WO2017043908A1 - Composé hétérocyclique et diode électroluminescente organique utilisant ce composé - Google Patents

Composé hétérocyclique et diode électroluminescente organique utilisant ce composé Download PDF

Info

Publication number
WO2017043908A1
WO2017043908A1 PCT/KR2016/010153 KR2016010153W WO2017043908A1 WO 2017043908 A1 WO2017043908 A1 WO 2017043908A1 KR 2016010153 W KR2016010153 W KR 2016010153W WO 2017043908 A1 WO2017043908 A1 WO 2017043908A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
light emitting
Prior art date
Application number
PCT/KR2016/010153
Other languages
English (en)
Korean (ko)
Inventor
이윤지
오한국
김동준
최대혁
이주동
Original Assignee
희성소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성소재(주) filed Critical 희성소재(주)
Publication of WO2017043908A1 publication Critical patent/WO2017043908A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present application relates to a heterocyclic compound and an organic light emitting device using the same.
  • the electroluminescent device is a kind of self-luminous display device, and has an advantage of having a wide viewing angle, excellent contrast, and fast response speed.
  • the organic light emitting element has a structure in which an organic thin film is arranged between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from two electrodes are combined in the organic thin film to form a pair, then disappear and emit light.
  • the organic thin film may be composed of a single layer or multiple layers as necessary.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound which may itself constitute a light emitting layer may be used, or a compound that may serve as a host or a dopant of a host-dopant-based light emitting layer may be used.
  • a compound capable of performing a role of hole injection, hole transport, electron blocking, hole blocking, electron transport, electron injection, or the like may be used.
  • At least one of X1 to X3 is N, and the rest are each independently N or CR21,
  • R, R 'and R are the same as or different from each other, and each independently hydrogen; deuterium; -CN; substituted or unsubstituted C 1 to C 60 alkyl group; substituted or unsubstituted C 3 to C 60 cycloalkyl group A substituted or unsubstituted C 6 to C 60 aryl group, or a substituted or unsubstituted C 2 to C 60 heteroaryl group.
  • an organic light emitting device including an anode, a cathode, and one or more organic material layers provided between the anode and the cathode, and at least one of the organic material layers is a heterocyclic compound represented by Formula 1 above. It provides an organic light emitting device comprising a.
  • the heterocyclic compound according to the exemplary embodiment of the present application may be used as an organic material layer material of the organic light emitting device.
  • the heterocyclic compound may be used as a material such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer in the organic light emitting device.
  • the heterocyclic compound represented by Formula 1 may be used as a material of an electron transporting layer, a hole transporting layer or a light emitting layer of the organic light emitting device.
  • organic light emitting device represented by the formula (1) can reduce the drive voltage of the device, improve the light efficiency, and can improve the life characteristics of the device by the thermal stability of the compound.
  • 1 to 3 are diagrams schematically showing a laminated structure of an organic light emitting device according to an exemplary embodiment of the present application.
  • FIG. 4 shows a graph of LTPL measurements at 360 nm wavelength of compound 74.
  • FIG. 5 shows a PL measurement graph at 266 nm wavelength of compound 74.
  • FIG. 6 shows the UV absorption spectrum of Compound 74.
  • FIG. 7 shows a graph of LTPL measurements at 343 nm wavelength of compound 122.
  • Heterocyclic compound according to an exemplary embodiment of the present application is characterized in that represented by the formula (1). More specifically, the heterocyclic compound represented by Formula 1 may be used as an organic material layer material of the organic light emitting device by the structural features of the core structure and the substituents as described above.
  • Chemical Formula 1 may be represented by any one of the following Chemical Formulas 2 to 7.
  • Chemical Formula 1 may be represented by the following Chemical Formula 8.
