WO2017043721A1 - Blanket comprising silica aerogel and manufacturing method therefor - Google Patents

Blanket comprising silica aerogel and manufacturing method therefor Download PDF

Info

Publication number
WO2017043721A1
WO2017043721A1 PCT/KR2016/003153 KR2016003153W WO2017043721A1 WO 2017043721 A1 WO2017043721 A1 WO 2017043721A1 KR 2016003153 W KR2016003153 W KR 2016003153W WO 2017043721 A1 WO2017043721 A1 WO 2017043721A1
Authority
WO
WIPO (PCT)
Prior art keywords
blanket
silica airgel
silica
airgel
agent
Prior art date
Application number
PCT/KR2016/003153
Other languages
French (fr)
Korean (ko)
Inventor
유성민
오경실
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018511383A priority Critical patent/JP6611916B2/en
Priority to US15/547,970 priority patent/US10501326B2/en
Priority to CN201680010607.5A priority patent/CN107438588B/en
Priority to EP16844541.9A priority patent/EP3235788B1/en
Priority claimed from KR1020160036566A external-priority patent/KR101752091B1/en
Publication of WO2017043721A1 publication Critical patent/WO2017043721A1/en
Priority to US16/657,678 priority patent/US10836643B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a blanket containing silica airgel having excellent thermal insulation and flame retardancy and a method for producing the same.
  • the aerogels developed so far include organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2). Or inorganic aerogels containing metal oxides such as carbon (C) aerogels.
  • organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2).
  • inorganic aerogels containing metal oxides such as carbon (C) aerogels.
  • silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and is expected to be applied in various fields such as insulation, catalyst, sound absorbing material, or interlayer insulating material of semiconductor circuits. have.
  • the speed of commercialization is very slow due to complex manufacturing processes and low mechanical strength, the result of continuous research is increasing the speed of market expansion including insulation.
  • silica airgel Since silica airgel has a low mechanical strength due to its porous structure, the silica airgel is usually combined with a substrate such as glass fiber, ceramic fiber, or polymer fiber to produce a product such as an airgel blanket or airgel sheet.
  • a substrate such as glass fiber, ceramic fiber, or polymer fiber
  • the airgel powder is weakly adhered to the base material for the blanket, it is easy to be detached during the work, and the powder is blown off so much that the working environment is highly polluted.
  • the density and mechanical strength of the airgel itself is very low, it is difficult to commercialize in the form of sheets or boards.
  • a high temperature heat insulating material in the manufacture of a blanket containing silica airgel has been used an opacifying agent having an absorption ability to the wavelength of the infrared (IR) region at a high temperature.
  • the conventional opaque agent has a low surface activity of particles and thus is not easy to chemically bond with the silica precursor, the content of the opaque agent in the blanket to be produced is significantly low, so that the effect of improving the thermal insulation performance by using the opaque agent is improved. It was not big.
  • Another object of the present invention to provide a heat insulating material prepared using the blanket containing the silica airgel.
  • Another object of the present invention is to provide a dispersion comprising an opaque agent, which is useful for preparing the blanket containing silica airgel.
  • a substrate for a blanket comprising silica aerogel and an opacifying agent, which are located on at least one of the surface and the inside of the blanket substrate, wherein the opacifying agent is a secondary particle in which inorganic particles on the primary particles are aggregated, and 1 per 3 ⁇ m of volume.
  • a blanket comprising silica aerogels comprising from five to five inorganic particles.
  • a water to prepare a dispersion containing an opacifier
  • a silica precursor-containing solution to prepare a composition for opacifier-containing silica airgel formation
  • Preparing an opacifying agent-silica gel-based composite by adding a base catalyst and a hydrophilic polar organic solvent to the composition for forming the airgel-containing silica airgel, followed by adding and gelling the substrate for the blanket; And it provides a method for producing a blanket comprising a silica airgel comprising the step of drying the opaque agent-silica gel-based complex after hydrophobization surface modification.
  • According to another embodiment of the present invention provides a heat insulating material prepared using the blanket containing the silica airgel.
  • an opacifying agent and water wherein the opacifying agent provides a dispersion containing an opaque agent that the average zeta potential in water is -10mV to -60mV.
  • Blanket containing silica airgel according to the present invention by including an opaque agent having excellent dispersibility, dispersion stability, and high surface activity through chemical etching, it can exhibit flame retardancy with excellent thermal insulation, in particular excellent thermal insulation at high temperatures have.
  • Example 1 is a transmission electron microscope (TEM) photograph of the transparent agent prepared in Example 1;
  • Figure 2 is a TEM photograph of the opaque agent prepared in Comparative Example 1.
  • FIG. 3 is a TEM photograph of a blanket containing silica airgel prepared in Example 1.
  • FIG. 4 is a TEM photograph of a blanket containing silica airgel prepared in Comparative Example 1.
  • 5 is a graph illustrating the change of the average particle diameter and the average zeta potential of the opaque agent according to the content of KOH during the preparation of the opaque agent.
  • FIG. 6 is a graph illustrating a particle size distribution of an opaque agent according to etching in Experimental Example 2.
  • Figure 7 is a photograph observing the change in dispersibility with time of the composition for forming an opaque-containing silica airgel prepared in Example 1 and Comparative Example 1 (in Figure 7 a) is just after manufacture, b) is left for 1 hour C) is after 3 hours stationary).
  • the present invention when preparing a blanket containing silica airgel using an opaque agent, by reducing the particle size of the opaque agent through the chemical etching while increasing the surface activity, dispersibility and dispersion of the opaque agent in the reaction system without using a dispersant Increasing the stability and at the same time increasing the surface activity significantly can improve the thermal insulation of the blanket during the production of the blanket, in particular at high temperatures and flame retardancy.
  • a blanket containing silica airgel according to an embodiment of the present invention the blanket base material; And a silica airgel and an opaque agent disposed on at least one of the surface and the inside of the blanket substrate, wherein the opaque agent is a secondary particle in which inorganic particles on the primary particle are aggregated, and per 1 ⁇ m 3 unit volume. It contains 1 to 5 inorganic particles.
  • primary particle or “primary particle” means a single particle
  • secondary particle or “secondary particle” means that two or more primary particles are physically and / or chemically bonded. It refers to a structure that is aggregated through to form a relatively large particle form.
  • the number of inorganic particles per unit volume is an average value.
  • the opacifying agent is prepared by chemically etching the inorganic particles using a strong base.
  • the zeta potential at the particle size and the surface can be controlled by controlling the concentration of the base for etching and the etching process time.
  • excellent dispersion and dispersion stability can be exhibited in the manufacture of a blanket containing silica airgel.
  • the opacifying agent used in the present invention is smaller in size and uniform in size than the conventionally used opacifying agent.
  • it has a high surface activity and can exhibit excellent bonding to substrates for silica aerogels and blankets.
  • the preparation of the blanket containing silica airgel according to an embodiment of the present invention is carried out under hydrophilic conditions such as using water as a solvent. If the size of the inorganic particles becomes too large under such hydrophilic conditions, precipitation tends to occur due to the density of the inorganic particles themselves.
  • the zeta potential on the surface of the inorganic particle regardless of whether it is positive or negative, means that a large number of functional groups on the surface of the particle are distributed, and as a result, it may exhibit better dispersibility. As such, when the inorganic particles are uniformly dispersed by controlling the size of the inorganic particles and the surface zeta potential, a reaction such as a condensation reaction with the silica precursor may be uniform and more efficient.
  • the opacifying agent may have an average zeta potential of -10 mV to -60 mV in water as a dispersion medium.
  • zeta potential is an index indicating the amount of surface charge of colloidal particles suspended in a liquid.
  • the colloidal particles move in a direction opposite to the sign of the surface potential.
  • the particle velocity is calculated by considering the applied electric field strength and hydrodynamic effects (solvent viscosity, dielectric constant, etc.). That is, the greater the absolute value of the zeta potential, the stronger the repulsive force between the particles, the higher the dispersion and dispersion stability. On the contrary, when the zeta potential approaches zero, the particles tend to aggregate.
  • the opacifying agent included in the silica airgel-containing blanket in the present invention includes various surface functional groups, specifically condensation-reactive functional groups, on the surface by an etching process, and as a result shows an average zeta potential in the above range.
  • the average zeta potential of the opaque agent can be controlled by controlling the concentration of the strong base during the etching process and the etching time, and in the present invention, by having the average zeta potential in the above range, excellent dispersibility and dispersion stability in the reaction system for blanket production Can be represented.
  • the blanket when the blanket is manufactured, it can be uniformly dispersed in a higher content on the surface and inside of the blanket, thereby exhibiting excellent IR absorption ability throughout the blanket, and can also exhibit a markedly improved thermal insulation.
  • the average zeta potential in water may be more specifically -30 mV to -60 mV, and even more specifically -50 mV to -60 mV Can be.
  • the opacifying agent may exhibit high reaction activity by forming a reactive functional group on the surface of the particle by the strong base treatment in the manufacturing process as described above.
  • the inorganic particles constituting the opacifying agent include a condensation-reactive functional group capable of easily condensation reaction with the silica precursor on the particle surface.
  • the condensation-reactive functional group may be a hydroxy group (-OH), an alkoxy group (-ROH), a carboxy group (-COOH) or an ester group (-COOR), and the like, and may include any one or two or more thereof.
  • R in the alkoxy group and ester group is each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or 7 to 20 carbon atoms.
  • hydrocarbon groups such as alkylaryl groups.
  • condensation reaction with the silica precursor by the condensation-reactive functional groups formed on the surface of the inorganic particles easily and chemically bonded, it is possible to exhibit an excellent binding force to the silica airgel and the substrate for the blanket in the blanket prepared silica aerogel, resulting in Blanc
  • the content of the opacifying agent in the jacket is increased, the true density of the blanket is increased, and the thermal insulation of the blanket can be further improved.
  • the opacifying agent may have a simpler structure and smaller particle diameter than the conventional one by the chemical etching process described above.
  • the opacifying agent has a secondary particulate form in which a plurality of inorganic particles on the primary particles are aggregated as a unit binder.
  • the structure of the opacifying agent may be defined as the number of particles of the unit binder contained in the unit volume or the weight per unit volume, and closely affects the properties of the opacifying agent together with the particle diameter. As the structure of the opaque agent is developed, the surface area is reduced, and when the structure is less, the density of the unit binder is high and the distance between the unit binders is shortened, which requires a strong dispersion energy.
  • the opaque agent used in the present invention is broken through such an etching process, the number of particles of the unit conjugate per unit volume is reduced and simple structuring compared to the conventional opaque agent.
  • the opacifying agent used in the present invention includes 1 to 5, more specifically 2 to 5, even more specifically 3 to 5 inorganic particles per 1 ⁇ m 3 unit volume.
  • the average particle diameter (D 50 ) of the opaque agent may be 300nm to 1600nm under the conditions satisfying the above-described structuring conditions.
  • the average particle size of the opacifying agent is less than 300 nm, there is a fear of a decrease in dispersibility due to intergranular aggregation, and if it exceeds 1600 nm, there is a fear of a decrease in its dispersibility.
  • the average particle diameter (D 50 ) of the opaque agent may be 300nm to 600nm.
  • the average particle diameter (D 50 ) of the opacifying agent may be defined as the particle size at 50% of the particle size distribution.
  • the mean particle diameter (D 50 ) of the opaque agent is, for example, an electron microscope using a scanning electron microscopy (SEM) or a field emission scanning electron microscopy (FE-SEM) or the like. It can be measured by observation or by using a laser diffraction method. In the measurement by the laser diffraction method, more specifically, after dispersing the opaque agent in the dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000) to give an ultrasonic wave of about 28 kHz to an output of 60 W. After the irradiation, the average particle diameter D 50 at the 50% reference of the particle diameter distribution in the measuring device can be calculated.
  • SEM scanning electron microscopy
  • FE-SEM field emission scanning electron microscopy
  • the inorganic particles on the primary particles constituting the opaque agent have an average particle diameter (D 50 ) of 50nm to 1000nm under the conditions satisfying the number of primary particles per unit volume and the average particle size range of the opaque agent.
  • D 50 average particle diameter
  • the average particle diameter of the primary particles is less than 50 nm, there is a fear of a decrease in dispersibility due to intergranular aggregation. If the average particle diameter of the primary particles exceeds 1000 nm, there is a concern that the activity of the particle surface is low and the reactivity with the silica network is low. There is. More specifically, the primary particulate inorganic particles may have an average particle diameter of 100nm to 300nm.
  • the average particle diameter (D 50 ) of the inorganic particles of the primary particle can be defined as the particle size at 50% of the particle size distribution, as defined above, the electron microscope such as TEM for the inorganic particles After the observation, the average particle diameter can be calculated from the results.
  • the inorganic particles on the primary particles may include irregularities formed on the surface of the primary particles in addition to the simplification of the structure of forming the secondary particles by the etching process described above. Unevenness on the surface of the primary particles can be confirmed according to a conventional particle surface observation method, specifically, can be observed through a scanning electron microscope or the like.
  • the said opacifier contains inorganic particle, the flame retardance of a silica airgel containing heat insulating material can be improved.
  • the inorganic particles may include metal oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), and iron oxide.
  • metal oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), and iron oxide.
  • Metal carbides such as beryllium carbide (Be 2 C), titanium carbide (TiC) or silicon carbide (SiC); Metal nitrides such as vanadium nitride (VN), titanium nitride (TiN), molybdenum nitride (Mo 2 N), tungsten nitride (TuN), niobium nitride (NbN), titanium nitride (TiN) or boron nitride (BN); Metal hydroxides such as magnesium hydroxide (Mg (OH 2 )) or aluminum hydroxide (Al (OH) 3 ); Metal salts such as calcium carbonate (CaCO 3 ), and the like; Silicate compounds such as Ca 3 SiO 5 (tricalcium silicate), Ca 2 SiO 4 (dicalcium silicate), CaSiO 3 (calcium metasilicate), and the like; Graphite such as natural graphite or artificial graphite; Carbon-based materials such as carbon-
  • the blanket containing the silica airgel may be appropriately selected from the inorganic particles exemplified above.
  • the inorganic particles include metal oxides such as titania or iron oxide; Metal hydroxides such as aluminum hydroxide (Al (OH) 3 ); Iron and manganese-containing pigments and the like may be used, and more specifically, may be titania (TiO 2 ) which exhibits excellent IR wavelength absorption at high temperatures.
  • the TiO 2 may have a rutile type, anatase type, or a mixed crystal structure thereof, and may have a rutile type crystal structure having better IR absorption ability.
  • the inorganic particles include magnesium hydroxide (Mg (OH 2).
  • Mg (OH 2). magnesium hydroxide
  • Al (OH) 3 aluminum hydroxide
  • more specifically magnesium hydroxide may be used.
  • the opacifying agent may be included in an amount of 10% to 70% by weight based on the total weight of the blanket containing silica airgel. If the content of the opaque agent is less than 10% by weight, the effect of using the opaque agent is insignificant, and if the content of the opaque agent exceeds 70% by weight, there is a fear of performance deterioration as a heat insulating material.
  • the silica airgel is a porous porous structure containing a plurality of micropores, nano-size primary particles, specifically, the average particle diameter ( D 50 ) may have a microstructure, that is, a three-dimensional network structure, in which primary particles of 100 nm or less, more specifically, 10 nm to 50 nm are combined to form a network-shaped cluster.
  • the porous structure of the silica airgel can control the size and density of the pores through the condition control in the manufacturing process.
  • the silica airgel may have a porosity of 90% or more and a tap density of 0.04 g / cm 3 to 0.5 g / cm 3 .
  • the average pore diameter may be 20 nm or less, or 5 nm to 15 nm.
  • the tap density of the silica airgel can be measured using a tap density meter (TAP-2S, Logan Istruments co.), And the average pore diameter and porosity are measured using a partial pressure (0.11) using an ASAP 2010 instrument from Micrometrics. It can be measured by the adsorption / desorption amount of nitrogen according to ⁇ p / p o ⁇ 1).
  • the silica airgel may have an average particle diameter or specific surface area that can be easily penetrated or adhered to the voids of the substrate for the blanket used in the manufacture of the blanket.
  • the silica airgel may have a specific surface area of 700 m 2 / g or more, more specifically 700 m 2 / g to 1000 m 2 / g.
  • the silica airgel may have an average particle diameter (D 50 ) of 10 ⁇ m to 80 ⁇ m, more specifically 10 ⁇ m to 20 ⁇ m.
  • the specific surface area of the silica airgel can be by using a Micrometrics ASAP 2010 instrument of measuring the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 ⁇ p / p o ⁇ 1).
  • the average particle diameter (D 50 ) can be defined as the particle size at 50% of the particle size distribution, wherein the average particle diameter of the silica airgel can be measured using a laser diffraction method, more Specifically, the hydrophobic silica airgel is dispersed in a solvent, introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000), irradiated with ultrasonic waves of about 28 kHz at an output of 60 W, and then the particle diameter in the measuring apparatus. The average particle diameter (D 50 ) at 50% of the distribution can be calculated.
  • the hydrophobic airgel may have a lower thermal conductivity than the base material for the blanket, which may increase the thermal insulation effect during manufacture of the blanket.
  • the silica airgel may have a thermal conductivity of 20 mW / mK or less.
  • silica airgel is a hydrophobic surface treatment.
  • silica airgel maintains low thermal conductivity immediately after preparation, but the thermal conductivity gradually increases as the hydrophilic silanol group (Si-OH) present on the silica surface absorbs water in the air. Accordingly, in order to maintain low thermal conductivity, it is necessary to modify the silica airgel surface hydrophobicly. In the normal hydrophobic airgel, the degree of hydrophobicity or the degree of hydrophobicity can be confirmed by the carbon content contained in the hydrophobic airgel. In the present invention, the silica airgel is specifically, based on the total weight of the silica airgel at room temperature (23 ⁇ 5 ° C.). It may have a carbon content of at least weight percent, or 8.5 to 12 weight percent.
  • Such silica airgel may be included in an amount of 20% to 80% by weight based on the total weight of the blanket containing silica airgel. Insulation increases as the content of the silica airgel in the blanket increases, but if it exceeds 80% by weight, the strength and adhesion in the subsequent blanket production may be deteriorated due to the low strength and adhesion of the silica airgel itself. In addition, when the content of the silica airgel in the blanket is too low, specifically less than 20% by weight there is a fear of lowering the thermal insulation.
  • the blanket base material may be a fiber, a film, a sheet, a net, a fiber, a porous body, a foam, a nonwoven fabric, or a laminate of two or more thereof.
  • fine irregularities may be formed or patterned on the surface thereof depending on the intended use.
  • the blanket substrate may be a fiber capable of further improving the thermal insulation performance by including a space or a space in which the hydrophobic airgel is easily inserted into the blanket substrate.
  • the blanket base material is specifically polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (for example, polyethylene, polypropylene or these Copolymer, etc.), cellulose, carbon, cotton, wool, hemp, nonwoven fabric, glass fiber or ceramic wool, and the like, but is not limited thereto.
  • the substrate may include any one or two or more selected from the group consisting of glass fibers, polyethylene, and polyester.
  • the blanket base material may have a low thermal conductivity, specifically 20 mW / mk or less, more specifically 15 mW / mk to 20 mW / mk.
  • the blanket substrate may be a hydrophobic surface treatment, and thus may further include a hydrophobic surface treatment layer on at least one surface of the blanket substrate.
  • Hydrophobic treatment of the substrate for the blanket can be carried out according to a conventional method, specifically, a chain-shaped hydrocarbon group, aromatic hydrocarbon group, halogenated alkyl group, organosilicon group, alkyl group, vinyl group, allyl group, aryl group, phenyl group It can be carried out by surface treating the substrate for the blanket using a compound containing a hydrophobic functional group, such as.
  • the blanket substrate is preferably low density, specifically, when the substrate is a fiber, the fibers constituting the fiber may have an average fiber diameter of 10 ⁇ m to 30 ⁇ m.
  • the low density allows easy introduction of silica aerogels and opacifiers into the blanket substrate, thereby increasing the content of silica aerogels and opacifiers to increase the thermal insulation and at the same time increasing the flexibility of the finished blanket. It can increase.
  • the blanket substrate may be partially or entirely formed of a functional layer such as a heat reflection layer for improving heat insulation performance or a surface protection layer capable of improving life characteristics through surface protection.
  • a functional layer such as a heat reflection layer for improving heat insulation performance or a surface protection layer capable of improving life characteristics through surface protection.
  • the heat reflection layer includes a compound capable of reflecting or blocking infrared radiation, and specifically, carbon black, carbon fiber, titanium dioxide, metal (aluminum, stainless steel, copper / zinc alloy, copper / chromium alloy) Etc.), nonmetals, fibers, pigments, and the like.
  • the surface protective layer may include a high heat-resistant moisture-permeable waterproof material such as polytetrafluoroethylene.
  • the stacking of the functional layer may be performed by directly forming the functional layer on at least one surface of the insulating blanket, or laminating the functional layer after placing the functional layer.
  • the laminating process may be performed according to conventional methods such as heat treatment or hot rolling treatment.
