WO2017043211A1 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
WO2017043211A1
WO2017043211A1 PCT/JP2016/072256 JP2016072256W WO2017043211A1 WO 2017043211 A1 WO2017043211 A1 WO 2017043211A1 JP 2016072256 W JP2016072256 W JP 2016072256W WO 2017043211 A1 WO2017043211 A1 WO 2017043211A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
stator
injection device
fuel
pipe
Prior art date
Application number
PCT/JP2016/072256
Other languages
French (fr)
Japanese (ja)
Inventor
威生 三宅
清隆 小倉
真士 菅谷
貴敏 飯塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017539058A priority Critical patent/JPWO2017043211A1/en
Publication of WO2017043211A1 publication Critical patent/WO2017043211A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle

Definitions

  • the present invention relates to a fuel injection device.
  • a technique in which a fuel connector is welded so as to communicate with a hollow portion of a hollow disc portion of a core is known (for example, FIG. 6).
  • the core side of the connector pipe has a structure with an expanded end surface so that a sufficient welding allowance can be obtained. This welding is performed over the entire circumference of the joint boundary by laser welding or the like in order to maintain fuel sealability.
  • the fuel connector pipe has a step inside the fuel filter that removes dust and the like mixed in the fuel from the upstream side of the fuel passage and a spring presser that defines the initial load of the return spring. It is.
  • a fuel injection valve that can form such a step at a low cost by pipe drawing is disclosed.
  • the fuel connector pipe can be changed to various fuel joint structures by being configured separately from the core.
  • a technique in which a fuel introduction pipe is provided with flanges at an upper end and a lower end, and a flange on the lower end side is welded to an upper surface of a flange of a fixed core (for example, , See FIG. 1 of Patent Document 2).
  • This fixed core is made of magnetic stainless steel
  • the fuel introduction pipe is formed of a non-magnetic metal member, and the lower part thereof is narrowed by pressing, and a C-ring pin having a C-shaped cross section is formed on the inner periphery of the lower part. Is press-fitted. The load of the return spring is adjusted by adjusting the press-fitting amount of the pin.
  • a fuel filter is attached to the upper end of the fuel introduction pipe. It is disclosed that the fuel introduction pipe and the fixed core are welded in advance.
  • the fuel passage assembly is configured by integrally joining a fuel introduction pipe, a fixed core, and a nozzle holder by welding.
  • a fuel introduction pipe a fixed core
  • a nozzle holder can be thinned, and each element of the fuel passage assembly can be set to a reasonable specification according to the respective needs. Then, mass production can be performed at low cost by pressing each element of the fuel passage assembly described above.
  • a component called a connector pipe or a fuel introduction pipe (hereinafter referred to as an adapter in the present specification) is a separate member from the fixed core, although it is described that welding is performed, there is no description about the strength that can withstand high fuel pressure and the idea of maintaining the same axis as the fixed core.
  • the maximum fuel pressure for regular use may increase to about 35 MP.
  • the fuel injection valve is required to operate up to 45 MPa, for example.
  • An object of the present invention is to provide a fuel injection device capable of ensuring a strength capable of withstanding a high fuel pressure.
  • the present invention provides a fuel injection apparatus comprising: a valve body; a mover that drives the valve body; and a stator that is disposed so as to face the mover. It is composed of a member separate from the stator, and is provided on the upstream side of the stator, and includes a pipe for attaching the fuel injection device to an external device, and the stator and the pipe are directly fixed by press-fitting.
  • 1 is a partial cross-sectional view of a fuel injection device and a fuel pipe according to a first embodiment of the present invention. It is another sectional drawing of a part of fuel injection apparatus and fuel piping by a 1st embodiment of the present invention. It is the graph which showed the relationship between the fuel piping internal diameter and the load by fuel pressure. It is a whole sectional view of a fuel injection device by a comparative example. It is sectional drawing of the component of the fuel-injection apparatus by the 1st Embodiment of this invention. It is an expanded sectional view of the fuel-injection apparatus by the 2nd Embodiment of this invention. It is an expanded sectional view of the fuel injection valve by the modification of the 2nd Embodiment of this invention.
  • FIGS. 1A and 1B are longitudinal sectional views of a fuel injection valve according to a first embodiment of the present invention.
  • the internal combustion engine is provided with a fuel injection control device (not shown) that performs an operation of converting an appropriate fuel amount corresponding to an operating state into an injection time of the fuel injection valve and drives a fuel injection valve that supplies fuel. Yes.
  • the movable part 114 includes a cylindrical movable element 102 and a needle valve 114A (valve element) located at the center of the movable element 102.
  • a gap is provided between the end surface of the fixed core 107 (stator) having a fuel introduction hole for introducing fuel to the center and the end surface of the mover 102.
  • An electromagnetic coil 105 (solenoid) for supplying magnetic flux to the magnetic path including the gap is provided.
  • the fixed core 107 (stator) is arranged to face the mover 102 as shown in FIG. 1A.
  • the mover 102 is driven by the magnetic attraction generated between the end face of the mover 102 and the end face of the fixed core 107 by the magnetic flux passing through the gap to drive the mover 102, and the needle valve 114A is
  • the fuel passage provided in the valve seat portion 39 is opened by being separated from the seat portion 39 (valve seat). In other words, the mover 102 drives the needle valve 114A (valve element).
  • the amount of fuel to be injected is mainly determined by the pressure difference between the fuel pressure and the atmospheric pressure at the injection port of the fuel injection valve, and the time during which the fuel is injected while maintaining the needle valve 114A open. .
  • the magnetic attractive force acting on the mover 102 disappears, the force of the elastic member that urges the needle valve 114A in the closing direction, and the fuel flowing between the needle valve 114A and the fixed core 107.
  • the needle valve 114A and the mover 102 move in the closing direction due to a pressure drop caused by the flow velocity of the valve, and the needle valve 114A is seated on the valve seat portion 39 to close the fuel passage.
  • the fuel is sealed by the contact between the needle valve 114A and the valve seat portion 39, and the fuel is prevented from leaking from the fuel injection valve at an unintended timing.
  • the fuel injection pressure is reduced from the conventional 20 MPa to about 35 MPa, for example. Attempts have been made to reduce the droplet diameter of the injected fuel and promote vaporization.
  • the needle valve 114A and the spring are provided inside the fuel injection valve while reducing the axial load by reducing the diameter of the fuel passage at the connection portion with the fuel pipe 211. 110, it is difficult to increase the wall thickness because it is necessary to secure an inner diameter in which the adjuster 54 can be accommodated. In order to maintain a margin for strength even at high stress, it is effective to select a material with high yield stress and tensile strength.
  • the fixed core 107 of the fuel injection valve constitutes a part of an electromagnetic solenoid, a material having excellent magnetic characteristics is used. Since materials having excellent magnetic properties generally have low yield stress and tensile strength, they are unsuitable for use in the connecting portion with the fuel pipe 211 where the wall thickness is small and high rigidity is required as described above.
  • the fuel injection valve of the present embodiment divides the fixed core, which has been conventionally integrated, into two parts, an adapter 140 and a fixed core 107, and the adapter 140 has yield stress and tensile strength from the fixed core 107.
  • the fixed core 107 is made of a material having excellent magnetic properties, and after two parts are press-fitted in the radial direction, they are fixed by welding all around.
  • a fuel injection valve that does not deteriorate the magnetic characteristics of the fixed core 107 while reducing the axial load by reducing the fuel passage diameter at the connection portion with the fuel pipe 211 in response to an increase in fuel pressure. , And can be manufactured with reduced cost.
  • the adapter 140 (pipe) is composed of a member separate from the fixed core 107 (stator), and is disposed on the upstream side of the fixed core 107 to attach the fuel injection device to an external device (such as a common rail). It is a part of.
  • the fixed core 107 and the adapter 140 are directly fixed by press-fitting.
  • the adapter 140 (pipe) is separated from the fixed core 107 (stator), so that it can be assembled by changing only the adapter 140 when dealing with various shapes of external devices (common rails, etc.). It is possible and the manufacturing cost can be reduced. In addition, by directly press-fitting the fixed core 107 into the adapter 140 without any other parts, the number of parts can be reduced and manufacturing can be performed at low cost.
  • the injection hole cup support 101 includes a small-diameter cylindrical portion 22 having a small diameter and a large-diameter cylindrical portion 23 having a large diameter.
  • An injection hole cup 116 fuel injection hole forming member
  • the guide part 115 has a function of guiding the outer periphery when the valve body tip part 114B provided at the tip of the needle valve 114A constituting the movable part 114 moves up and down in the axial direction of the fuel injection valve.
  • a conical valve seat portion 39 is formed on the downstream side of the guide portion 115.
  • a valve body tip 114B provided at the tip of the needle valve 114A abuts on or separates from the valve seat sheet 39, thereby blocking the flow of fuel or guiding it to the fuel injection hole.
  • a groove is formed on the outer periphery of the nozzle hole cup support 101, and a combustion gas seal member typified by a resin-made chip seal 131 is fitted into the groove.
  • a needle valve guide portion 113 (needle valve guide member) for guiding the needle valve 114A constituting the mover is provided at the inner peripheral lower end portion of the fixed core 107.
  • the needle valve 114A is provided with a guide portion 127.
  • the guide portion 127 is partially provided with a chamfered portion to form a fuel passage.
  • the elongated needle valve 114A has a radial position defined by the needle valve guide 113 and is guided to reciprocate straight in the axial direction. Note that the valve opening direction is an upward direction of the valve shaft, and the valve closing direction is a downward direction of the valve shaft direction.
  • a head 114C having a stepped portion 129 having an outer diameter larger than the diameter of the needle valve 114A is provided at the end opposite to the end where the valve body tip 114B of the needle valve 114A is provided.
  • the upper surface of the stepped portion 129 is provided with a seating surface for the spring 110 that urges the needle valve 114A in the valve closing direction, and holds the spring 110 together with the head portion 114C.
  • the mover portion 114 has a mover 102 provided with a through hole 128 through which the needle valve 114A passes.
  • a zero spring 112 that biases the movable element 102 in the valve opening direction is held between the movable element 102 and the needle valve guide portion 113.
  • the diameter of the through hole 128 is smaller than the diameter of the stepped portion 129 of the head portion 114C, under the biasing force of the spring 110 or the action of gravity that presses the needle valve 114A toward the valve seat of the nozzle hole cup 116.
  • the upper surface of the movable element 102 held by the zero spring 112 is in contact with the lower end surface of the stepped portion 129 of the needle valve 114A, and both are engaged.
  • the two cooperate in response to the upward movement of the mover 102 against the urging force or gravity of the zero spring 112 or the downward movement of the needle valve 114A along the urging force of the zero spring 112 or gravity. It will move.
  • the force for moving the needle valve 114A upward or the force for moving the mover 102 downward acts independently of each other regardless of the biasing force or gravity of the zero spring 112, they may move in different directions. it can.
  • the fixed core 107 is press-fitted into the inner peripheral portion of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 and is welded and joined at the press-fit contact position. A gap formed between the inside of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 and the outside air is sealed by this welding joint.
  • a through hole 107D having a diameter ⁇ Cn is provided as a fuel introduction passage.
  • the adapter 140 and the fixed core are press-fitted by direct contact between the lower surface (downstream surface) of the adapter 140 (pipe) and the upper surface (upstream surface) of the fixed core 107 (stator). 107 is fixed.
  • the lower end surface of the fixed core 107, the upper end surface of the movable element 102, and the collision end surface are plated to improve durability. Even when relatively soft soft magnetic stainless steel is used for the mover 102, durability reliability can be ensured by using hard chromium plating or electroless nickel plating.
  • the lower end of the initial load setting spring 110 is in contact with the spring receiving surface formed on the upper end surface of the stepped portion 129 provided on the head portion 114C of the needle valve 114A, and the other end of the spring 110 is the adjuster. Received at 54. As a result, the spring 110 is held between the head 114 ⁇ / b> C and the adjuster 54. By adjusting the fixing position of the adjuster 54, the initial load by which the spring 110 presses the needle valve 114A against the valve seat portion 39 can be adjusted.