  • At least one of X1 and X3 is N, the others are N or CR21,
  • n is an integer from 0 to 4,
  • R, R 'and R are the same as or different from each other, and each independently hydrogen; deuterium; -CN; substituted or unsubstituted C 1 to C 60 alkyl group; substituted or unsubstituted C 3 to C 60 cycloalkyl group A substituted or unsubstituted C 6 to C 60 aryl group, or a substituted or unsubstituted C 2 to C 60 heteroaryl group.
  • Formula 1 may be represented by the following formula (9).
  • At least one of X2 and X3 is N, the others are N or CR21,
  • n is an integer from 0 to 4,
  • R, R 'and R are the same as or different from each other, and each independently hydrogen; deuterium; -CN; substituted or unsubstituted C 1 to C 60 alkyl group; substituted or unsubstituted C 3 to C 60 cycloalkyl group A substituted or unsubstituted C 6 to C 60 aryl group, or a substituted or unsubstituted C 2 to C 60 heteroaryl group.
  • any one of X1 to X3 of Chemical Formula 1 may be N, any two of X1 to X3 may be N, and X1 to X3 may be all N.
  • the aryl group of the general formula (I) of R1 and R2 is a C 6 to C 60 each independently substituted or unsubstituted; Or a substituted or unsubstituted C 2 Through C 60 It may be a heteroaryl group.
  • R3 to R5 of Chemical Formula 1 may be each independently hydrogen or deuterium.
  • any one of R6 to R10 of Chemical Formula 1 is -CN, and the others may each independently be hydrogen or deuterium.
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group and can be interpreted as a substituent to which two phenyl groups are linked. Said additional substituents may be further substituted further.
  • R, R 'and R are the same as or different from each other, and each independently hydrogen; deuterium; -CN; substituted or unsubstituted C 1 to C 60 alkyl group; substituted or unsubstituted C 3 to C 60 cyclo An alkyl group, a substituted or unsubstituted C 6 to C 60 aryl group, or a substituted or unsubstituted C 2 to C 60 heteroaryl group.
  • R, R 'and R are the same as or different from each other, and each independently hydrogen; deuterium; -CN; deuterium, halogen, -CN, C 1 to C 20 alkyl group, C 6 to C 60 aryl group, and C 2 to C 60 substituted heteroaryl or unsubstituted alkyl group of C 1 to C 60; an aryl group of deuterium, halogen, -CN, C 1 to C 20 alkyl group, C 6 to C 60 a, and C 2 A C 3 to C 60 cycloalkyl group unsubstituted or substituted with a C 6 to C 60 heteroaryl group; deuterium, halogen, —CN, an alkyl group of C 1 to C 20 , an aryl group of C 6 to C 60 , and C 2 to C 60 substituted or unsubstituted group heteroaryl C 6 to C 60 aryl group; or an alkyl group of deuterium, halogen, -CN, C 1 to
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • the halogen may be fluorine, chlorine, bromine or iodine.
  • the alkyl group includes a straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents. Carbon number of the alkyl group may be 1 to 60, specifically 1 to 40, more specifically, 1 to 20.
  • Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl, pentyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, cyclopentylmethyl group, cyclohexylmethyl group, octyl group, n-octyl group, tert -Octyl
  • the alkenyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by another substituent. Carbon number of the alkenyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • Specific examples include vinyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 3-methyl-1 -Butenyl group, 1,3-butadienyl group, allyl group, 1-phenylvinyl-1-yl group, 2-phenylvinyl-1-yl group, 2,2-diphenylvinyl-1-yl group, 2-phenyl-2 -(Naphthyl-1-yl) vinyl-1-yl group, 2,2-bis (diphenyl-1-yl) vinyl-1-yl group, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the alkynyl group includes a straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by another substituent.
  • Carbon number of the alkynyl group may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • the cycloalkyl group includes a monocyclic or polycyclic ring having 3 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which a cycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a cycloalkyl group, but may be another type of ring group, such as a heterocycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • Carbon number of the cycloalkyl group may be 3 to 60, specifically 3 to 40, more specifically 5 to 20.
