WO2017043555A1 - 超電導線材の接合方法 - Google Patents

超電導線材の接合方法 Download PDF

Info

Publication number
WO2017043555A1
WO2017043555A1 PCT/JP2016/076371 JP2016076371W WO2017043555A1 WO 2017043555 A1 WO2017043555 A1 WO 2017043555A1 JP 2016076371 W JP2016076371 W JP 2016076371W WO 2017043555 A1 WO2017043555 A1 WO 2017043555A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
joining
superconducting wire
bonding
horn
Prior art date
Application number
PCT/JP2016/076371
Other languages
English (en)
French (fr)
Inventor
誠樹 森
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to JP2017539208A priority Critical patent/JP6662886B2/ja
Priority to US15/757,156 priority patent/US20180272462A1/en
Publication of WO2017043555A1 publication Critical patent/WO2017043555A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • B23K20/103Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding using a roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F15/00Connecting wire to wire or other metallic material or objects; Connecting parts by means of wire
    • B21F15/02Connecting wire to wire or other metallic material or objects; Connecting parts by means of wire wire with wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0207Ultrasonic-, H.F.-, cold- or impact welding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys

Definitions

  • the present invention relates to a method for joining superconducting wires in which superconducting wires coated with a stabilizing film are joined together while minimizing deterioration of superconducting properties.
  • Superconductors have a characteristic that their electric resistance becomes zero under low temperature conditions such as liquid nitrogen temperature ( ⁇ 196 ° C.), and are used in various fields such as large accelerators and linear motor cars.
  • a superconducting wire having such a superconductor has a structure as shown in FIG. 2, for example.
  • a superconducting layer 12 made of a superconductor is formed on a substrate material 11, and a superconductor such as silver is made on the superconducting layer 12.
  • a stabilizing layer 13 is coated.
  • Patent Document 1 As a method of connecting superconducting wires that do not deteriorate the superconducting characteristics after connection, a method of directly joining the surfaces of superconducting wires by applying thermal energy and pressure is proposed as shown in Patent Document 1.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a superconducting wire joining method for easily joining superconducting wires with minimal deterioration of superconducting characteristics.
  • the superconducting wire joining method of the present invention is a superconducting wire joining method in which a superconducting layer is coated with a stabilizing layer, and each of the two superconducting wires is in contact with each superconducting layer. And a superimposing step of superimposing the two superconducting wires, and the superimposing step and the joining step are performed at room temperature. Yes.
  • ultrasonic joining may be performed on a plurality of the overlapping portions.
  • the horn used for ultrasonic bonding has a disk shape, and in the bonding step, ultrasonic bonding may be performed while rolling the horn against the overlapped portion.
  • the contact area between the horn and the superconducting wire is reduced, and as a result, the possibility of an unjoined part occurring in the joining range can be reduced and reliable joining can be performed, so the superconducting characteristics are high.
  • a connecting wire can be obtained. Further, by performing ultrasonic bonding while rolling the horn, reliable bonding can be continuously performed.
  • the superconducting wire joining method of the present invention it is possible to easily join superconducting wires with minimal deterioration of superconducting characteristics.
  • FIG. 1 is a schematic view showing a joining apparatus for performing a superconducting wire joining method according to an embodiment of the present invention.
  • the joining apparatus 1 includes a horn 2 and an anvil 3 and joins two superconducting wires 10 by ultrasonic joining.
  • the horn 2 is a metal block to which an oscillator 4 is connected.
  • the horn 2 is ultrasonically vibrated with a predetermined amplitude and frequency in the horizontal direction (arrow direction (X-axis direction in the figure)).
  • a driving device not shown
  • the superconducting wire 10 installed on the anvil 3 can be pressurized from above.
  • the anvil 3 is a table that positions and holds the two superconducting wires 10 that are joined together so that vibration energy from the horn 2 does not escape when ultrasonic bonding is performed.
  • the principle of ultrasonic bonding by the bonding apparatus 1 is as follows.
  • Joining is performed by applying ultrasonic vibration parallel to the joining surface of the superconducting wire 10 while applying a vertical pressure (Z-axis direction) pressure to the superconducting wire 10 superimposed on the anvil 3 by the horn 2.
  • a vertical pressure Z-axis direction
  • the bonding surfaces rub against each other by ultrasonic vibration, and the oxide film and the deposits (dirt) existing on the bonding surfaces are destroyed and removed, and a clean metal surface is exposed.
  • an attractive force acts between the metal atoms on both joint surfaces, and further pressurizing increases the contact area of both joint surfaces and leads to joining in a solid state.
  • FIG. 2 is a schematic diagram showing the superconducting wire according to the present embodiment.
  • the superconducting wire 10 is an yttrium-based (Y-based) superconducting wire in this embodiment, and is composed of a yttrium-based superconductor (YBa 2 Cu 3 O 7 ) or the like on a substrate material 11 made of a Ni-based alloy such as Hastelloy. A superconducting layer 12 is formed.
  • Y-based yttrium-based
  • YBa 2 Cu 3 O 7 yttrium-based superconductor
  • a superconducting layer 12 is formed.
  • the surface of the superconducting layer 12 is covered with a stabilizing layer 13 made of a good conductor such as Ag or Ag—Cu.
  • a stabilizing layer 13 made of a good conductor such as Ag or Ag—Cu.
  • an intermediate layer 14 is formed between the substrate material 11 and the superconducting layer 12 to prevent the reaction between the substrate material 11 and the superconducting layer 12 and to prevent the superconducting characteristics of the superconducting layer 12 from deteriorating.
  • FIG. 3 is a schematic view showing a connection form of superconducting wires in the present embodiment.
  • the two superconducting wires 10 are overlapped so that the stabilizing layers 13 in contact with the superconducting layer 12 face each other (this is referred to as an overlapping step), and the overlapping portion of the two superconducting wires 10 is superposed.
  • the superconducting wires 10 are connected to each other by sonic bonding (referred to as a bonding step). By repeating this connecting operation, a long wire can be formed.
  • FIG. 4 is a schematic diagram showing a superconducting wire joining method according to this embodiment.
  • two superconducting wires 10 are ultrasonically bonded using the bonding apparatus 1. Specifically, the two superconducting wires 10 are superposed so that the stabilizing layers 13 in contact with the superconducting layer 12 face each other, and the superposed portion is held by the anvil 3, and then the horn 2 is lowered and superposed. Pressurize the part. Thereafter, the stabilizing layers 13 are bonded to each other by ultrasonically vibrating the horn 2.
  • the superconducting wires 10 are connected to each other with almost no increase in electrical resistance. can do.
  • the superposition process and the joining process are performed at room temperature (about 20 ⁇ 20 ° C.). That is, the superconducting wire 10 is not separately heated. As a result, oxygen desorption from the superconducting layer 12 due to the high temperature of the superconducting layer 12 does not occur, so the superconducting characteristics of the superconducting layer 12 do not deteriorate. Therefore, it is not necessary to join the superconducting wires 10 in an oxidizing atmosphere, and it is not necessary to heat and cool the superconducting wires 10 at the time of joining, so that the superconducting wires 10 can be easily joined together.
  • the bonding may be performed as it is. That is, the joining work can be simplified by performing the joining as it is at room temperature without heating or cooling the superconducting wire 10.
  • the dimension of the portion of the horn 2 in contact with the superconducting wire 10 and the anvil 3 in the Y-axis direction is larger than the dimension of the overlapping portion of the superconducting wire 10, whereas in the embodiment of FIG.
  • the dimension of the portion in contact with the superconducting wire 10 in the Y-axis direction is smaller than the dimension of the overlapping portion of the superconducting wire 10. Therefore, the range in which the bonding is performed by one ultrasonic bonding is reduced, and in order to reduce the connection resistance of the bonding portion between the superconducting wires 10, the horn 2 is step-fed as indicated by the arrows in the figure. For example, the horn 2 and the anvil 3 need to be moved relative to the superconducting wire 10 and ultrasonic bonding must be performed at a plurality of overlapping portions.
  • the size of the joint formed by one ultrasonic bonding is reduced by reducing the size of the horn 2, but the same can be achieved by reducing the size of the anvil 3. Result can be obtained.
  • the horn 2 and the anvil 3 are moved relative to the superconducting wire 10 by moving the horn 2 or the anvil 3, but the horn 2 and the anvil 3 are moved without moving the superconducting wire 10. It doesn't matter. In this case, since the parallelism between the horn 2 and the anvil 3 can be maintained while the joining is performed a plurality of times, the joining can be continuously performed without the necessity of adjusting the parallelism each time.
  • the horn 2 has a disk shape, has a central axis in the X-axis direction, and is rotatable around this central axis.
  • the horn 2 can be rolled in the Y-axis direction as shown by the arrow in the figure while being pressed against the superconducting wire 10 installed on the anvil 3.
  • the contact area between the horn 2 and the superconducting wire 10 becomes small, the possibility of an unjoined portion occurring within the joining range can be reduced and reliable joining can be performed, and a connecting wire having high superconducting characteristics. Can be obtained. Then, by performing ultrasonic bonding while rolling the horn 2 in the Y-axis direction, reliable bonding can be continuously performed, and a bonded portion that is long in the Y-axis direction and has no unbonded portion can be formed. Further, it is possible to form a joint portion having an arbitrary length in the Y-axis direction without changing the horn 2 or the anvil 3.
  • FIG. 7 is a cross-sectional photograph of a superconducting wire joined by the joining method of the present invention.
  • FIG. 7 (a) is joined in the embodiment shown in FIG. 4, and
  • FIG. 7 (b) is joined in the embodiment shown in FIG. 5 and FIG.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction in this figure are made to correspond to the direction of the superconducting wire 10 that is placed on the bonding apparatus 1 as shown in FIGS.
  • Vibration energy is not propagated to the superconducting wire 10, and the superconducting wires 10 are not joined to each other.
  • the unbonded portion 22 is mixed in addition to the bonded portion 21 at the bonded interface between the two superconducting wires 10, and as a result, the resistance value of the connecting portion may be increased. .
  • FIG. 8 is a schematic view showing the formation state of the joint on the superconducting wire.
  • FIG. 8 (a) is joined in the embodiment shown in FIG. 4
  • FIG. 8 (b) is joined in the embodiment shown in FIG. 5
  • FIG. 8 (c) is the embodiment shown in FIG. It was joined with.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction in this figure also correspond to the directions of the superconducting wire 10 in a state of being placed on the bonding apparatus 1 as shown in FIGS.
  • the hatched portion represents a portion where the joining portion 21 is formed on the superconducting wire 10.
  • a wide range of ultrasonic bonding can be performed by a single bonding, but it is difficult to make adjustments so that the horn 2 and the anvil 3 are firmly in contact with the superconducting wire 10. Therefore, if the adjustment is insufficient, the joining portion 21 may hardly be formed in the joining range (indicated by a chain line in the figure) as shown in FIG. 8A.
  • FIG. 8C it is possible to form the bonding portion 21 on the entire surface within the bonding range by a single ultrasonic bonding.
  • the ratio of the bonded portion 21 in the bonded range is sufficiently increased as shown in FIG. 8B. be able to.
  • the bonding portion 21 having an arbitrary width in the Y-axis direction according to the rolling distance.
  • the width of the joint portion 21 in the X-axis direction is determined by the width of the portion of the horn 2 in contact with the superconducting wire 10.
  • the wide junction part 21 can be formed in a joining range like FIG.8 (c).
  • the thickness of the stabilization layer 13 of each superconducting wire 10 was about 10 ⁇ m and the width was about 5 mm.
  • FIG. 9A is a top view
  • FIG. 9B is a side view
  • FIG. 9C is an enlarged view of the distal end portion of the anvil 3.
  • the length of the overlapping portion between the superconducting wires 10 is 30 mm, and the portion of the horn 2 that contacts the superconducting wire 10 is larger than the overlapping portion, Touching.
  • the anvil 3 has a tip shape in which semi-cylindrical tip portions 31 are arranged in one direction, and in this embodiment, a semi-cylinder having a radius of 0.25 mm has a pitch of 0.5 mm. It is a form in which eight are arranged. That is, the dimension in the width direction (Y-axis direction in FIG. 9) of the portion of the anvil 3 in contact with the superconducting wire 10 is about 3.5 mm. Further, the dimension in the depth direction (X-axis direction in FIG. 9) is also 3 mm, and the portion of the anvil 3 that contacts the superconducting wire 10 is sufficiently smaller than the overlapping portion.
  • the load, time, and amplitude of the horn 2 at the time of ultrasonic bonding are used as parameters, and superconducting wires 10 are actually overlapped and bonded in a room temperature environment under a plurality of conditions. It is shown in 1.
  • the joining method of the superconducting wire of the present invention is not limited to the above-described form, and may be another form within the scope of the present invention.
  • the stabilization layer is formed only on the superconducting layer in the above description, it may be formed on the substrate material (the surface opposite to the surface on which the intermediate layer is formed).
  • the superconducting wire can be connected with minimal deterioration of superconducting properties by performing ultrasonic bonding with the stabilizing layers in contact with the superconducting layer facing each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

超電導特性の劣化を最小限にして簡便に超電導線材同士を接合する超電導線材の接合方法を提供する。具体的には、超電導層12に安定化層13が被覆された超電導線材10の接合方法であり、2本の超電導線材10のそれぞれ超電導層12と接する安定化層13同士が対向するように重ね合わせる重ね合わせ工程と、2本の超電導線材10の重なった部分を超音波接合する接合工程と、を有し、前記重ね合わせ工程および前記接合工程は室温で行う。

Description

超電導線材の接合方法
 本発明は、安定化膜が被覆された超電導線材同士を超電導特性の劣化を最小限にして接合する超電導線材の接合方法に関するものである。
 超電導体はたとえば液体窒素温度(-196℃)といった低温条件下において電気抵抗がゼロになる特性を有し、大型加速器、リニアモーターカーなど多岐の分野において利用されている。
 このような超電導体を有する超電導線材はたとえば図2のような構造を有し、基板材11上に超電導体からなる超電導層12が形成され、その超電導層12の上に銀などの良導体からなる安定化層13が被覆されている。
 一方、このような超電導線材は品質が安定しかつ長尺のものを一度に製作することは困難であり、長尺の超電導線材を必要とする場合は、短尺の超電導線材を連結させて長尺にする工程が発生する。ただし、はんだ接合などの一般的な連結方法では接合部が大きな電気抵抗となるため、仮にこのような方法で超電導線材の連結を行った場合、連結された線材の超電導特性が著しく悪化する。
 ここで、連結後も超電導特性を劣化させない超電導線材の連結方法として、特許文献1に示すように超電導線材の接合面に熱エネルギーおよび圧力を付与して直接接合する方法が提案されている。
特開2007-012582号公報
 しかし、上記方法によって超電導線材を接合する場合、製造コストがかかり非効率的であるという問題があった。具体的には、熱エネルギーによって超電導線材同士を接合させる際に超電導線材が高温(たとえば300℃)となった場合に、超電導層からの酸素抜けが生じて超電導特性が劣化するおそれがある。それを防ぐために超電導線材同士の接合は酸化性雰囲気中で実施する必要があるため、そのような環境を用意するためにはコストがかかる上に大掛かりな接合装置を必要としていた。
 本発明は上記問題を鑑みてなされたものであり、超電導特性の劣化を最小限にして簡便に超電導線材同士を接合する超電導線材の接合方法を提供することを目的としている。
 上記課題を解決するために本発明の超電導線材の接合方法は、超電導層に安定化層が被覆された超電導線材の接合方法であり、2本の超電導線材のそれぞれ超電導層と接する安定化層同士が対向するように重ね合わせる重ね合わせ工程と、2本の超電導線材の重なった部分を超音波接合する接合工程と、を有し、前記重ね合わせ工程および前記接合工程は室温で行うことを特徴としている。
 上記超電導線材の接合方法によれば、室温で重ね合わせおよび接合を行うため、超電導層からの酸素抜けは発生せず、超電導特性の劣化を最小限にして簡便に超電導線材同士を接合することが可能である。
 また、前記接合工程では、前記重なった部分の複数箇所に対して超音波接合を行うと良い。
 こうすることにより、個々の接合の範囲が狭くなるため、それぞれの接合を行う際にその接合範囲において超音波接合装置のホーンおよびアンビルの全面がしっかり超電導線材と接するようするための調整が容易となる。その結果、接合実施範囲内に未接合部が生じる可能性を低くして確実な接合を行うことができ、超電導特性が高い連結線材を得ることができる。
 また、超音波接合に用いるホーンは円盤状の形状を有し、前記接合工程では前記重なった部分に対して前記ホーンを転がしながら超音波接合を行うと良い。
 こうすることにより、ホーンと超電導線材との接触面積は小さくなり、その結果、接合実施範囲内に未接合部が生じる可能性を低くして確実な接合を行うことができるため、超電導特性が高い連結線材を得ることができる。また、ホーンを転がしながら超音波接合を行うことにより、確実な接合を連続して行うことができる。
 本発明の超電導線材の接合方法によれば、超電導特性の劣化を最小限にして簡便に超電導線材同士を接合することが可能である。
本発明の一実施形態における超電導線材の接合方法を行うための接合装置を示す概略図である。 本実施形態にかかる超電導線材を表す概略図である。 本実施形態における超電導線材の連結形態を表す概略図である。 本実施形態における超電導線材の接合方法を表す概略図である。 他の実施形態にかかる超電導線材の接合方法を表す概略図である。 他の実施形態にかかる超電導線材の接合方法を表す概略図である。 接合された超電導線材の断面写真である。 超電導線材上の接合部の形成状態を表す概略図である。 本発明の一実施形態における接合装置の概略図である。
 本発明に係る実施の形態を図面を用いて説明する。
 図1は、本発明の一実施形態における超電導線材の接合方法を行うための接合装置を示す概略図である。
 接合装置1は、ホーン2およびアンビル3を備え、超音波接合により2つの超電導線材10を接合する。
 ホーン2は、発振器4が接続された金属製のブロックであり、発振器4の動作によってホーン2は水平方向(図中の矢印方向(X軸方向))に所定の振幅および周波数で超音波振動する。また、図示しない駆動装置により垂直方向(Z軸方向)に移動することが可能であり、アンビル3に設置された超電導線材10を上方から加圧することができる。
 アンビル3は、接合物である2つの超電導線材10が重なるように位置決めし、保持する台であり、超音波接合を実施しているときにホーン2からの振動エネルギーが逃げないようにしている。
 上記接合装置1による超音波接合の原理は、以下の通りである。
 アンビル3の上で重ね合わされた超電導線材10に対してホーン2により垂直方向(Z軸方向)の加圧力を与えながら、超電導線材10の接合面に平行な超音波振動を印加することにより接合が行われる。これにより、接合面は超音波振動によって互いに擦れ合い、接合面に存在する酸化被膜や付着物(汚れ)が破壊、除去されて清浄な金属面が露出する。これによって両接合面の金属原子間に引力が作用し、さらに加圧することより両接合面の接触面積を増加させ、固相状態で接合に至る。
 図2は、本実施形態にかかる超電導線材を表す概略図である。
 超電導線材10は、本実施形態ではイットリウム系(Y系)超電導線材であり、ハステロイなどのNi系合金などからなる基板材11の上にイットリウム系超電導体(YBaCu)などからなる超電導層12が形成されている。
 また、超電導層12の表面にはAg、Ag-Cuなどの良導体からなる安定化層13が被覆されている。この安定化層13は、超電導線材10の動きや磁場変動などに起因して万が一超電導層12の一部で超電導状態が失われて抵抗が発生した場合にこの安定化層13へ電流が迂回する働きを有しており、超電導層12全体の超電導状態が失われることを防ぐことができる。
 また、基板材11と超電導層12の間には、中間層14が形成されており、基板材11と超電導層12との反応を防ぎ、超電導層12の超電導特性の劣化を防止している。
 ここで、上記の構成の超電導線材10は、長尺のものを一度に製作することは困難であり、その場合は短尺の超電導線材10を連結させて長尺にする必要がある。
 図3は、本実施形態における超電導線材の連結形態を表す概略図である。
 本発明では、超電導層12と接する安定化層13同士が対向するように2本の超電導線材10を重ね合わせ(これを重ね合わせ工程と呼ぶ)、2本の超電導線材10の重なった部分を超音波接合する(これを接合工程と呼ぶ)ことにより、超電導線材10同士を連結している。この連結作業を繰り返し行うことにより、長尺の線材を形成させることができる。
 図4は、本実施形態における超電導線材の接合方法を表す概略図である。
 上述の通り本実施形態では接合装置1を用いて2本の超電導線材10の超音波接合を行っている。具体的には、2本の超電導線材10を超電導層12と接する安定化層13同士が対向するように重ね合わせ、その重ね合わせ部分をアンビル3で保持した後、ホーン2を下降させて重ね合わせ部分を加圧する。この後、ホーン2を超音波振動させることにより、安定化層13同士が接合される。
 このように安定化層13同士を直接接合することにより、すなわち、はんだなどの別材料を用いることなく超電導線材10同士を連結することにより、電気抵抗をほとんど増大させることなく超電導線材10同士を連結することができる。
 また、本発明では上記重ね合わせ工程および接合工程は室温(約20±20℃)で行っている。すなわち、超電導線材10を別途加熱することは行っていない。これにより、超電導層12が高温になることに起因する超電導層12からの酸素抜けが生じないため、超電導層12の超電導特性は劣化しない。したがって、酸化性雰囲気で超電導線材10の接合を行う必要は無く、また、接合時に超電導線材10の加熱も冷却も行う必要も無いため、簡便に超電導線材10同士を接合することが可能である。
 なお、本発明の接合を行う前の工程によって超電導線材10が上記室温の範囲より高い温度もしくは上記室温の範囲より低い温度となっていたとしても、そのまま接合を行うと良い。すなわち、超電導線材10の加熱も冷却も行わずに室温条件下でそのまま接合を行うことにより、接合作業を簡便にすることができる。
 次に、他の実施形態にかかる超電導線材の接合方法を図5に示す。
 図4の実施形態では、ホーン2の超電導線材10と接する部分およびアンビル3のY軸方向の寸法が超電導線材10の重ね合わせ部の寸法よりも大きいのに対し、図5の実施形態ではホーン2の超電導線材10と接する部分のY軸方向の寸法は超電導線材10の重ね合わせ部の寸法よりも小さい。そのため、1回の超音波接合で接合が実施される範囲は小さくなり、超電導線材10同士の接合部の接続抵抗を小さくするためには、図中に矢印で示すようにホーン2をステップ送りするなど、超電導線材10に対してホーン2およびアンビル3を相対移動させながら重ね合わせ部の複数箇所に対して超音波接合を行う必要がある。
 ただし、個々の接合の範囲が狭くなることにより、図4の実施形態に対してそれぞれの接合を行う際にその接合範囲においてホーン2およびアンビル3の全面がしっかり超電導線材10(基板材11)と接するようするための調整が容易となる。その結果、接合実施範囲内に未接合部が生じる可能性を低くして確実な接合を行うことができ、超電導特性が高い連結線材を得ることができる。
 なお、図5の実施例ではホーン2の寸法を小さくすることにより1回の超音波接合で形成される接合部の寸法が小さくなっているが、アンビル3の寸法を小さくすることによっても、同様の結果を得ることができる。
 また、上記の説明ではホーン2もしくはアンビル3を動かすことにより超電導線材10に対してホーン2およびアンビル3を相対移動させているが、ホーン2およびアンビル3は動かさずに超電導線材10の方を動かしても構わない。この場合、複数回の接合を実施している間ホーン2とアンビル3の平行度が維持できるため、都度平行度調整を行う必要無く連続して接合を行うことができる。
 次に、さらに別の実施形態にかかる超電導線材の接合方法を図6に示す。
 図6の実施形態では、ホーン2は円盤状の形状を有しており、X軸方向に中心軸を有し、この中心軸を回転軸として回転可能となっている。これにより、ホーン2がアンビル3上に設置された超電導線材10に接して加圧しながら図中に矢印で示すようにY軸方向に転がすことができる。
 この実施形態でもホーン2と超電導線材10との接触面積は小さくなるため、接合実施範囲内に未接合部が生じる可能性を低くして確実な接合を行うことができ、超電導特性が高い連結線材を得ることができる。そして、ホーン2をY軸方向に転がしながら超音波接合を行うことにより、確実な接合を連続して行うことができ、Y軸方向に長く未接合部の無い接合部を形成させることができる。また、ホーン2やアンビル3の段取り替えを行うことなく、Y軸方向に任意の長さの接合部を形成させることができる。
 図7は、本発明の接合方法により接合された超電導線材の断面写真である。図7(a)は図4に示す実施形態で接合したものであり、図7(b)は図5および図6に示す実施形態で接合したものである。なお、この図におけるX軸方向、Y軸方向、Z軸方向は、図4乃至図6のように接合装置1に載置された状態の超電導線材10の向きに対応させている。
 2本の超電導線材10の連結部の抵抗値をより小さくするためには接合部の面積を大きくすることが有効である。図4の実施形態のように大きな寸法のホーン2およびアンビル3を用いることにより、1回の超音波接合でY軸方向に幅広い範囲(図4では重ね合わせ部全体)にわたる接合を行うことが可能であるが、ホーン2の全面がしっかり超電導線材10(基板材11)と接するようするための調整が難しくなる。調整がしっかりできており、ホーン2の全面が超電導線材10と接していれば問題は無いが、仮にホーン2と超電導線材10との接触部において一部隙間が生じると、その部分においてホーン2からの振動エネルギーが超電導線材10に伝搬せず、超電導線材10同士が接合されなくなる。その結果、図7(a)に示すように2本の超電導線材10の接合界面において接合部21のほかに未接合部22が混在し、結果的に連結部の抵抗値が高くなるおそれがある。
 これに対し、図5および図6の実施形態ではホーン2と超電導線材10との接触面積は小さく、確実な接合を行うことができるため、図7(b)に示すように接合範囲内に未接合部22が存在しない接合部21を形成することが容易である。
 図8は、超電導線材上の接合部の形成状態を表す概略図である。図8(a)は図4に示す実施形態で接合したものであり、図8(b)は図5に示す実施形態で接合したものであり、図8(c)は図6に示す実施形態で接合したものである。なお、この図におけるX軸方向、Y軸方向、Z軸方向も、図4乃至図6のように接合装置1に載置された状態の超電導線材10の向きに対応させている。
 図8の各図においてハッチングで示す部分が超電導線材10上に接合部21が形成された部分を表している。図4の実施例では一度の接合で広い範囲の超音波接合を行うことができる反面、ホーン2およびアンビル3がしっかり超電導線材10と接するようするための調整が困難である。そのため、調整が不十分であると図8(a)のように接合範囲(図中に鎖線で表示)内に接合部21がほとんど形成されないおそれがあるが、十分に調整されている場合は図8(c)のように接合範囲内の全面に接合部21を形成することを一度の超音波接合で行うことが可能である。
 また、図5に示す実施形態で小さい接合部21を形成させる超音波接合を複数回行うことにより、結果的に図8(b)のように接合範囲内における接合部21の割合を十分大きくすることができる。
 また、図6に示す実施形態でホーン2を転がしながら超音波接合を行うことにより、転がす距離に応じて任意のY軸方向の幅の接合部21を形成することが可能である。なお、接合部21のX軸方向の幅は、ホーン2の超電導線材10と接する部分の幅で決定される。これにより、図8(c)のように広範囲の接合部21を接合範囲内に形成することができる。
 次に、実際に超電導線材10同士を室温環境で重ね合わせ、接合した結果を示す。このとき、各超電導線材10の安定化層13の厚みは約10um、幅は約5mmであった。
 このときに使用したホーン2、アンビル3の形態を図9に示す。図9(a)は上面図、図9(b)は側面図であり、図9(c)はアンビル3の先端部の拡大図である。超電導線材10同士の重ね合わせ部の長さ(図9(c)における長さd1)は30mmであり、ホーン2の超電導線材10と接する部分は当該重ね合わせ部よりも大きく、重ね合わせ部全体と接している。
 アンビル3は図9(c)に示すように半円柱状の先端部31が一方向に並べられた先端形状を有しており、本実施形態では半径0.25mmの半円柱が0.5mmピッチで8個並べられた形態である。すなわち、アンビル3の超電導線材10と接する部分の幅方向(図9におけるY軸方向)の寸法は約3.5mmである。また、奥行き方向(図9におけるX軸方向)の寸法も3mmであり、アンビル3の超電導線材10と接する部分は上記重ね合わせ部よりも十分に小さい。すなわち、これらホーン2とアンビル3により、図5の実施例と同様に接合実施範囲内に未接合部が生じる可能性を低くして確実な接合を行うことができる。そして、アンビル3の位置をY軸方向にずらしながら9回程度接合を繰り返し、Y軸方向のほぼ全体にわたって上記重ね合わせ部の接合を行った。
 上記のホーン2、アンビル3を使用して超音波接合時の荷重、接合時間、ホーン2の振幅をパラメータとし、複数条件において実際に超電導線材10同士を室温環境で重ね合わせ、接合した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中の接合状態の評価は、接合が完了した超電導線材10を手にとり、曲げ、ねじりなどの外力を数回加え、その時点で剥がれたサンプルは×、曲げ、ねじりに耐えたサンプルを切断して接合部(図8で示す接合部21)の大きさを評価し、所定の大きさより小さいサンプルは△、大きいサンプルは○とした。
 接合時の荷重、接合時間、ホーン2の振幅が小さすぎる場合、接合が不十分で簡単に剥がれ、また、簡単に剥がれなくとも接合部の大きさが十分でなかったが、No.6乃至No.8、およびNo.10のサンプルの作成条件では十分な接合部の面積を得ることができ、それらサンプルの抵抗値は約30~70nΩと電線用の超電導線材用途として十分な値であった。また、No.9のサンプルは、荷重が大きすぎたため、安定化層13、超電導層12が破壊されていた。
 以上の超電導線材の接合方法により、超電導特性の劣化を最小限にして簡便に超電導線材同士を接合することが可能である。
 ここで、本発明の超電導線材の接合方法は、以上で説明した形態に限らず本発明の範囲内において他の形態のものであってもよい。たとえば、上記の説明では安定化層は超電導層上にのみ形成されているが、基板材上(中間層が形成されている面と反対側の面)にも形成されていても構わない。この場合も、超電導層と接している方の安定化層同士を対向させて超音波接合を行うことにより、超電導特性の劣化を最小限にして超電導線材の連結を行うことができる。
 1 接合装置
 2 ホーン
 3 アンビル
 4 発振器
 10 超電導線材
 11 基板材
 12 超電導層
 13 安定化層
 14 中間層
 21 接合部
 22 未接合部
 31 先端部

Claims (3)

  1.  超電導層に安定化層が被覆された超電導線材の接合方法であり、
     2本の超電導線材のそれぞれ超電導層と接する安定化層同士が対向するように重ね合わせる重ね合わせ工程と、
     2本の超電導線材の重なった部分を超音波接合する接合工程と、
    を有し、
     前記重ね合わせ工程および前記接合工程は室温で行うことを特徴とする、超電導線材の接合方法。
  2.  前記接合工程では、前記重なった部分の複数箇所に対して超音波接合を行うことを特徴とする、請求項1に記載の超電導線材の接合方法。
  3.  超音波接合に用いるホーンは円盤状の形状を有し、前記接合工程では前記重なった部分に対して前記ホーンを転がしながら超音波接合を行うことを特徴とする、請求項1に記載の超電導線材の接合方法。
PCT/JP2016/076371 2015-09-10 2016-09-08 超電導線材の接合方法 WO2017043555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017539208A JP6662886B2 (ja) 2015-09-10 2016-09-08 超電導線材の接合方法
US15/757,156 US20180272462A1 (en) 2015-09-10 2016-09-08 Superconducting wire joining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015178672 2015-09-10
JP2015-178672 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017043555A1 true WO2017043555A1 (ja) 2017-03-16

Family

ID=58239839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076371 WO2017043555A1 (ja) 2015-09-10 2016-09-08 超電導線材の接合方法

Country Status (3)

Country Link
US (1) US20180272462A1 (ja)
JP (1) JP6662886B2 (ja)
WO (1) WO2017043555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044783A1 (ja) * 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 高温超伝導線材の接続体
JP7564538B2 (ja) 2020-12-23 2024-10-09 国立研究開発法人物質・材料研究機構 超電導接合装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202250B (zh) * 2019-05-08 2022-04-26 中国科学院电工研究所 一种超导导线的焊封方法及应用
CN117754102B (zh) * 2024-02-06 2024-08-20 核工业西南物理研究院 一种高温超导带材的超声波辅助扩散连接方法
CN118508192B (zh) * 2024-07-18 2024-09-24 西北工业大学 一种粉末法超导线材的原位连接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167523A (ja) * 1997-08-21 1999-03-09 Toshiba Corp 酸化物超電導線材の接続方法、酸化物超電導コイル装置およびそれを用いた超電導装置
JPH11317118A (ja) * 1998-04-30 1999-11-16 Toshiba Corp 超電導線の接合方法
JP2011529255A (ja) * 2008-07-23 2011-12-01 アメリカン スーパーコンダクター コーポレイション 高温超伝導体積層ワイヤ用の2面接合部

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6382494B1 (en) * 2000-05-12 2002-05-07 West Bond, Inc. Automatic ultrasonic bonding machine with vertically tiered orthogonally translatable tool support platforms
US6547903B1 (en) * 2001-12-18 2003-04-15 Kimberly-Clark Worldwide, Inc. Rotary ultrasonic bonder or processor capable of high speed intermittent processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167523A (ja) * 1997-08-21 1999-03-09 Toshiba Corp 酸化物超電導線材の接続方法、酸化物超電導コイル装置およびそれを用いた超電導装置
JPH11317118A (ja) * 1998-04-30 1999-11-16 Toshiba Corp 超電導線の接合方法
JP2011529255A (ja) * 2008-07-23 2011-12-01 アメリカン スーパーコンダクター コーポレイション 高温超伝導体積層ワイヤ用の2面接合部

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044783A1 (ja) * 2017-08-30 2019-03-07 国立研究開発法人理化学研究所 高温超伝導線材の接続体
JP2019046557A (ja) * 2017-08-30 2019-03-22 国立研究開発法人理化学研究所 高温超伝導線材の接続体
US11177588B2 (en) 2017-08-30 2021-11-16 Riken High-temperature superconducting wire connection assembly
JP7564538B2 (ja) 2020-12-23 2024-10-09 国立研究開発法人物質・材料研究機構 超電導接合装置

Also Published As

Publication number Publication date
JP6662886B2 (ja) 2020-03-11
JPWO2017043555A1 (ja) 2018-07-05
US20180272462A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017043555A1 (ja) 超電導線材の接合方法
JP5828299B2 (ja) 高温超電導薄膜線材の接合方法および高温超電導薄膜線材
JP4744248B2 (ja) Re系酸化物超電導線材の接合方法
Shin et al. Pursuing low joint resistivity in Cu-stabilized REBa2Cu3Oδ coated conductor tapes by the ultrasonic weld–solder hybrid method
KR101466799B1 (ko) 2세대 고온초전도 선재의 초음파용접 접합방법
JP2006202586A (ja) 接合方法及び接合構造
WO2017154228A1 (ja) 超電導線及びその製造方法
CN211455985U (zh) 一种超导带材
JP7531205B2 (ja) 高温酸化物超電導テープ線材の接合方法
JP6040515B2 (ja) 超電導コイルの製造方法
CN110867713A (zh) 一种超导带材的焊接方法
Shin et al. Joint characteristics of ultrasonic welded CC bridge joints for HTS coil applications
WO2007081005A1 (ja) 複合超電導体
JP6993647B2 (ja) 超電導線材、及び超電導線材の接合方法
Nisay et al. Performance characteristics of REBCO coated conductor joints fabricated by flux-free hybrid welding
JPH1167523A (ja) 酸化物超電導線材の接続方法、酸化物超電導コイル装置およびそれを用いた超電導装置
JP2019102298A (ja) 超伝導導体
JP2007214121A (ja) 複合超電導体
JP5056673B2 (ja) 熱電変換素子およびその製造方法
JPH06224591A (ja) 超電導磁気シールド材
JP6566634B2 (ja) 接合構造体、及び、接合構造体の製造方法
JP2019008952A (ja) ターミナルプレートの製造方法
WO2015166936A1 (ja) 超電導線材の接続構造、接続方法及び超電導線材
JP4817243B2 (ja) ペルチェモジュール及びその製造方法
JPH07135034A (ja) 超電導線の接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539208

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15757156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844416

Country of ref document: EP

Kind code of ref document: A1