WO2017041643A1 - Agent and method for reducing e/z isomerization of dimethomorph - Google Patents

Agent and method for reducing e/z isomerization of dimethomorph Download PDF

Info

Publication number
WO2017041643A1
WO2017041643A1 PCT/CN2016/097360 CN2016097360W WO2017041643A1 WO 2017041643 A1 WO2017041643 A1 WO 2017041643A1 CN 2016097360 W CN2016097360 W CN 2016097360W WO 2017041643 A1 WO2017041643 A1 WO 2017041643A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimethomorph
isomer
weight
aluminium
present
Prior art date
Application number
PCT/CN2016/097360
Other languages
French (fr)
Inventor
James Timothy Bristow
Original Assignee
Rotam Agrochem International Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rotam Agrochem International Company Limited filed Critical Rotam Agrochem International Company Limited
Priority to CN201680032793.2A priority Critical patent/CN107708421B/en
Publication of WO2017041643A1 publication Critical patent/WO2017041643A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds

Definitions

  • the present invention provides an agent for reducing the E/Z isomerization of dimethomorph.
  • the invention further relates to a composition comprising an E and/or a Z isomer of dimethomorph and a conversion agent.
  • the present invention also relates to a method of reducing the E/Z isomerization of dimethomorph.
  • Agrochemical active compounds such as pesticides are frequently exposed to solar irradiation after application in the open. In the case of some active compounds, this leads to a reduction in their pesticidal activity.
  • (EZ) -4- [3- (4-chlorophenyl) -3- (3, 4-dimethoxyphenyl) acryloyl] morpholine having the common name dimethomorph, is a known fungicide. Dimethomorph can exist as the E and as the Z isomer, as represented below.
  • dimethomorph loses activity. More particularly, the effects of irradiation of dimethomorph by light are to convert the Z isomer to the E isomer, leading to the loss of fungicidal activity.
  • the present invention provides a method of reducing the E/Z isomerization of dimethomorph, the method comprising applying dimethomorph together with fosetyl-aluminium.
  • the present invention provides a method of reducing the instability of the fungicidal activity in the presence of light of dimethomorph, the method comprising contacting dimethomorph with fosteyl-aluminium.
  • the present invention provides a method of preventing or reducing fungal infestations of plants at a locus, the method comprising applying to the locus dimethomorph and fosetyl-aluminium.
  • the present invention provides a composition comprising dimethomorph and fosetyl-aluminium.
  • the present invention provides the use of fosetyl-aluminium to reduce the E/Z isomerization of dimethomorph.
  • E/Z isomerization of dimethomorph is understood as meaning the conversion of a double bond from the E isomer into the Z isomer or from the Z isomer into the E isomer. It has been found that the presence of fosetyl-aluminium significantly reduces the conversion of the Z isomer of dimethomorph to the E isomer. In addition, it has been found that, in the case of a mixture of the E and Z isomers of dimethomorph, the presence of fosetyl-aluminium can increase the amount of Z isomer present over time.
  • a reduction in E/Z isomerization of dimethomorph is achieved if the weight ratio of Z to E isomer of the dimethomorph in the presence of fosetyl-aluminium reduces more slowly compared with the change in the said ratio without the presence of fosetyl-aluminium, or the weight ratio of the Z isomer to E isomer remains the same or increases from its initial value.
  • dimethomorph may be employed or be present in the form of the E isomer, the Z isomer or a combination of the two isomers.
  • the E and the Z isomers may be present in the dimethomorph component in any relative amounts.
  • the E or the Z isomer of dimethomorph may each be present in the composition in an amount of at least 5 wt. %, preferably of at least 10 wt. %, more preferably of at least 20 wt. %, still more preferably of at least 30 wt. %, more preferably still of at least 40 wt. %, more particularly preferably of at least 50 wt.
  • % based on the total amount of the E and Z isomers of dimethomorph. These values relate to the amount of the isomers of dimethomorph present initially, that is at the time the dimethomorph is combined with or contacted by fosetyl-aluminium.
  • the present invention provides a composition comprising dimethomorph and fosetyl-aluminium.
  • Dimethomorph may be present in the composition in any suitable amount to provide the required fungicidal activity. Dimethomorph may be present in the composition in an amount of at least 0.1 wt. %, more preferably at least 1 wt. %, still more preferably at least 2 wt. %, more preferably at least 3 wt. %. Dimethmorph may be present in an amount of up to 99 wt. %, preferably up to 90 wt. %, more preferably up to 80 wt. %, still more preferably up to 75 wt. %.
  • the amount of dimethomorph may be from 0.1 wt. %to 99 wt. %of the composition, preferably from 1 wt. %to 70 wt. %, more preferably from 1 wt. %to 50 wt. %, still more preferably from 1 wt. %to 30 wt. %, more preferably still from 1 wt. %to 10 wt. %.
  • dimethomorph is present in the composition in an amount of 7 wt. %of the composition.
  • fosetyl-aluminium reduces or prevents the conversion of the Z isomer of dimethomorph into the E isomer and can promote the conversion of the E isomer to the Z isomer.
  • fosetyl-aluminium can produce radicals which attack the double bond of the E isomer of dimethomorph and allow single bond rotation.
  • Fosetyl-aluminium may be employed in the pure form, as a technical grade mixture.
  • the present invention provides a composition comprising dimethomorph and fosetyl-aluminium.
  • fosetyl-aluminium may be present in any suitable amount to maintain the desired fungicidal activity of the dimethomorph fungicide.
  • Fosetyl-aluminium may be present in an amount of from 0.1 wt. %, preferably from 1 wt. %, more preferably from 5 wt. %, still more preferably from 10 wt. %, more preferably still from 20 wt. %of the composition.
  • Fosetyl-aluminium may be present in an amount of up to 99 wt. %, preferably up to 90 wt.
  • Fosetyl-aluminium may be present in the composition in an amount of from 0.1 wt. %to 99 wt. %, preferably from 1 wt. %to 80 wt. %, more preferably from 30 wt. %to 70 wt. %, still more preferably from 50 wt. %to 60 wt. %.
  • the action of fosetyl-aluminium is to reduce the conversion of the Z isomer of dimethomorph to the E isomer and to increase the conversion of the E isomer to the Z isomer.
  • initially dimethomorph may be used in the form of the Z isomer, the E isomer or a mixture of the two isomers.
  • the action of fosetyl-aluminium is to maintain the presence of the Z isomer.
  • the action of fosetyl-aluminium is to convert E isomer to Z isomer, thereby maintaining or increasing the amount of Z isomer present.
  • dimethomorph in a form that comprises at least in part the Z isomer.
  • the dimethomorph is fungicidally active from the start of the use.
  • the initial dimethomorph material comprises at least 10 wt. %of the Z isomer, more preferably at least 20 wt. %, still more preferably at least 30 wt. %, more preferably still at least 40 wt. %, particularly preferably at least 50 wt. %.
  • the initial dimethomorph material may contain higher amounts of the Z isomer, such as at least 60 wt. %, 70 wt. %, 80 wt. %or 90 wt. %.
  • the initial dimethomorph material may consist essentially of the Z isomer.
  • the initial dimethomorph material may consist essentially of the E isomer, although this is not a preferred embodiment.
  • the amount of the Z isomer generally changes, more preferably increases.