  • the heterocycloalkyl group includes O, S, Se, N, or Si as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a group in which a heterocycloalkyl group is directly connected or condensed with another ring group.
  • the other ring group may be a heterocycloalkyl group, but may be another type of ring group, such as a cycloalkyl group, an aryl group, a heteroaryl group, or the like.
  • Carbon number of the heterocycloalkyl group may be 2 to 60, specifically 2 to 40, more specifically 3 to 20.
  • the aryl group includes a monocyclic or polycyclic ring having 6 to 60 carbon atoms, and may be further substituted by another substituent.
  • the polycyclic means a group in which an aryl group is directly connected or condensed with another ring group.
  • the other ring group may be an aryl group, but may be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, a heteroaryl group, or the like.
  • the aryl group includes a spiro group. Carbon number of the aryl group may be 6 to 60, specifically 6 to 40, more specifically 6 to 25.
  • aryl group examples include phenyl group, biphenyl group, triphenyl group, naphthyl group, anthryl group, chrysenyl group, phenanthrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, phenenyl group, pyre Neyl group, tetrasenyl group, pentaxenyl group, fluorenyl group, indenyl group, acenaphthylenyl group, benzofluorenyl group, spirobifluorenyl group, 2,3-dihydro-1H-indenyl group, condensed ring groups thereof Etc., but is not limited thereto.
  • the spiro group is a group including a spiro structure, and may have 15 to 60 carbon atoms.
  • the spiro group may include a structure in which a 2,3-dihydro-1H-indene group or a cyclohexane group is spiro bonded to a fluorenyl group.
  • the following spiro groups may include any of the groups of the following structural formula.
  • the heteroaryl group includes S, O, Se, N, or Si as a hetero atom, includes a monocyclic or polycyclic ring having 2 to 60 carbon atoms, and may be further substituted by another substituent.
  • the polycyclic means a group in which a heteroaryl group is directly connected or condensed with another ring group.
  • the other ring group may be a heteroaryl group, but may be another type of ring group, such as a cycloalkyl group, a heterocycloalkyl group, an aryl group, or the like.
  • Carbon number of the heteroaryl group may be 2 to 60, specifically 2 to 40, more specifically 3 to 25.
  • heteroaryl group examples include pyridyl, pyrrolyl, pyrimidyl, pyridazinyl, furanyl, thiophene, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl and thiazolyl Group, isothiazolyl group, triazolyl group, furazanyl group, oxdiazolyl group, thiadiazolyl group, dithiazolyl group, tetrazolyl group, pyranyl group, thiopyranyl group, diazinyl group, oxazinyl group , Thiazinyl group, deoxyyl group, triazinyl group, tetragenyl group, quinolyl group, isoquinolyl group, quinazolinyl group, isoquinazolinyl group, quinozolyl group, naphthyridyl group, acridinyl group, phenan
  • the amine group is a monoalkylamine group; Monoarylamine group; Monoheteroarylamine group; -NH 2 ; Dialkylamine groups; Diarylamine group; Diheteroarylamine group; Alkylarylamine group; Alkyl heteroaryl amine group; And it may be selected from the group consisting of arylheteroarylamine group, carbon number is not particularly limited, but is preferably 1 to 30.
  • amine group examples include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, naphthylamine group, biphenylamine group, dibiphenylamine group, anthracenylamine group, 9- Methyl-anthracenylamine group, diphenylamine group, phenylnaphthylamine group, ditolylamine group, phenyltolylamine group, triphenylamine group, biphenylnaphthylamine group, phenylbiphenylamine group, biphenylfluore And a phenylamine group, a phenyltriphenylenylamine group, a biphenyltriphenylenylamine group, and the like, but are not limited thereto.
  • an arylene group means one having two bonding positions, that is, a divalent group.
  • the description of the aforementioned aryl group can be applied except that they are each divalent.
  • a heteroarylene group means a thing which has two bonding positions, ie, a bivalent group, in a heteroaryl group.
  • the description of the aforementioned heteroaryl group can be applied except that they are each divalent.
  • Formula 1 may be represented by any one of the following compounds, but is not limited thereto.
  • the heterocyclic compound has a high glass transition temperature (Tg) is excellent in thermal stability. This increase in thermal stability is an important factor in providing drive stability to the device.
