码本大小小于或等于第一预设值时,所述终 端确定使用的PUCCH格式为PUCCH格式3;
当所述确定的HARQ-ACK码本大小大于第一预设值,小于或等于第二预设值时,所述终端确定使用的PUCCH格式为第一种新的PUCCH格式;
当所述确定的HARQ-ACK码本大小大于第二预设值,小于或等于第三预设值时,所述终端确定使用的PUCCH格式为第二种新的PUCCH格式;
如此类推,当所述确定的HARQ-ACK码本大小大于第N预设值,小于或等于第N+1预设值时,所述终端确定使用的PUCCH格式为第N种新的PUCCH格式;
其中,所述的第二到第N+1预设值分别为所述第一种到第N种新的PUCCH格式能够承载的最大信息比特数,或者为所述终端与所述基站预定好的值,或者为高层配置的值。
还需说明的是,当所述用于承载HARQ-ACK的资源为PUSCH资源时,所述终端需要进一步确定所述HARQ-ACK在PUSCH中所占的资源单元(Resource Element,RE)的数量。
如图59所示,本发明实施例提供一种终端10,该终端10包括:
接收单元11,设置为接收PDCCH或EPDCCH、以及PDSCH;
第一确定单元12,设置为根据以下至少一种参数确定反馈的HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的DCI、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;
第二确定单元13,设置为根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为ACK或NACK;
发送单元14,设置为根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。
本实施例用于实现上述方法实施例,本实施例中每个单元的工作流程和 工作原理参见上述方法实施例中的描述,在此不再赘述。
本发明实施例提供的一种终端,终端接收PDCCH或EPDCCH、以及PDSCH;所述终端根据以下至少一种参数确定反馈的HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的DCI、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为ACK或NACK;所述终端根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。通过本发明实施例的方案,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。
如图60所示,本发明实施例提供一种基站20,该基站20包括:
发送单元21,设置为向终端发送DCI,其中,所述DCI中包含用于终端确定HARQ-ACK码本的控制域;
接收单元22,设置为接收所述终端发送的HARQ-ACK。
本实施例用于实现上述方法实施例,本实施例中每个单元的工作流程和工作原理参见上述方法实施例中的描述,在此不再赘述。
本发明实施例提供的一种基站,基站向终端发送DCI,其中,所述DCI中包含用于终端确定HARQ-ACK码本的控制域,所述用于终端确定HARQ-ACK码本的控制域为DAI;所述基站接收所述终端发送的HARQ-ACK。通过本发明实施例的方案,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于终端侧的上述信息的传输方法。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现应用于基站侧的上述信息的传输方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本申请实施例提供一种信息的传输方法、终端和基站,能够提高终端反馈信息的效率,降低对基站接收性能的影响,同时还可以降低终端反馈信息时的发射功率以及减少占用上行资源。

Claims (44)

  1. 一种信息的传输方法,包括:
    终端接收物理下行控制信道PDCCH或增强物理下行控制信道EPDCCH、以及物理下行共享信道PDSCH;
    所述终端根据以下至少一种参数确定反馈的混合自动重传请求应答HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中,所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的下行控制信息DCI、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;
    所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为确认ACK或非确认NACK;
    所述终端根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。
  2. 根据权利要求1所述的方法,其中,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端根据所述DCI中的下行分配索引DAI确定所述HARQ-ACK码本;或,
    所述终端根据接收到的PDSCH和PDCCH的数量确定所述HARQ-ACK码本;或,
    所述终端根据接收到的PDSCH和EPDCCH的数量确定所述HARQ-ACK码本;或,
    所述终端根据所述DAI、以及接收到的PDSCH和PDCCH的数量,确定所述HARQ-ACK码本;或,
    所述终端根据所述DAI、以及接收到的PDSCH和EPDCCH的数量,确定所述HARQ-ACK码本。
  3. 根据权利要求2所述的方法,其中,所述DAI为所述终端与基站预先约定的且所述DAI为以下方式之一:
    方式1:在绑定窗内的每个下行子帧上,按照第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示半持续调度SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
    方式2:在绑定窗内,按照第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
    方式3:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
    方式4:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
    方式5:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或 EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
    方式6:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
    方式7:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
    方式8:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
    其中,所述按照所述第一预设顺序的前面N-m个DCI中的DAI或者所述按照所述第二预设顺序的前面N-m个DCI中的DAI均定义为计数器型DAI,前述N-m个DCI中的DAI的取值是递增或递减的;所述按照所述第一预设顺序的最后m个DCI中的DAI或所述按照所述第二预设顺序的最后m个DCI中的DAI的取值是相同的;对于方式1、2、3或4中,最后m个取值相同的DAI定义为总数型DAI,对于方式5、6、7或8中,最后m个取值相同的DAI定义为重复型DAI;
    对于方式1、3、5或7,N表示所述绑定窗内每个下行子帧所述基站调度给所述终端的DCI的个数;对于方式2、4、6或8,N表示所述绑定窗内所述基站调度给所述终端的DCI的个数;且N大于m。
  4. 根据权利要求3所述的方法,其中,所述m为所述终端与所述基站约定好的取值,或者是预先规定好的取值,或者是所述基站通过高层信令指 示所述终端的取值。
  5. 根据权利要求3所述的方法,其中,所述第一预设顺序为按照服务小区索引从低到高或者从高到低的顺序;所述第二预设顺序为依次在绑定窗内每个子帧内按照服务小区索引从低到高或从高到低排序、并将所述每个子帧内的排序串接后得到的顺序。