  • inorganic particles are dispersed and etched in a basic aqueous solution, and then water is added to prepare a dispersion containing an opaque agent (step 1 );
  • a dispersion containing an opaque agent step 1
  • a silica precursor to prepare a composition for forming an opacifier-silica aerogel
  • Preparing a opaque-silica gel-based composite by adding a base catalyst and a polar organic solvent to the composition for forming an opaque-agent-silica aerogel, and then adding and gelling the substrate for a blanket
  • step 4 a step (step 4) of drying the opacifying agent-silica gel-based composite after hydrophobization surface modification. Accordingly, according to another embodiment of the present invention, there is provided a method of manufacturing the blanket containing silica airgel.
  • step 1 for preparing a blanket containing a silica airgel is to prepare a dispersion containing an opacifier.
  • the dispersion containing the opacifier may be prepared by dispersing the inorganic particles in a basic aqueous solution and etching them, and then adding water to the resulting inorganic particles. At this time, a chemical etching reaction occurs on the inorganic particles, and the inorganic particles are as described above.
  • the strong bases that can be used in the preparation of the dispersion containing the opaque agent include 12 or more, more specifically, under high acid dissociation constants, specifically 25 ° C. and 0.1M aqueous solution conditions.
  • Basic materials having an acid dissociation constant (pKa) of 13.5 or more may be used.
  • the strong base may include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, and the like, and any one or a mixture of two or more thereof may be used.
  • the basic aqueous solution is prepared by dissolving the strong base in water, and considering the etching efficiency and fairness, the basic aqueous solution may include the strong base in a concentration of 0.1M to 10M. If the concentration of the basic aqueous solution is less than 0.1M, the etching efficiency for the inorganic particles is low, there is a fear that the preparation of the opacifying agent having the above-described physical properties may not be easy, and if it exceeds 10M it is not easy to control the etching reaction In addition, the pH of the dispersion containing the opacifier may be increased, which may affect silica airgel formation.
  • the etching reaction to the inorganic particles can be controlled according to the concentration of the strong base used and the time of the etching process.
  • concentration and time of the base it is possible to appropriately determine the concentration and time of the base so that an opaque agent which realizes the physical properties such as zeta potential and particle size can be prepared.
  • the etching time can be appropriately adjusted.
  • the etching solution is removed and water is added.
  • water serves as a dilution solvent for the base material used in etching and as a dispersion medium for the inorganic particles in the dispersion containing the opacifier, and may further act as an etching efficiency enhancer for the inorganic particles.
  • Alcoholic solvents such as aliphatic glycols, which are conventionally used in the manufacture of blankets containing silica airgel, may also be used, but such aliphatic glycols are simply surface-coated on the surface of the inorganic particles to make the surface of the inorganic particles hydrophilic. It acts as a dispersant to increase the acidity, and since ionization is not easy, it does not provide an effect of improving the etching efficiency for the inorganic particles. On the contrary, since water used in the present invention is easily ionized, the etching efficiency of the strong base with respect to the inorganic particles can be increased, and as a result, the size of the inorganic particles can be easily controlled. In addition, water may increase the activity of the surface of the inorganic particles, thereby increasing the condensation reaction efficiency with the silica precursor.
  • the water may be used in an amount such that the content of the opaque agent in the dispersion is 0.1g / 100ml to 3g / 100ml, more specifically 0.4g / 100ml to 2g / 100ml.
  • a dispersion process may be further performed to uniformly disperse the inorganic particles in the aqueous solution during the preparation of the dispersion containing the opaque agent, and the dispersion process may be performed by a conventional dispersion treatment such as stirring.
  • step 2 for preparing a blanket containing silica airgel by mixing the opaque agent-containing dispersion prepared in step 1 with the silica precursor, the composition containing the opaque agent-silica airgel formation It is a step to prepare.
  • the silica precursor may specifically be silica alkoxide or water glass.
  • the silica precursor may be added in a solution phase dissolved in a solvent.
  • the water glass may be used as a dilution solution prepared by adding and mixing water, specifically distilled water, to the water glass.
  • the water glass is not particularly limited, but may specifically include 28 to 35% by weight of silica (SiO 2 ), the water glass solution diluted by adding water to the water glass is 0.1 weight It may be one containing from 30% by weight of silica.
  • the solvent is capable of dissolving the silica precursor, specifically, may be water or a polar organic solvent, and may include any one or a mixture of two or more thereof.
  • the polar organic solvent may be an alcohol such as ethanol.
  • the opacifier-containing dispersion and the precursor-containing solution may be mixed in an appropriate mixing ratio in consideration of the content of the opacifier and the silica airgel in the blanket to be prepared, and the content of the opacifier and the silica airgel in the blanket is As described.
  • composition for forming an opaque agent-containing silica airgel may be formed.
  • step 3 for preparing a blanket containing silica airgel after the base catalyst and the polar organic solvent is added to the composition containing the opaque-containing silica airgel, the base for the blanket is added And gelation to prepare the opacifier-silica gel-based complex.
  • the base catalyst serves to promote gelation by increasing the pH in the reaction system, that is, the composition for forming an aerosol-silica aerogel, and specifically, may be ammonia or the like.
  • the polar organic solvent has excellent miscibility with the silica precursor, and may be uniformly present in the gel during gelation. As a result, the solvent substitution step can be omitted in the preparation of the opaque agent-silica gel-based composite.
  • the polar organic solvent may be an alcohol solvent
  • the alcohol solvent may be specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol, or the like;
  • polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, sorbitol, and the like, and any one or a mixture of two or more thereof may be used.
  • the alcohol-based compound may be an alcohol having 1 to 8 carbon atoms.
  • the alcohol-based compound when considering the efficiency of the subsequent reforming reaction on the silica surface, may be a linear alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, propanol or n-butanol, 1 of these The species alone or a mixture of two or more thereof may be used. More specifically, the alcohol-based compound may be methanol, ethanol or a mixture thereof.
  • the base catalyst and the polar organic solvent may be added alone, or may be added in the form of a solution in which the base catalyst is dissolved in the polar organic solvent.
  • the polar organic solvent may be used in an amount of 5 parts by weight to 20 parts by weight based on 1 part by weight of silica, more specifically 5 parts by weight to 16 parts by weight, and even more specifically 7 parts by weight to 10 parts by weight. Can be used in amounts.
  • the base catalyst and the base catalyst-containing solution may be added in an amount such that the pH of the composition for forming an opaque-containing silica airgel is 8 to 14, more specifically, pH 8 to 9.
  • the base catalyst and the polar organic solvent as described above are added to the composition containing the opaque agent-silica aerogel-forming composition to prepare a mixed solution, and the quenching agent-silica gel is induced by immersing or casting the substrate for the blanket in the prepared mixed solution.
  • the blanket base material may be the same as described above.
  • step 4 for preparing a blanket containing silica airgel after the hydrophobization surface modification treatment for the opaque agent-silica gel-based composite prepared in step 3, dried to include silica airgel It is a step of manufacturing a blanket.
  • an aging process may be optionally further performed before the hydrophobization surface modification treatment.
  • the aging process is a process for leaving the opacifier-silica gel-based composite at a suitable temperature so that the chemical change is completely made.
  • the network structure inside the silica gel is strengthened. You can.
  • the moisture inside the silica gel may be replaced with a polar organic solvent, and as a result, it is possible to prevent the pore structure deformation and reduction of the silica gel due to evaporation of the moisture inside the silica gel in a subsequent drying process.
  • the aging process may be carried out by maintaining the opacifying agent-silica gel-based composite at a temperature of 25 ° C. to 80 ° C., more specifically 50 to 80 ° C. in water, a polar organic solvent or a mixed solvent thereof.
  • the type of the polar organic solvent is the same as described above.
  • the water, the polar organic solvent or a mixed solvent thereof may be used in an amount corresponding to a volume of 1 to 3 times the volume of the opacifying agent-silica gel-based composite.
  • a base may be further added to promote the reaction.
  • the base may be the same as described above, and may be added in admixture with a polar organic solvent. Specifically, the base may be added in an amount of 20 parts by weight or less, more specifically 1 to 15 parts by weight, based on 100 parts by weight of the solvent added during the aging process.
  • the aging process may be performed until the chemical change in the opacifier-silica gel-based complex is completed, specifically, may be performed for 1 hour to 6 hours, or 1 hour to 2 hours.
  • the hydrophobized surface modification is a silane-based compound (for example, dimethyl dimethoxy silane, dimethyl diethoxy silane, methyl trimethoxy silane, vinyl trimethoxy silane, phenyl trimethoxy silane, tetraethoxy silane , Dimethyl dichloro silane, or 3-aminopropyl triethoxy silane, etc.), siloxane-based compounds (e.g., polydimethyl siloxane, polydiethyl siloxane, or octamethyl cyclotetra siloxane, etc.), silanol ) -Based compounds (e.g., trimethylsilanol, triethylsilanol, triphenylsilanol and t-butyldimethylsilanol, etc.) or silazane-based compounds (e.g.
  • silane-based compound for example, dimethyl dimethoxy silane, dimethyl diethoxy
  • 1,2-diethyl Disilazane (1,2-diethyldisilazane), 1,1,2,2-tetramethyldisilazane (1,1,2,2-tetramethyldisilazane), 1,1,3,3-tetramethyldisilazane 1,1,3,3-tetramethyl disilazane), 1,1,1,2,2,2-hexamethyldisilazane (1,1,1,2,2,2-hexamethyldisilazane, HMDS), 1,1 , 2,2-tetra
  • surface modifiers such as ethyldisilazane (1,1,2,2-tetraethyldisilazane) or 1,2-diisopropyldisilazane, etc. Can be.
  • the surface modifier may be a silazane-based compound including two or more alkyl groups in one molecule, and more specifically, the compound of Formula 1 below:
  • R 11 to R 13 , and R 21 to R 23 may each independently be a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are each hydrogen at the same time. It is not an atom.
  • the silazane-based surface modifier may decompose when used with an alcohol-based compound to produce a 2-molecular alkoxysilane-based compound.
  • the resulting alkoxysilane-based compound may contain up to three alkyl groups in one molecule, thereby further increasing the degree of hydrophobicity during surface modification of the silica aerogel. Accordingly, it is possible to minimize the amount of surface modifier used for hydrophobization of silica airgel.
  • silazane-based compound examples include diethyldisilazane, tetramethyldisilazane, hexamethyldisilazane, tetraethyldisilazane or diisopropyldisilazane, and any one or two of them. Mixtures of the above may be used.
  • the silazane-based surface modifier may further increase the hydrophobicity of the silica airgel.
  • tetraalkyldisilazane including four alkyl groups having 1 to 4 carbon atoms together with two hydrogen atoms may be used.
  • hexaalkyldisilazane including six alkyl groups having 1 to 4 carbon atoms, and more specifically, hexamethyldisilazane (HMDS) or tetramethyldisilazane.
  • HMDS hexamethyldisilazane
  • the surface modifier may be used in an amount of 0.6 parts by weight to 2 parts by weight based on 1 part by weight of silica contained in the sol. If the content of the surface modifier is less than 0.6 parts by weight, the hydrophobicity in the final silica airgel is low, there is a fear that the tap density may be increased, and when the content of the surface modifier exceeds 2 parts by weight, the tap density characteristics and the hydrophobicity may be increased. The effect of improving the degree characteristic may be insignificant. In view of the remarkable improvement of the use of the surface modifier, the surface modifier may be used in an amount of 0.6 parts by weight to 1.8 parts by weight, or 0.6 parts by weight to 1.2 parts by weight based on 1 part by weight of silica.
  • the drying process may be performed by a supercritical drying process or an atmospheric pressure drying process using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called the supercritical point, the evaporation process does not occur, so it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide.
  • Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
  • the supercritical drying process may be performed according to a conventional method except for using the silica gel-based composite prepared in Step 2. Specifically, in the supercritical drying process, a silica gel-based composite is placed in a supercritical drying reactor, and then a solvent replacement process is performed in which a liquid CO 2 is filled and the alcohol solvent inside the silica aerogel is replaced with CO 2 . Thereafter, after raising the temperature to 40 ° C. to 50 ° C. at a constant temperature increase rate, specifically 0.1 ° C./min to 1 ° C./min, the pressure or more at which carbon dioxide becomes a supercritical state, specifically, 100 bar to 150 bar The pressure is maintained in a supercritical state of carbon dioxide for a period of time, specifically 20 minutes to 1 hour.
  • carbon dioxide is supercritical at a temperature of 31 ° C. and a pressure of 73.8 bar.
  • the carbon dioxide may be maintained at a constant temperature and a constant pressure for 2 hours to 12 hours, more specifically, 2 hours to 6 hours at which the carbon dioxide becomes a supercritical state, and then the pressure may be gradually removed to complete the supercritical drying process.
  • the atmospheric pressure drying process it can be carried out according to a conventional method such as natural drying under normal pressure (1 ⁇ 0.3 atm), optionally heat treatment within 1 hour at 120 °C to 180 °C under the above pressure conditions May be
  • the blanket in order to prevent aerogel structure shrinkage due to rapid drying of the residual solvent in the manufactured blanket, the blanket may be wrapped with a metal foil such as aluminum foil and then drilled through a plurality of holes.
  • a blanket comprising a porous silica airgel having nano-sized pores can be prepared.
  • the silica airgel-containing blanket prepared according to the above-described method may exhibit an improved flame retardancy along with low thermal conductivity since the opaque agent of the inorganic particles having excellent IR absorption ability is uniformly dispersed in the blanket. Accordingly, it is useful not only for thermal insulation thermal insulation plant facilities such as piping for various industrial facilities and industrial furnaces, but also as insulation, insulation, or non-combustible materials for aircraft, ships, automobiles, and building structures.
  • the present invention provides a dispersion containing an opaque agent, which is useful for the production of the blanket containing silica airgel.
  • the dispersion containing the opacifier is prepared by dispersing the inorganic particles in a basic aqueous solution containing a strong base and then etching them with water.
  • the opacifier and water having the above-described physical properties as a result of chemical etching are prepared. It may include.
  • the type and content of the opaque agent, and the method for producing a dispersion containing the opaque agent is as described above.
  • a solution of 0.5 ml of an ammonia catalyst diluted with 12 ml of ethanol was added to the composition for forming a silica aerogel including the opaque agent so that the pH of the composition was 8-9, and cast on polyethylene terephthalate (PET) fiber to induce gelation. .
  • PET polyethylene terephthalate
  • the resulting opacifier-silica gel-based composite was aged at 50 ° C. for 70 minutes using 2.0% by weight aqueous ammonia solution.
  • the resulting opacifier-silica gel-based composite was subjected to hydrophobization surface modification for 12 hours using 80 ml of a surface modifier-containing solution prepared by mixing 4 ml of hexamethyldisilazane (HMDS) and 76 ml of ethanol. .
  • HMDS hexamethyldisilazane
  • the resultant wet gel was dried at atmospheric pressure (1 atm) to prepare a blanket containing a silica airgel and an opaque agent of etched TiO 2 .
  • Example 1 the blanket was subjected to the same method as in Example 1, except that PET fiber hydrophobized with hexamethyldisilazane (HMDS) was used instead of polyethylene terephthalate (PET) fiber.
  • PET fiber hydrophobized with hexamethyldisilazane (HMDS) was used instead of polyethylene terephthalate (PET) fiber.
  • a dispersion prepared by dispersing 5 g of TiO 2 having rutile crystallinity as an opaque agent in 240 ml of distilled water was added to form an opaque agent-silica aerogel.
  • the composition was prepared.
  • a solution of 0.5 ml of an ammonia catalyst diluted with 12 ml of ethanol was added so that the pH of the composition was 8-9, and cast on PET fiber to induce gelation. After gelation was completed, the resulting opacifier-silica gel-based composite was aged at 50 ° C.
  • the resulting opacifier-silica gel-based composite was subjected to hydrophobization surface modification for 12 hours using 80 ml of a surface modifier-containing solution prepared by mixing 4 ml of hexamethyldisilazane (HMDS) and 76 ml of ethanol. . After completion of the hydrophobization surface modification reaction, the resultant wet gel was dried at atmospheric pressure (1 atm) to prepare a blanket including silica airgel and an opacifying agent.
  • HMDS hexamethyldisilazane
  • Example 1 The opaque agent prepared in Example 1 and Comparative Example 1 was observed using a transmission electron microscope. The results are shown in FIGS. 1 and 2, respectively.
  • the inorganic particles in the average of four primary particles are bound in the unit volume, while in the case of the opaque agent of Comparative Example 1 which does not perform an etching process, It can be confirmed that the inorganic particles of 20 to 30 and an average of 25 primary particles are bonded and highly structured.
  • the opaque agent prepared in Example 1 had an average particle diameter (D 50 ) of 320 nm, and the average particle diameter (D 50 ) of the primary particulate inorganic particles constituting the same was 100 nm, and the surface of the primary particulate inorganic particles It was confirmed that fine irregularities were formed in the.
  • the blankets prepared in Examples 1 and 2 were milled under a condition of 6000 rpm using a milling equipment, and then observed using a transmission electron microscope. The results are shown in FIGS. 3 and 4.
  • a) is a TEM photograph of a composite of an airgel and an opaque agent in a blanket
  • b) is silicon (Si)
  • c) is titanium (Ti) in the composite
  • a) is a TEM photograph of the airgel and the opaque agent in the blanket
  • b) is a photograph of the distribution of silicon (Si) in the blanket.
  • Example 1 As a result, in the case of Example 1, a large amount of condensation-reactive functional groups, particularly hydroxy groups, are formed on the surface of the opaque agent by the etching process, and the opacity agent is well incorporated into the aerogel due to the enhancement of the bonding force with the silica precursor by the increased condensation-reactive functional group. You can see that.
  • the airgel contained in the blanket was connected to each other to form a three-dimensional network structure.
  • the change of the average particle diameter and the average zeta potential was observed according to the amount of the base material used during the etching of the opacifying agent.
  • the absolute value of zeta potential of the opaque agent increases and the particle size decreases as the concentration of KOH increases.
  • the zeta potential and particle size of the opacifier can be controlled by controlling the concentration of the base material and the etching time in the etchant. can do.
  • the opaque agent etched regardless of the number of etching showed a narrow particle distribution, it was confirmed that it has a uniform particle size.
  • Example 1 Comparative Example 1 Zeta potential (mV) -31.3 -5.2
  • the absolute value of the zeta potential of the opacifying agent of Example 1 subjected to the etching process was significantly increased compared to that of the comparative example 1 which did not perform the etching process. From this, it can be seen that the content of functional groups on the surface of the opaque agent of Example 1 is increased by etching, and as a result, it can be expected that the dispersibility can be better.
  • Example 1 After the dispersion prepared in Example 1 and Comparative Example 1, comprising the etched TiO 2 a) immediately after the preparation, b) left to stand for 1 hour after preparation, and c) left to stand for 3 hours after preparation, the dispersion The transparency change of was observed, respectively. The results are shown in FIG.
  • the dispersion containing the opaque agent prepared in Example 1 exhibited higher transparency compared to the dispersion of Comparative Example 1 immediately after preparation due to the uniform dispersion of the etched opaque agent.
  • the dispersion containing the opaque agent prepared in Example 1 showed little change in transparency compared to Comparative Example 1 after 3 hours due to the excellent dispersion stability.
  • the opacity of the dispersion was greatly reduced after 3 hours after the preparation of the dispersion due to precipitation of the opacifier.
  • Average weight loss (ave.weight loss): After the hand-washing three times the same strength for the blanket of Example 1 and Comparative Example 1 prepared, the change in the weight of the blanket before the experiment was measured.
  • Thermal conductivity (T / C) The thermal conductivity of the blanket of Example 1 and Comparative Example 1 was measured on the conditions of normal temperature (25 degreeC) using the thermal conductivity measuring instrument (HFM436, NETZSCH company make).
  • True density The weight ratio with respect to the unit volume of the blanket of Example 1 and the comparative example 1 which were manufactured was measured.
  • the blanket according to Example 1 exhibited a higher true density than that of Comparative Example 1. From this, it can be seen that due to the etching effect of TiO 2 , the blanket was more efficiently included in the blanket even when the same amount was used.
  • Example 1 showed a thermal conductivity lower than 10% compared to that of Comparative Example 1.
  • Example 1 exhibited a lower average weight loss compared to Comparative Example 1. Due therefrom by etching effect of TiO 2 in the manufacture of blankets TiO 2 is more excellent adhesion can be seen that attached to the blanket substrate.
  • the specific surface area of the silica airgel in the blanket prepared in Example 1 and Comparative Example 1, the total pore volume and the average pore diameter (avg. Pore diameter) in the silica airgel was 3Flex (manufactured by Micromeritics). Each was measured using. The results are shown in Table 3 below.
  • Reference Example in Table 3 is a value for the silica airgel in the blanket prepared by carrying out the same method except in the manufacture of the blanket according to Comparative Example 1 using no opaque agent in the same manner.
  • the blanket containing the silica airgel prepared in Example 1 and Comparative Example 1 and the blanket was heat-treated at 300 ° C. and 400 ° C. for 10 hours, and then the carbon (C) amount was changed using a carbon analyzer. The carbon content was measured. Each experiment was repeated twice. The results are shown in Table 4 below.
  • Example 1 due to the increase in the surface area of the etched TiO 2 , the blanket of Example 1 had a smaller hydrophobic decrease compared to Comparative Example 1 even after the high temperature treatment.

