WO2017045034A1 - Ubiquinone and ubiquinol compositions, and methods relating thereto - Google Patents

Ubiquinone and ubiquinol compositions, and methods relating thereto Download PDF

Info

Publication number
WO2017045034A1
WO2017045034A1 PCT/AU2016/050870 AU2016050870W WO2017045034A1 WO 2017045034 A1 WO2017045034 A1 WO 2017045034A1 AU 2016050870 W AU2016050870 W AU 2016050870W WO 2017045034 A1 WO2017045034 A1 WO 2017045034A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water
ubiquinone
soluble composition
ubiquinol
Prior art date
Application number
PCT/AU2016/050870
Other languages
French (fr)
Inventor
George KOKKINIS
Original Assignee
Pharmako Biotechnologies Pty Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2015903795A external-priority patent/AU2015903795A0/en
Application filed by Pharmako Biotechnologies Pty Limited filed Critical Pharmako Biotechnologies Pty Limited
Priority to AU2016324349A priority Critical patent/AU2016324349A1/en
Publication of WO2017045034A1 publication Critical patent/WO2017045034A1/en
Priority to AU2018100110A priority patent/AU2018100110A4/en
Priority to AU2022202308A priority patent/AU2022202308A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Definitions

  • the present invention generally relates to water-soluble compositions of bioactive lipophilic compounds, particularly relating to water soluble compositions of ubiquinone or ubiquinol, to compounds useful for the preparation of such compositions, to methods of preparing such compounds and compositions, to the use of such compositions as therapeutics, complementary medicines, cosmetics, dietary supplements, sports supplements and functional foods, and for the purpose of increasing the bioavailability of such bioactive lipophilic compounds.
  • bioactive compounds are highly lipophilic (hydrophobic), meaning that they are soluble in lipids (oils) and some organic solvents, while being substantially insoluble or only partially soluble in water.
  • lipophilic compounds When administered in the form of an oil solution or some kind of water and/or oil suspension or emulsion, lipophilic compounds typically show a poor bioavailability, meaning a low concentration and a long build-up time of the compound in the systemic circulation .
  • Bioactive lipophilic compounds in need of solubilization belong to various therapeutic categories, such as vitamins, antibiotics, free radical scavengers, immunosuppressants etc.
  • One particularly important bioactive lipophilic compound is coenzyme Qio (CoQio), which is a natural compound whose therapeutic potential has been recently recognized and it is also of great interest to cosmetic industry, since it can be included into cosmetic preparations as an agent slowing down natural skin ageing processes, amongst other benefits.
  • CoQio has as its basic core unit a benzoquinone ring.
  • This central ring structure exists in chemical equilibrium with its alternate redox forms; the partially-reduced form oxybenzoquinol, and the fully-reduced form of benzoquinol.
  • the overall ubiquinone structure therefore exists in chemical equilibrium with its reduced forms; semi- ubiquinone (also known as semiquinone) and ubiquinol, respectively.
  • Semiquinone the partially- reduced form of CoQio
  • the fully-reduced form of CoQio ubiquinol
  • ubiquinol is stable enough to see clinical or cosmetic application as an alternative to CoQio, allowing the compound to be converted into CoQio by the body as needed.
  • ubiquinol faces the same drawbacks as CoQio in that it also possesses a low level of absorption because, like CoQio, it is lipophilic.
  • CoQio The biological activity of CoQio is believed to be linked to its ability to act as an antioxidant and free radical scavenger protecting integrity of cell membranes and to offset the inability of diseased cells to manufacture sufficient energy for cellular repair, by stimulating mitochondrial respiration and production of ATP.
  • preparations of Coenzyme Qio with high bioavailability and solubility in aqueous media are usually required.
  • CoQio is absorbed like fat-soluble vitamins into the living body mainly through lymph vessels and particularly through the small intestine. Since the amount which can be absorbed is very limited, the bioavailability of CoQio (ubiquinone) or ubiquinol is low.
  • the physiological process conducted by the body in an attempt to absorb CoQio, ubiquinol and other lipophilic compounds of value to human physiology is known as micelle formation.
  • the lipophilic species can be 'enveloped' in a micelle.
  • the chemicals act as surfactants and are molecules formed from a long lipophilic tail with a hydrophilic head.
  • a typical micelle in aqueous solution forms an aggregate with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre.
  • the micelle can then be dispersed in the bulk solvent by virtue of the hydrophilic head groups that form the outer layer of the micelle.
  • United States patent no. 7,094,804 discloses a water soluble, essentially water-free ubiquinone concentrate comprising ubiquinone, a light oil containing triglycerides, and an emulsifier with an HLB value between 9 and 16, in which the emulsifier is a polysorbate and is present in a content of at least about 73 weight % of the total weight of the concentrate.
  • United States patent no. 7,026,361 discloses a composition comprising ubiquinone having superior dispersion-stability in an aqueous solution and high bioavailability.
  • the ubiquinone(s) is dispersed and emulsified in an aqueous solution of a water-soluble material in the presence of an organic acid(s) to form a protective colloid, the average particle size of the suspended particles being not more than 5 ⁇ .
  • the liquid composition can be adsorbed in or carried on an excipient, or dried.
  • a micelle is an aggregate of surfactant molecules dispersed in a liquid colloid.
  • the human body itself utilizes micelles in the small intestine so as to absorb fatty substances.
  • life-essential nutrients such as vitamins, minerals, trace elements is performed by the mucous membrane cells in the small intestine.
  • the cells of the small intestine for example, are covered with a microscopically fine water film so that the cells can directly absorb only such substances that are soluble in this water film .
  • the bio-availability of water soluble substances, such as sugar, salts, and certain vitamins (for instance vitamin C) is therefore at an optimum .
  • the micelle formation in the small intestine occurs at a time delay, or after the release of bile secretion (bile juice) and enzymes of the pancreas.
  • optimised water-soluble compositions of bioactive lipophilic compounds particularly relating to water soluble ubiquinone composition . This would overcome at least some of the disadvantages of previously known approaches in this field, or would provide a useful alternative.
  • An embodiment of the present invention provides a water-soluble composition comprising at least one bioactive lipophilic substance selected from one or more of ubiquinone, ubiquinol and semi-ubiquinone and micelle-promoting agents comprising one or more of carrier oils, solvents, emulsifiers, antioxidants and excipients.
  • the carrier oil may comprise one or more of medium chain triglycerides, long-chain triglycerides, caprylic and/or capric triglycerides, coconut oil, corn oil, cottonseed oil, olive oil, macadamia nut oil, sesame oil, soybean oil, peanut oil, castor oil and oleic acid.
  • the solvent may comprise one or more of citrus oil, ethanol, ethyl oleate, glycerine, glyceryl mono-oleate, limonene, polyethylene glycol 300, polyethylene glycol 400, polyethylene glycol 600 and propylene glycol.
  • the emulsifier may comprise one or more of hydrogenated castor oil, lecithin, macrogolglycerol hydroxystearate, oat oil polar lipids, phosphatidylcholine, poloxamers, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polysorbate 20, polysorbate 60, polysorbate 80 and polyglycerol esters of fatty acids.
