WO2017043463A1 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
WO2017043463A1
WO2017043463A1 PCT/JP2016/076089 JP2016076089W WO2017043463A1 WO 2017043463 A1 WO2017043463 A1 WO 2017043463A1 JP 2016076089 W JP2016076089 W JP 2016076089W WO 2017043463 A1 WO2017043463 A1 WO 2017043463A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
parts
foaming agent
rubber composition
Prior art date
Application number
PCT/JP2016/076089
Other languages
French (fr)
Japanese (ja)
Inventor
智行 酒井
隆太郎 中川
栄星 清水
臣将 北村
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015175905A external-priority patent/JP6332206B2/en
Priority claimed from JP2015175909A external-priority patent/JP2017052831A/en
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2017043463A1 publication Critical patent/WO2017043463A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a rubber composition, and more particularly, to a rubber composition that suppresses a decrease in tensile fracture characteristics while increasing the expansion ratio.
  • Patent Document 1 proposes that a tread portion of a studless tire is constituted by a rubber composition containing a chemical foaming agent.
  • Such a rubber composition is characterized in that by increasing the expansion ratio, the mass can be reduced, the material properties can be made flexible, and the functionality due to a large number of bubbles can be added.
  • the expansion ratio is increased, there is a problem in that the tensile breaking properties such as tensile breaking strength and tensile breaking elongation of the rubber composition are lowered. For this reason, development of the rubber composition which suppressed the fall of the tensile fracture
  • An object of the present invention is to provide a rubber composition that suppresses a decrease in tensile fracture characteristics while increasing the expansion ratio.
  • the first rubber composition of the present invention that achieves the above object is obtained by blending 0.1 to 20 parts by mass of a chemical foaming agent and 1 to 30 parts by mass of an acid-modified polyolefin with respect to 100 parts by mass of a diene rubber. It is characterized by that.
  • the second rubber composition of the present invention that achieves the above object comprises 0.1 to 20 parts by mass of a chemical foaming agent and 1 to 30 parts by mass of a polyamide polyether elastomer per 100 parts by mass of a diene rubber. It is characterized by becoming.
  • the first rubber composition of the present invention 0.1 to 20 parts by mass of the chemical foaming agent and 1 to 30 parts by mass of the acid-modified polyolefin are blended with 100 parts by mass of the diene rubber.
  • the foaming ratio of the foamed rubber molded product can be increased, and the tensile rupture characteristics, particularly the tensile rupture strength, can be increased to a conventional level.
  • the first rubber composition of the present invention is preferably formed by blending 1 to 30 parts by mass of a polyamide polyether elastomer with respect to 100 parts by mass of the diene rubber. Can be made higher.
  • the second rubber composition of the present invention 0.1 to 20 parts by mass of the chemical foaming agent and 1 to 30 parts by mass of the polyamide polyether elastomer are blended with 100 parts by mass of the diene rubber.
  • the foaming ratio of the foamed rubber molded product can be increased, and the tensile rupture characteristics, particularly the tensile rupture elongation, can be increased to a conventional level.
  • the chemical foaming agent is preferably at least one selected from a carbonamide foaming agent, a nitroso foaming agent, and a sulfonylhydrazine foaming agent, and can increase the foaming ratio of the rubber composition.
  • the rubber composition of the present invention is preferably used for a pneumatic tire, particularly a sidewall portion.
  • a pneumatic tire having a sidewall portion made of a foamed rubber molded body obtained by vulcanizing this rubber composition has excellent tire durability, for example, in curb collision, and also reduces tire mass and heat generation. Fuel efficiency can be improved.
  • FIG. 1 is a cross-sectional view in the tire meridian direction showing an example of an embodiment of a pneumatic tire using the rubber composition for a tire of the present invention.
  • FIG. 1 shows an example of an embodiment of a pneumatic tire using a rubber composition for a tire tread.
  • the pneumatic tire includes a tread portion 1, a sidewall portion 2 and a bead portion 3.
  • the pneumatic tire has two carcass layers 4 in which reinforcing cords extending in the tire radial direction are arranged between the left and right bead portions 3 at predetermined intervals in the tire circumferential direction and embedded in a rubber layer.
  • the both ends are folded back from the inner side in the tire axial direction so as to sandwich the bead filler 6 around the bead core 5 embedded in the bead part 3.
  • An inner liner layer 7 is disposed inside the carcass layer 4.
  • a belt cover layer 9 is disposed on the outer peripheral side of the belt layer 8.
  • a tread portion 1 is formed of a tread rubber layer 12 on the outer peripheral side of the belt cover layer 9.
  • a side rubber layer 13 is disposed outside the carcass layer 4 of each sidewall portion 2.
  • a rim cushion rubber layer 14 is provided outside the folded portion of the carcass layer 4 of each bead portion 3.
  • the side rubber layer 13 and / or the tread rubber layer 12 is preferably composed of the rubber composition for tires of the present invention.
  • examples of the diene rubber include natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile butadiene rubber (NBR), and butyl rubber (IIR). ), Chlorinated butyl rubber (Cl-IIR), brominated butyl rubber (Br-IIR), chloroprene rubber (CR) and the like, and can be used alone or as any blend.
  • NR natural rubber
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • IIR butyl rubber
  • Chlorinated butyl rubber Cl-IIR
  • brominated butyl rubber brominated butyl rubber
  • CR chloroprene rubber
  • olefin rubbers such as ethylene propylene diene rubber (EPDM), styrene isoprene rubber, styrene isoprene butadiene rubber, isoprene butadiene rubber and the like can be blended.
  • EPDM ethylene propylene diene rubber
  • styrene isoprene rubber styrene isoprene butadiene rubber
  • isoprene butadiene rubber and the like can be blended.
  • natural rubber styrene butadiene rubber, butadiene rubber, and butyl rubber are preferred as the diene rubber.
  • natural rubber is preferably contained, and the natural rubber is preferably contained in an amount of 20% by mass or more, more preferably 30 to 100% by mass in 100% by mass of the diene rubber.
  • the rubber composition of the present invention can foam a rubber molded body by including a chemical foaming agent.
  • the compounding amount of the chemical foaming agent is 0.1 to 10 parts by mass, preferably 1.0 to 8.0 parts by mass, more preferably 1.5 to 7.5 parts by mass with respect to 100 parts by mass of the diene rubber. Good.
  • foaming during vulcanization becomes insufficient, and the foaming ratio cannot be increased.
  • the compounding quantity of a chemical foaming agent exceeds 10 mass parts, although the cost will increase, the effect of the raise of a foaming rate will reach a ceiling and the smoothness of the foam surface will be impaired.
  • Examples of the chemical foaming agent include a carbonamide foaming agent, a nitroso foaming agent, a sulfonyl hydrazide foaming agent, an azo foaming agent, and an azide foaming agent.
  • a carbonamide foaming agent, a nitroso foaming agent, and a sulfonylhydrazine foaming agent is preferable.
  • Azodicarbonamide and the like as the carbonodiamide foaming agent
  • DPT N, N'-dinitrosopentamethylenetetramine
  • N, N'-dimethyl-N, N'-dinitrosotephthale as the nitroso foaming agent
  • Examples include amides.
  • Examples of the sulfonyl hydrazide-based blowing agent include benzenesulfonyl hydrazide (BSH), p, p′-oxybis (benzenesulfonyl hydrazide) (OBSH), toluenesulfonyl hydrazide (TSH), diphenylsulfone-3,3′-disulfonyl hydrazide and the like. Illustrated.
  • Examples of the azo foaming agent include azobisisobutyronitrile (AZBN), azobiscyclohexylnitrile, azodiaminobenzene, barium azodicarboxylate and the like.
  • azide-based blowing agent examples include calcium azide, 4,4′-diphenyldisulfonyl azide, p-toluenesulfonyl azide and the like. These chemical foaming agents can be used alone or in admixture of two or more.
  • the decomposition temperature of the chemical foaming agent is preferably 130 ° C. to 190 ° C., more preferably 150 ° C. to 170 ° C. By controlling the decomposition temperature of the chemical foaming agent within such a range, chemical foaming and vulcanization can be easily controlled.
  • the decomposition temperature of a chemical foaming agent is a temperature calculated
  • the rubber composition may contain urea together with the chemical foaming agent.
  • Urea acts as a foaming aid.
  • the blending amount of the urea foaming aid is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the diene rubber.
  • the thermal decomposition temperature of the chemical foaming agent cannot be adjusted sufficiently.
  • the blending amount of the urea foaming auxiliary exceeds 20 masses, it does not react and becomes a foreign substance in the composition, resulting in a decrease in mechanical strength.
  • the first rubber composition of the present invention can increase the tensile rupture characteristics, particularly the tensile rupture strength, of the foamed rubber molded article by containing the acid-modified polyolefin. Surprisingly, the expansion ratio can be increased.
  • the compounding amount of the acid-modified polyolefin is 1 to 30 parts by mass, preferably 2.5 to 25 parts by mass, more preferably 3.0 to 20 parts by mass with respect to 100 parts by mass of the diene rubber. When the compounding amount of the acid-modified polyolefin is less than 1 part by mass, the tensile strength at break of the foamed rubber molded product cannot be increased. Moreover, when the compounding quantity of acid-modified polyolefin exceeds 30 mass parts, the tensile fracture strength of a foamed rubber molded object will become low on the contrary.