  6. 根据权利要求3所述的方法,其中,所述HARQ-ACK码本包含所述HARQ-ACK码本大小和所述HARQ-ACK码本中的比特序列的排序方式,所述HARQ-ACK码本大小是指所述HARQ-ACK的比特数。
  7. 根据权利要求6所述的方法,其中,当所述DAI采用方式1、方式3、方式5或方式7时,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端根据在绑定窗内每个下行子帧上接收到的所述DAI,确定所述绑定窗内每个下行子帧需要反馈的HARQ-ACK的比特数以及HARQ-ACK比特序列,当所述下行子帧有SPS的PDSCH时,所述SPS的PDSCH的HARQ-ACK按照所述第一预设顺序级联在所述下行子帧的HARQ-ACK比特序列的末尾,然后将绑定窗内每个下行子帧的HARQ-ACK比特序列按照子帧的先后顺序级联起来作为所述HARQ-ACK码本。
  8. 根据权利要求6所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    如果所述终端在所述绑定窗对应的下行子帧上,没有接收到任何基站调度,则所述终端将所述下行子帧对应的HARQ-ACK设置为第一预设数量的NACK。
  9. 根据权利要求8所述的方法,其中,对于方式1或方式5,所述第一预设数量取值为4;对于方式3或方式7,所述第一预设数量取值为8。
  10. 根据权利要求3所述的方法,其中,当所述DAI采用方式1、方式2、方式5或方式6时,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    当所述终端接收到包含2个码字的PDSCH时,所述终端将所述2个码字对应的HARQ-ACK进行空间绑定后作为所述PDSCH对应的HARQ-ACK, 所述空间绑定为对所述2个码字的HARQ-ACK进行逻辑与操作。
  11. 根据权利要求3所述的方法,其中,对于方式1,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定所述绑定窗内的每个下行子帧需要反馈的HARQ-ACK的比特数;
    所述方式为:所述终端确定接收到的按照所述第一预设顺序最后一个计数型DAI的值
    Figure PCTCN2016094961-appb-100001
    所对应的
    Figure PCTCN2016094961-appb-100002
    以及所述终端确定接收到的按照所述第一预设顺序最后一个总数型DAI的值
    Figure PCTCN2016094961-appb-100003
    则所述每个下行子帧需要反馈的HARQ-ACK的比特数为大于
    Figure PCTCN2016094961-appb-100004
    的且与
    Figure PCTCN2016094961-appb-100005
    对应的
    Figure PCTCN2016094961-appb-100006
    最小值,其中,
    Figure PCTCN2016094961-appb-100007
    Figure PCTCN2016094961-appb-100008
    的对应关系为所述终端与所述基站约定好的。
  12. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式1,所述DAI包含2比特信息,
    当所述m取值为2时,对于所述绑定窗内的每个下行子帧,如果所述终端在子帧上接收到的最后2个DAI的取值相同,则所述终端判断所述基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后2个服务小区的检测结果,设置最后2个HARQ-ACK的状态,如果PDSCH包含2个码字,则对所述包含2个码字的PDSCH所对应的HARQ-ACK进行空间绑定;如果所述最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,且所述终端设置最后2个HARQ-ACK的状态为NACK;
    当所述m的取值为4时,最后一个计数器型DAI的取值与总数型DAI的取值是相同的,对于所述绑定窗内的每个下行子帧,如果所述终端在子帧上接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的 DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态,如果PDSCH包含2个码字,则对所述包含2个码字的PDSCH所对应的HARQ-ACK进行空间绑定;
    如果所述最后5个DAI的取值不相同,则所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,且所述终端设置最后5个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  13. 根据权利要求3所述的方法,其中,对于方式5,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内的每个下行子帧需要反馈的HARQ-ACK比特数:
    所述方式为:如果所述终端在所述下行子帧根据前面接收到的DAI确定最后一个DAI的取值为
    Figure PCTCN2016094961-appb-100009
    对应的
    Figure PCTCN2016094961-appb-100010
    则所述每个下行子帧需要反馈的HARQ-ACK比特数为
    Figure PCTCN2016094961-appb-100011
    再加上m,其中,
    Figure PCTCN2016094961-appb-100012
    Figure PCTCN2016094961-appb-100013
    的对应关系为所述终端与所述基站约定好的。
  14. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式5,对于所述绑定窗内的每个下行子帧,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m+1个服务小区的检测结果,设置最后m+1个HARQ-ACK的状态;如果所述最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后m+1个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  15. 根据权利要求3所述的方法,其中,对于方式3,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内的每个下行子帧需要反馈的HARQ-ACK比特数;
    所述方式为:所述终端确定接收到的按照所述第一预设顺序最后一个计数型DAI的值
    Figure PCTCN2016094961-appb-100014
    所对应的
    Figure PCTCN2016094961-appb-100015
    所述终端确定接收到的按照所述第一预设顺序最后一个总数型DAI值
    Figure PCTCN2016094961-appb-100016
    则所述每个下行子帧需要反馈的HARQ-ACK比特数为大于
    Figure PCTCN2016094961-appb-100017
    的且与
    Figure PCTCN2016094961-appb-100018
    对应的
    Figure PCTCN2016094961-appb-100019
    最小值,其中,
    Figure PCTCN2016094961-appb-100020
    Figure PCTCN2016094961-appb-100021
    的对应关系为所述终端与所述基站约定好的。
  16. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式3,当所述DAI包含2比特信息,所述基站与所述终端约定调度的最后m个服务小区的DAI取值按照每个服务小区只调度一个码字来确定:
    当所述m的取值为2时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后2个服务小区的检测结果,设置最后2个HARQ-ACK的状态,当最后2个服务小区有调度了包含2个码字的PDSCH,则对所述2个码字的HARQ-ACK进行空间绑定;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,且所述终端设置最后2个HARQ-ACK的状态为NACK;
    当所述m的取值为4时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后5个DAI:
    如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后4个服务小区的检测结果,设置最后4个HARQ-ACK的状态,当最后4个服务小区有调度了包含2个码字的PDSCH,则对所述2个码字的HARQ-ACK进行空间绑定;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述最后1个DAI为总数型DAI,从最后往前第一个与最后一个DAI取值不同的DAI为接收到的最后一个计数器型DAI,且所述终端设置最后5个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  17. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式3,当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的服务小区的DAI取值按照每个服务小区调度2个码字来确定:
    当所述m的取值为2时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后2个服务小区的检测结果,设置最后4个HARQ-ACK的状态,当最后2个服务小区有只调度了单码字的PDSCH,则对该服务小区对应的第2个HARQ-ACK设置为NACK;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后 2个服务小区上发生了PDCCH或EPDCCH丢失,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,且所述终端设置最后4个HARQ-ACK的状态为NACK;
    当所述m的取值为4时,对于所述绑定窗内的每个下行子帧,所述终端根据在子帧上接收到的最后5个DAI:
    如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个服务小区上没有发生PDCCH或EPDCCH丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后4个服务小区的检测结果,设置最后8个HARQ-ACK的状态,当最后4个服务小区有只调度了单码字的PDSCH,则对该服务小区对应的第2个HARQ-ACK设置为NACK;
    如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个服务小区上发生PDCCH或EPDCCH丢失,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,且所述终端设置最后8个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后4个或8个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH相应的码字检测结果设为ACK或NACK;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  18. 根据权利要求3所述的方法,其中,对于方式7,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内的每个下行子帧需要反馈的HARQ-ACK比特数;
    所述方式为:如果所述终端在所述下行子帧根据前面接收到的DAI确定最后一个DAI的取值为
    Figure PCTCN2016094961-appb-100022
    对应的
    Figure PCTCN2016094961-appb-100023
    则所述每个下行子帧需要反馈的HARQ-ACK比特数为
    Figure PCTCN2016094961-appb-100024
    再加上m或者2m,其中,
    Figure PCTCN2016094961-appb-100025
    Figure PCTCN2016094961-appb-100026
    的对应关系为所述终端与所述基站约定好的。
  19. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH 或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式7,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的服务小区按照每个服务小区1比特的HARQ-ACK反馈,对于所述绑定窗内的每个下行子帧,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m+1个服务小区的检测结果,设置最后m+1个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;对于HARQ-ACK码本中除最后m+1个HARQ-ACK以外的其他HARQ-ACK的状态,则根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK;
    当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的服务小区按照每个服务小区2比特的HARQ-ACK反馈,对于所述绑定窗内的每个下行子帧,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个服务小区上没有发生PDCCH或EPDCCH丢失,所述终端根据对所述最后m个服务小区的检测结果,设置最后2m个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后2m个HARQ-ACK的状态为NACK;对于HARQ-ACK码本中除最后2m个HARQ-ACK以外的其他HARQ-ACK的状态,则根据PDSCH相应码字的检测结果设为ACK或NACK;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  20. 根据权利要求3所述的方法,其中,当所述DAI采用所述方式2或方式4或方式6或方式8时,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端根据在绑定窗内接收到的DAI,确定绑定窗内需要反馈的HARQ-ACK的比特数以及HARQ-ACK比特序列,当所述绑定窗内有SPS的PDSCH时,所述SPS的PDSCH的HARQ-ACK按照所述第二预设顺序级联在所述HARQ-ACK比特序列的末尾。
  21. 根据权利要求3所述的方法,其中,对于方式2,所述终端确定反 馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数;
    所述方式为:所述终端确定接收到的按照所述第二预设顺序最后一个计数型DAI的值
    Figure PCTCN2016094961-appb-100027
    所对应的
    Figure PCTCN2016094961-appb-100028
    所述终端确定接收到的按照所述第二预设顺序最后一个总数型DAI值
    Figure PCTCN2016094961-appb-100029
    则所述绑定窗需要反馈的HARQ-ACK比特数为大于
    Figure PCTCN2016094961-appb-100030
    的且与
    Figure PCTCN2016094961-appb-100031
    对应的
    Figure PCTCN2016094961-appb-100032
    最小值,其中,
    Figure PCTCN2016094961-appb-100033