  • a cup-shaped housing 103 is fixed to the outer periphery of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101.
  • a through hole is provided at the center of the bottom of the housing 103, and the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 is inserted through the through hole.
  • a portion of the outer peripheral wall of the housing 103 forms an outer peripheral yoke portion facing the outer peripheral surface of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101.
  • An electromagnetic coil 105 wound in an annular shape is disposed in a cylindrical space formed by the housing 103.
  • the electromagnetic coil 105 is formed by an annular coil bobbin 104 having a U-shaped groove that opens outward in the radial direction, and a copper wire wound in the groove.
  • a rigid conductor 109 is fixed at the start and end of winding of the electromagnetic coil 105 and is drawn out from a through hole provided in the fixed core 107.
  • the conductor 109, the fixed core 107, and the outer periphery of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 are molded by injecting insulating resin from the inner periphery of the upper end opening of the housing 103 and covered with the resin molded body 121. Is called. Thus, a toroidal magnetic path is formed around the electromagnetic coils (104, 105).
  • a plug for supplying power from a high-voltage power source and a battery power source is connected to the connector 43A formed at the tip of the conductor 109, and energization and de-energization are controlled by a controller (not shown). While the electromagnetic coil 105 is energized, a magnetic attractive force is generated between the movable element 102 of the movable element 114 and the fixed core 107 in the magnetic attractive gap by the magnetic flux passing through the magnetic circuit 140 ⁇ / b> M, and the movable element 102 sets the spring 110. It moves upward by being sucked with a force exceeding the load.
  • the mover 102 engages with the needle valve head 114C, moves upward together with the needle valve 114A, and moves until the upper end surface of the mover 102 collides with the lower end surface of the fixed core 107.
  • the valve body front end portion 114B at the front end of the needle valve 114A is separated from the valve seat portion 39, and the fuel passes through the fuel passage and is ejected from the fuel injection hole 117 at the front end of the injection hole cup 116 into the combustion chamber of the internal combustion engine. To do.
  • the elongate needle valve 114A While the valve body front end portion 114B at the front end of the needle valve 114A is separated from the valve seat portion 39 and pulled upward, the elongate needle valve 114A has a needle valve guide portion 113 and a guide portion for the injection hole cup 116. It is guided by the two portions 115 so as to return straight along the valve shaft direction.
  • valve body tip 114B at the tip of the needle valve 114A contacts the valve seat portion 39 and is in the valve closing position, the elongated needle valve 114A is guided only by the needle valve guide 113, and the injection hole cup 116 It is not in contact with the guide part 115.
  • the stepped portion 129 of the head portion 114C comes into contact with the upper surface of the movable element 102 and moves the movable element 102 to the needle valve guide section 113 side by overcoming the force of the zero spring 112.
  • the mover 102 is separate from the needle valve 114A, and therefore continues to move in the direction of the needle valve guide portion 113 due to inertial force.
  • friction due to fluid is generated between the outer periphery of the needle valve 114A and the inner periphery of the mover 102, and the energy of the needle valve 114A that rebounds from the valve seat sheet portion 39 in the valve opening direction again is absorbed.
  • the movable element 102 having a large inertial mass is separated from the needle valve 114A, the rebound energy itself is reduced. Further, since the inertial force of the movable element 102 that has absorbed the rebound energy of the needle valve 114A is reduced by that amount and the repulsive force received after the zero spring 112 is compressed is also reduced, the needle valve is caused by the rebounding phenomenon of the movable element 102 itself. The phenomenon that 114A is moved again in the valve opening direction is less likely to occur. Thus, the rebound of the needle valve 114A is minimized, and the so-called secondary injection phenomenon in which the valve is opened after the energization of the electromagnetic coil 105 is cut off and the fuel is injected randomly is suppressed.
  • FIG. 1A schematically shows the load applied in the axial direction of the fuel injection valve by the fuel pressure. Since the fuel injection valve is connected to the fuel pipe 211 and the fuel is sealed by the O-ring 212, the fuel pipe interior 213 and the fuel injection valve are filled with high-pressure fuel.
  • the fuel pipe sectional area is determined by the fuel pipe inner diameter ⁇ R, and the product of the fuel pipe sectional area and the fuel pressure is defined as a fuel pressure load.
  • the fuel injection valve receives a fuel pressure load in the direction of the arrow 214.
  • the fuel injection valve is in contact with the engine (not shown) through the tapered surface 215 of the housing 103, so that the above-described fuel injection valve is connected via the adapter 140, the fixed core 107, the injection hole cup support 101, and the housing 103.
  • the fuel pressure load is transmitted.
  • FIG. 2 is a graph in which the fuel pressure is calculated with respect to the fuel pipe inner diameter ⁇ R and the fuel pressure.
  • the fuel pipe inner diameter ⁇ R is, for example, ⁇ 13.2 (mm, hereinafter omitted)
  • the maximum fuel pressure is, for example, 20 MPa
  • the fuel pressure load at that time is approximately 2700 N. If the fuel pressure is set to 35 MPa while the fuel pipe inner diameter ⁇ R is set to ⁇ 13.2, the fuel pressure load is about 4700 N.
  • the fuel pressure load is transmitted to the components constituting the fuel injection valve, the stress generated in each component increases as the fuel pressure increases. If the shape and material of the parts constituting the fuel injection valve are not changed, the strength margin is reduced. On the other hand, using a material with high strength leads to an increase in cost.
  • the fuel injection valve can be configured without using a material having a strength higher than that of the conventional fuel injection valve.
  • FIG. 3 shows a cross-sectional view of a fuel injection valve according to a comparative example.
  • the fixed core 407 has an integral structure up to the O-ring mounting portion 450.
  • the fuel pipe inner diameter ⁇ R used when the fuel pressure is 20 MPa is ⁇ 13.2
  • the thickness of the fixed core 407 is thin. A sufficient thickness can be secured in the portions 450 and 451. Therefore, although the material used for the fixed core 407 is excellent in magnetism, sufficient rigidity and strength can be ensured even when a material having a relatively small material strength is used.
  • the fuel pressure is larger than the conventional one, for example, 35 MPa
  • it is necessary to reduce the fuel pressure load by setting the fuel pipe inner diameter ⁇ R to ⁇ 9.4, for example, as shown in FIG.
  • the adapter inner diameter ⁇ Cn needs to be secured to about ⁇ 4.4 in order to pass the regulator 54 and the spring 110 during the assembly process of the fuel injection valve. There is. Therefore, a portion where the thickness cannot be sufficiently increased, such as the O-ring mounting portion 250, is generated. If the O-ring mounting portion 250 is selected with priority given to magnetism in the same manner as the material used for the fixed core 107, there is a possibility that sufficient rigidity and strength cannot be ensured.
  • FIG. 4 is a sectional view of only the adapter 140 and the fixed core 107 constituting the fuel injection valve according to the first embodiment of the present invention. Since the thickness of the O-ring mounting portion 250 is small for the adapter 140, a material giving priority to strength is selected. Because of the selected material giving priority to strength, it can withstand the stress generated at a fuel pressure of 35 MPa. Since the fixed core 107 constitutes a magnetic circuit, there is no thin portion. Therefore, a material having excellent magnetism is selected for the fixed core 107. Since the wall thickness is large, even when a material with low strength is selected, it can withstand the stress generated at a fuel pressure of 35 MPa.
  • the saturation magnetic flux density of the fixed core 107 is composed of a member separate from the fixed core 107 and is directly fixed to the fixed core 107 by press-fitting. Bigger than. Thereby, for example, the manufacturing cost of the adapter 140 can be reduced while ensuring the magnetic characteristics of the fixed core 107.
  • the tensile strength of the fixed core 107 is higher than the tensile strength of the adapter 140 (pipe) that is formed of a member separate from the fixed core 107 and is directly fixed to the fixed core 107 by press-fitting. small. Thereby, for example, even if the shape of the fixed core 107 becomes complicated, the strength of the adapter 140 can be secured and the processing can be easily performed.
  • the mounting portion 501 of the adapter 140 of the fuel injection valve and the mounting portion 502 of the fixed core 107 are contacted in the radial direction, press-fitted, and welded all around at 503 to seal the fuel. Since the attachment part 501 of the adapter 140 and the attachment part 502 part of the fixed core 107 are press-fitted and fixed before welding, the adapter 140 can be prevented from falling due to strain generated during welding.
  • the fixed core 107 (stator) has a mounting portion 502 (stator side mounting portion) on the upstream side
  • the adapter 140 (pipe) has a mounting portion 501 (pipe side mounting portion) on the downstream side.
  • the attachment portion 502 and the attachment portion 501 are press-fitted in direct contact with each other in the radial direction. Accordingly, the mounting portion 502 and the mounting portion 501 can be easily manufactured, and the mounting portion 502 and the mounting portion 501 can be press-fitted and fixed.
  • the downstream end 501a of the attachment portion 501 comes into contact with the upper surface (upstream surface) of the attachment portion 502 (stator side attachment portion), and butt welding is performed at this contact portion.
  • the mounting portion 501 (pipe side mounting portion) is positioned on the outer peripheral side of the mounting portion 502 (stator side mounting portion), and the downstream end 501a of the mounting portion 501 contacts the fixed core 107 in the axial direction. Then, butt welding is performed at the contact portion.
  • the fixed core 107 (stator) is formed with a protruding portion 107a (collar portion) protruding outward from the mounting portion 502 (stator side mounting portion), and the protruding portion 107a and the fixed core 107 are formed. And an integral member.
  • the fixed core 107 is formed by cold forging. Thereby, even if there exists the protrusion part 107a, it becomes possible to reduce a waste of material and to manufacture cheaply.
  • stainless steel such as K-M35 is used for the fixed core 107.
  • This K-M35 has low hardness and can be manufactured by cold forging. Therefore, it can manufacture easily by manufacturing by cold forging including the protrusion part 107a, and it becomes possible to reduce cost.
  • the projecting portion 107a (rib portion) forms a good magnetic path between the projecting portion 107a and the end portion (upper end) of the housing 103 opposite to the projecting portion 107a, thereby reliably configuring the magnetic circuit 140M (see FIG. 1A). can do.
  • the butt weld 503 is welded so as to have a strength that can withstand the fuel pressure load. Butt welding has higher joint efficiency than lap welding performed with conventional fuel injection valves, and strength is improved for the same penetration amount.
  • the conventional fixed core is divided into the adapter 140 and the fixed core 107, and an appropriate material is selected and combined by welding after press-fitting. Can achieve the necessary functions.
  • FIG. 5 shows an example of the structure of the adapter 140 and the fixed core 107 included in the fuel injection valve according to the second embodiment of the present invention.
  • This embodiment is different from the first embodiment in that the mounting portion 502 of the fixed core 107 is disposed outside the mounting portion 501 of the adapter 140. That is, in the first embodiment, the fixed core 107 is press-fitted (inserted) into the adapter 140 as shown in FIG. 1A, whereas in the second embodiment, the adapter 140 is fixed as shown in FIG. Press fit into the core 107.
  • outer diameter portion (outer periphery) of the attachment portion 501 of the adapter 140 and the inner diameter portion (inner periphery) of the attachment portion 502 of the fixed core 107 are press-fitted, and the entire circumference is butt welded at 503 parts.
  • the radial size D2 of the mounting portion 502 is larger than the radial size D1 of the mounting portion 501 (pipe side mounting portion).
  • the fixed core 107 (stator) is a main part of the magnetic circuit, how to make its shape greatly affects the magnetic characteristics of the magnetic circuit. For this reason, the shape of the fixed core 107 may be somewhat complicated. In this case, it is necessary to use a material that can be easily processed. Then, since the strength of the material of the fixed core 107 is weak, securing the strength when assembling becomes a problem.
  • FIG. 6 shows a modification of the structure of the adapter 140 and the fixed core 107 included in the fuel injection valve according to the second embodiment of the present invention.
  • the outer diameter portion (outer periphery) of the attachment portion 501 of the adapter 140 and the inner diameter portion (inner periphery) of the attachment portion 502 of the fixed core 107 are press-fitted, and the entire circumference is butt welded at 503 parts.