  • the acid-modified polyolefin is a modified polymer obtained by modifying a polyolefin resin and / or a polyolefin elastomer with an unsaturated carboxylic acid.
  • polyolefin resins and polyolefin elastomers include polyethylene, polypropylene, polybutene, polyoctene, their copolymers, propylene-ethylene copolymers (propylene-ethylene block copolymers, propylene-ethylene random copolymers, etc.), Ethylene- ⁇ -olefin copolymer (ethylene-propylene rubber, ethylene-propylene-diene rubber), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-ethyl acrylate copolymer Examples thereof include a polymer (EEA), an ethylene-methyl acrylate copolymer (EMA), an ethylene-methyl methacrylate copolymer (
  • ethylene- ⁇ -olefin copolymers ethylene- ⁇ -olefin copolymers, propylene-ethylene copolymers, polyethylene, and polypropylene are preferable.
  • These polyolefin resins and polyolefin elastomers can be used alone or in admixture of two or more.
  • unsaturated carboxylic acids examples include maleic acid, fumaric acid, acrylic acid, crotonic acid, methacrylic acid, itaconic acid, and acid anhydrides thereof. Of these, maleic acid, maleic anhydride, acrylic acid, and methacrylic acid are preferable. These unsaturated carboxylic acids can be used alone or in admixture of two or more.
  • the acid-modified polyolefin can be obtained by modifying a polyolefin resin and a polyolefin elastomer with an unsaturated carboxylic acid by a usual method.
  • the acid modification rate of the acid-modified polyolefin is such that the unsaturated carboxylic acid content is preferably 0.1 to 3.0% by mass, more preferably 0.15 to 2.0% by mass.
  • the first rubber composition of the present invention can optionally contain a polyamide polyether elastomer.
  • a polyamide polyether elastomer By blending the polyamide polyether elastomer, the tensile elongation at break of the foamed rubber molded product can be made higher than the conventional level.
  • the blending amount of the polyamide polyether elastomer is preferably 1 to 30 parts by mass, more preferably 2.5 to 25 parts by mass, and further preferably 3.0 to 20 parts by mass with respect to 100 parts by mass of the diene rubber. Good.
  • the blending amount of the polyamide polyether elastomer is less than 1 part by mass, the effect of improving the tensile elongation at break of the foamed rubber molded article cannot be sufficiently obtained.
  • the second rubber composition of the present invention comprises 0.1 to 20 parts by mass of the chemical foaming agent and 1 to 30 parts by mass of polyamide polyether elastomer with respect to 100 parts by mass of the diene rubber.
  • the polyamide polyether elastomer By including the polyamide polyether elastomer, the tensile elongation at break of the foamed rubber molded product can be made higher than the conventional level. Surprisingly, the expansion ratio can be increased. This is considered that the polyamide polyether elastomer has a role of holding gas during vulcanization and reducing gas leakage.
  • the blending amount of the polyamide polyether elastomer is 1 to 30 parts by mass, preferably 2.5 to 25 parts by mass, more preferably 3.0 to 20 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the blending amount of the polyamide polyether elastomer is less than 1 part by mass, the tensile elongation at break of the foamed rubber molded product cannot be increased.
  • the compounding quantity of acid-modified polyolefin exceeds 30 mass parts, there exists a possibility that the tensile fracture strength of a foamed rubber molded object may become low and a tensile fracture characteristic may fall as a whole.
  • the polyamide polyether elastomer is an elastomer having a hard segment made of polyamide and a soft segment made of polyether, and is disclosed in detail, for example, in its international publication WO 2007/145324 pamphlet including its production method.
  • the polyamide polyether elastomer those having a hard segment made of nylon 12 and a soft segment made of polyether are preferable, and the weight average molecular weight is particularly preferably 10,000 to 200,000.
  • Such a polyamide polyether elastomer can use what is marketed, for example, UBESTAXPA P9040X1 by Ube Industries, Ltd. is mentioned.
  • the tensile break strength of the rubber composition can be further increased by blending a filler.
  • the blending amount of the filler is preferably 20 to 100 parts by mass, more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the diene rubber. If the blending amount of the filler is less than 20 parts by mass, the tensile strength at break of the rubber composition cannot be sufficiently increased. Moreover, when the compounding quantity of a filler exceeds 100 mass parts, the workability of a rubber composition will fall.
  • filler examples include carbon black, silica, calcium carbonate, clay, mica, diatomaceous earth, talc and the like. Of these, carbon black, silica, and calcium carbonate are preferable. Such fillers can be used alone or as any blend.
  • a rubber composition is composed of a vulcanizing agent, a vulcanization accelerator, a vulcanizing aid, a rubber reinforcing agent, a softening agent (plasticizer), an anti-aging agent, a processing aid, a foaming aid, a defoaming agent, an activator, a gold
  • Additives usually used in industrial rubber compositions and foamed rubber molded articles such as mold release agents, heat stabilizers, weathering stabilizers, antistatic agents, colorants, lubricants, thickeners and the like can be added.
  • These compounding agents can be used in the usual compounding amounts as long as they do not contradict the object of the present invention, and can be added, kneaded or mixed by a usual preparation method.
  • the expansion ratio is preferably 1.2 times or more, more preferably 1.3 to 2.0, still more preferably 1.4 to 1.8 times.
  • the specific gravity of the foamed rubber molded body can be reduced.
  • the tensile fracture strength of the foamed rubber molded article can be made excellent by setting the expansion ratio to 2.0 times or less.
  • the rubber composition of the present invention can be molded into a foamed rubber molded body by molding a molded body of unvulcanized rubber and heating and foaming / vulcanizing it.
  • the shape, size and thickness of the unvulcanized rubber molded product can be appropriately adjusted according to the shape, size and thickness of the foamed rubber molded product after vulcanization molding.
  • the molding method generally used can be applied to the molding method of the unvulcanized rubber molded body.
  • the foamed rubber molded body made of the rubber composition of the present invention is useful as a pneumatic tire or an industrial buffer material.
  • the part to be used for the pneumatic tire is not particularly limited. For example, it is used as a sound absorbing material on the side rubber constituting the sidewall portion, the cap tread constituting the tread portion, or the radially inner surface of the tire lumen. be able to. Since the pneumatic tire using the rubber composition of the present invention can achieve light weight and low heat buildup while ensuring mechanical strength and maintaining durability, fuel efficiency can be improved.
  • Vulcanization molding and evaluation of foamed rubber molded body An unvulcanized rubber molded body composed of the obtained 24 kinds of rubber compositions (Examples 1 to 12 and Comparative Examples 1 to 12) was formed into a predetermined shape (length 100 mm, width 100 mm). ). These were heated at a temperature of 180 for 15 minutes to be vulcanized. As a result, the unvulcanized rubber moldings except Comparative Examples 1, 2, and 9 were vulcanized and foamed at the same time, and molded into a foamed rubber molding having a thickness of about 15 mm. Further, the unvulcanized rubber molded articles of Comparative Examples 1, 2 and 9 were vulcanized rubber sheets which were vulcanized and not foamed.
  • Specific gravity and average foaming ratio The specific gravity of the unvulcanized rubber molded product and the specific gravity of the foamed / vulcanized foamed rubber molded product were measured at 23 ° C. in accordance with JIS K-6268, respectively. The ratio between the specific gravity of the unvulcanized rubber molded product and the specific gravity of the foamed rubber molded product was calculated and used as the average foaming ratio. Tables 1 to 4 show the results of specific gravity and average foaming ratio of the obtained foamed rubber moldings.
  • Acid modified PO maleic anhydride modified polypropylene
  • Polyamide polyether Polyamide polyether elastomer, Ube Industries, Ltd.
  • XPAP 9040X1 Polyolefin Polypropylene, Prime Polymer S119 ⁇
  • Chemical foaming agent 1 Nitroso-based foaming agent, N, N'-dinitrosopentamethylenetetramine, Cella D manufactured by Eiwa Kasei Kogyo Co., Ltd., combined with the following foaming aid (urea) to adjust the decomposition start temperature to 130 ° C
  • Chemical foaming agent 2 sulfonyl hydrazide-based foaming agent, p, p'-oxybis (benzenesulfonyl hydrazide) (OBSH), Neocerbon N # 5000 manufactured by Eiwa Kasei Kogyo Co., Ltd., decomposition start temperature is 164 ° C -Foaming aid: urea, cell paste K4 manufactured by Eiwa Kasei Kogyo Co., Ltd.
  • NR natural rubber
  • NURISA SIR20 BR Butadiene rubber
  • Nippon Zeon BR1220 ⁇ CB Carbon black
  • Seast F made by Tokai Carbon -Zinc oxide 3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.