    Figure PCTCN2016094961-appb-100034
    的对应关系为所述终端与所述基站约定好的。
  22. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式2,所述DAI包含2比特信息,
    当所述m取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI中有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,且所述终端设置最后2个HARQ-ACK的状态为NACK;
    当所述的m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
    如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个DCI没有丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后4个PDSCH的检测结果,设置最后4个HARQ-ACK的状态;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个DCI中至少有一个丢失了,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,且所述终端设置最后5个HARQ-ACK的状态为NACK; 对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  23. 根据权利要求3所述的方法,其中,对于方式6,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数;
    所述方式为:如果所述终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
    Figure PCTCN2016094961-appb-100035
    对应的
    Figure PCTCN2016094961-appb-100036
    则所述绑定窗需要反馈的HARQ-ACK比特数为
    Figure PCTCN2016094961-appb-100037
    再加上m,其中,
    Figure PCTCN2016094961-appb-100038
    Figure PCTCN2016094961-appb-100039
    的对应关系为所述终端与所述基站约定好的。
  24. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式6,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个DCI没有丢失,所述终端根据对所述最后m+1个PDSCH的检测结果,设置最后m+1个HARQ-ACK的状态;如果所述终端接收到的最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除最后m+1个HARQ-ACK以外的其他HARQ-ACK的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则所述终端对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  25. 根据权利要求3所述的方法,其中,对于方式4,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数采;
    所述方式为:所述终端确定接收到的按照所述第二预设顺序最后一个计数型DAI的值
    Figure PCTCN2016094961-appb-100040
    所对应的
    Figure PCTCN2016094961-appb-100041
    所述终端确定接收到的按照所述第二 预设顺序最后一个总数型DAI的值
    Figure PCTCN2016094961-appb-100042
    则所述绑定窗需要反馈的HARQ-ACK比特数为大于
    Figure PCTCN2016094961-appb-100043
    的且与
    Figure PCTCN2016094961-appb-100044
    对应的
    Figure PCTCN2016094961-appb-100045
    最小值,其中,
    Figure PCTCN2016094961-appb-100046
    Figure PCTCN2016094961-appb-100047
    的对应关系为所述终端与所述基站约定好的。
  26. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式4,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的DCI中的DAI的取值按照每个PDSCH只调度一个码字来确定:
    当所述的m的取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后2个PDSCH的检测结果,设置最后2个HARQ-ACK的状态,当最后2个PDSCH有包含2个码字的,则对所述2个码字HARQ-ACK进行空间绑定;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,且所述终端设置最后2个HARQ-ACK的状态为NACK;
    当所述的m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
    如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个DCI没有丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后4个PDSCH的检测结果,设置最后4个HARQ-ACK的状态,当最后4个PDSCH有包含2个码字的,则对所述2个码字HARQ-ACK进行空间绑定;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个DCI中至少有一个丢失了,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,且所述终端设置最后5个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后2个或5个以外的其他HARQ-ACK 的状态,则所述终端根据PDSCH的检测结果设为ACK或NACK,如果PDSCH包含2个码字,则对所述2个码字的HARQ-ACK进行空间绑定;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  27. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式4,当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的DCI中的DAI的取值按照每个PDSCH调度2个码字来确定:
    当所述m的取值为2时,所述终端根据在绑定窗内接收到的最后3个DAI,如果最后2个DAI的取值相同,则所述终端判断基站调度的最后2个DCI没有丢失,所述最后2个取值相同的DAI为总数型DAI,所述倒数第3个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后2个PDSCH的检测结果,设置最后4个HARQ-ACK的状态,当最后2个PDSCH有只调度了单码字的,则对该PDSCH对应的第2个HARQ-ACK设置为NACK;如果最后2个DAI的取值不相同,则所述终端判断基站调度的最后2个DCI有一个丢失了,所述接收到的最后1个DAI为总数型DAI,所述倒数第2个DAI为接收到的最后一个计数器型DAI,且所述终端设置最后4个HARQ-ACK的状态为NACK;
    当所述m的取值为4时,所述终端根据在绑定窗内接收到的最后5个DAI:
    如果所述终端接收到的最后5个DAI的取值相同,则所述终端判断基站调度的最后5个DCI没有丢失,所述最后4个取值相同的DAI为总数型DAI,所述倒数第5个DAI为接收到的最后一个计数器型DAI,且所述终端根据对所述最后4个PDSCH的检测结果,设置最后8个HARQ-ACK的状态,当最后4个PDSCH有只调度了单码字的,则对该PDSCH对应的第2个HARQ-ACK设置为NACK;如果最后5个DAI的取值不相同,所述终端判断基站调度的最后5个DCI至少有1个丢失了,所述终端把最后一个计数器型DAI以及总数型DAI都设置成最后1个DAI的值,且所述终端设置最后8个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后4个或8个以外的其他HARQ-ACK 的状态,则所述终端根据PDSCH对应码字的检测结果设为ACK或NACK;而对于没有对应PDSCH的HARQ-ACK,所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  28. 根据权利要求3所述的方法,其中,对于方式8,所述终端确定反馈的HARQ-ACK码本,包括:
    所述终端采用如下方式确定绑定窗内需要反馈的HARQ-ACK比特数;
    所述方式为:如果所述终端在所述绑定窗内根据前面接收到的DAI确定最后一个DAI的取值为
    Figure PCTCN2016094961-appb-100048
    对应的
    Figure PCTCN2016094961-appb-100049
    则所述绑定窗需要反馈的HARQ-ACK比特数为
    Figure PCTCN2016094961-appb-100050
    再加上m或者2m,其中,
    Figure PCTCN2016094961-appb-100051
    Figure PCTCN2016094961-appb-100052
    的对应关系为所述终端与所述基站约定好的。
  29. 根据权利要求3所述的方法,其中,所述终端根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态,包括:
    对于方式8,当所述DAI包含2比特信息,所述基站与所述终端约定最后m个调度的PDSCH按照每个PDSCH反馈1比特的HARQ-ACK,对于所述绑定窗内,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个DCI没有丢失,所述终端根据对所述最后m+1个PDSCH的检测结果,设置最后m+1个HARQ-ACK的状态;如果最后m+1个DAI的取值不相同,所述终端设置最后m+1个HARQ-ACK的状态为NACK;
    当所述DAI包含3比特信息,所述基站与所述终端约定最后m个调度的PDSCH按照每个PDSCH反馈2比特的HARQ-ACK,如果所述终端接收到的最后m+1个DAI的取值相同,则所述终端判断所述最后m+1个DCI没有丢失,所述终端根据对所述最后m个PDSCH的检测结果,设置最后2m个HARQ-ACK的状态,当最后m个PDSCH有只调度了单码字的,则对该PDSCH对应的第2个HARQ-ACK设置为NACK;如果最后m+1个DAI的取值不相同,所述终端设置最后2m个HARQ-ACK的状态为NACK;
    对于HARQ-ACK码本中除所述最后m+1个或2m个以外的其他HARQ-ACK的状态,则所述终端根据PDSCH对应码字的检测结果设为ACK或NACK;所述终端将没有对应PDSCH的HARQ-ACK的状态设置为NACK。
  30. 根据权利要求3所述的方法,其中,所述用于承载HARQ-ACK的资源为物理上行链路控制信道PUCCH资源或物理上行共享信道PUSCH资源。
  31. 根据权利要求30所述的方法,其中,当所述用于承载HARQ-ACK的资源为PUCCH资源时,所述终端确定用于承载所述HARQ-ACK的资源,包括:
    所述终端根据所述确定的HARQ-ACK码本确定使用的PUCCH格式,所述PUCCH格式包括:PUCCH格式3以及重新定义的PUCCH格式。
  32. 根据权利要求31所述的方法,其中,当所述确定的HARQ-ACK码本大小小于或等于第一预设值时,所述终端确定使用的PUCCH格式为PUCCH格式3;当所述确定的HARQ-ACK码本大小大于第一预设值时,所述终端确定使用的PUCCH格式为所述重新定义的PUCCH格式;
    其中,所述第一预设值为所述终端与所述基站约定好的值,或者是所述PUCCH格式3能够承载的最大信息比特数,或者是高层配置的值。
  33. 根据权利要求31所述的方法,其中,如果所述重新定义的PUCCH格式包含第一种到第N种新的PUCCH格式共N种格式,
    当所述确定的HARQ-ACK码本大小小于或等于第一预设值时,所述终端确定使用的PUCCH格式为PUCCH格式3;
    当所述确定的HARQ-ACK码本大小大于第一预设值,小于或等于第二预设值时,所述终端确定使用的PUCCH格式为第一种新的PUCCH格式;
    当所述确定的HARQ-ACK码本大小大于第二预设值,小于或等于第三预设值时,所述终端确定使用的PUCCH格式为第二种新的PUCCH格式;
    如此类推,当所述确定的HARQ-ACK码本大小大于第N预设值,小于或等于第N+1预设值时,所述终端确定使用的PUCCH格式为第N种新的PUCCH格式;
    其中,所述的第二到第N+1预设值分别为所述第一种到第N种新的PUCCH格式能够承载的最大信息比特数,或者为所述终端与所述基站预定好的值,或者为高层配置的值。
  34. 根据权利要求30所述的方法,其中,当所述用于承载HARQ-ACK的资源为PUSCH资源时,所述终端确定用于承载所述HARQ-ACK的资源,包括:
    所述终端确定HARQ-ACK在PUSCH中所占的资源单元RE数量。
  35. 一种信息的传输方法,包括:
    基站向终端发送下行控制信息DCI,其中,所述DCI中包含用于终端确定混合自动重传请求应答HARQ-ACK码本的控制域;
    所述基站接收所述终端发送的HARQ-ACK。
  36. 根据权利要求35所述的方法,其中,所述用于终端确定HARQ-ACK码本的控制域为下行分配索引DAI。
  37. 根据权利要求35所述的方法,其中,所述DAI为以下方式之一:
    方式1:在绑定窗内的每个下行子帧上,按照第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示半持续调度SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
    方式2:在绑定窗内,按照第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的总数;
    方式3:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI,表示当前下行子帧基站调度的有对应PDCCH或EPDCCH的PDSCH对应的 码字和指示SPS释放的PDCCH或EPDCCH的总数;
    方式4:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI,表示绑定窗内基站调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的总数;
    方式5:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
    方式6:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
    方式7:在绑定窗内的每个下行子帧上,按照所述第一预设顺序前面N-m个DCI中的DAI,表示按照所述第一预设顺序截止到当前服务小区的基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第一预设顺序最后m个DCI中的DAI为调度的第N-m个服务小区的DAI的重复;
    方式8:在绑定窗内,按照所述第二预设顺序前面N-m个DCI中的DAI,表示按照所述第二预设顺序截止到当前服务小区和当前下行子帧基站已调度的有对应PDCCH或EPDCCH的PDSCH对应的码字和指示SPS释放的PDCCH或EPDCCH的数量,按照所述第二预设顺序最后m个DCI中的DAI为调度的第N-m个DCI中的DAI的重复;