  • the heterocyclic compound according to one embodiment of the present application may be prepared by a multistage chemical reaction. Some intermediate compounds may be prepared first, and compounds of formula 1 may be prepared from the intermediate compounds. More specifically, the heterocyclic compound according to one embodiment of the present application may be prepared based on the preparation examples described below.
  • Another embodiment of the present application provides an organic light emitting device including the heterocyclic compound represented by Formula 1.
  • the organic light emitting device may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that one or more organic material layers are formed using the heterocyclic compound described above.
  • the heterocyclic compound may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying method, roll coating and the like, but is not limited thereto.
  • the organic light emitting device includes an anode, a cathode and at least one organic material layer provided between the anode and the cathode, one or more of the organic material layer is a hetero ring represented by the formula (1) Compound.
  • FIG. 1 to 3 illustrate a lamination order of an electrode and an organic material layer of an organic light emitting diode according to an exemplary embodiment of the present application.
  • these drawings are not intended to limit the scope of the present application, the structure of the organic light emitting device known in the art can be applied to the present application.
  • an organic light emitting device in which an anode 200, an organic material layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is illustrated.
  • the present invention is not limited thereto, and as illustrated in FIG. 2, an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented.
  • the organic light emitting device according to FIG. 3 includes a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, a hole blocking layer 304, an electron transport layer 305, and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • a light emitting layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer 304
  • an electron transport layer 305 an electron injection layer 306.
  • the scope of the present application is not limited by such a laminated structure, and other layers except for the light emitting layer may be omitted, and other functional layers may be added as needed.
  • the organic light emitting device according to the present specification may be manufactured by materials and methods known in the art, except for including the heterocyclic compound represented by Chemical Formula 1 in at least one layer of the organic material layer.
  • the heterocyclic compound represented by Chemical Formula 1 may constitute one or more layers of the organic material layer of the organic light emitting device alone. However, if necessary, the organic material layer may be mixed with other materials.
  • the heterocyclic compound represented by Chemical Formula 1 may be used as an electron transport layer, a hole blocking layer, a light emitting layer, or the like in an organic light emitting device.
  • the heterocyclic compound represented by Formula 1 may be used as a material of an electron transporting layer, a hole transporting layer, or a light emitting layer of an organic light emitting device.
  • the heterocyclic compound represented by Formula 1 may be used as a material of the light emitting layer in the organic light emitting device.
  • the heterocyclic compound represented by Formula 1 may be used as a material of the phosphorescent host of the light emitting layer in the organic light emitting device.
  • the anode material materials having a relatively large work function may be used, and a transparent conductive oxide, a metal, or a conductive polymer may be used.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methyl compound), poly [3,4- (ethylene-1,2-dioxy) compound] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material materials having a relatively low work function may be used, and a metal, a metal oxide, or a conductive polymer may be used.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • hole injection material a well-known hole injection material may be used, for example, phthalocyanine compounds such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or described in Advanced Material, 6, p.677 (1994).