  • -Stearic acid Bead stearic acid paulownia manufactured by Chiba Fatty Acid Company-Anti-aging agent: VULKANOX 4020 manufactured by Bayer ⁇ Oil: Idemitsu Kosan Diana Process NH-60 ⁇ Sulfur: Tsurumi Chemical Industry Co., Ltd. Jinhua stamp fine powder sulfur 150 mesh ⁇
  • Vulcanization accelerator Noxeller CZ-G manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
  • the vulcanized rubber sheets of Comparative Examples 1 and 2 have high tensile strength but high specific gravity because they are not foamed. Since the foamed rubber molded article of Comparative Example 3 does not contain acid-modified polyolefin, the tensile strength at break is lowered, and the foaming ratio is also smaller than those of the foamed rubber molded articles of Examples 1 to 3.
  • the foamed rubber molded article of Comparative Example 4 cannot maintain the tensile strength at break because it contains unmodified polyolefin instead of acid-modified polyolefin. Further, the expansion ratio is smaller than that of the foamed rubber molded body of Example 1.
  • the expansion ratio is smaller than that of the foamed rubber molded body of Example 6.
  • the compounding amount of the chemical foaming agent exceeds 10 parts by mass, so that gas leakage that cannot be dissolved in the rubber during vulcanization occurs, foaming becomes irregular, and the breaking strength is increased.
  • the foaming ratio is too large and the foam is not a practical foam.
  • the vulcanized rubber sheets of Comparative Examples 1 and 9 have high specific gravity but high tensile elongation at break because they are not foamed. Since the foamed rubber molded article of Comparative Example 3 does not contain a polyamide polyether elastomer, the tensile elongation at break is reduced, and the foaming ratio is smaller than that of the foamed rubber molded articles of Examples 8 and 9.
  • the amount of polyamide polyether elastomer exceeds 30 parts by mass, so that the tensile elongation at break decreases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Provided is a rubber composition configured such that deterioration of the tensile rupture properties is minimized while the expansion ratio is raised. This rubber composition is characterized in that 0.1-20 parts by mass of a chemical foaming agent and 1-30 parts by mass of an acid-modified polyolefin are compounded per 100 parts by mass of a diene rubber.

Description

ゴム組成物Rubber composition
 本発明は、ゴム組成物に関し、さらに詳しくは発泡倍率を高くしながら引張り破断特性の低下を抑制するようにしたゴム組成物に関する。 The present invention relates to a rubber composition, and more particularly, to a rubber composition that suppresses a decrease in tensile fracture characteristics while increasing the expansion ratio.
 近年、空気入りタイヤの構成部材として、ゴム組成物を使用することが提案されている。例えば特許文献1はスタッドレスタイヤのトレッド部を、化学発泡剤を含むゴム組成物で構成することを提案している。 Recently, it has been proposed to use a rubber composition as a component of a pneumatic tire. For example, Patent Document 1 proposes that a tread portion of a studless tire is constituted by a rubber composition containing a chemical foaming agent.
 このようなゴム組成物は、発泡倍率を高くすることにより、質量を軽くし、材料特性を柔軟にすると共に、多数の気泡による機能性を付加することができるという特徴がある。しかし、発泡倍率を高くすると、ゴム組成物の引張り破断強度や引張り破断伸びなどの引張り破断特性が低下するという問題があった。このため、発泡倍率を高くしながら引張り破断特性の低下を抑えるようにしたゴム組成物の開発が、求められている。 Such a rubber composition is characterized in that by increasing the expansion ratio, the mass can be reduced, the material properties can be made flexible, and the functionality due to a large number of bubbles can be added. However, when the expansion ratio is increased, there is a problem in that the tensile breaking properties such as tensile breaking strength and tensile breaking elongation of the rubber composition are lowered. For this reason, development of the rubber composition which suppressed the fall of the tensile fracture | rupture characteristic while raising foaming ratio is calculated | required.
日本国特開2006-274045号公報Japanese Unexamined Patent Publication No. 2006-274045
 本発明の目的は、発泡倍率を高くしながら引張り破断特性の低下を抑制するようにしたゴム組成物を提供することにある。 An object of the present invention is to provide a rubber composition that suppresses a decrease in tensile fracture characteristics while increasing the expansion ratio.
 上記目的を達成する本発明の第1のゴム組成物は、ジエン系ゴム100質量部に対し、化学発泡剤を0.1~20質量部、酸変性ポリオレフィンを1~30質量部配合してなることを特徴とする。 The first rubber composition of the present invention that achieves the above object is obtained by blending 0.1 to 20 parts by mass of a chemical foaming agent and 1 to 30 parts by mass of an acid-modified polyolefin with respect to 100 parts by mass of a diene rubber. It is characterized by that.
 上記目的を達成する本発明の第2のゴム組成物は、ジエン系ゴム100質量部に対し、化学発泡剤を0.1~20質量部、ポリアミドポリエーテルエラストマーを1~30質量部配合してなることを特徴とする。 The second rubber composition of the present invention that achieves the above object comprises 0.1 to 20 parts by mass of a chemical foaming agent and 1 to 30 parts by mass of a polyamide polyether elastomer per 100 parts by mass of a diene rubber. It is characterized by becoming.
 本発明の第1のゴム組成物によれば、ジエン系ゴム100質量部に対し、化学発泡剤を0.1~20質量部、酸変性ポリオレフィンを1~30質量部配合したので、加硫した発泡ゴム成形体の発泡倍率を高くし、かつ引張り破断特性、特に引張り破断強度を従来レベル上に高くすることができる。 According to the first rubber composition of the present invention, 0.1 to 20 parts by mass of the chemical foaming agent and 1 to 30 parts by mass of the acid-modified polyolefin are blended with 100 parts by mass of the diene rubber. The foaming ratio of the foamed rubber molded product can be increased, and the tensile rupture characteristics, particularly the tensile rupture strength, can be increased to a conventional level.
 本発明の第1のゴム組成物は、前記ジエン系ゴム100質量部に対し、ポリアミドポリエーテルエラストマーを1~30質量部配合してなることが好ましく、加硫した発泡ゴム成形体の引張り破断伸びをより高くすることができる。 The first rubber composition of the present invention is preferably formed by blending 1 to 30 parts by mass of a polyamide polyether elastomer with respect to 100 parts by mass of the diene rubber. Can be made higher.
 本発明の第2のゴム組成物によれば、ジエン系ゴム100質量部に対し、化学発泡剤を0.1~20質量部、ポリアミドポリエーテルエラストマーを1~30質量部配合したので、加硫した発泡ゴム成形体の発泡倍率を高くし、かつ引張り破断特性、特に引張り破断伸びを従来レベル上に高くすることができる。 According to the second rubber composition of the present invention, 0.1 to 20 parts by mass of the chemical foaming agent and 1 to 30 parts by mass of the polyamide polyether elastomer are blended with 100 parts by mass of the diene rubber. The foaming ratio of the foamed rubber molded product can be increased, and the tensile rupture characteristics, particularly the tensile rupture elongation, can be increased to a conventional level.
 前記化学発泡剤としては、カルボンアミド系発泡剤、ニトロソ系発泡剤、スルホニルヒドラジン系発泡剤から選ばれる少なくとも1種が好ましく、ゴム組成物の発泡倍率をより高くすることができる。 The chemical foaming agent is preferably at least one selected from a carbonamide foaming agent, a nitroso foaming agent, and a sulfonylhydrazine foaming agent, and can increase the foaming ratio of the rubber composition.
 本発明のゴム組成物は、空気入りタイヤ、とりわけサイドウォール部に使用することが好ましい。このゴム組成物を加硫した発泡ゴム成形体でサイドウォール部を構成した空気入りタイヤは、例えば縁石衝突などにおいて優れたタイヤ耐久性を有すると共に、タイヤ質量を低減し、発熱性を低減するので燃費性能を向上することができる。 The rubber composition of the present invention is preferably used for a pneumatic tire, particularly a sidewall portion. A pneumatic tire having a sidewall portion made of a foamed rubber molded body obtained by vulcanizing this rubber composition has excellent tire durability, for example, in curb collision, and also reduces tire mass and heat generation. Fuel efficiency can be improved.
図1は、本発明のタイヤ用ゴム組成物を使用した空気入りタイヤの実施形態の一例を示すタイヤ子午線方向の断面図である。FIG. 1 is a cross-sectional view in the tire meridian direction showing an example of an embodiment of a pneumatic tire using the rubber composition for a tire of the present invention.
 図1は、タイヤトレッド用ゴム組成物を使用した空気入りタイヤの実施形態の一例を示し、この空気入りタイヤは、トレッド部1、サイドウォール部2およびビード部3からなる。 FIG. 1 shows an example of an embodiment of a pneumatic tire using a rubber composition for a tire tread. The pneumatic tire includes a tread portion 1, a sidewall portion 2 and a bead portion 3.