    其中,所述按照所述第一预设顺序的前面N-m个DCI中的DAI或者所述按照所述第二预设顺序的前面N-m个DCI中的DAI均定义为计数器型DAI, 前述N-m个DCI中的DAI的取值是递增或递减的;所述按照所述第一预设顺序最后m个DCI中的DAI或所述按照所述第二预设顺序最后m个DCI中的DAI的取值是相同的;对于方式1、2、3或4中,最后m个取值相同的DAI定义为总数型DAI,对于方式5、6、7或8中,最后m个取值相同的DAI定义为重复型DAI;
    对于方式1、3、5或7,N表示所述绑定窗内每个下行子帧所述基站调度给所述终端的DCI的个数;对于方式2、4、6或8,N表示所述绑定窗内所述基站调度给所述终端的DCI的个数;且N大于m。
  38. 根据权利要求37所述的方法,其中,所述m为所述终端与所述基站约定好的取值,或者是预先规定好的取值,或者是所述基站通过高层信令指示所述终端的。
  39. 根据权利要求37所述的方法,其中,所述第一预设顺序为按照服务小区索引从低到高或者从高到低的顺序;所述第二预设顺序为依次在绑定窗内每个子帧内按照服务小区索引从低到高或从高到低排序、并将所述每个子帧内的排序串接后得到的顺序。
  40. 根据权利要求37所述的方法,其中,所述HARQ-ACK码本包含所述HARQ-ACK码本大小和所述HARQ-ACK码本中的HARQ-ACK比特序列的排序方式,所述HARQ-ACK码本大小是指所述HARQ-ACK的比特数。
  41. 根据权利要求36或37所述的方法,其中,所述DAI所包含的比特数为2比特或3比特。
  42. 根据权利要求36或37所述的方法,其中,所述DAI的取值与调度的有对应PDCCH或EPDCCH的PDSCH和指示SPS释放的PDCCH或EPDCCH的数量有预设的映射关系。
  43. 一种终端,包括:
    接收单元,设置为接收物理下行控制信道PDCCH或增强物理下行控制信道EPDCCH、以及物理下行共享信道PDSCH;
    第一确定单元,设置为根据以下至少一种参数确定反馈的混合自动重传请求应答HARQ-ACK码本以及用于承载所述HARQ-ACK的资源;其中, 所述参数包括:所述终端接收到的PDCCH或EPDCCH上所承载的下行控制信息DCI、所述终端接收到的PDCCH或EPDCCH的数量、或所述终端接收到的PDSCH的数量;
    第二确定单元,设置为根据对接收到的PDSCH或PDCCH或EPDCCH的检测结果确定所述HARQ-ACK的状态;其中,所述HARQ-ACK的状态是指所述HARQ-ACK码本中的比特序列的状态,每个比特的状态为确认ACK或非确认NACK;
    发送单元,设置为根据确定的所述HARQ-ACK码本以及所述HARQ-ACK的状态,在所述用于承载所述HARQ-ACK的资源上发送所述HARQ-ACK。
  44. 一种基站,包括:
    发送单元,设置为向终端发送下行控制信息DCI,其中,所述DCI中包含用于终端确定混合自动重传请求应答HARQ-ACK码本的控制域;
    接收单元,设置为接收所述终端发送的HARQ-ACK。
PCT/CN2016/094961 2015-09-18 2016-08-12 一种信息的传输方法、终端和基站 WO2017045499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510601389.XA CN106549734A (zh) 2015-09-18 2015-09-18 一种信息的传输方法、终端和基站
CN201510601389.X 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017045499A1 true WO2017045499A1 (zh) 2017-03-23

Family

ID=58288490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094961 WO2017045499A1 (zh) 2015-09-18 2016-08-12 一种信息的传输方法、终端和基站

Country Status (2)

Country Link
CN (1) CN106549734A (zh)
WO (1) WO2017045499A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157658A1 (en) * 2018-02-13 2019-08-22 Lenovo (Beijing) Limited Method and apparatus for fallback operation for semi-static harq-ack codebook determination
CN110505040A (zh) * 2018-05-18 2019-11-26 维沃移动通信有限公司 信息传输方法、终端及网络设备
WO2019223615A1 (zh) * 2018-05-21 2019-11-28 华为技术有限公司 上行控制信息的传输方法及设备
CN110535569A (zh) * 2018-11-02 2019-12-03 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质
CN111756484A (zh) * 2017-11-16 2020-10-09 展讯通信(上海)有限公司 一种反馈的方法以及设备
EP3665807A4 (en) * 2017-08-11 2021-03-24 Lenovo (Beijing) Limited HARQ-ACK FOR A PLURALITY OF GROUPS OF HOLDERS OF A SET OF DOWNLINK SLOTS
CN114041316A (zh) * 2019-05-09 2022-02-11 株式会社Ntt都科摩 用户终端以及无线通信方法
US11317431B2 (en) 2017-08-02 2022-04-26 Samsung Electronics Co., Ltd. Method, equipment for receiving scheduling information, terminal, base station and method for transmitting information
CN115333691A (zh) * 2021-05-10 2022-11-11 大唐移动通信设备有限公司 一种信息传输方法及装置
CN115347925A (zh) * 2021-05-12 2022-11-15 中国移动通信有限公司研究院 确定反馈信息码本的方法、装置、通信设备和存储介质
US12114310B2 (en) 2019-08-09 2024-10-08 Vivo Mobile Communication Co., Ltd. Information transmission method and terminal

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809534B (zh) * 2017-05-05 2022-07-01 北京三星通信技术研究有限公司 调度方法、harq-ack反馈方法和相应设备
CN108934078A (zh) * 2017-05-25 2018-12-04 普天信息技术有限公司 一种下行数据传输方法和装置
CN109391440B (zh) 2017-08-11 2020-12-15 华为技术有限公司 一种混合自动重传请求harq反馈方法及设备
EP3751771A1 (en) * 2017-09-11 2020-12-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method and terminal
CN109699075B (zh) * 2017-10-20 2023-01-17 中国移动通信有限公司研究院 一种上行harq码本反馈和接收方法、装置和介质
CN109842477B (zh) 2017-11-29 2022-08-02 中兴通讯股份有限公司 信息解码、码本处理方法及装置、存储介质、处理器
CN109905211B (zh) * 2017-12-08 2020-10-27 电信科学技术研究院 一种传输、接收方法、终端及基站
WO2019127342A1 (zh) * 2017-12-29 2019-07-04 北京小米移动软件有限公司 混合自动重传请求反馈配置方法及装置和数据接收设备