Abstract

The present invention provides a blanket comprising a silica aerogel and a manufacturing method therefor, the blanket comprising: a base material for the blanket; and a silica aerogel and an opacifier, which are located on at least one of the surface and the inside of the base material for the blanket, wherein the opacifier has a secondary particle phase, formed by aggregation of inorganic particles of a primary particle phase, and comprises 1-5 inorganic particles per 1 μm3 unit volume. According to the present invention, the blanket comprising the silica aerogel comprises an opacifier having excellent dispersibility and high surface activity due to chemical etching, and thus the blanket can exhibit excellent thermal insulation, particularly, flame retardancy with excellent thermal insulation at high temperature.

Description

실리카 에어로겔 포함 블랑켓 및 이의 제조방법Blanket with silica airgel and preparation method thereof
관련출원과의 상호인용Citation with Related Applications
본 출원은 2015년 9월 10일자 한국특허출원 제2015-0128547호 및 2016년 3월 28일자 한국특허출원 제2016-0036566호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2015-0128547, filed on September 10, 2015 and Korean Patent Application No. 2016-0036566, filed on March 28, 2016. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 우수한 단열성과 함께 난연성을 갖는 실리카 에어로겔 포함 블랑켓 및 이의 제조방법에 관한 것이다.The present invention relates to a blanket containing silica airgel having excellent thermal insulation and flame retardancy and a method for producing the same.
최근 들어 산업기술이 첨단화되면서 단열특성이 뛰어난 에어로겔(aerogel)에 대한 관심이 증대되고 있다. 지금까지 개발된 에어로겔로는 레졸시놀-포름알데하이드 또는 멜라민-포름알데하이드 에어로겔 입자 등의 유기 에어로겔과, 실리카(Silica, SiO2), 알루미나(Alumina, Al2O3), 티타니아(Titania, TiO2) 또는 탄소(Carbon, C) 에어로겔 등의 금속 산화물을 포함하는 무기 에어로겔이 있다.Recently, as industrial technologies are advanced, interest in aerogels having excellent insulating properties is increasing. The aerogels developed so far include organic aerogels such as resorcinol-formaldehyde or melamine-formaldehyde aerogel particles, silica (Silica, SiO 2 ), alumina (Alumina, Al 2 O 3 ), titania (Titania, TiO 2). Or inorganic aerogels containing metal oxides such as carbon (C) aerogels.
이중에서도 실리카 에어로겔은 고다공성 물질로서, 높은 기공률(porosity)과 비표면적, 그리고 낮은 열전도도(thermal conductivity)를 가져 단열재, 촉매, 흡음재 또는 반도체 회로의 층간 절연물질 등 다양한 분야에서의 응용이 기대되고 있다. 비록 복잡한 제조공정과 낮은 기계적 강도 등으로 인해 상업화 속도는 매우 느리지만, 꾸준한 연구결과로 단열재를 비롯하여 시장 확대 속도가 점점 빨라지고 있다. Among these, silica airgel is a highly porous material, and has high porosity, specific surface area, and low thermal conductivity, and is expected to be applied in various fields such as insulation, catalyst, sound absorbing material, or interlayer insulating material of semiconductor circuits. have. Although the speed of commercialization is very slow due to complex manufacturing processes and low mechanical strength, the result of continuous research is increasing the speed of market expansion including insulation.
실리카 에어로겔은 다공성 구조로 인해 낮은 기계적 강도를 갖기 때문에, 통상 유리섬유, 세라믹 섬유, 또는 고분자 섬유 등의 기재와 함께 복합화하여 에어로겔 블랑켓 또는 에어로겔 시트 등과 같은 형태로 제품화되고 있다.Since silica airgel has a low mechanical strength due to its porous structure, the silica airgel is usually combined with a substrate such as glass fiber, ceramic fiber, or polymer fiber to produce a product such as an airgel blanket or airgel sheet.
그러나, 블랑켓용 기재 섬유에 에어로겔 분말이 약하게 붙어 있기 때문에, 작업시 탈리되기 쉽고, 또 가루 날림이 심하여 작업 환경의 오염도가 심하다. 또 에어로겔 자체의 밀도 및 기계적 강도가 매우 낮아 시트나 보드 등의 형태로 제품화하는데 어려움이 있다. However, since the airgel powder is weakly adhered to the base material for the blanket, it is easy to be detached during the work, and the powder is blown off so much that the working environment is highly polluted. In addition, the density and mechanical strength of the airgel itself is very low, it is difficult to commercialize in the form of sheets or boards.
한편, 실리카 에어로겔 포함 블랑켓의 제조시 단열재, 특히 고온용 단열재로서의 효과를 극대화하기 위해 고온에서 적외선(IR) 영역의 파장에 대한 흡수능을 갖는 불투명화제가 사용되고 있다. On the other hand, in order to maximize the effect as a heat insulating material, in particular, a high temperature heat insulating material in the manufacture of a blanket containing silica airgel has been used an opacifying agent having an absorption ability to the wavelength of the infrared (IR) region at a high temperature.
그러나, 종래 불투명화제의 경우 입자 크기가 크기 때문에 분산성이 낮고 빠르게 침전되는 문제가 있다. 이를 해결하기 위해 다양한 종류의 분산제를 이용하여 합성 반응계에서의 불투명화제의 분산성을 높이는 방법이 제안되었으나, 분산제는 대부분 유기물로 이루어져 있기 때문에 최종 생산된 실리카 에어로겔 포함 블랑켓의 난연 성능을 저하시키고, 또 분진을 발생시키는 문제가 있다. However, in the case of the conventional opacifier, since the particle size is large, there is a problem in that dispersibility is low and precipitates quickly. In order to solve this problem, a method of increasing the dispersibility of the opacity agent in a synthetic reaction system using various kinds of dispersants has been proposed, but since the dispersant is mostly composed of organic substances, the flame retardant performance of the blanket produced silica aerogel-containing blanket is reduced, There is also a problem of generating dust.
또, 종래의 불투명화제는 입자 자체의 표면 활성이 낮아 실리카 전구체와의 화학적 결합이 용이하지 않기 때문에, 제조되는 블랑켓 중의 불투명화제의 함량이 현저히 낮으므로, 불투명화제 사용에 따른 단열 성능 개선효과가 크지 않았다. In addition, since the conventional opaque agent has a low surface activity of particles and thus is not easy to chemically bond with the silica precursor, the content of the opaque agent in the blanket to be produced is significantly low, so that the effect of improving the thermal insulation performance by using the opaque agent is improved. It was not big.
본 발명의 목적은 우수한 단열성과 함께 난연성을 갖는 실리카 에어로겔 포함 블랑켓 및 그 제조방법을 제공하는 것이다.It is an object of the present invention to provide a blanket containing silica airgel having excellent heat insulation and flame retardancy, and a method of manufacturing the same.
본 발명의 다른 목적은 상기 실리카 에어로겔 포함 블랑켓을 이용하여 제조한 단열재를 제공하는 것이다.Another object of the present invention to provide a heat insulating material prepared using the blanket containing the silica airgel.
본 발명의 또 다른 목적은 상기 실리카 에어로겔 포함 블랑켓의 제조에 유용한, 불투명화제 포함 분산액을 제공하는 것이다.Another object of the present invention is to provide a dispersion comprising an opaque agent, which is useful for preparing the blanket containing silica airgel.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 블랑켓용 기재; 및 상기 블랑켓용 기재의 표면 및 내부 중 적어도 하나에 위치하는, 실리카 에어로겔 및 불투명화제를 포함하며, 상기 불투명화제는 1차 입자 상의 무기 입자가 응집된 2차 입자상이며, 1㎛3 단위 체적당 1개 내지 5개의 무기 입자를 포함하는 것인 실리카 에어로겔 포함 블랑켓을 제공한다.In order to solve the above problems, according to an embodiment of the present invention a substrate for a blanket; And a silica aerogel and an opacifying agent, which are located on at least one of the surface and the inside of the blanket substrate, wherein the opacifying agent is a secondary particle in which inorganic particles on the primary particles are aggregated, and 1 per 3 μm of volume. Provided is a blanket comprising silica aerogels comprising from five to five inorganic particles.
또, 본 발명의 다른 일 실시예에 따르면, 무기 입자를 염기성 수용액 중에 분산시켜 식각한 후, 물을 첨가하여 불투명화제 포함 분산액을 준비하는 단계; 상기 불투명화제 포함 분산액을 실리카 전구체 포함 용액과 혼합하여, 불투명화제 포함-실리카 에어로겔 형성용 조성물을 준비하는 단계; 상기 불투명화제 포함-실리카 에어로겔 형성용 조성물에, 염기 촉매 및 친수성의 극성 유기용매를 첨가한 후, 블랑켓용 기재를 첨가하고 겔화시켜, 불투명화제-실리카겔-기재 복합체를 준비하는 단계; 및 상기 불투명화제-실리카겔-기재 복합체를 소수화 표면개질 처리한 후 건조하는 단계를 포함하는 실리카 에어로겔 포함 블랑켓의 제조방법을 제공한다.In addition, according to another embodiment of the present invention, after dispersing the inorganic particles in a basic aqueous solution and etching, adding a water to prepare a dispersion containing an opacifier; Mixing the opacifier-containing dispersion with a silica precursor-containing solution to prepare a composition for opacifier-containing silica airgel formation; Preparing an opacifying agent-silica gel-based composite by adding a base catalyst and a hydrophilic polar organic solvent to the composition for forming the airgel-containing silica airgel, followed by adding and gelling the substrate for the blanket; And it provides a method for producing a blanket comprising a silica airgel comprising the step of drying the opaque agent-silica gel-based complex after hydrophobization surface modification.
본 발명의 또 다른 일 실시예에 따르면 상기 실리카 에어로겔 포함 블랑켓을 이용하여 제조한 단열재를 제공한다.According to another embodiment of the present invention provides a heat insulating material prepared using the blanket containing the silica airgel.
아울러 본 발명의 또 다른 일 실시예에 따르면, 불투명화제 및 물을 포함하고, 상기 불투명화제는 물 중에서의 평균 제타전위가 -10mV 내지 -60mV인 것인 불투명화제 포함 분산액을 제공한다.In addition, according to another embodiment of the present invention, an opacifying agent and water, wherein the opacifying agent provides a dispersion containing an opaque agent that the average zeta potential in water is -10mV to -60mV.
본 발명에 따른 실리카 에어로겔 포함 블랑켓은, 화학적 식각을 통해 우수한 분산성과 분산안정성, 그리고 높은 표면 활성을 갖는 불투명화제를 포함함으로써, 우수한 단열성능, 특히 고온에서의 우수한 단열성능과 함께 난연성을 나타낼 수 있다.Blanket containing silica airgel according to the present invention, by including an opaque agent having excellent dispersibility, dispersion stability, and high surface activity through chemical etching, it can exhibit flame retardancy with excellent thermal insulation, in particular excellent thermal insulation at high temperatures have.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 실시예 1에서 제조한 블투명화제를 관찰한 투과전자 현미경(TEM, transmission electron microscope) 사진이다.1 is a transmission electron microscope (TEM) photograph of the transparent agent prepared in Example 1;
도 2는 비교예 1에서 제조한 불투명화제를 관찰한 TEM 사진이다.Figure 2 is a TEM photograph of the opaque agent prepared in Comparative Example 1.
도 3은 실시예 1에서 제조한 실리카 에어로겔 포함 블랑켓을 관찰한 TEM 사진이다. 3 is a TEM photograph of a blanket containing silica airgel prepared in Example 1. FIG.
도 4는 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓을 관찰한 TEM 사진이다.FIG. 4 is a TEM photograph of a blanket containing silica airgel prepared in Comparative Example 1. FIG.
도 5는 불투명화제의 제조시 KOH의 함량에 따른 불투명화제의 평균 입자직경 및 평균 제타전위의 변화를 관찰한 그래프이다.5 is a graph illustrating the change of the average particle diameter and the average zeta potential of the opaque agent according to the content of KOH during the preparation of the opaque agent.
도 6은 실험예 2에서 식각에 따른 불투명화제의 입도 분포를 관찰한 그래프이다. 6 is a graph illustrating a particle size distribution of an opaque agent according to etching in Experimental Example 2. FIG.
도 7은 실시예 1 및 비교예 1에서 제조한 불투명화제 포함-실리카 에어로겔 형성용 조성물의 시간에 따른 분산성 변화를 관찰한 사진이다(도 7에서 a)는 제조직후, b)는 1시간 정치 후, c)는 3시간 정치 후 이다).Figure 7 is a photograph observing the change in dispersibility with time of the composition for forming an opaque-containing silica airgel prepared in Example 1 and Comparative Example 1 (in Figure 7 a) is just after manufacture, b) is left for 1 hour C) is after 3 hours stationary).
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에서는 불투명화제를 이용한 실리카 에어로겔 포함 블랑켓의 제조시, 화학적 식각을 통해 불투명화제의 입자 크기를 감소시키는 동시에 표면 활성을 증가시킴으로써, 분산제를 사용하지 않고도 반응계에서의 불투명화제의 분산성 및 분산안정성을 높이고, 동시에 표면 활성을 크게 증가시켜 블랑켓 제조시 블랑켓의 단열성, 특히 고온에서의 단열성 및 난연성을 향상시킬 수 있다.In the present invention, when preparing a blanket containing silica airgel using an opaque agent, by reducing the particle size of the opaque agent through the chemical etching while increasing the surface activity, dispersibility and dispersion of the opaque agent in the reaction system without using a dispersant Increasing the stability and at the same time increasing the surface activity significantly can improve the thermal insulation of the blanket during the production of the blanket, in particular at high temperatures and flame retardancy.
즉, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓은, 블랑켓용 기재; 및 상기 블랑켓용 기재의 표면 및 내부 중 적어도 하나에 위치하는, 실리카 에어로겔 및 불투명화제를 포함하며, 이때 상기 불투명화제는 1차 입자 상의 무기 입자가 응집된 2차 입자상이며, 1㎛3 단위 체적당 1개 내지 5개의 무기 입자를 포함하는 것이다.That is, a blanket containing silica airgel according to an embodiment of the present invention, the blanket base material; And a silica airgel and an opaque agent disposed on at least one of the surface and the inside of the blanket substrate, wherein the opaque agent is a secondary particle in which inorganic particles on the primary particle are aggregated, and per 1 μm 3 unit volume. It contains 1 to 5 inorganic particles.
본 발명에 있어서, "1차 입자" 또는 "1차 입자상"이란 단일 입자로 이루어진 것을 의미하고, 또 "2차 입자" 또는 "2차 입자상"이란 둘 이상의 1차 입자가 물리적 및/또는 화학적 결합을 통해 응집(aggregate)되어 상대적으로 큰 입자 형태를 이루는 구조체를 의미한다. In the present invention, "primary particle" or "primary particle" means a single particle, and "secondary particle" or "secondary particle" means that two or more primary particles are physically and / or chemically bonded. It refers to a structure that is aggregated through to form a relatively large particle form.
또, 본 발명에 있어서, 단위 체적당 무기 입자의 수는 평균값이다.In the present invention, the number of inorganic particles per unit volume is an average value.
구체적으로, 상기 실리카 에어로겔 포함 블랑켓에 있어서, 상기 불투명화제는 무기 입자를 강염기를 이용하여 화학적으로 식각하여 제조된다. 이때 식각을 위한 염기의 농도와 식각 공정 시간의 제어를 통해 입자의 크기와 표면에서의 제타전위를 제어할 수 있는데, 본 발명에서는 실리카 에어로겔 포함 블랑켓의 제조시 우수한 분산성 및 분산안정성을 나타낼 수 있도록 식각 공정을 제어함으로써, 본 발명에 사용되는 불투명화제는 종래 사용되는 불투명화제에 비해 입자의 크기가 작고, 균일하다. 또 높은 표면 활성을 가져 실리카 에어로겔 및 블랑켓용 기재에 대해 우수한 결합력을 나타낼 수 있다.Specifically, in the blanket containing silica airgel, the opacifying agent is prepared by chemically etching the inorganic particles using a strong base. At this time, the zeta potential at the particle size and the surface can be controlled by controlling the concentration of the base for etching and the etching process time. In the present invention, excellent dispersion and dispersion stability can be exhibited in the manufacture of a blanket containing silica airgel. By controlling the etching process so that the opacifying agent used in the present invention is smaller in size and uniform in size than the conventionally used opacifying agent. In addition, it has a high surface activity and can exhibit excellent bonding to substrates for silica aerogels and blankets.
상세하게는, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓의 제조는 용매로서 물을 사용하는 등 친수성의 조건에서 수행된다. 이 같은 친수성 조건에서 무기 입자의 크기가 지나치게 크게 되면, 무기 입자 자체의 밀도에 의해 침전이 발생하기 쉽다. 또, 무기 입자 표면의 제타 전위는 양수 또는 음수에 관계 없이 그 값이 크게 되면 입자 표면의 작용기들이 다수 분포함을 의미하며, 그 결과로서 보다 우수한 분산성을 나타낼 수 있다. 이와 같이 무기 입자의 크기 및 표면 제타 전위의 제어로 무기 입자가 균일 분산될 경우, 실리카 전구체와의 축합 반응 등의 반응이 균일하고 보다 효율적으로 이루어질 수 있다.Specifically, the preparation of the blanket containing silica airgel according to an embodiment of the present invention is carried out under hydrophilic conditions such as using water as a solvent. If the size of the inorganic particles becomes too large under such hydrophilic conditions, precipitation tends to occur due to the density of the inorganic particles themselves. In addition, the zeta potential on the surface of the inorganic particle, regardless of whether it is positive or negative, means that a large number of functional groups on the surface of the particle are distributed, and as a result, it may exhibit better dispersibility. As such, when the inorganic particles are uniformly dispersed by controlling the size of the inorganic particles and the surface zeta potential, a reaction such as a condensation reaction with the silica precursor may be uniform and more efficient.
보다 구체적으로, 상기 불투명화제는 분산매인 물 중에서의 평균 제타전위가 -10mV 내지 -60mV일 수 있다. More specifically, the opacifying agent may have an average zeta potential of -10 mV to -60 mV in water as a dispersion medium.
본 발명에 있어서 "제타 전위"란 액체 속에 부유하는 콜로이드 입자들의 표면 대전량 정도를 나타내는 지표로서, 외부에서 콜로이드에 전기장을 가하는 경우 콜로이드 입자가 그 표면전위의 부호와 반대방향으로 이동하게 되는데, 이때 가해준 전기장의 세기와 유체역학적인 효과(용매의 점도, 유전율 등)를 고려하여 입자 이동 속도를 계산한 값이다. 즉, 제타전위의 절대값이 커질수록 입자간의 척력이 강해져 분산도와 분산 안정성이 높아지고, 반대로 제타전위가 0에 가까워지면 입자가 응집하기 쉬워진다.In the present invention, "zeta potential" is an index indicating the amount of surface charge of colloidal particles suspended in a liquid. When an electric field is applied to the colloid from the outside, the colloidal particles move in a direction opposite to the sign of the surface potential. The particle velocity is calculated by considering the applied electric field strength and hydrodynamic effects (solvent viscosity, dielectric constant, etc.). That is, the greater the absolute value of the zeta potential, the stronger the repulsive force between the particles, the higher the dispersion and dispersion stability. On the contrary, when the zeta potential approaches zero, the particles tend to aggregate.
본 발명에서의 실리카 에어로겔 포함 블랑켓내 포함되는 불투명화제는 식각 공정에 의해 표면에 다양한 표면작용기, 구체적으로는 축합반응성 작용기를 포함하게 되고, 그 결과로서 상기한 범위의 평균 제타 전위를 나타낸다. 불투명화제의 평균 제타 전위는 식각 공정시의 강염기의 농도와 식각 시간의 조절을 통해 제어될 수 있으며, 본 발명에서는 상기한 범위의 평균 제타 전위를 갖도록 함으로써 블랑켓 제조용 반응계에서 우수한 분산성 및 분산안정성을 나타낼 수 있다. 그 결과 블랑켓 제조시 블랑켓의 표면 및 내부에 보다 높은 함량으로 균일 분산됨으로써 블랑켓 전체에 걸쳐 우수한 IR 흡수능을 나타낼 수 있으며, 또한 현저히 개선된 단열성을 나타낼 수 있다. 상기 불투명화제의 제타 전위 제어에 따른 개선 효과의 현저함을 고려할 때 상기 불투명화제의 물 중에서의 평균 제타 전위는 보다 구체적으로 -30mV 내지 -60mV일 수 있으며, 보다 더 구체적으로는 -50mV 내지 -60mV일 수 있다.The opacifying agent included in the silica airgel-containing blanket in the present invention includes various surface functional groups, specifically condensation-reactive functional groups, on the surface by an etching process, and as a result shows an average zeta potential in the above range. The average zeta potential of the opaque agent can be controlled by controlling the concentration of the strong base during the etching process and the etching time, and in the present invention, by having the average zeta potential in the above range, excellent dispersibility and dispersion stability in the reaction system for blanket production Can be represented. As a result, when the blanket is manufactured, it can be uniformly dispersed in a higher content on the surface and inside of the blanket, thereby exhibiting excellent IR absorption ability throughout the blanket, and can also exhibit a markedly improved thermal insulation. Considering the remarkable effect of the improvement effect according to the zeta potential control of the opacifier, the average zeta potential in water may be more specifically -30 mV to -60 mV, and even more specifically -50 mV to -60 mV Can be.