  • fosetyl-aluminum is used in an amount such that, after contact with dimethomorph, the Z isomer of dimethomorph is present in an amount of at least 50 wt. %of the dimethomorph material, more preferably of at least 60 wt. %, still more preferably of at least 70 wt. %, more preferably still of at least 80 wt. %, with at least 85 wt. %, and at least 90 wt. %being particularly preferred.
  • the Z isomer, having the higher pesticidal activity is preferably present in excess.
  • the present invention may employ a composition comprising dimethomorph and fosetyl-aluminium.
  • the present invention may employ dimethomorph and fosetyl-aluminium provided by way of separate compositions.
  • compositions employed in the present invention may be formulated in any of the types conventional for agrochemical formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the type of formulation depends on the particular intended use and should provide a fine and uniform distribution of the active ingredients, fosetyl-aluminium and dimethomorph.
  • composition types are water-soluble concentrates (SL) , emulsifiable concentrates (EC) , emulsions (EW) , micro-emulsions (ME) , suspension concentrates (SC) , oil-based suspension concentrates (OD) , flowable suspensions (FS) , water-dispersible granules (WG) , water-soluble granules (SG) , wettable powders (WP) , water-soluble powders (SP) , granules (GR) , encapsulated granules (CG) , fine granules (FG) , macrogranules (GG) , aqueous suspo-emulsions (SE) , capsule suspensions (CS) and microgranules (MG) .
  • Preferred formulation types are water-dispersible granules (WG) and suspension concentrates (SC) .
  • the fosetyl-aluminium and dimethomorph may be employed separately, for example by being applied as separate formulations to a locus or by being combined prior to application to the locus, for example when preparing a tank mix.
  • fosetyl-aluminium and dimethomorph may each be employed in one of the above formulation types.
  • the formulations may further comprise auxiliaries conventional for plant protection compositions as known in the art, the choice of the auxiliaries depending on the type of formulation and its intended use.
  • auxiliaries include extenders, carriers, solvents, surfactants, stabilizers, anti-foaming agents, anti-freezing agents, preservatives, antioxidants, colourants, thickeners, solid adherents and inert fillers.
  • auxiliaries are known in the art and are commercially available. Their use in the formulation of the compositions of the present invention will be apparent to the person skilled in the art.
  • compositions may further comprise one or more inert fillers.
  • inert fillers are known in the art and available commercially. Suitable fillers include, for example, natural ground minerals, such as kaolin, alumina, talc, chalk, quartz, attapulgite, montmorillonite, and diatomaceous earth, or synthetic ground minerals, such as highly dispersed silicic acid, aluminum oxide, silicates, and calcium phosphates and hydrogen phosphates.
  • Suitable inert fillers for granules include, for example, crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, and dolomite, or synthetic granules of inorganic and organic ground materials, as well as granules of organic material, such as sawdust, coconut husks, corn cobs, and tobacco stalks.
  • compositions optionally include one or more surfactants, which are preferably non-ionic, cationic and/or anionic in nature and surfactant mixtures which have good emulsifying, dispersing and wetting properties.
  • surfactants which are preferably non-ionic, cationic and/or anionic in nature and surfactant mixtures which have good emulsifying, dispersing and wetting properties.
  • the selection of surfactants depends upon the type of formulation and the intended use. Suitable surfactants are known in the art and are commercially available.
  • Suitable anionic surfactants can be both so-called water-soluble soaps and water-soluble synthetic surface-active compounds.
  • Soaps which may be used are the alkali metal, alkaline earth metal or substituted or unsubstituted ammonium salts of higher fatty acid (C 10 to C 22 ) , for example the sodium or potassium salt of oleic or stearic acid, or of natural fatty acid mixtures.
  • the surfactant can be an emulsifier, dispersant or wetting agent of ionic or nonionic type.
  • Examples which may be used are salts of polyacrylic acids, salts of lignosulphonic acid, salts of phenylsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols, especially alkylphenols, sulphosuccinic ester salts, taurine derivatives, especially alkyltaurates, or phosphoric esters of polyethoxylated phenols or alcohols.
  • the presence of at least one surfactant is generally required when the active compound and/or the inert carrier and/or auxiliary/adjuvant are insoluble in water and the vehicle for the final application of the composition is water.
  • the composition optionally further comprises one or more polymeric stabilizers.
  • suitable polymeric stabilizers that may be used in the present invention include, but are not limited to, polypropylene, polyisobutylene, polyisoprene, copolymers of monoolefins and diolefins, polyacrylates, polystyrene, polyvinyl acetate, polyurethanes or polyamides. Suitable stabilizers are known in the art and commercially available.
  • surfactants and polymeric stabilizers mentioned above are generally believed to impart stability to the composition, in turn allowing the composition to be formulated, stored, transported and applied.
  • Suitable anti-foams include all substances which can normally be used for this purpose in agrochemical compositions. Suitable anti-foam agents are known in the art and are available commercially. Particularly preferred antifoam agents are mixtures of polydimethylsiloxanes and perfluroalkylphosphonic acids, such as the silicone anti-foam agents available from GE or Compton.
  • Suitable organic solvents are selected from all customary organic solvents which thoroughly dissolve the active compounds employed. Again, suitable organic solvents for dimethomprph and fosetyl-aluminium are known in the art. The following may be mentioned as being preferred: N-methyl pyrrolidone, N-octyl pyrrolidone, cyclohexyl-l-pyrrolidone; or SOLVESSO TM 200, a mixture of paraffinic, isoparaffinic, cycloparaffinic and aromatic hydrocarbons. Suitable solvents are commercially available.
  • Suitable preservatives include all substances which can normally be used for this purpose in agrochemical compositions of this type and again are well known in the art. Suitable examples that may be mentioned include (from Bayer AG) and (from Bayer AG) .
  • Suitable antioxidants are all substances which can normally be used for this purpose in agrochemical compositions, as is known in the art. Preference is given to butylated hydroxytoluene.
  • Suitable thickeners include all substances which can normally be used for this purpose in agrochemical compositions.
  • xanthan gum polyvinyl alcohol (PVOH)
  • cellulose and its derivatives cellulose and its derivatives
  • clay hydrated silicates magnesium aluminum silicates or a mixture thereof.
  • thickeners are known in the art and available commercially.
  • composition can be applied with the methods known in the art. These methods include misting, dusting, scattering, brushing, pouring, coating, spraying, dipping, soaking, injection and irrigation.
  • the fosetyl-aluminium may be brought into contact with dimethomorph at any stage during the preparation and use of the present invention.
  • the two components may be combined in a single composition.
  • the two components may be applied separately and combined at the locus.
  • the two components can be brought into contact with each other immediately before use, for example by way of as a tank mix.