  • the antioxidant may comprise from one or more of ascorbyl palmitate, d-alpha-tocopherol, dl-alpha-tocopherol, d-alpha- Tocopheryl acetate, dl-alpha-Tocopheryl acetate, d-alpha-Tocopheryl acid succinate, dl-alpha-Tocopheryl acid succinate, mixed tocopherols, Olive polyphenols and Algal polyphenols.
  • the excipient may comprise from Colloidal silica, Corn starch, Hydroxypropylmethylcellulose (HPMC), Maltodextrin, Magnesium stearate, Magnesium hydroxide, Microcrystalline cellulose, dextrin, sorbitol, mannitol and Trehalose.
  • the composition may comprise Ubiquinone or Ubiquinol, from about 10 wt. % to about 85.5 wt. %; a carrier Oil, from about 4.5 wt. % to about 70 wt. %; a solvent, from about 1.0 wt. % to about 20 wt. %
  • Emulsifier from about 7.5 wt. % to about 30 wt. %; and an antioxidant, from about 0.005 wt. % to about 0.01 wt. %.
  • HPMC Hydroxypropylmethylcellulose
  • the composition may comprise Ubiquinoneor Ubiquinol, from about 5 wt. % to about 66.5 wt. %; a carrier oil, from about 2.5 wt. % to about 45 wt. %; a solvent, from about 1.25 wt. % to about 10 wt. %; an emulsifier, from about 3.75 wt. % to about 15 wt. %; an antioxidant, from about 0.005 wt. % to about 0.01 wt. %; and an excipient, to 100 wt. %
  • a water-soluble composition of claim 1 wherein upon dissolution at a concentration of 4g/L of the composition in an aqueous solvent, the components form a population of micelles wherein the population mean micelle diameter is less than 20 micrometres and substantially all of the population of micelles havea diameter of less than 100 micrometres.
  • the percentage composition of the micelle- promoting mixture is developed so as to ensure that the mean diameter of the resulting micelles is under 30 microns.
  • more than 20% of the total population of micelles may have a diameter of less than 10 microns and substantially all of the micelles may have a diameter of less than 100 microns.
  • the bioavailability of the lipophilic bioactive compound may be improved by the use of the present invention by more than 400% relative to traditional means of delivering the bioactive lipophilic substance.
  • the composition may be chemically stable at ambient temperature and humidity for 12 months.
  • Figure 1 is a graph showing the stability of a composition of the present invention at ambient conditions over a period of twelve months .
  • Figure 2 is a graph showing comparison data between the concentration of CoQio in the blood plasma of a sample grou p over a period of twenty-fou r hours fol lowing admi nistration of a typical CoQio capsule or a Micelle-prepared CoQio capsule, measured relative to the baseline concentration level of CoQio in blood plasma .
  • Figure 3 is a graph showing the population size analysis of micelles formed upon dissolution of 1 gram of the current invention in 250 ml_ of water.
  • Figure 4 is a graph showing the volume size analysis of micelles formed upon dissolution of 1 gram of the current invention in 250 ml_ of water.
  • An aspect of the present invention provides an advantageous formu lation of ubiqu inone (CoQio) and/or u biquinol with greater bioavailabi lity, thereby allowing for high concentrations of CoQio and/or ubiqu inol to be absorbed with lesser volu mes of the desired lipophi lic su bstance in the composition .
  • ubiqu inol and CoQio are non-water solu ble compounds
  • micelle cores also known as protective colloids
  • the micelle-shaped units that are formed when the product is ingested and subsequently dissolved in the gastric fluids, which contain the lipids (such as CoQio or ubiqu inol), are stable with respect to temperature and acid effects in the stomach . They reach the small intestine u nharmed, attach themselves to the mucous membrane cells across their entire surfaces, and can be easily absorbed, leading to a therefore minimum four times improved bioavailability, into the blood plasma, than is the case for a "normal" fat digestion .
  • a composition formed as an admixture of one or more of ubiquinone and ubiquinol and one or more micelle- promoting agents.
  • the ubiquinone/ubiquinol may further comprise trace quantities of semi-ubiquinone.
  • composition of the present invention When the composition of the present invention is added to water - or a solution largely comprising water, such as milk or fruit juice - the ubiquinone/ubiquinol and the micelle-promoting agents will interact to form a population of micelles. This process can also occur on contact between the composition of the present invention and the aqueous environment of the stomach, if the composition is taken without being added to water or similar (for example, in a pill or gel form) .
  • the micelle-promoting agents comprise a mixture of one or more of a carrier oil, a solvent, an emulsifier and an antioxidant.
  • the percentage composition of the micelle-promoting agents is developed so as to ensure that the mean diameter of the resulting micelles is under 30 microns.
  • more than 20% of the total population of micelles has a diameter of less than 10 microns.
  • substantially all of the micelles have a diameter of less than 100 microns.
  • the carrier oil is selected from one or more of medium chain triglycerides, long-chain triglycerides, caprylic and/or capric triglycerides, coconut oil, corn oil, cottonseed oil, olive oil, macadamia nut oil, sesame oil, soybean oil, peanut oil, castor oil, fish oil and oleic acid.
  • the solvent is selected from one or more of citrus oil, ethanol, ethyl oleate, glycerine, glyceryl mono-oleate, limonene, polyethylene glycol 300, polyethylene glycol 400, polyethylene glycol 600 and propylene glycol.
  • the emulsifier is selected from one or more of hydrogenated castor oil, lecithin, macrogolglycerol hydroxystearate, oat oil polar lipids, phosphatidylcholine, poloxamers, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polysorbate 20, polysorbate 60, polysorbate 80 and polyglycerol esters of fatty acids.
  • the antioxidant is selected from one or more of ascorbyl palmitate, d-alpha- tocopherol, dl-alpha-tocopherol, d-alpha-Tocopheryl acetate, dl-alpha-Tocopheryl acetate, d-alpha-Tocopheryl acid succinate, dl-alpha-Tocopheryl acid succinate, mixed tocopherols, Olive polyphenols and Algal polyphenols.
  • ubiquinone and/or ubiquinol is first dissolved into the carrier oil(s) and solvent(s).
  • the emulsifier(s) and antioxidant(s) system are then added. These steps are carried out at a temperature of about 30-45°C. It is also possible to directly add ubiquinone powders into the preheated solution, in which the ubiquinone is melted and dispersed. This method is advantageous because it increases the process efficiency and can decrease the loss of raw material.
  • a solid composition can be produced by allowing the ubiquinone-containing composition to be adsorbed in or carried on an excipient. Any type of excipients capable of adsorbing or carrying the liquid composition and acceptable for the oral administration can be used for this purpose.
  • the functionality and characteristics of the solid composition can be changed according to the selection of the excipient. For example, if sorbitol, dextrin and/or mannitol are used as an excipient, the solid composition becomes soluble in water. If lactose, cornstarch, sorbitol, and/or crystalline cellulose are used, the solid composition acquires plasticity and can be directly compacted into tablet. Moreover, chewable tablets, differentially soluble tablets, foaming tablets and the like can be prepared accordingly. In other embodiments of the invention, the composition can be used in the preparation of liquids, pastes and emulsions.
  • an alternative embodiment of the invention is as above, wherein the desired compound for delivery is a mixture of both ubiquinol and ubiquinone. There may additionally be trace levels of semi-ubiquinone.
  • compositional range of the present invention is shown in the table below for all embodiments of the composition of the present invention intended for delivery and consumption in a liquid, gel, liquid/gel capsule form or similar:
  • Table 1 Compositions of Ubiquinone and/or Ubiquinol for Liquid/Paste type delivery