US11032051B2 (en) * 2018-01-12 2021-06-08 Mediatek Singapore Pte. Ltd. Method and apparatus for reducing uplink overhead in mobile communications
EP3738245B1 (en) * 2018-01-12 2023-03-29 Lenovo (Beijing) Limited Method and apparatus for determining a harq-ack codebook for carrier aggregation
CN110138514B (zh) 2018-02-08 2020-10-20 电信科学技术研究院有限公司 一种进行混合自动重传请求反馈的方法和终端
CN110166181B (zh) * 2018-02-13 2022-06-24 大唐移动通信设备有限公司 一种harq-ack的传输方法、终端及基站
CN110149173B (zh) * 2018-02-13 2021-03-05 电信科学技术研究院有限公司 一种半持续调度传输方法、网络侧设备及用户终端
CN110166187B (zh) * 2018-02-13 2022-04-12 大唐移动通信设备有限公司 一种harq-ack码本确定方法、用户终端及基站
CN110351022A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 动态harq-ack码本的长度确定方法及装置、存储介质、终端
US20210153204A1 (en) * 2018-04-04 2021-05-20 Ntt Docomo, Inc. User terminal and radio base station
CN110351027A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种反馈信息的传输方法和装置
CN110519019B (zh) * 2018-05-21 2020-07-21 华为技术有限公司 一种发送、接收码本信息的方法及装置
CN110061816B (zh) * 2018-08-31 2020-07-14 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法
CN112640345A (zh) * 2018-09-13 2021-04-09 Oppo广东移动通信有限公司 确定harq-ack码本的方法、终端设备和网络设备
CN110535587B (zh) 2018-09-18 2023-02-17 中兴通讯股份有限公司 码本确定方法、码本确定装置、终端、基站及存储介质
AU2018442717B2 (en) * 2018-09-27 2024-08-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for determining trigger state, terminal, and network device
KR102624372B1 (ko) 2018-12-21 2024-01-11 지티이 코포레이션 하이브리드 자동 반복 요청 확인응답(harq-ack) 피드백 기술들
CN111435865B (zh) * 2019-01-11 2021-08-10 中国信息通信研究院 一种混合自动重传请求应答方法、信令和设备
CN111865511B (zh) 2019-04-30 2022-01-11 华为技术有限公司 传输混合自动重传请求harq反馈信息的方法和通信装置
CN115396062A (zh) * 2019-06-14 2022-11-25 华为技术有限公司 应答信息的传输方法及装置
CN112399475B (zh) * 2019-08-14 2022-11-22 中国移动通信有限公司研究院 Harq码本的确定方法及终端
CN110557227B (zh) * 2019-08-16 2021-06-04 中国信息通信研究院 一种混合自动重传请求反馈方法和设备
CN112839379A (zh) * 2019-11-22 2021-05-25 北京三星通信技术研究有限公司 发送上行链路信号的方法及设备
CN114070505B (zh) * 2020-07-31 2023-04-07 展讯通信(上海)有限公司 Harq码本的确定方法及装置、harq码本的配置方法及装置、存储介质、终端、基站
CN116097589A (zh) * 2020-08-14 2023-05-09 华为技术有限公司 一种上行信息传输方法及装置
CN115225212A (zh) * 2021-04-21 2022-10-21 中国移动通信有限公司研究院 码本生成方法、装置、基站、终端及存储介质
CN116982282A (zh) * 2021-05-10 2023-10-31 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958778A (zh) * 2010-09-28 2011-01-26 中兴通讯股份有限公司 正确/错误应答消息的映射方法及终端
CN102904698A (zh) * 2011-05-31 2013-01-30 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
CN103516496A (zh) * 2012-06-27 2014-01-15 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
WO2015024423A1 (en) * 2013-08-21 2015-02-26 Qualcomm Incorporated Pucch resource mapping and harq-ack feedback
CN104427550A (zh) * 2013-08-23 2015-03-18 北京三星通信技术研究有限公司 业务流量自适应系统中上行数据传输的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958778A (zh) * 2010-09-28 2011-01-26 中兴通讯股份有限公司 正确/错误应答消息的映射方法及终端
CN102904698A (zh) * 2011-05-31 2013-01-30 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
CN103516496A (zh) * 2012-06-27 2014-01-15 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
WO2015024423A1 (en) * 2013-08-21 2015-02-26 Qualcomm Incorporated Pucch resource mapping and harq-ack feedback
CN104427550A (zh) * 2013-08-23 2015-03-18 北京三星通信技术研究有限公司 业务流量自适应系统中上行数据传输的方法及设备

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963192B2 (en) 2017-08-02 2024-04-16 Samsung Electronics Co., Ltd. Method, equipment for receiving scheduling information, terminal, base station and method for transmitting information
US11317431B2 (en) 2017-08-02 2022-04-26 Samsung Electronics Co., Ltd. Method, equipment for receiving scheduling information, terminal, base station and method for transmitting information
EP3665807A4 (en) * 2017-08-11 2021-03-24 Lenovo (Beijing) Limited HARQ-ACK FOR A PLURALITY OF GROUPS OF HOLDERS OF A SET OF DOWNLINK SLOTS