또, 상기 불투명화제는 앞서 설명한 바와 같이 그 제조 공정에서의 강염기 처리에 의해 입자 표면에 반응성 작용기가 형성됨으로써 높은 반응 활성을 나타낼 수 있다. 구체적으로, 상기 불투명화제를 구성하는 무기 입자는 입자 표면에 실리카 전구체와 용이하게 축합반응할 수 있는 축합반응성 작용기를 포함한다. 상기 축합반응성 작용기는 구체적으로 히드록시기(-OH), 알콕시기(-ROH), 카르복시기(-COOH) 또는 에스테르기(-COOR) 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상을 포함할 수 있다. 이때 상기 알콕시기 및 에스테르기에서의 R은 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 아릴알킬기, 또는 탄소수 7 내지 20의 알킬아릴기 등의 탄화수소기일 수 있다. In addition, the opacifying agent may exhibit high reaction activity by forming a reactive functional group on the surface of the particle by the strong base treatment in the manufacturing process as described above. Specifically, the inorganic particles constituting the opacifying agent include a condensation-reactive functional group capable of easily condensation reaction with the silica precursor on the particle surface. Specifically, the condensation-reactive functional group may be a hydroxy group (-OH), an alkoxy group (-ROH), a carboxy group (-COOH) or an ester group (-COOR), and the like, and may include any one or two or more thereof. Wherein R in the alkoxy group and ester group is each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or 7 to 20 carbon atoms. And hydrocarbon groups such as alkylaryl groups.
상기 무기 입자 표면에 형성된 축합반응성 작용기에 의해 실리카 전구체와 용이하게 축합반응하여 화학결합함으로써, 최종 제조되는 실리카 에어로겔 포함 블랑켓내에서 실리카 에어로겔 및 블랑켓용 기재에 대해 우수한 결합력을 나타낼 수 있으며, 그 결과 블랑켓내 불투명화제의 함량이 증가되고, 블랑켓의 진밀도가 증가되며, 블랑켓의 단열성이 보다 향상될 수 있다. By condensation reaction with the silica precursor by the condensation-reactive functional groups formed on the surface of the inorganic particles easily and chemically bonded, it is possible to exhibit an excellent binding force to the silica airgel and the substrate for the blanket in the blanket prepared silica aerogel, resulting in Blanc The content of the opacifying agent in the jacket is increased, the true density of the blanket is increased, and the thermal insulation of the blanket can be further improved.
또, 상기 불투명화제는 상기한 화학적 에칭 공정에 의해 종래에 비해 보다 단순한 구조 및 더 작은 입자 직경을 가질 수 있다. In addition, the opacifying agent may have a simpler structure and smaller particle diameter than the conventional one by the chemical etching process described above.
통상 불투명화제는 단위결합체로서 1차 입자 상의 복수개의 무기 입자가 응집되어 구조화된 2차 입자상을 갖는다. 불투명화제의 구조는 단위 체적 내에 포함되는 단위결합체의 입자 수 또는 단위 체적당 중량으로 정의될 수 있으며, 입자 직경과 함께 불투명화제의 특성에 밀접한 영향을 미친다. 불투명화제의 구조가 발달하게 되면, 표면적이 감소하고, 구조가 적게 발달하면 단위결합체의 밀도가 높고, 단위결합체간 거리도 짧아지기 때문에 강한 분산 에너지를 필요로 하게 된다. Usually, the opacifying agent has a secondary particulate form in which a plurality of inorganic particles on the primary particles are aggregated as a unit binder. The structure of the opacifying agent may be defined as the number of particles of the unit binder contained in the unit volume or the weight per unit volume, and closely affects the properties of the opacifying agent together with the particle diameter. As the structure of the opaque agent is developed, the surface area is reduced, and when the structure is less, the density of the unit binder is high and the distance between the unit binders is shortened, which requires a strong dispersion energy.
본 발명에서 사용되는 불투명화제는 식각 공정을 통해 이 같은 구조화가 끊어짐으로써 종래의 불투명화제에 비해 단위체적 당 단위결합체의 입자 수가 감소하며, 단순 구조화가 되게 된다. 구체적으로 본 발명에서 사용되는 불투명화제는 1㎛3 단위 체적당 1개 내지 5개, 보다 구체적으로는 2개 내지 5개, 보다 더 구체적으로는 3개 내지 5개의 무기 입자를 포함한다. As the opaque agent used in the present invention is broken through such an etching process, the number of particles of the unit conjugate per unit volume is reduced and simple structuring compared to the conventional opaque agent. Specifically, the opacifying agent used in the present invention includes 1 to 5, more specifically 2 to 5, even more specifically 3 to 5 inorganic particles per 1 μm 3 unit volume.
또, 상기한 구조화 조건을 충족하는 조건 하에서 상기 불투명화제의 평균 입자직경(D50)은 300nm 내지 1600nm일 수 있다. In addition, the average particle diameter (D 50 ) of the opaque agent may be 300nm to 1600nm under the conditions satisfying the above-described structuring conditions.
상기 불투명화제의 평균 입자직경이 300nm 미만이면 입자간 응집으로 인한 분산성 저하의 우려가 있고, 1600nm를 초과하면 자체의 분산성 저하의 우려가 있다. 불투명화제의 평균 입자직경 제어에 따른 분산성 및 분산안정성 개선 효과를 고려할 때, 상기 불투명화제의 평균 입자직경(D50)은 300nm 내지 600nm일 수 있다.If the average particle size of the opacifying agent is less than 300 nm, there is a fear of a decrease in dispersibility due to intergranular aggregation, and if it exceeds 1600 nm, there is a fear of a decrease in its dispersibility. Considering the effect of improving the dispersibility and dispersion stability according to the control of the average particle diameter of the opaque agent, the average particle diameter (D 50 ) of the opaque agent may be 300nm to 600nm.
본 발명에 있어서, 상기 불투명화제의 평균 입자직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서 불투명화제의 평균 입자직경(D50)은 예를 들어, 주사전자 현미경(scanning electron microscopy, SEM) 또는 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM) 등을 이용한 전자 현미경 관찰이나, 또는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 레이저 회절법에 의해 측정시, 보다 구체적으로는, 불투명화제를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입자 직경 분포의 50% 기준에서의 평균 입자직경(D50)을 산출할 수 있다. In the present invention, the average particle diameter (D 50 ) of the opacifying agent may be defined as the particle size at 50% of the particle size distribution. In the present invention, the mean particle diameter (D 50 ) of the opaque agent is, for example, an electron microscope using a scanning electron microscopy (SEM) or a field emission scanning electron microscopy (FE-SEM) or the like. It can be measured by observation or by using a laser diffraction method. In the measurement by the laser diffraction method, more specifically, after dispersing the opaque agent in the dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000) to give an ultrasonic wave of about 28 kHz to an output of 60 W. After the irradiation, the average particle diameter D 50 at the 50% reference of the particle diameter distribution in the measuring device can be calculated.
또, 상기 불투명화제를 구성하는 1차 입자 상의 무기 입자는 상기한 단위체적당 1차 입자의 개수 및 불투명화제의 평균 입자 크기 범위를 충족하는 조건하에서 50nm 내지 1000nm의 평균 입자직경(D50)을 가질 수 있다. 1차 입자의 평균 입자직경이 50nm 미만이면 입자간 응집에 의한 분산성 저하의 우려가 있고, 1차 입자의 평균 입자직경이 1000nm를 초과하면 입자 표면의 활성이 낮아 실리카 네트워크와의 반응성 저하의 우려가 있다. 보다 구체적으로 상기 1차 입자상의 무기 입자는 100nm 내지 300nm의 평균 입자직경을 가질 수 있다.In addition, the inorganic particles on the primary particles constituting the opaque agent have an average particle diameter (D 50 ) of 50nm to 1000nm under the conditions satisfying the number of primary particles per unit volume and the average particle size range of the opaque agent. Can be. If the average particle diameter of the primary particles is less than 50 nm, there is a fear of a decrease in dispersibility due to intergranular aggregation. If the average particle diameter of the primary particles exceeds 1000 nm, there is a concern that the activity of the particle surface is low and the reactivity with the silica network is low. There is. More specifically, the primary particulate inorganic particles may have an average particle diameter of 100nm to 300nm.
한편, 본 발명에 있어서, 1차 입자상의 무기 입자의 평균 입자직경(D50)은 앞서 정의한 바와 같이 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 무기 입자에 대한 TEM 등의 전자 현미경 관찰 후, 그 결과로부터 평균 입자직경을 계산할 수 있다. On the other hand, in the present invention, the average particle diameter (D 50 ) of the inorganic particles of the primary particle can be defined as the particle size at 50% of the particle size distribution, as defined above, the electron microscope such as TEM for the inorganic particles After the observation, the average particle diameter can be calculated from the results.
또, 상기 1차 입자 상의 무기 입자는 상기한 식각 공정에 의해 2차 입자상을 형성하는 구조의 단순화와 더불어 1차 입자 표면 상에 형성된 요철을 포함할 수 있다. 상기 1차 입자 표면상의 요철은 통상의 입자 표면 관찰 방법에 따라 확인할 수 있으며, 구체적으로는 주사전자 현미경 등을 통해 관찰할 수 있다. In addition, the inorganic particles on the primary particles may include irregularities formed on the surface of the primary particles in addition to the simplification of the structure of forming the secondary particles by the etching process described above. Unevenness on the surface of the primary particles can be confirmed according to a conventional particle surface observation method, specifically, can be observed through a scanning electron microscope or the like.
또, 상기 불투명화제는 무기 입자를 포함하기 때문에, 실리카 에어로겔 함유 단열재의 난연성을 향상시킬 수 있다.Moreover, since the said opacifier contains inorganic particle, the flame retardance of a silica airgel containing heat insulating material can be improved.
상기 무기 입자는 구체적으로, 실리카(SiO2), 알루미나(Al2O3), 티타니아(TiO2), 지르코니아(ZrO2), 산화주석(SnO2), 산화아연(ZnO), 산화철 같은 금속 산화물; 탄화베릴륨(Be2C), 탄화티탄(TiC) 또는 탄화규소(SiC) 등과 같은 금속 탄화물; 바나듐질화물(VN), 티타늄질화물(TiN), 몰리브데늄질화물(Mo2N), 텅스텐질화물(TuN), 니오븀질화물(NbN), 질화티탄(TiN) 또는 질화붕소(BN) 등과 같은 금속 질화물; 수산화마그네슘(Mg(OH2)) 또는 수산화알루미늄(Al(OH)3) 등과 같은 금속 수산화물; 탄산칼슘(CaCO3) 등과 같은 금속염; Ca3SiO5(tricalcium silicate), Ca2SiO4(dicalcium silicate), CaSiO3(calcium metasilicate) 등과 같은 규산염 화합물; 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 이트리아 안정화 지르코니아(yttria stabilized zirconia, YSZ), 칼시아 안정화 지르코니아(calcia stabilized zirconia, CSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, SSZ), 니켈-이트리아 안정화 지르코니아 서멧(Ni-YSZ cermet) 등과 같은 세라믹 입자; 또는 철, 망간 등의 금속 함유 안료 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Specifically, the inorganic particles may include metal oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), and iron oxide. ; Metal carbides such as beryllium carbide (Be 2 C), titanium carbide (TiC) or silicon carbide (SiC); Metal nitrides such as vanadium nitride (VN), titanium nitride (TiN), molybdenum nitride (Mo 2 N), tungsten nitride (TuN), niobium nitride (NbN), titanium nitride (TiN) or boron nitride (BN); Metal hydroxides such as magnesium hydroxide (Mg (OH 2 )) or aluminum hydroxide (Al (OH) 3 ); Metal salts such as calcium carbonate (CaCO 3 ), and the like; Silicate compounds such as Ca 3 SiO 5 (tricalcium silicate), Ca 2 SiO 4 (dicalcium silicate), CaSiO 3 (calcium metasilicate), and the like; Graphite such as natural graphite or artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Yttria stabilized zirconia (YSZ), calcia stabilized zirconia (CSZ), scandia-stabilized zirconia (SSZ), nickel-yttria stabilized zirconia cermet (Ni-YSZ cermet), etc. Such as ceramic particles; Or metal-containing pigments such as iron and manganese, and any one or a mixture of two or more thereof may be used.
실리카 에어로겔 포함 블랑켓의 용도에 따라 상기 예시한 무기 입자들 중에서 적절히 선택 사용될 수 있다.Depending on the use of the blanket containing the silica airgel may be appropriately selected from the inorganic particles exemplified above.
구체적으로, 사용온도 범위가 0℃ 내지 600℃이고, 최대 사용가능 온도가 650℃인 고온용 블랑켓의 경우, 상기 무기 입자로는 티타니아 또는 산화철과 같은 금속 산화물; 수산화알루미늄(Al(OH)3)과 같은 금속 수산화물; 철 및 망간 함유 안료 등이 사용될 수 있으며, 보다 구체적으로는 고온에서 우수한 IR 파장 흡수능을 나타내는 티타니아(TiO2)일 수 있다. 또, 상기 TiO2는 루틸형, 아나타제형 또는 이들의 혼합 결정 구조를 갖는 것일 수 있으며, 이중에서도 보다 우수한 IR 흡수능을 갖는 루틸형 결정구조를 갖는 것일 수 있다.Specifically, in the case of a high-temperature blanket having a use temperature range of 0 ° C to 600 ° C and a maximum usable temperature of 650 ° C, the inorganic particles include metal oxides such as titania or iron oxide; Metal hydroxides such as aluminum hydroxide (Al (OH) 3 ); Iron and manganese-containing pigments and the like may be used, and more specifically, may be titania (TiO 2 ) which exhibits excellent IR wavelength absorption at high temperatures. In addition, the TiO 2 may have a rutile type, anatase type, or a mixed crystal structure thereof, and may have a rutile type crystal structure having better IR absorption ability.
또, 사용온도 범위가 -200℃ 내지 150℃이고, 최저 사용가능온도가 -200℃이고, 최대 사용가능온도가 200℃인 저온용 블랑켓의 경우 상기 무기 입자로는 수산화마그네슘(Mg(OH2)) 또는 수산화알루미늄(Al(OH)3) 등과 같은 금속 수산화물이 사용될 수 있으며, 보다 구체적으로는 수산화마그네슘이 사용될 수 있다.In the case of a low temperature blanket having a use temperature range of -200 ° C to 150 ° C, a minimum usable temperature of -200 ° C, and a maximum usable temperature of 200 ° C, the inorganic particles include magnesium hydroxide (Mg (OH 2). ) Or metal hydroxides such as aluminum hydroxide (Al (OH) 3 ), and the like, more specifically magnesium hydroxide may be used.
또, 사용온도 범위가 -50℃ 내지 200℃이고, 최대 사용온도가 200℃인 상온용 블랑켓의 경우, 상기 무기 입자로는 흑연, 탄소계 물질, 규산염 화합물 또는 이들의 혼합물이 사용될 수 있다.In addition, in the case of a blanket for room temperature having a use temperature range of -50 ° C to 200 ° C and a maximum use temperature of 200 ° C, graphite, a carbon-based material, a silicate compound, or a mixture thereof may be used as the inorganic particles.
상기한 불투명화제는 실리카 에어로겔 포함 블랑켓 총 중량에 대하여 10중량% 내지 70중량%로 포함될 수 있다. 불투명화제의 함량이 10중량% 미만이면 불투명화제 사용에 따른 효과가 미미하고, 또 70중량%를 초과하면 단열재로서 성능 저하의 우려가 있다.The opacifying agent may be included in an amount of 10% to 70% by weight based on the total weight of the blanket containing silica airgel. If the content of the opaque agent is less than 10% by weight, the effect of using the opaque agent is insignificant, and if the content of the opaque agent exceeds 70% by weight, there is a fear of performance deterioration as a heat insulating material.
한편, 본 발명이 일 실시예에 따른 실리카 에어로겔 포함 블랑켓에 있어서, 상기 실리카 에어로겔은 복수개의 미세기공을 포함하는 입자상의 다공성 구조체로서, 나노사이즈의 1차 입자들, 구체적으로는 평균 입자직경(D50)이 100nm 이하, 보다 구체적으로는 10nm 내지 50nm의 1차 입자들이 결합되어 그물망 형태의 클러스터(cluster)를 형성하는 미세구조, 즉 3차원 망목 구조를 가질 수 있다. On the other hand, in the blanket with a silica airgel according to an embodiment of the present invention, the silica airgel is a porous porous structure containing a plurality of micropores, nano-size primary particles, specifically, the average particle diameter ( D 50 ) may have a microstructure, that is, a three-dimensional network structure, in which primary particles of 100 nm or less, more specifically, 10 nm to 50 nm are combined to form a network-shaped cluster.
이 같은 실리카 에어로겔의 다공성 구조는 그 제조공정에서의 조건 제어를 통해 기공의 크기와 밀도를 조절할 수 있다. 구체적으로, 상기 실리카 에어로겔은 기공률이 90% 이상이고, 탭 밀도가 0.04g/cm3 내지 0.5g/cm3인 것일 수 있다. 또, 평균 기공 직경이 20nm 이하, 혹은 5nm 내지 15nm일 수 있다. The porous structure of the silica airgel can control the size and density of the pores through the condition control in the manufacturing process. Specifically, the silica airgel may have a porosity of 90% or more and a tap density of 0.04 g / cm 3 to 0.5 g / cm 3 . In addition, the average pore diameter may be 20 nm or less, or 5 nm to 15 nm.
본 발명에 있어서, 실리카 에어로겔의 탭 밀도는 탭 밀도 측정기(TAP-2S, Logan Istruments co.)를 이용하여 측정할 수 있고, 또 평균 기공 직경 및 기공률은 Micrometrics의 ASAP 2010 기기를 이용하여 부분압(0.11<p/po<1)에 따른 질소의 흡/탈착량으로 측정할 수 있다.In the present invention, the tap density of the silica airgel can be measured using a tap density meter (TAP-2S, Logan Istruments co.), And the average pore diameter and porosity are measured using a partial pressure (0.11) using an ASAP 2010 instrument from Micrometrics. It can be measured by the adsorption / desorption amount of nitrogen according to <p / p o <1).
또, 상기 실리카 에어로겔은 블랑켓의 제조시 사용되는 블랑켓용 기재의 공극 내에 용이하게 침투 또는 부착가능한 평균 입자직경 또는 비표면적을 갖는 것이 바람직할 수 있다. 구체적으로, 상기 실리카 에어로겔은 비표면적(specific surface area)이 700m2/g 이상, 보다 구체적으로는 700m2/g 내지 1000m2/g인 것일 수 있다. 상기한 탭밀도와 함께 비표면적 조건을 충족할 경우, 기공이 차지하는 부피로 인하여 낮은 열전도도 및 향상된 단열효과를 나타낼 수 있다. 또, 상기 실리카 에어로겔은 평균 입자직경(D50)이 10㎛ 내지 80㎛, 보다 구체적으로는 10㎛ 내지 20㎛인 것일 수 있다.In addition, the silica airgel may have an average particle diameter or specific surface area that can be easily penetrated or adhered to the voids of the substrate for the blanket used in the manufacture of the blanket. Specifically, the silica airgel may have a specific surface area of 700 m 2 / g or more, more specifically 700 m 2 / g to 1000 m 2 / g. When the specific surface area condition is met together with the tap density, the volume occupied by the pores may result in low thermal conductivity and improved thermal insulation effect. The silica airgel may have an average particle diameter (D 50 ) of 10 μm to 80 μm, more specifically 10 μm to 20 μm.
본 발명에 있어서, 실리카 에어로겔의 비표면적은 Micrometrics의 ASAP 2010 기기를 이용하여 부분압(0.11<p/po<1)에 따른 질소의 흡/탈착량으로 측정할 수 있다. 또, 평균 입자직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있으며, 이때 실리카 에어로겔의 평균 입자직경은 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 보다 구체적으로는, 상기 소수성 실리카 에어로겔을 용매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자직경(D50)을 산출할 수 있다. In the present invention, the specific surface area of the silica airgel can be by using a Micrometrics ASAP 2010 instrument of measuring the adsorption / desorption amount of nitrogen according to the partial pressure (0.11 <p / p o < 1). In addition, the average particle diameter (D 50 ) can be defined as the particle size at 50% of the particle size distribution, wherein the average particle diameter of the silica airgel can be measured using a laser diffraction method, more Specifically, the hydrophobic silica airgel is dispersed in a solvent, introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000), irradiated with ultrasonic waves of about 28 kHz at an output of 60 W, and then the particle diameter in the measuring apparatus. The average particle diameter (D 50 ) at 50% of the distribution can be calculated.
또, 상기 소수성 에어로겔은 블랑켓용 기재 보다 낮은 열전도도를 갖는 것이 블랑켓의 제조시 단열 효과를 증가시킬 수 있다. 구체적으로 상기 실리카 에어로겔은 열전도율이 20mW/mK 이하인 것일 수 있다.In addition, the hydrophobic airgel may have a lower thermal conductivity than the base material for the blanket, which may increase the thermal insulation effect during manufacture of the blanket. Specifically, the silica airgel may have a thermal conductivity of 20 mW / mK or less.