  • compositions produced as mentioned above either by directly drying it or by adsorbing it in an excipient or by carrying it on an excipient, have been dispersed and emulsified at the time of forming the protective colloid with an average particle size not more than 5 ⁇ , preferably not more than 1 ⁇ . And therefore they are promptly re-dispersed to fine particles when administered.
  • a solid composition can be produced by allowing the active-ingredient-containing composition to be adsorbed in or carried on an excipient.
  • excipient Any type of excipient capable of adsorbing or carrying the liquid composition and acceptable for the oral administration can be used for this purpose.
  • the excipient is selected from one or more of colloidal silica, corn starch, hydroxypropylmethylcellulose (HPMC), maltodextrin, magnesium stearate, magnesium hydroxide, microcrystalline cellulose, dextrin, sorbitol, mannitol and trehalose.
  • compositional range of the present invention is shown in the table below for all embodiments of the composition of the present invention intended for delivery in a solid form, such as powders for dissolution or other purposes, hard tablets or similar:
  • Table 2 Compositions of Ubiquinone and/or Ubiquinol for Solid-type delivery
  • compositions produced by the above processes are stable under ambient storage conditions.
  • the table below depicts the actual results of stability testing conducted on a formulation manufactured by the process of the present invention. Test date 11/6/15 13/8/15 20/1/16 8/6/16
  • Table 3 Stability test results for CoQio lipid based drug delivery system using methods and ingredients described in this invention.
  • the stability of the composition of the present invention is further shown in Figure 1, which is a graphical representation of the information in Table 3.
  • Figure 1 is a graphical representation of the information in Table 3.
  • Table 3 and Figure 1 show, the formulation of the present invention is stable in conditions as would be typically encountered by supplements and medications kept in ambient-temperature locations. Therefore, the composition of the present invention does not require specialised storage facilities for long-term storage. This provides industry-level and consumer-level benefit in that a medicament or supplement comprising the composition of the present invention will not rapidly degrade.
  • Micelle CoQio formulation comprising the composition of the present invention and containing the specified ingredients with 150 mg CoQio per dose.
  • Standard CoQio Control with 150 mg CoQio per dose.
  • Product B is a commercial ly available formula and is the bestsell ing CoQio formulation, in its category, in Australia .
  • the su bjects were randomized to receive 150 mg of CoQio by either taking one Product A dose or one Product B dose (Standard Qio preparation) .
  • the study preparations were given in the morning before breakfast on an empty stomach .
  • the taking of blood samples and mealtimes occu rred at predetermined regular time intervals.
  • the same food was eaten by all partici pants and at the same time.
  • Samples were taken at 2 sites approximately 1 month apart. 4 participants in Brisbane and 15 participants i n Sydney. All followed the same dosing a nd testing protocol, however only the Brisbane participants completed the 7.5 and 24 hour sample. Samples were collected at Medlab, Sydney and QML in Brisbane in a Lithi um Heparin tube, centrifuged, wrapped in foi l and frozen for transport Health Scope for analysis . Plasma concentrations of CoQio were determined by CHarom system - HPLC using a commercia l Qio standard . All data was analysed using GraphPad Prism 6 software. The CoQio baseline levels, at time zero, were evaluated for statistical difference with a standard t-test for variability of means .
  • Pharmacokinetic parameters were assessed using the area u nder the observed concentration-time curve above baseline (AUC0-24h), the graph of which is shown in Figure 2.
  • the observed maximum plasma concentration above baseline (Delta C ma x) was calcu lated for each individual subject and then average change was calcu lated .
  • the AUC was calculated by Prism using the trapezoid ru le.
  • Statistical significance was indicated by a probabi lity level of ⁇ 0.05.
  • composition of the present invention allows for a much higher bioavailability as represented by the respective AUC(o-24h) values.
  • This shows that the composition of the present invention is advantageous in provision of bioactive lipids such as ubiquinol and ubiquinone.
  • Table 5 Micelle Size Statistics With reference to Figure 3 and table 5, the micelles formed using one gram of the formulation detailed in Table 1 above in 250 ml water had a mean diameter of 17 microns and 27% of the total population was under 10 microns in size. As Figure 3 shows, there was an initial spike of very-low-size micelles, a lowered number of micelles of slightly larger diameter and then a spike in micelle population at increased sizes, peaking close to the mean micelle diameter of 17 microns . Substantially all of the micelle population was within the micron range and under 100 microns, with only trace numbers of the micelle population in the over-100 micron range.
  • Figure 4 shows the volume statistics of the same mixture, which are also contained in Table 5, above.
  • the volume mean is calculated as 42.9 micrometres, with 90% of the micelle volume with a diameter of less than 70 micrometres.
  • micelle size has an inverse effect on the bio-absorption of the micelle and contained bioactive lipids.
  • the present invention is advantageous in that it offers the ability to produce a population of micelles with an average diameter well below 100 micrometres. This improves uptake of the bioactive compound such as CoQio or ubiquinol, increasing the overall bioavailability.
  • the method of consumption frequently requires that the drug/bioactive compound be administered following a meal, so as to ensure that the necessary biological functions (such as provision of bilial secretions) are activated in order to induce uptake of the compound by the body.
  • This is due to the hydrophobic nature of many of these compounds, requiring fats and other micelle-forming compounds in order to properly solubilise in the gastrointestinal tract and be absorbed.
  • the timing, volume, temperature, calorific content and nutrient composition of a particular food, along with accompanying fluid ingestion, may impact the pharmacokinetics of a bioactive compound and is often known as the food effect.
  • An advantage of the present invention is in the elimination or limitation of the food effect during the consumption of compositions of the present invention. This promotes flexibility, enabling it to be applicable across a greater range of people who may have different dietary needs, restrictions or habits and thus different compatibilities with various drugs or bioactive compounds.
  • the present invention can be utilised in relation to compounds and compositions for use as therapeutics, complementary medicines, cosmetics, dietary supplements, sports supplements and functional foods, and for the purpose of increasing the bioavailability of such bioactive lipophilic compounds.
  • the water-soluble formulations of Coenzyme Qio and its fully-reduced form of ubiquinol having high bioavailability and solubility of the present invention are effective in clinical, therapeutic, cosmetic, dietary supplements, sports supplements and functional foods applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention provides an advantageous formulation of ubiquinone (CoQ10) and/or ubiquinol with greater bioavailability, thereby allowing for high concentrations of CoQ10 and/or ubiquinol to be absorbed with lesser volumes of the desired lipophilic substance in the composition. The present invention provides this through a water- soluble composition comprising at least one bioactive lipophilic substance selected from one or more of ubiquinone, ubiquinol and semi-ubiquinone and micelle-promoting agents comprising one or more of carrier oils, solvents, emulsifiers, antioxidants and excipients.

Description

UBIQUINONE AND UBIOUINOL COMPOSITIONS, AND METHODS
RELATING THERETO
This document claims priority from AU 2015903795 and AU 2016901373, the entire contents of which are hereby incorporated by reference in their entirety.
TECHNICAL FIELD
The present invention generally relates to water-soluble compositions of bioactive lipophilic compounds, particularly relating to water soluble compositions of ubiquinone or ubiquinol, to compounds useful for the preparation of such compositions, to methods of preparing such compounds and compositions, to the use of such compositions as therapeutics, complementary medicines, cosmetics, dietary supplements, sports supplements and functional foods, and for the purpose of increasing the bioavailability of such bioactive lipophilic compounds.
BACKGROUND
Many bioactive compounds are highly lipophilic (hydrophobic), meaning that they are soluble in lipids (oils) and some organic solvents, while being substantially insoluble or only partially soluble in water.
The lack of solubility of a bioactive compound in aqueous media is an important factor limiting its therapeutic or clinical applications, and particularly making efficient administration of the compound to a patient difficult. When administered in the form of an oil solution or some kind of water and/or oil suspension or emulsion, lipophilic compounds typically show a poor bioavailability, meaning a low concentration and a long build-up time of the compound in the systemic circulation .
Bioactive lipophilic compounds in need of solubilization belong to various therapeutic categories, such as vitamins, antibiotics, free radical scavengers, immunosuppressants etc. One particularly important bioactive lipophilic compound is coenzyme Qio (CoQio), which is a natural compound whose therapeutic potential has been recently recognized and it is also of great interest to cosmetic industry, since it can be included into cosmetic preparations as an agent slowing down natural skin ageing processes, amongst other benefits.
CoQio has as its basic core unit a benzoquinone ring. This central ring structure exists in chemical equilibrium with its alternate redox forms; the partially-reduced form oxybenzoquinol, and the fully-reduced form of benzoquinol. The overall ubiquinone structure therefore exists in chemical equilibrium with its reduced forms; semi- ubiquinone (also known as semiquinone) and ubiquinol, respectively.
Semiquinone (the partially- reduced form of CoQio) is a free radical, chemically unstable and thus unsuitable for clinical or cosmetic applications due to its low chemical stability. However, the fully-reduced form of CoQio (ubiquinol) is stable enough to see clinical or cosmetic application as an alternative to CoQio, allowing the compound to be converted into CoQio by the body as needed. However, ubiquinol faces the same drawbacks as CoQio in that it also possesses a low level of absorption because, like CoQio, it is lipophilic.
The biological activity of CoQio is believed to be linked to its ability to act as an antioxidant and free radical scavenger protecting integrity of cell membranes and to offset the inability of diseased cells to manufacture sufficient energy for cellular repair, by stimulating mitochondrial respiration and production of ATP. For effectiveness in both clinical and cosmetic applications, preparations of Coenzyme Qio with high bioavailability and solubility in aqueous media are usually required.
It is well known that the absorptivity of CoQio by oral administration is low due to its low solubility in water. CoQio is absorbed like fat-soluble vitamins into the living body mainly through lymph vessels and particularly through the small intestine. Since the amount which can be absorbed is very limited, the bioavailability of CoQio (ubiquinone) or ubiquinol is low.
The physiological process conducted by the body in an attempt to absorb CoQio, ubiquinol and other lipophilic compounds of value to human physiology is known as micelle formation. Through interaction with chemicals carried in bile, the lipophilic species can be 'enveloped' in a micelle. The chemicals act as surfactants and are molecules formed from a long lipophilic tail with a hydrophilic head. A typical micelle in aqueous solution forms an aggregate with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre. The micelle can then be dispersed in the bulk solvent by virtue of the hydrophilic head groups that form the outer layer of the micelle.
Many attempts have been made to improve the bioabsorptivity and the stability of fat- soluble compositions that are minimally soluble in water. These compounds are dissolved in pharmaceutically acceptable solvents such as vegetable oils, e.g. sesame oil, peanut oil, olive oil, soybean oil, cottonseed oil and corn oil, or in animal oils, e.g. fish liver oil, or dispersed and emulsified in an aqueous liquid with various additives such as an emulsifier, a dispersing agent or a surfactant.
Previous approaches have also been made to provide water soluble compositions of ubiquinone. For example, International PCT patent publication no. WO 1996017626 discloses water soluble ubiquinone compositions and prodrugs, methods of their delivery, and methods of their use in the amelioration of apoptosis. However, these water soluble ubiquinone prodrugs comprise substituted functional groups in at least one of positions CI and C4 of the molecule with the substituent independently selected from a solubilizing moiety and a targeting moiety.
United States patent no. 7,094,804 discloses a water soluble, essentially water-free ubiquinone concentrate comprising ubiquinone, a light oil containing triglycerides, and an emulsifier with an HLB value between 9 and 16, in which the emulsifier is a polysorbate and is present in a content of at least about 73 weight % of the total weight of the concentrate.
United States patent no. 7,026,361 discloses a composition comprising ubiquinone having superior dispersion-stability in an aqueous solution and high bioavailability. The ubiquinone(s) is dispersed and emulsified in an aqueous solution of a water-soluble material in the presence of an organic acid(s) to form a protective colloid, the average particle size of the suspended particles being not more than 5μπι. The liquid composition can be adsorbed in or carried on an excipient, or dried.
As shown by the prior art discussed above, the use of micelles to allow compounds that are normally insoluble (in the solvent being used) to dissolve is well known . This occurs because the insoluble species can be incorporated into the micelle core, which is itself solubilized in the bulk solvent by virtue of the micelle head groups' favourable interactions with the solvent species. A micelle is an aggregate of surfactant molecules dispersed in a liquid colloid.
Indeed, the human body itself utilizes micelles in the small intestine so as to absorb fatty substances. The absorption of life-essential nutrients, such as vitamins, minerals, trace elements is performed by the mucous membrane cells in the small intestine. The cells of the small intestine, for example, are covered with a microscopically fine water film so that the cells can directly absorb only such substances that are soluble in this water film . The bio-availability of water soluble substances, such as sugar, salts, and certain vitamins (for instance vitamin C) is therefore at an optimum .
However, fat soluble substances - such as commonly available coenzyme Qio and ubiquinol - are unable to penetrate the water film, but instead must be "pre-treated" in the small intestine. This occurs by means of micelle formation with the aid of bile salts. This micelle formation step is the reason that the absorption of fatty substances cannot occur as easily as for water soluble substances. This disadvantage is evident from the following facts :
• The micelle formation in the small intestine occurs at a time delay, or after the release of bile secretion (bile juice) and enzymes of the pancreas.
• The micelle formation that is considered the prerequisite for fat digestion absorb only part of the fatty substances received with food .
• During the comparatively long lasting formation and "eating" of micelles in the small intestine, the rest of the digestive processes (transport, etc.) continue without interruption so that the micelles formed, which contain the fat particles, are discharged largely undigested.
The facts described explain the very low bio-availability of fat soluble substances, which is at approximately 25 percent where no further treatment is made to the fat- soluble substance. To the consumer this means that he/she discharges a large part of the fat soluble substances absorbed with food or nutritional supplements, such as fat soluble coenzyme Qio capsules or similarly fat-soluble ubiquinol capsules, unutilized. Furthermore, some people are unable to absorb fat soluble substances due to certain metabolic diseases— unless they are present in water soluble form. The formation of micelles is absolutely crucial, and an indispensable prerequisite for the digestion, or for the cellular lipid resorption. In nature, the formation of micelles occurs either with the aid of bile salts and enzymes in the small intestine.
As discussed above, there are certain people who, due to medical reasons, cannot form micelles, even further lowering their body's absorption of essential lipophilic species. Further, old age is also known to reduce the ability of a person's digestive tract to take up a range of important chemicals, including fatty acids or other lipophilic compounds enclosed in micelles.
Therefore it would be advantageous to provide optimised water-soluble compositions of bioactive lipophilic compounds, particularly relating to water soluble ubiquinone composition . This would overcome at least some of the disadvantages of previously known approaches in this field, or would provide a useful alternative.
DISCLOSURE OF INVENTION
These and other advantages are met with the present invention . An embodiment of the present invention provides a water-soluble composition comprising at least one bioactive lipophilic substance selected from one or more of ubiquinone, ubiquinol and semi-ubiquinone and micelle-promoting agents comprising one or more of carrier oils, solvents, emulsifiers, antioxidants and excipients. In an embodiment of the present invention, the carrier oil may comprise one or more of medium chain triglycerides, long-chain triglycerides, caprylic and/or capric triglycerides, coconut oil, corn oil, cottonseed oil, olive oil, macadamia nut oil, sesame oil, soybean oil, peanut oil, castor oil and oleic acid.
In an embodiment of the present invention, the solvent may comprise one or more of citrus oil, ethanol, ethyl oleate, glycerine, glyceryl mono-oleate, limonene, polyethylene glycol 300, polyethylene glycol 400, polyethylene glycol 600 and propylene glycol.
In an embodiment of the present invention, the emulsifier may comprise one or more of hydrogenated castor oil, lecithin, macrogolglycerol hydroxystearate, oat oil polar lipids, phosphatidylcholine, poloxamers, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polysorbate 20, polysorbate 60, polysorbate 80 and polyglycerol esters of fatty acids.
In an embodiment of the present invention, the antioxidant may comprise from one or more of ascorbyl palmitate, d-alpha-tocopherol, dl-alpha-tocopherol, d-alpha- Tocopheryl acetate, dl-alpha-Tocopheryl acetate, d-alpha-Tocopheryl acid succinate, dl-alpha-Tocopheryl acid succinate, mixed tocopherols, Olive polyphenols and Algal polyphenols.
In an embodiment of the present invention, the excipient may comprise from Colloidal silica, Corn starch, Hydroxypropylmethylcellulose (HPMC), Maltodextrin, Magnesium stearate, Magnesium hydroxide, Microcrystalline cellulose, dextrin, sorbitol, mannitol and Trehalose.
In an embodiment of the present invention, the composition may comprise Ubiquinone or Ubiquinol, from about 10 wt. % to about 85.5 wt. %; a carrier Oil, from about 4.5 wt. % to about 70 wt. %; a solvent, from about 1.0 wt. % to about 20 wt. %
Emulsifier, from about 7.5 wt. % to about 30 wt. %; and an antioxidant, from about 0.005 wt. % to about 0.01 wt. %. A water-soluble composition of claim 1, further comprising an excipient selected from Colloidal silica, Corn starch, Hydroxypropylmethylcellulose (HPMC), Maltodextrin, Magnesium stearate, Magnesium hydroxide, Microcrystalline cellulose, dextrin, sorbitol, mannitol and Trehalose.
In an embodiment of the present invention, the composition may comprise Ubiquinoneor Ubiquinol, from about 5 wt. % to about 66.5 wt. %; a carrier oil, from about 2.5 wt. % to about 45 wt. %; a solvent, from about 1.25 wt. % to about 10 wt. %; an emulsifier, from about 3.75 wt. % to about 15 wt. %; an antioxidant, from about 0.005 wt. % to about 0.01 wt. %; and an excipient, to 100 wt. %
A water-soluble composition of claim 1 wherein the absorption of ubiquinone and/or ubiquinol is improved by at least four times.
A water-soluble composition of claim 1 wherein upon dissolution at a concentration of 4g/L of the composition in an aqueous solvent, the components form a population of micelles wherein the population mean micelle diameter is less than 20 micrometres and substantially all of the population of micelles havea diameter of less than 100 micrometres.
In an embodiment of the present invention, the percentage composition of the micelle- promoting mixture is developed so as to ensure that the mean diameter of the resulting micelles is under 30 microns. In an embodiment of the present invention, more than 20% of the total population of micelles may have a diameter of less than 10 microns and substantially all of the micelles may have a diameter of less than 100 microns.
In an embodiment, the bioavailability of the lipophilic bioactive compound may be improved by the use of the present invention by more than 400% relative to traditional means of delivering the bioactive lipophilic substance. In an embodiment, the composition may be chemically stable at ambient temperature and humidity for 12 months.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a graph showing the stability of a composition of the present invention at ambient conditions over a period of twelve months .
Figure 2 is a graph showing comparison data between the concentration of CoQio in the blood plasma of a sample grou p over a period of twenty-fou r hours fol lowing admi nistration of a typical CoQio capsule or a Micelle-prepared CoQio capsule, measured relative to the baseline concentration level of CoQio in blood plasma .
Figure 3 is a graph showing the population size analysis of micelles formed upon dissolution of 1 gram of the current invention in 250 ml_ of water.
Figure 4 is a graph showing the volume size analysis of micelles formed upon dissolution of 1 gram of the current invention in 250 ml_ of water.
BEST MODE FOR CARRYING OUT THE INVENTION
An aspect of the present invention provides an advantageous formu lation of ubiqu inone (CoQio) and/or u biquinol with greater bioavailabi lity, thereby allowing for high concentrations of CoQio and/or ubiqu inol to be absorbed with lesser volu mes of the desired lipophi lic su bstance in the composition . As both ubiqu inol and CoQio are non-water solu ble compounds, in order for the composition of the present invention to be water solu ble it is incorporated into micelle cores (also known as protective colloids), which are solu bilized in the bu lk aqueous solvent by virtue of the micel le head grou ps' favourable interactions with the aqueous environment.
The micelle-shaped units that are formed when the product is ingested and subsequently dissolved in the gastric fluids, which contain the lipids (such as CoQio or ubiqu inol), are stable with respect to temperature and acid effects in the stomach . They reach the small intestine u nharmed, attach themselves to the mucous membrane cells across their entire surfaces, and can be easily absorbed, leading to a therefore minimum four times improved bioavailability, into the blood plasma, than is the case for a "normal" fat digestion .
In a first embodiment of the present invention there is provided a composition formed as an admixture of one or more of ubiquinone and ubiquinol and one or more micelle- promoting agents. The ubiquinone/ubiquinol may further comprise trace quantities of semi-ubiquinone.
When the composition of the present invention is added to water - or a solution largely comprising water, such as milk or fruit juice - the ubiquinone/ubiquinol and the micelle-promoting agents will interact to form a population of micelles. This process can also occur on contact between the composition of the present invention and the aqueous environment of the stomach, if the composition is taken without being added to water or similar (for example, in a pill or gel form) . These micelles are stable with respect to temperature and acid effects in the stomach and reach the small intestine undamaged, attach themselves to the mucous membrane cells located across the inner surface of the small intestine, and can be easily absorbed, thereby leading to higher bio-availability than is the case for a "normal" uptake of ubiquinone and/or ubiquinol by the body without the additional micelle-promoting agents.
The micelle-promoting agents comprise a mixture of one or more of a carrier oil, a solvent, an emulsifier and an antioxidant. In one embodiment of the present invention, the percentage composition of the micelle-promoting agents is developed so as to ensure that the mean diameter of the resulting micelles is under 30 microns. In an embodiment, more than 20% of the total population of micelles has a diameter of less than 10 microns. In a further embodiment, substantially all of the micelles have a diameter of less than 100 microns.
The carrier oil is selected from one or more of medium chain triglycerides, long-chain triglycerides, caprylic and/or capric triglycerides, coconut oil, corn oil, cottonseed oil, olive oil, macadamia nut oil, sesame oil, soybean oil, peanut oil, castor oil, fish oil and oleic acid. The solvent is selected from one or more of citrus oil, ethanol, ethyl oleate, glycerine, glyceryl mono-oleate, limonene, polyethylene glycol 300, polyethylene glycol 400, polyethylene glycol 600 and propylene glycol.
The emulsifier is selected from one or more of hydrogenated castor oil, lecithin, macrogolglycerol hydroxystearate, oat oil polar lipids, phosphatidylcholine, poloxamers, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polysorbate 20, polysorbate 60, polysorbate 80 and polyglycerol esters of fatty acids.
The antioxidant is selected from one or more of ascorbyl palmitate, d-alpha- tocopherol, dl-alpha-tocopherol, d-alpha-Tocopheryl acetate, dl-alpha-Tocopheryl acetate, d-alpha-Tocopheryl acid succinate, dl-alpha-Tocopheryl acid succinate, mixed tocopherols, Olive polyphenols and Algal polyphenols.
Process
For the preparation of the composition of this invention, ubiquinone and/or ubiquinol is first dissolved into the carrier oil(s) and solvent(s). The emulsifier(s) and antioxidant(s) system are then added. These steps are carried out at a temperature of about 30-45°C. It is also possible to directly add ubiquinone powders into the preheated solution, in which the ubiquinone is melted and dispersed. This method is advantageous because it increases the process efficiency and can decrease the loss of raw material.
According to an embodiment of the invention, a solid composition can be produced by allowing the ubiquinone-containing composition to be adsorbed in or carried on an excipient. Any type of excipients capable of adsorbing or carrying the liquid composition and acceptable for the oral administration can be used for this purpose.
Moreover, the functionality and characteristics of the solid composition can be changed according to the selection of the excipient. For example, if sorbitol, dextrin and/or mannitol are used as an excipient, the solid composition becomes soluble in water. If lactose, cornstarch, sorbitol, and/or crystalline cellulose are used, the solid composition acquires plasticity and can be directly compacted into tablet. Moreover, chewable tablets, differentially soluble tablets, foaming tablets and the like can be prepared accordingly. In other embodiments of the invention, the composition can be used in the preparation of liquids, pastes and emulsions.
An alternative embodiment of the invention is as above, wherein the desired compound for delivery is a mixture of both ubiquinol and ubiquinone. There may additionally be trace levels of semi-ubiquinone.
Example 1 - Liquid/Paste Delivery
The preferable compositional range of the present invention is shown in the table below for all embodiments of the composition of the present invention intended for delivery and consumption in a liquid, gel, liquid/gel capsule form or similar:
Figure imgf000012_0001
Table 1: Compositions of Ubiquinone and/or Ubiquinol for Liquid/Paste type delivery
The compositions produced as mentioned above, either by directly drying it or by adsorbing it in an excipient or by carrying it on an excipient, have been dispersed and emulsified at the time of forming the protective colloid with an average particle size not more than 5 μηη, preferably not more than 1 μηη. And therefore they are promptly re-dispersed to fine particles when administered. Example 2 - Solid Delivery
According to a further embodiment of the invention, a solid composition can be produced by allowing the active-ingredient-containing composition to be adsorbed in or carried on an excipient. Any type of excipient capable of adsorbing or carrying the liquid composition and acceptable for the oral administration can be used for this purpose. The excipient is selected from one or more of colloidal silica, corn starch, hydroxypropylmethylcellulose (HPMC), maltodextrin, magnesium stearate, magnesium hydroxide, microcrystalline cellulose, dextrin, sorbitol, mannitol and trehalose.
The preferable compositional range of the present invention is shown in the table below for all embodiments of the composition of the present invention intended for delivery in a solid form, such as powders for dissolution or other purposes, hard tablets or similar:
Figure imgf000013_0001
Table 2: Compositions of Ubiquinone and/or Ubiquinol for Solid-type delivery
Stability
Compositions produced by the above processes are stable under ambient storage conditions. The table below depicts the actual results of stability testing conducted on a formulation manufactured by the process of the present invention. Test date 11/6/15 13/8/15 20/1/16 8/6/16
Time (months) 0 3 6 12
CoQio Assay
20.04 22.71 20.34 23.9
(wt.%)
Table 3: Stability test results for CoQio lipid based drug delivery system using methods and ingredients described in this invention.
As shown by the drawings, the stability of the composition of the present invention is further shown in Figure 1, which is a graphical representation of the information in Table 3. As Table 3 and Figure 1 show, the formulation of the present invention is stable in conditions as would be typically encountered by supplements and medications kept in ambient-temperature locations. Therefore, the composition of the present invention does not require specialised storage facilities for long-term storage. This provides industry-level and consumer-level benefit in that a medicament or supplement comprising the composition of the present invention will not rapidly degrade.
Pharmacokinetics
A comparative, controlled (parallel design) single-dose pharmacokinetic study was conducted with random assignment of subjects of both sexes. The protocol was approved by the Human Research Ethics Committee at the National Institute of Integrative Medicine in Hawthorn, Victoria, and informed consent was obtained from all of the subjects.
Two groups (nl=9, n2= 10) of clinically healthy males and females (9 males, 10 females), between the ages of 18 to 50 years, participated in the study. Subjects were selected in accordance with the inclusion/exclusion criteria listed below. At the beginning of the study, the subjects were informed of the study, its aims and its execution . The data was acquired and stored in anonymous form.
Micelle CoQio: formulation comprising the composition of the present invention and containing the specified ingredients with 150 mg CoQio per dose. Standard CoQio : Control with 150 mg CoQio per dose. Product B is a commercial ly available formula and is the bestsell ing CoQio formulation, in its category, in Australia .
The su bjects were randomized to receive 150 mg of CoQio by either taking one Product A dose or one Product B dose (Standard Qio preparation) . The study preparations were given in the morning before breakfast on an empty stomach . The taking of blood samples and mealtimes occu rred at predetermined regular time intervals. The same food was eaten by all partici pants and at the same time.
Samples were taken at 2 sites approximately 1 month apart. 4 participants in Brisbane and 15 participants i n Sydney. All followed the same dosing a nd testing protocol, however only the Brisbane participants completed the 7.5 and 24 hour sample. Samples were collected at Medlab, Sydney and QML in Brisbane in a Lithi um Heparin tube, centrifuged, wrapped in foi l and frozen for transport Health Scope for analysis . Plasma concentrations of CoQio were determined by CHarom system - HPLC using a commercia l Qio standard . All data was analysed using GraphPad Prism 6 software. The CoQio baseline levels, at time zero, were evaluated for statistical difference with a standard t-test for variability of means .
Pharmacokinetic parameters were assessed using the area u nder the observed concentration-time curve above baseline (AUC0-24h), the graph of which is shown in Figure 2. The observed maximum plasma concentration above baseline (Delta Cmax) was calcu lated for each individual subject and then average change was calcu lated . The AUC was calculated by Prism using the trapezoid ru le. Statistical significance was indicated by a probabi lity level of < 0.05. The CoQio basel ine levels between the two groups were similar (no statistica l sign ificant difference observed, =0.31) .
After supplementation with CoQio both g roups experienced significant increase in plasma levels. Maximum concentration was observed at between 3.5 and 6 hours. The highest DeltaCmax a nd Cmax were seen in the Micelle CoQio grou p. The plasma concentration of CoQio in that of the Micel le group remained wel l above that of the group that had consumed the standard CoQio over the duration of the study. The DeltaCmax for Product A CoQio and Product B were statistically different (p=0.009). The difference in AUQo-24h), the bioavailability of Product A CoQio to Product B was 460%.
Figure imgf000016_0001
Table 4: Pharmacokinetic parameters
As Table 4 above and the graph in Figure 2 shows, the composition of the present invention allows for a much higher bioavailability as represented by the respective AUC(o-24h) values. This shows that the composition of the present invention is advantageous in provision of bioactive lipids such as ubiquinol and ubiquinone.
Micelle Size
Figure imgf000016_0002
Table 5: Micelle Size Statistics With reference to Figure 3 and table 5, the micelles formed using one gram of the formulation detailed in Table 1 above in 250 ml water had a mean diameter of 17 microns and 27% of the total population was under 10 microns in size. As Figure 3 shows, there was an initial spike of very-low-size micelles, a lowered number of micelles of slightly larger diameter and then a spike in micelle population at increased sizes, peaking close to the mean micelle diameter of 17 microns . Substantially all of the micelle population was within the micron range and under 100 microns, with only trace numbers of the micelle population in the over-100 micron range.
Figure 4 shows the volume statistics of the same mixture, which are also contained in Table 5, above. The volume mean is calculated as 42.9 micrometres, with 90% of the micelle volume with a diameter of less than 70 micrometres.
It is known that micelle size has an inverse effect on the bio-absorption of the micelle and contained bioactive lipids. In general, as a micelle population's average diameter decreases, the ability of said micelles to pass into the bloodstream of a human increases. Therefore, the present invention is advantageous in that it offers the ability to produce a population of micelles with an average diameter well below 100 micrometres. This improves uptake of the bioactive compound such as CoQio or ubiquinol, increasing the overall bioavailability.
Dietary Requirements and the Food Effect
In the case of some drugs or bioactive compounds, the method of consumption frequently requires that the drug/bioactive compound be administered following a meal, so as to ensure that the necessary biological functions (such as provision of bilial secretions) are activated in order to induce uptake of the compound by the body. This is due to the hydrophobic nature of many of these compounds, requiring fats and other micelle-forming compounds in order to properly solubilise in the gastrointestinal tract and be absorbed. The timing, volume, temperature, calorific content and nutrient composition of a particular food, along with accompanying fluid ingestion, may impact the pharmacokinetics of a bioactive compound and is often known as the food effect. An advantage of the present invention is in the elimination or limitation of the food effect during the consumption of compositions of the present invention. This promotes flexibility, enabling it to be applicable across a greater range of people who may have different dietary needs, restrictions or habits and thus different compatibilities with various drugs or bioactive compounds.
While the invention has been described with reference to preferred embodiments above, it will be appreciated by those skilled in the art that it is not limited to those embodiments, but may be embodied in many other forms.
In this specification, unless the context clearly indicates otherwise, the word "comprising" is not intended to have the exclusive meaning of the word such as "consisting only of", but rather has the non-exclusive meaning, in the sense of "including at least". The same applies, with corresponding grammatical changes, to other forms of the word such as "comprise", etc.
INDUSTRIAL APPLICABILITY
The present invention can be utilised in relation to compounds and compositions for use as therapeutics, complementary medicines, cosmetics, dietary supplements, sports supplements and functional foods, and for the purpose of increasing the bioavailability of such bioactive lipophilic compounds.
In particular, the water-soluble formulations of Coenzyme Qio and its fully-reduced form of ubiquinol having high bioavailability and solubility of the present invention are effective in clinical, therapeutic, cosmetic, dietary supplements, sports supplements and functional foods applications.

Claims

CLAIMS:
1. A water-soluble composition comprising at least one bioactive lipophilic substance selected from one or more of ubiquinone and ubiquinol and micelle-promoting agents comprising one or more of carrier oils, solvents, emulsifiers and antioxidants.
2. A water-soluble composition according to claim 1 wherein the carrier oil is selected from one or more of medium chain triglycerides, long-chain triglycerides, caprylic and/or capric triglycerides, coconut oil, corn oil, cottonseed oil, olive oil, sesame oil, soybean oil, peanut oil, castor oil and oleic acid.
3. A water-soluble composition according to claim 1 wherein the solvent is selected from one or more of citrus oil, ethanol, ethyl oleate, glycerine, glyceryl mono- oleate, limonene, polyethylene glycol 300, polyethylene glycol 400, polyethylene glycol 600 and propylene glycol.
4. A water-soluble composition according to claim 1 wherein the emulsifier is selected from one or more of hydrogenated castor oil, lecithin, macrogolglycerol hydroxystearate, oat oil polar lipids, phosphatidulcholine, poloxamers, polyoxyl 35 castor oil, polyoxyl 40 hydrogenated castor oil, polysorbate 20, polysorbate 60, polysorbate 80 and polyglycerol esters of fatty acids.
5. A water-soluble composition according to claim 1 wherein the antioxidant is selected from one or more of ascorbyl palmitate, d-alpha-tocopherol, dl-alpha- tocopherol, d-alpha-Tocopheryl acetate, dl-alpha-Tocopheryl acetate, d-alpha- Tocopheryl acid succinate, dl-alpha-Tocopheryl acid succinate, Olive polyphenols and Algal polyphenols.
6. A water soluble composition according to claim 1, comprising :
Ubiquinone/Ubiquinol, from about 10 wt. % to about 85.5 wt. %
Carrier Oil, from about 4.5 wt. % to about 70 wt. % Solvent, from about 1.0 wt. % to about 20 wt. %
Emulsifier, from about 7.5 wt. % to about 30 wt. %
Antioxidant, from about 0.005 wt. % to about 0.01 wt. %
7. A water-soluble composition of claim 1, further comprising an excipient selected from Colloidal silica, Corn starch, Hydroxypropylmethylcellulose (HPMC), Maltodextrin, Magnesium stearate, Magnesium hydroxide, Microcrystalline cellulose, dextrin, sorbitol, mannitol and Trehalose.
8. A water soluble composition according to claim 7, comprising :
Ubiquinone/Ubiquinol, from about 5 wt. % to about 66.5 wt. % Carrier Oil, from about 2.5 wt. % to about 45 wt. %
Solvent, from about 1.25 wt. % to about 10 wt. %
Emulsifier, from about 3.75 wt. % to about 15 wt. %
Antioxidant, from about 0.005 wt. % to about 0.01 wt. %
Excipient, to 100 wt. %
9. A water-soluble composition of claim 1 wherein the absorption of ubiquinone and/or ubiquinol is improved by at least four times.
10. A water-soluble composition of claim 1 wherein upon dissolution at a concentration of 4g/L of the composition in an aqueous solvent, the components form a population of micelles wherein the population mean micelle diameter is less than 20 micrometres and substantially all of the population of micelles havea diameter of less than 100 micrometres.
11. A water-soluble composition of claim 1 which is chemically stable at ambient temperature and humidity for 12 months.
PCT/AU2016/050870 2015-09-17 2016-09-16 Ubiquinone and ubiquinol compositions, and methods relating thereto WO2017045034A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2016324349A AU2016324349A1 (en) 2015-09-17 2016-09-16 Ubiquinone and ubiquinol compositions, and methods relating thereto
AU2018100110A AU2018100110A4 (en) 2015-09-17 2018-01-25 Ubiquinone And Ubiquinol Compositions, And Methods Relating Thereto
AU2022202308A AU2022202308A1 (en) 2015-09-17 2022-04-06 Ubiquinone and ubiquinol compositions, and methods relating thereto

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2015903795 2015-09-17
AU2015903795A AU2015903795A0 (en) 2015-09-17 Ubiquinone Compositions, and Methods Relating Thereto
AU2016901373 2016-04-13
AU2016901373A AU2016901373A0 (en) 2016-04-13 Ubiquinone Compositions, and Methods Relating Thereto

Publications (1)

Publication Number Publication Date
WO2017045034A1 true WO2017045034A1 (en) 2017-03-23

Family

ID=58287992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2016/050870 WO2017045034A1 (en) 2015-09-17 2016-09-16 Ubiquinone and ubiquinol compositions, and methods relating thereto

Country Status (2)

Country Link
AU (3) AU2016324349A1 (en)
WO (1) WO2017045034A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108176134A (en) * 2018-01-24 2018-06-19 华侨大学 A kind of anti-mildew type shower filter filtrate, filter and preparation method thereof
EP3609474A4 (en) * 2017-04-13 2021-01-27 Pharmako Biotechnologies PTY Limited Cold-water-dispersible chemical delivery system
DE102019218244A1 (en) * 2019-11-26 2021-05-27 Beiersdorf Ag Active ingredient combinations of ubiquinol and one or more emulsifiers from the group of phosphates and sulfates and cosmetic or dermatological preparations containing such active ingredient combinations
WO2021104770A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubichinol und glyceryl stearate citrate and cosmetic or dermatological preparations containing said active substance combinations
WO2021104772A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubiquinol and carrageenan and cosmetic or dermatological preparations containing said active substance combinations
WO2021104773A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubichinol und hyaluronic acid and cosmetic or dermatological preparations containing said active substance combinations
WO2021104781A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubiquinol and ubiquinone, cosmetic or dermatological preparations containing such active substance combinations, and use of ubiquinol to improve the efficacy of cosmetic or dermatological preparations with an ubiquinone content
WO2021104775A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubichinol and creatine and cosmetic or dermatological preparations containing said active substance combinations
CN117502646A (en) * 2023-11-29 2024-02-06 航天神舟生物科技集团有限公司 High-content water-soluble coenzyme Q10 composition and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036577A1 (en) * 1996-04-02 1997-10-09 Pharmos Corporation Solid lipid compositions of lipophilic compounds for enhanced oral bioavailability
US20040152612A1 (en) * 2001-04-12 2004-08-05 Andreas Supersaxo Coenzyme q10 containing microemulsion preconcentrates and microemulsions
WO2005105040A2 (en) * 2004-04-26 2005-11-10 Micelle Products, Inc. Water-soluble formulations of fat soluble vitamins and pharmaceutical agents and their applications
WO2006024237A1 (en) * 2004-09-03 2006-03-09 Maite (Shanghai) Biological Technologies Co., Ltd. Self emulsifying compositions for delivering lipophilic coenzyme q10 and other dietary ingredients
US7094804B2 (en) * 2001-07-12 2006-08-22 Aquanova German Solubilisate Technologies Water free ubiquinone concentrate
WO2008095182A2 (en) * 2007-02-01 2008-08-07 National Research Council Of Canada Formulations of lipophilic bioactive molecules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036577A1 (en) * 1996-04-02 1997-10-09 Pharmos Corporation Solid lipid compositions of lipophilic compounds for enhanced oral bioavailability
US20040152612A1 (en) * 2001-04-12 2004-08-05 Andreas Supersaxo Coenzyme q10 containing microemulsion preconcentrates and microemulsions
US7094804B2 (en) * 2001-07-12 2006-08-22 Aquanova German Solubilisate Technologies Water free ubiquinone concentrate
WO2005105040A2 (en) * 2004-04-26 2005-11-10 Micelle Products, Inc. Water-soluble formulations of fat soluble vitamins and pharmaceutical agents and their applications
WO2006024237A1 (en) * 2004-09-03 2006-03-09 Maite (Shanghai) Biological Technologies Co., Ltd. Self emulsifying compositions for delivering lipophilic coenzyme q10 and other dietary ingredients
WO2008095182A2 (en) * 2007-02-01 2008-08-07 National Research Council Of Canada Formulations of lipophilic bioactive molecules

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOUGLAS LABORATORIES: "Citrus Solu-Q?, Unique CoQ10 Delivery System Utilizing Patented VESIsorb® Nano-Colloid Technology''.", 2012, XP055369213, Retrieved from the Internet <URL:http://www.douglaslabs.com/media/DL200209.pdf> *
LIU, Z. ET AL.: "Relative Bioavailability Comparison Of Different Coenzyme Q10 Formulations With A Novel Delivery System", ALTERNATIVE THERAPIES, vol. 15, no. 2, 2009, pages 42 - 46 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609474A4 (en) * 2017-04-13 2021-01-27 Pharmako Biotechnologies PTY Limited Cold-water-dispersible chemical delivery system
CN108176134A (en) * 2018-01-24 2018-06-19 华侨大学 A kind of anti-mildew type shower filter filtrate, filter and preparation method thereof
DE102019218244A1 (en) * 2019-11-26 2021-05-27 Beiersdorf Ag Active ingredient combinations of ubiquinol and one or more emulsifiers from the group of phosphates and sulfates and cosmetic or dermatological preparations containing such active ingredient combinations
WO2021104770A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubichinol und glyceryl stearate citrate and cosmetic or dermatological preparations containing said active substance combinations
WO2021104777A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubiquinol and one or more emulsifiers from the group of phosphates and sulfates, and cosmetic or dermatological preparations containing such active substance combinations
WO2021104772A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubiquinol and carrageenan and cosmetic or dermatological preparations containing said active substance combinations
WO2021104773A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubichinol und hyaluronic acid and cosmetic or dermatological preparations containing said active substance combinations
WO2021104781A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubiquinol and ubiquinone, cosmetic or dermatological preparations containing such active substance combinations, and use of ubiquinol to improve the efficacy of cosmetic or dermatological preparations with an ubiquinone content
WO2021104775A1 (en) 2019-11-26 2021-06-03 Beiersdorf Ag Active substance combinations of ubichinol and creatine and cosmetic or dermatological preparations containing said active substance combinations
CN117502646A (en) * 2023-11-29 2024-02-06 航天神舟生物科技集团有限公司 High-content water-soluble coenzyme Q10 composition and preparation method thereof

Also Published As

Publication number Publication date
AU2022202308A1 (en) 2022-05-05
AU2018100110A4 (en) 2018-03-01
AU2016324349A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
AU2018100110A4 (en) Ubiquinone And Ubiquinol Compositions, And Methods Relating Thereto
US10314793B2 (en) Solubilized CoQ-10
CN102088978B (en) Ameliorating or therapeutic agent for dyslipidemia
WO2020024009A1 (en) &#34;solid self-emulsifying pharmaceutical compositions&#34;
WO2020044118A1 (en) Improved cannabinoid bioavailability
JP2003238396A (en) Coenzyme q10-containing emulsified composition
US20230030491A1 (en) Emulsifying formulations of cannabinoids and/or cannabinoid extracts
CN100536921C (en) Supersaturated cationic self-emulsified drug delivery system and its preparation method
TW201521719A (en) A composition comprising a lipid compound, a triglyceride, and a surfactant, and methods of using the same
AU2011292760A1 (en) Functional food compositions and methods
US10064888B2 (en) Pectin based nanoparticles
US20120141446A1 (en) Oral Nutritional Supplement Delivery System
KR20190040305A (en) Subcutaneous injections for weight loss and uses thereof
US20220193018A1 (en) Omega-3 compositions and methods relating thereto
IL228528A (en) Potato protein nanoparticles
CN106999428A (en) The preparation delivered for effective tocotrienols
KR100524700B1 (en) Pharmaceutical compositions for Hyperlipidemia treatment using of Self Emulsifying drug delivery system
CN107184587B (en) 2-methoxyestradiol oral pharmaceutical composition, preparation method thereof and 2-methoxyestradiol soft capsule
US20230381207A1 (en) Oral cannabinoid formulation comprising tocopheryl phosphates and long chain triglycerides or long chain fatty acids
KR20240077381A (en) Composition for increasing absorption of fat-soluble physiologically active ingredients using self-emulsifying delivery system
Mangrulkar et al. A comprehensive review on pleiotropic effects and therapeutic potential of soy lecithin
WO2024010441A1 (en) A self-emulsifying drug delivery formulation with improved oral bioavailability of lipophilic compound
CA3140113A1 (en) Self-emulsifying cannabidiol formulations
US20020114830A1 (en) Novel compostion and process
WO1998042319A2 (en) Non-aqueous compositions for oral administration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016324349

Country of ref document: AU

Date of ref document: 20160916

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845396

Country of ref document: EP

Kind code of ref document: A1