  • the attachment portion 501 of the adapter 140 is extended to the downstream side of the adjuster 54, and the fixed core 107 has a minimum size necessary for the magnetic circuit. Since a material with good magnetic properties has a high price per unit mass, the cost can be reduced by making the fixed core 107 small.
  • the spring 110 also moves up and down, but the inner diameter ⁇ An of the adapter 140 is made smaller than the inner diameter ⁇ B of the fixed core 107 so that the movement is not hindered. Also, the outlet corner 601 of the inner diameter ⁇ An of the adapter 140 and the inlet 602 of the inner diameter ⁇ B of the fixed core 107 are tapered or rounded so that the movement of the spring 110 is not hindered.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • the embodiment of the present invention may be the following aspect.
  • a valve body that sits on or separates from the valve seat part, a spring member that biases the valve body toward the valve seat part, a mover that drives the valve body, and a movable element that faces the mover
  • a fuel injection device comprising a stator that is formed, a member separate from the stator, and disposed on the upstream side of the stator, and having an attachment portion (adapter 140) for attaching the fuel injection device to an external device
  • a fuel injection device wherein a stator-side small-diameter portion (attachment portion 502) and an attachment-portion-side small diameter portion (attachment portion 501) are in contact with each other in a radial direction and are press-fitted and butt welded.
  • the attachment portion (adapter 140) has an attachment portion-side small-diameter portion (attachment portion 501) configured with the first radial thickness in the downstream portion, and is fixed.
  • the fuel injection device, wherein the child has a stator-side small-diameter portion (attachment portion 502) having a second radial thickness larger than the first radial thickness on the upstream side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Provided is a fuel injection device wherein strength capable of withstanding high fuel pressure can be ensured. A fuel injection device is provided with: a needle valve 114A (valve body); a mover 102 for driving the needle valve 114A; and a stationary core 107 (stator) disposed facing the mover 102. The fuel injection device is further provided with an adapter 140 (pipe) which is constituted by a separate member from the stationary core 107, is disposed upstream of the stationary core 107, and is used to mount the fuel injection device to an external device. The stationary core 107 and the adapter 140 are directly affixed to each other by press fitting.

Description

燃料噴射装置Fuel injection device
 本発明は、燃料噴射装置に関する。 The present invention relates to a fuel injection device.
 従来技術の一例として、燃料噴射弁(燃料噴射装置)において、コアの中空円盤部分の中空部分と連通するように、燃料コネクタが溶接される技術が知られている(例えば、特許文献1の図6参照)。コネクタパイプのコア側は端面が拡張した構造とし、溶接代を十分取れる形状となっている。この溶接は、燃料シール性を保つため、レーザ溶接等により、接合境界部の全周にわたり行われる。燃料コネクタパイプは、その内側に、燃料通路上流側から燃料中に混入しているゴミなどを除去する燃料フィルタ、リターンスプリングの初期荷重を規定するばね押えが挿入固定されるような段差を持つパイプである。このような段差は、パイプ絞り加工にて安価に形成可能な燃料噴射弁が開示されている。 As an example of the prior art, in a fuel injection valve (fuel injection device), a technique in which a fuel connector is welded so as to communicate with a hollow portion of a hollow disc portion of a core is known (for example, FIG. 6). The core side of the connector pipe has a structure with an expanded end surface so that a sufficient welding allowance can be obtained. This welding is performed over the entire circumference of the joint boundary by laser welding or the like in order to maintain fuel sealability. The fuel connector pipe has a step inside the fuel filter that removes dust and the like mixed in the fuel from the upstream side of the fuel passage and a spring presser that defines the initial load of the return spring. It is. A fuel injection valve that can form such a step at a low cost by pipe drawing is disclosed.
 燃料コネクタパイプは、コアと別体で構成されていることにより、様々な燃料継ぎ手構造に変更することができる。 ∙ The fuel connector pipe can be changed to various fuel joint structures by being configured separately from the core.
 別の従来技術の一例として、燃料噴射弁において、燃料導入パイプは、上端及び下端部にフランジが設けられ、下端側のフランジが固定コアのフランジ上面に溶接される技術が知られている(例えば、特許文献2の図1参照)。この固定コアは、磁性ステンレス鋼であり燃料導入パイプは、非磁性金属部材で成形され、プレス加工によりその下部が細く絞られており、この下部内周に断面がCの字状のCリングピンが圧入されている。このピンの圧入量の調整により戻しばねの荷重が調整される。燃料導入パイプの上端部には燃料フィルタが装着されている。燃料導入パイプと固定コアとは予め溶接されているものが開示されている。 As an example of another conventional technique, in a fuel injection valve, a technique is known in which a fuel introduction pipe is provided with flanges at an upper end and a lower end, and a flange on the lower end side is welded to an upper surface of a flange of a fixed core (for example, , See FIG. 1 of Patent Document 2). This fixed core is made of magnetic stainless steel, and the fuel introduction pipe is formed of a non-magnetic metal member, and the lower part thereof is narrowed by pressing, and a C-ring pin having a C-shaped cross section is formed on the inner periphery of the lower part. Is press-fitted. The load of the return spring is adjusted by adjusting the press-fitting amount of the pin. A fuel filter is attached to the upper end of the fuel introduction pipe. It is disclosed that the fuel introduction pipe and the fixed core are welded in advance.
 燃料通路組立体は、燃料導入パイプと固定コアとノズルホルダーとを溶接により一体結合して構成される。このようにすれば、メインの磁気回路となるべき固定コアについてのみ磁路確保のために比較的肉厚にし、燃料導入パイプについては、磁路とならないので非磁性のパイプで薄肉細径にすることができ、また、ノズルホルダーも薄肉化することができ、燃料通路組立体の各要素をそれぞれの必要性に応じて合理的な仕様に設定することができる。そして、上記した燃料通路組立体の各要素のプレス加工により安価に大量生産することができる。 The fuel passage assembly is configured by integrally joining a fuel introduction pipe, a fixed core, and a nozzle holder by welding. In this way, only the fixed core that should be the main magnetic circuit is made relatively thick to secure the magnetic path, and the fuel introduction pipe is not made a magnetic path, so the non-magnetic pipe is made thin and thin. In addition, the nozzle holder can be thinned, and each element of the fuel passage assembly can be set to a reasonable specification according to the respective needs. Then, mass production can be performed at low cost by pressing each element of the fuel passage assembly described above.
特開2002-130085号公報Japanese Patent Laid-Open No. 2002-130085 特開2002-130071号公報Japanese Patent Laid-Open No. 2002-130071
 特許文献1及び2に記載のいずれの実施形態の燃料噴射弁においても、コネクタパイプまたは燃料導入パイプ(以下本明細書ではアダプタとする)と呼ばれる部品を固定コアとは別部材とし、固定コアと溶接することが述べられているが、高い燃料圧力に耐えられる強度や、固定コアと同軸を保つ工夫については述べられていない。 In the fuel injection valve of any of the embodiments described in Patent Documents 1 and 2, a component called a connector pipe or a fuel introduction pipe (hereinafter referred to as an adapter in the present specification) is a separate member from the fixed core, Although it is described that welding is performed, there is no description about the strength that can withstand high fuel pressure and the idea of maintaining the same axis as the fixed core.
 近年の排出ガス規制では、排気ガス中に含まれる粒子状物質の量、数量を低減する必要があり、ガソリンを使用する燃料噴射弁においても常用の最高燃圧が35MP程度まで大きくなる可能性がある。常用の最高燃圧が35MPaの場合、燃料噴射弁は例えば45MPaまで動作することが要求される。 In recent exhaust gas regulations, it is necessary to reduce the amount and quantity of particulate matter contained in exhaust gas, and even in fuel injection valves that use gasoline, the maximum fuel pressure for regular use may increase to about 35 MP. . When the normal maximum fuel pressure is 35 MPa, the fuel injection valve is required to operate up to 45 MPa, for example.
 すると燃料圧力によってアダプタパイプには従来よりも大きな応力が発生し、強度への余裕度が低下する可能性がある。 Then, a greater stress than that in the conventional case may be generated in the adapter pipe due to the fuel pressure, and the margin for strength may be reduced.
 本発明の目的は、高い燃料圧力に耐えられる強度を確保することができる燃料噴射装置を提供することにある。 An object of the present invention is to provide a fuel injection device capable of ensuring a strength capable of withstanding a high fuel pressure.
 上記目的を達成するために、本発明は、弁体と、前記弁体を駆動させる可動子と、前記可動子に対向するように配置される固定子と、を備えた燃料噴射装置において、前記固定子と別体の部材で構成され、前記固定子の上流側に配置され、前記燃料噴射装置を外部装置に取り付けるためのパイプを備え、前記固定子と前記パイプとが直接、圧入により固定される。 In order to achieve the above object, the present invention provides a fuel injection apparatus comprising: a valve body; a mover that drives the valve body; and a stator that is disposed so as to face the mover. It is composed of a member separate from the stator, and is provided on the upstream side of the stator, and includes a pipe for attaching the fuel injection device to an external device, and the stator and the pipe are directly fixed by press-fitting. The
 本発明によれば、高い燃料圧力に耐えられる強度を確保することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the strength capable of withstanding high fuel pressure can be ensured. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の第1の実施形態による燃料噴射装置と燃料配管の一部の断面図である。1 is a partial cross-sectional view of a fuel injection device and a fuel pipe according to a first embodiment of the present invention. 本発明の第1の実施形態による燃料噴射装置と燃料配管の一部の別の断面図である。It is another sectional drawing of a part of fuel injection apparatus and fuel piping by a 1st embodiment of the present invention. 燃料配管内径と燃料圧力による荷重の関係を示したグラフである。It is the graph which showed the relationship between the fuel piping internal diameter and the load by fuel pressure. 比較例による燃料噴射装置の全体断面図である。It is a whole sectional view of a fuel injection device by a comparative example. 本発明の第1の実施形態による燃料噴射装置の構成部品の断面図である。It is sectional drawing of the component of the fuel-injection apparatus by the 1st Embodiment of this invention. 本発明の第2の実施形態による燃料噴射装置の拡大断面図である。It is an expanded sectional view of the fuel-injection apparatus by the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例による燃料噴射弁の拡大断面図である。It is an expanded sectional view of the fuel injection valve by the modification of the 2nd Embodiment of this invention.
 以下、図面を用いて、本発明の第1~第2の実施形態による燃料噴射弁(燃料噴射装置)の構成及び作用効果について説明する。なお、図面において、機能を分かり易くするために部品の大きさや隙間の大きさは実際の比率よりも誇張されている場合があり、機能を説明するために不要な部品は省略されている場合がある。各実施形態において同一の構成要素には同一の符号が与えられており、重複する説明は省略している。 Hereinafter, the configuration and operational effects of the fuel injection valves (fuel injection devices) according to the first and second embodiments of the present invention will be described with reference to the drawings. In the drawings, the size of the parts and the size of the gap may be exaggerated from the actual ratio to make the function easy to understand, and unnecessary parts may be omitted to explain the function. is there. In each embodiment, the same constituent elements are given the same reference numerals, and redundant descriptions are omitted.
 (第1の実施形態)
 最初に、図1A及び図1Bを用いて、本発明の第1の実施形態による燃料噴射弁の構成の概要を説明する。図1A、図1Bは本発明の第1の実施形態による燃料噴射弁の縦断面図である。
(First embodiment)
First, the outline of the configuration of the fuel injection valve according to the first embodiment of the present invention will be described with reference to FIGS. 1A and 1B. 1A and 1B are longitudinal sectional views of a fuel injection valve according to a first embodiment of the present invention.
 内燃機関には、運転状態に応じた適切な燃料量を燃料噴射弁の噴射時間に変換する演算を行い、燃料を供給する燃料噴射弁を駆動させる燃料噴射制御装置(不図示)が備えられている。 The internal combustion engine is provided with a fuel injection control device (not shown) that performs an operation of converting an appropriate fuel amount corresponding to an operating state into an injection time of the fuel injection valve and drives a fuel injection valve that supplies fuel. Yes.