또, 상기 실리카 에어로겔은 소수성 표면처리된 것이다.In addition, the silica airgel is a hydrophobic surface treatment.
통상 실리카 에어로겔은 제조 직후에는 낮은 열전도율을 유지하지만, 실리카 표면에 존재하는 친수성의 실라놀기(Si-OH)가 공기 중의 물을 흡수함으로써 열전도율이 점차 높아진다. 이에 따라, 낮은 열전도율을 유지하도록 하기 위해서는 실리카 에어로겔 표면을 소수성으로 개질할 필요가 있다. 통상 소수성 에어로겔에 있어서, 소수화도 또는 소수성 정도는 소수성 에어로겔에 포함된 탄소함량으로 확인할 수 있는데, 본 발명에 있어서, 상기 실리카 에어로겔은 구체적으로 상온(23±5℃)에서 실리카 에어로겔 총 중량에 대하여 8중량% 이상, 혹은 8.5중량% 내지 12중량%의 탄소 함량을 갖는 것일 수 있다. Normally, silica airgel maintains low thermal conductivity immediately after preparation, but the thermal conductivity gradually increases as the hydrophilic silanol group (Si-OH) present on the silica surface absorbs water in the air. Accordingly, in order to maintain low thermal conductivity, it is necessary to modify the silica airgel surface hydrophobicly. In the normal hydrophobic airgel, the degree of hydrophobicity or the degree of hydrophobicity can be confirmed by the carbon content contained in the hydrophobic airgel. In the present invention, the silica airgel is specifically, based on the total weight of the silica airgel at room temperature (23 ± 5 ° C.). It may have a carbon content of at least weight percent, or 8.5 to 12 weight percent.
상기와 같은 실리카 에어로겔은 실리카 에어로겔 포함 블랑켓 총 중량에 대하여 20중량% 내지 80중량%로 포함될 수 있다. 블랑켓내 실리카 에어로겔의 함량이 증가될수록 단열성이 증가하지만, 80중량%를 초과할 경우 실리카 에어로겔 자체의 낮은 강도 및 부착력으로 인해 이후 블랑켓 제조시 강도 및 부착력이 저하될 우려가 있다. 또, 블랑켓내 실리카 에어로겔의 함량이 지나치게 낮을 경우, 구체적으로 20중량% 미만일 경우 단열성 저하의 우려가 있다.Such silica airgel may be included in an amount of 20% to 80% by weight based on the total weight of the blanket containing silica airgel. Insulation increases as the content of the silica airgel in the blanket increases, but if it exceeds 80% by weight, the strength and adhesion in the subsequent blanket production may be deteriorated due to the low strength and adhesion of the silica airgel itself. In addition, when the content of the silica airgel in the blanket is too low, specifically less than 20% by weight there is a fear of lowering the thermal insulation.
한편, 상기 실리카 에어로겔 포함 블랑켓에 있어서, 상기 블랑켓용 기재로는 파이버(fiber), 필름, 시트, 네트, 섬유(textile), 다공질체, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있다. 또 용도에 따라 그 표면에 미세요철이 형성되거나 패턴화된 것일 수도 있다. 보다 구체적으로는 상기 블랑켓용 기재는 블랑켓용 기재 내로 소수성 에어로겔의 삽입이 용이한 공간 또는 공극을 포함함으로써 단열 성능을 보다 향상시킬 수 있는 섬유일 수 있다. Meanwhile, in the blanket containing silica airgel, the blanket base material may be a fiber, a film, a sheet, a net, a fiber, a porous body, a foam, a nonwoven fabric, or a laminate of two or more thereof. . In addition, fine irregularities may be formed or patterned on the surface thereof depending on the intended use. More specifically, the blanket substrate may be a fiber capable of further improving the thermal insulation performance by including a space or a space in which the hydrophobic airgel is easily inserted into the blanket substrate.
또, 상기 블랑켓용 기재는 구체적으로 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 또는 이들의 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리섬유 또는 세라믹울 등일 수 있으며, 이들에 한정되는 것은 아니다. 보다 구체적으로 상기 기재는 유리섬유, 폴리에틸렌, 및 폴리에스테르로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것일 수 있다.In addition, the blanket base material is specifically polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (for example, polyethylene, polypropylene or these Copolymer, etc.), cellulose, carbon, cotton, wool, hemp, nonwoven fabric, glass fiber or ceramic wool, and the like, but is not limited thereto. More specifically, the substrate may include any one or two or more selected from the group consisting of glass fibers, polyethylene, and polyester.
또, 상기 블랑켓용 기재는 낮은 열전도도, 구체적으로는 20mW/mk 이하, 보다 구체적으로는 15mW/mk 내지 20mW/mk의 열전도도를 갖는 것일 수 있다.In addition, the blanket base material may have a low thermal conductivity, specifically 20 mW / mk or less, more specifically 15 mW / mk to 20 mW / mk.
또, 상기 블랑켓용 기재는 소수성 표면처리된 것일 수 있으며, 이에 따라 블랑켓용 기재의 적어도 일면에 소수성 표면처리층을 더 포함할 수 있다. In addition, the blanket substrate may be a hydrophobic surface treatment, and thus may further include a hydrophobic surface treatment layer on at least one surface of the blanket substrate.
상기 블랑켓용 기재에 대한 소수성 처리는 통상의 방법에 따라 실시될 수 있으며, 구체적으로는 사슬모양 탄화수소기, 방향족탄화수소기, 할로겐화알킬기, 유기규소기, 알킬기, 비닐기, 알릴기, 아릴기, 페닐기 등의 소수성 작용기를 포함하는 화합물을 이용하여 블랑켓용 기재를 표면처리함으로서 수행될 수 있다.Hydrophobic treatment of the substrate for the blanket can be carried out according to a conventional method, specifically, a chain-shaped hydrocarbon group, aromatic hydrocarbon group, halogenated alkyl group, organosilicon group, alkyl group, vinyl group, allyl group, aryl group, phenyl group It can be carried out by surface treating the substrate for the blanket using a compound containing a hydrophobic functional group, such as.
또, 상기 블랑켓용 기재는 저밀도인 것이 바람직하며, 구체적으로 상기 기재가 섬유일 경우, 섬유를 구성하는 파이버가 10㎛ 내지 30㎛의 평균 파이버 직경을 갖는 것일 수 있다. 이와 같이 저 밀도인 경우 블랑켓용 기재 내부로의 실리카 에어로겔 및 불투명화제의 도입이 용이하여 실리카 에어로겔 및 불투명화재의 함량을 높여 단열성을 증가시킬 수 있는 동시에, 최종 제조되는 실리카 에어로겔 포함 블랑켓의 유연성을 높일 수 있다.In addition, the blanket substrate is preferably low density, specifically, when the substrate is a fiber, the fibers constituting the fiber may have an average fiber diameter of 10㎛ to 30㎛. As such, the low density allows easy introduction of silica aerogels and opacifiers into the blanket substrate, thereby increasing the content of silica aerogels and opacifiers to increase the thermal insulation and at the same time increasing the flexibility of the finished blanket. It can increase.
또, 상기 블랑켓용 기재는 부분 또는 전체로, 단열 성능 향상을 위한 열반사층 또는 표면보호를 통해 수명특성을 향상시킬 수 있는 표면보호층 등의 기능성 층이 더 형성될 수도 있다. In addition, the blanket substrate may be partially or entirely formed of a functional layer such as a heat reflection layer for improving heat insulation performance or a surface protection layer capable of improving life characteristics through surface protection.
일례로, 상기 열반사층의 경우, 적외선 복사를 반사하거나 차단할 수 있는 화합물을 포함하며, 구체적으로는 카본 블랙, 탄소 파이버, 이산화티타늄, 금속(알루미늄, 스테인리스 강, 동/아연 합금, 동/크롬 합금 등), 비금속, 파이버, 안료 등이 포함될 수 있다. 또, 상기 표면보호층의 경우 폴리테트라플루오로에틸렌과 같은 고내열성 투습 방수 물질을 포함할 수 있다.For example, the heat reflection layer includes a compound capable of reflecting or blocking infrared radiation, and specifically, carbon black, carbon fiber, titanium dioxide, metal (aluminum, stainless steel, copper / zinc alloy, copper / chromium alloy) Etc.), nonmetals, fibers, pigments, and the like. In addition, the surface protective layer may include a high heat-resistant moisture-permeable waterproof material such as polytetrafluoroethylene.
상기 기능성층의 적층은 단열 블랑켓의 적어도 일면에 상기 기능성층을 직접 형성하거나, 또는 상기 기능성층을 위치시킨 후 라미네이팅함으로써 수행될 수 있다. 상기 라미네이팅 공정은 열처리 또는 열간압연 처리 등 통상의 방법에 따라 수행될 수 있다.The stacking of the functional layer may be performed by directly forming the functional layer on at least one surface of the insulating blanket, or laminating the functional layer after placing the functional layer. The laminating process may be performed according to conventional methods such as heat treatment or hot rolling treatment.
상기와 같은 구성 및 구조를 갖는 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓은, 무기 입자를 염기성 수용액 중에 분산시켜 식각한 후, 물을 첨가하여 불투명화제 포함 분산액을 준비하는 단계(단계 1); 상기 불투명화제 포함 분산액을, 실리카 전구체와 혼합하여, 불투명화제 포함-실리카 에어로겔 형성용 조성물을 준비하는 단계(단계 2); 상기 불투명화제 포함-실리카 에어로겔 형성용 조성물에, 염기 촉매 및 극성 유기용매를 첨가한 후, 블랑켓용 기재를 첨가하고 겔화시켜, 불투명화제-실리카겔-기재 복합체를 준비하는 단계(단계 3); 및 상기 불투명화제-실리카겔-기재 복합체를 소수화 표면개질 처리한 후 건조하는 단계(단계 4)를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 실리카 에어로겔 포함 블랑켓의 제조방법이 제공된다.In the blanket containing silica airgel according to an embodiment of the present invention having the above-described structure and structure, inorganic particles are dispersed and etched in a basic aqueous solution, and then water is added to prepare a dispersion containing an opaque agent (step 1 ); Mixing the opacifier-containing dispersion with a silica precursor to prepare a composition for forming an opacifier-silica aerogel (step 2); Preparing a opaque-silica gel-based composite by adding a base catalyst and a polar organic solvent to the composition for forming an opaque-agent-silica aerogel, and then adding and gelling the substrate for a blanket (step 3); And a step (step 4) of drying the opacifying agent-silica gel-based composite after hydrophobization surface modification. Accordingly, according to another embodiment of the present invention, there is provided a method of manufacturing the blanket containing silica airgel.
이하 각 단계별로 설명하면, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓을 제조하기 위한 단계 1은 불투명화제 포함 분산액을 준비하는 단계이다.Referring to each step below, step 1 for preparing a blanket containing a silica airgel according to an embodiment of the present invention is to prepare a dispersion containing an opacifier.
구체적으로, 상기 불투명화제 포함 분산액은 무기 입자를 염기성 수용액 중에 분산시켜 식각한 후, 결과로 식각된 무기 입자에 물을 첨가함으로써 제조될 수 있다. 이때 무기 입자에 대한 화학적 식각반응이 일어나게 되며, 상기 무기 입자는 앞서 설명한 바와 같다. Specifically, the dispersion containing the opacifier may be prepared by dispersing the inorganic particles in a basic aqueous solution and etching them, and then adding water to the resulting inorganic particles. At this time, a chemical etching reaction occurs on the inorganic particles, and the inorganic particles are as described above.
무기 입자에 대한 화학적 식각은 강염기에 의해서만 일어나기 때문에, 상기 불투명화제 포함 분산액의 제조시 사용가능한 강염기로는 높은 산 해리상수, 구체적으로 25℃, 0.1M 농도의 수용액 조건에서, 12 이상, 보다 구체적으로는 13.5 이상의 산 해리상수(Acid dissociation constant, pKa)를 갖는 염기성 물질이 사용될 수 있다. 보다 구체적으로는 상기 강염기로는 수산화 나트륨, 수산화 칼륨, 수산화 칼슘, 또는 수산화 바륨 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Since the chemical etching of the inorganic particles is caused only by strong bases, the strong bases that can be used in the preparation of the dispersion containing the opaque agent include 12 or more, more specifically, under high acid dissociation constants, specifically 25 ° C. and 0.1M aqueous solution conditions. Basic materials having an acid dissociation constant (pKa) of 13.5 or more may be used. More specifically, the strong base may include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, and the like, and any one or a mixture of two or more thereof may be used.
구체적으로, 상기 염기성 수용액은 상기한 강염기를 물 중에 용해시킴으로써 제조되는 것으로, 식각 효율 및 공정성을 고려할 때, 상기한 강염기를 0.1M 내지 10M의 농도로 포함하는 것일 수 있다. 염기성 수용액의 농도가 0.1M 미만이면, 무기 입자에 대한 식각 효율이 낮아 전술한 바와 같은 물성을 갖는 불투명화제의 제조가 용이하지 않을 우려가 있고, 10M을 초과할 경우 식각반응의 제어가 용이하지 않고 또 불투명화제 함유 분산액의 pH를 높여 이후 실리카 에어로겔 형성에 영향을 미칠 우려가 있다. Specifically, the basic aqueous solution is prepared by dissolving the strong base in water, and considering the etching efficiency and fairness, the basic aqueous solution may include the strong base in a concentration of 0.1M to 10M. If the concentration of the basic aqueous solution is less than 0.1M, the etching efficiency for the inorganic particles is low, there is a fear that the preparation of the opacifying agent having the above-described physical properties may not be easy, and if it exceeds 10M it is not easy to control the etching reaction In addition, the pH of the dispersion containing the opacifier may be increased, which may affect silica airgel formation.
무기 입자에 대한 식각 반응은 사용되는 강염기의 농도 및 식각 공정의 시간에 따라 제어될 수 있다. 본 발명에서는 상기한 제타전위 및 입자크기 등의 물성적 특성을 구현하는 불투명화제가 제조될 수 있도록 염기의 농도와 시간을 적절히 결정할 수 있다. 상기한 염기성 수용액의 사용시 그 식각 시간을 적절히 조절할 수 있다.The etching reaction to the inorganic particles can be controlled according to the concentration of the strong base used and the time of the etching process. In the present invention, it is possible to appropriately determine the concentration and time of the base so that an opaque agent which realizes the physical properties such as zeta potential and particle size can be prepared. When using the basic aqueous solution described above, the etching time can be appropriately adjusted.
또, 상기 식각 공정의 완료 후, 식각액을 제거하고 물을 첨가한다. 이때, 물은 식각시 사용된 염기 물질에 대한 희석 용매이자 불투명화제 포함 분산액에서 무기 입자에 대한 분산매로서 작용하며, 더 나아가 무기 입자에 대한 식각효율 증진제로서 작용할 수 있다.In addition, after completion of the etching process, the etching solution is removed and water is added. At this time, water serves as a dilution solvent for the base material used in etching and as a dispersion medium for the inorganic particles in the dispersion containing the opacifier, and may further act as an etching efficiency enhancer for the inorganic particles.
종래 실리카 에어로겔 함유 블랑켓의 제조시 사용되는 지방족 글리콜 등의 알코올계 용매도 사용가능하지만, 이 같은 지방족 글리콜은 무기 입자의 표면에 단순히 표면 코팅되어 무기 입자의 표면을 친수성으로 만들어줌으로써 무기 입자의 분산성을 높이는 분산제의 역할을 할 뿐, 이온화가 용이하지 않기 때문에 무기 입자에 대한 식각 효율 증진 효과는 제공하지 못한다. 이에 반해 본 발명에서 사용되는 물은 이온화가 용이하기 때문에, 무기 입자에 대한 강염기의 식각 효율을 높일 수 있고, 그 결과로서 무기 입자의 크기 제어가 용이하다. 또 물은 무기입자 표면의 활성을 높여 실리카 전구체와의 축합반응 효율을 증가시킬 수 있다. Alcoholic solvents such as aliphatic glycols, which are conventionally used in the manufacture of blankets containing silica airgel, may also be used, but such aliphatic glycols are simply surface-coated on the surface of the inorganic particles to make the surface of the inorganic particles hydrophilic. It acts as a dispersant to increase the acidity, and since ionization is not easy, it does not provide an effect of improving the etching efficiency for the inorganic particles. On the contrary, since water used in the present invention is easily ionized, the etching efficiency of the strong base with respect to the inorganic particles can be increased, and as a result, the size of the inorganic particles can be easily controlled. In addition, water may increase the activity of the surface of the inorganic particles, thereby increasing the condensation reaction efficiency with the silica precursor.
이때 물은 분산액 중 불투명화제의 함량이 0.1g/100ml 내지 3g/100ml, 보다 구체적으로는 0.4g/100ml 내지 2g/100ml가 되도록 하는 양으로 사용될 수 있다.At this time, the water may be used in an amount such that the content of the opaque agent in the dispersion is 0.1g / 100ml to 3g / 100ml, more specifically 0.4g / 100ml to 2g / 100ml.
또, 상기 불투명화제 포함 분산액의 제조시 수용액내 무기 입자의 균일 분산을 위하여 분산 공정이 더 수행될 수 있으며, 이때 상기 분산 공정은 교반 등 통상의 분산 처리에 의해 수행될 수 있다. In addition, a dispersion process may be further performed to uniformly disperse the inorganic particles in the aqueous solution during the preparation of the dispersion containing the opaque agent, and the dispersion process may be performed by a conventional dispersion treatment such as stirring.
또, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓을 제조하기 위한 단계 2는, 상기 단계 1에서 제조한 불투명화제 포함 분산액을, 실리카 전구체와 혼합하여 불투명화제 포함-실리카 에어로겔 형성용 조성물을 준비하는 단계이다.In addition, step 2 for preparing a blanket containing silica airgel according to an embodiment of the present invention, by mixing the opaque agent-containing dispersion prepared in step 1 with the silica precursor, the composition containing the opaque agent-silica airgel formation It is a step to prepare.
상기 실리카 전구체는 구체적으로 실리카 알콕시드 또는 물유리일 수 있다. 상기 실리카 전구체는 용매 중에 용해시킨 용액상으로 첨가될 수 있다.The silica precursor may specifically be silica alkoxide or water glass. The silica precursor may be added in a solution phase dissolved in a solvent.
상기 물유리의 경우 물유리에 물, 구체적으로는 증류수를 첨가하고 혼합하여 제조한 희석 용액으로 사용될 수 있다. 상기 물유리 용액에 있어서, 물유리는 특별히 한정되는 것은 아니나, 구체적으로 28중량% 내지 35중량%의 실리카(SiO2)를 함유하는 것일 수 있으며, 상기 물유리에 물을 첨가하여 희석한 물유리 용액은 0.1중량% 내지 30중량%의 실리카를 함유하는 것일 수 있다.The water glass may be used as a dilution solution prepared by adding and mixing water, specifically distilled water, to the water glass. In the water glass solution, the water glass is not particularly limited, but may specifically include 28 to 35% by weight of silica (SiO 2 ), the water glass solution diluted by adding water to the water glass is 0.1 weight It may be one containing from 30% by weight of silica.
또, 상기 용매는 상기한 실리카 전구체를 용해시킬 수 있는 것으로서, 구체적으로는 물 또는 극성 유기용매일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다. 또, 상기 극성 유기용매는 에탄올 등의 알코올일 수 있다.In addition, the solvent is capable of dissolving the silica precursor, specifically, may be water or a polar organic solvent, and may include any one or a mixture of two or more thereof. In addition, the polar organic solvent may be an alcohol such as ethanol.
상기 불투명화제 포함 분산액과 전구체 포함 용액은, 최종 제조되는 블랑켓에서의 불투명화제 및 실리카 에어로겔의 함량을 고려하여 적절한 혼합비로 혼합될 수 있으며, 블랑켓 내에서의 불투명화제와 실리카 에어로겔의 함량은 앞서 설명한 바와 같다.The opacifier-containing dispersion and the precursor-containing solution may be mixed in an appropriate mixing ratio in consideration of the content of the opacifier and the silica airgel in the blanket to be prepared, and the content of the opacifier and the silica airgel in the blanket is As described.
상기한 공정의 결과로, 불투명화제 포함-실리카 에어로겔 형성용 조성물이 형성될 수 있다. As a result of the above process, a composition for forming an opaque agent-containing silica airgel may be formed.
또, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓을 제조하기 위한 단계 3은, 상기 불투명화제 포함-실리카 에어로겔 형성용 조성물에 염기 촉매 및 극성 유기용매를 첨가한 후, 블랑켓용 기재를 첨가하고 겔화시켜, 불투명화제-실리카겔-기재 복합체를 준비하는 단계이다.In addition, step 3 for preparing a blanket containing silica airgel according to an embodiment of the present invention, after the base catalyst and the polar organic solvent is added to the composition containing the opaque-containing silica airgel, the base for the blanket is added And gelation to prepare the opacifier-silica gel-based complex.
상기 염기 촉매를 반응계, 즉 불투명화제 포함-실리카 에어로겔 형성용 조성물내 pH를 증가시켜 겔화를 촉진하는 역할을 하는 것으로, 구체적으로는 암모니아 등일 수 있다. The base catalyst serves to promote gelation by increasing the pH in the reaction system, that is, the composition for forming an aerosol-silica aerogel, and specifically, may be ammonia or the like.