  • the rates of application (use) of fosetyl-aluminium and dimethomorph in the present invention may vary, for example, according to type of use, type of crop, the specific active compounds beign employed, type of plants, but is such that the active compounds in the combination are applied in an effective amount to provide the desired action (such as disease or pest control) .
  • the application rate of the components for a given set of conditions can readily be determined by trials.
  • a suitable application rate for each of dimethomorph and fosetyl-aluminium lies in the range of from 50 to 5000 gram per hectare.
  • a preferred combined application rate for both dimethomorph and fosetyl-aluminium is from 500 to 5000 gram per hectare.
  • the present invention may be used for preventing and/or treating diseases caused by a wide range of fungal pathogens, for example, but not limited to:
  • Pseudoperonos pora cubensis Downy mildrew
  • Phytophthora Pseudoperonos pora cubensis on cucurbitaceae, like melon, water melon, urgiettes, pumpkin and cucumber
  • Pseudoperonos pora cubensis on cucurbitaceae like melon, water melon, urgiettes, pumpkin and cucumber
  • Phytophthora Phomopsis viticola, Pseudopeziza, Tracheiphila, blister spot (Pseudomonas syringae pv. papulans) , phytophthora root rot (Phytophthora fragariae) , phytophthora root rot (Phytophthora spp.
  • red stele (Phytophthora fragariae)
  • phytophthora root rot (Phytophthora cinnamomi)
  • anthracnose fruit rot (Colletotrichum gloeosporioides)
  • phomopsis canker (Phomopsis vaccini-i)
  • collar rot (Phytophthora cactorum)
  • heart rot (Phytophthora cinnamomi)
  • root rot (Phytophthora nicotinanae var.
  • parasitica downy mildew (Plasmopara viticola) , crown rot (Phytophthora cactorum) , root rot (Phytophthora spp. ) , on fruit, for example apple, avocado, black raspberry, blackberry, blueberries, citrus, cranberry, grapes, grapevine, peaches, pineapple, raspberry, red raspberry, and strawberry;
  • Phythium, Phytophthora, crown and root rot (Phytophthora spp. ) , Phytophthora root rot (Phytophthora cinnamomi) , aerial phytophthora (Phytophthora spp. including, Phytophthora ramorum, Phytophthora drechsleri, Phytophthora nicotianae and Phytophthora parasitica) , phytophthora root, crown and stem rot (Phytophthora spp. ) , downy mildew (Bremia, Pseudoperonospora, Peronospora and Plasmopara spp. ) , Downy mildew (Peronospora arborescens) , Downy mildew (Pseudoperonospora humuli) on ornamentals;
  • Alternaria leaf spot (Alternaria spp. ) , Anthracnose (Colletotrichum spp., Colletotrichum coccodes, Colletotrichum dematium, Colletotrichum gloeosporioides, Glomerella cingulata [teleomorph] , Marssonina panattoniana) , botrytis bunch rot (Botrytis cinerea) , downy mildew (Bremia lactucae, Peronospora farinose f. sp.
  • the present invention furthermore finds use in preventing and/or treating diseases caused by fungal pathogens, for example, but not limited to:
  • Plasmopara viticola (Downy mildrew) on fruit, for example grape;
  • Phytophthora infestans (Late blight) on vegetables, for example tomato, eggplant, and pepper;
  • Pseudoperonospora cubensis Downy mildrew on cucurbitaceae, for example melon, water melon, urgiettes, pumpkin and cucumber.
  • the present invention has a range of advantages.
  • Dimethomorph and fosetyl-aluminium can be applied to the plants, plant parts and/or surrounding where control is desired either simultaneously or in succession at short intervals, for example on the same day. Dimethomorph and fosetyl-aluminium may be applied to the plant, one or more parts thereof (such as leaves or seeds) , or the surrounding in any order. Each compound may be applied just once or a plurality of times. Preferably, each of dimethomorph and fosetyl-aluminium is applied a plurality of times, in particular from 1 to 5 times, more preferably 2 times.
  • Dimethomorph and fosetyl-aluminium may be applied in any desired sequence, any combination, consecutively or simultaneously.
  • dimethomorph and fosetyl-aluminium may be applied as a composition containing dimethomorph and fosetyl-aluminium, in which case dimethomorph and fosetyl-aluminium may each be obtained from a separate formulation source and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry) , optionally with other pesticides, or dimethomorph and fosetyl-aluminium may be provided as a single formulation mixture source (known as a pre-mix, concentrate, formulated compound (or product) ) , and optionally mixed together with other pesticides.
  • compositions according to the present invention are distinguished by the fact that they are especially well tolerated by plants and are environmentally friendly.
  • compositions 8 and 9 were prepared for comparison purposes and are not examples of the present invention.
  • Composition 1 WDG 10%fostvl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 2 WDG 20%fosetvl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 3 WDG 30%fosetvl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 4 WDG 50%fosetvl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 5 WDG 60%fosetvl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 6 WDG 70%fosetvl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 7 SC 50%fosetvl-aluminium
  • a suspension concentrate (SC) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 8 WDG 0%fosetyl-aluminium
  • a water dispersible granule (WDG) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Composition 9 SC 0%fosetyl-aluminium
  • a suspension concentrate (SC) formulation was prepared having the following composition:
  • Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
  • Example 1 The compositions prepared in Example 1 were each diluted with water. Three samples of 20 mg of the resulting dilution were taken and dripped on to a glass plate and left to dry at room temperature. The three dried samples were then irradiated with UV light for 0, 25 and 100 minutes. After the irradiation, the sample was washed from the glass plate with 4mL dimethyl sulfoxide (DMSO) by the application of ultrasound. The sample was separated into the E and Z isomers ofdimethomorph by HPLC. The amounts of the E and Z isomers of dimethomorph were measured by the peak areas and the percentage of the Z isomer of dimethomorph present was determined for each sample. The results are shown in Table 1 below.
  • DMSO dimethyl sulfoxide
  • compositions indicated below were prepared and then each diluted with water and sprayed on the plants.
  • Composition A A:
  • Composition B is a composition of Composition B:
  • Composition C is a composition having Composition C:
  • compositions B and C were used for comparison purposes only and are not embodiments of the present invention.
  • Control compositions prepared according to Composition A, but without dimethomorph and fostyl-aluminium were also prepared, again for comparison purposes.
  • One set of plants was stored in the dark and another set of plants was stored under sunlight. Both sets of plants were held in a greenhouse at 15°C and 80%relative atmospheric humidity for 7 days.
  • compositions B and C and the Control exhibited a significantly reduced fungicidal effect when the treated plants were irradiated with sunlight.
  • the presence of both dimethomorph and fosetyl-aluminium in Composition A provided a high degree of fungicidal activity in both the dark conditions and when irradiated with sunlight.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A method of reducing the E/Z isomerization of dimethomorph is provided, the method comprising applying dimethomorph together with fosetyl-aluminium. There is also provided a method of reducing the instability of the fungicidal activity in the presence of light of dimethomorph, the method comprising contacting dimethomorph with fosteyl-aluminium. There is further provided a method of preventing or reducing fungal infestations of plants at a locus, the method comprising applying to the locus dimethomorph and fosetyl-aluminium. A composition comprises dimethomorph and fosetyl-aluminium.

Description

[Title established by the ISA under Rule 37.2] AGENT AND METHOD FOR REDUCING E/Z ISOMERIZATION OF DIMETHOMORPH
Cross Reference of related application
The present application claims the priority of UK Patent Application No. GB 1515894.2, filed on September 08, 2015, the contents of which are incorporated herein by reference in its entirety.
The present invention provides an agent for reducing the E/Z isomerization of dimethomorph. The invention further relates to a composition comprising an E and/or a Z isomer of dimethomorph and a conversion agent. The present invention also relates to a method of reducing the E/Z isomerization of dimethomorph.
Agrochemical active compounds such as pesticides are frequently exposed to solar irradiation after application in the open. In the case of some active compounds, this leads to a reduction in their pesticidal activity.
(EZ) -4- [3- (4-chlorophenyl) -3- (3, 4-dimethoxyphenyl) acryloyl] morpholine, having the common name dimethomorph, is a known fungicide. Dimethomorph can exist as the E and as the Z isomer, as represented below.
Figure PCTCN2016097360-appb-000001
However, only the Z isomer of dimethomorph is intrinsically active as a fungicide. By irradiation by light, isomerization of the Z isomer originally applied to the E isomer occurs.
It has been found that, upon irradiation by light, dimethomorph loses activity. More particularly, the effects of irradiation of dimethomorph by light are to convert the Z isomer to the E isomer, leading to the loss of fungicidal activity.
Consequently, there is a need for a technique to increase the stability of dimethomorph when exposed to light. In particular, there is a need for a technique to reduce the isomerization of dimethomorph upon exposure to light, more especially E/Z isomerization.
Surprisingly, it has now been found that the E/Z isomerization of dimethormorph upon exposure to light can reduced by the use of an agent, in particular fosetyl-aluminium. In particular, it has been found that applying dimethomorph and fosetyl-aluminium to a locus to be treated, for example by way of a composition comprising both dimethomorph and fosetyl-aluminium, significantly reduces the isomerization of dimethomorph, in particular the conversion of the Z isomer to the E isomer, upon exposure to light. This in turn maintains the fungicidal activity of the dimethomorph active ingredient.
Accordingly, in a first aspect, the present invention provides a method of reducing the E/Z isomerization of dimethomorph, the method comprising applying dimethomorph together with fosetyl-aluminium.
In a second aspect, the present invention provides a method of reducing the instability of the fungicidal activity in the presence of light of dimethomorph, the method comprising contacting dimethomorph with fosteyl-aluminium.
In a further aspect, the present invention provides a method of preventing or reducing fungal infestations of plants at a locus, the method comprising applying to the locus dimethomorph and fosetyl-aluminium.
In a still further aspect, the present invention provides a composition comprising dimethomorph and fosetyl-aluminium.
Still further, the present invention provides the use of fosetyl-aluminium to reduce the E/Z isomerization of dimethomorph.
E/Z isomerization of dimethomorph is understood as meaning the conversion of a double bond from the E isomer into the Z isomer or from the Z isomer into the E isomer. It has been found that the presence of fosetyl-aluminium significantly reduces the conversion of the Z isomer of dimethomorph to the E isomer. In addition, it has been found that, in the  case of a mixture of the E and Z isomers of dimethomorph, the presence of fosetyl-aluminium can increase the amount of Z isomer present over time.
A reduction in E/Z isomerization of dimethomorph is achieved if the weight ratio of Z to E isomer of the dimethomorph in the presence of fosetyl-aluminium reduces more slowly compared with the change in the said ratio without the presence of fosetyl-aluminium, or the weight ratio of the Z isomer to E isomer remains the same or increases from its initial value.
In the present invention dimethomorph may be employed or be present in the form of the E isomer, the Z isomer or a combination of the two isomers. The E and the Z isomers may be present in the dimethomorph component in any relative amounts. The E or the Z isomer of dimethomorph may each be present in the composition in an amount of at least 5 wt. %, preferably of at least 10 wt. %, more preferably of at least 20 wt. %, still more preferably of at least 30 wt. %, more preferably still of at least 40 wt. %, more particularly preferably of at least 50 wt. %, based on the total amount of the E and Z isomers of dimethomorph. These values relate to the amount of the isomers of dimethomorph present initially, that is at the time the dimethomorph is combined with or contacted by fosetyl-aluminium.
In one aspect, the present invention provides a composition comprising dimethomorph and fosetyl-aluminium. Dimethomorph may be present in the composition in any suitable amount to provide the required fungicidal activity. Dimethomorph may be present in the composition in an amount of at least 0.1 wt. %, more preferably at least 1 wt. %, still more preferably at least 2 wt. %, more preferably at least 3 wt. %. Dimethmorph may be present in an amount of up to 99 wt. %, preferably up to 90 wt. %, more preferably up to 80 wt. %, still more preferably up to 75 wt. %. The amount of dimethomorph may be from 0.1 wt. %to 99 wt. %of the composition, preferably from 1 wt. %to 70 wt. %, more preferably from 1 wt. %to 50 wt. %, still more preferably from 1 wt. %to 30 wt. %, more preferably still from 1 wt. %to 10 wt. %. In one embodiment, dimethomorph is present in the composition in an amount of 7 wt. %of the composition.
As discussed above, the presence of fosetyl-aluminium reduces or prevents the conversion of the Z isomer of dimethomorph into the E isomer and can promote the  conversion of the E isomer to the Z isomer. Without wishing to be bound by any particular theory, it is believed that fosetyl-aluminium can produce radicals which attack the double bond of the E isomer of dimethomorph and allow single bond rotation. Fosetyl-aluminium may be employed in the pure form, as a technical grade mixture.
As noted above, in one aspect the present invention provides a composition comprising dimethomorph and fosetyl-aluminium. In the composition of the present invention, fosetyl-aluminium may be present in any suitable amount to maintain the desired fungicidal activity of the dimethomorph fungicide. Fosetyl-aluminium may be present in an amount of from 0.1 wt. %, preferably from 1 wt. %, more preferably from 5 wt. %, still more preferably from 10 wt. %, more preferably still from 20 wt. %of the composition. Fosetyl-aluminium may be present in an amount of up to 99 wt. %, preferably up to 90 wt. %, more preferably up to 80 wt. %, still more preferably up to 75 wt. %, more preferably still up to 70 wt. %. Fosetyl-aluminium may be present in the composition in an amount of from 0.1 wt. %to 99 wt. %, preferably from 1 wt. %to 80 wt. %, more preferably from 30 wt. %to 70 wt. %, still more preferably from 50 wt. %to 60 wt. %.
As noted above, in the present invention, the action of fosetyl-aluminium is to reduce the conversion of the Z isomer of dimethomorph to the E isomer and to increase the conversion of the E isomer to the Z isomer. In the present invention, initially dimethomorph may be used in the form of the Z isomer, the E isomer or a mixture of the two isomers. In the case that the Z isomer of dimethomorph is present in the initial dimethomorph material, the action of fosetyl-aluminium is to maintain the presence of the Z isomer. In the case that the E isomer of dimethomorph is present in the initial dimethomorph material, the action of fosetyl-aluminium is to convert E isomer to Z isomer, thereby maintaining or increasing the amount of Z isomer present.
It is preferred to use dimethomorph in a form that comprises at least in part the Z isomer. In this way, the dimethomorph is fungicidally active from the start of the use.
Preferably, the initial dimethomorph material comprises at least 10 wt. %of the Z isomer, more preferably at least 20 wt. %, still more preferably at least 30 wt. %, more preferably still at least 40 wt. %, particularly preferably at least 50 wt. %. The initial  dimethomorph material may contain higher amounts of the Z isomer, such as at least 60 wt. %, 70 wt. %, 80 wt. %or 90 wt. %. The initial dimethomorph material may consist essentially of the Z isomer. Alternatively, the initial dimethomorph material may consist essentially of the E isomer, although this is not a preferred embodiment.
Under the effect of the fosetyl-aluminium, the amount of the Z isomer generally changes, more preferably increases. Preferably, fosetyl-aluminum is used in an amount such that, after contact with dimethomorph, the Z isomer of dimethomorph is present in an amount of at least 50 wt. %of the dimethomorph material, more preferably of at least 60 wt. %, still more preferably of at least 70 wt. %, more preferably still of at least 80 wt. %, with at least 85 wt. %, and at least 90 wt. %being particularly preferred. The Z isomer, having the higher pesticidal activity, is preferably present in excess.
The present invention may employ a composition comprising dimethomorph and fosetyl-aluminium. Alternatively, or in addition, the present invention may employ dimethomorph and fosetyl-aluminium provided by way of separate compositions.
The compositions employed in the present invention may be formulated in any of the types conventional for agrochemical formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The type of formulation depends on the particular intended use and should provide a fine and uniform distribution of the active ingredients, fosetyl-aluminium and dimethomorph. Examples of suitable composition types are water-soluble concentrates (SL) , emulsifiable concentrates (EC) , emulsions (EW) , micro-emulsions (ME) , suspension concentrates (SC) , oil-based suspension concentrates (OD) , flowable suspensions (FS) , water-dispersible granules (WG) , water-soluble granules (SG) , wettable powders (WP) , water-soluble powders (SP) , granules (GR) , encapsulated granules (CG) , fine granules (FG) , macrogranules (GG) , aqueous suspo-emulsions (SE) , capsule suspensions (CS) and microgranules (MG) . Preferred formulation types are water-dispersible granules (WG) and suspension concentrates (SC) .
As noted above, as an alternative to the composition of the present invention, the fosetyl-aluminium and dimethomorph may be employed separately, for example by being applied as separate formulations to a locus or by being combined prior to application to the  locus, for example when preparing a tank mix. In this case, fosetyl-aluminium and dimethomorph may each be employed in one of the above formulation types.
The formulations may further comprise auxiliaries conventional for plant protection compositions as known in the art, the choice of the auxiliaries depending on the type of formulation and its intended use. Typical auxiliaries include extenders, carriers, solvents, surfactants, stabilizers, anti-foaming agents, anti-freezing agents, preservatives, antioxidants, colourants, thickeners, solid adherents and inert fillers. Such auxiliaries are known in the art and are commercially available. Their use in the formulation of the compositions of the present invention will be apparent to the person skilled in the art.
The compositions may further comprise one or more inert fillers. Such inert fillers are known in the art and available commercially. Suitable fillers include, for example, natural ground minerals, such as kaolin, alumina, talc, chalk, quartz, attapulgite, montmorillonite, and diatomaceous earth, or synthetic ground minerals, such as highly dispersed silicic acid, aluminum oxide, silicates, and calcium phosphates and hydrogen phosphates. Suitable inert fillers for granules include, for example, crushed and fractionated natural minerals, such as calcite, marble, pumice, sepiolite, and dolomite, or synthetic granules of inorganic and organic ground materials, as well as granules of organic material, such as sawdust, coconut husks, corn cobs, and tobacco stalks.
The compositions optionally include one or more surfactants, which are preferably non-ionic, cationic and/or anionic in nature and surfactant mixtures which have good emulsifying, dispersing and wetting properties. The selection of surfactants depends upon the type of formulation and the intended use. Suitable surfactants are known in the art and are commercially available.
Suitable anionic surfactants can be both so-called water-soluble soaps and water-soluble synthetic surface-active compounds. Soaps which may be used are the alkali metal, alkaline earth metal or substituted or unsubstituted ammonium salts of higher fatty acid (C10 to C22) , for example the sodium or potassium salt of oleic or stearic acid, or of natural fatty acid mixtures. The surfactant can be an emulsifier, dispersant or wetting agent of ionic or nonionic type. Examples which may be used are salts of polyacrylic acids, salts of lignosulphonic acid, salts of phenylsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols, especially alkylphenols, sulphosuccinic ester salts, taurine derivatives,  especially alkyltaurates, or phosphoric esters of polyethoxylated phenols or alcohols. The presence of at least one surfactant is generally required when the active compound and/or the inert carrier and/or auxiliary/adjuvant are insoluble in water and the vehicle for the final application of the composition is water.
The composition optionally further comprises one or more polymeric stabilizers. The suitable polymeric stabilizers that may be used in the present invention include, but are not limited to, polypropylene, polyisobutylene, polyisoprene, copolymers of monoolefins and diolefins, polyacrylates, polystyrene, polyvinyl acetate, polyurethanes or polyamides. Suitable stabilizers are known in the art and commercially available.
The surfactants and polymeric stabilizers mentioned above are generally believed to impart stability to the composition, in turn allowing the composition to be formulated, stored, transported and applied.
Suitable anti-foams include all substances which can normally be used for this purpose in agrochemical compositions. Suitable anti-foam agents are known in the art and are available commercially. Particularly preferred antifoam agents are mixtures of polydimethylsiloxanes and perfluroalkylphosphonic acids, such as the silicone anti-foam agents available from GE or Compton.
Suitable organic solvents are selected from all customary organic solvents which thoroughly dissolve the active compounds employed. Again, suitable organic solvents for dimethomprph and fosetyl-aluminium are known in the art. The following may be mentioned as being preferred: N-methyl pyrrolidone, N-octyl pyrrolidone, cyclohexyl-l-pyrrolidone; or SOLVESSOTM200, a mixture of paraffinic, isoparaffinic, cycloparaffinic and aromatic hydrocarbons. Suitable solvents are commercially available.
Suitable preservatives include all substances which can normally be used for this purpose in agrochemical compositions of this type and again are well known in the art. Suitable examples that may be mentioned include 
Figure PCTCN2016097360-appb-000002
 (from Bayer AG) and 
Figure PCTCN2016097360-appb-000003
 (from Bayer AG) .
Suitable antioxidants are all substances which can normally be used for this purpose in agrochemical compositions, as is known in the art. Preference is given to butylated hydroxytoluene.
Suitable thickeners include all substances which can normally be used for this purpose in agrochemical compositions. For example xanthan gum, polyvinyl alcohol  (PVOH) , cellulose and its derivatives, clay hydrated silicates, magnesium aluminum silicates or a mixture thereof. Again, such thickeners are known in the art and available commercially.
The composition can be applied with the methods known in the art. These methods include misting, dusting, scattering, brushing, pouring, coating, spraying, dipping, soaking, injection and irrigation.
The fosetyl-aluminium may be brought into contact with dimethomorph at any stage during the preparation and use of the present invention. For example, the two components may be combined in a single composition. Alternatively, the two components may be applied separately and combined at the locus. As a further alternative, the two components can be brought into contact with each other immediately before use, for example by way of as a tank mix.
The rates of application (use) of fosetyl-aluminium and dimethomorph in the present invention may vary, for example, according to type of use, type of crop, the specific active compounds beign employed, type of plants, but is such that the active compounds in the combination are applied in an effective amount to provide the desired action (such as disease or pest control) . The application rate of the components for a given set of conditions can readily be determined by trials.
A suitable application rate for each of dimethomorph and fosetyl-aluminium lies in the range of from 50 to 5000 gram per hectare. A preferred combined application rate for both dimethomorph and fosetyl-aluminium is from 500 to 5000 gram per hectare.
In general, satisfactory results will be obtained when employing from 100 to 400 gram per hectare, for example 210 gram per hectare, of dimethomorph and from 750 to 3000 gram per hectare, for example 1500 or 1800 gram per hectare, of fosetyl-aluminium.
The present invention may be used for preventing and/or treating diseases caused by a wide range of fungal pathogens, for example, but not limited to:
Pseudoperonos pora cubensis (Downy mildrew) ; Phytophthora; Pseudoperonos pora cubensis on cucurbitaceae, like melon, water melon, curgettes, pumpkin and cucumber;
Phytophthora, Phomopsis viticola, Pseudopeziza, Tracheiphila, blister spot (Pseudomonas syringae pv. papulans) , phytophthora root rot (Phytophthora fragariae) ,  phytophthora root rot (Phytophthora spp. ) , red stele (Phytophthora fragariae) , phytophthora root rot (Phytophthora cinnamomi) , anthracnose fruit rot (Colletotrichum gloeosporioides) , phomopsis canker (Phomopsis vaccini-i) , collar rot (Phytophthora cactorum) , heart rot (Phytophthora cinnamomi) , root rot (Phytophthora nicotinanae var. parasitica) , downy mildew (Plasmopara viticola) , crown rot (Phytophthora cactorum) , root rot (Phytophthora spp. ) , on fruit, for example apple, avocado, black raspberry, blackberry, blueberries, citrus, cranberry, grapes, grapevine, peaches, pineapple, raspberry, red raspberry, and strawberry;
Phytophthora root rot on ginseng;
Phythium, Phytophthora, crown and root rot (Phytophthora spp. ) , Phytophthora root rot (Phytophthora cinnamomi) , aerial phytophthora (Phytophthora spp. including, Phytophthora ramorum, Phytophthora drechsleri, Phytophthora nicotianae and Phytophthora parasitica) , phytophthora root, crown and stem rot (Phytophthora spp. ) , downy mildew (Bremia, Pseudoperonospora, Peronospora and Plasmopara spp. ) , Downy mildew (Peronospora arborescens) , Downy mildew (Pseudoperonospora humuli) on ornamentals;
blue mould (Peronospora tabacina) on tobacco;
pythium disease, foliar and basal rot anthracnose, bentgrass deadspot on turf;
Alternaria leaf spot (Alternaria spp. ) , Anthracnose (Colletotrichum spp., Colletotrichum coccodes, Colletotrichum dematium, Colletotrichum gloeosporioides, Glomerella cingulata [teleomorph] , Marssonina panattoniana) , botrytis bunch rot (Botrytis cinerea) , downy mildew (Bremia lactucae, Peronospora farinose f. sp. Spinaciae, Hyaloperonospora parasitica, Peronospora parasitica, Peronospora destructor, Peronospora destructor, Pseudoperonospora cubensis, Bremia lactucae, Peronospora spp. ) , early blight (Alternaria solani) , gummy stem blight (Didymella bryoniae) , late blight (Phytophthora infestans) , leaf blight (Botrytis squamosal) , leaf spot (Phoma andigena var. andina) , phytophthora root rot (Phytophthora sp., P. cryptogea) , purple blotch (Alternaria porri) , septoria leaf spot (Septoria spp. ) , white rust (Albugo occidentalis) on vegetables, for example Chinese cucumber, balsam apple, balsam pear, Belgian endive, bok choy, brassia leaf vegetable, broccoli, brussel sprouts, cabbage, cabbage (Chinese (napa) ) , cabbage (Chinese mustard) , cantaloupe, cauliflower, cavalo broccoli, Chinese waxgourd, citron melon, cucurbits, edible gourds, eggplant, garlic, garlic (great headed) , gherkin, ground cherry, kohlrabi, leek, lettuce, muskmelon, onion, onion (dry bulb) , onion (green) , onion (Welch) , pepino, pepper, potato, rutabaga, shallot, spinach, summer squash, tomatillo, tomato, and  winter squash.
The present invention furthermore finds use in preventing and/or treating diseases caused by fungal pathogens, for example, but not limited to:
Plasmopara viticola (Downy mildrew) on fruit, for example grape;
Phytophthora infestans (Late blight) on vegetables, for example tomato, eggplant, and pepper; and
Pseudoperonospora cubensis (Downy mildrew) on cucurbitaceae, for example melon, water melon, curgettes, pumpkin and cucumber.
The present invention has a range of advantages. First, the rate of Z to E isomerization of dimethomorph is reduced significantly. As a result, the dimethomorph material applied remains active for longer in sunlight. As a further result, the application rate of dimethomrph can be reduced.
Dimethomorph and fosetyl-aluminium can be applied to the plants, plant parts and/or surrounding where control is desired either simultaneously or in succession at short intervals, for example on the same day. Dimethomorph and fosetyl-aluminium may be applied to the plant, one or more parts thereof (such as leaves or seeds) , or the surrounding in any order. Each compound may be applied just once or a plurality of times. Preferably, each of dimethomorph and fosetyl-aluminium is applied a plurality of times, in particular from 1 to 5 times, more preferably 2 times.
Dimethomorph and fosetyl-aluminium may be applied in any desired sequence, any combination, consecutively or simultaneously. In the event dimethomorph and fosetyl-aluminium are applied simultaneously in the present invention, they may be applied as a composition containing dimethomorph and fosetyl-aluminium, in which case dimethomorph and fosetyl-aluminium may each be obtained from a separate formulation source and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry) , optionally with other pesticides, or dimethomorph and fosetyl-aluminium may be provided as a single formulation mixture source (known as a pre-mix, concentrate, formulated compound (or product) ) , and optionally mixed together with other pesticides.
The compositions according to the present invention are distinguished by the fact that  they are especially well tolerated by plants and are environmentally friendly.
The present invention will be further described by way of the following specific examples, which are presented for illustrative purposes only.
In the following examples, the indicated percentages are by weight, unless otherwise stated.
EXAMPLES
Example 1 -Preparation of compositions
The following compositions were prepared. Compositions 8 and 9 were prepared for comparison purposes and are not examples of the present invention.
Composition 1: WDG 10%fostvl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 10%fosetyl-aluminium; 5%Sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%Lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 25%sucrose and 37%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 2: WDG 20%fosetvl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 20 %fosetyl-aluminium; 5 %sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium  sulfate; 1%antifoam; 20%sucrose and 32%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 3: WDG 30%fosetvl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 30%fosetyl-aluminium; 5%sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 17%sucrose and 25%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 4: WDG 50%fosetvl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 50%fosetyl-aluminium; 5%sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 9%sucrose and 13%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 5: WDG 60%fosetvl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 60%fosetyl-aluminium; 5%sodium dodecyl sulfate; 5%fatty  alcohol polyglycolether; 2%lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 6%sucrose and 16%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 6: WDG 70%fosetvl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 70%fosetyl-aluminium; 5%sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 1%sucrose and 1%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 7: SC 50%fosetvl-aluminium
A suspension concentrate (SC) formulation was prepared having the following composition:
7% Dimethomorph; 50% fosetyl-aluminium; 10% propylene glycol; 5%tristyrylphenol ethoxylates; 1%sodium lignosulfonate; 1%carboxymethylcellulose; 1%silicone oil (in the form of a 75%emulsion in water) ; water (balance to 1L) .
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 8: WDG 0%fosetyl-aluminium
A water dispersible granule (WDG) formulation was prepared having the following composition:
7%Dimethomorph; 5%Sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%Lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 30%sucrose and 42%lactose.
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Composition 9: SC 0%fosetyl-aluminium
A suspension concentrate (SC) formulation was prepared having the following composition:
7%Dimethomorph; 10%propylene glycol; 5%tristyrylphenol ethoxylates; 1%sodium lignosulfonate; 1%carboxymethylcellulose; 1%silicone oil (in the form of a 75%emulsion in water) ; water (balance to 1L) .
Dimethomorph as used to form the composition comprised a mixture of the E and Z isomers.
Example 2 -Irradiation and analysis of the isomerization of dimethomorph
The effect of irradiation with light on the compositions of Example 1 was tested as follows:
The compositions prepared in Example 1 were each diluted with water. Three samples of 20 mg of the resulting dilution were taken and dripped on to a glass plate and left to dry at room temperature. The three dried samples were then irradiated with UV light for 0, 25 and 100 minutes. After the irradiation, the sample was washed from the glass plate with 4mL dimethyl sulfoxide (DMSO) by the application of ultrasound. The sample was separated into the E and Z isomers ofdimethomorph by HPLC. The amounts of the E and Z isomers of dimethomorph were measured by the peak areas and the percentage of the Z isomer of dimethomorph present was determined for each sample. The results are shown in Table 1 below.
Table 1
Figure PCTCN2016097360-appb-000004
As can be seen from the data presented in Table 1, the presence of fosetyl-aluminium in the composition reduced the conversion of the E isomer of dimethomorph to the Z isomer and resulted in the amount of the Z isomer increasing over the time of the experiment.
Example 3 Field Trials on vine (Plasmospara viticola)
Young vine plants were sprayed with a conidial suspension of Plasmospara viticola, and incubated at 20℃ and 100%relative atmospheric humidity for 48 hours.
The compositions indicated below were prepared and then each diluted with water  and sprayed on the plants.
Composition A:
7%Dimethomorph (Z isomer) ; 50%fosetyl-aluminium; 5%sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 9%sucrose and 13%lactose.
Composition B:
7%Dimethomorph (Z isomer) ; 5%Sodium dodecyl sulfate; 5%fatty alcohol polyglycolether; 2%Lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 30%sucrose and 42%lactose.
Composition C:
50% fosetyl-aluminium; 5% Sodium dodecyl sulfate; 5% fatty alcohol polyglycolether; 2%Lignosulfonic acid, sodium salt, sulfomethylated; 8%ammonium sulfate; 1%antifoam; 30%sucrose and 42%lactose.
Compositions B and C were used for comparison purposes only and are not embodiments of the present invention.
Control compositions prepared according to Composition A, but without dimethomorph and fostyl-aluminium were also prepared, again for comparison purposes.
One set of plants was stored in the dark and another set of plants was stored under sunlight. Both sets of plants were held in a greenhouse at 15℃ and 80%relative atmospheric humidity for 7 days.
After this time, the severity of the fungal infestation of the plants was examined.  The severity was determined as the percentage of the plant exhibiting a visual fungal infestation. The results are set out in Table 2 below.
Table 2
Figure PCTCN2016097360-appb-000005
As can be seen from the data in Table 2 above, Compositions B and C and the Control exhibited a significantly reduced fungicidal effect when the treated plants were irradiated with sunlight. In contrast, the presence of both dimethomorph and fosetyl-aluminium in Composition A provided a high degree of fungicidal activity in both the dark conditions and when irradiated with sunlight.

Claims (51)

  1. A method of reducing the E/Z isomerization of dimethomorph, the method comprising applying dimethomorph together with fosetyl-aluminium.
  2. The method according to claim 1, wherein dimethomorph is present in the form of the E isomer, the Z isomer or a combination of the E and Z isomers.
  3. The method according to any preceding claim, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 5%by weight of the total amount of dimethomorph present.
  4. The method according to claim 3, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 10%by weight of the total amount of dimethomorph present.
  5. The method according to claim 4, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 40%by weight of the total amount of dimethomorph present.
  6. The method according to any preceding claim, wherein dimethomorph initially comprises at least 10%by weight of the Z isomer.
  7. The method according to claim 6, wherein dimethomorph initially comprises at least 30%by weight ofthe Z isomer.
  8. The method according to any preceding claim, wherein the method employs a composition comprising dimethomorph and fosetyl-aluminium.
  9. The method according to any of claims 1 to 7, wherein dimethomorph and fosetyl-aluminium are applied separately to a locus to be treated.
  10. Amethod ofreducing the instability ofthe fungicidal activity in the presence oflight of dimethomorph, the method comprising contacting dimethomorph with fosteyl-aluminium.
  11. The method according to claim 10, wherein dimethomorph is present in the form of the E isomer, the Z isomer or a combination of the E and Z isomers.
  12. The method according to either of claims 10 or 11, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 5%by weight of the total amount of dimethomorph present.
  13. The method according to claim 12, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 10%by weight of the total amount of dimethomorph present.
  14. The method according to claim 13, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 40%by weight of the total amount of dimethomorph present.
  15. The method according to any of claims 10 to 14, wherein dimethomorph initially comprises at least 10%by weight of the Z isomer.
  16. The method according to claim 15, wherein dimethomorph initially comprises at least 30%by weight of the Z isomer.
  17. The method according to any of claims 10 to 16, wherein the method employs a composition comprising dimethomorph and fosetyl-aluminium.
  18. The method according to any of claims 10 to 16, wherein dimethomorph and fosetyl-aluminium are applied separately to a locus to be treated.
  19. A method of preventing or reducing fungal infestations of plants at a locus, the method comprising applying to the locus dimethomorph and fosetyl-aluminium.
  20. The method according to claim 19, wherein dimethomorph is present in the form of the E isomer, the Z isomer or a combination of the E and Z isomers.
  21. The method according to either of claims 19 or 20, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 5%by weight of the total amount of dimethomorph present.
  22. The method according to claim 21, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 10%by weight of the total amount of dimethomorph present.
  23. The method according to claim 22, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 40%by weight of the total amount of dimethomorph present.
  24. The method according to any of claims 19 to 23, wherein dimethomorph initially comprises at least 10%by weight of the Z isomer.
  25. The method according to claim 24, wherein dimethomorph initially comprises at least 30%by weight of the Z isomer.
  26. The method according to any of claims 19 to 25, wherein the method employs a composition comprising dimethomorph and fosetyl-aluminium.
  27. The method according to any of claims 19 to 26, wherein dimethomorph and fosetyl-aluminium are applied separately to the locus to be treated.
  28. The method according to any of claims 19 to 27, wherein dimethomorph is applied to the locus at a rate of from 100 to 400gram per hectare.
  29. The method according to any of claims 19 to 28, wherein fosetyl-aluminium is applied to the locus at a rate of from 750 to 1000 gram per hectare.
  30. The method according to any of claim s 19 to 29, when appli ed in the treatment or prevention of infestations of:
    Plasmopara viticota (Downy mildrew) on fruit;
    Phytophthora infestans (Late blight) on vegetables; or
    Pseudoperonospora cubensis (Downy mildrew) on cucurbitaceae.
  31. A composition comprising dimethomorph and fosetyl-aluminium.
  32. The composition according to claim 31, wherein dimethomorph is present in the composition in an amount of at least 1%by weight.
  33. The composition according to claim 32, wherein dimethomorph is present in the composition in an amount of at least 3%by weight.
  34. The composition according to any of claims to 31 to 33, wherein dimethomorph is  present in the composition in an amount of up to 90%by weight.
  35. The composition according to claim 34, wherein dimethomorph is present in the composition in an amount of up to 75%by weight.
  36. The composition according to any of claims 31 to 35, wherein fosetyl-aluminium is present in the composition in an amount of at least 1%by weight.
  37. The composition according to claim 36, wherein fosetyl-aluminium is present in the composition in an amount of at least 10%by weight.
  38. The composition according to any of claims to 31 to 37, wherein fosetyl-aluminium is present in the composition in an amount of up to 90%by weight.
  39. The composition according to claim 38, wherein dimethomorph is present in the composition in an amount ofup to 75%by weight.
  40. The composition according to any of claims 31 to 39, wherein dimethomorph is present in the form ofthe E isomer, the Z isomer or a combination ofthe E and Z isomers.
  41. The composition according to any of claims 31 to 40, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 5%by weight of the total amount of dimethomorph present.
  42. The composition according to claim 41, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 10%by weight of the total amount of dimethomorph present.
  43. The composition according to claim 42, wherein the dimethomorph comprises the E isomer or the Z isomer in an amount of at least 40%by weight of the total amount of dimethomorph present.
  44. The composition according to any of claims 31 to 43, wherein the dimethomorph initially comprises at least 10%by weight of the Z isomer.
  45. The composition according to claim 44, wherein dimethomorph initially comprises at least 30%by weight ofthe Z isomer.
  46. Use of fosetyl-aluminium to reduce the E/Z isomerization of dimethomorph.
  47. A method of reducing the E/Z isomerization of dimethomorph sub stantially as hereinbefore described.
  48. A method of reducing the instability of the fungicidal activity in the presence of light of dimethomorph substantially as hereinbefore described.
  49. A method of preventing or reducing fungal infestations of plants at a locus substantially as hereinbefore described.
  50. A composition comprising dimethomorph and fosetyl-aluminium substantially as hereinbefore described.
  51. The use of fosetyl-aluminium to reduce the E/Z isomerization of dimethomorph substantially as hereinbefore described.
PCT/CN2016/097360 2015-09-08 2016-08-30 Agent and method for reducing e/z isomerization of dimethomorph WO2017041643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680032793.2A CN107708421B (en) 2015-09-08 2016-08-30 Reagent and method for reducing E/Z isomerization of dimethomorph

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1515894.2 2015-09-08
GB1515894.2A GB2542134B (en) 2015-09-08 2015-09-08 Agent and method for reducing the E/Z isomerization of dimethomorph

Publications (1)

Publication Number Publication Date
WO2017041643A1 true WO2017041643A1 (en) 2017-03-16

Family

ID=54345933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097360 WO2017041643A1 (en) 2015-09-08 2016-08-30 Agent and method for reducing e/z isomerization of dimethomorph

Country Status (4)

Country Link
CN (1) CN107708421B (en)
GB (1) GB2542134B (en)
TW (1) TWI714627B (en)
WO (1) WO2017041643A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749104A (en) * 2016-11-24 2017-05-31 徐韶康 A kind of preparation method and purposes of dimethomorph stereoisomer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005630A1 (en) * 1987-01-30 1988-08-11 Shell Agrar Gmbh & Co. Kg Fungicidal compositions
US5656630A (en) * 1993-11-15 1997-08-12 American Cyanamid Company Method of combating fungus
CN1314083A (en) * 2000-03-21 2001-09-26 沈阳化工研究院 Sterilizing agent composition
CN1915019A (en) * 2005-08-17 2007-02-21 浙江化工科技集团有限公司 Composition of bactericide
CN101053328A (en) * 2007-05-25 2007-10-17 天津市东方农药有限公司 Bactericide composition containing dimethomorph
WO2012025912A1 (en) * 2010-08-26 2012-03-01 Makhteshim Chemical Works Ltd. Synergistic fungicidal composition
CN104824028A (en) * 2015-05-12 2015-08-12 柳州市耕青科技有限公司 Special rot-resistant medicament for succulent plants, namely astridia velutina
CN104839220A (en) * 2015-05-12 2015-08-19 柳州市耕青科技有限公司 Special anti-rot agent for succulent echeveria desmetiana
CN104839221A (en) * 2015-05-12 2015-08-19 柳州市耕青科技有限公司 Special anti-rot agent for succulent haworthia truncata
CN104855423A (en) * 2015-05-12 2015-08-26 柳州市耕青科技有限公司 Special rot resistant agent for succulent sedum sarmentosum
CN104855426A (en) * 2015-05-12 2015-08-26 柳州市耕青科技有限公司 Special rot resistant agent for succulent ball cactus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548686A (en) * 2007-05-25 2009-10-07 天津市东方农药有限公司 Bactericide composition containing dimethomorph

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005630A1 (en) * 1987-01-30 1988-08-11 Shell Agrar Gmbh & Co. Kg Fungicidal compositions
US5656630A (en) * 1993-11-15 1997-08-12 American Cyanamid Company Method of combating fungus
CN1314083A (en) * 2000-03-21 2001-09-26 沈阳化工研究院 Sterilizing agent composition
CN1915019A (en) * 2005-08-17 2007-02-21 浙江化工科技集团有限公司 Composition of bactericide
CN101053328A (en) * 2007-05-25 2007-10-17 天津市东方农药有限公司 Bactericide composition containing dimethomorph
WO2012025912A1 (en) * 2010-08-26 2012-03-01 Makhteshim Chemical Works Ltd. Synergistic fungicidal composition
CN104824028A (en) * 2015-05-12 2015-08-12 柳州市耕青科技有限公司 Special rot-resistant medicament for succulent plants, namely astridia velutina
CN104839220A (en) * 2015-05-12 2015-08-19 柳州市耕青科技有限公司 Special anti-rot agent for succulent echeveria desmetiana
CN104839221A (en) * 2015-05-12 2015-08-19 柳州市耕青科技有限公司 Special anti-rot agent for succulent haworthia truncata
CN104855423A (en) * 2015-05-12 2015-08-26 柳州市耕青科技有限公司 Special rot resistant agent for succulent sedum sarmentosum
CN104855426A (en) * 2015-05-12 2015-08-26 柳州市耕青科技有限公司 Special rot resistant agent for succulent ball cactus

Also Published As

Publication number Publication date
CN107708421B (en) 2021-04-27
TWI714627B (en) 2021-01-01
CN107708421A (en) 2018-02-16
GB2542134A (en) 2017-03-15
GB201515894D0 (en) 2015-10-21
TW201720304A (en) 2017-06-16
GB2542134B (en) 2020-05-13

Similar Documents

Publication Publication Date Title
KR100838538B1 (en) Fungicidal compositions based on pyridylmethylbenzamide derivatives and at least one complex ¥² inhibiting compound
EP0779030B1 (en) Plant protecting agents
HU224869B1 (en) Novel fungicide composition containing a 2-imidazoline-5-one
EA014774B1 (en) Use of kiralaxyl for protecting phytopathogens and corresponding methods ans compositions
WO2017041643A1 (en) Agent and method for reducing e/z isomerization of dimethomorph
BG66295B1 (en) Fungicide compositions based on pyridylmethylbenzamide and propamocarb derivative
JP4806119B2 (en) Synergistic fungicidal and / or bactericidal composition
US6313121B1 (en) Microbicides
GB2577217A (en) Agent and method for reducing the E/Z isomerization of dimethomorph
TWI723992B (en) Pesticidal composition comprising methomyl and lufenuron
WO2018054396A1 (en) Bactericide composition
WO2015161749A1 (en) A synergistic fungicidal composition comprising cymoxanil and chlorothalonil
GB2532218B (en) Herbicidal composition and method for controlling plant growth
BG61471B1 (en) Method for blight agent fungi control, and composition used in the method
CZ292464B6 (en) Synergistic fungicidal and/or bactericidal composition
US6753339B1 (en) Fungicide compositions
TWI789356B (en) A synergistic fungicidal composition and use thereof
JP2021004176A (en) Bactericidal agent composition and method for controlling crop disease
DK160529B (en) PROCEDURE FOR COMBATING FUNGI AND FUNGICID PREPARATION APPLICABLE TO THE PROCEDURE
CA2569657C (en) Fungicidal composition based on metalaxyl and famoxadone
WO2017041717A1 (en) Fungicidal composition, method and use thereof
BR112017022487B1 (en) SYNERGIC FUNGICIDE COMPOSITION AND USE THEREOF
WO2018176895A1 (en) Pesticide composition containing thiocarbamate compound and thidiazuron
JPS63243007A (en) Fungicide for agricultural and horticultural purposes
DE2745533A1 (en) METHOD OF COMBINING FALSE DEEP FUNGAL INFECTIONS AND ROTATIONAL DISEASES OF CROWNS AND ROOTS, AND FUNGICIDALS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16843581

Country of ref document: EP

Kind code of ref document: A1