 図1において、空気入りタイヤには、左右のビード部3間にタイヤ径方向に延在する補強コードをタイヤ周方向に所定の間隔で配列してゴム層に埋設した2層のカーカス層4が延設され、その両端部がビード部3に埋設したビードコア5の周りにビードフィラー6を挟み込むようにしてタイヤ軸方向内側から外側に折り返されている。カーカス層4の内側にはインナーライナー層7が配置されている。トレッド部1のカーカス層4の外周側には、タイヤ周方向に傾斜して延在する補強コードをタイヤ軸方向に所定の間隔で配列してゴム層に埋設した2層のベルト層8が配設されている。この2層のベルト層8の補強コードは層間でタイヤ周方向に対する傾斜方向を互いに逆向きにして交差している。ベルト層8の外周側には、ベルトカバー層9が配置されている。このベルトカバー層9の外周側に、トレッド部1がトレッドゴム層12により形成される。各サイドウォール部2のカーカス層4の外側にはサイドゴム層13が配置される。各ビード部3のカーカス層4の折り返し部外側にはリムクッションゴム層14が設けられている。これらのうちサイドゴム層13および/またはトレッドゴム層12は、本発明のタイヤ用ゴム組成物により構成することが好ましい。 In FIG. 1, the pneumatic tire has two carcass layers 4 in which reinforcing cords extending in the tire radial direction are arranged between the left and right bead portions 3 at predetermined intervals in the tire circumferential direction and embedded in a rubber layer. The both ends are folded back from the inner side in the tire axial direction so as to sandwich the bead filler 6 around the bead core 5 embedded in the bead part 3. An inner liner layer 7 is disposed inside the carcass layer 4. On the outer peripheral side of the carcass layer 4 of the tread portion 1, there are arranged two belt layers 8 in which reinforcing cords inclined and extending in the tire circumferential direction are arranged at predetermined intervals in the tire axial direction and embedded in the rubber layer. It is installed. The reinforcing cords of the two belt layers 8 intersect each other with the inclination directions with respect to the tire circumferential direction being opposite to each other. A belt cover layer 9 is disposed on the outer peripheral side of the belt layer 8. A tread portion 1 is formed of a tread rubber layer 12 on the outer peripheral side of the belt cover layer 9. A side rubber layer 13 is disposed outside the carcass layer 4 of each sidewall portion 2. A rim cushion rubber layer 14 is provided outside the folded portion of the carcass layer 4 of each bead portion 3. Of these, the side rubber layer 13 and / or the tread rubber layer 12 is preferably composed of the rubber composition for tires of the present invention.
 本発明のゴム組成物において、ジエン系ゴムとしては、例えば天然ゴム(NR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR),塩素化ブチルゴム(Cl-IIR)、臭素化ブチルゴム(Br-IIR)、クロロプレンゴム(CR)等を例示することができ、単独又は任意のブレンドとして使用することができる。またエチレンプロピレンジエンゴム(EPDM)、スチレンイソプレンゴム、スチレンイソプレンブタジエンゴム、イソプレンブタジエンゴムなどのオレフィン系ゴムを配合することもできる。なかでもジエン系ゴムとして天然ゴム、スチレンブタジエンゴム、ブタジエンゴム、ブチルゴムが好ましい。とりわけ天然ゴムを含有することが好ましく、ジエン系ゴム100質量%中、天然ゴムを好ましくは20質量%以上、より好ましくは30~100質量%含有するとよい。天然ゴムの含有量をこのような範囲にすることにより、ゴム組成物の引張り破断強度および引張り破断伸びをより高くすることができる。 In the rubber composition of the present invention, examples of the diene rubber include natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile butadiene rubber (NBR), and butyl rubber (IIR). ), Chlorinated butyl rubber (Cl-IIR), brominated butyl rubber (Br-IIR), chloroprene rubber (CR) and the like, and can be used alone or as any blend. Also, olefin rubbers such as ethylene propylene diene rubber (EPDM), styrene isoprene rubber, styrene isoprene butadiene rubber, isoprene butadiene rubber and the like can be blended. Of these, natural rubber, styrene butadiene rubber, butadiene rubber, and butyl rubber are preferred as the diene rubber. In particular, natural rubber is preferably contained, and the natural rubber is preferably contained in an amount of 20% by mass or more, more preferably 30 to 100% by mass in 100% by mass of the diene rubber. By setting the content of natural rubber in such a range, the tensile breaking strength and tensile breaking elongation of the rubber composition can be further increased.
 本発明のゴム組成物は、化学発泡剤を含むことによりゴム成形体を発泡させることができる。化学発泡剤の配合量は、ジエン系ゴム100質量部に対し0.1~10質量部、好ましくは1.0~8.0質量部、より好ましくは1.5~7.5質量部にするとよい。化学発泡剤の配合量が0.1質量部未満であると、加硫時の発泡が不十分になり、発泡倍率を高くすることができない。また化学発泡剤の配合量が10質量部を超えると、コストが増えるにも拘らず発泡倍率の上昇の効果は頭打ちになり、発泡体表面の平滑性が損なわれる。 The rubber composition of the present invention can foam a rubber molded body by including a chemical foaming agent. The compounding amount of the chemical foaming agent is 0.1 to 10 parts by mass, preferably 1.0 to 8.0 parts by mass, more preferably 1.5 to 7.5 parts by mass with respect to 100 parts by mass of the diene rubber. Good. When the compounding amount of the chemical foaming agent is less than 0.1 parts by mass, foaming during vulcanization becomes insufficient, and the foaming ratio cannot be increased. Moreover, when the compounding quantity of a chemical foaming agent exceeds 10 mass parts, although the cost will increase, the effect of the raise of a foaming rate will reach a ceiling and the smoothness of the foam surface will be impaired.
 化学発泡剤としては、例えばカルボンアミド系発泡剤、ニトロソ系発泡剤、スルホニルヒドラジド系発泡剤、アゾ系発泡剤、アジド系発泡剤等を例示することができる。なかでもカルボンアミド系発泡剤、ニトロソ系発泡剤、スルホニルヒドラジン系発泡剤から選ばれる少なくとも1種が好ましい。 Examples of the chemical foaming agent include a carbonamide foaming agent, a nitroso foaming agent, a sulfonyl hydrazide foaming agent, an azo foaming agent, and an azide foaming agent. Among these, at least one selected from a carbonamide foaming agent, a nitroso foaming agent, and a sulfonylhydrazine foaming agent is preferable.
 カルボンジアミド系発泡剤としてはアゾジカルボンアミド(ADCA)等、ニトロソ系発泡剤としてはN,N′-ジニトロソペンタメチレンテトラミン(DPT)、N,N′-ジメチル-N,N′-ジニトロソテレフタルアミド等が例示される。スルホニルヒドラジド系発泡剤としては、ベンゼンスルホニルヒドラジド(BSH)、p,p′-オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)、トルエンスルホニルヒドラジド(TSH)、ジフェニルスルホン-3,3′-ジスルホニルヒドラジド等が例示される。アゾ系発泡剤としてはアゾビスイソブチロニトリル(AZBN)、アゾビスシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等が例示される。アジド系発泡剤としてはカルシウムアジド、4,4′-ジフェニルジスルホニルアジド、p-トルエンスルホニルアジド等が例示される。これらの化学発泡剤は、単独で又は2種以上を混合して使用することができる。 Azodicarbonamide (ADCA) and the like as the carbonodiamide foaming agent, N, N'-dinitrosopentamethylenetetramine (DPT) and N, N'-dimethyl-N, N'-dinitrosotephthale as the nitroso foaming agent Examples include amides. Examples of the sulfonyl hydrazide-based blowing agent include benzenesulfonyl hydrazide (BSH), p, p′-oxybis (benzenesulfonyl hydrazide) (OBSH), toluenesulfonyl hydrazide (TSH), diphenylsulfone-3,3′-disulfonyl hydrazide and the like. Illustrated. Examples of the azo foaming agent include azobisisobutyronitrile (AZBN), azobiscyclohexylnitrile, azodiaminobenzene, barium azodicarboxylate and the like. Examples of the azide-based blowing agent include calcium azide, 4,4′-diphenyldisulfonyl azide, p-toluenesulfonyl azide and the like. These chemical foaming agents can be used alone or in admixture of two or more.
 化学発泡剤の分解温度は、好ましくは130℃~190℃、より好ましくは150℃~170℃にするとよい。化学発泡剤の分解温度をこのような範囲内にすることにより、化学発泡および加硫の制御が容易になる。本明細書において、化学発泡剤の分解温度は、示差走査熱量測定(DSC)、熱質量測定(TGA)から選ばれる熱分析を使用して分解熱や質量減少を測定することにより求められる温度である。 The decomposition temperature of the chemical foaming agent is preferably 130 ° C. to 190 ° C., more preferably 150 ° C. to 170 ° C. By controlling the decomposition temperature of the chemical foaming agent within such a range, chemical foaming and vulcanization can be easily controlled. In this specification, the decomposition temperature of a chemical foaming agent is a temperature calculated | required by measuring a decomposition heat and mass loss using the thermal analysis chosen from differential scanning calorimetry (DSC) and thermal mass measurement (TGA). is there.