 図1Aに示すように、燃料噴射弁では、例えば、可動子部114が円筒状の可動子102とこの可動子102の中心部に位置する針弁114A(弁体)とを含んで構成されている。中心部に燃料を導く燃料導入孔を有する固定コア107(固定子)の端面と可動子102の端面との間に隙間が設けられている。この隙間を含む磁気通路に磁束を供給する電磁コイル105(ソレノイド)が備えられている。換言すれば、固定コア107(固定子)は、図1Aに示すように、可動子102に対向するように配置される。 As shown in FIG. 1A, in the fuel injection valve, for example, the movable part 114 includes a cylindrical movable element 102 and a needle valve 114A (valve element) located at the center of the movable element 102. Yes. A gap is provided between the end surface of the fixed core 107 (stator) having a fuel introduction hole for introducing fuel to the center and the end surface of the mover 102. An electromagnetic coil 105 (solenoid) for supplying magnetic flux to the magnetic path including the gap is provided. In other words, the fixed core 107 (stator) is arranged to face the mover 102 as shown in FIG. 1A.
 隙間を通る磁束によって可動子102の端面と固定コア107の端面との間に生起された磁気吸引力で可動子102を固定コア107側に引き付けて可動子102を駆動し、針弁114Aを弁座シート部39(弁座)から引き離して弁座シート部39に設けた燃料通路を開くように構成されている。換言すれば、可動子102は、針弁114A(弁体)を駆動させる。 The mover 102 is driven by the magnetic attraction generated between the end face of the mover 102 and the end face of the fixed core 107 by the magnetic flux passing through the gap to drive the mover 102, and the needle valve 114A is The fuel passage provided in the valve seat portion 39 is opened by being separated from the seat portion 39 (valve seat). In other words, the mover 102 drives the needle valve 114A (valve element).
 噴射される燃料量は、主に燃料の圧力と燃料噴射弁の噴口部の雰囲気圧力との差圧、並びに針弁114Aを開いた状態に維持し、燃料が噴射されている時間により決定される。 The amount of fuel to be injected is mainly determined by the pressure difference between the fuel pressure and the atmospheric pressure at the injection port of the fuel injection valve, and the time during which the fuel is injected while maintaining the needle valve 114A open. .
 電磁コイル105への通電を停止すると、可動子102に作用する磁気吸引力が消失し、針弁114Aを閉鎖方向に付勢する弾性部材の力と、針弁114Aと固定コア107間を流れる燃料の流速によって生じる圧力降下によって針弁114A及び可動子102は閉鎖方向へと移動し、針弁114Aが弁座シート部39に着座することで燃料通路を閉じる。針弁114Aと弁座シート部39の当接により燃料がシールされ、意図しないタイミングで燃料が燃料噴射弁から漏れ出ることを防いでいる。 When energization of the electromagnetic coil 105 is stopped, the magnetic attractive force acting on the mover 102 disappears, the force of the elastic member that urges the needle valve 114A in the closing direction, and the fuel flowing between the needle valve 114A and the fixed core 107. The needle valve 114A and the mover 102 move in the closing direction due to a pressure drop caused by the flow velocity of the valve, and the needle valve 114A is seated on the valve seat portion 39 to close the fuel passage. The fuel is sealed by the contact between the needle valve 114A and the valve seat portion 39, and the fuel is prevented from leaking from the fuel injection valve at an unintended timing.
 近年、燃料消費量低減という観点から、過給機と組み合わせて内燃機関の排気量を小さくし、熱効率の良い運転領域を使用することで車両搭載時の燃料消費量を低減させる試みが実施されている。この試みは特に燃料の気化による吸入空気充填量の向上、耐ノック特性の向上が見込まれる筒内直接噴射式の内燃機関と組み合わせることが有効である。 In recent years, from the viewpoint of reducing fuel consumption, attempts have been made to reduce the amount of fuel consumed when a vehicle is mounted by reducing the displacement of an internal combustion engine in combination with a supercharger and using a heat-efficient operating region. Yes. This attempt is particularly effective when combined with an in-cylinder direct injection internal combustion engine that is expected to improve the intake air filling amount by vaporizing the fuel and to improve the knock resistance.
 また幅広い車種で大幅な燃料消費量低減が求められているため、筒内直接噴射式の内燃機関の需要が増加する一方、回生エネルギの回収といったその他の燃料消費量低減に効果のあるデバイスを自動車に搭載する必要がある。また、総コストを低減する観点から各種デバイスのコスト低減が求められており、筒内直接噴射用の燃料噴射弁へのコスト低減要求も同様に高まっている。 In addition, since a large reduction in fuel consumption is required in a wide range of vehicles, demand for in-cylinder direct injection internal combustion engines increases, while other devices that are effective in reducing fuel consumption, such as recovery of regenerative energy, are used in automobiles. It is necessary to mount on. Moreover, cost reduction of various devices is calculated | required from a viewpoint of reducing total cost, and the cost reduction request | requirement to the fuel injection valve for in-cylinder direct injection is also rising similarly.
 一方で、内燃機関の排出ガスに含まれる成分を一層低減することも求められており、特に粒子状物質の量、数量を低減するという観点から、燃料の噴射圧力を従来の20MPaから例えば35MPa程度まで増加させ、噴射される燃料の液滴粒径を低減、気化を促進させる試みが実施されている。 On the other hand, it is also required to further reduce the components contained in the exhaust gas of the internal combustion engine. In particular, from the viewpoint of reducing the amount and quantity of particulate matter, the fuel injection pressure is reduced from the conventional 20 MPa to about 35 MPa, for example. Attempts have been made to reduce the droplet diameter of the injected fuel and promote vaporization.
 燃料圧力を増加させると燃料配管211、燃料噴射弁の燃料通路面積に比例して軸方向に印加される荷重も増加する。よって高い燃料圧力に耐えられる燃料噴射弁とするには、燃料配管211との接続部の燃料通路径を小さくして軸方向の荷重を低減する必要がある。 When the fuel pressure is increased, the load applied in the axial direction increases in proportion to the fuel pipe 211 and the fuel passage area of the fuel injection valve. Therefore, in order to achieve a fuel injection valve that can withstand a high fuel pressure, it is necessary to reduce the axial load by reducing the diameter of the fuel passage at the connection with the fuel pipe 211.
 同様に燃料圧力を増加させる場合、燃料噴射弁の外部に対して内部の燃料圧力を保持する部材に発生する応力が増加する。高い燃料圧力で発生する応力に対して強度の余裕を持たせるには、厚みを増加させて剛性を確保するか、強度の大きい材料を使用する必要がある。 Similarly, when the fuel pressure is increased, the stress generated in the member that holds the internal fuel pressure with respect to the outside of the fuel injection valve increases. In order to provide a margin of strength against stress generated at high fuel pressure, it is necessary to increase the thickness to ensure rigidity or to use a material having high strength.
 しかしながら前述のとおり軸方向に印加される荷重を減らすには、燃料配管211との接続部の燃料通路径を小さくして軸方向の荷重を低減しつつ、燃料噴射弁内部に針弁114Aやスプリング110、調整子54を納められる内径を確保する必要があるため、肉厚を大きくすることは難しい。高い応力でも強度に対する余裕度を維持するには降伏応力、引っ張り強さの大きい材料を選定することが有効である。 However, as described above, in order to reduce the load applied in the axial direction, the needle valve 114A and the spring are provided inside the fuel injection valve while reducing the axial load by reducing the diameter of the fuel passage at the connection portion with the fuel pipe 211. 110, it is difficult to increase the wall thickness because it is necessary to secure an inner diameter in which the adjuster 54 can be accommodated. In order to maintain a margin for strength even at high stress, it is effective to select a material with high yield stress and tensile strength.
 燃料噴射弁の固定コア107は電磁ソレノイドの一部を構成しているため、磁気特性に優れた材料が使用される。磁気特性に優れた材料は一般に降伏応力、引っ張り強さが小さいため、前述のように肉厚が小さく、高い剛性が要求される燃料配管211との接続部に使用するのは不向きである。 Since the fixed core 107 of the fuel injection valve constitutes a part of an electromagnetic solenoid, a material having excellent magnetic characteristics is used. Since materials having excellent magnetic properties generally have low yield stress and tensile strength, they are unsuitable for use in the connecting portion with the fuel pipe 211 where the wall thickness is small and high rigidity is required as described above.
 詳細は後述するが本実施形態の燃料噴射弁は、従来一体であった固定コアを、アダプタ140と固定コア107の2部品に分割し、アダプタ140には固定コア107より降伏応力、引っ張り強さの大きな材料を使用し、固定コア107には磁気特性の優れた材料を使用し、2部品を径方向で圧入させた後、全周溶接して固定されるようにしたものである。 Although details will be described later, the fuel injection valve of the present embodiment divides the fixed core, which has been conventionally integrated, into two parts, an adapter 140 and a fixed core 107, and the adapter 140 has yield stress and tensile strength from the fixed core 107. The fixed core 107 is made of a material having excellent magnetic properties, and after two parts are press-fitted in the radial direction, they are fixed by welding all around.
 したがって、燃料圧力の増加に対して、燃料配管211との接続部の燃料通路径を小さくして軸方向の荷重を低減しながら、固定コア107の磁気特性を悪化させることのない燃料噴射弁を、コスト上昇を抑えて製作することができる。 Therefore, a fuel injection valve that does not deteriorate the magnetic characteristics of the fixed core 107 while reducing the axial load by reducing the fuel passage diameter at the connection portion with the fuel pipe 211 in response to an increase in fuel pressure. , And can be manufactured with reduced cost.
 換言すれば、アダプタ140(パイプ)は、固定コア107(固定子)と別体の部材で構成され、固定コア107の上流側に配置され、燃料噴射装置を外部装置(コモンレール等)に取り付けるための部品である。ここで、固定コア107とアダプタ140とが直接、圧入により固定される。 In other words, the adapter 140 (pipe) is composed of a member separate from the fixed core 107 (stator), and is disposed on the upstream side of the fixed core 107 to attach the fuel injection device to an external device (such as a common rail). It is a part of. Here, the fixed core 107 and the adapter 140 are directly fixed by press-fitting.
 これにより、アダプタ140(パイプ)を固定コア107(固定子)と別体にすることで、外部装置(コモンレール等)の様々な形状に対応する際にアダプタ140のみを変更することで組み付けることが可能であり、製造コストの低減が可能となる。またアダプタ140に対して他の部品を介することなく固定コア107を直接、圧入することで、部品低減を図り安価に製造が可能である。 As a result, the adapter 140 (pipe) is separated from the fixed core 107 (stator), so that it can be assembled by changing only the adapter 140 when dealing with various shapes of external devices (common rails, etc.). It is possible and the manufacturing cost can be reduced. In addition, by directly press-fitting the fixed core 107 into the adapter 140 without any other parts, the number of parts can be reduced and manufacturing can be performed at low cost.
 (構成の詳細)
 次に、図1Aから図4を用いて、本発明の第1の実施形態による燃料噴射弁の構成を詳細に説明する。
(Configuration details)
Next, the configuration of the fuel injection valve according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1A to 4.
 図1Aにおいて、噴孔カップ支持体101は直径が小さい小径筒状部22と直径が大きい大径筒状部23とを備えている。小径筒状部22の先端部分の内部に、案内部115、燃料噴射孔117を備えた噴孔カップ116(燃料噴射孔形成部材)が挿入または圧入され、噴孔カップ116の先端面の外周の縁部が全周溶接される。これにより、噴孔カップ116は、小径筒状部22に固定される。案内部115は可動子部114を構成する針弁114Aの先端に設けられた弁体先端部114Bが燃料噴射弁の軸方向に上下運動する際に、外周を案内する機能を有する。 1A, the injection hole cup support 101 includes a small-diameter cylindrical portion 22 having a small diameter and a large-diameter cylindrical portion 23 having a large diameter. An injection hole cup 116 (fuel injection hole forming member) having a guide part 115 and a fuel injection hole 117 is inserted or press-fitted into the distal end portion of the small diameter cylindrical part 22, and the outer periphery of the front end surface of the injection hole cup 116 is inserted. The edge is welded all around. Thereby, the nozzle hole cup 116 is fixed to the small diameter cylindrical portion 22. The guide part 115 has a function of guiding the outer periphery when the valve body tip part 114B provided at the tip of the needle valve 114A constituting the movable part 114 moves up and down in the axial direction of the fuel injection valve.
 噴孔カップ116には案内部115の下流側に円錐状の弁座シート部39が形成されている。この弁座シート部39には針弁114Aの先端に設けた弁体先端部114Bが当接または離反することで、燃料の流れを遮断したり燃料噴射孔に導いたりする。噴孔カップ支持体101の外周には溝が形成されており、この溝に樹脂材製のチップシール131に代表される燃焼ガスのシール部材が嵌め込まれている。 In the nozzle hole cup 116, a conical valve seat portion 39 is formed on the downstream side of the guide portion 115. A valve body tip 114B provided at the tip of the needle valve 114A abuts on or separates from the valve seat sheet 39, thereby blocking the flow of fuel or guiding it to the fuel injection hole. A groove is formed on the outer periphery of the nozzle hole cup support 101, and a combustion gas seal member typified by a resin-made chip seal 131 is fitted into the groove.
 固定コア107の内周下端部には可動子を構成する針弁114Aをガイドする針弁案内部113(針弁案内部材)が設けられている。針弁114Aには案内部127が設けられており、図示されていないが案内部127は一部面取り部が設けられ燃料通路を形成している。細長い形状の針弁114Aは針弁案内部113によって径方向の位置を規定され、かつ軸方向にまっすぐに往復運動するようガイドされる。なお、開弁方向は弁軸方向の上、閉弁方向は弁軸方向の下に向かう方向である。 A needle valve guide portion 113 (needle valve guide member) for guiding the needle valve 114A constituting the mover is provided at the inner peripheral lower end portion of the fixed core 107. The needle valve 114A is provided with a guide portion 127. Although not shown, the guide portion 127 is partially provided with a chamfered portion to form a fuel passage. The elongated needle valve 114A has a radial position defined by the needle valve guide 113 and is guided to reciprocate straight in the axial direction. Note that the valve opening direction is an upward direction of the valve shaft, and the valve closing direction is a downward direction of the valve shaft direction.
 針弁114Aの弁体先端部114Bが設けられている端部とは反対の端部には針弁114Aの直径より大きい外径を有する段付き部129を有する頭部114Cが設けられている。段付き部129の上端面には針弁114Aを閉弁方向に付勢するスプリング110の着座面が設けられており、頭部114Cと併せてスプリング110を保持する。 A head 114C having a stepped portion 129 having an outer diameter larger than the diameter of the needle valve 114A is provided at the end opposite to the end where the valve body tip 114B of the needle valve 114A is provided. The upper surface of the stepped portion 129 is provided with a seating surface for the spring 110 that urges the needle valve 114A in the valve closing direction, and holds the spring 110 together with the head portion 114C.
 可動子部114は針弁114Aが貫通する貫通孔128を中央に備えた可動子102を有する。可動子102と針弁案内部113との間に可動子102を開弁方向に付勢するゼロスプリング112が保持されている。 The mover portion 114 has a mover 102 provided with a through hole 128 through which the needle valve 114A passes. A zero spring 112 that biases the movable element 102 in the valve opening direction is held between the movable element 102 and the needle valve guide portion 113.
 頭部114Cの段付き部129の直径より貫通孔128の直径の方が小さいので、針弁114Aを噴孔カップ116の弁座に向かって押付けるスプリング110の付勢力もしくは重力の作用下においては、ゼロスプリング112によって保持された可動子102の上側面と針弁114Aの段付き部129の下端面が当接し、両者は係合している。 Since the diameter of the through hole 128 is smaller than the diameter of the stepped portion 129 of the head portion 114C, under the biasing force of the spring 110 or the action of gravity that presses the needle valve 114A toward the valve seat of the nozzle hole cup 116. The upper surface of the movable element 102 held by the zero spring 112 is in contact with the lower end surface of the stepped portion 129 of the needle valve 114A, and both are engaged.
 これによりゼロスプリング112の付勢力もしくは重力に逆らう上方への可動子102の動きあるいは、ゼロスプリング112の付勢力もしくは重力に沿った下方への針弁114Aの動きに対して両者は協働して動くことになる。しかし、ゼロスプリング112の付勢力もしくは重力に関係なく針弁114Aを上方へ動かす力、あるいは可動子102を下方へ動かす力が独立して両者に作用したとき、両者は別々の方向に動くことができる。 As a result, the two cooperate in response to the upward movement of the mover 102 against the urging force or gravity of the zero spring 112 or the downward movement of the needle valve 114A along the urging force of the zero spring 112 or gravity. It will move. However, when the force for moving the needle valve 114A upward or the force for moving the mover 102 downward acts independently of each other regardless of the biasing force or gravity of the zero spring 112, they may move in different directions. it can.
 噴孔カップ支持体101の大径筒状部23の内周部には固定コア107が圧入され、圧入接触位置で溶接接合されている。この溶接接合により噴孔カップ支持体101の大径筒状部23の内部と外気との間に形成される隙間が密閉される。固定コア107は中心に直径φCnの貫通孔107Dが燃料導入通路として設けられている。 The fixed core 107 is press-fitted into the inner peripheral portion of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 and is welded and joined at the press-fit contact position. A gap formed between the inside of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 and the outside air is sealed by this welding joint. In the center of the fixed core 107, a through hole 107D having a diameter φCn is provided as a fuel introduction passage.
 換言すれば、アダプタ140(パイプ)の下面(下流側の面)と、固定コア107(固定子)の上面(上流側の面)とが直接、接触することで圧入により、アダプタ140と固定コア107が固定される。 In other words, the adapter 140 and the fixed core are press-fitted by direct contact between the lower surface (downstream surface) of the adapter 140 (pipe) and the upper surface (upstream surface) of the fixed core 107 (stator). 107 is fixed.
 固定コア107の下端面や、可動子102の上端面及び衝突端面にはメッキを施して耐久性を向上させることがある。可動子102に比較的軟らかい軟磁性ステンレス鋼を用いた場合においても、硬質クロムメッキや無電解ニッケルメッキを用いることで、耐久信頼性を確保することができる。 In some cases, the lower end surface of the fixed core 107, the upper end surface of the movable element 102, and the collision end surface are plated to improve durability. Even when relatively soft soft magnetic stainless steel is used for the mover 102, durability reliability can be ensured by using hard chromium plating or electroless nickel plating.
 針弁114Aの頭部114Cに設けられた段付き部129の上端面に形成されたスプリング受け面には初期荷重設定用のスプリング110の下端が当接しており、スプリング110の他端が調整子54で受け止められる。これにより、スプリング110が頭部114Cと調整子54の間に保持されている。調整子54の固定位置を調整することでスプリング110が針弁114Aを弁座シート部39に押付ける初期荷重を調整することができる。 The lower end of the initial load setting spring 110 is in contact with the spring receiving surface formed on the upper end surface of the stepped portion 129 provided on the head portion 114C of the needle valve 114A, and the other end of the spring 110 is the adjuster. Received at 54. As a result, the spring 110 is held between the head 114 </ b> C and the adjuster 54. By adjusting the fixing position of the adjuster 54, the initial load by which the spring 110 presses the needle valve 114A against the valve seat portion 39 can be adjusted.
 噴孔カップ支持体101の大径筒状部23の外周にはカップ状のハウジング103が固定されている。ハウジング103の底部には中央に貫通孔が設けられており、貫通孔には噴孔カップ支持体101の大径筒状部23が挿通されている。ハウジング103の外周壁の部分は噴孔カップ支持体101の大径筒状部23の外周面に対面する外周ヨーク部を形成している。 A cup-shaped housing 103 is fixed to the outer periphery of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101. A through hole is provided at the center of the bottom of the housing 103, and the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 is inserted through the through hole. A portion of the outer peripheral wall of the housing 103 forms an outer peripheral yoke portion facing the outer peripheral surface of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101.
 ハウジング103によって形成される筒状空間内には環状を成すように巻回された電磁コイル105が配置されている。電磁コイル105は半径方向外側に向かって開口する断面がU字状の溝を持つ環状のコイルボビン104と、この溝の中に巻きつけられた銅線で形成される。電磁コイル105の巻き始め、巻き終わり端部には剛性のある導体109が固定されており、固定コア107に設けた貫通孔より引き出されている。 An electromagnetic coil 105 wound in an annular shape is disposed in a cylindrical space formed by the housing 103. The electromagnetic coil 105 is formed by an annular coil bobbin 104 having a U-shaped groove that opens outward in the radial direction, and a copper wire wound in the groove. A rigid conductor 109 is fixed at the start and end of winding of the electromagnetic coil 105 and is drawn out from a through hole provided in the fixed core 107.
 この導体109と固定コア107、噴孔カップ支持体101の大径筒状部23の外周は、ハウジング103の上端開口部内周から絶縁樹脂を注入して、モールド成形され、樹脂成形体121で覆われる。かくして、電磁コイル(104、105)の周りにトロイダル状の磁気通路が形成される。 The conductor 109, the fixed core 107, and the outer periphery of the large-diameter cylindrical portion 23 of the nozzle hole cup support 101 are molded by injecting insulating resin from the inner periphery of the upper end opening of the housing 103 and covered with the resin molded body 121. Is called. Thus, a toroidal magnetic path is formed around the electromagnetic coils (104, 105).
 導体109の先端部に形成されたコネクタ43Aには高電圧電源、バッテリ電源より電力を供給するプラグが接続され、図示しないコントローラによって通電、非通電が制御される。電磁コイル105に通電中は、磁気回路140Mを通る磁束によって磁気吸引ギャップにおいて可動子部114の可動子102と固定コア107との間に磁気吸引力が発生し、可動子102がスプリング110の設定荷重を超える力で吸引されることで上方へ動く。 A plug for supplying power from a high-voltage power source and a battery power source is connected to the connector 43A formed at the tip of the conductor 109, and energization and de-energization are controlled by a controller (not shown). While the electromagnetic coil 105 is energized, a magnetic attractive force is generated between the movable element 102 of the movable element 114 and the fixed core 107 in the magnetic attractive gap by the magnetic flux passing through the magnetic circuit 140 </ b> M, and the movable element 102 sets the spring 110. It moves upward by being sucked with a force exceeding the load.
 このとき可動子102は針弁の頭部114Cと係合して、針弁114Aと一緒に上方へ移動し、可動子102の上端面が固定コア107の下端面に衝突するまで移動する。その結果、針弁114Aの先端の弁体先端部114Bが弁座シート部39より離間し、燃料が燃料通路を通り、噴孔カップ116先端にある燃料噴射孔117から内燃機関の燃焼室内に噴出する。 At this time, the mover 102 engages with the needle valve head 114C, moves upward together with the needle valve 114A, and moves until the upper end surface of the mover 102 collides with the lower end surface of the fixed core 107. As a result, the valve body front end portion 114B at the front end of the needle valve 114A is separated from the valve seat portion 39, and the fuel passes through the fuel passage and is ejected from the fuel injection hole 117 at the front end of the injection hole cup 116 into the combustion chamber of the internal combustion engine. To do.
 針弁114Aの先端の弁体先端部114Bが弁座シート部39より離間し、上方に引き上げられている間、細長い形状の針弁114Aは針弁案内部113と、噴孔カップ116の案内部115の2箇所によって弁軸方向に沿ってまっすぐに復動するようガイドされる。 While the valve body front end portion 114B at the front end of the needle valve 114A is separated from the valve seat portion 39 and pulled upward, the elongate needle valve 114A has a needle valve guide portion 113 and a guide portion for the injection hole cup 116. It is guided by the two portions 115 so as to return straight along the valve shaft direction.
 電磁コイル105への通電が断たれると、磁束が消滅し、磁気吸引ギャップにおける磁気吸引力も消滅する。この状態では、針弁114Aの頭部114Cを反対方向に押す初期荷重設定用のスプリング110のばね力がゼロスプリング112の力に打ち勝って可動子部114全体(可動子102、針弁114A)に作用する。その結果、可動子102はスプリング110のばね力によって、弁体先端部114Bが弁座シート部39に接触する閉弁位置に押し戻される。 When the energization of the electromagnetic coil 105 is cut off, the magnetic flux disappears and the magnetic attractive force in the magnetic attractive gap also disappears. In this state, the spring force of the initial load setting spring 110 that pushes the head portion 114C of the needle valve 114A in the opposite direction overcomes the force of the zero spring 112, so that the entire movable element portion 114 (movable element 102, needle valve 114A) is obtained. Works. As a result, the movable element 102 is pushed back by the spring force of the spring 110 to the valve closing position where the valve body tip portion 114B contacts the valve seat portion 39.
 針弁114Aの先端の弁体先端部114Bが弁座シート部39に接触し閉弁位置にある間、細長い形状の針弁114Aは針弁案内部113のみによりガイドされており、噴孔カップ116の案内部115とは接触していない。 While the valve body tip 114B at the tip of the needle valve 114A contacts the valve seat portion 39 and is in the valve closing position, the elongated needle valve 114A is guided only by the needle valve guide 113, and the injection hole cup 116 It is not in contact with the guide part 115.
 このとき、頭部114Cの段付き部129が可動子102の上面に当接して可動子102を、ゼロスプリング112の力に打ち勝って針弁案内部113側へ移動させる。弁体先端部114Bが弁座シート部39に衝突すると、可動子102は針弁114Aと別体であるため、慣性力によって針弁案内部113方向への移動を継続する。このとき針弁114Aの外周と可動子102の内周との間に流体による摩擦が発生し、弁座シート部39から再度開弁方向に跳ね返る針弁114Aのエネルギが吸収される。 At this time, the stepped portion 129 of the head portion 114C comes into contact with the upper surface of the movable element 102 and moves the movable element 102 to the needle valve guide section 113 side by overcoming the force of the zero spring 112. When the valve body front end portion 114B collides with the valve seat portion 39, the mover 102 is separate from the needle valve 114A, and therefore continues to move in the direction of the needle valve guide portion 113 due to inertial force. At this time, friction due to fluid is generated between the outer periphery of the needle valve 114A and the inner periphery of the mover 102, and the energy of the needle valve 114A that rebounds from the valve seat sheet portion 39 in the valve opening direction again is absorbed.
 慣性質量の大きな可動子102が針弁114Aから切り離されているので、跳ね返りエネルギ自体も小さくなる。また、針弁114Aの跳ね返りエネルギを吸収した可動子102は自らの慣性力がその分だけ減少し、ゼロスプリング112を圧縮した後に受ける反発力も小さくなるため、可動子102自体の跳ね返り現象によって針弁114Aが開弁方向に再び動かされる現象は発生し難くなる。かくして、針弁114Aの跳ね返りは最小限に抑えられ、電磁コイル105への通電が断たれた後に弁が開いて、燃料が不作為に噴射される、いわゆる二次噴射現象が抑制される。 Since the movable element 102 having a large inertial mass is separated from the needle valve 114A, the rebound energy itself is reduced. Further, since the inertial force of the movable element 102 that has absorbed the rebound energy of the needle valve 114A is reduced by that amount and the repulsive force received after the zero spring 112 is compressed is also reduced, the needle valve is caused by the rebounding phenomenon of the movable element 102 itself. The phenomenon that 114A is moved again in the valve opening direction is less likely to occur. Thus, the rebound of the needle valve 114A is minimized, and the so-called secondary injection phenomenon in which the valve is opened after the energization of the electromagnetic coil 105 is cut off and the fuel is injected randomly is suppressed.
 図1Aの上部には燃料圧力によって燃料噴射弁の軸方向に印加される荷重を模式的に示している。燃料噴射弁は燃料配管211と接続され、Oリング212によって燃料はシールされているため、燃料配管内部213と燃料噴射弁内部は高圧の燃料で満たされている。燃料配管内径φRによって燃料配管断面積が決まり、燃料配管断面積と燃料圧力の積を燃圧荷重と定義する。 1A schematically shows the load applied in the axial direction of the fuel injection valve by the fuel pressure. Since the fuel injection valve is connected to the fuel pipe 211 and the fuel is sealed by the O-ring 212, the fuel pipe interior 213 and the fuel injection valve are filled with high-pressure fuel. The fuel pipe sectional area is determined by the fuel pipe inner diameter φR, and the product of the fuel pipe sectional area and the fuel pressure is defined as a fuel pressure load.
 燃料配管211は図示していないエンジンに固定されているため、燃料噴射弁は矢印214の方向に燃圧荷重を受ける。燃料噴射弁は例えばハウジング103のテーパ面215で図示していないエンジンと接触しているため、燃料噴射弁を構成するアダプタ140、固定コア107、噴孔カップ支持体101、ハウジング103を介して前述の燃圧荷重が伝達する。 Since the fuel pipe 211 is fixed to an engine (not shown), the fuel injection valve receives a fuel pressure load in the direction of the arrow 214. For example, the fuel injection valve is in contact with the engine (not shown) through the tapered surface 215 of the housing 103, so that the above-described fuel injection valve is connected via the adapter 140, the fixed core 107, the injection hole cup support 101, and the housing 103. The fuel pressure load is transmitted.
 図2は燃料配管内径φRと燃料圧力に対する燃圧荷重を算出したグラフである。従来、燃料配管内径φRは例えばφ13.2(mm、以下単位を省略する)、最高燃料圧力は例えば20MPaで使用されており、その際の燃圧荷重はおよそ2700Nである。燃料配管内径φRをφ13.2にしたまま、燃料圧力を35MPaにすると燃圧荷重はおよそ4700Nとなる。前述の通り、燃料噴射弁を構成する部品には、燃圧荷重が伝達するため、燃圧の増加に伴い各部品に発生する応力は増加する。燃料噴射弁を構成する部品の形状、材料を変更しない場合、強度の余裕度が減少する。一方で強度の大きい材料を使用することはコストの増加につながる。 FIG. 2 is a graph in which the fuel pressure is calculated with respect to the fuel pipe inner diameter φR and the fuel pressure. Conventionally, the fuel pipe inner diameter φR is, for example, φ13.2 (mm, hereinafter omitted), the maximum fuel pressure is, for example, 20 MPa, and the fuel pressure load at that time is approximately 2700 N. If the fuel pressure is set to 35 MPa while the fuel pipe inner diameter φR is set to φ13.2, the fuel pressure load is about 4700 N. As described above, since the fuel pressure load is transmitted to the components constituting the fuel injection valve, the stress generated in each component increases as the fuel pressure increases. If the shape and material of the parts constituting the fuel injection valve are not changed, the strength margin is reduced. On the other hand, using a material with high strength leads to an increase in cost.
 燃料配管内径φRを例えばφ9.4とすると、燃料圧力35MPaでも燃圧荷重をおおよそ2400Nに抑えることができる。よって従来の燃料噴射弁と比較して強度の大きい材料を使用することなく燃料噴射弁を構成できる。 If the fuel pipe inner diameter φR is, for example, φ9.4, the fuel pressure load can be suppressed to approximately 2400 N even at a fuel pressure of 35 MPa. Therefore, the fuel injection valve can be configured without using a material having a strength higher than that of the conventional fuel injection valve.
 図3は、比較例による燃料噴射弁の断面図を示している。固定コア407はOリング取付部450まで一体の構造となっている。燃料圧力が20MPaの際に使用されている燃料配管内径φRがφ13.2の場合、スプリング410や調整子452が通過できる固定コア407の内径φCoとする場合でも、固定コア407の厚さが薄い部分450、451において十分な厚さを確保できる。よって固定コア407に使用する材料は磁性が優れているが、材料強度は比較的小さい材料を使用した場合でも十分な剛性、強度を確保することができる。 FIG. 3 shows a cross-sectional view of a fuel injection valve according to a comparative example. The fixed core 407 has an integral structure up to the O-ring mounting portion 450. When the fuel pipe inner diameter φR used when the fuel pressure is 20 MPa is φ13.2, even when the inner diameter φCo of the fixed core 407 through which the spring 410 and the regulator 452 can pass is set, the thickness of the fixed core 407 is thin. A sufficient thickness can be secured in the portions 450 and 451. Therefore, although the material used for the fixed core 407 is excellent in magnetism, sufficient rigidity and strength can be ensured even when a material having a relatively small material strength is used.
 一方、燃料圧力が従来より大きい、例えば35MPaで使用される際には、図2で示したように燃料配管内径φRを例えばφ9.4とし、燃圧荷重を低減する必要がある。図1Aに示す燃料配管内径φRをφ9.4とする場合でも、燃料噴射弁の組立工程中に調整子54やスプリング110を通過させるために、例えばアダプタ内径φCnをφ4.4程度の確保する必要がある。よってOリング取付部250のように厚さを十分に大きくできない部位が生じる。Oリング取付部250も固定コア107に使用する材料と同様に磁性を優先して選択した場合、十分な剛性、強度を確保することができない可能性がある。 On the other hand, when the fuel pressure is larger than the conventional one, for example, 35 MPa, it is necessary to reduce the fuel pressure load by setting the fuel pipe inner diameter φR to φ9.4, for example, as shown in FIG. Even when the fuel pipe inner diameter φR shown in FIG. 1A is set to φ9.4, for example, the adapter inner diameter φCn needs to be secured to about φ4.4 in order to pass the regulator 54 and the spring 110 during the assembly process of the fuel injection valve. There is. Therefore, a portion where the thickness cannot be sufficiently increased, such as the O-ring mounting portion 250, is generated. If the O-ring mounting portion 250 is selected with priority given to magnetism in the same manner as the material used for the fixed core 107, there is a possibility that sufficient rigidity and strength cannot be ensured.
 図4は本発明の第1の実施形態による燃料噴射弁を構成するアダプタ140と固定コア107のみの断面図である。アダプタ140はOリング取付部250の厚さが小さいため、強度優先の材料を選定する。強度を優先した選択した材料の為、燃料圧力35MPaで発生する応力に耐えられる。固定コア107は磁気回路を構成するため薄肉部はない。よって固定コア107には磁性に優れる材料を選定する。肉厚が大きいため強度の小さい材料を選定しても燃料圧力35MPaで発生する応力に耐えられる。 FIG. 4 is a sectional view of only the adapter 140 and the fixed core 107 constituting the fuel injection valve according to the first embodiment of the present invention. Since the thickness of the O-ring mounting portion 250 is small for the adapter 140, a material giving priority to strength is selected. Because of the selected material giving priority to strength, it can withstand the stress generated at a fuel pressure of 35 MPa. Since the fixed core 107 constitutes a magnetic circuit, there is no thin portion. Therefore, a material having excellent magnetism is selected for the fixed core 107. Since the wall thickness is large, even when a material with low strength is selected, it can withstand the stress generated at a fuel pressure of 35 MPa.
 換言すれば、固定コア107(固定子)の飽和磁束密度は、固定コア107と別体の部材で構成され、かつ固定コア107に直接、圧入により固定されるアダプタ140(パイプ)の飽和磁束密度よりも大きい。これにより、例えば、固定コア107の磁気特性を確保しつつ、アダプタ140の製造コストを低減することができる。 In other words, the saturation magnetic flux density of the fixed core 107 (stator) is composed of a member separate from the fixed core 107 and is directly fixed to the fixed core 107 by press-fitting. Bigger than. Thereby, for example, the manufacturing cost of the adapter 140 can be reduced while ensuring the magnetic characteristics of the fixed core 107.
 ここで、固定コア107(固定子)の引っ張り強さは、固定コア107と別体の部材で構成され、かつ固定コア107に直接、圧入により固定されるアダプタ140(パイプ)の引っ張り強さよりも小さい。これにより、例えば、アダプタ140の強度を確保しつつ、固定コア107の形状が複雑になったとしてもその加工を容易に行うことが可能となる。 Here, the tensile strength of the fixed core 107 (stator) is higher than the tensile strength of the adapter 140 (pipe) that is formed of a member separate from the fixed core 107 and is directly fixed to the fixed core 107 by press-fitting. small. Thereby, for example, even if the shape of the fixed core 107 becomes complicated, the strength of the adapter 140 can be secured and the processing can be easily performed.
 燃料噴射弁のアダプタ140の取付部501と固定コア107の取付部502部は径方向で接触し、圧入され、燃料を封止するために503部で全周突き合わせ溶接されている。溶接前にアダプタ140の取付部501と固定コア107の取付部502部が圧入固定されているため、溶接時に生じるひずみによって生じるアダプタ140の倒れを抑制できる。 The mounting portion 501 of the adapter 140 of the fuel injection valve and the mounting portion 502 of the fixed core 107 are contacted in the radial direction, press-fitted, and welded all around at 503 to seal the fuel. Since the attachment part 501 of the adapter 140 and the attachment part 502 part of the fixed core 107 are press-fitted and fixed before welding, the adapter 140 can be prevented from falling due to strain generated during welding.
 換言すれば、固定コア107(固定子)は上流側に取付部502(固定子側取付部)を有するとともに、アダプタ140(パイプ)は下流側に取付部501(パイプ側取付部)を有する。取付部502及び取付部501が径方向において直接、接触して圧入される。これにより、取付部502及び取付部501として容易に製造可能とし、また取付部502及び取付部501により圧入固定が可能となる。 In other words, the fixed core 107 (stator) has a mounting portion 502 (stator side mounting portion) on the upstream side, and the adapter 140 (pipe) has a mounting portion 501 (pipe side mounting portion) on the downstream side. The attachment portion 502 and the attachment portion 501 are press-fitted in direct contact with each other in the radial direction. Accordingly, the mounting portion 502 and the mounting portion 501 can be easily manufactured, and the mounting portion 502 and the mounting portion 501 can be press-fitted and fixed.
 また、取付部501(パイプ側取付部)の下流側先端部501aが取付部502(固定子側取付部)の上面(上流側の面)と接触して、この接触部において突き合わせ溶接がなされる。詳細には、取付部501(パイプ側取付部)が取付部502(固定子側取付部)よりも外周側に位置し、取付部501の下流側先端部501aが軸方向に固定コア107に接触し、該接触部において突合せ溶接される。 Further, the downstream end 501a of the attachment portion 501 (pipe side attachment portion) comes into contact with the upper surface (upstream surface) of the attachment portion 502 (stator side attachment portion), and butt welding is performed at this contact portion. . Specifically, the mounting portion 501 (pipe side mounting portion) is positioned on the outer peripheral side of the mounting portion 502 (stator side mounting portion), and the downstream end 501a of the mounting portion 501 contacts the fixed core 107 in the axial direction. Then, butt welding is performed at the contact portion.
 これにより、取付部502及び取付部501の突き合わせ溶接を可能とし、安価にかつ強固に双方を製造、固定することができる。アダプタ140に使用する材料は固定コア107よりも強度が大きいので、応力の高い外周側に配置するのが理にかなっている。また強度が大きい材料だと薄くでき、溶接もし易い。 This makes it possible to butt-weld the attachment portion 502 and the attachment portion 501, and to manufacture and fix both of them inexpensively and firmly. Since the material used for the adapter 140 is stronger than the fixed core 107, it makes sense to arrange it on the outer peripheral side where stress is high. A material with high strength can be made thin and easy to weld.
 ここで、固定コア107(固定子)は、取付部502(固定子側取付部)よりも下流側に外周側に突出する突出部107a(つば部)が形成され、突出部107aと固定コア107と一体の部材で形成される。また、固定コア107は冷間鍛造により形成される。これにより、突出部107aがあったとしても材料の無駄を少なくして安く製造することが可能となる。 Here, the fixed core 107 (stator) is formed with a protruding portion 107a (collar portion) protruding outward from the mounting portion 502 (stator side mounting portion), and the protruding portion 107a and the fixed core 107 are formed. And an integral member. The fixed core 107 is formed by cold forging. Thereby, even if there exists the protrusion part 107a, it becomes possible to reduce a waste of material and to manufacture cheaply.
 詳細には、例えば、固定コア107にK-M35等のステンレス鋼を採用する。このK-M35は硬度が低く、冷間鍛造にて製造することが可能である。そのため突出部107aを含めて冷間鍛造で製造することで容易に製造でき、かつコストを低減することが可能になる。 In detail, for example, stainless steel such as K-M35 is used for the fixed core 107. This K-M35 has low hardness and can be manufactured by cold forging. Therefore, it can manufacture easily by manufacturing by cold forging including the protrusion part 107a, and it becomes possible to reduce cost.
 なお、仮にもっと硬い部材で冷間鍛造が採用できないものを固定コア107に採用すると、突出部107a(つば部)を含めて機械加工で削り出す必要がある。これは部材の無駄が大きく、コストのデメリットが大きい。また突出部107aを別体にして溶接することも考えられるが、これは位置決めの難しさ、また溶接による生産コストの増加につながる。 It should be noted that if a harder material that cannot be used for cold forging is adopted for the fixed core 107, it is necessary to cut it out by machining including the protruding portion 107a (the collar portion). This is a waste of members and has a great cost demerit. Although it is conceivable to weld the protrusion 107a separately, this leads to difficulty in positioning and an increase in production cost due to welding.
 ちなみに、突出部107a(つば部)により、突出部107aとこれに対向するハウジング103の端部(上端)の間で磁路が良好に形成され、磁気回路140M(図1A参照)を確実に構成することができる。 Incidentally, the projecting portion 107a (rib portion) forms a good magnetic path between the projecting portion 107a and the end portion (upper end) of the housing 103 opposite to the projecting portion 107a, thereby reliably configuring the magnetic circuit 140M (see FIG. 1A). can do.
 図1Bに示すように燃料噴射弁が燃料配管211にプレート251を介して接続される場合、燃料噴射弁内部の燃料圧力による燃圧荷重によって、固定コア107はアダプタ140に対して下流側に引っ張られる。よって突き合わせ溶接部503はその燃圧荷重にも耐えられる強度を有するように溶接される。突合せ溶接は従来の燃料噴射弁で実施されている重ね溶接に対し継ぎ手効率が高く、同じ溶け込み量に対して強度は向上する。 As shown in FIG. 1B, when the fuel injection valve is connected to the fuel pipe 211 via the plate 251, the fixed core 107 is pulled downstream with respect to the adapter 140 due to the fuel pressure load caused by the fuel pressure inside the fuel injection valve. . Therefore, the butt weld 503 is welded so as to have a strength that can withstand the fuel pressure load. Butt welding has higher joint efficiency than lap welding performed with conventional fuel injection valves, and strength is improved for the same penetration amount.
 以上より高燃圧化に伴い燃料配管内径φRが縮小される場合でも、従来の固定コアをアダプタ140と固定コア107に分割し、適切な材料を選定し、圧入の後溶接することによって結合することで必要な機能を達成できる。 As described above, even when the fuel pipe inner diameter φR is reduced as the fuel pressure increases, the conventional fixed core is divided into the adapter 140 and the fixed core 107, and an appropriate material is selected and combined by welding after press-fitting. Can achieve the necessary functions.
 本実施形態によれば、高い燃料圧力に耐えられる強度を確保することができる。また、固定コア107とアダプタ140とが圧入により固定された後、突き合わせ溶接がなされるため、アダプタ140と固定コア107の同軸を保つことが容易である。 According to this embodiment, it is possible to ensure the strength that can withstand high fuel pressure. Further, since the butt welding is performed after the fixed core 107 and the adapter 140 are fixed by press-fitting, it is easy to keep the adapter 140 and the fixed core 107 coaxial.
 (第2の実施形態)
 図5は本発明の第2の実施形態による燃料噴射弁に含まれるアダプタ140と固定コア107の構造の一例を示している。
(Second Embodiment)
FIG. 5 shows an example of the structure of the adapter 140 and the fixed core 107 included in the fuel injection valve according to the second embodiment of the present invention.
 本実施形態では、第1の実施形態と比較して、固定コア107の取付部502がアダプタ140の取付部501の外側に配置される点が異なる。すなわち、第1の実施形態では、図1Aに示すように、固定コア107をアダプタ140に圧入(挿入)するのに対し、第2の実施形態では、図5に示すように、アダプタ140を固定コア107に圧入する。 This embodiment is different from the first embodiment in that the mounting portion 502 of the fixed core 107 is disposed outside the mounting portion 501 of the adapter 140. That is, in the first embodiment, the fixed core 107 is press-fitted (inserted) into the adapter 140 as shown in FIG. 1A, whereas in the second embodiment, the adapter 140 is fixed as shown in FIG. Press fit into the core 107.
 アダプタ140の取付部501の外径部(外周)と、固定コア107の取付部502の内径部(内周)で圧入され、503部で全周突き合わせ溶接されている。 The outer diameter portion (outer periphery) of the attachment portion 501 of the adapter 140 and the inner diameter portion (inner periphery) of the attachment portion 502 of the fixed core 107 are press-fitted, and the entire circumference is butt welded at 503 parts.
 ここで、取付部502(固定子側取付部)の径方向大きさD2は取付部501(パイプ側取付部)の径方向大きさD1よりも大きくなる。 Here, the radial size D2 of the mounting portion 502 (stator side mounting portion) is larger than the radial size D1 of the mounting portion 501 (pipe side mounting portion).
 固定コア107(固定子)は磁気回路の主要部品であるため、その形状をいかに作るかが磁気回路の磁気特性に大きく影響する。そのため、固定コア107の形状が多少、複雑になることもあり、その場合には加工のし易い素材を用いる必要がある。そうすると固定コア107の素材の強度としては弱いものとなるため、組み立てる際の強度確保が課題となる。 Since the fixed core 107 (stator) is a main part of the magnetic circuit, how to make its shape greatly affects the magnetic characteristics of the magnetic circuit. For this reason, the shape of the fixed core 107 may be somewhat complicated. In this case, it is necessary to use a material that can be easily processed. Then, since the strength of the material of the fixed core 107 is weak, securing the strength when assembling becomes a problem.
 この点、本実施形態の構成を採用することで、アダプタ140を固定コア107に圧入した場合においても取付部501の径方向大きさD1を大きくする(厚くする)ことで組み立てる際の強度を確保することが可能となる。 In this respect, by adopting the configuration of the present embodiment, even when the adapter 140 is press-fitted into the fixed core 107, the strength in assembling is ensured by increasing (thickening) the radial size D1 of the mounting portion 501. It becomes possible to do.
 (変形例)
 図6は本発明の第2の実施形態による燃料噴射弁に含まれるアダプタ140と固定コア107の構造の変形例を示している。
(Modification)
FIG. 6 shows a modification of the structure of the adapter 140 and the fixed core 107 included in the fuel injection valve according to the second embodiment of the present invention.
 図5と同様にアダプタ140の取付部501の外径部(外周)と、固定コア107の取付部502の内径部(内周)で圧入され、503部で全周突き合わせ溶接されている。 As in FIG. 5, the outer diameter portion (outer periphery) of the attachment portion 501 of the adapter 140 and the inner diameter portion (inner periphery) of the attachment portion 502 of the fixed core 107 are press-fitted, and the entire circumference is butt welded at 503 parts.
 本変形例では、アダプタ140の取付部501は調整子54よりも下流側まで延長され、固定コア107は磁気回路に必要な最小の大きさとなる。磁気特性の良い材料は単位質量当たりの価格が高いため、固定コア107を小さくすることでコストを低減できる。 In this modification, the attachment portion 501 of the adapter 140 is extended to the downstream side of the adjuster 54, and the fixed core 107 has a minimum size necessary for the magnetic circuit. Since a material with good magnetic properties has a high price per unit mass, the cost can be reduced by making the fixed core 107 small.
 針弁114Aの上下運動に伴ってスプリング110も上下に運動するが、その運動が妨げられないようにアダプタ140の内径φAnは固定コア107の内径φBよりも小さくする。またアダプタ140の内径φAnの出口の角601と固定コア107の内径φBの入り口602はスプリング110の運動が妨げられないようにテーパまたはR形状とする。 As the needle valve 114A moves up and down, the spring 110 also moves up and down, but the inner diameter φAn of the adapter 140 is made smaller than the inner diameter φB of the fixed core 107 so that the movement is not hindered. Also, the outlet corner 601 of the inner diameter φAn of the adapter 140 and the inlet 602 of the inner diameter φB of the fixed core 107 are tapered or rounded so that the movement of the spring 110 is not hindered.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本発明の実施形態は、以下の態様であってもよい。 The embodiment of the present invention may be the following aspect.
 (1)弁シート部に着座、又は離座する弁体と、弁体を弁シート部の側に付勢するバネ部材と、弁体を駆動させる可動子と、可動子に対向する様に配置される固定子と、固定子と別体の部材で構成され、固定子の上流側に配置され、燃料噴射装置を外部装置に取り付けるための取り付け部(アダプタ140)を備えた燃料噴射装置において、固定子側小径部(取付部502)及び取り付け部側小径部(取付部501)が径方向で接触し、圧入され突き合わせ溶接されていることを特徴とする燃料噴射装置。 (1) A valve body that sits on or separates from the valve seat part, a spring member that biases the valve body toward the valve seat part, a mover that drives the valve body, and a movable element that faces the mover In a fuel injection device comprising a stator that is formed, a member separate from the stator, and disposed on the upstream side of the stator, and having an attachment portion (adapter 140) for attaching the fuel injection device to an external device, A fuel injection device, wherein a stator-side small-diameter portion (attachment portion 502) and an attachment-portion-side small diameter portion (attachment portion 501) are in contact with each other in a radial direction and are press-fitted and butt welded.
 (2)(1)に記載の燃料噴射弁において、取り付け部(アダプタ140)が、下流部に第1の径方向厚みで構成される取り付け部側小径部(取付部501)を有すると共に、固定子が、上流側に第1の径方向厚みよりも厚い第2の径方向厚みで構成される固定子側小径部(取付部502)を有していることを特徴とする燃料噴射装置。 (2) In the fuel injection valve according to (1), the attachment portion (adapter 140) has an attachment portion-side small-diameter portion (attachment portion 501) configured with the first radial thickness in the downstream portion, and is fixed. The fuel injection device, wherein the child has a stator-side small-diameter portion (attachment portion 502) having a second radial thickness larger than the first radial thickness on the upstream side.
22…噴孔カップ支持体の小径筒状部
23…噴孔カップ支持体の大径筒状部
39…弁座シート部(シート部材のシート部)
43A…コネクタ
101…噴孔カップ支持体
102…可動子
103…ハウジング
104…コイルボビン
105…電磁コイル(ソレノイド)
107…固定コア(固定子)
107D…固定子貫通孔(燃料通路)
109…導体
110…スプリング
112…ゼロスプリング
113…針弁案内部(肩部)
114…可動子部
114A…針弁
114B…弁体先端部
114C…針弁の頭部(スプリングガイド用突起)
115…案内部
116…噴孔カップ
117…燃料噴射孔
121…樹脂成形体
126…燃料通路
127…案内部
128…貫通孔
136…隙間
140…アダプタ(パイプ)
201…弁体先端の被案内部
202…噴孔カップの案内部
203…弁体先端の弁体シート部
301…噴孔カップの軸
302…弁体の軸
303…球面直径の中心
401…噴孔カップの上流部
402…隙間
22 ... Small diameter cylindrical portion 23 of the injection hole cup support ... Large diameter cylindrical portion 39 of the injection hole cup support ... Valve seat portion (seat portion of the seat member)
43A ... Connector 101 ... Injection hole cup support 102 ... Movable element 103 ... Housing 104 ... Coil bobbin 105 ... Electromagnetic coil (solenoid)
107: Fixed core (stator)
107D ... Stator through hole (fuel passage)
109 ... conductor 110 ... spring 112 ... zero spring 113 ... needle valve guide (shoulder)
114 ... Movable part 114A ... Needle valve 114B ... Valve body tip 114C ... Head of needle valve (protrusion for spring guide)
DESCRIPTION OF SYMBOLS 115 ... Guide part 116 ... Injection hole cup 117 ... Fuel injection hole 121 ... Resin molding 126 ... Fuel passage 127 ... Guide part 128 ... Through-hole 136 ... Gap 140 ... Adapter (pipe)
201 ... Guided portion 202 at the tip of the valve body ... Guide portion 203 of the nozzle hole cup ... Valve body sheet portion 301 at the tip of the valve body ... Shaft 302 of the nozzle hole ... Shaft 303 of the valve body ... Center of spherical diameter 401 ... Injection hole Upstream part 402 of cup: Clearance

Claims (10)

  1.  弁体と、
     前記弁体を駆動させる可動子と、
     前記可動子に対向するように配置される固定子と、を備えた燃料噴射装置において、
     前記固定子と別体の部材で構成され、前記固定子の上流側に配置され、前記燃料噴射装置を外部装置に取り付けるためのパイプを備え、
     前記固定子と前記パイプとが直接、圧入により固定されることを特徴とする燃料噴射装置。
    The disc,
    A mover for driving the valve body;
    In a fuel injection device comprising: a stator arranged to face the mover;
    It is composed of a member separate from the stator, and is disposed on the upstream side of the stator, and includes a pipe for attaching the fuel injection device to an external device,
    The fuel injection device, wherein the stator and the pipe are directly fixed by press-fitting.
  2.  請求項1に記載の燃料噴射装置において、
     前記パイプの下流側の面と、前記固定子の上流側の面とが直接、接触することで圧入により固定されることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 1,
    The fuel injection device, wherein the downstream surface of the pipe and the upstream surface of the stator are directly contacted to be fixed by press-fitting.
  3.  請求項1に記載の燃料噴射装置において、
     前記固定子は上流側に固定子側取付部を有するとともに、前記パイプは下流側にパイプ側取付部を有し、
     前記固定子側取付部及び前記パイプ側取付部が径方向において直接、接触して圧入されることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 1,
    The stator has a stator side mounting portion on the upstream side, and the pipe has a pipe side mounting portion on the downstream side,
    The fuel injection device, wherein the stator side mounting portion and the pipe side mounting portion are directly contacted and press-fitted in a radial direction.
  4.  請求項3に記載の燃料噴射装置において、
     前記パイプ側取付部の下流側先端部が前記固定子側取付部の上流側の面と接触して、この接触部において突き合わせ溶接がなされることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 3, wherein
    The fuel injection device according to claim 1, wherein a downstream tip portion of the pipe-side attachment portion contacts an upstream surface of the stator-side attachment portion, and butt welding is performed at the contact portion.
  5.  請求項3又は4に記載の燃料噴射装置において、
     前記固定子側取付部の径方向大きさは前記パイプ側取付部の径方向大きさよりも大きくなるように構成されることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 3 or 4,
    The fuel injection device, wherein a radial size of the stator side mounting portion is configured to be larger than a radial size of the pipe side mounting portion.
  6.  請求項3に記載の燃料噴射装置において、
     前記パイプ側取付部が前記固定子側取付部よりも外周側に位置し、前記パイプ側取付部の下流側先端部が軸方向に前記固定子に接触し、該接触部において突合せ溶接されることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 3, wherein
    The pipe-side attachment portion is positioned on the outer peripheral side of the stator-side attachment portion, and the downstream end portion of the pipe-side attachment portion contacts the stator in the axial direction and is butt welded at the contact portion. A fuel injection device characterized by the above.
  7.  請求項1又は2に記載の燃料噴射装置において、
     前記固定子の飽和磁束密度は、前記固定子と別体の部材で構成され、かつ前記固定子に直接、圧入により固定される前記パイプの飽和磁束密度よりも大きいことを特徴とする燃料噴射装置。
    The fuel injection device according to claim 1 or 2,
    A fuel injection device characterized in that a saturation magnetic flux density of the stator is made of a member separate from the stator and is larger than a saturation magnetic flux density of the pipe fixed directly to the stator by press-fitting. .
  8.  請求項1又は2に記載の燃料噴射装置において、
     前記固定子の引っ張り強さは、前記固定子と別体の部材で構成され、かつ前記固定子に直接、圧入により固定される前記パイプの引っ張り強さよりも小さいことを特徴とする燃料噴射装置。
    The fuel injection device according to claim 1 or 2,
    The fuel injection device according to claim 1, wherein the tensile strength of the stator is made of a member separate from the stator, and is smaller than the tensile strength of the pipe that is directly fixed to the stator by press-fitting.
  9.  請求項1に記載の燃料噴射装置において、
     前記固定子は、固定子側取付部よりも下流側に外周側に突出する突出部が形成され、前記突出部と前記固定子と一体の部材で形成されることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 1,
    The fuel injection device according to claim 1, wherein the stator is formed with a protruding portion that protrudes toward the outer peripheral side downstream of the stator side mounting portion, and is formed of a member that is integral with the protruding portion and the stator.
  10.  請求項9に記載の燃料噴射装置において、
     前記固定子は冷間鍛造により形成されることを特徴とする燃料噴射装置。
    The fuel injection device according to claim 9, wherein
    The fuel injection device according to claim 1, wherein the stator is formed by cold forging.
PCT/JP2016/072256 2015-09-11 2016-07-29 Fuel injection device WO2017043211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017539058A JPWO2017043211A1 (en) 2015-09-11 2016-07-29 Fuel injection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-179055 2015-09-11
JP2015179055 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043211A1 true WO2017043211A1 (en) 2017-03-16

Family

ID=58239384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072256 WO2017043211A1 (en) 2015-09-11 2016-07-29 Fuel injection device

Country Status (2)

Country Link
JP (1) JPWO2017043211A1 (en)
WO (1) WO2017043211A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130085A (en) * 2000-10-19 2002-05-09 Hitachi Ltd Fuel injection valve, manufacturing method thereof, and internal combustion engine
JP2006057641A (en) * 2005-11-14 2006-03-02 Hitachi Ltd Electromagnetic fuel injection valve
JP2007218205A (en) * 2006-02-17 2007-08-30 Hitachi Ltd Solenoid fuel injection valve and its assembling method
JP2013100756A (en) * 2011-11-08 2013-05-23 Denso Corp Fuel injection valve
US20130277460A1 (en) * 2010-10-01 2013-10-24 Marco Omeri Valve Assembly for an Injection Valve and Injection Valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121188A (en) * 2013-12-25 2015-07-02 日立オートモティブシステムズ株式会社 Fuel injection valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130085A (en) * 2000-10-19 2002-05-09 Hitachi Ltd Fuel injection valve, manufacturing method thereof, and internal combustion engine
JP2006057641A (en) * 2005-11-14 2006-03-02 Hitachi Ltd Electromagnetic fuel injection valve
JP2007218205A (en) * 2006-02-17 2007-08-30 Hitachi Ltd Solenoid fuel injection valve and its assembling method
US20130277460A1 (en) * 2010-10-01 2013-10-24 Marco Omeri Valve Assembly for an Injection Valve and Injection Valve
JP2013100756A (en) * 2011-11-08 2013-05-23 Denso Corp Fuel injection valve

Also Published As

Publication number Publication date
JPWO2017043211A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
EP2570648B1 (en) Electromagnetic fuel-injection valve
JP5239965B2 (en) Fuel injection valve
JP2007218205A (en) Solenoid fuel injection valve and its assembling method
US10280886B2 (en) Fuel injection valve
JP5152024B2 (en) Fuel injection valve
JP6355765B2 (en) Fuel injection valve
JP5063789B2 (en) Electromagnetic fuel injection valve and method of assembling the same
US9353715B2 (en) Fuel injector
JP4453745B2 (en) Fuel injection valve
JP6592587B2 (en) Flow control device
US7063279B2 (en) Fuel injection valve
JP6020194B2 (en) Fuel injection valve
WO2017043211A1 (en) Fuel injection device
JPWO2019054036A1 (en) Flow control device and method of manufacturing flow control device
JP4584895B2 (en) Electromagnetic fuel injection valve
WO2019107126A1 (en) Fuel injection device
JP6338662B2 (en) Fuel injection valve
JP6595701B2 (en) Fuel injection device
JP2017025927A (en) Fuel injection valve
JP2017210933A (en) Fuel injection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844075

Country of ref document: EP

Kind code of ref document: A1