WO2017043063A1 - Diffusion plate and imaging device provided with same - Google Patents

Diffusion plate and imaging device provided with same Download PDF

Info

Publication number
WO2017043063A1
WO2017043063A1 PCT/JP2016/004018 JP2016004018W WO2017043063A1 WO 2017043063 A1 WO2017043063 A1 WO 2017043063A1 JP 2016004018 W JP2016004018 W JP 2016004018W WO 2017043063 A1 WO2017043063 A1 WO 2017043063A1
Authority
WO
WIPO (PCT)
Prior art keywords
lenses
length
grid
line
beam diameter
Prior art date
Application number
PCT/JP2016/004018
Other languages
French (fr)
Japanese (ja)
Inventor
拓巳 井場
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017043063A1 publication Critical patent/WO2017043063A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a diffusing plate for diffusing and irradiating a subject with laser light within an angle of view, and an imaging apparatus including the diffusing plate.
  • a diffusion plate that diffuses incident light uniformly is used in a lens array formed by arranging a large number of lenses adjacent to each other.
  • the diffusing plate of Patent Document 1 randomly arranges two or more kinds of lenses having different curved surfaces in a two-dimensional manner. As a result, a desired diffusion angle and uniform diffused light intensity are obtained.
  • the diffusion plate of Patent Document 2 includes a lens array having a basic arrangement in which a plurality of lenses are arranged so that the vertex intervals of a plurality of adjacent lenses are all equal. Then, the vertices of the plurality of lenses are arranged so as to be randomly located in a circle having a radius of 0.5 L (L: lens vertex interval) or less centered on the position of the vertex in the basic arrangement. Thereby, the influence of the diffracted light peculiar to the laser beam caused by the periodic regular arrangement of the lenses is reduced.
  • L lens vertex interval
  • the diffuser plate of Patent Document 1 randomizes two or more types of lenses having different curved surfaces in a two-dimensional manner without defining the relationship between the beam diameter and the basic arrangement of the lens and the shift amount of the vertex position of the lens. Is arranged.
  • the diffusion plate of Patent Document 2 is arranged such that the vertices of a plurality of lenses are randomly located in a circle having a radius of 0.5 L or less centered on the position of the vertex in the basic arrangement. This reduces the occurrence of light unevenness due to interference fringes.
  • none of the diffusion plates disclosed above can sufficiently reduce uneven light distribution within a desired irradiation range. That is, when the light from the light source is incident on the diffusion plate, the unevenness in the light distribution due to the non-uniformity of the light source cannot be sufficiently reduced.
  • the diffusion plate disclosed in Patent Document 1 uses a lens having two or more different curved surfaces, that is, a lens having two or more different vertex positions that are not on the same plane. Therefore, the processing difficulty of the lens is high and the processing is difficult.
  • the present invention provides a diffusion plate that can reduce light unevenness due to interference fringes and unevenness in light distribution, and an imaging device including the diffusion plate.
  • the diffusion plate of the present invention includes a lens array in which a plurality of lenses are arranged adjacent to each other on a plane based on a basic arrangement, and the vertex positions of the plurality of lenses are virtually arranged in the row direction and the column direction. Arranged at random from the basic layout.
  • the basic arrangement includes a plurality of lattice points that are reference positions of the vertices of a plurality of lenses, a first lattice line that connects two lattice points adjacent in the row direction among the plurality of lattice points, and a first lattice line And a second grid line connecting two grid points adjacent in the column direction among the plurality of grid points.
  • the direction of the first grating line is aligned with the radial direction of the beam diameter in the first direction of the incident light
  • the direction of the second grating line is the radial direction of the beam diameter in the second direction of the incident light.
  • the length of the first grating line is set shorter than the length of the beam diameter in the first direction of the incident light
  • the length of the second grating line is set in the second direction of the incident light. It is set shorter than the length of the beam diameter.
  • the vertices of the plurality of lenses are arranged at random shifts from the respective lattice points.
  • the vertex positions of the plurality of lenses are arranged at random shifts from the positions of the regularly arranged grid points. That is, in the lens array, based on the beam diameter, the basic arrangement of the plurality of lenses in the lens array and the shift amount of the vertex positions of the plurality of lenses with respect to the plurality of lattice points of the basic arrangement are set.
  • the length of the first grid line (distance between grid points in the row direction), or the length of the beam diameter in the first direction at the time of incidence and the length in the radial direction of the beam diameter in the second direction,
  • the length of the two grid lines (distance between grid points in the column direction) is long, the irradiation light becomes non-uniform due to the non-uniformity of the light source.
  • the length of the first grid line or the second grid line is made shorter than the length of the beam diameter in the first direction and the length of the beam diameter in the second direction at the time of incidence.
  • the interference fringes between the light rays emitted from the openings of the respective lenses can be reduced.
  • unevenness in light distribution within a desired irradiation range can be reduced and uniformity can be improved. That is, light unevenness due to interference fringes and light distribution unevenness due to non-uniformity when light from the light source enters the diffusion plate can be reduced. As a result, it is possible to provide a diffusion plate that can diffuse incident light with high uniformity.
  • an imaging apparatus of the present invention includes the diffusion plate. Thereby, it is possible to provide an imaging device capable of photographing a subject with uniform diffused light.
  • FIG. 1 is a schematic diagram illustrating an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing a part of the diffusion plate according to the imaging apparatus of the embodiment.
  • FIG. 3 shows the result of the simulated Example 1 in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on a predetermined length of the beam diameter of incident light.
  • FIG. 4 is a diagram illustrating the results of the simulated Example 1 in the case where the lengths of the grid lines of the basic arrangement are set based on predetermined lengths having different beam diameters of incident light.
  • FIG. 1 is a schematic diagram illustrating an imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing a part of the diffusion plate according to the imaging apparatus of the embodiment.
  • FIG. 3 shows the result of the simulated Example 1 in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on a predetermined length
  • FIG. 5 shows the result of simulated Example 1 in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on predetermined lengths with different beam diameters of incident light.
  • FIG. FIG. 6 is a diagram illustrating a result of simulation of Example 1 in the case where the lengths of the grid lines of the basic arrangement are set based on predetermined lengths having different beam diameters of incident light.
  • FIG. 7 is a diagram illustrating the results of a simulated example 1 in the case where the lengths of the lattice lines in the basic arrangement are set based on predetermined lengths having different beam diameters of incident light.
  • FIG. 8 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount in the row direction and the column direction.
  • FIG. 9 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there.
  • FIG. 10 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction.
  • FIG. 11 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there.
  • FIG. 12 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction.
  • FIG. 13 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there.
  • FIG. 12 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction.
  • FIG. 13 is
  • FIG. 14 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction.
  • FIG. 15 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there.
  • FIG. 16 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction.
  • Example 17 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the position of the apex of the lens is shifted with respect to the lattice point of the basic arrangement shown in FIG. It is.
  • FIG. 1 is a schematic diagram showing an imaging apparatus according to the present embodiment.
  • the imaging device 1 of the present embodiment includes at least a light source 2, a diffusion plate 3, a camera unit (not shown), and the like.
  • the light source 2 is composed of a semiconductor laser diode, for example, and irradiates the subject with light within a desired range.
  • the diffusion plate 3 diffuses the light beam emitted from the light source 2 and converts it into diffused light having a predetermined diffusion angle and uniform light intensity.
  • the camera unit receives reflected light from the subject and images it.
  • the semiconductor laser diode that is the light source 2 of the present embodiment has a characteristic that the shape in the radial direction of the beam that is the irradiation light is substantially elliptical (including elliptical). Therefore, in the following description, the beam diameter in the first direction is the major axis of the ellipse, and the beam diameter in the second direction is the minor axis of the ellipse.
  • the diffusion plate 3 of the present embodiment is composed of, for example, a diffusion plate of a distance image camera of the TOF (Time Of Flight) method.
  • the range image camera of the TOF method first irradiates a subject with a laser beam diffusely within an angle of view. Next, the reflected light from the subject is received by a two-dimensional image sensor, and the time is measured. And it is a camera which calculates the distance to a to-be-photographed object from the flight time of light, and produces a three-dimensional distance distribution image.
  • FIG. 2 is an enlarged view showing a part of the diffusion plate according to the imaging apparatus of the embodiment.
  • the diffusing plate 3 includes a lens array 30 in which a plurality of lenses 31 are arranged adjacent to each other on a plane based on a grid-like basic arrangement 4 indicated by broken lines.
  • the basic arrangement 4 is virtually arranged in a grid in the row direction and the column direction.
  • the basic arrangement 4 includes a plurality of lattice points 40, a first lattice line 41, a second lattice line 42, and a lattice 43 having a predetermined shape.
  • the plurality of lattice points 40 are provided at the intersections of the first lattice lines 41 and the second lattice lines 42 that extend in the row direction and the column direction, and the respective positions of the vertices 310 of the plurality of lenses 31 that constitute the lens array. It becomes the reference position.
  • the first grid line 41 connects two grid points 40, 40 adjacent in the row direction among the plurality of grid points 40.
  • the second grid line 42 is orthogonal to the first grid line 41 and connects two grid points 40, 40 adjacent to each other in the column direction among the plurality of grid points 40.
  • the lattice 43 is formed of, for example, a right-angled square region surrounded by a pair of first lattice lines 41 arranged in parallel and a pair of second lattice lines 42 arranged in parallel.
  • the first lattice line 41 is connected in a direction that matches the radial direction of the beam diameter 50 in the first direction of the light 5 incident on the diffusion plate 3 shown in FIG.
  • the second grid line 42 is connected in a direction that matches the radial direction of the beam diameter 51 in the second direction of the light 5 incident on the diffusion plate 3 shown in FIG.
  • the length of the first grid line 41 is set to be shorter than the length of the beam diameter 50 in the first direction of the light 5 incident on the diffusion plate 3.
  • the length of the second grating line 42 is set to be shorter than the length of the beam diameter 51 in the second direction of the light incident on the diffusion plate 3.
  • vertex positions of the plurality of lenses 31 are randomly shifted from the respective lattice points 40 of the corresponding basic arrangement 4.
  • the length of the first lattice line 41 is set to 0 or more and 1/5 or less with respect to the beam diameter 50 in the first direction, for example.
  • the length of the first grid line 41 of 0 (zero) corresponds to the case where the first grid line 41 is not shifted.
  • the length of the second grid line 42 is set to, for example, 0 or more and 1/5 or less with respect to the beam diameter 51 in the second direction. Note that the length of the second grid line 42 is 0 (zero), which corresponds to the case where the second grid line 42 is not shifted.
  • the vertices 310 of the plurality of lenses 31 are randomly shifted from the plurality of lattice points 40 of the corresponding basic arrangement 4 on the basis of a shift amount determined by assigning a predetermined shift amount. Arranged.
  • the shift amount in the row direction of the vertices 310 of the plurality of lenses 31 with respect to the plurality of lattice points 40 of the basic arrangement 4 is within a range of 1/5 to 1/15 of the length of the first lattice line 41.
  • the shift amount in the column direction of the vertices 310 of the plurality of lenses 31 with respect to the plurality of lattice points 40 of the basic arrangement 4 is set within a range of 1/5 to 1/15 of the length of the second lattice line 42. Is done.
  • the length of the first grid line 41 within the range of 1/5 to 1/15 and the length shifted from the grid point 40 will be described as “shift amount Ra1”.
  • the length of the second grid line 42 within the range of 1/5 to 1/15 and the length shifted from the grid point 40 will be described as “shift amount Ra2”.
  • the maximum absolute value of the shift amount Ra1 is set as “maximum shift amount Ra1max”. Then, after assigning the shift amount Ra1, a statistical distribution of the actual shift amount of the position of the vertex 310 of each lens 31 with respect to the lattice point 40 is taken. At this time, a numerical value of the shift amount Ra1 is assigned to each lattice point 40 so that a value of 1 / 2.5 or more of “Ra1max” of the statistical distribution becomes a normal distribution with a standard deviation of 1 ⁇ . . As a result, the position of the apex 310 of the lens 31 is shifted to vary the actual shift amount in the first direction.
  • the maximum absolute value of the shift amount Ra2 is defined as “maximum shift amount Ra2max”. Then, after assigning the shift amount Ra2, a statistical distribution of the actual shift amount of the position of the vertex 310 of each lens 31 with respect to the lattice point 40 is taken. At this time, a numerical value of the shift amount Ra2 is assigned to each lattice point 40 so that a value of 1 / 2.5 or more of “Ra2max” of the statistical distribution becomes a normal distribution with a standard deviation of 1 ⁇ . . As a result, the position of the vertex 310 of the lens 31 is shifted to vary the actual shift amount in the second direction.
  • the positions of the vertices 310 of the plurality of lenses 31 are randomly shifted from the lattice points 40 of the basic arrangement 4 to be varied.
  • the shift amount of the apex 310a of the lens 31 is (0, 0).
  • the shift amount of the apex 310b of the lens 31 is (+ Ra1, + Ra2).
  • the shift amount of the apex 310c of the lens 31 is (+ Ra1, 0).
  • the shift amount of the vertex 310d of the lens 31 is ( ⁇ Ra1, ⁇ Ra2).
  • the shift amount varies with a standard deviation of a value of 1 / 2.5 or more of the maximum shift amount is that interference below the lower limit value 1 / 2.5 affects measurement accuracy such as distance. This is because fringes are generated on the intensity distribution. For this reason, it is preferable that the standard deviation is 1 / 2.5 or more of the maximum shift amount.
  • the plurality of lenses 31 are configured by lenses having substantially the same (including the same) radius of curvature. Further, the positions of the apexes 310 of the plurality of lenses 31 in the lens length (thickness) direction are assumed to be substantially on the same plane (including the same plane). In addition, the position in the length (thickness) direction of the lens is a position in a third direction orthogonal to the first direction and the second direction. This eliminates the need to prepare a plurality of processing profiles, for example, during profile processing for manufacturing a lens 31 mold. In addition, since the depth at which the die is cut can be made substantially the same (including the same), the processing becomes easy. Furthermore, it becomes easy to cut and process the glass constituting the lens 31 directly. As a result, the diffusion plate can be efficiently manufactured with high productivity and processing accuracy.
  • a plurality of lenses 31 are formed adjacent to each other so that a boundary ridge line between the lenses 31 is formed in the effective diameter portion of the lens 31. Therefore, a flat surface having no diffusion effect is not formed in the gap between the lens 31 and the lens 31. Thereby, the light 5 incident on the diffusion plate 3 can be diffused efficiently.
  • the lattice 43 of the basic arrangement 4 is formed in a rectangular shape.
  • the lenses 31 adjacent to each other are arranged so as to form a boundary ridgeline.
  • similar to the rectangular shape suitable for the angle of view of the imaging device 1 can be obtained with the diffusion plate 3 of the said shape.
  • the diffuser plate of the present embodiment can further reduce light distribution unevenness within a desired irradiation range. Thereby, it is possible to realize a diffusion plate from which diffused light with higher uniformity can be obtained. That is, it is possible to obtain a diffusion plate that can reduce unevenness due to interference fringes and unevenness in light distribution due to nonuniformity when light from a light source enters the diffusion plate.
  • the imaging apparatus includes the diffusing plate, so that the subject can be photographed with more uniform diffused light.
  • Example 1 Simulation results of Example 1 in which the diffusion plate 3 described in the above embodiment is designed under the following conditions will be described with reference to FIGS.
  • FIGS. 3 to 7 show the light distribution in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on the predetermined lengths of the different beam diameters of the incident light. It is a figure which shows the result of Example 1 which simulated the characteristic.
  • FIGS. 3A to 7A show light distribution diagrams of an irradiation range wider than the irradiation range corresponding to a desired angle of view.
  • FIGS. 3B to 7B show the relative light distribution in the row direction of FIG.
  • FIGS. 3C to 7C show the relative light distribution in the column direction of FIG.
  • the uniformity shown in the figure is evaluated based on the following calculation. That is, the uniformity is calculated by the ratio between the maximum value and the minimum value of light in the area excluding the edge of the screen (rectangular frame). Specifically, the uniformity is evaluated by a ratio within a length range of about 92% in length and width in the center excluding the screen edge.
  • the light distribution charts shown in FIGS. 3A to 7A show that the whiter the higher the relative intensity of the diffused light and the blacker the lower the relative intensity of the diffused light.
  • Example 1 The simulation of Example 1 was performed under the following conditions.
  • the distance between the grid points 40 in the row direction in the basic arrangement 4 is set to 0.28 mm, and the distance between the grid points 40 in the column direction is fixed to 0.20 mm.
  • the beam diameter in the first direction of the laser diode that is the light source 2 and the length in the radial direction of the beam diameter in the second direction are changed.
  • the ratio of the length of the first grid line / the beam diameter in the first direction and the length of the second grid line / the beam diameter in the second direction is set to a predetermined value, and the simulation is performed. did.
  • the results are shown in FIGS. This corresponds to a simulation in which the distance between the lattice points 40 of the diffusion plate 3 is changed.
  • the uniformity of the light distribution in the range corresponding to the angle of view specifically, the minimum / maximum value of the intensity of the irradiated light within the range corresponding to the angle of view was evaluated as the uniformity.
  • FIG. 3 shows the uniformity when the length of the first grating line / the beam diameter in the first direction is 1/12 and the length of the second grating line / the beam diameter in the second direction is 1/8. And simulated. As a result, the uniformity of light distribution was 64%.
  • FIG. 4 shows the uniformity when the length of the first grating line / the beam diameter in the first direction is 1/10, and the length of the second grating line / the beam diameter in the second direction is 1/7.
  • the uniformity of light distribution was 62%.
  • FIG. 5 shows the case where the length of the first grating line / the beam diameter in the first direction is 1/7, and the length of the second grating line / the beam diameter in the second direction is 1 / 5.5. Uniformity was simulated. As a result, the uniformity of light distribution was 50%.
  • FIG. 6 shows the uniformity when the length of the first grating line / the beam diameter in the first direction is 1/5 and the length of the second grating line / the beam diameter in the second direction is 1/4.
  • the uniformity of light distribution was 36%.
  • the length of the first grating line / the beam diameter in the first direction is set to 1/4
  • the length of the second grating line / the beam diameter in the second direction of the light is set to 1 / 3.5.
  • the uniformity of the case was simulated. As a result, the uniformity of light distribution was 10%.
  • the ratio of the length of the first grating line / the beam diameter in the first direction and the length of the second grating line / the beam diameter in the second direction is less than 1/5 as shown in FIGS. If it is increased, the light quantity ratio in the range corresponding to the angle of view is reduced. Accordingly, a relatively dark place increases in the range of the angle of view. As a result, it can be seen that a large amount of uneven light distribution occurs and the uniformity of the light distribution decreases.
  • the light intensity ratio between the central portion (maximum light amount) and the four corners (minimum light amount) in the range corresponding to the angle of view is about 45 to 50% as the uniformity of light distribution. Is needed.
  • the ratio of the length of the first grating line / the beam diameter in the first direction and the length of the second grating line / the beam diameter in the second direction is 1/5 or less. Considered desirable.
  • Example 2 In which the diffusion plate described in the above embodiment is designed under the following conditions will be described with reference to FIGS.
  • the lens of the diffuser plate when the position of the vertex 310 of the lens with respect to the lattice point 40 of the basic arrangement is shifted by a predetermined ratio in the row direction and the column direction, respectively.
  • a predetermined ratio is a ratio of the shift amount in the row direction / the length of the first grid line and the shift amount in the row direction / the length of the second grid line.
  • FIG. 9, FIG. 11, FIG. 13, FIG. 15 and FIG. 17 are diagrams showing the results of Example 2 in which the light distribution characteristics are simulated for the configuration examples of the lens arrays designed with the different ratios.
  • A of each said figure has shown the light distribution map of the irradiation range wider than the irradiation range corresponded to a desired angle of view.
  • B of each figure has shown the relative light distribution in the row direction of (A).
  • C) of each figure has shown the relative light distribution in the column direction of (A).
  • the uniformity shown in each figure is evaluated by calculating the ratio of the maximum value and the minimum value of light in the area excluding the edge of the screen (rectangular frame), as in the first embodiment. Yes.
  • the light distribution shown in FIGS. 9, 11, 13, 15, and 17 (A) shows the intensity distribution diagram of the diffused light in the necessary irradiation range, and the white areas indicate higher relative intensity. Yes.
  • Example 2 the beam diameter and the basic arrangement of the lens array were fixed, and only the shift amount Ra of the vertex of the lens was changed for simulation.
  • the shift amount Ra is a generic term for the shift amount Ra1 and the shift amount Ra2.
  • Example 2 The simulation of Example 2 was performed under the following conditions.
  • the ratio of the row-direction shift amount Ra1 / first grid line length and the row-direction shift amount Ra2 / second grid line length is set to the same one value. That is, as the ratio, different values such as 1/5 and 1/6 are not set, and “0 (no deviation)” or “ ⁇ Ra of one value” is set.
  • FIGS. 8 and 9 are uniform when the ratio of the shift amount in the row direction / the length of the first grid line is 1/6, and the ratio of the shift amount in the column direction / the length of the second grid line is 1/6.
  • the sex was simulated. As a result, the uniformity of light distribution in the range corresponding to the angle of view was 50%.
  • FIG. 10 and FIG. 11 show the ratio of the maximum value of the shift amount of the vertex of the lens in the row direction / the length of the first grid line to 1/5, the maximum value of the shift amount in the column direction / the second grid line.
  • the uniformity when the length ratio was 1/5 was simulated. As a result, the uniformity of light distribution was 46%.
  • FIG. 12 and FIG. 13 show the ratio of the maximum value of the shift amount in the row direction of the vertex of the lens / the length of the first grid line to 1/4, the maximum value of the shift amount in the column direction / the second grid line.
  • the uniformity when the length ratio of 1 ⁇ 4 was set to 1 ⁇ 4 was simulated. As a result, the uniformity of light distribution was 42%.
  • FIG. 14 and FIG. 15 show the ratio of the maximum value of the shift amount of the vertex of the lens in the row direction / the length of the first grid line to 1/3, the maximum value of the shift amount in the column direction / the second grid line.
  • the uniformity when the length ratio was 1/3 was simulated. As a result, the uniformity of light distribution was 38%.
  • FIG. 16 and FIG. 17 show the ratio of the maximum value of the shift amount in the row direction of the vertex of the lens / the length of the first grid line to 1/2, the maximum value of the shift amount in the column direction / the second grid line.
  • the uniformity was simulated when the ratio of the lengths was 1/2. As a result, the uniformity of light distribution was 35%.
  • the ratio of the maximum value of the shift amount in the row direction of the vertex of the lens / the length of the first grid line, and the ratio of the maximum value of the shift amount in the column direction / the length of the second grid line are 1/4 to As it becomes 1/2, the darker area increases. As a result, it can be seen that a large amount of uneven light distribution occurs and the uniformity of the light distribution decreases.
  • the light distribution ratio between the central portion (maximum light amount) and the four corners (minimum light amount) is 45 to 50 as the uniformity of light distribution. % Is needed.
  • the length ratio is preferably 1/5 or less.
  • diffusion plate and the imaging device including the diffusion plate of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
  • the semiconductor laser diode is described as an example of the light source, but a light emitting diode (LED) may be used, for example. Even in this case, the same effect as described above can be obtained.
  • LED light emitting diode
  • the case where the beam of the light 5 incident on the diffusion plate is elliptical has been described as an example.
  • a circular shape or a square shape may be used. Even in this case, the same effect as described above can be obtained.
  • the configuration in which the diffusion plate is applied to a distance image camera of the TOF (Time Of Flight) system has been described as an example.
  • the present invention may be applied to, for example, a projector. Even in this case, the same effect as described above can be obtained.
  • the configuration in which the diffusing plate is disposed to face the light source has been described as an example.
  • the present invention is not limited to this.
  • a collimating lens may be installed between the light source and the diffusion plate. Thereby, even in the case where the light from the light source is incident on the diffusion plate in parallel, the present embodiment can be similarly applied.
  • the diffusing plate of the present invention includes a lens array in which a plurality of lenses are arranged adjacent to each other on a plane based on a basic arrangement, and the vertex positions of the plurality of lenses have a row direction and a column. Arranged at random from the basic arrangement virtually arranged in the direction.
  • the basic arrangement includes a plurality of lattice points that are reference positions of the vertices of a plurality of lenses, a first lattice line that connects two lattice points adjacent in the row direction among the plurality of lattice points, and a first lattice line And a second grid line connecting two grid points adjacent in the column direction among the plurality of grid points.
  • the direction of the first grating line is aligned with the radial direction of the beam diameter in the first direction of the incident light
  • the direction of the second grating line is the radial direction of the beam diameter in the second direction of the incident light.
  • the length of the first grating line is set shorter than the length of the beam diameter in the first direction of the incident light
  • the length of the second grating line is set in the second direction of the incident light. It is set shorter than the length of the beam diameter. And it is good also as a structure which arrange
  • the vertex positions of the plurality of lenses are arranged at random shifts from the positions of the regularly arranged grid points. That is, in the lens array, based on the beam diameter, the basic arrangement of the plurality of lenses in the lens array and the shift amount of the vertex positions of the plurality of lenses with respect to the plurality of lattice points of the basic arrangement are set.
  • the length of the first grid line or the length of the second grid line is longer than the radial direction of the beam diameter in the first direction and the radial direction of the beam diameter in the second direction at the time of incidence. Then, the irradiation light becomes non-uniform due to non-uniformity of the light source.
  • the length of the first grid line or the second grid line is made shorter than the length of the beam diameter in the first direction and the length of the beam diameter in the second direction at the time of incidence.
  • the interference fringes between the light rays emitted from the openings of the respective lenses can be reduced.
  • unevenness in light distribution within a desired irradiation range can be reduced and uniformity can be improved. That is, light unevenness due to interference fringes and light distribution unevenness due to non-uniformity when light from the light source enters the diffusion plate can be reduced. As a result, it is possible to provide a diffusion plate that can diffuse incident light with high uniformity.
  • the length of the first grating line is 1/5 or less of the beam diameter in the first direction
  • the length of the second grating line is smaller than the beam diameter in the second direction. It is preferable that it is 1/5 or less.
  • the diffusion plate of the present invention is configured such that the vertices of the plurality of lenses are randomly shifted from the plurality of lattice points based on the amount of displacement determined by assigning a predetermined amount of displacement to each of the plurality of lattice points. Be placed.
  • the shift amount in the row direction of the vertices of the plurality of lenses with respect to the plurality of lattice points is 1/5 to 1/15 of the first lattice line, and the column direction of the vertices of the plurality of lenses with respect to the plurality of lattice points.
  • the shift amount is preferably 1/5 to 1/15 of the second lattice line.
  • the light of the individual lenses can be appropriately overlapped while maintaining the effect of reducing the interference fringes. Thereby, the uniformity of diffused light can be improved.
  • the diffusion plate of the present invention is a normal one in which the variation of the deviation amount from the plurality of lattice points of the basic arrangement for each vertex of the plurality of lenses is a standard deviation with a value of 1 / 2.5 or more of the maximum displacement amount. It is preferable to make it vary according to the distribution.
  • the position of the apex of each lens can be varied more than a certain amount by allocating the amount of deviation from the basic arrangement.
  • the plurality of lenses have the same radius of curvature and the apexes of the plurality of lenses are located on the same plane.
  • the lenses other than the outermost edge of the lens array are adjacent to each other so that a boundary ridge line between the lenses is formed.
  • the lenses other than the outermost edge portion of the lens array are formed adjacent to each other so that a boundary ridge line between the lenses can be formed. Therefore, a plane having no diffusion effect is not formed in the gap between adjacent lenses. Thereby, the light incident on the lens array of the diffusion plate can be diffused efficiently.
  • the imaging apparatus of the present invention includes the above diffusion plate. Thereby, it is possible to provide an imaging device capable of photographing a subject with uniform diffused light.
  • the present invention can be applied to, for example, a diffusion plate having a lens array for a TOF-type distance image camera that creates a three-dimensional distance distribution image, and an imaging device including the diffusion plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Apexes (310) of lenses (31) are positioned to be shifted from base positions (4) positioned virtually in row and column directions, and the base positions (4) include a plurality of grid points (40) as reference positions for the apexes (310) of the lenses (31), first grid lines (41) linking two of the grid points (40) adjacent in the row direction, and second grid lines (42) linking two of the grid points (40) in the column direction. The directions of the first and the second grid lines (41, 42) match with the radial directions of the beam diameters of light in a first and a second direction, the first grid lines (41) are shorter than the beam diameter in the first direction, and the second grid lines (42) are shorter than the beam diameter in the second direction. As a consequence thereof, the interference fringe and irregularities in light distribution are reduced, and a highly uniform diffusion plate (3) is realized.

Description

拡散板および拡散板を備えた撮像装置Diffusion plate and imaging device provided with diffusion plate
 本発明は、被写体に対してレーザ光を画角内に拡散照射するための拡散板および拡散板を備えた撮像装置に関する。 The present invention relates to a diffusing plate for diffusing and irradiating a subject with laser light within an angle of view, and an imaging apparatus including the diffusing plate.
 従来から、撮像装置には、多数のレンズを互いに隣接するように配列して形成されるレンズアレイで、入射した光を均一に拡散させる拡散板が用いられている。 Conventionally, in an imaging apparatus, a diffusion plate that diffuses incident light uniformly is used in a lens array formed by arranging a large number of lenses adjacent to each other.
 特に、複数のレンズを規則的に配置したレンズアレイに、レーザダイオードなどの位相が揃ったコヒーレント光を入射させた場合、各レンズを通過した光同士が回折により干渉を起こす。そのため、拡散板に干渉縞が生じ、光の均一性が損なわれる。 In particular, when coherent light having a uniform phase, such as a laser diode, is incident on a lens array in which a plurality of lenses are regularly arranged, the light passing through each lens causes interference due to diffraction. Therefore, interference fringes are generated on the diffusion plate, and the uniformity of light is impaired.
 そこで、干渉縞の発生を防止するために、以下の構成を有する拡散板が提案されている(例えば、特許文献1および特許文献2参照)。 Therefore, in order to prevent the occurrence of interference fringes, a diffusion plate having the following configuration has been proposed (see, for example, Patent Document 1 and Patent Document 2).
 特許文献1の拡散板は、2種以上の異なる曲面を持つレンズを二次元的にランダムに配置する。これにより、所望の拡散角と、均一な拡散光強度とを得ている。 The diffusing plate of Patent Document 1 randomly arranges two or more kinds of lenses having different curved surfaces in a two-dimensional manner. As a result, a desired diffusion angle and uniform diffused light intensity are obtained.
 また、特許文献2の拡散板は、相互に隣接する複数のレンズの頂点間隔が全て等間隔となるように、複数のレンズを配列した構成を基礎配置とするレンズアレイを備える。そして、複数のレンズの頂点が、基礎配置における頂点の位置を中心とした半径0.5L(L:レンズ頂点間隔)以下の円内にランダムに位置するように配置している。これにより、レンズの周期的な規則配列によって生じる、レーザ光に特有の回折光の影響を軽減している。 Further, the diffusion plate of Patent Document 2 includes a lens array having a basic arrangement in which a plurality of lenses are arranged so that the vertex intervals of a plurality of adjacent lenses are all equal. Then, the vertices of the plurality of lenses are arranged so as to be randomly located in a circle having a radius of 0.5 L (L: lens vertex interval) or less centered on the position of the vertex in the basic arrangement. Thereby, the influence of the diffracted light peculiar to the laser beam caused by the periodic regular arrangement of the lenses is reduced.
 つまり、特許文献1の拡散板は、ビーム径と、レンズの基礎配置やレンズの頂点位置のずらし量との関係性を定めることなく、2種以上の異なる曲面を持つレンズを二次元的にランダムに配置している。一方、特許文献2の拡散板は、複数のレンズの頂点が、基礎配置における頂点の位置を中心とした半径0.5L以下の円内にランダムに位置するように配置している。これにより、干渉縞による光むらの発生を低減している。 In other words, the diffuser plate of Patent Document 1 randomizes two or more types of lenses having different curved surfaces in a two-dimensional manner without defining the relationship between the beam diameter and the basic arrangement of the lens and the shift amount of the vertex position of the lens. Is arranged. On the other hand, the diffusion plate of Patent Document 2 is arranged such that the vertices of a plurality of lenses are randomly located in a circle having a radius of 0.5 L or less centered on the position of the vertex in the basic arrangement. This reduces the occurrence of light unevenness due to interference fringes.
 しかしながら、上記に開示されるいずれの拡散板も、所望の照射範囲内における配光むらを十分に低減することができない。すなわち、光源の光が拡散板に入射する際に、光源の不均一性に起因する配光分布上のむらを、十分低減できない。 However, none of the diffusion plates disclosed above can sufficiently reduce uneven light distribution within a desired irradiation range. That is, when the light from the light source is incident on the diffusion plate, the unevenness in the light distribution due to the non-uniformity of the light source cannot be sufficiently reduced.
 さらに、特許文献1に開示の拡散板は、2種以上の異なる曲面を持つレンズ、すなわち同一平面上にない2種以上の異なる頂点位置を持つレンズを用いる。そのため、レンズの加工難易度が高く、加工が困難である。 Further, the diffusion plate disclosed in Patent Document 1 uses a lens having two or more different curved surfaces, that is, a lens having two or more different vertex positions that are not on the same plane. Therefore, the processing difficulty of the lens is high and the processing is difficult.
特開2014-203032号公報JP 2014-203032 A 特開2007-108400号公報JP 2007-108400 A
 本発明は、干渉縞による光むら、および配光分布上のむらを低減できる拡散板および拡散板を備えた撮像装置を提供する。 The present invention provides a diffusion plate that can reduce light unevenness due to interference fringes and unevenness in light distribution, and an imaging device including the diffusion plate.
 つまり、本発明の拡散板は、複数のレンズが基礎配置に基づいて平面上において互いに隣接して配置されるレンズアレイを備え、複数のレンズの頂点位置は、行方向および列方向に仮想配置される基礎配置からランダムにずらして配置される。基礎配置は、複数のレンズの頂点のそれぞれの基準位置となる複数の格子点と、複数の格子点のうち行方向に隣り合う二つの格子点間を結ぶ第一格子線と、第一格子線に対し直交し、かつ複数の格子点のうち列方向に隣り合う二つの格子点間を結ぶ第二格子線とを含む。さらに、第一格子線の方向は、入射される光の第一方向のビーム径の径方向に合わせられ、第二格子線の方向は、入射される光の第二方向のビーム径の径方向に合わせられ、第一格子線の長さは、入射される光の第一方向のビーム径の長さよりも短く設定され、第二格子線の長さは、入射される光の第二方向のビーム径の長さよりも短く設定される。そして、複数のレンズの頂点は、それぞれの格子点からランダムにずらして配置される。 That is, the diffusion plate of the present invention includes a lens array in which a plurality of lenses are arranged adjacent to each other on a plane based on a basic arrangement, and the vertex positions of the plurality of lenses are virtually arranged in the row direction and the column direction. Arranged at random from the basic layout. The basic arrangement includes a plurality of lattice points that are reference positions of the vertices of a plurality of lenses, a first lattice line that connects two lattice points adjacent in the row direction among the plurality of lattice points, and a first lattice line And a second grid line connecting two grid points adjacent in the column direction among the plurality of grid points. Further, the direction of the first grating line is aligned with the radial direction of the beam diameter in the first direction of the incident light, and the direction of the second grating line is the radial direction of the beam diameter in the second direction of the incident light. The length of the first grating line is set shorter than the length of the beam diameter in the first direction of the incident light, and the length of the second grating line is set in the second direction of the incident light. It is set shorter than the length of the beam diameter. The vertices of the plurality of lenses are arranged at random shifts from the respective lattice points.
 この構成によれば、複数のレンズの頂点位置を、規則的に配置される基礎配置の格子点の位置からランダムにずらして配置する。すなわち、レンズアレイにおいて、ビーム径に基づいて、レンズアレイにおける複数のレンズの基礎配置と、基礎配置の複数の格子点に対する複数のレンズの頂点位置のずらし量を設定する。 According to this configuration, the vertex positions of the plurality of lenses are arranged at random shifts from the positions of the regularly arranged grid points. That is, in the lens array, based on the beam diameter, the basic arrangement of the plurality of lenses in the lens array and the shift amount of the vertex positions of the plurality of lenses with respect to the plurality of lattice points of the basic arrangement are set.
 入射時の第一方向のビーム径の径方向、および第二方向のビーム径の径方向の長さに対して、第一格子線の長さ(行方向の格子点間の距離)、または第二格子線の長さ(列方向の格子点間の距離)が長いと、光源の不均一性によって照射光が不均一になる。 The length of the first grid line (distance between grid points in the row direction), or the length of the beam diameter in the first direction at the time of incidence and the length in the radial direction of the beam diameter in the second direction, When the length of the two grid lines (distance between grid points in the column direction) is long, the irradiation light becomes non-uniform due to the non-uniformity of the light source.
 そこで、第一格子線、または第二格子線の長さを、入射時の第一方向のビーム径の長さおよび第二方向のビーム径の長さよりも、短くする。これにより、各レンズの開口から出射する光線同士の干渉縞を低減できる。さらに、所望の照射範囲内における配光むらを低減して、均一性を高めることができる。つまり、干渉縞による光むら、および光源の光が拡散板に入射する際の不均一性に起因する配光分布上のむらを低減できる。その結果、入射する光を高い均一性で拡散できる拡散板を提供できる。 Therefore, the length of the first grid line or the second grid line is made shorter than the length of the beam diameter in the first direction and the length of the beam diameter in the second direction at the time of incidence. Thereby, the interference fringes between the light rays emitted from the openings of the respective lenses can be reduced. Furthermore, unevenness in light distribution within a desired irradiation range can be reduced and uniformity can be improved. That is, light unevenness due to interference fringes and light distribution unevenness due to non-uniformity when light from the light source enters the diffusion plate can be reduced. As a result, it is possible to provide a diffusion plate that can diffuse incident light with high uniformity.
 また、本発明の撮像装置は、上記拡散板を備える。これにより、被写体を均一な拡散光で撮影可能な撮像装置を提供できる。 Further, an imaging apparatus of the present invention includes the diffusion plate. Thereby, it is possible to provide an imaging device capable of photographing a subject with uniform diffused light.
図1は、本発明の実施の形態に係る撮像装置を示す模式図である。FIG. 1 is a schematic diagram illustrating an imaging apparatus according to an embodiment of the present invention. 図2は、同実施の形態の撮像装置に係る拡散板の一部を示す拡大図である。FIG. 2 is an enlarged view showing a part of the diffusion plate according to the imaging apparatus of the embodiment. 図3は、基礎配置の格子線の長さ(隣接する格子点間の距離)を、入射する光のビーム径の所定の長さに基づいて設定する場合における、シミュレーションした実施例1の結果を示す図である。FIG. 3 shows the result of the simulated Example 1 in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on a predetermined length of the beam diameter of incident light. FIG. 図4は、基礎配置の格子線の長さを、入射する光のビーム径の異なる所定の長さに基づいて設定する場合における、シミュレーションした実施例1の結果を示す図である。FIG. 4 is a diagram illustrating the results of the simulated Example 1 in the case where the lengths of the grid lines of the basic arrangement are set based on predetermined lengths having different beam diameters of incident light. 図5は、基礎配置の格子線の長さ(隣接する格子点間の距離)を、入射する光のビーム径の異なる所定の長さに基づいて設定した場合における、シミュレーションした実施例1の結果を示す図である。FIG. 5 shows the result of simulated Example 1 in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on predetermined lengths with different beam diameters of incident light. FIG. 図6は、基礎配置の格子線の長さを、入射する光のビーム径の異なる所定の長さに基づいて設定する場合において、シミュレーションした実施例1の結果を示す図である。FIG. 6 is a diagram illustrating a result of simulation of Example 1 in the case where the lengths of the grid lines of the basic arrangement are set based on predetermined lengths having different beam diameters of incident light. 図7は、基礎配置の格子線の長さを、入射する光のビーム径の異なる所定の長さに基づいて設定する場合において、シミュレーションした実施例1の結果を示す図である。FIG. 7 is a diagram illustrating the results of a simulated example 1 in the case where the lengths of the lattice lines in the basic arrangement are set based on predetermined lengths having different beam diameters of incident light. 図8は、基礎配置の格子点に対するレンズの頂点位置を行方向および列方向に所定量ずらした実施例2の配置を示す図である。FIG. 8 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount in the row direction and the column direction. 図9は、図8に示す基礎配置の格子点に対してレンズの頂点位置をずらした場合における、画角に相当する範囲の配光の均一性についてシミュレーションした実施例2の結果を示す図である。FIG. 9 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there. 図10は、基礎配置の格子点に対するレンズの頂点位置を行方向および列方向に異なる所定量ずらした実施例2の配置を示す図である。FIG. 10 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction. 図11は、図10に示す基礎配置の格子点に対してレンズの頂点位置をずらした場合における、画角に相当する範囲の配光の均一性についてシミュレーションした実施例2の結果を示す図である。FIG. 11 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there. 図12は、基礎配置の格子点に対するレンズの頂点位置を行方向および列方向に異なる所定量ずらした実施例2の配置を示す図である。FIG. 12 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction. 図13は、図12に示す基礎配置の格子点に対してレンズの頂点位置をずらした場合における、画角に相当する範囲の配光の均一性についてシミュレーションした実施例2の結果を示す図である。FIG. 13 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there. 図14は、基礎配置の格子点に対するレンズの頂点位置を行方向および列方向に異なる所定量ずらした実施例2の配置を示す図である。FIG. 14 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction. 図15は、図14に示す基礎配置の格子点に対してレンズの頂点位置をずらした場合における、画角に相当する範囲の配光の均一性についてシミュレーションした実施例2の結果を示す図である。FIG. 15 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the vertex position of the lens is shifted with respect to the lattice points of the basic arrangement shown in FIG. is there. 図16は、基礎配置の格子点に対するレンズの頂点位置を行方向および列方向に異なる所定量ずらした実施例2の配置を示す図である。FIG. 16 is a diagram illustrating an arrangement of Example 2 in which the vertex positions of the lenses with respect to the lattice points of the basic arrangement are shifted by a predetermined amount different in the row direction and the column direction. 図17は、図16に示す基礎配置の格子点に対してレンズの頂点の位置をずらした場合における、画角に相当する範囲の配光の均一性についてシミュレーションした実施例2の結果を示す図である。FIG. 17 is a diagram showing the results of Example 2 in which the uniformity of light distribution in a range corresponding to the angle of view is simulated when the position of the apex of the lens is shifted with respect to the lattice point of the basic arrangement shown in FIG. It is.
 以下、本発明の実施の形態に係る拡散板および拡散板を備えた撮像装置について、図面を参酌しながら説明する。 Hereinafter, a diffusion plate and an imaging apparatus including the diffusion plate according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態)
 以下に、本実施の形態に係る拡散板および拡散板を備えた撮像装置について、図1を用いて説明する。
(Embodiment)
Hereinafter, a diffusion plate and an imaging device including the diffusion plate according to the present embodiment will be described with reference to FIG.
 図1は、本実施の形態に係る撮像装置を示す模式図である。 FIG. 1 is a schematic diagram showing an imaging apparatus according to the present embodiment.
 本実施の形態の撮像装置1は、図1に示すように、少なくとも、光源2と、拡散板3と、カメラ部(図示せず)などを備える。 As shown in FIG. 1, the imaging device 1 of the present embodiment includes at least a light source 2, a diffusion plate 3, a camera unit (not shown), and the like.
 光源2は、例えば半導体レーザダイオードなどで構成され、被写体に対して所望の範囲内に光を照射する。拡散板3は、光源2から照射される光束を拡散して、所定の拡散角を有する均一な光強度の拡散光に変換する。カメラ部は、被写体からの反射光を受光して、撮像する。 The light source 2 is composed of a semiconductor laser diode, for example, and irradiates the subject with light within a desired range. The diffusion plate 3 diffuses the light beam emitted from the light source 2 and converts it into diffused light having a predetermined diffusion angle and uniform light intensity. The camera unit receives reflected light from the subject and images it.
 なお、本実施の形態の光源2である半導体レーザダイオードは、照射光であるビームの径方向の形状が、略楕円型(楕円型を含む)の特性を有する。そこで、以下では、第一方向のビーム径を楕円の長径で、第二方向のビーム径を楕円の短径として、説明する。 It should be noted that the semiconductor laser diode that is the light source 2 of the present embodiment has a characteristic that the shape in the radial direction of the beam that is the irradiation light is substantially elliptical (including elliptical). Therefore, in the following description, the beam diameter in the first direction is the major axis of the ellipse, and the beam diameter in the second direction is the minor axis of the ellipse.
 また、本実施の形態の拡散板3は、例えばTOF(Time Of Flight)方式の距離画像カメラの拡散板で構成される。なお、TOF方式の距離画像カメラは、まず、被写体に対して、レーザ光を画角内に拡散照射する。つぎに、被写体からの反射光を二次元の画像センサで受光して、時間を測定する。そして、光の飛行時間から被写体までの距離を計算して、三次元の距離分布画像を作成するカメラである。 Further, the diffusion plate 3 of the present embodiment is composed of, for example, a diffusion plate of a distance image camera of the TOF (Time Of Flight) method. Note that the range image camera of the TOF method first irradiates a subject with a laser beam diffusely within an angle of view. Next, the reflected light from the subject is received by a two-dimensional image sensor, and the time is measured. And it is a camera which calculates the distance to a to-be-photographed object from the flight time of light, and produces a three-dimensional distance distribution image.
 つぎに、本実施の形態の拡散板3の構成について、図2を用いて説明する。 Next, the configuration of the diffusion plate 3 of the present embodiment will be described with reference to FIG.
 図2は、同実施の形態の撮像装置に係る拡散板の一部を示す拡大図である。 FIG. 2 is an enlarged view showing a part of the diffusion plate according to the imaging apparatus of the embodiment.
 拡散板3は、図2に示すように、複数のレンズ31が、破線で示す格子状の基礎配置4に基づいて、平面上に互いに隣接して配置される、レンズアレイ30で構成される。 As shown in FIG. 2, the diffusing plate 3 includes a lens array 30 in which a plurality of lenses 31 are arranged adjacent to each other on a plane based on a grid-like basic arrangement 4 indicated by broken lines.
 以下に、上記基礎配置4について、詳しく説明する。 Hereinafter, the basic arrangement 4 will be described in detail.
 基礎配置4は、行方向および列方向に格子状に仮想配置される。基礎配置4は、複数の格子点40と、第一格子線41と、第二格子線42と、所定形状の格子43を含む。複数の格子点40は、行方向および列方向に延長した第一格子線41と第二格子線42との交点に設けられ、レンズアレイを構成する複数のレンズ31の頂点310の位置のそれぞれの基準位置となる。第一格子線41は、複数の格子点40のうち、行方向に隣り合う二つの格子点40、40との間を結ぶ。第二格子線42は、第一格子線41に対して直交し、かつ複数の格子点40のうち、列方向に隣り合う二つの格子点40、40との間を結ぶ。格子43は、平行して配置される一対の第一格子線41間と、平行して配置される一対の第二格子線42間とで囲まれる、例えば直角四角形状の領域で形成される。 The basic arrangement 4 is virtually arranged in a grid in the row direction and the column direction. The basic arrangement 4 includes a plurality of lattice points 40, a first lattice line 41, a second lattice line 42, and a lattice 43 having a predetermined shape. The plurality of lattice points 40 are provided at the intersections of the first lattice lines 41 and the second lattice lines 42 that extend in the row direction and the column direction, and the respective positions of the vertices 310 of the plurality of lenses 31 that constitute the lens array. It becomes the reference position. The first grid line 41 connects two grid points 40, 40 adjacent in the row direction among the plurality of grid points 40. The second grid line 42 is orthogonal to the first grid line 41 and connects two grid points 40, 40 adjacent to each other in the column direction among the plurality of grid points 40. The lattice 43 is formed of, for example, a right-angled square region surrounded by a pair of first lattice lines 41 arranged in parallel and a pair of second lattice lines 42 arranged in parallel.
 第一格子線41は、図1に示す拡散板3に入射する光5の第一方向のビーム径50の径方向に合わせた方向に結ばれる。 The first lattice line 41 is connected in a direction that matches the radial direction of the beam diameter 50 in the first direction of the light 5 incident on the diffusion plate 3 shown in FIG.
 第二格子線42は、図1に示す拡散板3に入射する光5の第二方向のビーム径51の径方向に合わせた方向に結ばれる。 The second grid line 42 is connected in a direction that matches the radial direction of the beam diameter 51 in the second direction of the light 5 incident on the diffusion plate 3 shown in FIG.
 第一格子線41の長さは、拡散板3に入射する光5の第一方向のビーム径50の長さよりも、短く設定される。 The length of the first grid line 41 is set to be shorter than the length of the beam diameter 50 in the first direction of the light 5 incident on the diffusion plate 3.
 第二格子線42の長さは、拡散板3に入射する光の第二方向のビーム径51の長さよりも、短く設定される。 The length of the second grating line 42 is set to be shorter than the length of the beam diameter 51 in the second direction of the light incident on the diffusion plate 3.
 そして、複数のレンズ31の頂点位置は、対応する基礎配置4のそれぞれの格子点40から、ランダムにずらして配置される。 Further, the vertex positions of the plurality of lenses 31 are randomly shifted from the respective lattice points 40 of the corresponding basic arrangement 4.
 このとき、本実施の形態では、第一格子線41の長さは、例えば第一方向のビーム径50に対し、0以上、1/5以下に設定される。なお、第一格子線41の長さが0(ゼロ)は、ずらさない場合に相当する。第二格子線42の長さは、例えば第二方向のビーム径51に対し、0以上、1/5以下に設定される。なお、第二格子線42の長さが0(ゼロ)は、ずらさない場合に相当する。 At this time, in the present embodiment, the length of the first lattice line 41 is set to 0 or more and 1/5 or less with respect to the beam diameter 50 in the first direction, for example. Note that the length of the first grid line 41 of 0 (zero) corresponds to the case where the first grid line 41 is not shifted. The length of the second grid line 42 is set to, for example, 0 or more and 1/5 or less with respect to the beam diameter 51 in the second direction. Note that the length of the second grid line 42 is 0 (zero), which corresponds to the case where the second grid line 42 is not shifted.
 また、本実施の形態では、複数のレンズ31の頂点310は、対応する基礎配置4のそれぞれの複数の格子点40から、所定のずらし量を割り振って定められるずれ量に基づいて、ランダムにずらして配置される。 Further, in the present embodiment, the vertices 310 of the plurality of lenses 31 are randomly shifted from the plurality of lattice points 40 of the corresponding basic arrangement 4 on the basis of a shift amount determined by assigning a predetermined shift amount. Arranged.
 具体的には、基礎配置4の複数の格子点40に対する、複数のレンズ31の頂点310の行方向のずらし量は、第一格子線41の長さの1/5~1/15の範囲内に設定される。同様に、基礎配置4の複数の格子点40に対する、複数のレンズ31の頂点310の列方向のずらし量は、第二格子線42の長さの1/5~1/15の範囲内に設定される。 Specifically, the shift amount in the row direction of the vertices 310 of the plurality of lenses 31 with respect to the plurality of lattice points 40 of the basic arrangement 4 is within a range of 1/5 to 1/15 of the length of the first lattice line 41. Set to Similarly, the shift amount in the column direction of the vertices 310 of the plurality of lenses 31 with respect to the plurality of lattice points 40 of the basic arrangement 4 is set within a range of 1/5 to 1/15 of the length of the second lattice line 42. Is done.
 つぎに、上述した複数のレンズ31の頂点310の位置をランダムにずらす手順について、図2を参照しながら説明する。 Next, a procedure for randomly shifting the positions of the apexes 310 of the plurality of lenses 31 described above will be described with reference to FIG.
 なお、以下では、第一格子線41の1/5~1/15の範囲内の長さで、格子点40から、ずらす長さを、「ずらし量Ra1」として、説明する。同様に、第二格子線42の1/5~1/15の範囲内の長さで、格子点40から、ずらす長さを、「ずらし量Ra2」として、説明する。 In the following description, the length of the first grid line 41 within the range of 1/5 to 1/15 and the length shifted from the grid point 40 will be described as “shift amount Ra1”. Similarly, the length of the second grid line 42 within the range of 1/5 to 1/15 and the length shifted from the grid point 40 will be described as “shift amount Ra2”.
 はじめに、第一方向のビーム径50の径方向に、レンズ31の頂点310の位置をずらす手順について、説明する。 First, a procedure for shifting the position of the apex 310 of the lens 31 in the radial direction of the beam diameter 50 in the first direction will be described.
 この場合、まず、基礎配置4の格子点40のそれぞれに対し、第一方向のビーム径50の径方向に沿って、「0(ずれ量なし)」、「+Ra1」、「-Ra1」のいずれかを、第一方向の実際のずれ量として、それぞれのレンズ31の頂点310に割り振る。なお、上記「+」は図2の右方向、「-」は図2の左方向に、対応する格子点40からずれた場合を示す。 In this case, first, any one of “0 (no deviation)”, “+ Ra1”, “−Ra1” along the radial direction of the beam diameter 50 in the first direction with respect to each of the lattice points 40 of the basic arrangement 4. Is assigned to the apex 310 of each lens 31 as the actual shift amount in the first direction. Note that the above “+” indicates a case of deviation from the corresponding lattice point 40 in the right direction in FIG. 2 and “−” in the left direction in FIG.
 具体的な、割り振り方法(ばらつかせ方法)について、以下に説明する。 The specific allocation method (variation method) will be described below.
 まず、ずらし量Ra1の最大絶対値を、「ずらし量最大値Ra1max」とする。そして、ずらし量Ra1を割り振った後に、格子点40に対する、それぞれのレンズ31の頂点310の位置の実際のずれ量の統計分布を取る。このとき、統計を取った分布の「Ra1max」の1/2.5以上の値が、標準偏差1σの正規分布となるように、それぞれの格子点40に対して、ずらし量Ra1の数値を割り振る。これにより、レンズ31の頂点310の位置をずらして、第一方向の実際のずれ量をばらつかせる。 First, the maximum absolute value of the shift amount Ra1 is set as “maximum shift amount Ra1max”. Then, after assigning the shift amount Ra1, a statistical distribution of the actual shift amount of the position of the vertex 310 of each lens 31 with respect to the lattice point 40 is taken. At this time, a numerical value of the shift amount Ra1 is assigned to each lattice point 40 so that a value of 1 / 2.5 or more of “Ra1max” of the statistical distribution becomes a normal distribution with a standard deviation of 1σ. . As a result, the position of the apex 310 of the lens 31 is shifted to vary the actual shift amount in the first direction.
 つぎに、第二方向のビーム径51の径方向に、レンズ31の頂点310の位置をずらす手順について、説明する。 Next, a procedure for shifting the position of the apex 310 of the lens 31 in the radial direction of the beam diameter 51 in the second direction will be described.
 この場合、まず、基礎配置4の格子点40のそれぞれに対し、第二方向のビーム径の径方向に沿って、「0(ずれ量なし)」、「+Ra2」、「-Ra2」のいずれかを、第二方向の実際のずれ量として、それぞれのレンズ31の頂点310に割り振る。なお、上記「+」は図2の上方向、「-」は図2の下方向に、対応する格子点40からずれた場合を示す。 In this case, first, any one of “0 (no deviation)”, “+ Ra2”, “−Ra2” along the radial direction of the beam diameter in the second direction with respect to each of the lattice points 40 of the basic arrangement 4. Is assigned to the apex 310 of each lens 31 as the actual shift amount in the second direction. Note that the above “+” indicates an upward direction in FIG. 2, and “−” indicates a downward direction in FIG.
 具体的な、割り振り方法(ばらつかせ方法)について、以下に説明する。 The specific allocation method (variation method) will be described below.
 まず、ずらし量Ra2の最大絶対値を、「ずらし量最大値Ra2max」とする。そして、ずらし量Ra2を割り振った後に、格子点40に対する、それぞれのレンズ31の頂点310の位置の実際のずれ量の統計分布を取る。このとき、統計を取った分布の「Ra2max」の1/2.5以上の値が、標準偏差1σの正規分布となるように、それぞれの格子点40に対して、ずらし量Ra2の数値を割り振る。これにより、レンズ31の頂点310の位置をずらして、第二方向の実際のずれ量をばらつかせる。 First, the maximum absolute value of the shift amount Ra2 is defined as “maximum shift amount Ra2max”. Then, after assigning the shift amount Ra2, a statistical distribution of the actual shift amount of the position of the vertex 310 of each lens 31 with respect to the lattice point 40 is taken. At this time, a numerical value of the shift amount Ra2 is assigned to each lattice point 40 so that a value of 1 / 2.5 or more of “Ra2max” of the statistical distribution becomes a normal distribution with a standard deviation of 1σ. . As a result, the position of the vertex 310 of the lens 31 is shifted to vary the actual shift amount in the second direction.
 以上のように、複数のレンズ31の頂点310の位置を、基礎配置4の格子点40から、ランダムにずらせて、ばらつかせる。 As described above, the positions of the vertices 310 of the plurality of lenses 31 are randomly shifted from the lattice points 40 of the basic arrangement 4 to be varied.
 具体的には、図2に示すように、例えばレンズ31の頂点310aのずらし量は、(0、0)である。レンズ31の頂点310bのずらし量は、(+Ra1、+Ra2)である。レンズ31の頂点310cのずらし量は、(+Ra1、0)である。さらに、レンズ31の頂点310dのずらし量は、(-Ra1、-Ra2)である。 Specifically, as shown in FIG. 2, for example, the shift amount of the apex 310a of the lens 31 is (0, 0). The shift amount of the apex 310b of the lens 31 is (+ Ra1, + Ra2). The shift amount of the apex 310c of the lens 31 is (+ Ra1, 0). Further, the shift amount of the vertex 310d of the lens 31 is (−Ra1, −Ra2).
 なお、上記ずらし量最大値の1/2.5以上の値の標準偏差で、ずらし量をばらつかせる理由は、下限値1/2.5を下回ると、距離などの測定精度に影響する干渉縞が、強度分布上に発生するためである。そのため、ずらし量最大値の1/2.5以上の値の標準偏差でばらつかせることが、好ましい。 The reason why the shift amount varies with a standard deviation of a value of 1 / 2.5 or more of the maximum shift amount is that interference below the lower limit value 1 / 2.5 affects measurement accuracy such as distance. This is because fringes are generated on the intensity distribution. For this reason, it is preferable that the standard deviation is 1 / 2.5 or more of the maximum shift amount.
 また、本実施の形態では、複数のレンズ31を、略同一(同一を含む)の曲率半径を有するレンズで構成する。さらに、複数のレンズ31の頂点310のレンズの長さ(厚み)方向における位置を、略同一平面上(同一平面上を含む)とする。なお、レンズの長さ(厚み)方向における位置とは、第一方向および第二方向と直交する第三方向における位置である。これにより、例えばレンズ31の金型を製作するプロファイル加工時において、複数の加工プロファイルを用意する必要がない。また、金型を削る深さも略同一(同一を含む)にできるので、加工が容易となる。さらに、レンズ31を構成するガラスを、直接、切削して加工することも容易となる。その結果、高い生産性および加工精度で、拡散板を効率よく作製できる。 Further, in the present embodiment, the plurality of lenses 31 are configured by lenses having substantially the same (including the same) radius of curvature. Further, the positions of the apexes 310 of the plurality of lenses 31 in the lens length (thickness) direction are assumed to be substantially on the same plane (including the same plane). In addition, the position in the length (thickness) direction of the lens is a position in a third direction orthogonal to the first direction and the second direction. This eliminates the need to prepare a plurality of processing profiles, for example, during profile processing for manufacturing a lens 31 mold. In addition, since the depth at which the die is cut can be made substantially the same (including the same), the processing becomes easy. Furthermore, it becomes easy to cut and process the glass constituting the lens 31 directly. As a result, the diffusion plate can be efficiently manufactured with high productivity and processing accuracy.
 また、本実施の形態では、レンズ31の有効径部分において、レンズ31同士の境界稜線ができるように複数のレンズ31を隣接させて形成する。そのため、レンズ31とレンズ31との隙間に拡散効果のない平面が形成されない。これにより、拡散板3に入射した光5を効率よく拡散できる。 In the present embodiment, a plurality of lenses 31 are formed adjacent to each other so that a boundary ridge line between the lenses 31 is formed in the effective diameter portion of the lens 31. Therefore, a flat surface having no diffusion effect is not formed in the gap between the lens 31 and the lens 31. Thereby, the light 5 incident on the diffusion plate 3 can be diffused efficiently.
 また、本実施の形態では、基礎配置4の格子43を矩形形状で形成している。この場合、互いに隣接するレンズ31同士を境界稜線ができるように配置する。これにより、撮像装置1の画角に合った矩形形状に近い照射範囲の拡散光を、上記形状の拡散板3で得ることができる。 In the present embodiment, the lattice 43 of the basic arrangement 4 is formed in a rectangular shape. In this case, the lenses 31 adjacent to each other are arranged so as to form a boundary ridgeline. Thereby, the diffused light of the irradiation range close | similar to the rectangular shape suitable for the angle of view of the imaging device 1 can be obtained with the diffusion plate 3 of the said shape.
 なお、レンズアレイ30の最外縁部のレンズ31の外側には、隣り合うレンズ31が存在しない。そのため、レンズアレイの最外縁部以外のレンズ31のみが境界稜線を介して接するように構成される。 It should be noted that there is no adjacent lens 31 outside the lens 31 at the outermost edge of the lens array 30. Therefore, only the lens 31 other than the outermost edge portion of the lens array is configured to contact via the boundary ridge line.
 以上のように、本実施の形態の拡散板は、従来の干渉縞の低減効果に加えて、所望の照射範囲内における配光むらを、より低減できる。これにより、より均一性の高い拡散光が得られる拡散板を実現できる。つまり、干渉縞によるむらの低減、および光源の光が拡散板に入射する際における、不均一性に起因する配光分布上のむらを低減できる拡散板が得られる。 As described above, in addition to the conventional interference fringe reduction effect, the diffuser plate of the present embodiment can further reduce light distribution unevenness within a desired irradiation range. Thereby, it is possible to realize a diffusion plate from which diffused light with higher uniformity can be obtained. That is, it is possible to obtain a diffusion plate that can reduce unevenness due to interference fringes and unevenness in light distribution due to nonuniformity when light from a light source enters the diffusion plate.
 また、本実施の形態の撮像装置は、上記拡散板を備えることにより、被写体をより均一な拡散光で撮影が可能となる。 In addition, the imaging apparatus according to the present embodiment includes the diffusing plate, so that the subject can be photographed with more uniform diffused light.
 (実施例1)
 以下に、上記実施の形態で説明した拡散板3を、以下に示す条件で設計した実施例1のシミュレーション結果について、図3から図7を参照して説明する。
Example 1
Hereinafter, simulation results of Example 1 in which the diffusion plate 3 described in the above embodiment is designed under the following conditions will be described with reference to FIGS.
 図3から図7は、基礎配置の格子線の長さ(隣接する格子点間の距離)を、入射する光のビーム径が、それぞれ異なる所定の長さに基づいて設定する場合における、配光特性をシミュレーションした実施例1の結果を示す図である。 FIGS. 3 to 7 show the light distribution in the case where the length of the grid line of the basic arrangement (distance between adjacent grid points) is set based on the predetermined lengths of the different beam diameters of the incident light. It is a figure which shows the result of Example 1 which simulated the characteristic.
 なお、図3から図7の(A)は、所望の画角に相当する照射範囲より広めの照射範囲の配光分布図を示している。図3から図7の(B)は、(A)の行方向における相対配光分布を示している。図3から図7の(C)は、(A)の列方向における相対配光分布を示している。 3A to 7A show light distribution diagrams of an irradiation range wider than the irradiation range corresponding to a desired angle of view. FIGS. 3B to 7B show the relative light distribution in the row direction of FIG. FIGS. 3C to 7C show the relative light distribution in the column direction of FIG.
 また、図中に示す均一性は、以下の計算に基づいて評価している。つまり、均一性は、画面の端(矩形状の枠)を除いた領域内における光の最大値と最小値の比率で計算している。具体的には、均一性は、画面端を除いた中心部の縦横約92%の長さの範囲内での比率で評価している。 The uniformity shown in the figure is evaluated based on the following calculation. That is, the uniformity is calculated by the ratio between the maximum value and the minimum value of light in the area excluding the edge of the screen (rectangular frame). Specifically, the uniformity is evaluated by a ratio within a length range of about 92% in length and width in the center excluding the screen edge.
 さらに、図3から図7の(A)に示す配光分布図は、白いところほど拡散光の相対強度が強く、黒いところほど拡散光の相対強度が低いことを示している。 Furthermore, the light distribution charts shown in FIGS. 3A to 7A show that the whiter the higher the relative intensity of the diffused light and the blacker the lower the relative intensity of the diffused light.
 実施例1のシミュレーションは、以下の条件で行った。 The simulation of Example 1 was performed under the following conditions.
 まず、基礎配置4における行方向の格子点40間の距離を0.28mmとし、列方向の格子点40間の距離を0.20mmと一定とする。つぎに、光源2であるレーザダイオードの第一方向のビーム径、および第二方向のビーム径の径方向の長さのみを変える。 First, the distance between the grid points 40 in the row direction in the basic arrangement 4 is set to 0.28 mm, and the distance between the grid points 40 in the column direction is fixed to 0.20 mm. Next, only the beam diameter in the first direction of the laser diode that is the light source 2 and the length in the radial direction of the beam diameter in the second direction are changed.
 そして、上記条件に基づいて、第一格子線の長さ/第一方向のビーム径および第二格子線の長さ/第二方向のビーム径の比率を、所定の値に設定して、シミュレーションした。その結果を、図3から図7に示している。これは、拡散板3の格子点40間の距離を変更するシミュレーションの場合に相当する。 Based on the above conditions, the ratio of the length of the first grid line / the beam diameter in the first direction and the length of the second grid line / the beam diameter in the second direction is set to a predetermined value, and the simulation is performed. did. The results are shown in FIGS. This corresponds to a simulation in which the distance between the lattice points 40 of the diffusion plate 3 is changed.
 このとき、画角に相当する範囲の配光の均一性、具体的には、画角に相当する範囲内での照射光の強度の最小値/最大値を、均一性として評価した。 At this time, the uniformity of the light distribution in the range corresponding to the angle of view, specifically, the minimum / maximum value of the intensity of the irradiated light within the range corresponding to the angle of view was evaluated as the uniformity.
 以下に、図3から図7のシミュレーション結果について、個別に説明する。 Hereinafter, the simulation results of FIGS. 3 to 7 will be described individually.
 まず、図3は、第一格子線の長さ/第一方向のビーム径を1/12、第二格子線の長さ/第二方向のビーム径を1/8とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、64%であった。 First, FIG. 3 shows the uniformity when the length of the first grating line / the beam diameter in the first direction is 1/12 and the length of the second grating line / the beam diameter in the second direction is 1/8. And simulated. As a result, the uniformity of light distribution was 64%.
 つぎに、図4は、第一格子線の長さ/第一方向のビーム径を1/10、第二格子線の長さ/第二方向のビーム径を1/7とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、62%であった。 Next, FIG. 4 shows the uniformity when the length of the first grating line / the beam diameter in the first direction is 1/10, and the length of the second grating line / the beam diameter in the second direction is 1/7. Was simulated. As a result, the uniformity of light distribution was 62%.
 つぎに、図5は、第一格子線の長さ/第一方向のビーム径を1/7、第二格子線の長さ/第二方向のビーム径を1/5.5とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、50%であった。 Next, FIG. 5 shows the case where the length of the first grating line / the beam diameter in the first direction is 1/7, and the length of the second grating line / the beam diameter in the second direction is 1 / 5.5. Uniformity was simulated. As a result, the uniformity of light distribution was 50%.
 つぎに、図6は、第一格子線の長さ/第一方向のビーム径を1/5、第二格子線の長さ/第二方向のビーム径を1/4とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、36%であった。 Next, FIG. 6 shows the uniformity when the length of the first grating line / the beam diameter in the first direction is 1/5 and the length of the second grating line / the beam diameter in the second direction is 1/4. Was simulated. As a result, the uniformity of light distribution was 36%.
 つぎに、図7は、第一格子線の長さ/第一方向のビーム径を1/4、第二格子線の長さ/光の第二方向のビーム径を1/3.5とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、10%であった。 Next, in FIG. 7, the length of the first grating line / the beam diameter in the first direction is set to 1/4, and the length of the second grating line / the beam diameter in the second direction of the light is set to 1 / 3.5. The uniformity of the case was simulated. As a result, the uniformity of light distribution was 10%.
 以上のシミュレーションの結果から、以下のことが判った。 From the above simulation results, the following was found.
 つまり、第一格子線の長さ/第一方向のビーム径および第二格子線の長さ/第二方向のビーム径の比率を、図6および図7に示すように、1/5よりも大きくすると、画角に相当する範囲における光量比率が小さくなる。それにしたがって、画角の範囲内において、相対的に暗いところが多くなる。これにより、多くの配光むらが発生し、配光の均一性が低下することが判る。 That is, the ratio of the length of the first grating line / the beam diameter in the first direction and the length of the second grating line / the beam diameter in the second direction is less than 1/5 as shown in FIGS. If it is increased, the light quantity ratio in the range corresponding to the angle of view is reduced. Accordingly, a relatively dark place increases in the range of the angle of view. As a result, it can be seen that a large amount of uneven light distribution occurs and the uniformity of the light distribution decreases.
 なお、被写体を撮像光で照射する分野においては、配光の均一性として、画角に相当する範囲における中央部(光量最大)と四隅(光量最少)との光量比率は、45~50%程度が必要とされている。 In the field of irradiating the subject with imaging light, the light intensity ratio between the central portion (maximum light amount) and the four corners (minimum light amount) in the range corresponding to the angle of view is about 45 to 50% as the uniformity of light distribution. Is needed.
 以上の結果および、適切な光量比率を考慮すると、第一格子線の長さ/第一方向のビーム径および第二格子線の長さ/第二方向のビーム径の比率、1/5以下が望ましいと考察される。 Considering the above result and an appropriate light quantity ratio, the ratio of the length of the first grating line / the beam diameter in the first direction and the length of the second grating line / the beam diameter in the second direction is 1/5 or less. Considered desirable.
 (実施例2)
 以下に、上記実施の形態で説明した拡散板を、以下に示す条件で設計した実施例2について、図8から図17を参照して説明する。
(Example 2)
Hereinafter, Example 2 in which the diffusion plate described in the above embodiment is designed under the following conditions will be described with reference to FIGS.
 図8、図10、図12、図14および図16は、基礎配置の格子点40に対するレンズの頂点310の位置を、行方向および列方向にそれぞれ所定の比率でずらした場合の拡散板のレンズアレイの構成例を示している。ここで、所定の比率とは、行方向のずらし量/第一格子線の長さ、および行方向のずらし量/第二格子線の長さの比率である。 8, 10, 12, 14, and 16 show the lens of the diffuser plate when the position of the vertex 310 of the lens with respect to the lattice point 40 of the basic arrangement is shifted by a predetermined ratio in the row direction and the column direction, respectively. An example of an array configuration is shown. Here, the predetermined ratio is a ratio of the shift amount in the row direction / the length of the first grid line and the shift amount in the row direction / the length of the second grid line.
 一方、図9、図11、図13、図15および図17は、上記異なる比率で設計されたレンズアレイの構成例に対して、配光特性をシミュレーションした実施例2の結果を示す図である。なお、上記各図の(A)は、所望の画角に相当する照射範囲より広めの照射範囲の配光分布図を示している。各図の(B)は、(A)の行方向における相対配光分布を示している。各図の(C)は、(A)の列方向における相対配光分布を示している。また、各図中に示す均一性は、実施例1と同様に、画面の端(矩形形状の枠)を除いた領域内における光の最大値と最小値の比率で計算して、評価している。 On the other hand, FIG. 9, FIG. 11, FIG. 13, FIG. 15 and FIG. 17 are diagrams showing the results of Example 2 in which the light distribution characteristics are simulated for the configuration examples of the lens arrays designed with the different ratios. . In addition, (A) of each said figure has shown the light distribution map of the irradiation range wider than the irradiation range corresponded to a desired angle of view. (B) of each figure has shown the relative light distribution in the row direction of (A). (C) of each figure has shown the relative light distribution in the column direction of (A). In addition, the uniformity shown in each figure is evaluated by calculating the ratio of the maximum value and the minimum value of light in the area excluding the edge of the screen (rectangular frame), as in the first embodiment. Yes.
 図9、図11、図13、図15および図17の(A)に示す配光分布は、必要な照射範囲における拡散光の強度分布図を示し、白いところほど相対強度が高いことを示している。 The light distribution shown in FIGS. 9, 11, 13, 15, and 17 (A) shows the intensity distribution diagram of the diffused light in the necessary irradiation range, and the white areas indicate higher relative intensity. Yes.
 つまり、実施例2では、ビーム径およびレンズアレイの基礎配置を固定し、レンズの頂点のずらし量Raのみを変えてシミュレーションした。なお、ずらし量Raは、ずらし量Ra1とずらし量Ra2の総称である。 That is, in Example 2, the beam diameter and the basic arrangement of the lens array were fixed, and only the shift amount Ra of the vertex of the lens was changed for simulation. The shift amount Ra is a generic term for the shift amount Ra1 and the shift amount Ra2.
 実施例2のシミュレーションは、以下の条件で行った。 The simulation of Example 2 was performed under the following conditions.
 まず、行方向のずらし量Ra1/第一格子線の長さ、および行方向のずらし量Ra2/第二格子線の長さの比率を、同じ一つの値に設定する。つまり、上記比率としては、1/5と1/6などの異なる値を設定せず、「0(ずれ量なし)」または「一つの値の±Ra」を定めている。 First, the ratio of the row-direction shift amount Ra1 / first grid line length and the row-direction shift amount Ra2 / second grid line length is set to the same one value. That is, as the ratio, different values such as 1/5 and 1/6 are not set, and “0 (no deviation)” or “± Ra of one value” is set.
 以下に、図8から図17のレンズアレイの構成例およびそのシミュレーション結果について、個別に説明する。 Hereinafter, a configuration example of the lens array of FIGS. 8 to 17 and a simulation result thereof will be individually described.
 まず、図8および図9は、行方向のずらし量/第一格子線の長を1/6、列方向のずらし量/第二格子線の長さの比率を1/6とした場合の均一性を、シミュレーションした。その結果、画角に相当する範囲の配光の均一性は、50%であった。 First, FIGS. 8 and 9 are uniform when the ratio of the shift amount in the row direction / the length of the first grid line is 1/6, and the ratio of the shift amount in the column direction / the length of the second grid line is 1/6. The sex was simulated. As a result, the uniformity of light distribution in the range corresponding to the angle of view was 50%.
 つぎに、図10および図11は、レンズの頂点の行方向のずらし量の最大値/第一格子線の長さの比率を1/5、列方向のずらし量の最大値/第二格子線の長さの比率を1/5とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、46%であった。 Next, FIG. 10 and FIG. 11 show the ratio of the maximum value of the shift amount of the vertex of the lens in the row direction / the length of the first grid line to 1/5, the maximum value of the shift amount in the column direction / the second grid line. The uniformity when the length ratio was 1/5 was simulated. As a result, the uniformity of light distribution was 46%.
 つぎに、図12および図13は、レンズの頂点の行方向のずらし量の最大値/第一格子線の長さの比率を1/4、列方向のずらし量の最大値/第二格子線の長さの比率を1/4とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、42%であった。 Next, FIG. 12 and FIG. 13 show the ratio of the maximum value of the shift amount in the row direction of the vertex of the lens / the length of the first grid line to 1/4, the maximum value of the shift amount in the column direction / the second grid line. The uniformity when the length ratio of ¼ was set to ¼ was simulated. As a result, the uniformity of light distribution was 42%.
 つぎに、図14および図15は、レンズの頂点の行方向のずらし量の最大値/第一格子線の長さの比率を1/3、列方向のずらし量の最大値/第二格子線の長さの比率を1/3とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、38%であった。 Next, FIG. 14 and FIG. 15 show the ratio of the maximum value of the shift amount of the vertex of the lens in the row direction / the length of the first grid line to 1/3, the maximum value of the shift amount in the column direction / the second grid line. The uniformity when the length ratio was 1/3 was simulated. As a result, the uniformity of light distribution was 38%.
 つぎに、図16および図17は、レンズの頂点の行方向のずらし量の最大値/第一格子線の長さの比率を1/2、列方向のずらし量の最大値/第二格子線の長さの比率を1/2とした場合の均一性を、シミュレーションした。その結果、配光の均一性は、35%であった。 Next, FIG. 16 and FIG. 17 show the ratio of the maximum value of the shift amount in the row direction of the vertex of the lens / the length of the first grid line to 1/2, the maximum value of the shift amount in the column direction / the second grid line. The uniformity was simulated when the ratio of the lengths was 1/2. As a result, the uniformity of light distribution was 35%.
 以上のシミュレーションの結果から、以下のことが判った。 From the above simulation results, the following was found.
 つまり、レンズの頂点の行方向のずらし量の最大値/第一格子線の長さの比率、および列方向のずらし量の最大値/第二格子線の長さの比率が、1/4~1/2と大きくになるにしたがって、相対的に暗いところが多くなる。これにより、多くの配光むらが発生し、配光の均一性が低下することが判る。 That is, the ratio of the maximum value of the shift amount in the row direction of the vertex of the lens / the length of the first grid line, and the ratio of the maximum value of the shift amount in the column direction / the length of the second grid line are 1/4 to As it becomes 1/2, the darker area increases. As a result, it can be seen that a large amount of uneven light distribution occurs and the uniformity of the light distribution decreases.
 なお、被写体を撮像光で照射する分野においては、配光の均一性として、実施例1で説明したように、中央部(光量最大)と四隅(光量最少)との光量比率は、45~50%程度が必要とされている。 In the field of irradiating the subject with imaging light, as described in the first embodiment, the light distribution ratio between the central portion (maximum light amount) and the four corners (minimum light amount) is 45 to 50 as the uniformity of light distribution. % Is needed.
 以上の結果および、適切な光量比率を考慮すると、基礎配置に対するレンズの頂点の位置の行方向のずらし量/第一格子線の長さの比率、および列方向のずらし量/第二格子線の長さの比率は、1/5以下が望ましいと考察される。 Considering the above results and an appropriate light quantity ratio, the amount of shift in the row direction of the position of the apex of the lens relative to the basic arrangement / the ratio of the length of the first grid line, and the amount of shift in the column direction / second grid line It is considered that the length ratio is preferably 1/5 or less.
 なお、本発明の拡散板および拡散板を備えた撮像装置は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Note that the diffusion plate and the imaging device including the diffusion plate of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 例えば、上記実施の形態では、光源として、半導体レーザダイオードを例に説明したが、例えば発光ダイオード(LED)でもよい。この場合でも、上記と同様の効果が得られる。 For example, in the above embodiment, the semiconductor laser diode is described as an example of the light source, but a light emitting diode (LED) may be used, for example. Even in this case, the same effect as described above can be obtained.
 また、上記実施の形態では、拡散板に入射する光5のビームが楕円状である場合を例に説明したが、例えば円形状や角形形状でもよい。この場合でも、上記と同様の効果が得られる。 In the above-described embodiment, the case where the beam of the light 5 incident on the diffusion plate is elliptical has been described as an example. However, for example, a circular shape or a square shape may be used. Even in this case, the same effect as described above can be obtained.
 また、上記実施の形態では、拡散板をTOF(Time Of Flight)方式の距離画像カメラに適用する構成を例に説明したが、例えばプロジェクタなどに適用してもよい。この場合でも、上記と同様の効果が得られる。 In the above embodiment, the configuration in which the diffusion plate is applied to a distance image camera of the TOF (Time Of Flight) system has been described as an example. However, the present invention may be applied to, for example, a projector. Even in this case, the same effect as described above can be obtained.
 また、上記実施の形態では、拡散板を光源と対向して配置する構成を例に説明したが、これに限られない。例えば、光源と拡散板と間にコリメートレンズを設置してもよい。これにより、光源の光が拡散板に対して平行に入射する構成の場合でも、本実施の形態を、同様に適応できる。 In the above embodiment, the configuration in which the diffusing plate is disposed to face the light source has been described as an example. However, the present invention is not limited to this. For example, a collimating lens may be installed between the light source and the diffusion plate. Thereby, even in the case where the light from the light source is incident on the diffusion plate in parallel, the present embodiment can be similarly applied.
 以上で説明したように、本発明の拡散板は、複数のレンズが基礎配置に基づいて平面上において互いに隣接して配置されるレンズアレイを備え、複数のレンズの頂点位置は、行方向および列方向に仮想配置される基礎配置からランダムにずらして配置される。基礎配置は、複数のレンズの頂点のそれぞれの基準位置となる複数の格子点と、複数の格子点のうち行方向に隣り合う二つの格子点間を結ぶ第一格子線と、第一格子線に対し直交し、かつ複数の格子点のうち列方向に隣り合う二つの格子点間を結ぶ第二格子線とを含む。さらに、第一格子線の方向は、入射される光の第一方向のビーム径の径方向に合わせられ、第二格子線の方向は、入射される光の第二方向のビーム径の径方向に合わせられ、第一格子線の長さは、入射される光の第一方向のビーム径の長さよりも短く設定され、第二格子線の長さは、入射される光の第二方向のビーム径の長さよりも短く設定される。そして、複数のレンズの頂点は、それぞれの格子点からランダムにずらして配置する構成としてもよい。 As described above, the diffusing plate of the present invention includes a lens array in which a plurality of lenses are arranged adjacent to each other on a plane based on a basic arrangement, and the vertex positions of the plurality of lenses have a row direction and a column. Arranged at random from the basic arrangement virtually arranged in the direction. The basic arrangement includes a plurality of lattice points that are reference positions of the vertices of a plurality of lenses, a first lattice line that connects two lattice points adjacent in the row direction among the plurality of lattice points, and a first lattice line And a second grid line connecting two grid points adjacent in the column direction among the plurality of grid points. Further, the direction of the first grating line is aligned with the radial direction of the beam diameter in the first direction of the incident light, and the direction of the second grating line is the radial direction of the beam diameter in the second direction of the incident light. The length of the first grating line is set shorter than the length of the beam diameter in the first direction of the incident light, and the length of the second grating line is set in the second direction of the incident light. It is set shorter than the length of the beam diameter. And it is good also as a structure which arrange | positions the vertex of a some lens at random from each lattice point.
 この構成によれば、複数のレンズの頂点位置を、規則的に配置される基礎配置の格子点の位置からランダムにずらして配置する。すなわち、レンズアレイにおいて、ビーム径に基づいて、レンズアレイにおける複数のレンズの基礎配置と、基礎配置の複数の格子点に対する複数のレンズの頂点位置のずらし量を設定する。 According to this configuration, the vertex positions of the plurality of lenses are arranged at random shifts from the positions of the regularly arranged grid points. That is, in the lens array, based on the beam diameter, the basic arrangement of the plurality of lenses in the lens array and the shift amount of the vertex positions of the plurality of lenses with respect to the plurality of lattice points of the basic arrangement are set.
 通常、入射時の第一方向のビーム径の径方向、および第二方向のビーム径の径方向の長さに対して、第一格子線の長さ、または第二格子線の長さが長いと、光源の不均一性によって照射光が不均一になる。 Usually, the length of the first grid line or the length of the second grid line is longer than the radial direction of the beam diameter in the first direction and the radial direction of the beam diameter in the second direction at the time of incidence. Then, the irradiation light becomes non-uniform due to non-uniformity of the light source.
 そこで、第一格子線、または第二格子線の長さを、入射時の第一方向のビーム径の長さおよび第二方向のビーム径の長さよりも、短くする。これにより、各レンズの開口から出射する光線同士の干渉縞を低減できる。さらに、所望の照射範囲内における配光むらを低減して、均一性を高めることができる。つまり、干渉縞による光むら、および光源の光が拡散板に入射する際の不均一性に起因する配光分布上のむらを低減できる。その結果、入射する光を高い均一性で拡散できる拡散板を提供できる。 Therefore, the length of the first grid line or the second grid line is made shorter than the length of the beam diameter in the first direction and the length of the beam diameter in the second direction at the time of incidence. Thereby, the interference fringes between the light rays emitted from the openings of the respective lenses can be reduced. Furthermore, unevenness in light distribution within a desired irradiation range can be reduced and uniformity can be improved. That is, light unevenness due to interference fringes and light distribution unevenness due to non-uniformity when light from the light source enters the diffusion plate can be reduced. As a result, it is possible to provide a diffusion plate that can diffuse incident light with high uniformity.
 また、本発明の拡散板は、第一格子線の長さが、第一方向のビーム径に対し1/5以下であり、第二格子線の長さが、第二方向のビーム径に対し1/5以下である、ことが好ましい。 In the diffusion plate of the present invention, the length of the first grating line is 1/5 or less of the beam diameter in the first direction, and the length of the second grating line is smaller than the beam diameter in the second direction. It is preferable that it is 1/5 or less.
 この構成によれば、光源からの出射光に不均一性があっても、拡散板で均一に拡散させることができる。 According to this configuration, even if there is non-uniformity in the light emitted from the light source, it can be uniformly diffused by the diffusion plate.
 また、本発明の拡散板は、複数のレンズの頂点が、それぞれの複数の格子点に対し所定のずらし量を割り振って定められるずれ量に基づいて、それぞれの複数の格子点からランダムにずらして配置される。そして、複数の格子点に対する複数のレンズの頂点の行方向のずらし量は、第一格子線の1/5~1/15の長さで、複数の格子点に対する複数のレンズの頂点の列方向のずらし量は、第二格子線の1/5~1/15の長さである、ことが好ましい。 Further, the diffusion plate of the present invention is configured such that the vertices of the plurality of lenses are randomly shifted from the plurality of lattice points based on the amount of displacement determined by assigning a predetermined amount of displacement to each of the plurality of lattice points. Be placed. The shift amount in the row direction of the vertices of the plurality of lenses with respect to the plurality of lattice points is 1/5 to 1/15 of the first lattice line, and the column direction of the vertices of the plurality of lenses with respect to the plurality of lattice points. The shift amount is preferably 1/5 to 1/15 of the second lattice line.
 この構成によれば、干渉縞を低減する効果を維持しながら、適度に個々のレンズの光が重なることができる。これにより、拡散光の均一性を高めることができる。 According to this configuration, the light of the individual lenses can be appropriately overlapped while maintaining the effect of reducing the interference fringes. Thereby, the uniformity of diffused light can be improved.
 具体的には、各レンズの頂点位置をランダムに配置する場合、まず、第一格子線および第二格子線を基準として、ずらし量を求める。そして、レンズごとに、頂点位置を格子点からずらし量分の長さをずらすか(実際のずれ量=ずらし量)、あるいは全くずらさない(実際のずれ量=0)か、を割り振る、これにより、実際のずれ量を決めて、各レンズの頂点位置をランダムに配置する。 Specifically, when the vertex positions of the respective lenses are randomly arranged, first, the shift amount is obtained with reference to the first grid line and the second grid line. Then, for each lens, it is assigned whether to shift the length of the vertex position from the lattice point by the amount of shift (actual shift amount = shift amount) or not shift at all (actual shift amount = 0). The actual shift amount is determined, and the vertex positions of the lenses are randomly arranged.
 このとき、上限値1/5を超えて、ずらし量を大きくすると、個々のレンズを通って広がる光の重なり量が減る。これにより、周辺部まで、均一な強度分布が得られなくなる。一方、下限値1/15を下回ると、規則的に配置した格子に近づきすぎる。これにより、各レンズを通って広がる光同士が重なり合うときに、干渉縞(回折パターン)が生じる。そのため、上記1/5~1/15の範囲内に設定することにより、上記効果が得られる。 At this time, if the amount of shift is increased beyond the upper limit of 1/5, the amount of overlap of light spreading through each lens decreases. This makes it impossible to obtain a uniform intensity distribution up to the periphery. On the other hand, below the lower limit value 1/15, the grid is too close to the regularly arranged lattice. Thereby, when the light which spreads through each lens overlaps, an interference fringe (diffraction pattern) arises. Therefore, the above effect can be obtained by setting within the range of 1/5 to 1/15.
 また、本発明の拡散板は、複数のレンズの頂点ごとの基礎配置の複数の格子点からのずれ量のばらつきを、ずらし量最大値の1/2.5以上の値が標準偏差となる正規分布に従うようにばらつかせる、ことが好ましい。 In addition, the diffusion plate of the present invention is a normal one in which the variation of the deviation amount from the plurality of lattice points of the basic arrangement for each vertex of the plurality of lenses is a standard deviation with a value of 1 / 2.5 or more of the maximum displacement amount. It is preferable to make it vary according to the distribution.
 この構成によれば、各レンズの頂点の位置を、基礎配置からのずれ量の割り振りで一定以上ばらつかせる。これにより、各レンズの頂点が、拡散光の干渉が起きやすい規則的な配置で並ぶことを防止できる。その結果、干渉縞の発生を低減する効果が向上する。 According to this configuration, the position of the apex of each lens can be varied more than a certain amount by allocating the amount of deviation from the basic arrangement. Thereby, it is possible to prevent the apexes of the lenses from being arranged in a regular arrangement in which diffused light interference easily occurs. As a result, the effect of reducing the occurrence of interference fringes is improved.
 また、本発明の拡散板は、複数のレンズの曲率半径が同一で、かつ複数のレンズの頂点の位置が同一平面上に位置する、ことが好ましい。 In the diffusing plate of the present invention, it is preferable that the plurality of lenses have the same radius of curvature and the apexes of the plurality of lenses are located on the same plane.
 この構成によれば、例えばレンズの金型を製作するプロファイル加工時において、複数の加工プロファイルを用意する必要がない。また、金型を削る深さも略同一とできるので、加工が容易となる。さらに、レンズを構成するガラスを、直接、切削して加工することも容易となる。 According to this configuration, it is not necessary to prepare a plurality of processing profiles, for example, at the time of profile processing for manufacturing a lens mold. Further, since the depth of cutting the mold can be made substantially the same, the processing becomes easy. Furthermore, it becomes easy to directly cut and process the glass constituting the lens.
 また、本発明の拡散板は、レンズアレイの最外縁部以外のレンズを、レンズ同士の境界稜線ができるようにレンズを隣接させる、ことが好ましい。 In the diffusing plate of the present invention, it is preferable that the lenses other than the outermost edge of the lens array are adjacent to each other so that a boundary ridge line between the lenses is formed.
 この構成によれば、レンズアレイの最外縁部以外のレンズは、レンズ同士の境界稜線ができるようにレンズを隣接させて形成される。そのため、隣接するレンズとレンズの隙間に拡散効果のない平面が形成されない。これにより、拡散板のレンズアレイに入射する光を効率よく拡散できる。 According to this configuration, the lenses other than the outermost edge portion of the lens array are formed adjacent to each other so that a boundary ridge line between the lenses can be formed. Therefore, a plane having no diffusion effect is not formed in the gap between adjacent lenses. Thereby, the light incident on the lens array of the diffusion plate can be diffused efficiently.
 また、本発明の撮像装置は、上記拡散板を備える、ことが好ましい。これにより、被写体を均一な拡散光で撮影可能な撮像装置を提供できる。 Moreover, it is preferable that the imaging apparatus of the present invention includes the above diffusion plate. Thereby, it is possible to provide an imaging device capable of photographing a subject with uniform diffused light.
 本発明は、例えば三次元の距離分布画像を作成するTOF方式の距離画像カメラ向けのレンズアレイを有する拡散板および拡散板を備える撮像装置などに適応できる。 The present invention can be applied to, for example, a diffusion plate having a lens array for a TOF-type distance image camera that creates a three-dimensional distance distribution image, and an imaging device including the diffusion plate.
 1  撮像装置
 2  光源
 3  拡散板
 4  基礎配置
 5  光
 30  レンズアレイ
 31  レンズ
 310,310a,310b,310c,310d  頂点
 40  格子点
 41  第一格子線
 42  第二格子線
 43  格子
 50  第一方向のビーム径
 51  第二方向のビーム径
DESCRIPTION OF SYMBOLS 1 Imaging device 2 Light source 3 Diffusion plate 4 Basic arrangement 5 Light 30 Lens array 31 Lens 310, 310a, 310b, 310c, 310d Vertex 40 Lattice point 41 First grating line 42 Second grating line 43 Lattice 50 Beam diameter in the first direction 51 Beam diameter in the second direction

Claims (7)

  1. 複数のレンズが平面上において互いに隣接して配置されるレンズアレイを備え、
    前記複数のレンズの頂点位置は、行方向および列方向に仮想配置される基礎配置からランダムにずらして配置され、
    前記基礎配置は、前記複数のレンズの頂点のそれぞれの基準位置となる複数の格子点と、
    前記複数の格子点のうち前記行方向に隣り合う二つの格子点間を結ぶ第一格子線と、
    前記第一格子線に対し直交し、かつ複数の格子点のうち列方向に隣り合う二つの格子点間を結ぶ第二格子線と、を含み、
    第一格子線の方向は、入射される光の第一方向のビーム径の径方向に合わせられ、第二格子線の方向は、入射される光の第二方向のビーム径の径方向に合わせられ、第一格子線の長さは、入射される光の第一方向のビーム径の長さよりも短く設定され、
    第二格子線の長さは、入射される光の第二方向のビーム径の長さよりも短く設定され、
    前記複数のレンズの頂点は、それぞれの格子点からランダムにずらして配置される拡散板。
    A lens array in which a plurality of lenses are arranged adjacent to each other on a plane;
    The vertex positions of the plurality of lenses are arranged randomly shifted from the basic arrangement virtually arranged in the row direction and the column direction,
    The basic arrangement is a plurality of grid points that are reference positions of the vertices of the plurality of lenses, and
    A first grid line connecting two grid points adjacent in the row direction among the plurality of grid points;
    A second grid line that is orthogonal to the first grid line and connects two grid points adjacent in the column direction among the plurality of grid points, and
    The direction of the first grating line is aligned with the radial direction of the beam diameter in the first direction of incident light, and the direction of the second grating line is aligned with the radial direction of the beam diameter of the incident light in the second direction. The length of the first grating line is set shorter than the length of the beam diameter in the first direction of the incident light,
    The length of the second grating line is set shorter than the length of the beam diameter in the second direction of the incident light,
    The diffusing plate is arranged such that vertices of the plurality of lenses are randomly shifted from respective lattice points.
  2. 前記第一格子線の長さは、前記第一方向のビーム径に対し1/5以下で、前記第二格子線の長さは、前記第二方向のビーム径に対し1/5以下である請求項1に記載の拡散板。 The length of the first grid line is 1/5 or less of the beam diameter in the first direction, and the length of the second grid line is 1/5 or less of the beam diameter in the second direction. The diffusion plate according to claim 1.
  3. 前記複数のレンズの頂点は、それぞれの前記複数の格子点に対し所定のずらし量を割り振って定められるずれ量に基づいて、それぞれの前記複数の格子点からランダムにずらして配置され、
    前記複数の格子点に対する前記複数のレンズの頂点の行方向のずらし量は、前記第一格子線の1/5~1/15の長さで、
    前記複数の格子点に対する前記複数のレンズの頂点の列方向のずらし量は、前記第二格子線の1/5~1/15の長さである請求項1に記載の拡散板。
    The vertices of the plurality of lenses are randomly shifted from the plurality of grid points based on a shift amount determined by assigning a predetermined shift amount to each of the plurality of grid points,
    The shift amount in the row direction of the vertices of the plurality of lenses with respect to the plurality of lattice points is a length of 1/5 to 1/15 of the first lattice line,
    2. The diffusion plate according to claim 1, wherein the shift amount in the column direction of the vertices of the plurality of lenses with respect to the plurality of lattice points is 1/5 to 1/15 of the second lattice line.
  4. 前記複数のレンズの頂点ごとの基礎配置の前記複数の格子点からのずれ量のばらつきは、ずらし量最大値の1/2.5以上の値が標準偏差となる正規分布に従うようにばらつかせる請求項1に記載の拡散板。 The variation in the amount of deviation from the plurality of lattice points of the basic arrangement for each vertex of the plurality of lenses can be varied so as to follow a normal distribution in which a value of 1 / 2.5 or more of the maximum amount of displacement is a standard deviation. The diffusion plate according to claim 1.
  5. 前記複数のレンズの曲率半径は、同一で、かつ前記複数のレンズの頂点の位置は、同一平面上に位置する請求項1に記載の拡散板。 2. The diffuser plate according to claim 1, wherein the plurality of lenses have the same radius of curvature, and the plurality of lenses have vertexes located on the same plane.
  6. 前記レンズアレイの最外縁部以外の前記レンズは、前記レンズ同士の境界稜線ができるように前記レンズ同士を隣接させる請求項1に記載の拡散板。 The diffuser plate according to claim 1, wherein the lenses other than the outermost edge portion of the lens array are adjacent to each other so that a boundary ridge line between the lenses is formed.
  7. 請求項1に記載の拡散板を備える撮像装置。 An imaging device comprising the diffusion plate according to claim 1.
PCT/JP2016/004018 2015-09-10 2016-09-02 Diffusion plate and imaging device provided with same WO2017043063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178060 2015-09-10
JP2015178060A JP2017054017A (en) 2015-09-10 2015-09-10 Diffuser panel and image-capturing device equipped with diffuser panel

Publications (1)

Publication Number Publication Date
WO2017043063A1 true WO2017043063A1 (en) 2017-03-16

Family

ID=58239429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004018 WO2017043063A1 (en) 2015-09-10 2016-09-02 Diffusion plate and imaging device provided with same

Country Status (2)

Country Link
JP (1) JP2017054017A (en)
WO (1) WO2017043063A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061816A1 (en) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 Imaging device
CN112068232A (en) * 2020-08-31 2020-12-11 深圳联纳科技有限公司 Diffusion plate device, design method thereof and uniform lighting device
WO2021079923A1 (en) * 2019-10-25 2021-04-29 デクセリアルズ株式会社 Diffusion plate, display device, projection device, and illumination device
JP2021076637A (en) * 2019-11-06 2021-05-20 デクセリアルズ株式会社 Microlens array, projection image display device, method of designing microlens array, and method of manufacturing microlens array
JP2021076875A (en) * 2019-11-06 2021-05-20 デクセリアルズ株式会社 Microlens array and projection image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021071721A (en) * 2019-10-25 2021-05-06 デクセリアルズ株式会社 Diffusion plate, display device, projection device, and illumination device
JP2021189393A (en) * 2020-06-04 2021-12-13 Eneos株式会社 Light diffusion plate using micro-lens array and manufacturing method of the same
WO2022172918A1 (en) * 2021-02-15 2022-08-18 株式会社クラレ Diffusion plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248403A (en) * 1995-03-14 1996-09-27 Kuraray Co Ltd Liquid crystal display device
JP2003084302A (en) * 2001-07-06 2003-03-19 Toshiba Corp Liquid crystal display device
JP2006119303A (en) * 2004-10-20 2006-05-11 Seiko Epson Corp Lens substrate, method of manufacturing the same, transmissive screen, and rear projector
JP2014038314A (en) * 2012-07-19 2014-02-27 Asahi Glass Co Ltd Optical element, projection device, measurement device and manufacturing method
WO2014104106A1 (en) * 2012-12-28 2014-07-03 旭硝子株式会社 Optical element, projection device, and manufacturing method for optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248403A (en) * 1995-03-14 1996-09-27 Kuraray Co Ltd Liquid crystal display device
JP2003084302A (en) * 2001-07-06 2003-03-19 Toshiba Corp Liquid crystal display device
JP2006119303A (en) * 2004-10-20 2006-05-11 Seiko Epson Corp Lens substrate, method of manufacturing the same, transmissive screen, and rear projector
JP2014038314A (en) * 2012-07-19 2014-02-27 Asahi Glass Co Ltd Optical element, projection device, measurement device and manufacturing method
WO2014104106A1 (en) * 2012-12-28 2014-07-03 旭硝子株式会社 Optical element, projection device, and manufacturing method for optical element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061816A1 (en) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 Imaging device
WO2021079923A1 (en) * 2019-10-25 2021-04-29 デクセリアルズ株式会社 Diffusion plate, display device, projection device, and illumination device
JP2021076637A (en) * 2019-11-06 2021-05-20 デクセリアルズ株式会社 Microlens array, projection image display device, method of designing microlens array, and method of manufacturing microlens array
JP2021076875A (en) * 2019-11-06 2021-05-20 デクセリアルズ株式会社 Microlens array and projection image display device
US11960103B2 (en) 2019-11-06 2024-04-16 Dexerials Corporation Micro-lens array, projection type image display device, method for designing micro-lens array, and method for manufacturing micro-lens array
CN112068232A (en) * 2020-08-31 2020-12-11 深圳联纳科技有限公司 Diffusion plate device, design method thereof and uniform lighting device

Also Published As

Publication number Publication date
JP2017054017A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2017043063A1 (en) Diffusion plate and imaging device provided with same
US10877188B2 (en) Composite diffuser plate
WO2018061816A1 (en) Imaging device
US6859326B2 (en) Random microlens array for optical beam shaping and homogenization
KR100997608B1 (en) A method for making a structure screens for controlled spreading of light
JP6424418B2 (en) Optical element, projection device, measurement device, and manufacturing method
CN106796311B (en) Diffusion plate and method for manufacturing same
JP7080581B2 (en) Optical body, diffuser, display device, projection device and lighting device
JP2018511034A (en) Apparatus for generating patterned illumination
JP6186679B2 (en) Illumination optical system, measuring apparatus, and diffractive optical element used therefor
US10254449B2 (en) Electromagnetic radiation-scattering element and method of manufacturing same
TW201629580A (en) Optical pattern projection
CN106716185A (en) Diffusing plate and diffusing-plate design method
KR20170042645A (en) Structured light for 3d sensing
JP2014167550A (en) Diffusion element, illumination optical system, and measuring device
TWI752247B (en) Generating structured light
KR20210118868A (en) diffuser plate
KR101792207B1 (en) Diffractive optical element and optical system
JP5210709B2 (en) Light source unit
JP6684994B2 (en) Diffusion element, die for diffusion element, and method for manufacturing diffusion element
US11808953B2 (en) Microlens array device used to project at least two patterns for improving control of projecting light
JP2000105109A (en) Pattern projection measuring projection grid
JP2005059469A (en) Anti-glaring film and its manufacturing method
JP6066308B2 (en) Light source device
JP2023016588A (en) Microarray lens and projection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843931

Country of ref document: EP

Kind code of ref document: A1