 ゴム組成物は、化学発泡剤と共に尿素を含むとよい。尿素は発泡助剤として作用する。尿素系発泡助剤を配合することにより、化学発泡剤が熱分解する温度を低く調節することが可能になる。尿素系発泡助剤の配合量はジエン系ゴム100質量部に対し、好ましくは0.1~20質量部、より好ましくは0.5~10質量部にするとよい。尿素系発泡助剤の配合量が0.1質量部未満であると、化学発泡剤の熱分解温度を十分に調節することができない。尿素系発泡助剤の配合量が20質量を超えると、反応せず組成物の中で異物となってしまい機械的強度が低下する。 The rubber composition may contain urea together with the chemical foaming agent. Urea acts as a foaming aid. By blending the urea-based foaming aid, the temperature at which the chemical foaming agent is thermally decomposed can be adjusted to be low. The blending amount of the urea foaming aid is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the diene rubber. When the blending amount of the urea foaming auxiliary is less than 0.1 parts by mass, the thermal decomposition temperature of the chemical foaming agent cannot be adjusted sufficiently. When the blending amount of the urea foaming auxiliary exceeds 20 masses, it does not react and becomes a foreign substance in the composition, resulting in a decrease in mechanical strength.
 本発明の第1のゴム組成物は、酸変性ポリオレフィンを含むことにより発泡ゴム成形体の引張り破断特性、とりわけ引張り破断強度を高くすることができる。また意外にも発泡倍率を高くすることができる。酸変性ポリオレフィンの配合量は、ジエン系ゴム100質量部に対し1~30質量部、好ましくは2.5~25質量部、より好ましくは3.0~20質量部にするとよい。酸変性ポリオレフィンの配合量が1質量部未満であると、発泡ゴム成形体の引張り破断強度を高くすることができない。また酸変性ポリオレフィンの配合量が30質量部を超えると、発泡ゴム成形体の引張り破断強度が却って低くなる。 The first rubber composition of the present invention can increase the tensile rupture characteristics, particularly the tensile rupture strength, of the foamed rubber molded article by containing the acid-modified polyolefin. Surprisingly, the expansion ratio can be increased. The compounding amount of the acid-modified polyolefin is 1 to 30 parts by mass, preferably 2.5 to 25 parts by mass, more preferably 3.0 to 20 parts by mass with respect to 100 parts by mass of the diene rubber. When the compounding amount of the acid-modified polyolefin is less than 1 part by mass, the tensile strength at break of the foamed rubber molded product cannot be increased. Moreover, when the compounding quantity of acid-modified polyolefin exceeds 30 mass parts, the tensile fracture strength of a foamed rubber molded object will become low on the contrary.
 酸変性ポリオレフィンは、ポリオレフィン系樹脂および/またはポリオレフィン系エラストマーを、不飽和カルボン酸で変性した変性ポリマーである。ポリオレフィン系樹脂およびポリオレフィン系エラストマーとしては、ポリエチレン、ポリプロピレン、ポリブテン、ポリオクテン、これらの相互共重合体、プロピレン-エチレン共重合体(プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等)、エチレン-α-オレフィン共重合体(エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(EAA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸メチル共重合体(EMA)、エチレン-メタアクリル酸メチル共重合体(EMMA)、エチレン-メタアクリル酸共重合体(EMAA)等を例示することができる。なかでもエチレン-α-オレフィン共重合体、プロピレン-エチレン共重合体、ポリエチレン、ポリプロピレンが好ましい。これらのポリオレフィン系樹脂およびポリオレフィン系エラストマーは、単独で又は2種以上を混合して使用することができる。 The acid-modified polyolefin is a modified polymer obtained by modifying a polyolefin resin and / or a polyolefin elastomer with an unsaturated carboxylic acid. Examples of polyolefin resins and polyolefin elastomers include polyethylene, polypropylene, polybutene, polyoctene, their copolymers, propylene-ethylene copolymers (propylene-ethylene block copolymers, propylene-ethylene random copolymers, etc.), Ethylene-α-olefin copolymer (ethylene-propylene rubber, ethylene-propylene-diene rubber), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA), ethylene-ethyl acrylate copolymer Examples thereof include a polymer (EEA), an ethylene-methyl acrylate copolymer (EMA), an ethylene-methyl methacrylate copolymer (EMMA), and an ethylene-methacrylic acid copolymer (EMAA). Of these, ethylene-α-olefin copolymers, propylene-ethylene copolymers, polyethylene, and polypropylene are preferable. These polyolefin resins and polyolefin elastomers can be used alone or in admixture of two or more.
 不飽和カルボン酸としては、マレイン酸、フマル酸、アクリル酸、クロトン酸、メタアクリル酸、イタコン酸、これらの酸無水物を例示することができる。なかでもマレイン酸、無水マレイン酸、アクリル酸、メタアクリル酸が好ましい。これらの不飽和カルボン酸は、単独で又は2種以上を混合して使用することができる。 Examples of unsaturated carboxylic acids include maleic acid, fumaric acid, acrylic acid, crotonic acid, methacrylic acid, itaconic acid, and acid anhydrides thereof. Of these, maleic acid, maleic anhydride, acrylic acid, and methacrylic acid are preferable. These unsaturated carboxylic acids can be used alone or in admixture of two or more.
 酸変性ポリオレフィンは、通常行われる方法によりポリオレフィン系樹脂およびポリオレフィン系エラストマーを不飽和カルボン酸で変性することにより得ることができる。酸変性ポリオレフィンの酸変性率は、不飽和カルボン酸の含有率が、好ましくは0.1~3.0質量%、より好ましくは0.15~2.0質量%であるとよい。 The acid-modified polyolefin can be obtained by modifying a polyolefin resin and a polyolefin elastomer with an unsaturated carboxylic acid by a usual method. The acid modification rate of the acid-modified polyolefin is such that the unsaturated carboxylic acid content is preferably 0.1 to 3.0% by mass, more preferably 0.15 to 2.0% by mass.
 本発明の第1のゴム組成物は、任意にポリアミドポリエーテルエラストマーを配合することができる。ポリアミドポリエーテルエラストマーを配合することにより、発泡ゴム成形体の引張り破断伸びを従来レベル以上に高くすることができる。ポリアミドポリエーテルエラストマーの配合量は、ジエン系ゴム100質量部に対し、好ましくは1~30質量部、より好ましくは2.5~25質量部、さらに好ましくは3.0~20質量部であるとよい。ポリアミドポリエーテルエラストマーの配合量が1質量部未満であると、発泡ゴム成形体の引張り破断伸びを改良する効果が十分に得られない。またポリアミドポリエーテルエラストマーの配合量が30質量部を超えると、発泡ゴム成形体の引張り破断強度が低くなり、引張り破断特性が全体として低下する虞がある。 The first rubber composition of the present invention can optionally contain a polyamide polyether elastomer. By blending the polyamide polyether elastomer, the tensile elongation at break of the foamed rubber molded product can be made higher than the conventional level. The blending amount of the polyamide polyether elastomer is preferably 1 to 30 parts by mass, more preferably 2.5 to 25 parts by mass, and further preferably 3.0 to 20 parts by mass with respect to 100 parts by mass of the diene rubber. Good. When the blending amount of the polyamide polyether elastomer is less than 1 part by mass, the effect of improving the tensile elongation at break of the foamed rubber molded article cannot be sufficiently obtained. Moreover, when the compounding quantity of a polyamide polyether elastomer exceeds 30 mass parts, there exists a possibility that the tensile breaking strength of a foamed rubber molded object may become low and a tensile breaking characteristic may fall as a whole.
 本発明の第2のゴム組成物は、前記ジエン系ゴム100質量部に対し、前記化学発泡剤を0.1~20質量部、ポリアミドポリエーテルエラストマーを1~30質量部配合してなる。ポリアミドポリエーテルエラストマーを含むことにより発泡ゴム成形体の引張り破断伸びを従来レベル以上に高くすることができる。また意外にも発泡倍率を高くすることができる。これは、ポリアミドポリエーテルエラストマーが加硫中にガスを保持し、ガス漏れを減らす役割があると考えられる。ポリアミドポリエーテルエラストマーの配合量は、ジエン系ゴム100質量部に対し1~30質量部、好ましくは2.5~25質量部、より好ましくは3.0~20質量部にするとよい。ポリアミドポリエーテルエラストマーの配合量が1質量部未満であると、発泡ゴム成形体の引張り破断伸びを高くすることができない。また酸変性ポリオレフィンの配合量が30質量部を超えると、発泡ゴム成形体の引張り破断強度が低くなり、引張り破断特性が全体として低下する虞がある。 The second rubber composition of the present invention comprises 0.1 to 20 parts by mass of the chemical foaming agent and 1 to 30 parts by mass of polyamide polyether elastomer with respect to 100 parts by mass of the diene rubber. By including the polyamide polyether elastomer, the tensile elongation at break of the foamed rubber molded product can be made higher than the conventional level. Surprisingly, the expansion ratio can be increased. This is considered that the polyamide polyether elastomer has a role of holding gas during vulcanization and reducing gas leakage. The blending amount of the polyamide polyether elastomer is 1 to 30 parts by mass, preferably 2.5 to 25 parts by mass, more preferably 3.0 to 20 parts by mass with respect to 100 parts by mass of the diene rubber. When the blending amount of the polyamide polyether elastomer is less than 1 part by mass, the tensile elongation at break of the foamed rubber molded product cannot be increased. Moreover, when the compounding quantity of acid-modified polyolefin exceeds 30 mass parts, there exists a possibility that the tensile fracture strength of a foamed rubber molded object may become low and a tensile fracture characteristic may fall as a whole.
 本明細書において、ポリアミドポリエーテルエラストマーは、ポリアミドからなるハードセグメントおよびポリエーテルからなるソフトセグメントを有するエラストマーであり、例えば国際公開WO2007/145324号パンフレットにその製造方法を含め詳細に開示されている。ポリアミドポリエーテルエラストマーとして、ナイロン12からなるハードセグメントとポリエーテルからなるソフトセグメントとを有するものが好適であり、とりわけ重量平均分子量が10000~200000であるとよい。このようなポリアミドポリエーテルエラストマーは市販されているものを利用でき、例えば宇部興産社製UBESTAXPA P9040X1が挙げられる。 In this specification, the polyamide polyether elastomer is an elastomer having a hard segment made of polyamide and a soft segment made of polyether, and is disclosed in detail, for example, in its international publication WO 2007/145324 pamphlet including its production method. As the polyamide polyether elastomer, those having a hard segment made of nylon 12 and a soft segment made of polyether are preferable, and the weight average molecular weight is particularly preferably 10,000 to 200,000. Such a polyamide polyether elastomer can use what is marketed, for example, UBESTAXPA P9040X1 by Ube Industries, Ltd. is mentioned.
 本発明において、充填剤を配合することにより、ゴム組成物の引張り破断強度をより高くすることができる。充填剤の配合量はジエン系ゴム100質量部に対し、好ましくは20~100質量部、より好ましくは40~80質量部にするとよい。充填剤の配合量が20質量部未満であるとゴム組成物の引張り破断強度を十分に高くすることができない。また充填剤の配合量が100質量部を超えるとゴム組成物の加工性が低下する。 In the present invention, the tensile break strength of the rubber composition can be further increased by blending a filler. The blending amount of the filler is preferably 20 to 100 parts by mass, more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the diene rubber. If the blending amount of the filler is less than 20 parts by mass, the tensile strength at break of the rubber composition cannot be sufficiently increased. Moreover, when the compounding quantity of a filler exceeds 100 mass parts, the workability of a rubber composition will fall.
 充填剤としては、例えばカーボンブラック、シリカ、炭酸カルシウム、クレー、マイカ、珪藻土、タルク等を例示することができる。なかでもカーボンブラック、シリカ、炭酸カルシウムが好ましい。このような充填剤は、単独又は任意のブレンドとして使用することができる。 Examples of the filler include carbon black, silica, calcium carbonate, clay, mica, diatomaceous earth, talc and the like. Of these, carbon black, silica, and calcium carbonate are preferable. Such fillers can be used alone or as any blend.
 ゴム組成物は、加硫剤、加硫促進剤、加硫助剤、ゴム補強剤、軟化剤(可塑剤)、老化防止剤、加工助剤、発泡助剤、脱泡剤、活性剤、金型離型剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、増粘剤等の工業用ゴム組成物や発泡ゴム成形体に通常用いられる配合剤を添加することができる。これらの配合剤は本発明の目的に反しない限り、通常用いられる配合量を適用することができ、また通常の調製方法で添加、混練又は混合することができる。 A rubber composition is composed of a vulcanizing agent, a vulcanization accelerator, a vulcanizing aid, a rubber reinforcing agent, a softening agent (plasticizer), an anti-aging agent, a processing aid, a foaming aid, a defoaming agent, an activator, a gold Additives usually used in industrial rubber compositions and foamed rubber molded articles such as mold release agents, heat stabilizers, weathering stabilizers, antistatic agents, colorants, lubricants, thickeners and the like can be added. These compounding agents can be used in the usual compounding amounts as long as they do not contradict the object of the present invention, and can be added, kneaded or mixed by a usual preparation method.
 本発明のゴム組成物は、発泡倍率が好ましくは1.2倍以上、より好ましくは1.3~2.0、さらに好ましくは1.4~1.8倍にすることができる。発泡ゴム成形体の発泡倍率を1.2倍以上にすることにより発泡ゴム成形体の比重を軽くすることができる。また、発泡倍率を2.0倍以下にすることにより発泡ゴム成形体の引張り破断強度を優れたものにすることができる。 In the rubber composition of the present invention, the expansion ratio is preferably 1.2 times or more, more preferably 1.3 to 2.0, still more preferably 1.4 to 1.8 times. By setting the foaming ratio of the foamed rubber molded body to 1.2 times or more, the specific gravity of the foamed rubber molded body can be reduced. Moreover, the tensile fracture strength of the foamed rubber molded article can be made excellent by setting the expansion ratio to 2.0 times or less.
 本発明のゴム組成物は、未加硫ゴムの成形体を成形し、これを加熱し発泡・加硫することにより発泡ゴム成形体を成形することができる。未加硫ゴム成形体の形状、大きさ、厚さは、加硫成形後の発泡ゴム成形体の形状、大きさ、厚さに応じて適宜、調節することができる。また未加硫ゴム成形体の成形方法は、通常用いられる成形加工方法を適用することができる。 The rubber composition of the present invention can be molded into a foamed rubber molded body by molding a molded body of unvulcanized rubber and heating and foaming / vulcanizing it. The shape, size and thickness of the unvulcanized rubber molded product can be appropriately adjusted according to the shape, size and thickness of the foamed rubber molded product after vulcanization molding. Moreover, the molding method generally used can be applied to the molding method of the unvulcanized rubber molded body.
 本発明のゴム組成物からなる発泡ゴム成形体は、空気入りタイヤや工業用緩衝材料として有用である。空気入りタイヤに使用する部位は、特に限定されるものではないが、例えばサイドウォール部を構成するサイドゴム、トレッド部を構成するキャップトレッドやタイヤ内腔の径方向内側の表面に吸音材として使用することができる。本発明のゴム組成物を使用した空気入りタイヤは、機械的強度を確保し耐久性を維持しながら、軽量化及び低発熱性を実現することができるので、燃費性能を向上することができる。 The foamed rubber molded body made of the rubber composition of the present invention is useful as a pneumatic tire or an industrial buffer material. The part to be used for the pneumatic tire is not particularly limited. For example, it is used as a sound absorbing material on the side rubber constituting the sidewall portion, the cap tread constituting the tread portion, or the radially inner surface of the tire lumen. be able to. Since the pneumatic tire using the rubber composition of the present invention can achieve light weight and low heat buildup while ensuring mechanical strength and maintaining durability, fuel efficiency can be improved.
 以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the scope of the present invention is not limited to these examples.
   ゴム組成物の調製および未加硫成形体の作成
 表5に示すゴム組成を共通処方とし、表1~4に示す処方を含む24種類のゴム組成物(実施例1~12、比較例1~12)について、それぞれ硫黄、加硫促進剤、化学発泡剤および発泡助剤を除く配合成分を秤量し、1.7L密閉式バンバリーミキサーで5分間混練し、温度150℃でマスターバッチを放出し室温冷却した。その後このマスターバッチを加熱ロールに供し、硫黄、加硫促進剤、化学発泡剤および発泡助剤を加えて混合し、24種類のゴム組成物を調製すると共に、これらゴム組成物からなる未加硫のゴム成形体を成形した。
Preparation of rubber composition and preparation of unvulcanized molded article 24 types of rubber compositions (Examples 1 to 12, Comparative Examples 1 to 1) having the rubber composition shown in Table 5 as a common formulation and the formulations shown in Tables 1 to 4 For 12), the components except for sulfur, vulcanization accelerator, chemical foaming agent and foaming aid were weighed and kneaded for 5 minutes with a 1.7 L closed Banbury mixer, and the master batch was discharged at a temperature of 150 ° C. Cooled down. Thereafter, this master batch is subjected to a heating roll, and sulfur, a vulcanization accelerator, a chemical foaming agent and a foaming aid are added and mixed to prepare 24 types of rubber compositions, and unvulcanized comprising these rubber compositions. The rubber molded body was molded.
   発泡ゴム成形体の加硫成形及び評価
 得られた24種類のゴム組成物(実施例1~12、比較例1~12)からなる未加硫ゴム成形体を、所定形状(縦100mm、横100mm)の金型に充填した。これらを温度180で、15分間加熱し加硫成形した。これにより比較例1,2および9を除く未加硫ゴム成形体は、加硫と発泡が同時に進行し、厚さが約15mmの発泡ゴム成形体を成形した。また比較例1,2および9の未加硫ゴム成形体は、加硫した発泡していない加硫ゴムシートになった。
Vulcanization molding and evaluation of foamed rubber molded body An unvulcanized rubber molded body composed of the obtained 24 kinds of rubber compositions (Examples 1 to 12 and Comparative Examples 1 to 12) was formed into a predetermined shape (length 100 mm, width 100 mm). ). These were heated at a temperature of 180 for 15 minutes to be vulcanized. As a result, the unvulcanized rubber moldings except Comparative Examples 1, 2, and 9 were vulcanized and foamed at the same time, and molded into a foamed rubber molding having a thickness of about 15 mm. Further, the unvulcanized rubber molded articles of Comparative Examples 1, 2 and 9 were vulcanized rubber sheets which were vulcanized and not foamed.
 得られた発泡ゴム成形体(ただし比較例1,2および9は未発泡の加硫ゴムシート)の比重、平均発泡倍率および引張り破断強度をそれぞれ以下の方法で測定し、得られた結果を表1~4に示した。 The specific gravity, average foaming ratio and tensile breaking strength of the obtained foamed rubber molded bodies (comparative examples 1, 2 and 9 are unfoamed vulcanized rubber sheets) were measured by the following methods, respectively, and the obtained results were shown. Shown in 1-4.
   比重および平均発泡倍率
 未加硫のゴム成形体の比重および発泡・加硫した発泡ゴム成形体の比重を、それぞれJIS K-6268に準拠して23℃で測定した。未加硫ゴム成形体の比重と発泡ゴム成形体の比重との比を算出し平均発泡倍率とした。得られた発泡ゴム成形体の比重および平均発泡倍率の結果を表1~4に示す。
Specific gravity and average foaming ratio The specific gravity of the unvulcanized rubber molded product and the specific gravity of the foamed / vulcanized foamed rubber molded product were measured at 23 ° C. in accordance with JIS K-6268, respectively. The ratio between the specific gravity of the unvulcanized rubber molded product and the specific gravity of the foamed rubber molded product was calculated and used as the average foaming ratio. Tables 1 to 4 show the results of specific gravity and average foaming ratio of the obtained foamed rubber moldings.
   引張り破断強度、引張り破断伸び
 発泡ゴム成形体の引張り破断強度および引張り破断伸びを、JIS K-6251に準拠し、JIS3号ダンベル型試験片を切り出し、23℃、引張り速度500mm/分の条件で測定した。得られた発泡ゴム成形体(実施例1~7、比較例1~8)の引張り破断強度の結果を表1,2に示す。また得られた発泡ゴム成形体(実施例8~12、比較例1,3,5,9~12)の引張り破断伸びの結果を表3,4に示す。
Tensile rupture strength, tensile rupture elongation The tensile rupture strength and tensile rupture elongation of foamed rubber molded products were measured in accordance with JIS K-6251, by cutting out a JIS No. 3 dumbbell-shaped test piece at 23 ° C and a tensile speed of 500 mm / min. did. Tables 1 and 2 show the results of the tensile breaking strength of the obtained foamed rubber moldings (Examples 1 to 7, Comparative Examples 1 to 8). Tables 3 and 4 show the results of tensile elongation at break of the obtained foamed rubber moldings (Examples 8 to 12, Comparative Examples 1, 3, 5, and 9 to 12).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、表1~4で使用した原材料の種類を下記に示す。
・酸変性PO:無水マレイン酸変性ポリプロピレン、三井化学社製アドマー HE810
・ポリアミドポリエーテル:ポリアミドポリエーテルエラストマー、宇部興産社製XPAP 9040X1
・ポリオレフィン:ポリプロピレン、プライムポリマー社製S119
・化学発泡剤1:ニトロソ系発泡剤、N,N′-ジニトロソペンタメチレンテトラミン、永和化成工業社製セルラーD、下記の発泡助剤(尿素)と組み合わせて分解開始温度を130℃に調節
・化学発泡剤2:スルホニルヒドラジド系発泡剤、p,p′-オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)、永和化成工業社製ネオセルボンN#5000、分解開始温度が164℃
・発泡助剤:尿素、永和化成工業社製セルペーストK4
The types of raw materials used in Tables 1 to 4 are shown below.
Acid modified PO: maleic anhydride modified polypropylene, Mitsui Chemicals Admer HE810
Polyamide polyether: Polyamide polyether elastomer, Ube Industries, Ltd. XPAP 9040X1
Polyolefin: Polypropylene, Prime Polymer S119
・ Chemical foaming agent 1: Nitroso-based foaming agent, N, N'-dinitrosopentamethylenetetramine, Cella D manufactured by Eiwa Kasei Kogyo Co., Ltd., combined with the following foaming aid (urea) to adjust the decomposition start temperature to 130 ° C Chemical foaming agent 2: sulfonyl hydrazide-based foaming agent, p, p'-oxybis (benzenesulfonyl hydrazide) (OBSH), Neocerbon N # 5000 manufactured by Eiwa Kasei Kogyo Co., Ltd., decomposition start temperature is 164 ° C
-Foaming aid: urea, cell paste K4 manufactured by Eiwa Kasei Kogyo Co., Ltd.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、表5で使用した原材料の種類を下記に示す。
・NR:天然ゴム、PT.NURISA製SIR20
・BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220
・CB:カーボンブラック、東海カーボン社製シーストF
・酸化亜鉛:正同化学工業社製酸化亜鉛3種
・ステアリン酸:千葉脂肪酸社製ビーズステアリン酸桐
・老化防止剤:バイエル社製VULKANOX4020
・オイル:出光興産社製ダイアナプロセスNH-60
・硫黄:鶴見化学工業社製金華印微粉硫黄150mesh
・加硫促進剤:大内新興化学工業社製ノクセラーCZ-G
The types of raw materials used in Table 5 are shown below.
NR: natural rubber, PT. NURISA SIR20
BR: Butadiene rubber, Nippon Zeon BR1220
・ CB: Carbon black, Seast F made by Tokai Carbon
-Zinc oxide: 3 types of zinc oxide manufactured by Shodo Chemical Industry Co., Ltd.-Stearic acid: Bead stearic acid paulownia manufactured by Chiba Fatty Acid Company-Anti-aging agent: VULKANOX 4020 manufactured by Bayer
・ Oil: Idemitsu Kosan Diana Process NH-60
・ Sulfur: Tsurumi Chemical Industry Co., Ltd. Jinhua stamp fine powder sulfur 150 mesh
・ Vulcanization accelerator: Noxeller CZ-G manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
 表1,2の結果から、実施例1~7の発泡ゴム成形体は、平均発泡倍率を高くしながら、未発泡のゴム成形体と略同等の引張り破断強度を確保することを確認した。また表3,4の結果から、実施例8~12の発泡ゴム成形体は、平均発泡倍率を高くしながら、未発泡のゴム成形体と略同等の引張り破断伸びを確保することを確認した。 From the results shown in Tables 1 and 2, it was confirmed that the foamed rubber molded bodies of Examples 1 to 7 had a tensile breaking strength substantially equal to that of the unfoamed rubber molded body while increasing the average foaming ratio. From the results of Tables 3 and 4, it was confirmed that the foamed rubber molded articles of Examples 8 to 12 had a tensile elongation at break substantially equal to that of the unfoamed rubber molded article while increasing the average foaming ratio.
 表1の結果から、比較例1,2の加硫ゴムシートは、発泡していないため引張り破断強度が高いが比重が大きい。比較例3の発泡ゴム成形体は、酸変性ポリオレフィンを配合しないので、引張り破断強度が低下し、発泡倍率も実施例1~3の発泡ゴム成形体に比べ小さい。 From the results of Table 1, the vulcanized rubber sheets of Comparative Examples 1 and 2 have high tensile strength but high specific gravity because they are not foamed. Since the foamed rubber molded article of Comparative Example 3 does not contain acid-modified polyolefin, the tensile strength at break is lowered, and the foaming ratio is also smaller than those of the foamed rubber molded articles of Examples 1 to 3.
 比較例4の発泡ゴム成形体は、酸変性ポリオレフィンの代わりに未変性のポリオレフィンを配合したので引張り破断強度を維持することができない。また実施例1の発泡ゴム成形体に比べ発泡倍率が小さい。 The foamed rubber molded article of Comparative Example 4 cannot maintain the tensile strength at break because it contains unmodified polyolefin instead of acid-modified polyolefin. Further, the expansion ratio is smaller than that of the foamed rubber molded body of Example 1.
 表2の結果から、比較例5の発泡ゴム成形体は、酸変性ポリオレフィンを配合しないので、引張り破断強度が低下し、発泡倍率も実施例6の発泡ゴム成形体に比べ小さい。
 比較例6の発泡ゴム成形体は、酸変性ポリオレフィンの配合量が30質量部を超えるので、破断伸びが低下してしまい、結局破断強度も低下する。
 比較例7の発泡ゴム成形体は、酸変性ポリオレフィンの配合量が酸変性ポリオレフィンの代わりに未変性のポリオレフィンを配合したので引張り破断強度を維持することができない。また実施例6の発泡ゴム成形体に比べ発泡倍率が小さい。
 比較例8の発泡ゴム成形体は、化学発泡剤の配合量が10質量部を超えるので、加硫中にゴムに溶解できないガス分のガス漏れが起こったり、発泡が不規則になり破断強度が低下し、また、発泡倍率も大きくなりすぎるため実用的な発泡体ではなくなる。
From the results of Table 2, since the foamed rubber molded article of Comparative Example 5 does not contain acid-modified polyolefin, the tensile strength at break is lowered, and the foaming ratio is also smaller than that of the foamed rubber molded article of Example 6.
In the foamed rubber molded article of Comparative Example 6, since the blending amount of the acid-modified polyolefin exceeds 30 parts by mass, the elongation at break is lowered, and the breaking strength is also lowered after all.
The foamed rubber molded article of Comparative Example 7 cannot maintain the tensile strength at break because the blend amount of the acid-modified polyolefin is blended with an unmodified polyolefin instead of the acid-modified polyolefin. Further, the expansion ratio is smaller than that of the foamed rubber molded body of Example 6.
In the foamed rubber molded article of Comparative Example 8, the compounding amount of the chemical foaming agent exceeds 10 parts by mass, so that gas leakage that cannot be dissolved in the rubber during vulcanization occurs, foaming becomes irregular, and the breaking strength is increased. In addition, the foaming ratio is too large and the foam is not a practical foam.
 表3の結果から、比較例1,9の加硫ゴムシートは、発泡していないため引張り破断伸びが高いが比重が大きい。比較例3の発泡ゴム成形体は、ポリアミドポリエーテルエラストマーを配合しないので、引張り破断伸びが低下し、発泡倍率も実施例8,9の発泡ゴム成形体に比べ小さい。 From the results of Table 3, the vulcanized rubber sheets of Comparative Examples 1 and 9 have high specific gravity but high tensile elongation at break because they are not foamed. Since the foamed rubber molded article of Comparative Example 3 does not contain a polyamide polyether elastomer, the tensile elongation at break is reduced, and the foaming ratio is smaller than that of the foamed rubber molded articles of Examples 8 and 9.
 比較例10の発泡ゴム成形体は、ポリアミドポリエーテルエラストマーの配合量が30質量部を超えるので、引張り破断伸びが低下する。 In the foamed rubber molded article of Comparative Example 10, the amount of polyamide polyether elastomer exceeds 30 parts by mass, so that the tensile elongation at break decreases.
 表4の結果から、比較例5の発泡ゴム成形体は、ポリアミドポリエーテルエラストマーを配合しないので、引張り破断伸びが低下し、発泡倍率も実施例11の発泡ゴム成形体に比べ小さい。
 比較例11の発泡ゴム成形体は、ポリアミドポリエーテルエラストマーの配合量が30質量部を超えるので、引張り破断伸びが低下する。
 比較例12の発泡ゴム成形体は、化学発泡剤の配合量が10質量部を超えるので、加硫中にゴムに溶解できないガス分のガス漏れが起こったり、発泡が不規則になり破断強度が低下し、また、発泡倍率も大きくなりすぎるため実用的な発泡体ではなくなる。
From the results of Table 4, since the foamed rubber molded article of Comparative Example 5 does not contain a polyamide polyether elastomer, the tensile elongation at break decreases and the foaming ratio is also smaller than that of the foamed rubber molded article of Example 11.
In the foamed rubber molded article of Comparative Example 11, since the blending amount of the polyamide polyether elastomer exceeds 30 parts by mass, the tensile elongation at break decreases.
In the foamed rubber molded body of Comparative Example 12, since the compounding amount of the chemical foaming agent exceeds 10 parts by mass, gas leakage that cannot be dissolved in the rubber during vulcanization occurs, foaming becomes irregular, and the breaking strength is increased. In addition, the foaming ratio is too large and the foam is not a practical foam.
 1   トレッド部
 2   サイドウォール部
 12  トレッドゴム層
 13  サイドゴム層
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 12 Tread rubber layer 13 Side rubber layer

Claims (5)

  1.  ジエン系ゴム100質量部に対し、化学発泡剤を0.1~10質量部、酸変性ポリオレフィンを1~30質量部配合してなることを特徴とするゴム組成物。 A rubber composition comprising 0.1 to 10 parts by weight of a chemical foaming agent and 1 to 30 parts by weight of an acid-modified polyolefin per 100 parts by weight of a diene rubber.
  2.  前記ジエン系ゴム100質量部に対し、ポリアミドポリエーテルエラストマーを1~30質量部配合してなることを特徴とする請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein 1 to 30 parts by mass of a polyamide polyether elastomer is blended with 100 parts by mass of the diene rubber.
  3.  ジエン系ゴム100質量部に対し、化学発泡剤を0.1~10質量部、ポリアミドポリエーテルエラストマーを1~30質量部配合してなることを特徴とするゴム組成物。 A rubber composition comprising 0.1 to 10 parts by mass of a chemical foaming agent and 1 to 30 parts by mass of a polyamide polyether elastomer per 100 parts by mass of a diene rubber.
  4.  前記化学発泡剤が、カルボンアミド系発泡剤、ニトロソ系発泡剤、スルホニルヒドラジン系発泡剤から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれかに記載のゴム組成物。 4. The rubber composition according to claim 1, wherein the chemical foaming agent is at least one selected from a carbonamide foaming agent, a nitroso foaming agent, and a sulfonylhydrazine foaming agent.
  5.  請求項1~4のいずれかに記載のゴム組成物を使用した空気入りタイヤ。 A pneumatic tire using the rubber composition according to any one of claims 1 to 4.
PCT/JP2016/076089 2015-09-07 2016-09-06 Rubber composition WO2017043463A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-175905 2015-09-07
JP2015175905A JP6332206B2 (en) 2015-09-07 2015-09-07 Pneumatic tire
JP2015-175909 2015-09-07
JP2015175909A JP2017052831A (en) 2015-09-07 2015-09-07 Rubber composition

Publications (1)

Publication Number Publication Date
WO2017043463A1 true WO2017043463A1 (en) 2017-03-16

Family

ID=58239802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076089 WO2017043463A1 (en) 2015-09-07 2016-09-06 Rubber composition

Country Status (1)

Country Link
WO (1) WO2017043463A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322261A (en) * 1993-05-10 1994-11-22 Sanyo Chem Ind Ltd Vibration-damping soundproofing sheet
JPH1087900A (en) * 1996-09-10 1998-04-07 Yokohama Rubber Co Ltd:The Rubber composition
JPH1160821A (en) * 1997-08-13 1999-03-05 Bridgestone Corp Production of rubber composition for tire tread and pneumatic tire using it
JP2006089520A (en) * 2004-09-21 2006-04-06 Asahi Kasei Chemicals Corp Foam composed of thermoplastic resin composition
WO2011152188A1 (en) * 2010-06-04 2011-12-08 横浜ゴム株式会社 Pneumatic tire
JP2014037551A (en) * 2008-01-23 2014-02-27 Ube Ind Ltd Rubber composition for side wall and tire using the same
WO2014119644A1 (en) * 2013-01-31 2014-08-07 株式会社ブリヂストン Rubber composition, vulcanized rubber, and tire using rubber composition or vulcanized rubber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322261A (en) * 1993-05-10 1994-11-22 Sanyo Chem Ind Ltd Vibration-damping soundproofing sheet
JPH1087900A (en) * 1996-09-10 1998-04-07 Yokohama Rubber Co Ltd:The Rubber composition
JPH1160821A (en) * 1997-08-13 1999-03-05 Bridgestone Corp Production of rubber composition for tire tread and pneumatic tire using it
JP2006089520A (en) * 2004-09-21 2006-04-06 Asahi Kasei Chemicals Corp Foam composed of thermoplastic resin composition
JP2014037551A (en) * 2008-01-23 2014-02-27 Ube Ind Ltd Rubber composition for side wall and tire using the same
WO2011152188A1 (en) * 2010-06-04 2011-12-08 横浜ゴム株式会社 Pneumatic tire
WO2014119644A1 (en) * 2013-01-31 2014-08-07 株式会社ブリヂストン Rubber composition, vulcanized rubber, and tire using rubber composition or vulcanized rubber

Similar Documents

Publication Publication Date Title
JP5252091B2 (en) Pneumatic tire
JPH10265616A (en) Resin-reinforced elastomer, production thereof, and pneumatic tire produced therefrom
JP5286642B2 (en) Rubber composition for tire and pneumatic tire using the same
AU755105B2 (en) Rubber composition for tire tread and pneumatic tire
JPWO2005005546A1 (en) Rubber composition and pneumatic tire using the same
JP2012213615A (en) Shoe-sole foamed body rubber composition and outsole
CN114402019A (en) Tire comprising a rubber compound containing a propylene-alpha-olefin-diene polymer
CN114867812B (en) Sealant material composition
JP6332206B2 (en) Pneumatic tire
JP2012025816A (en) Method for producing rubber foam for tire
WO2017043463A1 (en) Rubber composition
EP3366720A1 (en) Rubber composition and tire obtained therefrom
WO2014129509A1 (en) Rubber composition, method for producing tire using said rubber composition, and rubbery member for tires which is produced using said rubber composition
JP6372610B2 (en) Pneumatic tire
JP5870507B2 (en) Expandable rubber composition
JP2017052831A (en) Rubber composition
EP3139075A1 (en) Marine hose manufacturing method and marine hose
JP2022025945A (en) Rubber composition and use thereof
JP2005272768A (en) Method for producing rubber composition for tire
JP2006152058A (en) Rubber composition
JP2011116846A (en) Rubber composition for inner liner and pneumatic tire
JP5929070B2 (en) Expandable rubber composition for tire and method for producing foam
JP6977256B2 (en) Pneumatic tires
CN112739777B (en) Inner liner for tire and pneumatic tire
WO2018225566A1 (en) Rubber composition, vulcanized rubber, rubber product, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844324

Country of ref document: EP

Kind code of ref document: A1