상기 극성 유기용매는 상기한 실리카 전구체와의 혼화성이 우수하여, 이후 겔화시 겔 내에 균일하게 존재할 수 있다. 그 결과, 이후 불투명화제-실리카겔-기재 복합체의 제조시 용매 치환 단계를 생략할 수 있다. The polar organic solvent has excellent miscibility with the silica precursor, and may be uniformly present in the gel during gelation. As a result, the solvent substitution step can be omitted in the preparation of the opaque agent-silica gel-based composite.
구체적으로, 상기 극성 유기용매는 알코올계 용매일 수 있으며, 상기 알코올계 용매는 구체적으로 메탄올, 에탄올, 이소프로판올, 부탄올 등과 같은 1가 알코올; 또는 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 및 솔비톨 등과 같은 다가 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이중에서도 물과의 혼화성 및 실리카겔내 균일 분산성을 고려할 때, 상기 알코올계 화합물은 탄소수 1 내지 8의 알코올일 수 있다. 또 상기한 효과와 더불어 이후 실리카 표면에 대한 개질 반응의 효율을 고려할 때, 상기 알코올계 화합물은 메탄올, 에탄올, 프로판올 또는 n-부탄올과 같은 탄소수 1 내지 4의 직쇄상 알코올일 수 있으며, 이들 중 1종 단독으로 또는 2종 이상의 혼합물이 사용될 수 있다. 보다 더 구체적으로 상기 알코올계 화합물은 메탄올, 에탄올 또는 이의 혼합물일 수 있다.Specifically, the polar organic solvent may be an alcohol solvent, and the alcohol solvent may be specifically a monohydric alcohol such as methanol, ethanol, isopropanol, butanol, or the like; Or polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, sorbitol, and the like, and any one or a mixture of two or more thereof may be used. In consideration of the miscibility with water and the uniform dispersibility in silica gel, the alcohol-based compound may be an alcohol having 1 to 8 carbon atoms. In addition to the above effects, when considering the efficiency of the subsequent reforming reaction on the silica surface, the alcohol-based compound may be a linear alcohol having 1 to 4 carbon atoms, such as methanol, ethanol, propanol or n-butanol, 1 of these The species alone or a mixture of two or more thereof may be used. More specifically, the alcohol-based compound may be methanol, ethanol or a mixture thereof.
상기한 염기 촉매 및 극성 유기용매는 각각 단독으로 첨가될 수도 있고, 또는 상기 극성 유기용매 중에 염기 촉매를 용해시킨 용액상으로 첨가될 수 있다. 이때, 상기 극성 유기용매는 실리카 1중량부에 대하여 5중량부 내지 20 중량부의 양으로 사용될 수 있으며, 보다 구체적으로는 5중량부 내지 16 중량부, 보다 더 구체적으로는 7중량부 내지 10중량부의 양으로 사용될 수 있다. 또, 상기 염기 촉매 및 염기 촉매 함유 용액은 불투명화제 포함-실리카 에어로겔 형성용 조성물의 pH가 8 내지 14, 보다 구체적으로는 pH 8 내지 9가 되도록 하는 양으로 첨가될 수 있다. The base catalyst and the polar organic solvent may be added alone, or may be added in the form of a solution in which the base catalyst is dissolved in the polar organic solvent. In this case, the polar organic solvent may be used in an amount of 5 parts by weight to 20 parts by weight based on 1 part by weight of silica, more specifically 5 parts by weight to 16 parts by weight, and even more specifically 7 parts by weight to 10 parts by weight. Can be used in amounts. In addition, the base catalyst and the base catalyst-containing solution may be added in an amount such that the pH of the composition for forming an opaque-containing silica airgel is 8 to 14, more specifically, pH 8 to 9.
상기한 바와 같은 염기 촉매 및 극성 유기용매를 불투명화제 포함-실리카 에어로겔 형성용 조성물에 첨가하여 혼합 용액을 제조하고, 제조한 혼합용액에 블랑켓용 기재를 침지 또는 캐스팅하여 겔화를 유도하여 불투명화제-실리카겔-기재 복합체를 제조한다. 이때 상기 블랑켓용 기재는 앞서 설명한 바와 동일한 것일 수 있다.The base catalyst and the polar organic solvent as described above are added to the composition containing the opaque agent-silica aerogel-forming composition to prepare a mixed solution, and the quenching agent-silica gel is induced by immersing or casting the substrate for the blanket in the prepared mixed solution. Prepare the substrate composite. In this case, the blanket base material may be the same as described above.
다음으로, 본 발명의 일 실시예에 따른 실리카 에어로겔 포함 블랑켓을 제조하기 위한 단계 4는, 상기 단계 3에서 제조한 불투명화제-실리카겔-기재 복합체에 대해 소수화 표면개질 처리 후, 건조하여 실리카 에어로겔 포함 블랑켓을 제조하는 단계이다.Next, step 4 for preparing a blanket containing silica airgel according to an embodiment of the present invention, after the hydrophobization surface modification treatment for the opaque agent-silica gel-based composite prepared in step 3, dried to include silica airgel It is a step of manufacturing a blanket.
이때 상기 소수화 표면개질 처리에 앞서 에이징 공정이 선택적으로 더 수행될 수 있다. In this case, an aging process may be optionally further performed before the hydrophobization surface modification treatment.
상기 에이징 공정은 상기 불투명화제-실리카겔-기재 복합체를 적당한 온도에서 방치하여 화학적 변화가 완전히 이루어지도록 하기 위한 공정으로서, 불투명화제-실리카겔-기재 복합체에 대한 에이징 공정에 의해, 실리카겔 내부의 망목구조를 강화시킬 수 있다. 또, 에이징 동안에 실리카겔 내부의 수분이 극성 유기용매로 치환될 수 있으며, 그 결과 후속의 건조 공정에서 실리카겔 내부의 수분 증발에 따른 실리카겔의 기공 구조 변형 및 감소를 방지할 수 있다. The aging process is a process for leaving the opacifier-silica gel-based composite at a suitable temperature so that the chemical change is completely made. By aging the opacifier-silica gel-based composite, the network structure inside the silica gel is strengthened. You can. In addition, during aging, the moisture inside the silica gel may be replaced with a polar organic solvent, and as a result, it is possible to prevent the pore structure deformation and reduction of the silica gel due to evaporation of the moisture inside the silica gel in a subsequent drying process.
구체적으로, 상기 에이징 공정은 상기 불투명화제-실리카겔-기재 복합체를 물, 극성 유기용매 또는 이들의 혼합용매 중에서 25℃ 내지 80℃, 보다 구체적으로는 50 내지 80℃의 온도 하에 유지함으로써 수행될 수 있다. 이때 상기 극성 유기용매의 종류는 앞서 설명한 바와 동일하다. 다만, 상기 물, 극성 유기용매 또는 이들의 혼합용매는, 불투명화제-실리카겔-기재 복합체 부피에 대하여 1배 내지 3배의 부피에 해당하는 양으로 사용될 수 있다.Specifically, the aging process may be carried out by maintaining the opacifying agent-silica gel-based composite at a temperature of 25 ° C. to 80 ° C., more specifically 50 to 80 ° C. in water, a polar organic solvent or a mixed solvent thereof. . In this case, the type of the polar organic solvent is the same as described above. However, the water, the polar organic solvent or a mixed solvent thereof may be used in an amount corresponding to a volume of 1 to 3 times the volume of the opacifying agent-silica gel-based composite.
이때 반응 촉진을 위하여 염기가 더 첨가될 수도 있다. 상기 염기는 앞서 설명한 바와 동일한 것일 수 있으며, 극성 유기용매와 혼합되어 첨가될 수 있다. 구체적으로 상기 염기는 에이징 공정시에 첨가되는 용매 100중량부에 대하여 20중량부 이하, 보다 구체적으로는 1중량부 내지 15중량부의 함량으로 첨가될 수 있다. In this case, a base may be further added to promote the reaction. The base may be the same as described above, and may be added in admixture with a polar organic solvent. Specifically, the base may be added in an amount of 20 parts by weight or less, more specifically 1 to 15 parts by weight, based on 100 parts by weight of the solvent added during the aging process.
또, 상기 에이징 공정은 상기 불투명화제-실리카겔-기재 복합체 내 화학적 변화가 완료될 때까지 수행될 수 있으며, 구체적으로는 1시간 내지 6시간, 혹은 1시간 내지 2시간 동안 수행될 수 있다.In addition, the aging process may be performed until the chemical change in the opacifier-silica gel-based complex is completed, specifically, may be performed for 1 hour to 6 hours, or 1 hour to 2 hours.
한편, 상기 소수화 표면개질은 실란(silane)계 화합물(예를 들면, 디메틸 디메톡시 실란, 디메틸 디에톡시 실란, 메틸 트리메톡시 실란, 비닐 트리메톡시 실란, 페닐 트리메톡시 실란, 테트라에톡시 실란, 디메틸 디클로로 실란, 또는 3-아미노프로필 트리에톡시 실란 등), 실록산(siloxane)계 화합물(예를 들면, 폴리디메틸 실록산, 폴리디에틸 실록산, 또는 옥타메틸 시클로테트라 실록산 등), 실라놀(silanol)계 화합물(예를 들면, 트리메틸실라놀, 트리에틸실라놀, 트리페닐실라놀 및 t-부틸디메틸실라놀 등), 또는 실라잔(silazane)계 화합물(예를 들면, 1,2-디에틸디실라잔(1,2-diethyldisilazane), 1,1,2,2-테트라메틸디실라잔(1,1,2,2-tetramethyldisilazane), 1,1,3,3-테트라메틸디실라잔(1,1,3,3-tetramethyl disilazane), 1,1,1,2,2,2-헥사메틸디실라잔(1,1,1,2,2,2-hexamethyldisilazane, HMDS), 1,1,2,2-테트라에틸디실라잔(1,1,2,2-tetraethyldisilazane) 또는 1,2-디이소프로필디실라잔(1,2-diisopropyldisilazane) 등) 등과 같은 표면개질제 중 어느 하나 또는 둘 이상의 혼합물을 사용하여 실시될 수 있다.On the other hand, the hydrophobized surface modification is a silane-based compound (for example, dimethyl dimethoxy silane, dimethyl diethoxy silane, methyl trimethoxy silane, vinyl trimethoxy silane, phenyl trimethoxy silane, tetraethoxy silane , Dimethyl dichloro silane, or 3-aminopropyl triethoxy silane, etc.), siloxane-based compounds (e.g., polydimethyl siloxane, polydiethyl siloxane, or octamethyl cyclotetra siloxane, etc.), silanol ) -Based compounds (e.g., trimethylsilanol, triethylsilanol, triphenylsilanol and t-butyldimethylsilanol, etc.) or silazane-based compounds (e.g. 1,2-diethyl Disilazane (1,2-diethyldisilazane), 1,1,2,2-tetramethyldisilazane (1,1,2,2-tetramethyldisilazane), 1,1,3,3- tetramethyldisilazane 1,1,3,3-tetramethyl disilazane), 1,1,1,2,2,2-hexamethyldisilazane (1,1,1,2,2,2-hexamethyldisilazane, HMDS), 1,1 , 2,2-tetra By using one or a mixture of two or more surface modifiers such as ethyldisilazane (1,1,2,2-tetraethyldisilazane) or 1,2-diisopropyldisilazane, etc. Can be.
이중에서도 상기 표면개질제는 1분자 내에 알킬기를 2개 이상 포함하는 실라잔계 화합물일 수 있으며, 보다 구체적으로는 하기 화학식 1의 화합물일 수 있다:In particular, the surface modifier may be a silazane-based compound including two or more alkyl groups in one molecule, and more specifically, the compound of Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2016003153-appb-I000001
Figure PCTKR2016003153-appb-I000001
상기 화학식 1에서, R11 내지 R13, 및 R21 내지 R23는 각각 독립적으로 수소원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, 단 R11 내지 R13, 및 R21 내지 R23가 동시에 수소원자는 아니다. In Formula 1, R 11 to R 13 , and R 21 to R 23 may each independently be a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, provided that R 11 to R 13 , and R 21 to R 23 are each hydrogen at the same time. It is not an atom.
상기 실라잔계 표면개질제는 알코올계 화합물과 함께 사용시 분해되어 2분자의 알콕시실란계 화합물이 생성될 수 있다. 또 생성된 알콕시실란계 화합물은 1분자내 최대 3개의 알킬기를 포함함으로써, 실리카 에어로겔의 표면개질시 소수화도를 더욱 증가시킬 수 있다. 이에 따라 실리카 에어로겔의 소수화를 위해 사용되는 표면개질제의 양을 최소화할 수 있다.The silazane-based surface modifier may decompose when used with an alcohol-based compound to produce a 2-molecular alkoxysilane-based compound. In addition, the resulting alkoxysilane-based compound may contain up to three alkyl groups in one molecule, thereby further increasing the degree of hydrophobicity during surface modification of the silica aerogel. Accordingly, it is possible to minimize the amount of surface modifier used for hydrophobization of silica airgel.
상기 실라잔계 화합물의 구체적인 예로는 디에틸디실라잔, 테트라메틸디실라잔, 헥사메틸디실라잔, 테트라에틸디실라잔 또는 디이소프로필디실라잔 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Specific examples of the silazane-based compound include diethyldisilazane, tetramethyldisilazane, hexamethyldisilazane, tetraethyldisilazane or diisopropyldisilazane, and any one or two of them. Mixtures of the above may be used.
이중에서도 상기 실라잔계 표면개질제는 실리카 에어로겔의 소수성을 더욱 증가시킬 수 있도록, 상기 화학식 1의 실라잔계 화합물에 있어서 두개의 수소원자와 함께 탄소수 1 내지 4의 알킬기를 4개 포함하는 테트라알킬디실라잔, 또는 탄소수 1 내지 4의 알킬기를 6개 포함하는 헥사알킬디실라잔일 수 있으며, 보다 구체적으로는 헥사메틸디실라잔(HMDS) 또는 테트라메틸디실라잔일 수 있다.Among these, the silazane-based surface modifier may further increase the hydrophobicity of the silica airgel. In the silazane-based compound of Formula 1, tetraalkyldisilazane including four alkyl groups having 1 to 4 carbon atoms together with two hydrogen atoms may be used. Or hexaalkyldisilazane including six alkyl groups having 1 to 4 carbon atoms, and more specifically, hexamethyldisilazane (HMDS) or tetramethyldisilazane.
또, 상기 표면개질제는 졸 내 포함되는 실리카 1중량부에 대하여 0.6중량부 내지 2중량부로 사용될 수 있다. 만약, 상기 표면개질제의 함량이 0.6 중량부 미만이면 최종 제조되는 실리카 에어로겔에서의 소수화도가 낮고, 탭 밀도가 증가될 우려가 있으며, 2 중량부를 초과할 경우 첨가되는 양에 비하여 탭 밀도 특성 및 소수화도 특성의 향상 효과가 미미할 수 있다. 표면개질제의 사용에 따른 개선효과의 현저함을 고려할 때, 상기 표면개질제는 실리카 1 중량부에 대하여 0.6중량부 내지 1.8중량부, 혹은 0.6중량부 내지 1.2중량부로 사용될 수 있다.The surface modifier may be used in an amount of 0.6 parts by weight to 2 parts by weight based on 1 part by weight of silica contained in the sol. If the content of the surface modifier is less than 0.6 parts by weight, the hydrophobicity in the final silica airgel is low, there is a fear that the tap density may be increased, and when the content of the surface modifier exceeds 2 parts by weight, the tap density characteristics and the hydrophobicity may be increased. The effect of improving the degree characteristic may be insignificant. In view of the remarkable improvement of the use of the surface modifier, the surface modifier may be used in an amount of 0.6 parts by weight to 1.8 parts by weight, or 0.6 parts by weight to 1.2 parts by weight based on 1 part by weight of silica.
상기 건조 공정은 구체적으로 초임계 이산화탄소를 이용한 초임계 건조 공정 또는 상압 건조 공정에 의해 수행될 수 있다. Specifically, the drying process may be performed by a supercritical drying process or an atmospheric pressure drying process using supercritical carbon dioxide.
이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다. 초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.Carbon dioxide (CO 2 ) is a gaseous state at room temperature and atmospheric pressure, but if it exceeds a certain temperature and high pressure limit called the supercritical point, the evaporation process does not occur, so it becomes a critical state in which gas and liquid cannot be distinguished. Carbon dioxide in the state is called supercritical carbon dioxide. Supercritical carbon dioxide has a molecular density close to a liquid, but has a low viscosity, close to a gas, high diffusion efficiency, high drying efficiency, and short drying time.
상기 초임계 건조 공정은 단계 2에서 제조한 실리카겔-기재 복합체를 사용하는 것을 제외하고는 통상의 방법에 따라 수행될 수 있다. 구체적으로는 상기 초임계 건조 공정은 초임계 건조 반응기 내에 실리카겔-기재 복합체를 넣은 다음, 액체 상태의 CO2를 채우고 실리카 에어로겔 내부의 알코올 용매를 CO2로 치환하는 용매치환 공정을 수행한다. 그 후에 일정 승온 속도, 구체적으로는 0.1℃/min 내지 1℃/min의 속도로, 40℃ 내지 50℃로 승온 시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100bar 내지 150bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20분 내지 1시간 동안 유지한다. 일반적으로 이산화탄소는 31℃의 온도, 73.8bar의 압력에서 초임계 상태가 된다. 이산화탄소가 초임계 상태가 되는 일정 온도 및 일정 압력에서 2시간 내지 12시간, 보다 구체적으로는 2시간 내지 6시간 동안 유지한 다음, 서서히 압력을 제거하여 초임계 건조 공정을 완료할 수 있다. The supercritical drying process may be performed according to a conventional method except for using the silica gel-based composite prepared in Step 2. Specifically, in the supercritical drying process, a silica gel-based composite is placed in a supercritical drying reactor, and then a solvent replacement process is performed in which a liquid CO 2 is filled and the alcohol solvent inside the silica aerogel is replaced with CO 2 . Thereafter, after raising the temperature to 40 ° C. to 50 ° C. at a constant temperature increase rate, specifically 0.1 ° C./min to 1 ° C./min, the pressure or more at which carbon dioxide becomes a supercritical state, specifically, 100 bar to 150 bar The pressure is maintained in a supercritical state of carbon dioxide for a period of time, specifically 20 minutes to 1 hour. In general, carbon dioxide is supercritical at a temperature of 31 ° C. and a pressure of 73.8 bar. The carbon dioxide may be maintained at a constant temperature and a constant pressure for 2 hours to 12 hours, more specifically, 2 hours to 6 hours at which the carbon dioxide becomes a supercritical state, and then the pressure may be gradually removed to complete the supercritical drying process.
또, 상압 건조 공정의 경우, 상압(1±0.3 atm) 하에서 자연건조 등의 통상의 방법에 따라 수행될 수 있으며, 선택적으로 상기한 압력 조건하에서 120℃ 내지 180℃에서 1시간 이내의 열처리가 수행될 수도 있다. 이때 제조된 블랑켓에서의 잔류 용매의 급격한 건조로 인한 에어로겔 구조 수축을 방지하기 위해 알루미늄 호일 등의 금속호일로 블랑켓을 감싼 후 복수개의 구멍을 뚫어 수행할 수도 있다. In addition, in the case of the atmospheric pressure drying process, it can be carried out according to a conventional method such as natural drying under normal pressure (1 ± 0.3 atm), optionally heat treatment within 1 hour at 120 ℃ to 180 ℃ under the above pressure conditions May be In this case, in order to prevent aerogel structure shrinkage due to rapid drying of the residual solvent in the manufactured blanket, the blanket may be wrapped with a metal foil such as aluminum foil and then drilled through a plurality of holes.
상기와 같은 건조 공정의 결과로, 나노크기의 기공을 갖는 다공성 실리카 에어로겔을 포함하는 블랑켓이 제조될 수 있다.As a result of the drying process as described above, a blanket comprising a porous silica airgel having nano-sized pores can be prepared.
상기와 같은 제조방법에 따라 제조된 실리카 에어로겔 포함 블랑켓은, 전술한 바와 같이 우수한 IR 흡수능을 갖는 무기 입자의 불투명화제가 블랑켓 내에 균일 분산되어 포함됨으로써 낮은 열전도도와 함께 향상된 난연성을 나타낼 수 있다. 이에 따라, 각종 산업용 설비의 배관이나 공업용 로와 같은 보온보냉용 플랜트 시설은 물론, 항공기, 선박, 자동차, 건축 구조물 등의 단열재, 보온재, 또는 불연재로서 유용하다.As described above, the silica airgel-containing blanket prepared according to the above-described method may exhibit an improved flame retardancy along with low thermal conductivity since the opaque agent of the inorganic particles having excellent IR absorption ability is uniformly dispersed in the blanket. Accordingly, it is useful not only for thermal insulation thermal insulation plant facilities such as piping for various industrial facilities and industrial furnaces, but also as insulation, insulation, or non-combustible materials for aircraft, ships, automobiles, and building structures.
아울러, 본 발명의 또 다른 일 실시예에 따르면 상기한 실리카 에어로겔 포함 블랑켓의 제조에 유용한, 불투명화제 포함 분산액을 제공한다.In addition, according to another embodiment of the present invention provides a dispersion containing an opaque agent, which is useful for the production of the blanket containing silica airgel.
