WO2017043478A1 - Gear pump - Google Patents

Gear pump Download PDF

Info

Publication number
WO2017043478A1
WO2017043478A1 PCT/JP2016/076157 JP2016076157W WO2017043478A1 WO 2017043478 A1 WO2017043478 A1 WO 2017043478A1 JP 2016076157 W JP2016076157 W JP 2016076157W WO 2017043478 A1 WO2017043478 A1 WO 2017043478A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner rotor
gear pump
discharge port
interdental chamber
teeth
Prior art date
Application number
PCT/JP2016/076157
Other languages
French (fr)
Japanese (ja)
Inventor
雅士 服部
光博 武田
雅幸 木村
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112016002336.7T priority Critical patent/DE112016002336T8/en
Priority to CN201680050919.9A priority patent/CN107923390B/en
Priority to US15/574,220 priority patent/US20180172000A1/en
Publication of WO2017043478A1 publication Critical patent/WO2017043478A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present disclosure relates to a gear pump including an inner rotor having a plurality of external teeth and an outer rotor having a plurality of internal teeth and arranged to be eccentric with respect to the inner rotor.
  • a gear pump including an inner rotor having n external teeth, an outer rotor having n + 1 internal teeth meshing with the external teeth, and a casing in which a suction port and a discharge port are formed is known.
  • the first angle formed by the first straight line connecting the rotation center of the inner rotor and the tooth tip of the external tooth and the second straight line connecting the rotation center and the meshing portion of the external tooth is the rotation center and the external tooth. It is set to 1.4 times or more and 1.8 times or less of the second angle formed by the third straight line connecting the tooth bottom and the second straight line.
  • the width along the rotation direction of the meshing portion of the external teeth is equal to the distance between the rear end in the rotation direction of both rotors of the suction port and the front end in the rotation direction of the discharge port, that is, the partition width of the port. .
  • Patent Document 1 by setting the first angle to be 1.4 times or more and 1.8 times or less of the second angle, both rotors of a plurality of cells (interdental chambers) mesh with each other from the outer teeth. It is described that it is possible to prevent the occurrence of so-called fluid confinement, in which the minimum volume cell located at the meshing position where the rotational driving force is transmitted to the teeth is sealed.
  • the gap between the case and both rotors (the gap in the axial direction of the gear pump) with respect to a cell whose volume is minimized by discharging fluid to the discharge port. It is difficult to completely suppress the inflow of fluid. Therefore, in the gear pump of Patent Document 1, cavitation occurs due to the fluid flowing at high speed from the gap between the case and both rotors into the interdental chamber that does not communicate with the discharge port and communicates with the suction port. There is a fear.
  • the main object of the invention of the present disclosure is to provide a gear pump that can satisfactorily suppress the occurrence of cavitation in the interdental chamber that does not communicate with the discharge port and communicates with the suction port.
  • the gear pump of the present disclosure has a suction port, a discharge port, an inner rotor having a plurality of external teeth, a plurality of internal teeth that are larger than the external teeth of the inner rotor, and is eccentric with respect to the inner rotor. And a plurality of interdental chambers defined by the plurality of external teeth and the plurality of internal teeth, the discharge port is configured to rotate the inner rotor and the outer rotor.
  • the interdental chamber communicated with the interdental chamber, the volume of which decreases along with the discharge port, and communicated with the suction port while the volume of the interdental chamber decreased, and communicated with the discharge port.
  • the volume of the interdental chamber that is no longer increased increases after at least a part of the interdental chamber communicates with the suction port.
  • the interdental chamber that has stopped communicating with the discharge port communicates with the suction port while the volume of the interdental chamber decreases as the inner and outer rotors rotate.
  • the volume of the interdental chamber that is no longer in communication with the discharge port decreases with the rotation of the inner rotor or the like, so that fluid is discharged from the interdental chamber to the suction port.
  • the volume of the interdental chamber that is no longer in communication with the discharge port increases after the interdental chamber communicates with the suction port. That is, the volume of the interdental chamber that is no longer in communication with the discharge port is minimized after the interdental chamber communicates with the suction port.
  • the fluid flowing into the suction port from the interdental chamber that is no longer in communication with the discharge port causes fluid to flow into the interdental chamber from the gap between the inner rotor and the outer rotor and the member that accommodates both (axial gap). Inflow at high speed can be well controlled. Therefore, in this gear pump, it is possible to satisfactorily suppress the occurrence of cavitation in the interdental chamber that does not communicate with the discharge port and communicates with the suction port.
  • FIG. 1 is a schematic configuration diagram illustrating a gear pump 1 according to an embodiment of the present disclosure.
  • a gear pump 1 shown in the figure is configured as an oil pump mounted on a vehicle (not shown), for example, and sucks hydraulic oil (ATF) stored in an oil pan and pumps it to a hydraulic control device (both not shown).
  • the gear pump 1 is defined by, for example, a pump housing (both not shown) constituted by a pump body fixed to a transmission case of an automatic transmission and a pump cover fastened to the pump body, and the pump housing.
  • An inner rotor (drive gear) 2 and an outer rotor (driven gear) 3 that are rotatably arranged in a gear housing chamber (not shown).
  • the gear pump 1 may be configured as an in-vehicle pump (for example, an engine oil pump) other than an oil pump that pumps hydraulic oil for transmission, and may be applied to uses other than the in-vehicle pump.
  • the inner rotor 2 is fixed to a rotary shaft 4 connected to a crankshaft (both not shown) of an engine mounted on a vehicle, and is rotationally driven by power applied to the rotary shaft 4.
  • a plurality of (for example, 11 teeth in this embodiment) external teeth 20 are formed on the outer periphery of the inner rotor 2.
  • the number of internal teeth 30 that is one more than the total number of external teeth 20 of the inner rotor 2 (for example, 12 teeth in this embodiment) is formed.
  • the outer rotor 3 is configured so that any one or a plurality of inner teeth 30 located on the lower side in FIG.
  • a plurality of interdental chambers (pump chambers) 5 are basically formed between the inner rotor 2 and the outer rotor 3 by two adjacent external teeth 20 and two adjacent internal teeth 30. .
  • the outer rotor 3 has a part of the plurality of inner teeth 30 meshed with a part of the plurality of outer teeth 20.
  • the inner rotor 2 and the outer rotor 3 are rotated, in the rear region in the rotation direction of the both (see the thick arrow in FIG. 1), that is, mainly in the right half region in FIG.
  • the volume of each interdental chamber 5 increases (interdental chamber 5 expands).
  • the inner rotor 2 and the outer rotor 3 rotate, in the front region in the rotation direction of the inner rotor 2 or the like, that is, mainly the left half region in FIG.
  • the volume of the chamber 5 decreases (the interdental chamber 5 contracts).
  • the pump housing (not shown) of the gear pump 1 is formed with a suction port 6, a first discharge port 7, and a second discharge port 8 each extending in a substantially arc shape.
  • the suction port 6 communicates with the interdental chamber 5 whose volume increases as the inner rotor 2 and the outer rotor 3 rotate among the interdental chambers 5 defined by the external teeth 20 and the internal teeth 30 ( opposite.
  • the first and second discharge ports 7 and 8 are separated by a partition wall 9 and are independent from each other, and the teeth whose volumes decrease as the inner rotor 2 and the outer rotor 3 of the plurality of interdental chambers 5 rotate. It communicates (opposites) with the inter-chamber 5 respectively.
  • the first discharge port 7 located on the rear side in the rotation direction of the inner rotor 2 or the like is a low pressure port
  • the second discharge port 8 located on the front side in the rotation direction is a high pressure port.
  • the 1st and 2nd discharge ports 7 and 8 may be connected to a mutually different oil path, and may be connected to a common oil path.
  • the suction port 6, the first and second discharge ports 7, 8 may be formed on both sides (both the pump body and the pump cover) in the axial direction of the inner rotor 2 and the outer rotor 3,
  • the outer rotor 3 may be formed on one side (one of the pump body and the pump cover) in the axial direction.
  • the suction port 6 may be formed on one side in the axial direction of the inner rotor 2 or the like, and the first and second discharge ports 7 and 8 are formed on the other side in the axial direction of the inner rotor 2 or the like.
  • the first discharge port 7 may be formed on one side in the axial direction of the inner rotor 2 or the like
  • the second discharge port 8 may be formed on the other side in the axial direction of the inner rotor 2 or the like.
  • FIG. 2 is a schematic configuration diagram showing the external teeth 20 of the inner rotor 2
  • FIG. 3 is a schematic diagram showing a procedure for creating the external teeth 20.
  • each external tooth 20 of the inner rotor 2 includes a convexly curved tooth tip portion 21, a concave curved tooth bottom portion 22, and the rotational direction of the inner rotor 2 relative to the tooth tip portion 21 ( The first intermediate portion 23 located between the tooth tip portion 21 and the tooth bottom portion 22 on the front side in the thick arrow in FIG. 3, and the tooth on the rear side in the rotational direction of the inner rotor 2 relative to the tooth tip portion 21.
  • a second intermediate portion 24 located between the tip portion 21 and the tooth bottom portion 22 is included.
  • the external teeth 20 are formed asymmetrically with respect to a tooth profile center line Lc passing through the top portion 21t located on the outermost radial direction of the tooth tip portion 21 and the rotation center 2c of the inner rotor 2.
  • the tooth tip portion 21 has a trochoidal coefficient obtained by dividing the radius rde of the first drawing point by the radius re of the abduction circle Co, which is larger than 1 (for example, about 1.2). Value)
  • a convex curved surface is formed by an epitrochoid curve (a portion other than the loop portion).
  • the epitrochoid curve forming the tooth tip portion 21 maintains the radius rde of the first drawing point at the first value Rde (constant value) and has an abduction circle Co having a radius re smaller than the first value Rde. Is rolled without slipping while circumscribing the base circle BCt having the rotation center 2c of the inner rotor 2 and the center O in common.
  • the root portion 22 is an intermediate formed by a hypotrochoid curve (a portion other than the loop portion) having a trochoid coefficient larger than 1 obtained by dividing the radius rdh of the second drawing point by the radius rh of the inversion circle Ci. Part and two rising parts formed by a curve such as an arc.
  • the hypotrochoid curve forming the middle portion of the tooth bottom portion 22 shares the epitrochoid curve forming the tooth tip portion 21 with the basic circle BCt, and as shown in FIG.
  • the radius of the second drawing point It is obtained by keeping rdh at the second value Rdh (constant value) and rolling the inversion circle Ci having a radius rh smaller than the second value Rdh without slipping while inscribed in the basic circle BCt. .
  • the radius rde of the first drawing point for drawing the epitrochoid curve forming the tooth tip portion 21, that is, the first value Rde, and the hypotrochoid curve forming the tooth bottom portion 22 are drawn.
  • the radius rdh of the second drawing point, that is, the second value Rdh is set to the same value Rd.
  • the two rising parts of the tooth bottom part 22 extend from the intermediate part toward the corresponding first or second intermediate part 23, 24 so as to be smoothly connected to the intermediate part formed by the hypotrochoid curve.
  • the rear rising portion in the rotation direction of the inner rotor 2 is formed so as to smoothly continue to the first intermediate portion 23 at the front end portion 23f of the first intermediate portion 23 in the rotation direction.
  • the front rising portion in the second rotational direction is formed so as to be smoothly continuous with the second intermediate portion 24 at the rear end 24r of the second intermediate portion 24 in the rotational direction.
  • the tooth bottom portion 22 is frontward in the rotational direction from the tooth profile center line Lc by a half ( ⁇ / 2) of an angle ⁇ (360 ° / the number of teeth of the external teeth 20) corresponding to one tooth of the external teeth 20.
  • an intersection 22x with the line segment Le rotated to the rear side is included.
  • a range between the two intersecting portions 22 x sandwiching the tooth profile center line Lc is a range corresponding to one tooth of the external teeth 20.
  • the first intermediate portion 23 is formed between the tooth tip portion 21 and the front tooth bottom portion 22 of the tooth tip portion 21 in the rotation direction of the inner rotor 2.
  • the first intermediate portion 23 is determined such that the tangent at the front end 21f in the rotation direction of the tooth tip 21 is common to the tangent of the epitrochoidal curve at the end 21f. Formed by an involute curve. Thereby, the tip part 21 and the 1st intermediate part 23 can be smoothly continued in the edge part 21f.
  • the length of the involute curve forming the first intermediate portion 23, that is, the length from the end portion 21 f of the tooth tip portion 21 to the end portion 23 f of the first intermediate portion 23 is the same as that of the second intermediate portion 24.
  • the length of the curve to be formed that is, the length from the end portion 21r of the tooth tip portion 21 to the end portion 24r of the second intermediate portion 24 is determined.
  • the second intermediate portion 24 is formed between the tooth tip portion 21 and the rear tooth bottom portion 22 of the tooth tip portion 21 in the rotation direction of the inner rotor 2.
  • the second intermediate portion 24 includes an outer intermediate portion 24o located on the tooth tip portion 21 side with respect to the intersection portion 24x with the basic circle BCt, and an inner intermediate portion 24i located on the tooth bottom portion 22 side with respect to the intersection portion 24x. Including. In the present embodiment, the range from the outer intermediate portion 24o, that is, the intersecting portion 24x to the rear end portion (boundary) 21r in the rotation direction of the inner rotor 2 of the tooth tip portion 21, as shown in FIG.
  • FIG. 4 is a schematic diagram showing a procedure for creating the inner teeth 30 of the outer rotor 3 included in the gear pump 1.
  • the tooth profile (outline) of the outer rotor 3 defined by the plurality of inner teeth 30 is the rotation center 2c of the inner rotor 2Z based on the inner rotor 2 and the rotation center 3c of the outer rotor 3. Obtained by rotating the inner rotor 2Z by a rotation angle ⁇ / N when the rotation center 2c revolves by a predetermined angle ⁇ . It is determined based on the envelope drawn with respect to a plurality of tooth profile lines (the outline of the inner rotor 2, see the two-dot chain line in FIG. 3).
  • t indicates that the rotation center 2c of the inner rotor 2Z, the rotation center 3c of the outer rotor 3, the top part 21t of the tooth tip part 21 of the external tooth 20 and the top part of the tooth tip part of the internal tooth 30 are aligned.
  • the clearance (tip clearance) between the top 21t and the top of the internal tooth 30 is, for example, a value of about 0.03 to 0.07 mm.
  • the inner rotor 2Z for defining the tooth profile of the outer rotor 3 corresponds to a structure in which the tooth bottom portion 22 of the inner rotor 2 is replaced with a tooth bottom portion 22z indicated by a two-dot chain line in FIGS. 2 and 3, the tooth bottom portion 22z is the end of the second intermediate portion 24 formed by the same hypotrochoidal curve (portion other than the loop portion) that forms the intermediate portion of the tooth bottom portion 22, as shown in FIGS.
  • a portion from the portion 24r to the boundary portion 22y shown in FIGS. 2 and 3 and a portion from the boundary portion 22y formed by a smooth curve (for example, an arc) to the end portion 23f of the first intermediate portion 23 are included.
  • the tooth profile (outline) of the outer rotor 3 may be the envelope itself or may be determined to be located outside the envelope.
  • the inner teeth of the outer rotor 3 may be created using a gear cutting tool having substantially the same shape as the inner rotor 2Z.
  • the inner rotor 2 (specifications of the external teeth 20), the outer rotor 3, the suction port 6, the first and second discharge ports 7, 8 are not connected to the second discharge port 8.
  • the chamber 5x (see FIG. 1) communicates with the suction port 6 while the volume of the interdental chamber 5x is decreasing, and after the communication between at least a part of the interdental chamber 5x and the suction port 6, the volume of the interdental chamber 5x Is configured to increase.
  • the top dead center (a position where the top of the tooth tip 21 of the external tooth 20 and the top of the tooth tip of the internal tooth 30 face each other in a straight line) is closest.
  • the external tooth 20 located on the back side in the rotation direction of any one of the external teeth 20 is in contact with the corresponding internal tooth 30.
  • the plurality of external teeth 20 of the inner rotor 2 are formed.
  • the occurrence of cavitation in the interdental chamber 5 (5x) is satisfactorily suppressed.
  • the behavior of the inner rotor 2 and the outer rotor 3 during operation of the gear pump 1 can be stabilized to reduce vibration and noise.
  • FIG. 8 is a diagram illustrating the rotation angle ⁇ around the rotation center 2c of the inner rotor 2 and the interdental teeth that do not communicate with the second discharge port 8. It is a graph which illustrates the relationship with the volume V of the chamber 5x.
  • the rotation angle ⁇ of the inner rotor 2 is a rotation angle around the rotation center 2c of the line portion connecting the bottommost portion (deepest portion) of the tooth bottom portion 22 of the certain external tooth 20 and the rotation center 2c. Measurement is performed counterclockwise in FIG. 1 with 0 ° being the state in which the bottom of the bottom portion 22 of the external tooth 20 is located directly below the center of rotation 2c.
  • each interdental chamber 5 communicating with the second discharge port 8 decreases as the inner rotor 2 and the outer rotor 3 rotate. Then, when the rotation angle ⁇ of the inner rotor 2 becomes the first angle ⁇ 1 (see FIG. 8), the rotation direction that defines the interdental chamber 5x communicating with the second discharge port 8, as shown in FIG.
  • the meshing portion E of the rear external teeth 20 and the internal teeth 30 overlaps the peripheral edge 8e of the second discharge port 8 when viewed from the axial direction of the inner rotor 2, so that the interdental chamber 5x and the second discharge port 8 communicate with each other. Will be refused.
  • the inner rotor 2 is more than the outer teeth 20 including the meshing portion E.
  • the tooth surface (the tooth bottom portion 22 or the second intermediate portion 24) of the outer tooth 20 on the immediately preceding side in the rotational direction is slightly different from the peripheral edge 6e of the suction port 6 when viewed from the axial direction of the inner rotor 2. get over.
  • the interdental chamber 5x communicates with the suction port 6 almost at the same time as it does not communicate with the second discharge port 8.
  • the volume V of the interdental chamber 5x increases with the rotation of the inner rotor 2 and the outer rotor 3, as shown in FIG. Will further decrease. Further, the communication area between the interdental chamber 5x and the suction port 6 as seen from the axial direction of the inner rotor 2 gradually increases as the inner rotor 2 and the outer rotor 3 rotate as shown in FIG. Further, in the present embodiment, when the rotation angle ⁇ of the inner rotor 2 becomes the second angle ⁇ 2 (see FIG. 8), the entire interdental chamber 5x communicates with the suction port 6 as shown in FIGS. (The entire interdental chamber 5x overlaps the suction port 6 when viewed from the axial direction), and the volume V of the interdental chamber 5x becomes the minimum value Vmin.
  • the tooth bottom portion 22 between the two external teeth 20 defining the interdental chamber 5x is formed in the axial direction of the inner rotor 2 as shown in FIG.
  • the suction port 6 does not protrude toward the rotation center 2c and is close to (substantially contacts) the inner peripheral edge 6ie.
  • the volume V of the interdental chamber 5x increases as the inner rotor 2 and the outer rotor 3 rotate as shown in FIG.
  • the hydraulic oil is sucked into the interdental chamber 5x from the suction port 6.
  • the interdental chamber 5 x that is no longer communicated with the second discharge port 8 is reduced while the volume V of the interdental chamber 5 x decreases as the inner rotor 2 and the outer rotor 3 rotate. It communicates with the suction port 6.
  • the volume V of the interdental chamber 5x that is no longer in communication with the second discharge port 8 decreases with the rotation of the inner rotor 2 or the like, so that the hydraulic oil remaining in the interdental chamber 5x is sucked. It is discharged to port 6.
  • the volume V of the interdental chamber 5x that has stopped communicating with the second discharge port 8 begins to increase after the interdental chamber 5x has completely communicated with the suction port 6. That is, the volume V of the interdental chamber 5x that is no longer communicated with the second discharge port 8 becomes the minimum value Vmin after the interdental chamber 5x is completely communicated with the suction port 6.
  • the interdental chamber 5 x whose volume V decreases with the rotation of the inner rotor 2 and the outer rotor 3 is a meshing portion between the external teeth 20 and the internal teeth 30 that define the interdental chamber 5 x.
  • the E overlaps with the peripheral edge 8e of the second discharge port 8 when viewed from the axial direction of the inner rotor 2, the E is not communicated with the second discharge port 8.
  • the meshing portion E overlaps the peripheral edge 8 e of the second discharge port 8 as viewed from the axial direction of the inner rotor 2
  • the rotational direction of the inner rotor 2 is greater than the external teeth 20 including the meshing portion E.
  • the interdental chamber 5x whose volume V decreases with the rotation of the inner rotor 2 or the like is communicated with the suction port 6 immediately after it stops communicating with the second discharge port 8, and the hydraulic oil in the interdental chamber 5x Can flow out to the suction port 6. Therefore, with respect to the interdental chamber 5x that is no longer in communication with the second discharge port 8, a narrow interdental chamber 5x is formed from the gap between the inner rotor 2 and the outer rotor 3 and at least one of the pump body and the pump housing. It is possible to very well regulate the flow of hydraulic oil (leakage oil) at high speed.
  • the volume V of the interdental chamber 5 x that has stopped communicating with the second discharge port 8 starts to increase after the entire interdental chamber 5 x communicates with the suction port 6.
  • the intermediate portion formed by the hypotrochoidal curve of each tooth bottom portion 22 of the inner rotor 2 is offset to the center O (rotation center 2c) side from the basic circle BCt, and the tooth The bottom 22 is deeper than that originally corresponding to the inner teeth 30 of the outer rotor 3.
  • the tooth bottom portion 22 between the two external teeth 20 that defines the interdental chamber 5x that is no longer in communication with the second discharge port 8 has a minimum volume V of the interdental chamber 5x.
  • the communication area can be increased. Accordingly, it is possible to suppress the occurrence of cavitation accompanying the suction of the hydraulic oil into the interdental chamber 5x by suppressing the increase in the flow velocity of the hydraulic oil flowing from the suction port 6 into the interdental chamber 5x.
  • the tip portion 21 of each external tooth 20 of the inner rotor 2 is formed by a portion other than the loop portion of the epitrochoid curve having a trochoid coefficient larger than 1.
  • the tooth bottom portion 22 of the inner rotor 2 is formed by a portion other than the hypotrochoid curve loop in which the epitrochoid curve and the basic circle BCt are made common and the trochoid coefficient is larger than 1.
  • the shape of the tooth tip portion 21 and the tooth bottom portion 22 is determined using one basic circle BCt, and the outer diameter of the basic circle BCt, that is, the outer diameter of the inner rotor 2 is reduced. It is possible to easily increase the tooth height of the external teeth 20 while keeping it.
  • the end portion on the rear side in the rotation direction of the suction port 6 is brought closer to the end portion on the front side in the rotation direction of the second discharge port 8, so that the interdental chamber 5 x that is no longer in communication with the second discharge port 8 can be easily filled. It is possible to communicate with the suction port 6 while V is decreasing.
  • the tooth tip portion 21 ( The end portion 21r on the rear side in the rotation direction of the epitrochoid curve) can be brought closer to the bottom portion 22, and the end portion 21f on the front side in the rotation direction of the tooth tip portion 21 can be moved outward in the radial direction of the inner rotor 2.
  • the first intermediate portion 23 positioned on the front side of the tooth tip portion 21 in the rotation direction of the inner rotor 2 is formed by an involute curve.
  • the outer teeth 20 of the inner rotor 2 and the inner teeth 30 of the outer rotor 3 can be meshed more smoothly and the rotational speed ratio between the inner rotor 2 and the outer rotor 3 can be made constant.
  • the first intermediate unit 23 is an involute curve such as an n-order function (where “n” is an integer of 1 or more), an arc, an arbitrary polynomial, a trigonometric function, a relaxation curve, and a combination thereof. Needless to say, it may be formed by other curves.
  • the second intermediate section 24 is also an involute curve such as an n-order function (where “n” is an integer greater than or equal to 1), an arc, an arbitrary polynomial, a trigonometric function, a relaxation curve, and a combination thereof. Needless to say, it may be formed by other curves.
  • the gear pump 1 may have a single discharge port.
  • each external tooth 20 of the inner rotor 2 may be formed symmetrically with respect to the tooth profile center line Lc.
  • the interdental chamber 5x communicates with the suction port 6 at a timing such that the interdental chamber 5x does not communicate with the suction port 6 while the interdental chamber 5x communicates with the second discharge port 8.
  • the timing may be slightly later than the timing at which communication with the discharge port 8 stops. That is, both timings do not necessarily have to coincide completely.
  • the inner rotor 2, the second discharge port 8, and the input port 6 have a meshing portion E between the external teeth 20 and the internal teeth 30 that define the interdental chamber 5 x.
  • the interdental chamber 5x may be formed so as to communicate with the suction port 6 before it overlaps the peripheral edge 8e of the inner rotor 2 when viewed from the axial direction.
  • the timing at which the interdental chamber 5x communicates with the suction port 6 is compared with the timing at which the interdental chamber 5x does not communicate with the second discharge port 8 within a range that does not significantly affect the discharge pressure from the second discharge port 8. May be slightly faster.
  • the interdental chamber 5x whose volume decreases with the rotation of the inner rotor 2 or the like, is communicated with the suction port 6 before it stops communicating with the second discharge port 8, and an appropriate amount of operation in the interdental chamber 5x is achieved. Oil can flow out to the second discharge port 8 and the suction port 6.
  • the gear pump (1) of the present disclosure includes the suction port (6), the discharge port (7, 8), the inner rotor (2) having a plurality of external teeth (20), and the inner rotor.
  • the discharge port (7, 8) is connected to the inner rotor (2).
  • the volume of the interdental chamber (5x) communicated with the inlet port (6) and no longer communicated with the discharge port (8) is such that at least a part of the interdental chamber (5x) is connected to the suction port (6). It is characterized by an increase after communication.
  • the interdental chamber that has stopped communicating with the discharge port communicates with the suction port while the volume of the interdental chamber decreases as the inner and outer rotors rotate.
  • the volume of the interdental chamber that is no longer in communication with the discharge port decreases with the rotation of the inner rotor or the like, so that fluid is discharged from the interdental chamber to the suction port.
  • the volume of the interdental chamber that is no longer in communication with the discharge port increases after the interdental chamber communicates with the suction port. That is, the volume of the interdental chamber that is no longer in communication with the discharge port is minimized after the interdental chamber communicates with the suction port.
  • the fluid flowing into the suction port from the interdental chamber that is no longer in communication with the discharge port causes fluid to flow into the interdental chamber from the gap between the inner rotor and the outer rotor and the member that accommodates both (axial gap). Inflow at high speed can be well controlled. Therefore, in this gear pump, it is possible to satisfactorily suppress the occurrence of cavitation in the interdental chamber that does not communicate with the discharge port and communicates with the suction port.
  • the volume (V) of the interdental chamber (5x) that has stopped communicating with the discharge port (6) starts to increase after the entire interdental chamber (5x) communicates with the suction port (6). Also good.
  • the communication area between the interdental chamber and the suction port when the fluid begins to flow from the suction port in response to an increase in volume with respect to the interdental chamber that is no longer in communication with the discharge port is suppressed. can do.
  • an increase in the flow rate of the fluid flowing from the suction port into the interdental chamber can be suppressed, and the occurrence of cavitation associated with the suction of the fluid into the interdental chamber can be satisfactorily suppressed.
  • the inner rotor (2) has a tooth bottom portion (22) defining the interdental chamber (5x) that is no longer in communication with the discharge port (8), and the volume (V) of the interdental chamber (5x) ), When viewed from the axial direction of the inner rotor (2), it does not protrude from the inner peripheral edge (6ie) of the suction port (6) to the rotation center (2c) side of the inner rotor (2). You may form so that it may adjoin to this inner periphery (6ie).
  • the minimum volume of the interdental chamber that is, the interdental chamber and the suction port when fluid starts to flow from the suction port in response to the increase in volume with respect to the interdental chamber that is no longer communicated with the discharge port.
  • the communication area can be increased.
  • an increase in the flow velocity of the fluid flowing from the suction port into the interdental chamber can be suppressed, and the occurrence of cavitation accompanying the suction of the fluid into the interdental chamber can be suppressed extremely well.
  • the bottom of the teeth of the inner rotor is placed inside the suction port when the interdental chamber volume reaches a minimum value.
  • the minimum volume (communication area) of the interdental chamber that is brought close to the periphery and no longer communicates with the discharge port can be increased more appropriately.
  • the interdental chamber (5x) in which the volume (V) decreases, the external teeth (20) and the internal teeth (30) that define the interdental chamber (5x). (E) is formed so as to communicate with the suction port (6) after overlapping the peripheral edge (8e) of the discharge port (8) when viewed from the (2) axial direction of the inner rotor. May be.
  • the interdental chamber whose volume decreases with the rotation of the inner rotor or the like is communicated with the suction port almost simultaneously with the discharge port, and the fluid in the interdental chamber flows out to the suction port. Can do. Therefore, it is possible to very well regulate the flow of fluid from the gap between the inner rotor and the outer rotor and the member that accommodates both into the interdental chamber that is no longer in communication with the discharge port.
  • the interdental chamber (5x) in which the volume (V) decreases is defined by the external teeth (20) and the internal teeth (30) that define the interdental chamber (5x).
  • (E) is formed so as to communicate with the suction port (6) before overlapping the peripheral edge (8e) of the discharge port (8) when viewed from the (2) axial direction of the inner rotor. Also good.
  • the interdental chamber whose volume decreases with the rotation of the inner rotor or the like is communicated with the suction port before it is not communicated with the discharge port, and an appropriate amount of fluid in the interdental chamber is transferred to the discharge port and the suction port. Can be drained. As a result, it is possible to keep the pressure of the fluid in the interdental chamber from rising more than necessary, and to suppress the occurrence of vibration due to the increase in the pressure of the fluid in the interdental chamber.
  • each of the external teeth (20) of the inner rotor (2) causes the outer circle (Co) having a radius (re) smaller than the radius (rde) of the drawing point to circumscribe the basic circle (BCt).
  • the tooth tip part (21) formed by the epitrochoid curve obtained by rolling without slipping may be included. That is, by keeping the radius of the abduction circle (the radius of the base circle / the number of teeth) small while increasing the drawing point radius of the epitrochoid curve, the outer diameter of the basic circle, that is, the outer diameter of the inner rotor is kept small. It is possible to easily increase the height of the external teeth.
  • each of the outer teeth (20) of the inner rotor (2) is formed by an arbitrary curve, and the inner rotor (2) more than the tooth tip portion (21) and the tooth tip portion (21).
  • a second intermediate portion (24) positioned between the tooth bottom portion (22) positioned on the rear side in the rotational direction of the inner rotor (2) relative to (21), and the first intermediate portion ( The length of the curve forming 23) may be longer than the length of the curve forming the second intermediate part (24).
  • the epitrochoid curve forming the tooth tip portion The rear end portion in the rotation direction can be brought closer to the tooth bottom portion, and the front end portion in the rotation direction of the epitrochoid curve can be brought closer to the outer side in the radial direction of the inner rotor. Then, by bringing the end of the epitrochoid curve forming the tooth tip portion on the rear side in the rotational direction closer to the tooth bottom portion, the minimum clearance between the external teeth and the internal teeth defining the interdental space communicating with the discharge port The value can be reduced as a whole.
  • the first intermediate part (23) may be formed by at least an involute curve.
  • the discharge port is separated from the first discharge port (7) by a first discharge port (7) and a partition wall (9), and the inner rotor (2) is separated from the first discharge port (7).
  • a second discharge port (8) arranged on the front side in the rotation direction.
  • the invention of the present disclosure can be used in the gear pump manufacturing industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A gear pump (1) comprises: an intake port (6); a first and a second discharge ports (7), (8); an inner rotor (2) including a plurality of outer teeth (20); an outer rotor (3) including a plurality of inner teeth (30) of which the number is greater than the number of the outer teeth (20) of the inner rotor (2); and a plurality of inter-teeth chambers (5) defined by the plurality of outer teeth (20) and the plurality of inner teeth (30), wherein the first and second discharge ports (7), (8) communicate with the inter-teeth chambers (5), of which the volume (V) decreases as the inner rotor (2) and the like rotate, and the inter-teeth chambers (5x) that have ceased to communicate with the second discharge port (8) communicate with the intake port (6) while the volume (V) decreases, wherein the volume (V) of the inter-teeth chambers (5x) that have ceased to communicate with the second discharge port (8) increases after at least some of the inter-teeth chambers (5x) come to communicate with the intake port (6).

Description

ギヤポンプGear pump
 本開示は、複数の外歯を有するインナーロータと、複数の内歯を有すると共にインナーロータに対して偏心するように配置されるアウターロータとを含むギヤポンプに関する。 The present disclosure relates to a gear pump including an inner rotor having a plurality of external teeth and an outer rotor having a plurality of internal teeth and arranged to be eccentric with respect to the inner rotor.
 従来、ギヤポンプとして、n個の外歯を有するインナーロータと、当該外歯と噛み合うn+1個の内歯を有するアウターロータと、吸入ポートおよび吐出ポートが形成されたケーシングとを含むものが知られている(例えば、特許文献1参照)。このギヤポンプでは、インナーロータの回転中心と外歯の歯先とを結ぶ第1直線と、回転中心と外歯の噛み合い部とを結ぶ第2直線とがなす第1角度が、回転中心と外歯の歯底とを結ぶ第3直線と、第2直線とがなす第2角度の1.4倍以上1.8倍以下とされている。更に、外歯の噛み合い部における回転方向に沿う幅は、吸入ポートの両ロータの回転方向における後端と、吐出ポートの回転方向における前端との距離、すなわちポートの仕切り幅と同等とされている。 Conventionally, a gear pump including an inner rotor having n external teeth, an outer rotor having n + 1 internal teeth meshing with the external teeth, and a casing in which a suction port and a discharge port are formed is known. (For example, refer to Patent Document 1). In this gear pump, the first angle formed by the first straight line connecting the rotation center of the inner rotor and the tooth tip of the external tooth and the second straight line connecting the rotation center and the meshing portion of the external tooth is the rotation center and the external tooth. It is set to 1.4 times or more and 1.8 times or less of the second angle formed by the third straight line connecting the tooth bottom and the second straight line. Furthermore, the width along the rotation direction of the meshing portion of the external teeth is equal to the distance between the rear end in the rotation direction of both rotors of the suction port and the front end in the rotation direction of the discharge port, that is, the partition width of the port. .
特許第4889981号公報Japanese Patent No. 4889981
 特許文献1には、上記第1角度を第2角度の1.4倍以上1.8倍以下とすることで、複数のセル(歯間室)のうち、両ロータが噛み合って外歯から内歯に回転駆動力を伝達させる噛み合い位置に位置する最小容積のセルが密閉される、いわゆる流体の閉じ込みの発生を防ぐことが可能になる、と記載されている。しかしながら、特許文献1に記載された構成を採用しても、吐出ポートに流体を吐出して容積が最小になったセルに対してケースと両ロータとの隙間(ギヤポンプの軸方向における隙間)から流体が流入するのを完全に抑制することは困難である。従って、特許文献1のギヤポンプでは、吐出ポートに連通しなくなって吸入ポートに連通することになる歯間室にケースと両ロータとの隙間から流体が高速で流入することによりキャビテーションが発生してしまうおそれがある。 In Patent Document 1, by setting the first angle to be 1.4 times or more and 1.8 times or less of the second angle, both rotors of a plurality of cells (interdental chambers) mesh with each other from the outer teeth. It is described that it is possible to prevent the occurrence of so-called fluid confinement, in which the minimum volume cell located at the meshing position where the rotational driving force is transmitted to the teeth is sealed. However, even if the configuration described in Patent Document 1 is adopted, the gap between the case and both rotors (the gap in the axial direction of the gear pump) with respect to a cell whose volume is minimized by discharging fluid to the discharge port. It is difficult to completely suppress the inflow of fluid. Therefore, in the gear pump of Patent Document 1, cavitation occurs due to the fluid flowing at high speed from the gap between the case and both rotors into the interdental chamber that does not communicate with the discharge port and communicates with the suction port. There is a fear.
 そこで、本開示の発明は、吐出ポートに連通しなくなって吸入ポートに連通することになる歯間室でのキャビテーションの発生を良好に抑制することができるギヤポンプの提供を主目的とする。 Therefore, the main object of the invention of the present disclosure is to provide a gear pump that can satisfactorily suppress the occurrence of cavitation in the interdental chamber that does not communicate with the discharge port and communicates with the suction port.
 本開示のギヤポンプは、吸入ポートと、吐出ポートと、複数の外歯を有するインナーロータと、前記インナーロータの前記外歯よりも多い複数の内歯を有すると共に該インナーロータに対して偏心するように配置されるアウターロータと、前記複数の外歯および前記複数の内歯により画成される複数の歯間室とを含むギヤポンプにおいて、前記吐出ポートは、前記インナーロータおよび前記アウターロータの回転に伴って容積が減少する前記歯間室に連通し、前記吐出ポートに連通しなくなった前記歯間室は、該歯間室の容積の減少中に前記吸入ポートに連通し、前記吐出ポートに連通しなくなった前記歯間室の容積は、該歯間室の少なくとも一部が前記吸入ポートに連通した後に増加することを特徴とする。 The gear pump of the present disclosure has a suction port, a discharge port, an inner rotor having a plurality of external teeth, a plurality of internal teeth that are larger than the external teeth of the inner rotor, and is eccentric with respect to the inner rotor. And a plurality of interdental chambers defined by the plurality of external teeth and the plurality of internal teeth, the discharge port is configured to rotate the inner rotor and the outer rotor. The interdental chamber communicated with the interdental chamber, the volume of which decreases along with the discharge port, and communicated with the suction port while the volume of the interdental chamber decreased, and communicated with the discharge port. The volume of the interdental chamber that is no longer increased increases after at least a part of the interdental chamber communicates with the suction port.
 このギヤポンプでは、吐出ポートに連通しなくなった歯間室が、インナーロータおよびアウターロータの回転に伴って当該歯間室の容積が減少する間に吸入ポートに連通する。これにより、吐出ポートに連通しなくなった歯間室の容積がインナーロータ等の回転に伴って減少することで、当該歯間室から吸入ポートに流体が吐出される。そして、吐出ポートに連通しなくなった歯間室の容積は、当該歯間室が吸入ポートに連通した後に増加する。すなわち、吐出ポートに連通しなくなった歯間室の容積は、当該歯間室が吸入ポートに連通した後に最小になる。この結果、吐出ポートに連通しなくなった歯間室から吸入ポートに流出する流体により、インナーロータおよびアウターロータと両者を収容する部材との隙間(軸方向における隙間)から当該歯間室に流体が高速で流入するのを良好に規制することができる。従って、このギヤポンプでは、吐出ポートに連通しなくなって吸入ポートに連通することになる歯間室でのキャビテーションの発生を良好に抑制することが可能となる。 In this gear pump, the interdental chamber that has stopped communicating with the discharge port communicates with the suction port while the volume of the interdental chamber decreases as the inner and outer rotors rotate. As a result, the volume of the interdental chamber that is no longer in communication with the discharge port decreases with the rotation of the inner rotor or the like, so that fluid is discharged from the interdental chamber to the suction port. The volume of the interdental chamber that is no longer in communication with the discharge port increases after the interdental chamber communicates with the suction port. That is, the volume of the interdental chamber that is no longer in communication with the discharge port is minimized after the interdental chamber communicates with the suction port. As a result, the fluid flowing into the suction port from the interdental chamber that is no longer in communication with the discharge port causes fluid to flow into the interdental chamber from the gap between the inner rotor and the outer rotor and the member that accommodates both (axial gap). Inflow at high speed can be well controlled. Therefore, in this gear pump, it is possible to satisfactorily suppress the occurrence of cavitation in the interdental chamber that does not communicate with the discharge port and communicates with the suction port.
本開示のギヤポンプを示す概略構成図である。It is a schematic structure figure showing a gear pump of this indication. 本開示のギヤポンプに含まれるインナーロータの外歯を示す概略構成図である。It is a schematic block diagram which shows the external tooth of the inner rotor contained in the gear pump of this indication. 本開示のギヤポンプに含まれるインナーロータの外歯の創成手順を示す模式図である。It is a schematic diagram which shows the creation procedure of the external tooth of the inner rotor contained in the gear pump of this indication. 本開示のギヤポンプに含まれるアウターロータの内歯の創成手順を示す模式図である。It is a schematic diagram which shows the creation procedure of the internal tooth of the outer rotor contained in the gear pump of this indication. 本開示のギヤポンプの動作を説明するための拡大図である。It is an enlarged view for demonstrating operation | movement of the gear pump of this indication. 本開示のギヤポンプの動作を説明するための拡大図である。It is an enlarged view for demonstrating operation | movement of the gear pump of this indication. 本開示のギヤポンプの動作を説明するための拡大図である。It is an enlarged view for demonstrating operation | movement of the gear pump of this indication. インナーロータの回転中心周りの回転角度と、吐出ポートに連通しなくなる歯間室の容積との関係を例示する図表である。It is a graph which illustrates the relationship between the rotation angle around the rotation center of an inner rotor, and the volume of the interdental chamber which is no longer connected to a discharge port. 本開示の他の実施形態に係るギヤポンプの動作を説明するための拡大図である。It is an enlarged view for demonstrating operation | movement of the gear pump which concerns on other embodiment of this indication.
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。 Next, an embodiment for carrying out the invention of the present disclosure will be described with reference to the drawings.
 図1は、本開示の一実施形態に係るギヤポンプ1を示す概略構成図である。同図に示すギヤポンプ1は、例えば図示しない車両に搭載されるオイルポンプとして構成され、オイルパンに貯留されている作動油(ATF)を吸引して油圧制御装置(何れも図示省略)へと圧送するものである。ギヤポンプ1は、例えば自動変速機の変速機ケースに固定されるポンプボディと当該ポンプボディに締結されるポンプカバーとにより構成されるポンプハウジング(何れも図示省略)と、当該ポンプハウジングにより画成される図示しないギヤ収容室内にそれぞれ回転自在に配置されるインナーロータ(ドライブギヤ)2およびアウターロータ(ドリブンギヤ)3とを含む。なお、ギヤポンプ1は、変速機用の作動油を圧送するオイルポンプ以外の車載ポンプ(例えば、エンジンオイルポンプ)として構成されてもよく、車載ポンプ以外の用途に適用されてもよい。 FIG. 1 is a schematic configuration diagram illustrating a gear pump 1 according to an embodiment of the present disclosure. A gear pump 1 shown in the figure is configured as an oil pump mounted on a vehicle (not shown), for example, and sucks hydraulic oil (ATF) stored in an oil pan and pumps it to a hydraulic control device (both not shown). To do. The gear pump 1 is defined by, for example, a pump housing (both not shown) constituted by a pump body fixed to a transmission case of an automatic transmission and a pump cover fastened to the pump body, and the pump housing. An inner rotor (drive gear) 2 and an outer rotor (driven gear) 3 that are rotatably arranged in a gear housing chamber (not shown). The gear pump 1 may be configured as an in-vehicle pump (for example, an engine oil pump) other than an oil pump that pumps hydraulic oil for transmission, and may be applied to uses other than the in-vehicle pump.
 インナーロータ2は、車両に搭載されたエンジンのクランクシャフト(何れも図示省略)に連結される回転軸4に固定され、当該回転軸4に付与される動力により回転駆動される。また、インナーロータ2の外周には、複数(本実施形態では、例えば11歯)の外歯20が形成されている。一方、アウターロータ3の内周には、インナーロータ2の外歯20の総数よりも1つ多い数(本実施形態では、例えば12歯)の内歯30が形成されている。アウターロータ3は、図1における下側に位置する何れか1つまたは複数の内歯30がインナーロータ2の対応する外歯20に噛合すると共に、インナーロータ2に対して偏心した状態で上記ギヤ収容室内に回転自在に配置される。更に、インナーロータ2とアウターロータ3との間には、基本的に、隣り合う2つの外歯20と隣り合う2つの内歯30とにより複数の歯間室(ポンプ室)5が形成される。 The inner rotor 2 is fixed to a rotary shaft 4 connected to a crankshaft (both not shown) of an engine mounted on a vehicle, and is rotationally driven by power applied to the rotary shaft 4. A plurality of (for example, 11 teeth in this embodiment) external teeth 20 are formed on the outer periphery of the inner rotor 2. On the other hand, on the inner periphery of the outer rotor 3, the number of internal teeth 30 that is one more than the total number of external teeth 20 of the inner rotor 2 (for example, 12 teeth in this embodiment) is formed. The outer rotor 3 is configured so that any one or a plurality of inner teeth 30 located on the lower side in FIG. 1 mesh with the corresponding outer teeth 20 of the inner rotor 2 and are eccentric with respect to the inner rotor 2. It is rotatably arranged in the storage chamber. Furthermore, a plurality of interdental chambers (pump chambers) 5 are basically formed between the inner rotor 2 and the outer rotor 3 by two adjacent external teeth 20 and two adjacent internal teeth 30. .
 これにより、回転軸4からの動力によりインナーロータ2が図1における太線矢印方向に回転すると、アウターロータ3は、複数の内歯30の一部が複数の外歯20の一部に噛合することで、インナーロータ2の回転中心2cから偏心量eだけ離間した回転中心3cの周りにインナーロータ2と共に同方向に回転する。インナーロータ2およびアウターロータ3が回転する際、両者の回転方向(図1における太線矢印参照)における後側の領域、すなわち図1における主に右側半分の領域では、インナーロータ2等の回転に伴って各歯間室5の容積が増加(歯間室5が膨張)する。また、インナーロータ2およびアウターロータ3が回転する際、インナーロータ2等の回転方向における前側の領域、すなわち図1における主に左側半分の領域では、インナーロータ2等の回転に伴って各歯間室5の容積が減少(歯間室5が収縮)する。 Thereby, when the inner rotor 2 is rotated in the direction of the thick arrow in FIG. 1 by the power from the rotating shaft 4, the outer rotor 3 has a part of the plurality of inner teeth 30 meshed with a part of the plurality of outer teeth 20. Thus, it rotates in the same direction together with the inner rotor 2 around the rotation center 3c that is separated from the rotation center 2c of the inner rotor 2 by the eccentric amount e. When the inner rotor 2 and the outer rotor 3 are rotated, in the rear region in the rotation direction of the both (see the thick arrow in FIG. 1), that is, mainly in the right half region in FIG. Thus, the volume of each interdental chamber 5 increases (interdental chamber 5 expands). Further, when the inner rotor 2 and the outer rotor 3 rotate, in the front region in the rotation direction of the inner rotor 2 or the like, that is, mainly the left half region in FIG. The volume of the chamber 5 decreases (the interdental chamber 5 contracts).
 ギヤポンプ1の図示しないポンプハウジングには、それぞれ略円弧状に延在する吸入ポート6、第1吐出ポート7および第2吐出ポート8が形成されている。吸入ポート6は、外歯20と内歯30とにより画成される複数の歯間室5のうちのインナーロータ2およびアウターロータ3の回転に伴って容積が増加する歯間室5と連通(対向)する。第1および第2吐出ポート7,8は、隔壁9により仕切られて互いに独立しており、複数の歯間室5のうちのインナーロータ2およびアウターロータ3の回転に伴って容積が減少する歯間室5とそれぞれ連通(対向)する。本実施形態では、インナーロータ2等の回転方向における後側に位置する第1吐出ポート7が低圧ポートとされ、当該回転方向における前側に位置する第2吐出ポート8が高圧ポートとされる。 The pump housing (not shown) of the gear pump 1 is formed with a suction port 6, a first discharge port 7, and a second discharge port 8 each extending in a substantially arc shape. The suction port 6 communicates with the interdental chamber 5 whose volume increases as the inner rotor 2 and the outer rotor 3 rotate among the interdental chambers 5 defined by the external teeth 20 and the internal teeth 30 ( opposite. The first and second discharge ports 7 and 8 are separated by a partition wall 9 and are independent from each other, and the teeth whose volumes decrease as the inner rotor 2 and the outer rotor 3 of the plurality of interdental chambers 5 rotate. It communicates (opposites) with the inter-chamber 5 respectively. In the present embodiment, the first discharge port 7 located on the rear side in the rotation direction of the inner rotor 2 or the like is a low pressure port, and the second discharge port 8 located on the front side in the rotation direction is a high pressure port.
 なお、第1および第2吐出ポート7,8は、互いに異なる油路に接続されてもよく、共通の油路に接続されてもよい。また、吸入ポート6、第1および第2吐出ポート7,8は、インナーロータ2およびアウターロータ3の軸方向における両側(ポンプボディおよびポンプカバーの双方)に形成されてもよく、インナーロータ2およびアウターロータ3の軸方向における片側(ポンプボディおよびポンプカバーの一方)に形成されてもよい。更に、例えば、吸入ポート6がインナーロータ2等の軸方向における一側に形成されてもよく、第1および第2吐出ポート7,8がインナーロータ2等の軸方向における他側に形成されてもよい。また、第1吐出ポート7がインナーロータ2等の軸方向における一側に形成されてもよく、第2吐出ポート8がインナーロータ2等の軸方向における他側に形成されてもよい。 In addition, the 1st and 2nd discharge ports 7 and 8 may be connected to a mutually different oil path, and may be connected to a common oil path. The suction port 6, the first and second discharge ports 7, 8 may be formed on both sides (both the pump body and the pump cover) in the axial direction of the inner rotor 2 and the outer rotor 3, The outer rotor 3 may be formed on one side (one of the pump body and the pump cover) in the axial direction. Further, for example, the suction port 6 may be formed on one side in the axial direction of the inner rotor 2 or the like, and the first and second discharge ports 7 and 8 are formed on the other side in the axial direction of the inner rotor 2 or the like. Also good. Further, the first discharge port 7 may be formed on one side in the axial direction of the inner rotor 2 or the like, and the second discharge port 8 may be formed on the other side in the axial direction of the inner rotor 2 or the like.
 図2は、インナーロータ2の外歯20を示す概略構成図であり、図3は、外歯20の創成手順を示す模式図である。これらの図面に示すように、インナーロータ2の各外歯20は、凸曲面状の歯先部21と、凹曲面状の歯底部22と、歯先部21よりもインナーロータ2の回転方向(図3における太線矢印参照)における前側で当該歯先部21と歯底部22との間に位置する第1中間部23と、歯先部21よりもインナーロータ2の回転方向における後側で当該歯先部21と歯底部22との間に位置する第2中間部24とを含む。図示するように、外歯20は、歯先部21の最も径方向外側に位置する頂部21tとインナーロータ2の回転中心2cを通る歯形中心線Lcに関して左右非対称に形成される。 FIG. 2 is a schematic configuration diagram showing the external teeth 20 of the inner rotor 2, and FIG. 3 is a schematic diagram showing a procedure for creating the external teeth 20. As shown in these drawings, each external tooth 20 of the inner rotor 2 includes a convexly curved tooth tip portion 21, a concave curved tooth bottom portion 22, and the rotational direction of the inner rotor 2 relative to the tooth tip portion 21 ( The first intermediate portion 23 located between the tooth tip portion 21 and the tooth bottom portion 22 on the front side in the thick arrow in FIG. 3, and the tooth on the rear side in the rotational direction of the inner rotor 2 relative to the tooth tip portion 21. A second intermediate portion 24 located between the tip portion 21 and the tooth bottom portion 22 is included. As shown in the drawing, the external teeth 20 are formed asymmetrically with respect to a tooth profile center line Lc passing through the top portion 21t located on the outermost radial direction of the tooth tip portion 21 and the rotation center 2c of the inner rotor 2.
 歯先部21は、図3に示すように、第1の描画点の半径rdeを外転円Coの半径reで除して得られるトロコイド係数が値1よりも大きい(例えば1.2程度の値)エピトロコイド曲線(ループ部以外の部分)により凸曲面状に形成される。歯先部21を形成するエピトロコイド曲線は、第1の描画点の半径rdeを第1の値Rde(一定値)に保つと共に当該第1の値Rdeよりも小さい半径reを有する外転円Coをインナーロータ2の回転中心2cと中心Oを共通にする基礎円BCtに外接させながら滑りなく転動させることにより得られる。 As shown in FIG. 3, the tooth tip portion 21 has a trochoidal coefficient obtained by dividing the radius rde of the first drawing point by the radius re of the abduction circle Co, which is larger than 1 (for example, about 1.2). Value) A convex curved surface is formed by an epitrochoid curve (a portion other than the loop portion). The epitrochoid curve forming the tooth tip portion 21 maintains the radius rde of the first drawing point at the first value Rde (constant value) and has an abduction circle Co having a radius re smaller than the first value Rde. Is rolled without slipping while circumscribing the base circle BCt having the rotation center 2c of the inner rotor 2 and the center O in common.
 歯底部22は、第2の描画点の半径rdhを内転円Ciの半径rhで除して得られるトロコイド係数が値1よりも大きいハイポトロコイド曲線(ループ部以外の部分)により形成される中間部と、円弧等の曲線により形成される2つの立ち上がり部とを含む。歯底部22の中間部を形成するハイポトロコイド曲線は、歯先部21を形成するエピトロコイド曲線と基礎円BCtを共通にするものであり、図3に示すように、第2の描画点の半径rdhを第2の値Rdh(一定値)に保つと共に当該第2の値Rdhよりも小さい半径rhを有する内転円Ciを上記基礎円BCtに内接させながら滑りなく転動させることにより得られる。また、本実施形態において、歯先部21を形成するエピトロコイド曲線を描画するための第1の描画点の半径rdeすなわち第1の値Rdeと、歯底部22を形成するハイポトロコイド曲線を描画するための第2の描画点の半径rdhすなわち第2の値Rdhとは、同一の値Rdに定められている。同様に、外転円Coの半径reおよび内転円Ciの半径rhも同一の値Rに定められている。従って、インナーロータ2では、Rde=Rdh=Rd、re=rh=R、歯丈=Rde+re+Rdh+rh=2・eという関係が成立する。 The root portion 22 is an intermediate formed by a hypotrochoid curve (a portion other than the loop portion) having a trochoid coefficient larger than 1 obtained by dividing the radius rdh of the second drawing point by the radius rh of the inversion circle Ci. Part and two rising parts formed by a curve such as an arc. The hypotrochoid curve forming the middle portion of the tooth bottom portion 22 shares the epitrochoid curve forming the tooth tip portion 21 with the basic circle BCt, and as shown in FIG. 3, the radius of the second drawing point It is obtained by keeping rdh at the second value Rdh (constant value) and rolling the inversion circle Ci having a radius rh smaller than the second value Rdh without slipping while inscribed in the basic circle BCt. . In the present embodiment, the radius rde of the first drawing point for drawing the epitrochoid curve forming the tooth tip portion 21, that is, the first value Rde, and the hypotrochoid curve forming the tooth bottom portion 22 are drawn. For this reason, the radius rdh of the second drawing point, that is, the second value Rdh is set to the same value Rd. Similarly, the radius re of the abduction circle Co and the radius rh of the inversion circle Ci are set to the same value R. Therefore, in the inner rotor 2, the relationship Rde = Rdh = Rd, re = rh = R, and tooth height = Rde + re + Rdh + rh = 2 · e is established.
 歯底部22の2つの立ち上がり部は、それぞれハイポトロコイド曲線により形成される中間部に滑らかに連続するように当該中間部から対応する第1または第2中間部23,24に向けて延びる。また、インナーロータ2の回転方向における後側の立ち上がり部は、第1中間部23の当該回転方向における前側の端部23fで当該第1中間部23に滑らかに連続するように形成され、インナーロータ2の回転方向における前側の立ち上がり部は、第2中間部24の当該回転方向における後側の端部24rで当該第2中間部24に滑らかに連続するように形成される。これにより、歯底部22のハイポトロコイド曲線により形成される中間部は、基礎円BCtよりも中心O(インナーロータ2の回転中心2c)側にオフセットされることになる。更に、歯底部22は、外歯20の一歯分に対応した角度φ(360°/外歯20の歯数)の二分の1(φ/2)だけ歯形中心線Lcから上記回転方向の前側または後側に回転させられた線分Leとの交差部22xを含む。そして、インナーロータ2では、図2および図3に示すように、歯形中心線Lcを挟む2つの交差部22x間の範囲が外歯20の一歯分の範囲とされる。 The two rising parts of the tooth bottom part 22 extend from the intermediate part toward the corresponding first or second intermediate part 23, 24 so as to be smoothly connected to the intermediate part formed by the hypotrochoid curve. The rear rising portion in the rotation direction of the inner rotor 2 is formed so as to smoothly continue to the first intermediate portion 23 at the front end portion 23f of the first intermediate portion 23 in the rotation direction. The front rising portion in the second rotational direction is formed so as to be smoothly continuous with the second intermediate portion 24 at the rear end 24r of the second intermediate portion 24 in the rotational direction. Thereby, the intermediate part formed by the hypotrochoid curve of the tooth bottom part 22 is offset to the center O (rotation center 2c of the inner rotor 2) side from the basic circle BCt. Further, the tooth bottom portion 22 is frontward in the rotational direction from the tooth profile center line Lc by a half (φ / 2) of an angle φ (360 ° / the number of teeth of the external teeth 20) corresponding to one tooth of the external teeth 20. Alternatively, an intersection 22x with the line segment Le rotated to the rear side is included. In the inner rotor 2, as shown in FIGS. 2 and 3, a range between the two intersecting portions 22 x sandwiching the tooth profile center line Lc is a range corresponding to one tooth of the external teeth 20.
 第1中間部23は、図2および図3に示すように、歯先部21と、当該歯先部21のインナーロータ2の回転方向における前側の歯底部22との間に形成される。本実施形態において、第1中間部23は、歯先部21の当該回転方向における前側の端部21fでの接線が当該端部21fでの上記エピトロコイド曲線の接線と共通になるように定められたインボリュート曲線により形成される。これにより、端部21fにおいて歯先部21と第1中間部23とを滑らかに連続させることができる。本実施形態において、第1中間部23を形成するインボリュート曲線の長さ、すなわち歯先部21の端部21fから第1中間部23の端部23fまでの長さは、第2中間部24を形成する曲線の長さ、すなわち歯先部21の端部21rから第2中間部24の端部24rまでの長さよりも長く定められる。 2 and 3, the first intermediate portion 23 is formed between the tooth tip portion 21 and the front tooth bottom portion 22 of the tooth tip portion 21 in the rotation direction of the inner rotor 2. In the present embodiment, the first intermediate portion 23 is determined such that the tangent at the front end 21f in the rotation direction of the tooth tip 21 is common to the tangent of the epitrochoidal curve at the end 21f. Formed by an involute curve. Thereby, the tip part 21 and the 1st intermediate part 23 can be smoothly continued in the edge part 21f. In the present embodiment, the length of the involute curve forming the first intermediate portion 23, that is, the length from the end portion 21 f of the tooth tip portion 21 to the end portion 23 f of the first intermediate portion 23 is the same as that of the second intermediate portion 24. The length of the curve to be formed, that is, the length from the end portion 21r of the tooth tip portion 21 to the end portion 24r of the second intermediate portion 24 is determined.
 第2中間部24は、図2および図3に示すように、歯先部21と、該歯先部21のインナーロータ2の回転方向における後側の歯底部22との間に形成される。第2中間部24は、上記基礎円BCtとの交差部24xよりも歯先部21側に位置する外側中間部24oと、交差部24xよりも歯底部22側に位置する内側中間部24iとを含む。本実施形態において、外側中間部24o、すなわち交差部24xから歯先部21のインナーロータ2の回転方向における後側の端部(境界)21rまでの範囲は、図3に示すように、上記第1描画点の半径(図中点線参照)を変化させながら基礎円BCtに外接する外転円Coを滑りなく転動させて得られる第1の曲線により形成される。また、内側中間部24i、すなわち交差部24xから端部24rまでの範囲は、図3に示すように、上記第2描画点の半径(図中二点鎖線参照)を変化させながら基礎円BCtに内接する内転円Ciを滑りなく転動させて得られる第2の曲線により形成される。なお、外転円Coや内転円Ciの第1または第2描画点の半径を変化させる手順については、特開2014-181619号公報を参照されたい。 2 and 3, the second intermediate portion 24 is formed between the tooth tip portion 21 and the rear tooth bottom portion 22 of the tooth tip portion 21 in the rotation direction of the inner rotor 2. The second intermediate portion 24 includes an outer intermediate portion 24o located on the tooth tip portion 21 side with respect to the intersection portion 24x with the basic circle BCt, and an inner intermediate portion 24i located on the tooth bottom portion 22 side with respect to the intersection portion 24x. Including. In the present embodiment, the range from the outer intermediate portion 24o, that is, the intersecting portion 24x to the rear end portion (boundary) 21r in the rotation direction of the inner rotor 2 of the tooth tip portion 21, as shown in FIG. It is formed by a first curve obtained by rolling an outer rotation circle Co circumscribing the base circle BCt without slipping while changing the radius of one drawing point (see the dotted line in the figure). Further, as shown in FIG. 3, the inner intermediate portion 24i, that is, the range from the intersecting portion 24x to the end portion 24r, is changed to the basic circle BCt while changing the radius of the second drawing point (see the two-dot chain line in the drawing). It is formed by the second curve obtained by rolling the inscribed inversion circle Ci without slipping. For the procedure for changing the radius of the first or second drawing point of the abduction circle Co or the inversion circle Ci, refer to Japanese Patent Application Laid-Open No. 2014-181619.
 図4は、ギヤポンプ1に含まれるアウターロータ3の内歯30の創成手順を示す模式図である。同図に示すように、複数の内歯30により画成されるアウターロータ3の歯形(輪郭)は、上記インナーロータ2をベースとしたインナーロータ2Zの回転中心2cをアウターロータ3の回転中心3cを中心とする直径2・e+tの円周上で所定角度δずつ1周公転させると共に、回転中心2cが所定角度δだけ公転する際にインナーロータ2Zを回転角度δ/Nだけ自転させることにより得られる複数の歯形線(インナーロータ2の輪郭、図3における二点鎖線参照)に対して描かれる包絡線に基づいて定められる。ただし、“t”は、インナーロータ2Zの回転中心2c、アウターロータ3の回転中心3c、外歯20の歯先部21の頂部21tおよび内歯30の歯先部の頂部が一直線上に位置する際の頂部21tと内歯30の頂部とのクリアランス(チップクリアランス)であり、例えば、0.03~0.07mm程度の値とされる。 FIG. 4 is a schematic diagram showing a procedure for creating the inner teeth 30 of the outer rotor 3 included in the gear pump 1. As shown in the figure, the tooth profile (outline) of the outer rotor 3 defined by the plurality of inner teeth 30 is the rotation center 2c of the inner rotor 2Z based on the inner rotor 2 and the rotation center 3c of the outer rotor 3. Obtained by rotating the inner rotor 2Z by a rotation angle δ / N when the rotation center 2c revolves by a predetermined angle δ. It is determined based on the envelope drawn with respect to a plurality of tooth profile lines (the outline of the inner rotor 2, see the two-dot chain line in FIG. 3). However, “t” indicates that the rotation center 2c of the inner rotor 2Z, the rotation center 3c of the outer rotor 3, the top part 21t of the tooth tip part 21 of the external tooth 20 and the top part of the tooth tip part of the internal tooth 30 are aligned. The clearance (tip clearance) between the top 21t and the top of the internal tooth 30 is, for example, a value of about 0.03 to 0.07 mm.
 アウターロータ3の歯形を定めるためのインナーロータ2Zは、上記インナーロータ2の歯底部22を図2および図3において二点鎖線で示す歯底部22zで置き換えたものに相当する。歯底部22zは、図2および図3に示すように、上記歯底部22の中間部を形成するものと同一のハイポトロコイド曲線(ループ部以外の部分)により形成された第2中間部24の端部24rから図2および図3に示す境界部22yまでの部分と、滑らかな曲線(例えば円弧)により形成された境界部22yから第1中間部23の端部23fまでの部分とを含むものである。これにより、インナーロータ2と適正に噛合可能なアウターロータ3を容易に得ることが可能となる。ただし、アウターロータ3の歯形(輪郭)は、上記包絡線自体であってもよく、当該包絡線よりも外側に位置するように定められてもよい。また、アウターロータ3の内歯は、インナーロータ2Zと概ね同一の形状を有する歯切工具を用いて創成されてもよい。 The inner rotor 2Z for defining the tooth profile of the outer rotor 3 corresponds to a structure in which the tooth bottom portion 22 of the inner rotor 2 is replaced with a tooth bottom portion 22z indicated by a two-dot chain line in FIGS. 2 and 3, the tooth bottom portion 22z is the end of the second intermediate portion 24 formed by the same hypotrochoidal curve (portion other than the loop portion) that forms the intermediate portion of the tooth bottom portion 22, as shown in FIGS. A portion from the portion 24r to the boundary portion 22y shown in FIGS. 2 and 3 and a portion from the boundary portion 22y formed by a smooth curve (for example, an arc) to the end portion 23f of the first intermediate portion 23 are included. As a result, it is possible to easily obtain the outer rotor 3 that can mesh properly with the inner rotor 2. However, the tooth profile (outline) of the outer rotor 3 may be the envelope itself or may be determined to be located outside the envelope. Further, the inner teeth of the outer rotor 3 may be created using a gear cutting tool having substantially the same shape as the inner rotor 2Z.
 そして、ギヤポンプ1では、インナーロータ2(外歯20の諸元)、アウターロータ3、吸入ポート6、第1および第2吐出ポート7,8は、第2吐出ポート8に連通しなくなった歯間室5x(図1参照)が、当該歯間室5xの容積の減少中に吸入ポート6に連通し、歯間室5xの少なくとも一部と吸入ポート6との連通後に当該歯間室5xの容積が増加するように構成される。加えて、ギヤポンプ1では、上死点(外歯20の歯先部21の頂部と、内歯30の歯先部の頂部とが一直線上で対向する(接する)位置)に最接近した何れか1つの外歯20が対応する内歯30と接触している間に、当該何れか1つの外歯20の回転方向における1つ後側に位置する外歯20が対応する内歯30と接触するように、インナーロータ2の複数の外歯20が形成される。かかる条件を満たすように歯先部21、歯底部22、第1および第2中間部23,24等の諸元を定めることにより、歯間室5(5x)におけるキャビテーションの発生を良好に抑制すると共に、ギヤポンプ1の作動中におけるインナーロータ2およびアウターロータ3の挙動を安定化させて振動やノイズを低減化することが可能となる。 In the gear pump 1, the inner rotor 2 (specifications of the external teeth 20), the outer rotor 3, the suction port 6, the first and second discharge ports 7, 8 are not connected to the second discharge port 8. The chamber 5x (see FIG. 1) communicates with the suction port 6 while the volume of the interdental chamber 5x is decreasing, and after the communication between at least a part of the interdental chamber 5x and the suction port 6, the volume of the interdental chamber 5x Is configured to increase. In addition, in the gear pump 1, the top dead center (a position where the top of the tooth tip 21 of the external tooth 20 and the top of the tooth tip of the internal tooth 30 face each other in a straight line) is closest. While one external tooth 20 is in contact with the corresponding internal tooth 30, the external tooth 20 located on the back side in the rotation direction of any one of the external teeth 20 is in contact with the corresponding internal tooth 30. As described above, the plurality of external teeth 20 of the inner rotor 2 are formed. By determining the specifications of the tooth tip portion 21, the tooth bottom portion 22, the first and second intermediate portions 23, 24, etc. so as to satisfy such conditions, the occurrence of cavitation in the interdental chamber 5 (5x) is satisfactorily suppressed. At the same time, the behavior of the inner rotor 2 and the outer rotor 3 during operation of the gear pump 1 can be stabilized to reduce vibration and noise.
 次に、図5から図8を参照しながら、ギヤポンプ1の動作について説明する。図5から図7は、ギヤポンプ1の動作を説明するための拡大図であり、図8は、インナーロータ2の回転中心2c周りの回転角度θと、第2吐出ポート8に連通しなくなる歯間室5xの容積Vとの関係を例示する図表である。なお、インナーロータ2の回転角度θは、ある外歯20の歯底部22の最底部(最深部)と回転中心2cとを結ぶ線部の回転中心2c周りの回転角度であり、インナーロータ2の回転中心2cの図中真下に当該外歯20の歯底部22の最底部が位置する状態を0°として図1中反時計周りに測定される。 Next, the operation of the gear pump 1 will be described with reference to FIGS. 5 to 7 are enlarged views for explaining the operation of the gear pump 1, and FIG. 8 is a diagram illustrating the rotation angle θ around the rotation center 2c of the inner rotor 2 and the interdental teeth that do not communicate with the second discharge port 8. It is a graph which illustrates the relationship with the volume V of the chamber 5x. Note that the rotation angle θ of the inner rotor 2 is a rotation angle around the rotation center 2c of the line portion connecting the bottommost portion (deepest portion) of the tooth bottom portion 22 of the certain external tooth 20 and the rotation center 2c. Measurement is performed counterclockwise in FIG. 1 with 0 ° being the state in which the bottom of the bottom portion 22 of the external tooth 20 is located directly below the center of rotation 2c.
 ギヤポンプ1では、インナーロータ2およびアウターロータ3の回転に伴って、第2吐出ポート8に連通する各歯間室5の容積Vが減少していく。そして、インナーロータ2の回転角度θが第1の角度θ1(図8参照)になると、図5に示すように、第2吐出ポート8に連通していた歯間室5xを画成する回転方向後側の外歯20および内歯30の噛み合い部Eが第2吐出ポート8の周縁8eにインナーロータ2の軸方向からみて重なり合うことで、当該歯間室5xと第2吐出ポート8との連通が断たれることになる。更に、噛み合い部Eが第2吐出ポート8の周縁8eに重なり合って歯間室5xが第2吐出ポート8に連通しなくなった時点で、当該噛み合い部Eを含む外歯20よりもインナーロータ2の回転方向における1つ前側の外歯20の歯面(歯底部22あるいは第2中間部24)は、図5に示すように、インナーロータ2の軸方向からみて吸入ポート6の周縁6eと僅かに乗り越える。これにより、歯間室5xは、第2吐出ポート8に連通しなくなるのとほぼ同時に吸入ポート6に連通する。 In the gear pump 1, the volume V of each interdental chamber 5 communicating with the second discharge port 8 decreases as the inner rotor 2 and the outer rotor 3 rotate. Then, when the rotation angle θ of the inner rotor 2 becomes the first angle θ1 (see FIG. 8), the rotation direction that defines the interdental chamber 5x communicating with the second discharge port 8, as shown in FIG. The meshing portion E of the rear external teeth 20 and the internal teeth 30 overlaps the peripheral edge 8e of the second discharge port 8 when viewed from the axial direction of the inner rotor 2, so that the interdental chamber 5x and the second discharge port 8 communicate with each other. Will be refused. Further, when the meshing portion E overlaps with the peripheral edge 8e of the second discharge port 8 and the interdental chamber 5x is not communicated with the second discharge port 8, the inner rotor 2 is more than the outer teeth 20 including the meshing portion E. As shown in FIG. 5, the tooth surface (the tooth bottom portion 22 or the second intermediate portion 24) of the outer tooth 20 on the immediately preceding side in the rotational direction is slightly different from the peripheral edge 6e of the suction port 6 when viewed from the axial direction of the inner rotor 2. get over. As a result, the interdental chamber 5x communicates with the suction port 6 almost at the same time as it does not communicate with the second discharge port 8.
 歯間室5xが第2吐出ポート8に連通しなくなって吸入ポート6に連通した後、歯間室5xの容積Vは、図8に示すように、インナーロータ2およびアウターロータ3の回転に伴って更に減少していく。また、インナーロータ2の軸方向からみた歯間室5xと吸入ポート6との連通面積は、図6に示すように、インナーロータ2およびアウターロータ3の回転に伴って徐々に増加していく。更に、本実施形態では、インナーロータ2の回転角度θが第2の角度θ2(図8参照)になると、図7および図8に示すように、歯間室5xの全体が吸入ポート6と連通する(軸方向からみて歯間室5xの全体が吸入ポート6と重なり合う)と共に、当該歯間室5xの容積Vが最小値Vminになる。 After the interdental chamber 5x does not communicate with the second discharge port 8 and communicates with the suction port 6, the volume V of the interdental chamber 5x increases with the rotation of the inner rotor 2 and the outer rotor 3, as shown in FIG. Will further decrease. Further, the communication area between the interdental chamber 5x and the suction port 6 as seen from the axial direction of the inner rotor 2 gradually increases as the inner rotor 2 and the outer rotor 3 rotate as shown in FIG. Further, in the present embodiment, when the rotation angle θ of the inner rotor 2 becomes the second angle θ2 (see FIG. 8), the entire interdental chamber 5x communicates with the suction port 6 as shown in FIGS. (The entire interdental chamber 5x overlaps the suction port 6 when viewed from the axial direction), and the volume V of the interdental chamber 5x becomes the minimum value Vmin.
 また、歯間室5xの容積が最小値Vminになった際、歯間室5xを画成する2つの外歯20間の歯底部22は、図7に示すように、インナーロータ2の軸方向からみて、吸入ポート6の内周縁6ieから回転中心2c側にはみ出ることなく当該内周縁6ieに近接する(ほぼ接する)。そして、歯間室5xの容積Vが最小値Vminになった後、図8に示すように、インナーロータ2およびアウターロータ3の回転に伴って歯間室5xの容積Vが増加していくことで、当該歯間室5x内に吸入ポート6から作動油が吸入されていくことになる。 Further, when the volume of the interdental chamber 5x reaches the minimum value Vmin, the tooth bottom portion 22 between the two external teeth 20 defining the interdental chamber 5x is formed in the axial direction of the inner rotor 2 as shown in FIG. When viewed from the inner peripheral edge 6ie of the suction port 6, the suction port 6 does not protrude toward the rotation center 2c and is close to (substantially contacts) the inner peripheral edge 6ie. Then, after the volume V of the interdental chamber 5x reaches the minimum value Vmin, the volume V of the interdental chamber 5x increases as the inner rotor 2 and the outer rotor 3 rotate as shown in FIG. Thus, the hydraulic oil is sucked into the interdental chamber 5x from the suction port 6.
 上述のように、ギヤポンプ1では、第2吐出ポート8に連通しなくなった歯間室5xが、インナーロータ2およびアウターロータ3の回転に伴って当該歯間室5xの容積Vが減少する間に吸入ポート6に連通する。これにより、第2吐出ポート8に連通しなくなった歯間室5xの容積Vがインナーロータ2等の回転に伴って減少することで、当該歯間室5x内に残留している作動油が吸入ポート6に吐出される。そして、第2吐出ポート8に連通しなくなった歯間室5xの容積Vは、当該歯間室5xが吸入ポート6に完全に連通した後に増加し始める。すなわち、第2吐出ポート8に連通しなくなった歯間室5xの容積Vは、当該歯間室5xが吸入ポート6に完全に連通した後に最小値Vminになる。 As described above, in the gear pump 1, the interdental chamber 5 x that is no longer communicated with the second discharge port 8 is reduced while the volume V of the interdental chamber 5 x decreases as the inner rotor 2 and the outer rotor 3 rotate. It communicates with the suction port 6. As a result, the volume V of the interdental chamber 5x that is no longer in communication with the second discharge port 8 decreases with the rotation of the inner rotor 2 or the like, so that the hydraulic oil remaining in the interdental chamber 5x is sucked. It is discharged to port 6. Then, the volume V of the interdental chamber 5x that has stopped communicating with the second discharge port 8 begins to increase after the interdental chamber 5x has completely communicated with the suction port 6. That is, the volume V of the interdental chamber 5x that is no longer communicated with the second discharge port 8 becomes the minimum value Vmin after the interdental chamber 5x is completely communicated with the suction port 6.
 この結果、第2吐出ポート8に連通しなくなった歯間室5xから吸入ポート6に流出する作動油により、インナーロータ2およびアウターロータ3と、ポンプボディおよびポンプハウジングの少なくとも何れか一方との隙間(インナーロータ2の軸方向における隙間)から狭隘な歯間室5xに作動油(漏れ油)が高速で流入するのを良好に規制することができる。従って、ギヤポンプ1では、第2吐出ポート8に連通しなくなって吸入ポート6に連通することになる歯間室5xでのキャビテーションの発生を良好に抑制することが可能となる。 As a result, the gap between the inner rotor 2 and the outer rotor 3 and at least one of the pump body and the pump housing due to the hydraulic fluid flowing out from the interdental chamber 5x that is no longer in communication with the second discharge port 8 to the suction port 6. It is possible to satisfactorily restrict the hydraulic oil (leakage oil) from flowing into the narrow interdental chamber 5x from the (gap in the axial direction of the inner rotor 2) at high speed. Therefore, in the gear pump 1, it is possible to satisfactorily suppress the occurrence of cavitation in the interdental chamber 5x that does not communicate with the second discharge port 8 and communicates with the suction port 6.
 また、上記ギヤポンプ1において、インナーロータ2およびアウターロータ3の回転に伴って容積Vが減少する歯間室5xは、当該歯間室5xを画成する外歯20と内歯30との噛み合い部Eが第2吐出ポート8の周縁8eにインナーロータ2の軸方向からみて重なり合ったときに当該第2吐出ポート8と連通しなくなる。そして、ギヤポンプ1では、噛み合い部Eが第2吐出ポート8の周縁8eにインナーロータ2の軸方向からみて重なり合ったときに、当該噛み合い部Eを含む外歯20よりもインナーロータ2の回転方向における1つ前側の外歯20の歯面(第2中間部24あるいは歯底部22)が吸入ポート6の周縁6eに軸方向からみて重なり合う。これにより、インナーロータ2等の回転に伴って容積Vが減少する歯間室5xを第2吐出ポート8と連通しなくなった直後に吸入ポート6に連通させ、当該歯間室5x内の作動油を吸入ポート6へと流出させることができる。従って、第2吐出ポート8に連通しなくなった歯間室5xに対して、インナーロータ2およびアウターロータ3と、ポンプボディおよびポンプハウジングの少なくとも何れか一方との隙間から狭隘な歯間室5xに作動油(漏れ油)が高速で流入するのを極めて良好に規制することが可能となる。 In the gear pump 1, the interdental chamber 5 x whose volume V decreases with the rotation of the inner rotor 2 and the outer rotor 3 is a meshing portion between the external teeth 20 and the internal teeth 30 that define the interdental chamber 5 x. When E overlaps with the peripheral edge 8e of the second discharge port 8 when viewed from the axial direction of the inner rotor 2, the E is not communicated with the second discharge port 8. In the gear pump 1, when the meshing portion E overlaps the peripheral edge 8 e of the second discharge port 8 as viewed from the axial direction of the inner rotor 2, the rotational direction of the inner rotor 2 is greater than the external teeth 20 including the meshing portion E. The tooth surface (the second intermediate portion 24 or the tooth bottom portion 22) of the outer tooth 20 on the immediately preceding side overlaps the peripheral edge 6e of the suction port 6 when viewed from the axial direction. As a result, the interdental chamber 5x whose volume V decreases with the rotation of the inner rotor 2 or the like is communicated with the suction port 6 immediately after it stops communicating with the second discharge port 8, and the hydraulic oil in the interdental chamber 5x Can flow out to the suction port 6. Therefore, with respect to the interdental chamber 5x that is no longer in communication with the second discharge port 8, a narrow interdental chamber 5x is formed from the gap between the inner rotor 2 and the outer rotor 3 and at least one of the pump body and the pump housing. It is possible to very well regulate the flow of hydraulic oil (leakage oil) at high speed.
 更に、上記ギヤポンプ1において、第2吐出ポート8に連通しなくなった歯間室5xの容積Vは、当該歯間室5xの全体が吸入ポート6と連通した後に増加し始める。これにより、第2吐出ポート8に連通しなくなった歯間室5xに対して容積Vの増加に応じて吸入ポート6から作動油が流入し始めるときの当該歯間室5xと吸入ポート6との連通面積が狭まってしまうのを抑制することができる。この結果、吸入ポート6から歯間室5xに流入する作動油の流速が高まるのを抑えて、歯間室5xへの作動油の吸入に伴うキャビテーションの発生を良好に抑制することが可能となる。 Furthermore, in the gear pump 1, the volume V of the interdental chamber 5 x that has stopped communicating with the second discharge port 8 starts to increase after the entire interdental chamber 5 x communicates with the suction port 6. As a result, the interdental chamber 5x and the suction port 6 when the hydraulic oil starts to flow from the suction port 6 according to the increase in the volume V with respect to the interdental chamber 5x that is no longer in communication with the second discharge port 8. It can suppress that a communication area narrows. As a result, it is possible to suppress an increase in the flow velocity of the hydraulic oil flowing into the interdental chamber 5x from the suction port 6 and to satisfactorily suppress the occurrence of cavitation accompanying the suction of the hydraulic oil into the interdental chamber 5x. .
 また、ギヤポンプ1では、上述のように、インナーロータ2の各歯底部22のハイポトロコイド曲線により形成される中間部が基礎円BCtよりも中心O(回転中心2c)側にオフセットされており、歯底部22がアウターロータ3の内歯30に本来対応するものに比べて深くなっている。加えて、第2吐出ポート8に連通しなくなった歯間室5xを画成する2つの外歯20間の歯底部22は、図7に示すように、歯間室5xの容積Vが最小値Vminになったときに、インナーロータ2の軸方向からみて吸入ポート6の内周縁6ieから回転中心2c側にはみ出ることなく内周縁に近接する。この結果、第2吐出ポート8に連通しなくなった歯間室5xに対して容積Vの増加に応じて吸入ポート6から作動油が流入し始めるときの当該歯間室5xと吸入ポート6との連通面積をより大きくすることができる。従って、吸入ポート6から歯間室5xに流入する作動油の流速が高まるのを抑えて、歯間室5xへの作動油の吸入に伴うキャビテーションの発生を極めて良好に抑制することが可能となる。 Further, in the gear pump 1, as described above, the intermediate portion formed by the hypotrochoidal curve of each tooth bottom portion 22 of the inner rotor 2 is offset to the center O (rotation center 2c) side from the basic circle BCt, and the tooth The bottom 22 is deeper than that originally corresponding to the inner teeth 30 of the outer rotor 3. In addition, as shown in FIG. 7, the tooth bottom portion 22 between the two external teeth 20 that defines the interdental chamber 5x that is no longer in communication with the second discharge port 8 has a minimum volume V of the interdental chamber 5x. When Vmin is reached, when viewed from the axial direction of the inner rotor 2, the suction port 6 approaches the inner peripheral edge without protruding from the inner peripheral edge 6ie to the rotation center 2c side. As a result, the interdental chamber 5x and the suction port 6 when the hydraulic oil starts to flow from the suction port 6 according to the increase in the volume V to the interdental chamber 5x that is no longer in communication with the second discharge port 8. The communication area can be increased. Accordingly, it is possible to suppress the occurrence of cavitation accompanying the suction of the hydraulic oil into the interdental chamber 5x by suppressing the increase in the flow velocity of the hydraulic oil flowing from the suction port 6 into the interdental chamber 5x. .
 更に、ギヤポンプ1において、インナーロータ2の各外歯20の歯先部21は、トロコイド係数が値1よりも大きいエピトロコイド曲線のループ部以外の部分により形成される。加えて、インナーロータ2の歯底部22は、当該エピトロコイド曲線と基礎円BCtを共通にすると共にトロコイド係数が値1よりも大きいハイポトロコイド曲線のループ以外の部分により形成される。これにより、外転円Coや内転円Ciの半径re,rh(∝基礎円BCtの半径/歯数)を小さく保ったまま第1および第2の描画点の半径rde,rdhすなわち第1および第2の値Rde,Rdhを大きくすることで、1つの基礎円BCtを用いて歯先部21および歯底部22の形状を定めると共に当該基礎円BCtの外径すなわちインナーロータ2の外径を小さく保ったまま外歯20の歯丈を容易に高くすることが可能となる。 Furthermore, in the gear pump 1, the tip portion 21 of each external tooth 20 of the inner rotor 2 is formed by a portion other than the loop portion of the epitrochoid curve having a trochoid coefficient larger than 1. In addition, the tooth bottom portion 22 of the inner rotor 2 is formed by a portion other than the hypotrochoid curve loop in which the epitrochoid curve and the basic circle BCt are made common and the trochoid coefficient is larger than 1. As a result, the radii rde, rdh of the first and second drawing points, that is, the first and second radii are maintained while keeping the radii re, rh (radius / number of teeth) of the abduction circle Co and the inversion circle Ci. By increasing the second values Rde and Rdh, the shape of the tooth tip portion 21 and the tooth bottom portion 22 is determined using one basic circle BCt, and the outer diameter of the basic circle BCt, that is, the outer diameter of the inner rotor 2 is reduced. It is possible to easily increase the tooth height of the external teeth 20 while keeping it.
 このように外歯20の歯丈を高くすることで、インナーロータ2の回転中心2cとアウターロータ3の回転中心3cとを通る直線(図1において上下方向に延びる一点鎖線参照)に対して、外歯20と内歯30との噛み合い部E(図5から図7において点線で示す噛み合い部Eの軌跡)をインナーロータ2等の回転方向における後側にシフトさせることができる。これにより、吸入ポート6の回転方向後側の端部を第2吐出ポート8の回転方向前側の端部により近接させて、第2吐出ポート8に連通しなくなった歯間室5xを容易に容積Vの減少中に吸入ポート6に連通させることが可能となる。 By increasing the tooth height of the external teeth 20 in this way, with respect to a straight line passing through the rotation center 2c of the inner rotor 2 and the rotation center 3c of the outer rotor 3 (see the one-dot chain line extending in the vertical direction in FIG. 1), The meshing portion E between the external teeth 20 and the internal teeth 30 (the locus of the meshing portion E indicated by a dotted line in FIGS. 5 to 7) can be shifted to the rear side in the rotational direction of the inner rotor 2 and the like. Accordingly, the end portion on the rear side in the rotation direction of the suction port 6 is brought closer to the end portion on the front side in the rotation direction of the second discharge port 8, so that the interdental chamber 5 x that is no longer in communication with the second discharge port 8 can be easily filled. It is possible to communicate with the suction port 6 while V is decreasing.
 また、外歯20の第1中間部23を形成する曲線の長さを第2中間部24を形成する曲線の長さよりも長くして外歯20を非対称化することで、歯先部21(エピトロコイド曲線)の回転方向後側の端部21rを歯底部22により近接させると共に、当該歯先部21の回転方向前側の端部21fをインナーロータ2の径方向における外側に寄せることができる。そして、歯先部21の回転方向後側の端部21rを歯底部22により近接させることで、第1および第2吐出ポート7,8に連通する歯間室5を画成する外歯20と内歯30とのクリアランスの最小値を全体に小さくすることが可能となる。また、歯先部21の回転方向前側の端部21fをインナーロータ2の径方向における外側に寄せることで、吸入ポート6に連通する歯間室5を画成する外歯20と内歯30とのクリアランスの最小値を全体に大きくすることができる。この結果、第1および第2吐出ポート7,8を仕切る隔壁9の位置すなわち第1および第2吐出ポート7,8からの吐出流量の分配比を定める際の自由度を向上させつつ、隔壁9と重なり合う外歯20と内歯30とのクリアランスの最小値(吐出側クリアランス)をより小さくすることが可能となる。加えて、容積変化量が最大となる歯間室5におけるクリアランスの最小値(吸入側クリアランス)を十分に大きくして当該歯間室5でのキャビテーションの発生を良好に抑制することが可能となる。 Further, by making the length of the curve forming the first intermediate portion 23 of the external teeth 20 longer than the length of the curve forming the second intermediate portion 24 and making the external teeth 20 asymmetrical, the tooth tip portion 21 ( The end portion 21r on the rear side in the rotation direction of the epitrochoid curve) can be brought closer to the bottom portion 22, and the end portion 21f on the front side in the rotation direction of the tooth tip portion 21 can be moved outward in the radial direction of the inner rotor 2. Then, by bringing the end portion 21r on the rear side in the rotation direction of the tooth tip portion 21 closer to the tooth bottom portion 22, the external teeth 20 that define the interdental chamber 5 communicating with the first and second discharge ports 7 and 8; It is possible to reduce the minimum clearance with the internal teeth 30 as a whole. Further, by bringing the end portion 21 f on the front side in the rotation direction of the tooth tip portion 21 to the outside in the radial direction of the inner rotor 2, the external teeth 20 and the internal teeth 30 that define the interdental chamber 5 communicating with the suction port 6. The minimum value of the clearance can be increased as a whole. As a result, it is possible to improve the degree of freedom in determining the position of the partition wall 9 that partitions the first and second discharge ports 7, 8, that is, the distribution ratio of the discharge flow rate from the first and second discharge ports 7, 8. It is possible to further reduce the minimum clearance (discharge-side clearance) between the external teeth 20 and the internal teeth 30 that overlap with each other. In addition, it is possible to sufficiently suppress the occurrence of cavitation in the interdental chamber 5 by sufficiently increasing the minimum clearance (suction side clearance) in the interdental chamber 5 where the volume change amount is maximum. .
 更に、ギヤポンプ1では、歯先部21のインナーロータ2の回転方向における前側に位置する第1中間部23がインボリュート曲線により形成される。これにより、インナーロータ2の外歯20とアウターロータ3の内歯30とをよりスムースに噛み合わせると共にインナーロータ2とアウターロータ3との回転速度比を一定にすることが可能となる。ただし、第1中間部23は、例えばn次関数(ただし、“n”は値1以上の整数である。)、円弧、任意の多項式、三角関数、緩和曲線、更にはこれらの組み合わせといったインボリュート曲線以外の曲線により形成されてもよいことはいうまでもない。 Furthermore, in the gear pump 1, the first intermediate portion 23 positioned on the front side of the tooth tip portion 21 in the rotation direction of the inner rotor 2 is formed by an involute curve. As a result, the outer teeth 20 of the inner rotor 2 and the inner teeth 30 of the outer rotor 3 can be meshed more smoothly and the rotational speed ratio between the inner rotor 2 and the outer rotor 3 can be made constant. However, the first intermediate unit 23 is an involute curve such as an n-order function (where “n” is an integer of 1 or more), an arc, an arbitrary polynomial, a trigonometric function, a relaxation curve, and a combination thereof. Needless to say, it may be formed by other curves.
 なお、第2中間部24も、例えばn次関数(ただし、“n”は値1以上の整数である。)、円弧、任意の多項式、三角関数、緩和曲線、更にはこれらの組み合わせといったインボリュート曲線以外の曲線により形成されてもよいことはいうまでもない。また、ギヤポンプ1は、単一の吐出ポートを有するものであってもよい。更に、インナーロータ2の各外歯20は、歯形中心線Lcに関して左右対称に形成されてもよい。また、歯間室5xが吸入ポート6に連通するタイミングは、歯間室5xが第2吐出ポート8と連通している間に吸入ポート6に連通しないように、当該歯間室5xが第2吐出ポート8に連通しなくなるタイミングよりも若干遅くされてもよい。すなわち、両タイミングは、必ずしも完全に一致する必要はない。更に、図9に示すように、インナーロータ2や第2吐出ポート8、入力ポート6は、歯間室5xを画成する外歯20と内歯30との噛み合い部Eが第2吐出ポート8の周縁8eにインナーロータ2の軸方向からみて重なり合う前に、歯間室5xが吸入ポート6に連通するように形成されてもよい。すなわち、第2吐出ポート8からの吐出圧に大きな影響を与えない範囲で、歯間室5xが吸入ポート6に連通するタイミングを当該歯間室5xが第2吐出ポート8に連通しなくなるタイミングよりも若干早くしてもよい。これにより、インナーロータ2等の回転に伴って容積が減少する歯間室5xを、第2吐出ポート8と連通しなくなる前に吸入ポート6に連通させ、当該歯間室5x内の適量の作動油を第2吐出ポート8および吸入ポート6へと流出させることができる。この結果、当該歯間室5x内の作動油の圧力を必要以上に上昇しないように保持し、歯間室5x内の作動油の圧力上昇に起因した振動の発生を抑制することが可能となる。 Note that the second intermediate section 24 is also an involute curve such as an n-order function (where “n” is an integer greater than or equal to 1), an arc, an arbitrary polynomial, a trigonometric function, a relaxation curve, and a combination thereof. Needless to say, it may be formed by other curves. The gear pump 1 may have a single discharge port. Furthermore, each external tooth 20 of the inner rotor 2 may be formed symmetrically with respect to the tooth profile center line Lc. The interdental chamber 5x communicates with the suction port 6 at a timing such that the interdental chamber 5x does not communicate with the suction port 6 while the interdental chamber 5x communicates with the second discharge port 8. The timing may be slightly later than the timing at which communication with the discharge port 8 stops. That is, both timings do not necessarily have to coincide completely. Furthermore, as shown in FIG. 9, the inner rotor 2, the second discharge port 8, and the input port 6 have a meshing portion E between the external teeth 20 and the internal teeth 30 that define the interdental chamber 5 x. The interdental chamber 5x may be formed so as to communicate with the suction port 6 before it overlaps the peripheral edge 8e of the inner rotor 2 when viewed from the axial direction. That is, the timing at which the interdental chamber 5x communicates with the suction port 6 is compared with the timing at which the interdental chamber 5x does not communicate with the second discharge port 8 within a range that does not significantly affect the discharge pressure from the second discharge port 8. May be slightly faster. As a result, the interdental chamber 5x, whose volume decreases with the rotation of the inner rotor 2 or the like, is communicated with the suction port 6 before it stops communicating with the second discharge port 8, and an appropriate amount of operation in the interdental chamber 5x is achieved. Oil can flow out to the second discharge port 8 and the suction port 6. As a result, it is possible to hold the hydraulic oil pressure in the interdental chamber 5x so as not to increase more than necessary, and to suppress the occurrence of vibration due to the hydraulic oil pressure increase in the interdental chamber 5x. .
 以上説明したように、本開示のギヤポンプ(1)は、吸入ポート(6)と、吐出ポート(7,8)と、複数の外歯(20)を有するインナーロータ(2)と、前記インナーロータ(2)の前記外歯(20)よりも多い複数の内歯(30)を有すると共に該インナーロータ(2)に対して偏心するように配置されるアウターロータ(3)と、前記複数の外歯20)および前記複数の内歯(30)により画成される複数の歯間室(5)とを含むギヤポンプ(1)において、前記吐出ポート(7,8)は、前記インナーロータ(2)および前記アウターロータ(3)の回転に伴って容積(V)が減少する前記歯間室(5)に連通し、前記吐出ポート(8)に連通しなくなった前記歯間室(5x)は、該歯間室(5x)の容積(V)の減少中に前記吸入ポート(6)に連通し、前記吐出ポート(8)に連通しなくなった前記歯間室(5x)の容積は、該歯間室(5x)の少なくとも一部が前記吸入ポート(6)に連通した後に増加することを特徴とする。 As described above, the gear pump (1) of the present disclosure includes the suction port (6), the discharge port (7, 8), the inner rotor (2) having a plurality of external teeth (20), and the inner rotor. An outer rotor (3) having a plurality of inner teeth (30) larger than the outer teeth (20) of (2) and arranged to be eccentric with respect to the inner rotor (2), and the plurality of outer teeth In a gear pump (1) including a tooth 20) and a plurality of interdental chambers (5) defined by the plurality of internal teeth (30), the discharge port (7, 8) is connected to the inner rotor (2). The interdental chamber (5x) communicated with the interdental chamber (5) whose volume (V) decreases with the rotation of the outer rotor (3) and no longer communicates with the discharge port (8), During the reduction of the volume (V) of the interdental chamber (5x) The volume of the interdental chamber (5x) communicated with the inlet port (6) and no longer communicated with the discharge port (8) is such that at least a part of the interdental chamber (5x) is connected to the suction port (6). It is characterized by an increase after communication.
 このギヤポンプでは、吐出ポートに連通しなくなった歯間室が、インナーロータおよびアウターロータの回転に伴って当該歯間室の容積が減少する間に吸入ポートに連通する。これにより、吐出ポートに連通しなくなった歯間室の容積がインナーロータ等の回転に伴って減少することで、当該歯間室から吸入ポートに流体が吐出される。そして、吐出ポートに連通しなくなった歯間室の容積は、当該歯間室が吸入ポートに連通した後に増加する。すなわち、吐出ポートに連通しなくなった歯間室の容積は、当該歯間室が吸入ポートに連通した後に最小になる。この結果、吐出ポートに連通しなくなった歯間室から吸入ポートに流出する流体により、インナーロータおよびアウターロータと両者を収容する部材との隙間(軸方向における隙間)から当該歯間室に流体が高速で流入するのを良好に規制することができる。従って、このギヤポンプでは、吐出ポートに連通しなくなって吸入ポートに連通することになる歯間室でのキャビテーションの発生を良好に抑制することが可能となる。 In this gear pump, the interdental chamber that has stopped communicating with the discharge port communicates with the suction port while the volume of the interdental chamber decreases as the inner and outer rotors rotate. As a result, the volume of the interdental chamber that is no longer in communication with the discharge port decreases with the rotation of the inner rotor or the like, so that fluid is discharged from the interdental chamber to the suction port. The volume of the interdental chamber that is no longer in communication with the discharge port increases after the interdental chamber communicates with the suction port. That is, the volume of the interdental chamber that is no longer in communication with the discharge port is minimized after the interdental chamber communicates with the suction port. As a result, the fluid flowing into the suction port from the interdental chamber that is no longer in communication with the discharge port causes fluid to flow into the interdental chamber from the gap between the inner rotor and the outer rotor and the member that accommodates both (axial gap). Inflow at high speed can be well controlled. Therefore, in this gear pump, it is possible to satisfactorily suppress the occurrence of cavitation in the interdental chamber that does not communicate with the discharge port and communicates with the suction port.
 また、前記吐出ポート(6)に連通しなくなった前記歯間室(5x)の容積(V)は、該歯間室(5x)の全体が前記吸入ポート(6)と連通した後に増加し始めてもよい。これにより、吐出ポートに連通しなくなった歯間室に対して容積の増加に応じて吸入ポートから流体が流入し始めるときの当該歯間室と吸入ポートとの連通面積が狭まってしまうのを抑制することができる。この結果、吸入ポートから当該歯間室に流入する流体の流速が高まるのを抑えて、歯間室への流体の吸入に伴うキャビテーションの発生を良好に抑制することが可能となる。 In addition, the volume (V) of the interdental chamber (5x) that has stopped communicating with the discharge port (6) starts to increase after the entire interdental chamber (5x) communicates with the suction port (6). Also good. As a result, the communication area between the interdental chamber and the suction port when the fluid begins to flow from the suction port in response to an increase in volume with respect to the interdental chamber that is no longer in communication with the discharge port is suppressed. can do. As a result, an increase in the flow rate of the fluid flowing from the suction port into the interdental chamber can be suppressed, and the occurrence of cavitation associated with the suction of the fluid into the interdental chamber can be satisfactorily suppressed.
 更に、前記インナーロータ(2)は、前記吐出ポート(8)に連通しなくなった前記歯間室(5x)を画成する歯底部(22)が、該歯間室(5x)の容積(V)が最小になったときに、前記インナーロータ(2)の軸方向からみて前記吸入ポート(6)の内周縁(6ie)から該インナーロータ(2)の回転中心(2c)側にはみ出ることなく該内周縁(6ie)に近接するように形成されてもよい。これにより、歯間室の最小容積、すなわち、吐出ポートに連通しなくなった歯間室に対して容積の増加に応じて吸入ポートから流体が流入し始めるときの当該歯間室と吸入ポートとの連通面積をより大きくすることができる。この結果、吸入ポートから当該歯間室に流入する流体の流速が高まるのを抑えて、歯間室への流体の吸入に伴うキャビテーションの発生を極めて良好に抑制することが可能となる。この場合、例えばインナーロータの外歯の歯底部をより深くする(インナーロータの回転中心側にオフセットする)ことで、歯間室の容積が最小値になったときに歯底部を吸入ポートの内周縁に近接させ、吐出ポートに連通しなくなった歯間室の最小容積(連通面積)をより適正に大きくすることができる。 Further, the inner rotor (2) has a tooth bottom portion (22) defining the interdental chamber (5x) that is no longer in communication with the discharge port (8), and the volume (V) of the interdental chamber (5x) ), When viewed from the axial direction of the inner rotor (2), it does not protrude from the inner peripheral edge (6ie) of the suction port (6) to the rotation center (2c) side of the inner rotor (2). You may form so that it may adjoin to this inner periphery (6ie). As a result, the minimum volume of the interdental chamber, that is, the interdental chamber and the suction port when fluid starts to flow from the suction port in response to the increase in volume with respect to the interdental chamber that is no longer communicated with the discharge port. The communication area can be increased. As a result, an increase in the flow velocity of the fluid flowing from the suction port into the interdental chamber can be suppressed, and the occurrence of cavitation accompanying the suction of the fluid into the interdental chamber can be suppressed extremely well. In this case, for example, by deepening the bottom of the outer teeth of the inner rotor (offset toward the rotation center side of the inner rotor), the bottom of the teeth is placed inside the suction port when the interdental chamber volume reaches a minimum value. The minimum volume (communication area) of the interdental chamber that is brought close to the periphery and no longer communicates with the discharge port can be increased more appropriately.
 更に、前記インナーロータ(2)は、前記容積(V)が減少する前記歯間室(5x)が、該歯間室(5x)を画成する前記外歯(20)と前記内歯(30)との噛み合い部(E)が前記吐出ポート(8)の周縁(8e)に該インナーロータの(2)軸方向からみて重なり合った以降に、前記吸入ポート(6)に連通するように形成されてもよい。これにより、インナーロータ等の回転に伴って容積が減少する歯間室を、吐出ポートと連通しなくなるのとほぼ同時に吸入ポートに連通させ、当該歯間室内の流体を吸入ポートへと流出させることができる。従って、吐出ポートに連通しなくなった歯間室に対して、インナーロータおよびアウターロータと両者を収容する部材との隙間から流体が流入するのを極めて良好に規制することが可能となる。 Further, in the inner rotor (2), the interdental chamber (5x) in which the volume (V) decreases, the external teeth (20) and the internal teeth (30) that define the interdental chamber (5x). (E) is formed so as to communicate with the suction port (6) after overlapping the peripheral edge (8e) of the discharge port (8) when viewed from the (2) axial direction of the inner rotor. May be. As a result, the interdental chamber whose volume decreases with the rotation of the inner rotor or the like is communicated with the suction port almost simultaneously with the discharge port, and the fluid in the interdental chamber flows out to the suction port. Can do. Therefore, it is possible to very well regulate the flow of fluid from the gap between the inner rotor and the outer rotor and the member that accommodates both into the interdental chamber that is no longer in communication with the discharge port.
 また、前記インナーロータ(2)は、前記容積(V)が減少する前記歯間室(5x)が、該歯間室(5x)を画成する前記外歯(20)と前記内歯(30)との噛み合い部(E)が前記吐出ポート(8)の周縁(8e)に該インナーロータの(2)軸方向からみて重なり合う前に、前記吸入ポート(6)に連通するように形成されてもよい。これにより、インナーロータ等の回転に伴って容積が減少する歯間室を、吐出ポートと連通しなくなる前に吸入ポートに連通させ、当該歯間室内の適量の流体を吐出ポートおよび吸入ポートへと流出させることができる。この結果、当該歯間室内の流体の圧力を必要以上に上昇しないように保持し、歯間室内の流体の圧力上昇に起因した振動の発生を抑制することが可能となる。 In the inner rotor (2), the interdental chamber (5x) in which the volume (V) decreases is defined by the external teeth (20) and the internal teeth (30) that define the interdental chamber (5x). (E) is formed so as to communicate with the suction port (6) before overlapping the peripheral edge (8e) of the discharge port (8) when viewed from the (2) axial direction of the inner rotor. Also good. As a result, the interdental chamber whose volume decreases with the rotation of the inner rotor or the like is communicated with the suction port before it is not communicated with the discharge port, and an appropriate amount of fluid in the interdental chamber is transferred to the discharge port and the suction port. Can be drained. As a result, it is possible to keep the pressure of the fluid in the interdental chamber from rising more than necessary, and to suppress the occurrence of vibration due to the increase in the pressure of the fluid in the interdental chamber.
 また、前記インナーロータ(2)の前記外歯(20)のそれぞれは、描画点の半径(rde)よりも小さい半径(re)を有する外転円(Co)を基礎円(BCt)に外接させながら滑りなく転動させて得られるエピトロコイド曲線により形成された歯先部(21)を含んでもよい。すなわち、外転円の半径(∝基礎円の半径/歯数)を小さく保ったままエピトロコイド曲線の描画点半径を大きくすることで、当該基礎円の外径すなわちインナーロータの外径を小さく保ったまま外歯の歯丈を容易に高くすることが可能となる。そして、外歯の歯丈を高くすることで、インナーロータの回転中心とアウターロータの回転中心とを通る直線に対して、外歯と内歯との噛み合い部(噛み合い部の軌跡)をインナーロータ等の回転方向における後側にシフトさせることができる。これにより、吸入ポートの当該回転方向における後側の端部を吐出ポートのインナーロータ等の回転方向における前側の端部により近接させて、吐出ポートに連通しなくなった歯間室を容積の減少中に容易に吸入ポートに連通させることが可能となる。 Further, each of the external teeth (20) of the inner rotor (2) causes the outer circle (Co) having a radius (re) smaller than the radius (rde) of the drawing point to circumscribe the basic circle (BCt). However, the tooth tip part (21) formed by the epitrochoid curve obtained by rolling without slipping may be included. That is, by keeping the radius of the abduction circle (the radius of the base circle / the number of teeth) small while increasing the drawing point radius of the epitrochoid curve, the outer diameter of the basic circle, that is, the outer diameter of the inner rotor is kept small. It is possible to easily increase the height of the external teeth. Then, by increasing the height of the external teeth, the meshing portion of the external teeth and the internal teeth (the locus of the meshing portion) with respect to the straight line passing through the rotation center of the inner rotor and the rotation center of the outer rotor is changed to the inner rotor. Or the like in the rotational direction. As a result, the rear end of the suction port in the rotation direction is brought closer to the front end of the discharge port in the rotation direction of the inner rotor, etc. It is possible to easily communicate with the suction port.
 更に、前記インナーロータ(2)の前記外歯(20)のそれぞれは、任意の曲線により形成されると共に、前記歯先部(21)と該歯先部(21)よりも前記インナーロータ(2)の回転方向における前側に位置する歯底部(22)との間に位置する第1中間部(23)と、任意の曲線により形成されると共に、前記歯先部(21)と該歯先部(21)よりも前記インナーロータ(2)の回転方向における後側に位置する歯底部(22)との間に位置する第2中間部(24)とを含んでもよく、前記第1中間部(23)を形成する曲線の長さは、前記第2中間部(24)を形成する曲線の長さよりも長くてもよい。 Further, each of the outer teeth (20) of the inner rotor (2) is formed by an arbitrary curve, and the inner rotor (2) more than the tooth tip portion (21) and the tooth tip portion (21). ) In the rotation direction of the tooth bottom portion (22) located on the front side, and is formed by an arbitrary curve, and the tooth tip portion (21) and the tooth tip portion A second intermediate portion (24) positioned between the tooth bottom portion (22) positioned on the rear side in the rotational direction of the inner rotor (2) relative to (21), and the first intermediate portion ( The length of the curve forming 23) may be longer than the length of the curve forming the second intermediate part (24).
 このように、第1中間部を形成する曲線の長さを第2中間部を形成する曲線の長さよりも長くして外歯を非対称化することで、歯先部を形成するエピトロコイド曲線の上記回転方向における後側の端部を歯底部により近接させると共に、当該エピトロコイド曲線の上記回転方向における前側の端部をインナーロータの径方向における外側に寄せることができる。そして、歯先部を形成するエピトロコイド曲線の回転方向後側の端部を歯底部により近接させることで、吐出ポートに連通する歯間室を画成する外歯と内歯とのクリアランスの最小値を全体に小さくすることが可能となる。また、歯先部を形成するエピトロコイド曲線の回転方向前側の端部をインナーロータの径方向における外側に寄せることで、吸入ポートに連通する歯間室を画成する外歯と内歯とのクリアランスの最小値を全体に大きくすることができる。 Thus, by making the length of the curve forming the first intermediate portion longer than the length of the curve forming the second intermediate portion and making the external teeth asymmetrical, the epitrochoid curve forming the tooth tip portion The rear end portion in the rotation direction can be brought closer to the tooth bottom portion, and the front end portion in the rotation direction of the epitrochoid curve can be brought closer to the outer side in the radial direction of the inner rotor. Then, by bringing the end of the epitrochoid curve forming the tooth tip portion on the rear side in the rotational direction closer to the tooth bottom portion, the minimum clearance between the external teeth and the internal teeth defining the interdental space communicating with the discharge port The value can be reduced as a whole. In addition, by bringing the end portion of the epitrochoid curve forming the tooth tip portion on the front side in the rotational direction toward the outside in the radial direction of the inner rotor, the outer teeth and the inner teeth that define the interdental chamber communicating with the suction port The minimum clearance can be increased overall.
 更に、前記第1中間部(23)は、少なくともインボリュート曲線により形成されてもよい。これにより、外歯と内歯とをよりスムースに噛み合わせると共にインナーロータとアウターロータとの回転速度比を一定にすることが可能となる。 Furthermore, the first intermediate part (23) may be formed by at least an involute curve. As a result, the external teeth and the internal teeth can be meshed more smoothly, and the rotational speed ratio between the inner rotor and the outer rotor can be made constant.
 また、前記吐出ポートは、第1吐出ポート(7)と、隔壁(9)により前記第1吐出ポート(7)と仕切られており、該第1吐出ポート(7)よりも前記インナーロータ(2)の回転方向における前側に配置された第2吐出ポート(8)とを含んでもよい。 The discharge port is separated from the first discharge port (7) by a first discharge port (7) and a partition wall (9), and the inner rotor (2) is separated from the first discharge port (7). And a second discharge port (8) arranged on the front side in the rotation direction.
 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記発明を実施するための形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。 And the invention of this indication is not limited to the said embodiment at all, and it cannot be overemphasized that various changes can be made within the range of the extension of this indication. Furthermore, the mode for carrying out the invention described above is merely a specific form of the invention described in the Summary of Invention column, and does not limit the elements of the invention described in the Summary of Invention column. Absent.
 本開示の発明は、ギヤポンプの製造産業において利用可能である。 The invention of the present disclosure can be used in the gear pump manufacturing industry.

Claims (9)

  1.  吸入ポートと、吐出ポートと、複数の外歯を有するインナーロータと、前記インナーロータの前記外歯よりも多い複数の内歯を有すると共に該インナーロータに対して偏心するように配置されるアウターロータと、前記複数の外歯および前記複数の内歯により画成される複数の歯間室とを含むギヤポンプにおいて、
     前記吐出ポートは、前記インナーロータおよび前記アウターロータの回転に伴って容積が減少する前記歯間室に連通し、前記吐出ポートに連通しなくなった前記歯間室は、該歯間室の容積の減少中に前記吸入ポートに連通し、前記吐出ポートに連通しなくなった前記歯間室の容積は、該歯間室の少なくとも一部が前記吸入ポートに連通した後に増加することを特徴とするギヤポンプ。
    An intake rotor, a discharge port, an inner rotor having a plurality of external teeth, and an outer rotor having a plurality of internal teeth larger than the external teeth of the inner rotor and arranged eccentric to the inner rotor And a plurality of interdental chambers defined by the plurality of external teeth and the plurality of internal teeth,
    The discharge port communicates with the interdental chamber that decreases in volume as the inner rotor and the outer rotor rotate, and the interdental chamber that is no longer communicated with the discharge port has a volume of the interdental chamber. A gear pump characterized in that the volume of the interdental chamber communicated with the suction port during reduction and no longer communicated with the discharge port increases after at least a part of the interdental chamber communicated with the suction port. .
  2.  請求項1に記載のギヤポンプにおいて、
     前記吐出ポートに連通しなくなった前記歯間室の容積は、該歯間室の全体が前記吸入ポートと連通した後に増加し始めることを特徴とするギヤポンプ。
    The gear pump according to claim 1, wherein
    The volume of the interdental chamber that is no longer in communication with the discharge port starts to increase after the entire interdental chamber communicates with the suction port.
  3.  請求項1または2に記載のギヤポンプにおいて、
     前記インナーロータは、前記吐出ポートに連通しなくなった前記歯間室を画成する歯底部が、該歯間室の容積が最小になったときに、前記インナーロータの軸方向からみて前記吸入ポートの内周縁から該インナーロータの回転中心側にはみ出ることなく該内周縁に近接するように形成されることを特徴とするギヤポンプ。
    The gear pump according to claim 1 or 2,
    The inner rotor has the suction port as viewed from the axial direction of the inner rotor when the tooth bottom portion defining the interdental chamber that is no longer in communication with the discharge port has a minimum volume of the interdental chamber. A gear pump characterized in that the gear pump is formed so as not to protrude from the inner peripheral edge of the inner rotor to the rotation center side of the inner rotor and to be close to the inner peripheral edge.
  4.  請求項1から3の何れか一項に記載のギヤポンプにおいて、
     前記インナーロータは、前記容積が減少する前記歯間室が、該歯間室を画成する前記外歯と前記内歯との噛み合い部が前記吐出ポートの周縁に該インナーロータの軸方向からみて重なり合った以降に、前記吸入ポートに連通するように形成されることを特徴とするギヤポンプ。
    The gear pump according to any one of claims 1 to 3,
    The inner rotor has an interdental chamber in which the volume decreases, and an engagement portion between the outer teeth and the inner teeth that define the interdental chamber is seen from the axial direction of the inner rotor at the periphery of the discharge port. The gear pump is formed so as to communicate with the suction port after being overlapped.
  5.  請求項1から3の何れか一項に記載のギヤポンプにおいて、
     前記インナーロータは、前記容積が減少する前記歯間室が、該歯間室を画成する前記外歯と前記内歯との噛み合い部が前記吐出ポートの周縁に該インナーロータの軸方向からみて重なり合う前に、前記吸入ポートに連通するように形成されることを特徴とするギヤポンプ。
    The gear pump according to any one of claims 1 to 3,
    The inner rotor has an interdental chamber in which the volume decreases, and an engagement portion between the outer teeth and the inner teeth that define the interdental chamber is seen from the axial direction of the inner rotor at the periphery of the discharge port. A gear pump, wherein the gear pump is formed to communicate with the suction port before overlapping.
  6.  請求項1から5の何れか一項に記載のギヤポンプにおいて、
     前記インナーロータの前記外歯のそれぞれは、描画点の半径よりも小さい半径を有する外転円を基礎円に外接させながら滑りなく転動させて得られるエピトロコイド曲線により形成された歯先部を含むことを特徴とするギヤポンプ。
    In the gear pump according to any one of claims 1 to 5,
    Each of the outer teeth of the inner rotor has a tooth tip formed by an epitrochoid curve obtained by rolling an outer rotation circle having a radius smaller than the radius of the drawing point without slipping while circumscribing the base circle. A gear pump characterized by including.
  7.  請求項6に記載のギヤポンプにおいて、
     前記インナーロータの前記外歯のそれぞれは、
     任意の曲線により形成されると共に、前記歯先部と該歯先部よりも前記インナーロータの回転方向における前側に位置する歯底部との間に位置する第1中間部と、
     任意の曲線により形成されると共に、前記歯先部と該歯先部よりも前記インナーロータの回転方向における後側に位置する歯底部との間に位置する第2中間部とを含み、
     前記第1中間部を形成する曲線の長さは、前記第2中間部を形成する曲線の長さよりも長いことを特徴とするギヤポンプ。
    The gear pump according to claim 6,
    Each of the outer teeth of the inner rotor is
    A first intermediate portion that is formed by an arbitrary curve and is located between the tooth tip portion and a tooth bottom portion that is located on the front side in the rotation direction of the inner rotor from the tooth tip portion;
    A second intermediate portion that is formed by an arbitrary curve and located between the tooth tip portion and a tooth bottom portion that is located on the rear side in the rotation direction of the inner rotor from the tooth tip portion;
    The length of the curve which forms the said 1st intermediate part is longer than the length of the curve which forms the said 2nd intermediate part, The gear pump characterized by the above-mentioned.
  8.  請求項7に記載のギヤポンプにおいて、
     前記第1中間部は、少なくともインボリュート曲線により形成されることを特徴とするギヤポンプ。
    The gear pump according to claim 7,
    The gear pump according to claim 1, wherein the first intermediate portion is formed by at least an involute curve.
  9.  請求項1から8の何れか一項に記載のギヤポンプにおいて、
     前記吐出ポートは、第1吐出ポートと、隔壁により前記第1吐出ポートと仕切られており、該第1吐出ポートよりも前記インナーロータの回転方向における前側に配置された第2吐出ポートとを含むことを特徴とするギヤポンプ。
    The gear pump according to any one of claims 1 to 8,
    The discharge port includes a first discharge port and a second discharge port that is partitioned from the first discharge port by a partition wall and is disposed on the front side in the rotation direction of the inner rotor with respect to the first discharge port. A gear pump characterized by that.
PCT/JP2016/076157 2015-09-07 2016-09-06 Gear pump WO2017043478A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016002336.7T DE112016002336T8 (en) 2015-09-07 2016-09-06 gear pump
CN201680050919.9A CN107923390B (en) 2015-09-07 2016-09-06 Gear pump
US15/574,220 US20180172000A1 (en) 2015-09-07 2016-09-06 Gear pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-175874 2015-09-07
JP2015175874A JP6599181B2 (en) 2015-09-07 2015-09-07 Gear pump

Publications (1)

Publication Number Publication Date
WO2017043478A1 true WO2017043478A1 (en) 2017-03-16

Family

ID=58239803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076157 WO2017043478A1 (en) 2015-09-07 2016-09-06 Gear pump

Country Status (5)

Country Link
US (1) US20180172000A1 (en)
JP (1) JP6599181B2 (en)
CN (1) CN107923390B (en)
DE (1) DE112016002336T8 (en)
WO (1) WO2017043478A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109373167B (en) * 2018-12-19 2020-06-09 自贡市川力科技股份有限公司 Oil pump with double oil outlet channel structure
CN109944792A (en) * 2019-04-30 2019-06-28 哈尔滨理工大学 A kind of double pressure double-direction gearpumps
US11549507B2 (en) 2021-06-11 2023-01-10 Genesis Advanced Technology Inc. Hypotrochoid positive-displacement machine
US11965509B2 (en) 2022-02-28 2024-04-23 Genesis Advanced Technology Inc. Energy transfer machine for corrosive fluids
DE102022130861A1 (en) 2022-11-22 2024-05-23 Klaus Stühmeier Conveying device for liquid or gaseous medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048767A (en) * 2003-07-17 2005-02-24 Yamada Seisakusho Co Ltd Trochoid type oil pump
JP2007064122A (en) * 2005-08-31 2007-03-15 Mitsubishi Materials Pmg Corp Internal gear pump
JP2009185644A (en) * 2008-02-05 2009-08-20 Hitachi Ltd Oil pump
US20100215537A1 (en) * 2005-06-22 2010-08-26 Peter Lit Ming Chang Gear Pump With Improved Inlet Port
WO2016121291A1 (en) * 2015-01-30 2016-08-04 アイシン機工株式会社 Gear pump and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214286A (en) * 2005-02-01 2006-08-17 Aisin Seiki Co Ltd Oil pump
JP2006233771A (en) * 2005-02-22 2006-09-07 Mitsubishi Materials Pmg Corp Pump rotor
EP1927752B1 (en) * 2005-09-22 2018-09-12 Aisin Seiki Kabushiki Kaisha Oil pump rotor
CN104508301B (en) * 2012-08-28 2016-09-28 爱信艾达株式会社 Gear pump
JP6080635B2 (en) * 2013-03-19 2017-02-15 アイシン機工株式会社 Manufacturing method of gear pump and inner rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048767A (en) * 2003-07-17 2005-02-24 Yamada Seisakusho Co Ltd Trochoid type oil pump
US20100215537A1 (en) * 2005-06-22 2010-08-26 Peter Lit Ming Chang Gear Pump With Improved Inlet Port
JP2007064122A (en) * 2005-08-31 2007-03-15 Mitsubishi Materials Pmg Corp Internal gear pump
JP2009185644A (en) * 2008-02-05 2009-08-20 Hitachi Ltd Oil pump
WO2016121291A1 (en) * 2015-01-30 2016-08-04 アイシン機工株式会社 Gear pump and method for manufacturing same

Also Published As

Publication number Publication date
CN107923390B (en) 2019-05-07
DE112016002336T5 (en) 2018-02-15
DE112016002336T8 (en) 2018-04-05
JP2017053240A (en) 2017-03-16
US20180172000A1 (en) 2018-06-21
CN107923390A (en) 2018-04-17
JP6599181B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2017043478A1 (en) Gear pump
JP6343355B2 (en) Gear pump and manufacturing method thereof
US9822781B2 (en) Optimized helix angle rotors for roots-style supercharger
US10844720B2 (en) Rotary machine with pressure relief mechanism
JP6128127B2 (en) Gear pump
KR100345406B1 (en) Oil Pump Projector
JP4289155B2 (en) Gear pump
EP1498609B1 (en) Trochoidal oil pump
JP4309952B2 (en) Trochoid oil pump
JP6080300B2 (en) Manufacturing method of gear pump and inner rotor
JPH0925809A (en) Trochoid oil pump
EP1970570B1 (en) Internal gear pump
JP6080635B2 (en) Manufacturing method of gear pump and inner rotor
JP5465248B2 (en) Gear pump
JP2018162676A (en) Gear pump and tooth form creation method of outer rotor
JP2843839B2 (en) Trochoid type oil pump
JP3180128U (en) Internal gear pump
JP2004332696A (en) Oil pump
JP3824281B2 (en) Internal gear pump for high viscosity fluid pumping
JP2024507549A (en) fluid transfer device
JPH08312539A (en) Internal gear pump
JP2020153349A (en) Internal gear pump
JP2003083260A (en) Gear pump
JPH05215079A (en) Internal gear pump
JP2006063883A (en) Internal gear type pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844339

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15574220

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016002336

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844339

Country of ref document: EP

Kind code of ref document: A1