US11539479B2 (en) 2017-08-11 2022-12-27 Lenovo (Beijing) Limited HARQ-ACK for a plurality of carrier groups of a downlink slot set
CN111756484B (zh) * 2017-11-16 2022-11-29 展讯通信(上海)有限公司 一种反馈的方法以及设备
CN111756484A (zh) * 2017-11-16 2020-10-09 展讯通信(上海)有限公司 一种反馈的方法以及设备
US11824811B2 (en) 2018-02-13 2023-11-21 Lenovo (Beijing) Limited Method and apparatus for fallback operation for semi-static HARQ-ACK codebook determination
CN111788787A (zh) * 2018-02-13 2020-10-16 联想(北京)有限公司 用于半静态harq-ack码本确定的回落操作的方法及设备
WO2019157658A1 (en) * 2018-02-13 2019-08-22 Lenovo (Beijing) Limited Method and apparatus for fallback operation for semi-static harq-ack codebook determination
CN111788787B (zh) * 2018-02-13 2022-10-11 联想(北京)有限公司 用于半静态harq-ack码本确定的回落操作的方法及设备
CN110505040A (zh) * 2018-05-18 2019-11-26 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN110505040B (zh) * 2018-05-18 2020-05-26 维沃移动通信有限公司 信息传输方法、终端及网络设备
AU2019273246B2 (en) * 2018-05-21 2022-07-28 Huawei Technologies Co., Ltd. Method and device for transmitting uplink control information
US11528734B2 (en) 2018-05-21 2022-12-13 Huawei Technologies Co., Ltd. Uplink control information transmission method and device
WO2019223615A1 (zh) * 2018-05-21 2019-11-28 华为技术有限公司 上行控制信息的传输方法及设备
CN110535569B (zh) * 2018-11-02 2022-12-06 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质
CN110535569A (zh) * 2018-11-02 2019-12-03 中兴通讯股份有限公司 Harq-ack码本确定方法及装置、终端、存储介质
US12028165B2 (en) 2018-11-02 2024-07-02 Zte Corporation HARQ-ACK codebook determination method and apparatus, terminal, and storage medium
CN114041316A (zh) * 2019-05-09 2022-02-11 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114041316B (zh) * 2019-05-09 2023-08-15 株式会社Ntt都科摩 用户终端以及无线通信方法
US12114310B2 (en) 2019-08-09 2024-10-08 Vivo Mobile Communication Co., Ltd. Information transmission method and terminal
CN115333691A (zh) * 2021-05-10 2022-11-11 大唐移动通信设备有限公司 一种信息传输方法及装置
CN115347925A (zh) * 2021-05-12 2022-11-15 中国移动通信有限公司研究院 确定反馈信息码本的方法、装置、通信设备和存储介质

Also Published As

Publication number Publication date
CN106549734A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2017045499A1 (zh) 一种信息的传输方法、终端和基站
US10433290B2 (en) Uplink control information transmission method and apparatus in carrier aggregation
US11032807B2 (en) Uplink control information transmission in overlapping time domain resource
CN107113096B (zh) 在无线通信系统中发送ack/nack的方法和使用该方法的设备
US10588117B2 (en) Information bits packaging
CN107113097B (zh) 在无线通信系统中发送ack/nack的方法和设备
JP6526231B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
CN102223219B (zh) Harq‑ack的反馈处理方法及系统
EP2564541B1 (en) Apparatus and method for feeding back data receiving status
CN101958775B (zh) 确认信息的发送方法及用户设备
US9723597B2 (en) Method, device and system for transmitting control information
US9572146B2 (en) Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
EP3026839A1 (en) Selecting between two modes of ack/nack bundling for two layers
WO2017045138A1 (zh) 控制信息的发送方法和通信设备
US20220248436A1 (en) Method and device for transmitting harq-ack
CN102098151A (zh) 一种正确/错误应答消息的发送方法及用户终端
WO2012022140A1 (zh) 正确错误应答在物理上行控制信道上的反馈方法及系统
WO2012062128A1 (zh) 一种上行控制信令的传输方法及终端、基站
CN101958777A (zh) 正确/错误应答消息发送的处理方法及装置
EP2536060A1 (en) Method for transmitting acknowledgement/negative acknowledgement message on physical uplink control channel and user equipment thereof
EP2683104B1 (en) Data transmission method, evolved nodeb and user equipment
CN112821990B (zh) Harq-ack的传输方法及设备
CN101867466B (zh) 应答消息的反馈方法及装置
JP2019146258A (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845613

Country of ref document: EP

Kind code of ref document: A1