상기 불투명화제 포함 분산액은, 앞서 설명한 바와 같이 무기입자를 강염기를 포함하는 염기성 수용액에 분산시켜 식각한 후, 물로 정제하여 제조되는 것으로, 화학 식각의 결과로 상기한 물성적 특성을 갖는 불투명화제 및 물을 포함할 수 있다. 이때 상기 불투명화제의 종류와 함량, 및 불투명화제 포함 분산액의 제조방법은 앞서 설명한 바와 같다. As described above, the dispersion containing the opacifier is prepared by dispersing the inorganic particles in a basic aqueous solution containing a strong base and then etching them with water. The opacifier and water having the above-described physical properties as a result of chemical etching are prepared. It may include. At this time, the type and content of the opaque agent, and the method for producing a dispersion containing the opaque agent is as described above.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 보다 상세히 설명한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples and Experimental Examples. However, the following Examples and Experimental Examples are for illustrating the present invention and the scope of the present invention is not limited by these Examples and Experimental Examples.
실시예 1Example 1
루틸형 결정성을 갖는 TiO2 5g를 2M 수산화칼륨(KOH) 용액에 넣고 3시간 동안 교반하여 TiO2에 대한 식각반응을 수행하였다. 결과의 식각액에 물 240ml를 첨가하여 정제하여 물 중에 식각된 TiO2가 분산된 불투명화제 포함 분산액을 제조하였다.5 g of TiO 2 having rutile crystallinity was added to a 2M potassium hydroxide (KOH) solution, and stirred for 3 hours to perform an etching reaction on TiO 2 . 240 ml of water was added to the resulting etchant to purify to prepare a dispersion including an opaque agent in which TiO 2 etched in water was dispersed.
실리카 알콕시드 전구체 20g과 에탄올 40g을 혼합하여 제조한 전구체 용액에, 상기에서 제조한 불투명화제 포함 분산액 5ml를 첨가하여 불투명화제 포함-실리카 에어로겔 형성용 조성물을 제조하였다. To the precursor solution prepared by mixing 20 g of silica alkoxide precursor and 40 g of ethanol, 5 ml of the above-mentioned dispersion containing an opaque agent was added to prepare a composition for forming an opaque agent-silica aerogel.
상기 불투명화제 포함-실리카 에어로겔 형성용 조성물에 암모니아 촉매 0.5ml를 에탄올 12ml로 희석한 용액을 상기 조성물의 pH가 8~9가 되도록 첨가하고, 폴리에틸렌테레프탈레이트(PET) 파이버에 캐스팅하여 겔화를 유도하였다. 겔화 완료 후, 결과로 수득된 불투명화제-실리카겔-기재 복합제를 2.0중량%의 암모니아 수용액을 이용하여 50℃에서 70분간 에이징하였다. 에이징 완료 후, 결과의 불투명화제-실리카겔-기재 복합제에 대해, 헥사메틸디실라잔(HMDS) 4ml와 에탄올 76ml를 혼합하여 제조한 표면개질제 함유 용액 80ml를 이용하여 12시간 동안 소수화 표면개질을 수행하였다. 소수화 표면개질 반응의 완료 후, 결과로 수득된 습윤겔을 상압(1atm) 건조하여, 실리카 에어로겔 및 식각된 TiO2의 불투명화제가 포함된 블랑켓을 제조하였다.A solution of 0.5 ml of an ammonia catalyst diluted with 12 ml of ethanol was added to the composition for forming a silica aerogel including the opaque agent so that the pH of the composition was 8-9, and cast on polyethylene terephthalate (PET) fiber to induce gelation. . After gelation was completed, the resulting opacifier-silica gel-based composite was aged at 50 ° C. for 70 minutes using 2.0% by weight aqueous ammonia solution. After completion of aging, the resulting opacifier-silica gel-based composite was subjected to hydrophobization surface modification for 12 hours using 80 ml of a surface modifier-containing solution prepared by mixing 4 ml of hexamethyldisilazane (HMDS) and 76 ml of ethanol. . After completion of the hydrophobization surface modification reaction, the resultant wet gel was dried at atmospheric pressure (1 atm) to prepare a blanket containing a silica airgel and an opaque agent of etched TiO 2 .
실시예 2Example 2
상기 실시예 1에서 폴리에틸렌테레프탈레이트(PET) 파이버 대신에 헥사메틸디실라잔(HMDS)으로 소수화 표면처리한 PET 파이버를 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 블랑켓을 제조하였다. In Example 1, the blanket was subjected to the same method as in Example 1, except that PET fiber hydrophobized with hexamethyldisilazane (HMDS) was used instead of polyethylene terephthalate (PET) fiber. Prepared.
비교예 1Comparative Example 1
실리카 알콕시드 전구체 20g과 에탄올 40g을 혼합하여 제조한 전구체 용액에, 불투명화제로서 루틸형 결정성을 갖는 TiO2 5g을 증류수 240ml에 분산시켜 제조한 분산액 5ml를 첨가하여 불투명화제 포함-실리카 에어로겔 형성용 조성물을 제조하였다. 상기 불투명화제 포함-실리카 에어로겔 형성용 조성물에, 암모니아 촉매 0.5ml를 에탄올 12ml로 희석한 용액을 상기 조성물의 pH가 8~9가 되도록 첨가하고, PET 파이버에 캐스팅하여 겔화를 유도하였다. 겔화 완료 후, 결과로 수득된 불투명화제-실리카겔-기재 복합제를 2.0중량%의 암모니아 수용액을 이용하여 50℃에서 70분간 에이징하였다. 에이징 완료 후, 결과의 불투명화제-실리카겔-기재 복합제에 대해, 헥사메틸디실라잔(HMDS) 4ml와 에탄올 76ml를 혼합하여 제조한 표면개질제 함유 용액 80ml를 이용하여 12시간 동안 소수화 표면개질을 수행하였다. 소수화 표면개질 반응의 완료 후, 결과로 수득된 습윤겔을 상압(1atm) 건조하여, 실리카 에어로겔 및 불투명화제가 포함된 블랑켓을 제조하였다.To the precursor solution prepared by mixing 20 g of silica alkoxide precursor and 40 g of ethanol, 5 ml of a dispersion prepared by dispersing 5 g of TiO 2 having rutile crystallinity as an opaque agent in 240 ml of distilled water was added to form an opaque agent-silica aerogel. The composition was prepared. To the composition containing the opaque agent-silica aerogel, a solution of 0.5 ml of an ammonia catalyst diluted with 12 ml of ethanol was added so that the pH of the composition was 8-9, and cast on PET fiber to induce gelation. After gelation was completed, the resulting opacifier-silica gel-based composite was aged at 50 ° C. for 70 minutes using 2.0% by weight aqueous ammonia solution. After completion of aging, the resulting opacifier-silica gel-based composite was subjected to hydrophobization surface modification for 12 hours using 80 ml of a surface modifier-containing solution prepared by mixing 4 ml of hexamethyldisilazane (HMDS) and 76 ml of ethanol. . After completion of the hydrophobization surface modification reaction, the resultant wet gel was dried at atmospheric pressure (1 atm) to prepare a blanket including silica airgel and an opacifying agent.
실험예 1Experimental Example 1
상기 실시예 1 및 비교예 1에서 제조한 불투명화제를 투과전자 현미경을 이용하여 관찰하였다. 그 결과를 도 1 및 2에 각각 나타내었다.The opaque agent prepared in Example 1 and Comparative Example 1 was observed using a transmission electron microscope. The results are shown in FIGS. 1 and 2, respectively.
관찰결과, 실시예 1에서 제조한 불투명화제의 경우, 단위 체적 내에 평균 4개의 1차 입자상의 무기 입자가 결합되어 있는 반면, 식각 공정을 수행하지 않는 비교예 1의 불투명화제의 경우 단위 체적 내에 약 20개~30개, 평균 25개의 1차 입자상의 무기 입자가 결합되어, 고도로 구조화되어 있음을 확인할 수 있다. As a result, in the case of the opaque agent prepared in Example 1, the inorganic particles in the average of four primary particles are bound in the unit volume, while in the case of the opaque agent of Comparative Example 1 which does not perform an etching process, It can be confirmed that the inorganic particles of 20 to 30 and an average of 25 primary particles are bonded and highly structured.
또, 실시예 1에서 제조한 불투명화제는 평균 입자직경(D50)은 320nm이고, 이를 구성하는 1차 입자상의 무기 입자의 평균 입자직경(D50)은 100nm이었으며, 1차 입자상의 무기 입자 표면에 미세한 요철이 형성되어 있음을 확인할 수 있었다.In addition, the opaque agent prepared in Example 1 had an average particle diameter (D 50 ) of 320 nm, and the average particle diameter (D 50 ) of the primary particulate inorganic particles constituting the same was 100 nm, and the surface of the primary particulate inorganic particles It was confirmed that fine irregularities were formed in the.
또, 상기 실시예 1 및 2에서 제조한 블랑켓을 밀링(milling) 장비를 사용하여 6000rpm의 조건으로 분쇄 후, 투과전자 현미경을 이용하여 관찰하였다. 그 결과를 도 3 및 도 4에 나타내었다.In addition, the blankets prepared in Examples 1 and 2 were milled under a condition of 6000 rpm using a milling equipment, and then observed using a transmission electron microscope. The results are shown in FIGS. 3 and 4.
도 3에서 a)는 블랑켓내 에어로겔과 불투명화제의 복합체를 관찰한 TEM 사진이고, b)는 상기 복합체에 있어서 실리콘(Si)을, 그리고 c)는 티타늄(Ti)의 위치를 관찰한 것이다. 또 도 4에서 a)는 블랑켓내 에어로겔과 불투명화제를 관찰한 TEM 사진이고, b)는 블랑켓내 실리콘(Si)의 분포를 관찰한 사진이다.In FIG. 3, a) is a TEM photograph of a composite of an airgel and an opaque agent in a blanket, b) is silicon (Si), and c) is titanium (Ti) in the composite. In FIG. 4, a) is a TEM photograph of the airgel and the opaque agent in the blanket, and b) is a photograph of the distribution of silicon (Si) in the blanket.
관찰 결과, 실시예 1의 경우 식각 공정에 의해 불투명화제 표면에 축합반응성 작용기, 구체적으로 히드록시기가 다량 형성되고, 늘어난 축합 반응성 작용기에 의해 실리카 전구체와의 결합력 향상으로 에어로겔 내부로 불투명화제가 잘 들어가 있는 것을 확인할 수 있다. 또, 블랑켓내 포함된 에어로겔은 서로 연결되어 3차원 망목 구조를 형성하고 있었다. As a result, in the case of Example 1, a large amount of condensation-reactive functional groups, particularly hydroxy groups, are formed on the surface of the opaque agent by the etching process, and the opacity agent is well incorporated into the aerogel due to the enhancement of the bonding force with the silica precursor by the increased condensation-reactive functional group. You can see that. In addition, the airgel contained in the blanket was connected to each other to form a three-dimensional network structure.
반면, 식각 공정을 수행하지 않은 불투명화제를 포함하는 비교예 1의 블랑켓의 경우, 불투명화제의 입자 크기도 크고 표면의 작용기도 적어 밀링 공정 동안에 에어로겔과 쉽게 분리되어 버렸다. 그 결과, TEM 관찰시 Ti가 거의 관찰되지 않았다.On the other hand, in the blanket of Comparative Example 1 including an opaque agent that did not perform an etching process, the particle size of the opaque agent was large and the functionalities of the surface were small, so that it was easily separated from the airgel during the milling process. As a result, almost no Ti was observed upon TEM observation.
실험예 2Experimental Example 2
불투명화제의 식각시 염기 물질의 사용량에 따른 평균 입자직경 및 평균 제타 전위의 변화를 관찰하였다. The change of the average particle diameter and the average zeta potential was observed according to the amount of the base material used during the etching of the opacifying agent.
상세하게는, 염기 물질로서 KOH의 농도를 0.1M, 1M, 2M, 4M 및 10M로 다양하게 변화시켜 제조한 수산화칼륨 용액에, 루틸형 결정성을 갖는 TiO2 2g를 각각 넣고 25℃에서 2시간 동안 교반하여 TiO2에 대한 식각반응을 수행하였다. 결과의 식각액에 물 240ml를 첨가하여 정제하여 물 중에 식각된 TiO2가 분산된 불투명화제 포함 분산액을 제조하였다. 제타전위 측정장치(Zetasizer Nano ZS90, Malvern instruments사제)를 이용하여, 상기에서 수득한 분산액 중에 분산된 TiO2의 평균 입자직경(avg.size) 및 평균 제타전위(avg. zeta potential)를 측정하였다. 그 결과를 도 5에 나타내었다. Specifically, in a potassium hydroxide solution prepared by varying the concentration of KOH as 0.1M, 1M, 2M, 4M and 10M as a base material, 2 g of TiO 2 having rutile crystallinity were added to each other at 25 ° C. for 2 hours. While stirring, the etching reaction was performed on TiO 2 . 240 ml of water was added to the resulting etchant to purify to prepare a dispersion including an opaque agent in which TiO 2 etched in water was dispersed. The zeta potential measuring device (Zetasizer Nano ZS90, manufactured by Malvern instruments) was used to measure the average particle diameter (avg.size) and average zeta potential (avg. Zeta potential) of TiO 2 dispersed in the dispersion obtained above. The results are shown in FIG.
실험결과, KOH의 농도가 증가할수록 불투명화제의 제타전위의 절대값은 증가하고, 입자크기는 감소하였다. 아울러 무기입자에 대한 식각이 염기물질의 농도와 더불어 식각 시간의 영향을 받음을 고려할 때, 식각액 중의 염기물질의 농도와 식각 시간의 제어를 통해 불투명화제의 제타전위 및 입자크기의 제어가 가능함을 예상할 수 있다. As a result, the absolute value of zeta potential of the opaque agent increases and the particle size decreases as the concentration of KOH increases. In addition, considering that the etching of inorganic particles is affected by the etching time along with the concentration of the base material, the zeta potential and particle size of the opacifier can be controlled by controlling the concentration of the base material and the etching time in the etchant. can do.
또, 식각 여부에 따른 불투명화제의 입도 분포를 비교, 평가하였다. In addition, the particle size distribution of the opaque agent according to the etching or not was compared and evaluated.
상세하게는 염기 물질로서 4M KOH를 이용하는 것을 제외하고는 상기에서와 동일한 방법으로 식각 공정을 1회~3회 수행하고, 식각 횟수에 따라 수득된 불투명화제의 입도 분포를 관찰하였다. 비교를 위하여 식각 공정을 실시하지 않은 비교예 1의 불투명화제에 대해서도 입도 분포를 관찰하였다. 그 결과를 도 6에 나타내었다.In detail, except that 4M KOH is used as the base material, the etching process was performed once to three times in the same manner as above, and the particle size distribution of the opaque agent obtained according to the number of etching was observed. Particle size distribution was also observed for the opaque agent of Comparative Example 1, which was not subjected to the etching process for comparison. The results are shown in FIG.
실험결과, 식각 횟수에 무관하게 식각된 불투명화제는 좁은 입자 분포를 나타내어, 균일한 입자 크기를 가짐을 확인할 수 있었다. As a result of the experiment, the opaque agent etched regardless of the number of etching showed a narrow particle distribution, it was confirmed that it has a uniform particle size.
한편, 비교예 1의 불투명화제의 경우 입도 분포 분석을 위해 용매에 분산시 분산매 중에 분산되지 않고 가라앉아 측정이 불가능하였다. 이 같은 결과로부터 비교예 1의 불투명화제는 입도 분포가 광범위(broad)하고, 재현성이 없음을 알 수 있다.On the other hand, in the case of the opaque agent of Comparative Example 1 was not dispersed in the dispersion medium when dispersed in the solvent for the particle size distribution analysis, it was impossible to measure. From these results, it can be seen that the opaque agent of Comparative Example 1 has a broad particle size distribution and no reproducibility.
또, 상기 실시예 1 및 비교예 1에서 식각하거나 또는 사용한 불투명화제에 대해 상기에서와 동일한 방법으로 실시하여 물 중에서의 불투명화제의 제타전위를 측정하였다. 그 결과를 표 1에 나타내었다.In addition, the zeta potential of the opacifying agent in water was measured by the same method as described above with respect to the opacifying agent used or etched in Example 1 and Comparative Example 1. The results are shown in Table 1.
실시예 1Example 1 비교예 1Comparative Example 1
제타전위 (mV)Zeta potential (mV) -31.3-31.3 -5.2-5.2
실험결과, 식각 공정을 실시한 실시예 1의 불투명화제는 식각 공정을 실시하지 않은 비교예 1의 불투명화제에 비해 제타전위의 절대값이 크게 증가하였다. 이로부터 식각에 의해 실시예 1의 불투명화제 표면에 작용기의 함량이 증가하였음을 알 수 있으며, 그 결과로서 보다 우수한 분산성을 나타낼 수 있음을 예상할 수 있다. As a result, the absolute value of the zeta potential of the opacifying agent of Example 1 subjected to the etching process was significantly increased compared to that of the comparative example 1 which did not perform the etching process. From this, it can be seen that the content of functional groups on the surface of the opaque agent of Example 1 is increased by etching, and as a result, it can be expected that the dispersibility can be better.
실험예 3Experimental Example 3
상기 실시예 1 및 비교예 1에서 제조한 불투명화제의 분산성을 평가하였다.The dispersibility of the opaque agent prepared in Example 1 and Comparative Example 1 was evaluated.
상기 실시예 1 및 비교예 1에서 제조한, 식각된 TiO2를 포함하는 분산액을 a) 제조 직후, b) 제조 후 1시간 동안 정치한 뒤, 그리고 c) 제조 후 3시간 동안 정치한 뒤, 분산액의 투명도 변화를 각각 관찰하였다. 그 결과를 도 7에 나타내었다.After the dispersion prepared in Example 1 and Comparative Example 1, comprising the etched TiO 2 a) immediately after the preparation, b) left to stand for 1 hour after preparation, and c) left to stand for 3 hours after preparation, the dispersion The transparency change of was observed, respectively. The results are shown in FIG.
실험결과, 실시예 1에서 제조한 불투명화제 포함 분산액의 경우 식각된 불투명화제의 균일 분산으로 인해 제조 직후 비교예 1의 분산액과 비교하여 보다 높은 투명도를 나타내었다. 또, 실시예 1에서 제조한 불투명화제 포함 분산액은 우수한 분산안정성으로 인해 제조 3시간 뒤에도 비교예 1과 비교하여 투명도의 변화가 거의 나타나지 않았다. 한편, 비교예 1의 경우, 불투명화제의 침전으로 인해 분산액 제조 이후 3시간 뒤에는 분산액의 불투명화도가 크게 감소하였다. As a result of the experiment, the dispersion containing the opaque agent prepared in Example 1 exhibited higher transparency compared to the dispersion of Comparative Example 1 immediately after preparation due to the uniform dispersion of the etched opaque agent. In addition, the dispersion containing the opaque agent prepared in Example 1 showed little change in transparency compared to Comparative Example 1 after 3 hours due to the excellent dispersion stability. On the other hand, in Comparative Example 1, the opacity of the dispersion was greatly reduced after 3 hours after the preparation of the dispersion due to precipitation of the opacifier.
실험예 4Experimental Example 4
상기 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓에 대해 평균 중량 손실, 열전도도(T/C) 및 진밀도를 각각 측정하였다. 그 결과를 하기 표 2에 나타내었다.The average weight loss, thermal conductivity (T / C) and true density of the blankets prepared in Example 1 and Comparative Example 1 were measured, respectively. The results are shown in Table 2 below.
평균 중량 손실(ave. weight loss): 제조한 실시예 1 및 비교예 1의 블랑켓에 대해 동일 강도로 3회 손 털기를 실시한 후, 실험 전 블랑켓의 중량에서의 변화를 측정하였다. Average weight loss (ave.weight loss): After the hand-washing three times the same strength for the blanket of Example 1 and Comparative Example 1 prepared, the change in the weight of the blanket before the experiment was measured.
열전도도(T/C): 열전도도 측정기(HFM436, NETZSCH사제)를 이용하여 상온(25℃)의 조건에서 실시예 1 및 비교예 1의 블랑켓의 열전도도를 각각 측정하였다.Thermal conductivity (T / C): The thermal conductivity of the blanket of Example 1 and Comparative Example 1 was measured on the conditions of normal temperature (25 degreeC) using the thermal conductivity measuring instrument (HFM436, NETZSCH company make).
진밀도(true density): 제조한 실시예 1 및 비교예 1의 블랑켓의 단위 부피에 대한 중량비를 측정하였다. True density: The weight ratio with respect to the unit volume of the blanket of Example 1 and the comparative example 1 which were manufactured was measured.