  • Starburst amine derivatives such as tris (4-carbazoyl-9-ylphenyl) amine (TCTA), 4,4 ', 4 "-tri [phenyl (m-tolyl) amino] triphenylamine (m- MTDATA), 1,3,5-tris [4- (3-methylphenylphenylamino) phenyl] benzene (m-MTDAPB), polyaniline / dodecylbenzenesulfonic acid, or poly (line) 3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate) (Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate)), polyaniline / Camphor sulfonic acid or polyaniline / Poly (4-styrenesulfonate) (Polyaniline / Poly (4-styrene-sulfonate)) etc. can be used.
  • TCTA tri
  • pyrazoline derivatives arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, and the like may be used, and low molecular or polymer materials may be used.
  • Examples of the electron transporting material include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthhraquinomethane and derivatives thereof, and fluorenone Derivatives, diphenyl dicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, and the like can be used, as well as high molecular weight materials as well as high molecular materials.
  • LiF is representatively used in the art, but the present application is not limited thereto.
  • a red, green or blue light emitting material may be used, and if necessary, two or more light emitting materials may be mixed.
  • a fluorescent material can be used as a light emitting material, it can also be used as a phosphorescent material.
  • a material which combines holes and electrons injected from the anode and the cathode, respectively, to emit light may be used, but materials in which both the host material and the dopant material are involved in light emission may be used.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type according to a material used.
  • the heterocyclic compound according to the exemplary embodiment of the present application may act on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors, and the like.
  • Table 1 is an NMR value
  • Table 2 is a measurement value of the field desorption mass spectrometry (FD-MS).
  • FIG. 4 shows a graph of LTPL measurements at 360 nm wavelength of compound 74.
  • FIG. 5 shows a PL measurement graph at 266 nm wavelength of compound 74.
  • FIG. 6 shows the UV absorption spectrum of Compound 74.
  • FIG. 7 shows a graph of LTPL measurements at 343 nm wavelength of compound 122.
  • the glass substrate coated with the thin film of ITO to a thickness of 1500 kPa was washed by distilled water ultrasonically. After washing the distilled water, ultrasonic cleaning with a solvent such as acetone, methanol, isopropyl alcohol and the like was dried and then treated with UVO for 5 minutes using UV in a UV cleaner. Subsequently, the substrate was transferred to a plasma cleaner (PT), and then plasma-treated to remove ITO work function and residual film in a vacuum state, and then transferred to a thermal deposition apparatus for organic deposition.
  • PT plasma cleaner
  • 2-TNATA (4,4 ', 4 "-Tris [2-naphthyl (phenyl) amino] triphenylamine) was formed as a hole injection layer on ITO prepared as above, and NPB (N, N'-Di as a hole transport layer).
  • (1-naphthyl) -N, N'-diphenyl- (1,1'-biphenyl) -4,4'-diamine) was formed on the hole transport layer by thermal vacuum deposition to form a light emitting layer of 400 Pa.
  • the compound shown in the following table, which is a host, was used as a phosphorescent dopant with 7% doping of Ir (ppy) 3 (tris (2-phenylpyridine) iridium).
  • the organic electroluminescent device was manufactured by forming a cathode by vapor deposition.
  • the electroluminescent (EL) characteristics of the organic electroluminescent device manufactured as described above were measured by Maxiers M7000, and the reference luminance was 6,000 through the life equipment measuring equipment (M6000) manufactured by McScience Inc. with the measurement results. T 90 was measured at cd / m 2 .
  • the characteristics of the organic EL device of the present invention are shown in Table 4 below.
  • the organic electroluminescent device using the compound of the present invention as the light emitting layer material although the driving voltage and efficiency are equivalent to those of Comparative Examples 1 to 4, it can be seen that the life characteristics are particularly improved. .
  • the life improvement effect is depending on the bonding position.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

La présente invention concerne un composé hétérocyclique apte à améliorer considérablement la durée de vie, l'efficacité, la stabilité électrochimique et la stabilité thermique d'une diode électroluminescente organique; et une diode électroluminescente organique dans laquelle le composé hétérocyclique est contenu en tant que couche de composé organique.
PCT/KR2016/010153 2015-09-10 2016-09-09 Composé hétérocyclique et diode électroluminescente organique utilisant ce composé WO2017043908A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0128467 2015-09-10
KR1020150128467A KR101946020B1 (ko) 2015-09-10 2015-09-10 헤테로고리 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2017043908A1 true WO2017043908A1 (fr) 2017-03-16

Family

ID=58240854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010153 WO2017043908A1 (fr) 2015-09-10 2016-09-09 Composé hétérocyclique et diode électroluminescente organique utilisant ce composé

Country Status (3)

Country Link
KR (1) KR101946020B1 (fr)
TW (1) TW201718554A (fr)
WO (1) WO2017043908A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038377A1 (fr) * 2017-08-25 2019-02-28 Cynora Gmbh Molécules organiques, en particulier pour une utilisation dans des dispositifs optoélectroniques
WO2019166666A1 (fr) * 2018-03-02 2019-09-06 Cynora Gmbh Molécules organiques pour dispositifs optoélectroniques
CN111057005A (zh) * 2019-11-04 2020-04-24 苏州久显新材料有限公司 芴类衍生物和电子器件
CN111148738A (zh) * 2017-09-29 2020-05-12 三星Sdi株式会社 有机化合物、组合物、有机光电装置和显示装置
KR102274482B1 (ko) * 2020-01-02 2021-07-07 (주)랩토 헤테로아릴 유도체 및 이를 포함한 유기 전계 발광 소자
US11189800B2 (en) * 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230134993A (ko) * 2022-03-15 2023-09-22 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100131939A (ko) * 2009-06-08 2010-12-16 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기전계발광소자
US20130313536A1 (en) * 2012-05-28 2013-11-28 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR20140049186A (ko) * 2012-10-16 2014-04-25 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20140130089A (ko) * 2014-10-15 2014-11-07 덕산하이메탈(주) 카바졸과 플루오렌이 결합하여 고리를 형성한 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101502316B1 (ko) * 2014-04-18 2015-03-13 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100131939A (ko) * 2009-06-08 2010-12-16 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기전계발광소자
US20130313536A1 (en) * 2012-05-28 2013-11-28 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
KR20140049186A (ko) * 2012-10-16 2014-04-25 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101502316B1 (ko) * 2014-04-18 2015-03-13 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20140130089A (ko) * 2014-10-15 2014-11-07 덕산하이메탈(주) 카바졸과 플루오렌이 결합하여 고리를 형성한 화합물 및 이를 이용한 유기전기소자, 그 단말

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189800B2 (en) * 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
WO2019038377A1 (fr) * 2017-08-25 2019-02-28 Cynora Gmbh Molécules organiques, en particulier pour une utilisation dans des dispositifs optoélectroniques
CN111148738A (zh) * 2017-09-29 2020-05-12 三星Sdi株式会社 有机化合物、组合物、有机光电装置和显示装置
WO2019166666A1 (fr) * 2018-03-02 2019-09-06 Cynora Gmbh Molécules organiques pour dispositifs optoélectroniques
US11834437B2 (en) 2018-03-02 2023-12-05 Samsung Display Co., Ltd. Organic molecules for optoelectronic devices
CN111057005A (zh) * 2019-11-04 2020-04-24 苏州久显新材料有限公司 芴类衍生物和电子器件
KR102274482B1 (ko) * 2020-01-02 2021-07-07 (주)랩토 헤테로아릴 유도체 및 이를 포함한 유기 전계 발광 소자

Also Published As

Publication number Publication date
KR20170030925A (ko) 2017-03-20
TW201718554A (zh) 2017-06-01
KR101946020B1 (ko) 2019-02-08

Similar Documents

Publication Publication Date Title
WO2019164331A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2018117618A1 (fr) Élément électroluminescent organique et composition destinée à une couche de matériau organique de l'élément électroluminescent organique
WO2022025516A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2017043908A1 (fr) Composé hétérocyclique et diode électroluminescente organique utilisant ce composé
WO2018009009A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique l'utilisant
WO2010114243A2 (fr) Nouveaux composés pour matériaux électroniques organiques et dispositif électronique organique les utilisant
WO2011081429A2 (fr) Composé organique et dispositif électroluminescent organique l'utilisant
WO2018124750A1 (fr) Composé et élément électroluminescent organique le comprenant
WO2017142310A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique comprenant ce composé
WO2020111733A1 (fr) Dispositif électroluminescent organique
WO2021112496A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2011108901A2 (fr) Composé de spiro-carbazole comprenant un squelette spiro, et élément électronique organique utilisant celui-ci et terminal de celui-ci
WO2018174678A1 (fr) Composé hétérocyclique et élément électroluminescent organique le comprenant
WO2021101117A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2019066607A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2017086643A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique utilisant ce composé
WO2020040514A1 (fr) Diode électroluminescente organique
WO2018009007A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique utilisant celui-ci
WO2017142304A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2018174681A1 (fr) Élément électroluminescent organique et composition pour couche de matériau organique dans l'élément électroluminescent organique
WO2021080282A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2018101764A1 (fr) Composé hétérocyclique et élément électroluminescent organique l'utilisant
WO2021256836A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant
WO2021107474A1 (fr) Composé et dispositif électroluminescent organique le comprenant
WO2021125835A1 (fr) Composé hétérocyclique et dispositif électroluminescent organique le comprenant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844724

Country of ref document: EP

Kind code of ref document: A1