비교예 1Comparative Example 1 실시예 1Example 1
평균중량손실(g)Average weight loss (g) 0.15g(흰색 덩어리)0.15 g (white lump) 0.09g(고운 파우더)0.09 g (fine powder)
T/C (mW/mK)T / C (mW / mK) 15.115.1 13.413.4
진밀도 (g/cc)True density (g / cc) 1.911.91 2.072.07
실리카 에어로겔 자체의 진밀도가 1.89g/cc이고, 루틸형 TiO2의 진밀도가 4.23g/cc임을 고려할 때, 실시예 1에 따른 블랑켓은 비교예 1에 비해 높은 진밀도를 나타내었다. 이로부터 TiO2의 에칭 효과로 인해 블랑켓 제조시 동일 양의 사용으로도 블랑켓에 더 효과적으로 많은 양이 포함되었음을 알 수 있다. Considering that the true density of the silica airgel itself is 1.89 g / cc and the true density of the rutile TiO 2 is 4.23 g / cc, the blanket according to Example 1 exhibited a higher true density than that of Comparative Example 1. From this, it can be seen that due to the etching effect of TiO 2 , the blanket was more efficiently included in the blanket even when the same amount was used.
또, 이와 같이 불투명화제의 함량 증가에 따라 실시예 1의 블랑켓은 비교예 1에 비해 10% 이상 더 낮은 열전도도를 나타내었다. In addition, as the content of the opacifier increased, the blanket of Example 1 showed a thermal conductivity lower than 10% compared to that of Comparative Example 1.
또, 실시예 1의 블랑켓은 비교예 1과 비교하여 더 낮은 평균 중량 손실을 나타내었다. 이로부터 TiO2의 에칭 효과로 인해 블랑켓 제조시 TiO2가 보다 우수한 부착력으로 블랑켓 기재에 부착되었음을 알 수 있다.In addition, the blanket of Example 1 exhibited a lower average weight loss compared to Comparative Example 1. Due therefrom by etching effect of TiO 2 in the manufacture of blankets TiO 2 is more excellent adhesion can be seen that attached to the blanket substrate.
실험예 5Experimental Example 5
상기 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓 내 실리카 에어로겔의 비표면적, 실리카 에어로겔 내 총 기공부피(total pore volume) 및 평균 기공직경(avg. pore diameter)을 3Flex(Micromeritics사제)를 이용하여 각각 측정하였다. 그 결과를 하기 표 3에 나타내었다. The specific surface area of the silica airgel in the blanket prepared in Example 1 and Comparative Example 1, the total pore volume and the average pore diameter (avg. Pore diameter) in the silica airgel was 3Flex (manufactured by Micromeritics). Each was measured using. The results are shown in Table 3 below.
비교예1Comparative Example 1 실시예1Example 1 참고예Reference Example
비표면적(m2/g)Specific surface area (m 2 / g) 789.9789.9 850.8850.8 761.4761.4
기공부피(cm3/g)Pore volume (cm 3 / g) 3.413.41 3.703.70 3.203.20
기공직경(nm)Pore diameter (nm) 12.2312.23 12.0712.07 12.5512.55
상기 표 3에서 참고예는, 상기 비교예 1에 따른 블랑켓의 제조시 불투명화제를 사용하지 않는 것을 제외하고는 동일한 방법으로 실시하여 제조한 실리카 에어로겔 포함 블랑켓 내 실리카 에어로겔에 대한 값이다. Reference Example in Table 3 is a value for the silica airgel in the blanket prepared by carrying out the same method except in the manufacture of the blanket according to Comparative Example 1 using no opaque agent in the same manner.
실험결과, 에칭에 의한 TiO2의 표면적 증가로 제조된 실리카 에어로겔 포함 블랑켓의 표면적이 증가하였으며, 비교예 1에 비해 보다 미세한 기공이 보다 높은 기공도로 형성됨을 확인할 수 있다.As a result of the experiment, the surface area of the blanket prepared silica airgel containing the increase in the surface area of the TiO 2 by the etching was increased, it can be seen that the finer pores are formed with a higher porosity than in Comparative Example 1.
실험예 6Experimental Example 6
상기 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓에 대해 고온 처리에 따른 소수성 변화를 관찰하였다. The hydrophobic change of the blanket prepared in Example 1 and Comparative Example 1 including the silica airgel was observed according to the high temperature treatment.
상세하게는 상기 실시예 1 및 비교예 1에서 제조한 실리카 에어로겔 포함 블랑켓, 그리고 상기 블랑켓을 각각 300℃ 및 400℃에서 10시간 동안 열처리한 후, 탄소(C)량 변화를 탄소 분석기를 이용하여 탄소 함량을 측정하였다. 각 실험은 2회 반복 실시하였다. 그 결과를 하기 표 4에 나타내었다.In detail, the blanket containing the silica airgel prepared in Example 1 and Comparative Example 1 and the blanket was heat-treated at 300 ° C. and 400 ° C. for 10 hours, and then the carbon (C) amount was changed using a carbon analyzer. The carbon content was measured. Each experiment was repeated twice. The results are shown in Table 4 below.
C 함량C content
실온(23℃)Room temperature (23 ℃) 300℃/10시간 처리 후After 300 ℃ / 10 hours treatment 400℃/10시간 처리 후After 400 ℃ / 10 hours treatment
실시예1Example 1 비교예1Comparative Example 1 실시예1Example 1 비교예1Comparative Example 1 실시예1Example 1 비교예1Comparative Example 1
1차Primary 8.998.99 9.519.51 3.133.13 2.702.70 1.571.57 1.051.05
2차Secondary 8.958.95 10.1110.11 2.992.99 2.592.59 1.451.45 1.021.02
평균Average 9.09.0 9.89.8 3.13.1 2.62.6 1.51.5 1.01.0
실험결과, 에칭한 TiO2의 표면적 증가로 인해, 실시예 1의 블랑켓은 고온 처리 후에도 비교예 1에 비해 소수성 감소가 작았다.As a result of the experiment, due to the increase in the surface area of the etched TiO 2 , the blanket of Example 1 had a smaller hydrophobic decrease compared to Comparative Example 1 even after the high temperature treatment.

Claims (18)

  1. 블랑켓용 기재; 및Blanket substrate; And
    상기 블랑켓용 기재의 표면 및 내부 중 적어도 하나에 위치하는, 실리카 에어로겔 및 불투명화제를 포함하며,At least one of the surface and the inside of the blanket substrate, comprising a silica airgel and an opacifier,
    상기 불투명화제는 1차 입자 상의 무기 입자가 응집된 2차 입자상이며, 1㎛3 단위 체적당 1개 내지 5개의 무기 입자를 포함하는 것인 실리카 에어로겔 포함 블랑켓. The opacifying agent is a silica airgel-containing blanket is a secondary particle shape in which the inorganic particles on the primary particles are aggregated, and contains 1 to 5 inorganic particles per 1 μm 3 unit volume.
  2. 제1항에 있어서,The method of claim 1,
    상기 불투명화제는 평균 입자 직경이 300nm 내지 1600nm인 것인 실리카 에어로겔 포함 블랑켓.The opaque agent is a blanket of silica airgel containing an average particle diameter of 300nm to 1600nm.
  3. 제1항에 있어서,The method of claim 1,
    상기 무기 입자는 입자 표면에 히드록시기, 알콕시기, 카르복시기 및 에스테르기로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 축합반응성 작용기를 포함하는 것인 실리카 에어로겔 포함 블랑켓. The inorganic particle blanket blanket silica silica gel containing any one or two or more condensation functional groups selected from the group consisting of hydroxy group, alkoxy group, carboxyl group and ester group on the surface of the particle.
  4. 제1항에 있어서,The method of claim 1,
    상기 무기 입자는 표면 상에 요철을 갖는 것인 실리카 에어로겔 포함 블랑켓.The inorganic particle is a blanket blanket silica silica gel having irregularities on the surface.
  5. 제1항에 있어서,The method of claim 1,
    상기 무기 입자는 금속 산화물, 금속 탄화물, 금속 질화물, 금속 수산화물, 금속염, 탄소계 물질, 세라믹 입자 및 이들의 혼합물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 실리카 에어로겔 포함 블랑켓.The inorganic particle comprises a blanket, silica airgel containing any one or two selected from the group consisting of metal oxides, metal carbides, metal nitrides, metal hydroxides, metal salts, carbon-based materials, ceramic particles and mixtures thereof.
  6. 제1항에 있어서,The method of claim 1,
    상기 무기 입자는 루틸형 TiO2 및 아나타제형 TiO2로 이루어진 군에서 선택되는 적어도 어느 하나의 티타늄 산화물을 포함하는 것인 실리카 에어로겔 포함 블랑켓.The inorganic particle is a blanket containing silica airgel that comprises at least one titanium oxide selected from the group consisting of rutile TiO 2 and anatase type TiO 2 .
  7. 제1항에 있어서,The method of claim 1,
    상기 실리카 에어로겔은 1차 입자들이 결합된 3차원 망목 구조를 갖는 것인 실리카 에어로겔 포함 블랑켓.The silica airgel blanket having a silica airgel that has a three-dimensional network structure combined primary particles.
  8. 제1항에 있어서,The method of claim 1,
    상기 실리카 에어로겔은 비표면적이 700m2/g 이상인 것인 실리카 에어로겔 포함 블랑켓.The silica airgel is a blanket of silica airgel containing a specific surface area of 700m 2 / g or more.
  9. 제1항에 있어서,The method of claim 1,
    상기 실리카 에어로겔은 실리카 에어로겔 총 중량에 대하여 8중량% 이상의 탄소 함량을 갖는 소수성 실리카 에어로겔인 것인 실리카 에어로겔 포함 블랑켓.The silica airgel blanket is a silica airgel containing silica airgel is a hydrophobic silica airgel having a carbon content of at least 8% by weight relative to the total weight of the silica airgel.
  10. 제1항에 있어서,The method of claim 1,
    상기 블랑켓용 기재는 기재의 적어도 일면에 소수성 표면처리층을 더 포함하는 것인 실리카 에어로겔 포함 블랑켓.The blanket substrate is a silica airgel blanket comprising a hydrophobic surface treatment layer on at least one side of the substrate.
  11. 제1항에 있어서,The method of claim 1,
    상기 불투명화제는 실리카 에어로겔에 화학결합되어 불투명화제-실리카 에어로겔 복합체를 형성하는 것인 실리카 에어로겔 포함 블랑켓.The opaque agent comprises a silica airgel blanket that is chemically bonded to the silica airgel to form an opaque-silica airgel complex.
  12. 무기 입자를 염기성 수용액 중에 분산시켜 식각한 후, 물을 첨가하여 불투명화제 포함 분산액을 준비하는 단계;Dispersing the inorganic particles in the basic aqueous solution to be etched and preparing water, followed by adding water to prepare a dispersion containing an opacifier;
    상기 불투명화제 포함 분산액을 실리카 전구체와 혼합하여, 불투명화제 포함-실리카 에어로겔 형성용 조성물을 준비하는 단계;Mixing the opacifier-containing dispersion with a silica precursor to prepare a composition for opacifier-containing silica airgel formation;
    상기 불투명화제 포함-실리카 에어로겔 형성용 조성물에, 염기 촉매 및 극성 유기용매를 첨가한 후, 블랑켓용 기재를 첨가하고 겔화시켜, 불투명화제-실리카겔-기재 복합체를 준비하는 단계; 및Preparing an opaque agent-silica gel-based composite by adding a base catalyst and a polar organic solvent to the composition for forming an air opaque agent-silica aerogel, and adding and gelling the substrate for the blanket; And
    상기 불투명화제-실리카겔-기재 복합체를 소수화 표면개질 처리한 후 건조하는 단계Hydrophobizing surface-modifying the opacifier-silica gel-based composite and then drying
    를 포함하는 실리카 에어로겔 포함 블랑켓의 제조방법.Method for producing a blanket containing silica airgel comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 염기성 수용액은 12 이상의 산 해리 상수 값을 갖는 강염기 및 물을 포함하는 것인 실리카 에어로겔 포함 블랑켓의 제조방법. The basic aqueous solution is a silica airgel-containing blanket manufacturing method comprising a strong base and water having an acid dissociation constant value of 12 or more.
  14. 제12항에 있어서,The method of claim 12,
    상기 식각은 12 이상의 산 해리 상수 값을 갖는 강염기를 0.1M 내지 10M 농도로 포함하는 염기성 수용액 중에 무기 입자를 분산시킨 후, 최종 제조되는 불투명화제 포함 분산액 중에서의 불투명화제가 -10mV 내지 -60mV의 평균 제타전위를 나타내도록 하는 시간 동안 수행되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The etching may be performed by dispersing the inorganic particles in a basic aqueous solution containing a strong base having a dissociation constant value of 12 or more at a concentration of 0.1M to 10M, and then the average amount of the opaque agent in the final opaque-dispersing agent-containing dispersion is -10 mV to -60 mV. A method for preparing a blanket containing silica airgel that is carried out for a time to exhibit a zeta potential.
  15. 제12항에 있어서,The method of claim 12,
    상기 소수화 표면개질 처리는 분자내 2개 이상의 알킬기를 포함하는 실라잔계 표면개질제를 이용하여 수행되는 것인 실리카 에어로겔 포함 블랑켓의 제조방법.The hydrophobization surface modification is a method for producing a blanket containing silica airgel that is carried out using a silazane-based surface modifier comprising two or more alkyl groups in the molecule.
  16. 제1항 내지 제11항 중 어느 한 항에 따른 실리카 에어로겔 포함 블랑켓을 포함하는 단열재.A heat insulating material comprising a blanket comprising a silica airgel according to any one of claims 1 to 11.
  17. 불투명화제 및 물을 포함하고, Contains an opaque agent and water,
    상기 불투명화제는 물에서의 평균 제타전위가 -10mV 내지 -60mV인 것인 불투명화제 포함 분산액. The opacifying agent is a dispersion comprising an opacifying agent is the average zeta potential in water is -10mV to -60mV.
  18. 제17항에 있어서,The method of claim 17,
    상기 불투명화제는 1차 입자 상의 무기 입자가 응집된 2차 입자상이며, 1㎛3 단위 체적당 1개 내지 5개의 무기 입자를 포함하는 것인 불투명화제 포함 분산액.The opacifying agent is a dispersion in which the inorganic particles on the primary particles are agglomerated secondary particles, containing 1 to 5 inorganic particles per 1 μm 3 unit volume.
PCT/KR2016/003153 2015-09-10 2016-03-28 Blanket comprising silica aerogel and manufacturing method therefor WO2017043721A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018511383A JP6611916B2 (en) 2015-09-10 2016-03-28 Blanket containing silica airgel and method for producing the same
US15/547,970 US10501326B2 (en) 2015-09-10 2016-03-28 Silica aerogel-including blanket and method for preparing the same
CN201680010607.5A CN107438588B (en) 2015-09-10 2016-03-28 Felt and preparation method thereof containing aerosil
EP16844541.9A EP3235788B1 (en) 2015-09-10 2016-03-28 Blanket comprising silica aerogel and manufacturing method therefor
US16/657,678 US10836643B2 (en) 2015-09-10 2019-10-18 Silica aerogel-including blanket and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0128547 2015-09-10
KR20150128547 2015-09-10
KR1020160036566A KR101752091B1 (en) 2015-09-10 2016-03-28 Blanket comprising silica aerogel and method for preparing the same
KR10-2016-0036566 2016-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/547,970 A-371-Of-International US10501326B2 (en) 2015-09-10 2016-03-28 Silica aerogel-including blanket and method for preparing the same
US16/657,678 Division US10836643B2 (en) 2015-09-10 2019-10-18 Silica aerogel-including blanket and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2017043721A1 true WO2017043721A1 (en) 2017-03-16

Family

ID=58240897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003153 WO2017043721A1 (en) 2015-09-10 2016-03-28 Blanket comprising silica aerogel and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017043721A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107696630A (en) * 2017-09-29 2018-02-16 西安交通大学 A kind of aeroge gradient heat-barrier material of the opacifier containing heat absorbing type
CN108033805A (en) * 2017-12-08 2018-05-15 中国矿业大学 A kind of inorganic nano clad structure heat-insulating material and preparation method thereof
CN109693422A (en) * 2019-02-25 2019-04-30 深圳德宝天成科技有限公司 A kind of ultra-thin thermal isolation film
CN111278773A (en) * 2017-11-21 2020-06-12 株式会社Lg化学 Preparation method of silica aerogel felt with high heat insulation property and high strength
CN113717647A (en) * 2021-08-26 2021-11-30 淮安金环电子科技有限公司 Heat-resistant acetate cloth adhesive tape and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000048699A (en) * 1996-09-27 2000-07-25 마싸 앤 피네간 Compositions and insulation bodies having low thermal conductivity
KR20120116944A (en) * 2009-11-25 2012-10-23 캐보트 코포레이션 Aerogel composites and methods for making and using them
KR20130116632A (en) * 2012-04-16 2013-10-24 (주)엘지하우시스 Composite insulation board comprising opacifier and method for producing it
US20140273701A1 (en) * 2013-03-15 2014-09-18 Cabot Corporation Aerogel blanket and method of production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000048699A (en) * 1996-09-27 2000-07-25 마싸 앤 피네간 Compositions and insulation bodies having low thermal conductivity
KR20120116944A (en) * 2009-11-25 2012-10-23 캐보트 코포레이션 Aerogel composites and methods for making and using them
KR20130116632A (en) * 2012-04-16 2013-10-24 (주)엘지하우시스 Composite insulation board comprising opacifier and method for producing it
US20140273701A1 (en) * 2013-03-15 2014-09-18 Cabot Corporation Aerogel blanket and method of production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN, BO ET AL.: "Heat Insulation Properties of Silica Aerogel/glass Fiber Composites Fabricated by Press Forming", MATERIALS LETTERS, vol. 75, 25 January 2012 (2012-01-25), pages 204 - 206, XP028473559 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107696630A (en) * 2017-09-29 2018-02-16 西安交通大学 A kind of aeroge gradient heat-barrier material of the opacifier containing heat absorbing type
CN107696630B (en) * 2017-09-29 2020-07-28 西安交通大学 Aerogel gradient thermal insulation material containing heat absorption type opacifier
CN111278773A (en) * 2017-11-21 2020-06-12 株式会社Lg化学 Preparation method of silica aerogel felt with high heat insulation property and high strength
US11485892B2 (en) 2017-11-21 2022-11-01 Lg Chem, Ltd. Method for producing silica aerogel blanket having high thermal insulation and high strength
CN111278773B (en) * 2017-11-21 2023-03-28 株式会社Lg化学 Preparation method of silica aerogel felt with high heat insulation property and high strength
CN108033805A (en) * 2017-12-08 2018-05-15 中国矿业大学 A kind of inorganic nano clad structure heat-insulating material and preparation method thereof
CN109693422A (en) * 2019-02-25 2019-04-30 深圳德宝天成科技有限公司 A kind of ultra-thin thermal isolation film
CN109693422B (en) * 2019-02-25 2024-02-09 深圳德宝天成科技有限公司 Ultrathin heat insulation film
CN113717647A (en) * 2021-08-26 2021-11-30 淮安金环电子科技有限公司 Heat-resistant acetate cloth adhesive tape and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2017043721A1 (en) Blanket comprising silica aerogel and manufacturing method therefor
KR101752091B1 (en) Blanket comprising silica aerogel and method for preparing the same
US10858501B2 (en) Aerogel-containing composition and insulation blanket prepared using the same
WO2016163670A1 (en) Aerogel-containing composition and heat insulation blanket prepared by using same
WO2017078293A1 (en) Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
WO2015137761A1 (en) Method for preparing conductive heat-dissipating graphene coating material using sol-gel method and graphene oxide, and conductive heat-dissipating graphene coating material prepared thereby
Zhang et al. Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature
WO2018070755A1 (en) Low-dust high-thermal insulation aerogel blanket and method for manufacturing same
WO2017078294A1 (en) Method for preparing hydrophobic metal oxide-silica composite aerogel, and hydrophobic metal oxide-silica composite aerogel prepared thereby
WO2013009150A9 (en) Inorganic particle scattering film having a good light-extraction performance
WO2017171279A1 (en) Method for preparing spherical silica aerogel granule, and spherical silica aerogel granule prepared thereby
WO2015126216A1 (en) Composite ceramic prepared by using sol-gel method, thin film coating material with ultra-high temperature heat resistance and high corrosion resistance, containing same, and preparation method therefor
WO2016167494A1 (en) Method for manufacturing silica aerogel-containing blanket, and silica aerogel-containing blanket manufactured thereby
JP2007512217A (en) Insulation
WO2016105159A1 (en) Lightweight sound-absorbing refractory thermal insulating material using expanded graphite and swellable clay, and method for manufacturing same
CN111655618A (en) Aerogel with stable mechanical properties and preparation method thereof
Tartaj et al. The formation of zircon from amorphous ZrO 2· SiO 2 powders
WO2022080721A1 (en) Method for manufacturing aerogel blanket and aerogel blanket prepared therefrom
WO2020122683A1 (en) Aerogel blanket manufacturing method
WO2017171217A1 (en) Method for manufacturing low-dust high-insulation aerogel blanket
WO2019050347A1 (en) Method for producing metal oxide-silica composite aerogel, and metal oxide-silica composite aerogel produced thereby
WO2020130353A1 (en) Supercritical drying method for silica wet gel blanket
CN111278772B (en) Low-dust silica aerogel felt and manufacturing method thereof
WO2020076132A1 (en) Method for manufacturing thermosetting expanded foam having excellent flame retardancy, and thermosetting expanded foam using same
Zhao et al. Fabrication of ultra-fine flexible Y2Si2O7 fibrous membranes for thermal insulation by electrospinning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844541

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016844541

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018511383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE