WO2017041384A1 - 用于检测伤口感染程度的智能传感器及其制备方法 - Google Patents

用于检测伤口感染程度的智能传感器及其制备方法 Download PDF

Info

Publication number
WO2017041384A1
WO2017041384A1 PCT/CN2015/098612 CN2015098612W WO2017041384A1 WO 2017041384 A1 WO2017041384 A1 WO 2017041384A1 CN 2015098612 W CN2015098612 W CN 2015098612W WO 2017041384 A1 WO2017041384 A1 WO 2017041384A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
smart sensor
indicator
wound
light
Prior art date
Application number
PCT/CN2015/098612
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
Original Assignee
深圳市前海颐老科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海颐老科技有限公司 filed Critical 深圳市前海颐老科技有限公司
Publication of WO2017041384A1 publication Critical patent/WO2017041384A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • the invention relates to a wound first aid device, in particular to a smart sensor for detecting the degree of wound infection and a preparation method thereof.
  • Bandages are materials used to secure and protect the wound. Ordinary bandages come in a variety of styles. The simplest one is a single shed, made of gauze or cotton, for the limbs, tail, head and chest and abdomen. The other is a complex bandage, which can be made into various shapes according to the body part and shape. The material is a double-layer cotton cloth, and cotton of different thickness can be sandwiched between the double-layer cotton cloths, and a cloth strip is arranged around the knot so as to be knotted and fixed, such as an eye. Bandages, back waist bandages, front chest bandages, abdominal bandages, etc.
  • the current bandage is only suitable for dressing and hemostasis. Since there is no smart sensor in the bandage, the degree of infection of the wound cannot be monitored in real time, so that the doctor or the patient cannot understand the degree of infection of the wound through the bandage.
  • the main object of the present invention is to provide a smart sensor for detecting the degree of wound infection and a preparation method thereof, which are applied to a bandage, and are intended to solve the problem that the normal bandage cannot detect the infection degree of the wound in real time during wound dressing and treatment. defect.
  • the present invention provides a smart sensor for detecting a degree of wound infection, the smart sensor comprising a first multimode fiber, a second multimode fiber, and a single mode fiber, the single mode fiber being located first A linear connection is formed between the multimode fiber and the second multimode fiber, wherein:
  • the first multi-film optical fiber is configured to transmit a bundle of combined light including the first wavelength light and the second wavelength light to the single film optical fiber;
  • the surface of the single-mode optical fiber is coated with a PH-sensitive membrane comprising a PH indicator, which detects the pH value of the skin wound and changes the color of the PH-sensitive membrane according to the change of the pH value of the skin wound. Wavelength light is absorbed;
  • the second multimode optical fiber transmits the combined light absorbed by the PH sensitive film in the single mode fiber to a monitoring device, and the monitoring device according to the absorption rate of the first wavelength light and the skin wound according to the PH sensitive film
  • the preset correspondence between PH values determines the degree of infection of the skin wound.
  • the smart sensor is connected to a fiber coupler of the monitoring device through a first multimode fiber, and is connected to a photodiode of the monitoring device through a second multimode fiber, the fiber coupler is connected to The first light source and the second light source of the monitoring device.
  • the fiber coupler combines the second wavelength light generated by the first light source and the second wavelength light generated by the second light source into the combined light, and transmits the combined light to the first Propagation in a multimode fiber.
  • the second wavelength light is used to correct a light propagation path formed between the first multimode fiber, the single mode fiber, and the second multimode fiber.
  • the present invention provides a method for preparing a smart sensor for detecting the degree of wound infection, the preparation method comprising the steps of:
  • the evolved PH indicator is fused with tetraethyl orthosilicate, methyltriethoxysilane and hydrochloric acid as a catalyst to form a pH sensitive solution and stirred uniformly;
  • the single-mode optical fiber is taken out from the pH sensitive liquid, and left to stand at room temperature for a second predetermined time to form a single-mode optical fiber including the PH-sensitive film;
  • the first multimode fiber is linearly connected to the second multimode fiber by the single mode fiber to form a smart sensor.
  • the pH indicator is a bromophenol blue PH indicator, a phenol red PH indicator or a bromocresol red violet pH indicator.
  • the pH indicator is prepared by mixing a pH indicator of bromophenol blue, a pH indicator of phenol red, and a bromocresol red violet pH indicator in a weight ratio of 1:1:1.
  • the weight ratio of the pH indicator, tetraethyl orthosilicate, methyltriethoxysilane to hydrochloric acid is 2:1:1:1.
  • the first preset time is 2 to 3 hours
  • the second preset time is 72 hours.
  • the single mode fiber has a length in the range of 2 cm Up to 4 cm, diameter 100 ⁇ m, the length of the first multimode fiber and the second multimode fiber are respectively 2 cm To 4 cm, the diameter is 200 ⁇ m, respectively, and the thickness of the pH-sensitive film 2020 is 500 ⁇ m to 600 ⁇ m.
  • the smart bandage for detecting the degree of wound infection adopts the above technical solution, and achieves the following technical effects: the smart bandage can detect the degree of wound infection by the smart sensor provided by the invention, so that the doctor or The patient's timely understanding of the condition of the wound will help the doctor or patient to make a targeted treatment plan based on the monitored condition.
  • FIG. 1 is a schematic plan view showing a preferred embodiment of a smart sensor for detecting a degree of wound infection according to the present invention
  • FIG. 2 is a schematic plan view showing a preferred embodiment of the smart sensor for detecting the degree of wound infection of the present invention
  • FIG. 3 is a schematic view showing a state in which a smart sensor for detecting a degree of wound infection of the present invention is located in a skin wound;
  • Figure 4 is a schematic illustration of a preferred embodiment of a smart sensor and connected monitoring device for detecting the extent of wound infection in accordance with the present invention.
  • Figure 5 is a flow chart of a preferred embodiment of a method of making a smart sensor for detecting the extent of wound infection in accordance with the present invention.
  • Fig. 1 is a schematic plan view showing a preferred embodiment of the smart sensor of the present invention for detecting the degree of wound infection in a smart bandage.
  • the smart bandage includes, but is not limited to, the bandage body 2 and the smart sensor 20 disposed on the attachment surface of the bandage body 2.
  • the adhesive surface is provided with a medical adhesive, so that the bandage body 2 can be attached to the skin of the human body without falling off.
  • the smart sensor 20 can be located anywhere on the attachment surface of the bandage body 2 as long as the bandage body 2 can completely cover the smart sensor 20.
  • the bandage body 2 can be, but is not limited to, a medical tape or gauze.
  • the smart sensor 20 includes a first multimode fiber 201, a second multimode fiber 203, and a single mode fiber 202.
  • the single mode fiber 202 is located in the first multimode fiber 201 and the second plurality.
  • a linear connection is formed between the mode fibers 203.
  • the first multimode fiber 201, the second multimode fiber 203, and the single mode fiber 202 are cylindrical.
  • the surface of the single mode fiber 202 is covered with a layer of PH sensitive film 2020 prepared by a sol and gel method (please refer to FIG. 5).
  • the pH sensitive film 2020 includes one or more pH indicator agents, specifically, The pH indicator comprises a bromophenol blue indicator, a phenol red indicator or a bromocresol red purple indicator.
  • the pH indicator comprises a bromophenol blue indicator, a phenol red indicator or a bromocresol red purple indicator.
  • a mixture of three pH indicators may be used, that is, a PH indicator of bromophenol blue, a PH indicator of phenol red, and a PH indicator of bromocresol red purple according to the weight fraction.
  • the ratio is 1:1:1, and the indicator mixed by the three pH indicators can detect the pH in the range of 2-9, and the maximum absorption wavelength to light is 590nm, and the wavelength of 860nm is Light has no absorption function.
  • the smart sensor 20 can monitor the pH of the skin wound 3 (which can be monitored from a pH of 2.0 to 9.0).
  • the degree of infection of the skin wound can be determined. For example, a pH between 4.0 and 4.5 is normal, indicating no infection of the skin wound, and a pH between 7.5 and 9.0 is abnormal, indicating an inflammation of the skin wound.
  • the color of the pH indicator on the pH sensitive film 2020 changes, so that the absorption rate of the first wavelength light also changes.
  • FIG. 3 is a schematic view showing a state in which the smart sensor is located in the skin wound when the smart bandage for detecting the degree of wound infection of the present invention is used.
  • the shape of the bandage body 2 may be, but not limited to, a rectangle, a square, a circle, or the like.
  • the smart sensor 20 in order to facilitate monitoring the degree of infection of the wound, is located in the middle of the bandage body such that the bandage body is just pasted to the wound of the skin 2, and the smart sensor 20 is located in the wound of the skin 3. The location (or the most severe area of the wound). When the bandage body 2 is attached to the wound of the skin 2, the smart sensor 20 is located within the wound of the skin 3.
  • FIG 4 is a schematic illustration of a preferred embodiment of a smart sensor and connected monitoring device for detecting the extent of wound infection in accordance with the present invention.
  • the monitoring device 1 includes a photodiode 10, a first light source 121, a second light source 122, a fiber coupler 14, a processor 16, and a display device 18.
  • the first light source 121 and the second light source 122 are connected to the fiber coupler 14
  • the photodiode 10 is connected to the processor 16
  • the processor 16 is connected to the display device 18 .
  • the first light source 121 is configured to generate first wavelength light and transmit the first wavelength light to the fiber coupler 14.
  • the first wavelength light is 590 nm light.
  • the second light source 122 is configured to generate second wavelength light and transmit the second wavelength light to the fiber coupler 14.
  • the second wavelength light is light having a wavelength of 860 nanometers.
  • the fiber coupler 14 combines the first wavelength light and the second wavelength light into a bundle of combined light, and corrects light formed between the first multimode fiber 201, the single mode fiber 202, and the second multimode fiber 203. Propagation path. Specifically, the fiber coupler 14 passes two different wavelengths of light (ie, the first wavelength light and the second wavelength light) into a bundle of combined light by refracting and transmitting, that is, making two different wavelengths The light propagation path is consistent.
  • the photodiode 10 is configured to receive combined light and convert the first wavelength light and the second wavelength light (ie, the optical signal) in the combined light into corresponding electrical signals.
  • the processor 16 is configured to acquire, from the photodiode 10, an electrical signal corresponding to the first wavelength light and an electrical signal corresponding to the second wavelength light, and the electrical signal corresponding to the first wavelength light and the second The wavelength light is analyzed and processed corresponding to the converted electrical signal to obtain a monitoring result of the degree of infection of the skin wound.
  • the display device 18 is configured to display the first wavelength light corresponding to the converted electrical signal and the second wavelength light corresponding to the converted electrical signal. Further, the display device 18 is further configured to display the PH sensitive film 2020 to the first wavelength The rate of change in light absorption and the degree of healing of the wound.
  • the fiber coupler 14 is connected to the first multimode fiber 201, and the second multimode fiber 203 is connected to the photodiode 10, and the fiber coupler 14 combines light (ie, light having a wavelength of 590 nm and A bundle of combined light of 860 nm wavelength light is emitted to the first multimode fiber 201 such that the combined light passes through the first multimode fiber 201, the single mode fiber 202, and the second multimode fiber 203.
  • light ie, light having a wavelength of 590 nm and A bundle of combined light of 860 nm wavelength light is emitted to the first multimode fiber 201 such that the combined light passes through the first multimode fiber 201, the single mode fiber 202, and the second multimode fiber 203.
  • the PH sensitive film 2020 can absorb the first wavelength light to different extents, and the absorption rate of the first wavelength light by the PH sensitive film 2020 is affected by Changes in the pH of the skin wound are affected.
  • the PH-sensitive film 2020 has a preset correspondence relationship between the absorption rate of the first wavelength light and the pH value of the skin wound. Specifically, the PH value of the skin wound is larger, and the PH-sensitive film 2020 is first. The higher the absorption rate of wavelength light.
  • the pH-sensitive film 2020 has a preset correspondence relationship between the absorption rate of the first wavelength light and the pH value of the skin wound according to a large number of experimental tests, and is stored in the monitoring device 1. For example, when the pH value is 2, the absorption rate of the first sensitive light 2020 is 0, and if the pH is 4, the absorption rate of the first sensitive light by the PH sensitive film 2020 is 10%. .
  • the photodiode 10 obtains first wavelength light from the second multimode fiber 203, and converts the first wavelength light into an electrical signal according to the first
  • the electrical signal converted into a wavelength of light is used to calculate the absorption rate of the first wavelength light by the pH sensitive film 2020.
  • the electrical signal refers to the photocurrent generated on the photodiode 10 due to the illumination of the first wavelength light.
  • the intensity of the first wavelength light is proportional to the photocurrent.
  • the PH-sensitive film 2020 absorbs the first-wavelength light to different degrees, and weakens the intensity of the first-wavelength light.
  • the absorption rate of the first wavelength light by the pH sensitive film 2020 is the rate of change of the photocurrent generated by the first wavelength light being irradiated onto the photodiode 10.
  • a c/b, where b is the photocurrent obtained by the photodiode 10 when the first wavelength light is not absorbed, and if c is the first wavelength light, the PH is When the sensitive film 2020 absorbs to different degrees, the photocurrent obtained by the photodiode 10, a is the rate of change of the photocurrent, that is, the absorption rate of the first sensitive light by the PH sensitive film 2020.
  • the PH sensitive film 2020 does not absorb the second wavelength light, and the second multimode fiber 201 can be corrected by the second wavelength light. Whether the light propagation path formed between the single mode fiber 202 and the second multimode fiber 203 is correct. Specifically, the photodiode 10 obtains second wavelength light from the second multimode fiber 203 and converts the second wavelength light into an electrical signal. The electrical signal refers to the photocurrent generated on the photodiode 10 due to the illumination of the second wavelength light.
  • the fiber coupler 14 is adjusted such that the second wavelength light is illuminated.
  • the generated photocurrent is within a preset range.
  • Fig. 5 is a flow chart showing a preferred embodiment of a method for preparing a smart sensor for detecting the degree of wound infection of the present invention.
  • the method for preparing the smart sensor 20 for detecting the degree of wound infection includes the steps of:
  • Step S21 immersing the pH indicator in deionized water to purify
  • the pH indicator may be one of a PH indicator of bromophenol blue, a pH indicator of phenol red, and a pH indicator of bromocresol red purple.
  • three PH indicators may be mixed, that is, a PH indicator of bromophenol blue, a PH indicator of phenol red, and a bromocresol red purple.
  • the PH indicator is mixed according to a weight ratio of 1:1:1.
  • the indicator mixed by the three pH indicators can detect the pH in the range of 2-9, and the maximum absorption wavelength to light is 590nm. And has no absorption function for light of 860 nm wavelength;
  • Step S22 merging the evolved PH indicator with tetraethyl orthosilicate, methyltriethoxysilane and using hydrochloric acid as a catalyst to form a pH sensitive solution and stirring uniformly;
  • the weight ratio of the pH indicator, tetraethyl orthosilicate, methyltriethoxysilane and hydrochloric acid is 2:1:1:1, so as to reach the range of 2-9.
  • the pH value is tested and the maximum absorption wavelength of light is 590 nm, while the wavelength of 860 nm is not absorbed.
  • Step S23 immersing the single-mode optical fiber 202 in the pH sensitive liquid for a first predetermined time, so that the pH sensitive liquid sufficiently penetrates into the single-mode optical fiber 202;
  • the first preset time is 2 to 3 hours
  • the single mode fiber 202 has a length of 2-4 cm and a diameter of 100 ⁇ m
  • Step S24 taking the single-mode optical fiber 202 from the PH-sensitive liquid and placing it at room temperature for a second predetermined time to dry to form a single-mode optical fiber 202 including the PH-sensitive film 2020;
  • the second preset time is 72 hours, and the thickness of the PH-sensitive film 2020 is 500 ⁇ m to 600 ⁇ m.
  • Step S25 forming a first linear connection between the first multimode fiber 201 and the second multimode fiber 203 by the single mode fiber 202 to form the smart sensor 20; in this embodiment, the first multimode fiber 201 and The second multimode fiber 203 has a length of 2-4 cm and a diameter of 200 ⁇ m, respectively.
  • a seamless linear soldering is formed between the first multimode fiber 201, the single mode fiber 202, and the second multimode fiber 203 by using an existing fiber bonding technique.
  • the first multimode fiber 201, the single mode fiber 202, and the second multimode fiber 203 are all fabricated using existing processes, such as polymer coated glass optical fibers and polymethyl methacrylate (PMMA) fibers.
  • PMMA polymethyl methacrylate
  • the degree of infection of the wound 3 can be judged. For example, a pH between 4.0 and 4.5 is normal, indicating that there is no infection of wound 3, and a pH between 7.5 and 9.0 is abnormal, indicating that the wound 3 is inflamed.
  • the pH of the wound 3 changes, the color of the pH indicator on the pH sensitive film 2020 changes, so that the absorption rate of the first wavelength light also changes.
  • the smart sensor 20 can detect the degree of infection of the skin wound.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Materials For Medical Uses (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种用于检测伤口感染程度的智能传感器(20)及其制备方法。该智能传感器(20)包括第一多模光纤(201)、第二多模光纤(203)及单模光纤(202)。单模光纤(202)位于第一多模光纤(201)及第二多模光纤(203)之间并形成直线连接。其中,所述单模光纤(202)表面涂覆有一层包括PH指示剂的PH敏感膜(2020),该PH敏感膜(2020)检测皮肤伤口的PH值,并根据皮肤伤口的PH值的变化导致PH敏感膜(2020)颜色的变化对第一波长光进行吸收。第二多模光纤(203)将被所述单模光纤(202)中的PH敏感膜(2020)吸收后的第一波长光发送至监测设备(1)来确定皮肤伤口的感染程度。智能传感器(20)可以检测伤口感染程度,使得医生或患者及时了解伤口感染的情况,有利于医生或患者根据监测情况做出针对性的治疗方案。

Description

用于检测伤口感染程度的智能传感器及其制备方法
技术领域
本发明涉及伤口急救装备,尤其涉及一种用于检测伤口感染程度的智能传感器及其制备方法。
背景技术
绷带是用以固定和保护伤口的材料。普通绷带有多种类型,最简单的一种是单棚带,由纱布或棉布制成,适用于四肢、尾部、头部以及胸腹部。另一种是复绷带,可以按照身体部位和形状而制成各种形状,材料为双层棉布,双层棉布之间可夹不同厚度的棉花,周边有布条,以便打结固定,如眼绷带、背腰绷带、前胸绷带、腹绷带等。
然而目前绷带仅仅适用于包扎止血作用,由于目前绷带中不具有智能传感器,因而无法对伤口的感染程度进行实时监测,从而使医生或患者无法通过绷带了解伤口的感染程度。
发明内容
本发明的主要目的在于提供一种用于检测伤口感染程度的智能传感器及其制备方法,将其应用于绷带中,旨在解决普通绷带在伤口包扎与治疗过程中无法实时检测伤口的感染程度的缺陷。
为实现上述目的,本发明提供了一种用于检测伤口感染程度的智能传感器,所述智能传感器包括第一多模光纤、第二多模光纤及单模光纤,所述单模光纤位于第一多模光纤及第二多模光纤之间并形成直线连接,其中:
所述第一多膜光纤,用于将一束包含第一波长光与第二波长光的组合光传输至单膜光纤;
所述单模光纤表面涂覆有一层包括由PH指示剂的PH敏感膜,该PH敏感膜检测皮肤伤口的PH值,并根据皮肤伤口的PH值的变化导致PH敏感膜颜色的变化对第一波长光进行吸收;
所述第二多模光纤将被所述单模光纤中的PH敏感膜吸收后的组合光发送至监测设备,该监测设备根据所述PH敏感膜对第一波长光的吸收率与皮肤伤口的PH值之间的预设对应关系来确定皮肤伤口的感染程度。
优选的,所述智能传感器通过第一多模光纤连接至所述监测设备的光纤耦合器上,并通过第二多模光纤连接至所述监测设备的光电二级管,该光纤耦合器连接至所述监测设备的第一光源和第二光源。
优选的,所述光纤耦合器将所述第一光源产生的第二波长光及所述第二光源产生的第二波长光汇集成所述组合光,并将所述组合光发射到所述第一多模光纤中传播。
优选的,所述第二波长光用于校正由所述第一多模光纤、单模光纤及第二多模光纤之间形成的光传播路径。
为实现上述目的,本发明提供了一种用于检测伤口感染程度的智能传感器的制备方法,所述制备方法包括步骤:
将PH指示剂浸渍在去离子的水中净化;
将进化后的PH指示剂与原硅酸四乙酯、甲基三乙氧基硅烷并以盐酸为催化剂融合成PH敏感液并搅拌均匀;
将单模光纤在PH敏感液中浸渍第一预设时间,使PH敏感液充分渗透到单模光纤中;
将单模光纤从PH敏感液中取出,并在室温下放置第二预设时间晾干后形成包括有PH敏感膜的单模光纤;
通过所述单模光纤将第一多模光纤与第二多模光纤形成直线连接以制成智能传感器。
所述PH指示剂是一种溴酚蓝PH指示剂、酚红PH指示剂或溴甲酚红紫PH指示剂。
优选的,所述PH指示剂由将溴酚蓝的PH指示剂、酚红的PH指示剂和溴甲酚红紫PH指示剂按照重量分数比为1:1:1混合而成。
优选的,所述PH指示剂、原硅酸四乙酯、甲基三乙氧基硅烷与盐酸的重量分数比为2:1:1:1。
优选的,所述第一预设时间为2至3小时,以及所述第二预设时间为72小时。
优选的,所述单模光纤的长度范围为2 cm 至4cm、直径为100μm,所述第一多模光纤与第二多模光纤的长度范围分别为2 cm 至4cm、直径分别为200μm,以及所述PH敏感膜2020的厚度为500μm至600μm。
相较于现有技术,本发明所述检测伤口感染程度的智能绷带采用了上述技术方案,达到了如下技术效果:所述智能绷带能够通过本发明提供的智能传感器检测伤口感染程度,使得医生或患者及时了解伤口的情况,有利于医生或患者根据监测的情况做出针对性的治疗方案。
附图说明
图1是本发明用于检测伤口感染程度的智能传感器设置在智能绷带中较佳实施例的平面结构示意图;
图2是本发明用于检测伤口感染程度的智能传感器较佳实施例的平面结构示意图;
图3是本发明用于检测伤口感染程度的智能传感器使用时位于皮肤伤口的状态示意图;
图4是本发明用于检测伤口感染程度的智能传感器与连接的监测设备较佳实施例的示意图。
图5是本发明用于检测伤口感染程度的智能传感器的制备方法较佳实施例的流程图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为更进一步阐述本发明为达成上述目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明的具体实施方式、结构、特征及其功效进行细说明。应当理解,本发明所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,图1是本发明用于检测伤口感染程度的智能传感器设置在智能绷带中较佳实施例的平面结构示意图。在本实施例中,所述的智能绷带包括,但不仅限于,绷带本体2以及设置于绷带本体2的粘贴面上的智能传感器20。该粘贴面上设置有医用粘胶,使得绷带本体2能够粘贴于人体的皮肤而不脱落。所述智能传感器20可以位于绷带本体2的粘贴面的任意位置,只要所述绷带本体2能够完全覆盖所述智能传感器20即可。所述绷带本体2可以是,但不限于,医用胶布或纱布。
结合图2所示,是本发明用于检测伤口感染程度的智能传感器较佳实施例的平面结构示意图。在本实施李中,所述智能传感器20包括第一多模光纤201、第二多模光纤203及一根单模光纤202,所述单模光纤202位于第一多模光纤201及第二多模光纤203之间并形成直线连接。所述第一多模光纤201、第二多模光纤203及单模光纤202为圆柱形。
所述单模光纤202表面覆盖有一层PH敏感膜2020,该PH敏感膜2020采用溶胶及凝胶法制备(请参考图5描述)。该PH敏感膜2020包括由一种或多种PH值指示剂,具体地说, 所述PH值指示剂包括溴酚蓝指示剂、酚红指示剂或溴甲酚红紫指示剂。为了增大PH值的敏感范围,可以采用三种PH指示剂混合而成,即分别将溴酚蓝的PH指示剂、酚红的PH指示剂和溴甲酚红紫的PH指示剂按照重量分数比为1:1:1混合而成,由这三种PH指示剂混合而成的指示剂能够检测到范围为2-9的PH值,对光的最大吸收波长为590nm,而对860nm波长的光没有吸收功能。通过所述PH敏感膜2020上的PH值指示剂,所述智能传感器20可以监测皮肤伤口3的PH值(从PH值2.0值9.0都可以监测)。通过监测皮肤伤口的PH值,可以判断出皮肤伤口的感染程度。例如,PH值在4.0至4.5之间是正常,表示皮肤伤口的没有感染,PH值在7.5至9.0之间是不正常,表示皮肤伤口发炎。具体而言,当皮肤伤口的PH值变化时,PH敏感膜2020上的PH值指示剂的颜色发生变化,从而对第一波长光的吸收率也发生变化。
结合图3所示,图3是本发明检测伤口感染程度的智能绷带使用时智能传感器位于皮肤伤口的状态示意图。在本实施例中,所述绷带本体2的形状可以是,但不限于,长方形、正方形、圆形等。在本实施例中,为了便于监测伤口的感染程度,所述智能传感器20于所述绷带本体的中间位置,使得绷带本体正好粘贴于皮肤2的伤口时,所述智能传感器20位于皮肤3的伤口的位置(或者说,伤口最严重的区域)。当绷带本体2粘贴于皮肤2的伤口上时,所述智能传感器20位于皮肤3的伤口内。
如图4所示,图4是本发明用于检测伤口感染程度的智能传感器与连接的监测设备较佳实施例的示意图。在本实施例中,所述监测设备1包括光电二极管10、第一光源121、第二光源122、光纤耦合器14、处理器16及显示设备18。其中,所述第一光源121及第二光源122与所述光纤耦合器14连接,所述光电二极管10与所述处理器16连接,所述处理器16与所述显示设备18连接。
所述第一光源121用于产生第一波长光,并将第一波长光发送给所述光纤耦合器14。在本实施例中,所述第一波长光为590纳米的光。
所述第二光源122用于产生第二波长光,并将第二波长光发送给所述光纤耦合器14。在本实施例中,所述第二波长光为860纳米波长的光。
所述光纤耦合器14将第一波长光及第二波长光汇集成一束组合光,并校正由所述第一多模光纤201、单模光纤202及第二多模光纤203之间形成的光传播路径。具体地说,所述光纤耦合器14将两束不同波长的光(即第一波长光及第二波长光)通过折射和透射使其成为一束组合光,也就是说,使得两束不同波长的光传播路径达到一致。
所述光电二级管10用于接收组合光,并将组合光中第一波长光及第二波长光(即光信号)转换成对应的电信号。
所述处理器16用于从所述光电二极管10获取第一波长光对应转换的电信号及第二波长光对应转换的电信号,并对所述第一波长光对应转换的电信号及第二波长光对应转换的电信号进行分析处理,以得到皮肤伤口的感染程度的监测结果。
所述显示设备18用于显示所述第一波长光对应转换的电信号及第二波长光对应转换的电信号,进一步地,所述显示设备18还用于显示PH敏感膜2020对第一波长光的吸收率变化趋势与伤口的愈合程度。
所述光纤耦合器14与第一多模光纤201连接,所述第二多模光纤203与光电二级管10连接,所述光纤耦合器14将组合光(即由波长为590纳米的光及860纳米波长的光组合而成的一束组合光)发射到第一多模光纤201,使得组合光穿过第一多模光纤201、单模光纤202及第二多模光纤203。
当所述组合光在所述单模光纤202中传播时,所述PH敏感膜2020可以对第一波长光进行不同程度的吸收,而所述PH敏感膜2020对第一波长光的吸收率受皮肤伤口的PH值的变化所影响。所述PH敏感膜2020对第一波长光的吸收率与皮肤伤口的PH值之间有预设的对应关系,具体地说,皮肤伤口的PH值越大,所述PH敏感膜2020对第一波长光的吸收率越高。所述PH敏感膜2020对第一波长光的吸收率与皮肤伤口的PH值之间有预设的对应关系根据大量实验测试得到,并保存于监测设备1中。例如,当PH值为2时,所述PH敏感膜2020对第一波长光的吸收率为0,若PH值为4时,所述PH敏感膜2020对第一波长光的吸收率为10%。
在本实施例中,需要说明的是,所述光电二级管10从所述第二多模光纤203获得第一波长光,并将所述第一波长光转换成电信号,根据所述第一波长光转换成的电信号计算出所述PH敏感膜2020对第一波长光的吸收率。所述电信号是指光电二极管10上由于第一波长光照射所产生的光电流。其中,第一波长光的强度与所述光电流成正比。所述PH敏感膜2020对第一波长光进行不同程度的吸收,会减弱第一波长光的强度。
在本实施例中,所述PH敏感膜2020对第一波长光的吸收率为第一波长光照射到光电二级管10上所产生的光电流的变化率。具体地说,a=c/b,其中,b为所述第一波长光没有被吸收时,所述光电二级管10得到的光电流,若c为所述第一波长光被所述PH敏感膜2020不同程度的吸收时,所述光电二级管10得到的光电流,a为光电流的变化率,也就是所述PH敏感膜2020对第一波长光的吸收率。
当所述组合光在所述单模光纤202中传播时,所述PH敏感膜2020不会对所述第二波长光进行吸收,通过第二波长光可以校正由所述第一多模光纤201、单模光纤202及第二多模光纤203之间形成的光传播路径是否正确。具体地说,所述光电二级管10从所述第二多模光纤203获得第二波长光,并将所述第二波长光转换成电信号。所述电信号是指光电二极管10上由于第二波长光照射所产生的光电流。若所述第二波长光照射所产生的光电流在预设范围内(例如,三十微安到四十微安之间),则表明组合光的光传播路径正确,若所述第二波长光照射所产生的光电流不在预设范围内(例如,三十微安到四十微安之间),表明组合光的传播路径不正确,则调整光纤耦合器14,使得所述第二波长光照射所产生的光电流在预设范围内。
如图5所示,图5是本发明用于检测伤口感染程度的智能传感器的制备方法较佳实施例的流程图。在本实施例中,所述用于检测伤口感染程度的智能传感器20的制备方法包括步骤:
步骤S21:将PH指示剂浸渍在去离子的水中净化;
在本实施例中,所述PH指示剂可以是溴酚蓝的PH指示剂、酚红的PH指示剂和溴甲酚红紫的PH指示剂之一种。在其它实施例中,为了增大PH值的敏感范围,可以采用三种PH指示剂混合而成,即分别将溴酚蓝的PH指示剂、酚红的PH指示剂和溴甲酚红紫的PH指示剂按照重量分数比为1:1:1混合而成,由这三种PH指示剂混合而成的指示剂能够检测到范围为2-9的PH值,对光的最大吸收波长为590nm,而对860nm波长的光没有吸收功能;
步骤S22:将进化后的PH指示剂与原硅酸四乙酯、甲基三乙氧基硅烷并以盐酸为催化剂融合成PH敏感液并搅拌均匀;
在本实施例中,所述PH指示剂、原硅酸四乙酯、甲基三乙氧基硅烷与盐酸的重量分数比为2:1:1:1,以到达到对范围为2-9的PH值进行检测的效果,并对光的最大吸收波长为590nm,而对860nm波长不进行吸收。
步骤S23:将单模光纤202在PH敏感液中浸渍第一预设时间,使PH敏感液充分渗透到单模光纤202上;
在本实施例中,所述第一预设时间为2至3小时,所述单模光纤202的长度为2-4cm、直径为100μm;
步骤S24:将单模光纤202从PH敏感液中取出并将在室温下放置第二预设时间晾干后制成包括有PH敏感膜2020的单模光纤202;
在本实施例中,所述第二预设时间为72小时,所述PH敏感膜2020的厚度为500μm至600μm。
步骤S25:通过所述单模光纤202将第一多模光纤201与第二多模光纤203形成直线连接以制成智能传感器20;在本实施例中,所述第一根多模光纤201与第二根多模光纤203的长度为分别2-4cm、直径分别为200μm。
本实施采用现有光纤焊接技术将第一多模光纤201、单模光纤202与第二多模光纤203之间形成无缝直线焊接。所述第一多模光纤201、单模光纤202与第二多模光纤203均采用现有的工艺制成,例如聚合物镀膜玻璃光学纤维和聚甲基丙烯酸甲酯(PMMA)纤维制成。由于PH敏感膜2020能够检测到范围为2-9的PH值,因此对光的最大吸收波长为590nm的第一波长光,而对860nm波长的第二波长光没有不进行吸收。通过所述PH敏感膜2020上的PH值指示剂,所述智能传感器20可以监测伤口3的PH值(从PH值2.0值9.0都可以监测)。通过监测伤口3的PH值,可以判断出伤口3的感染程度。例如,PH值在4.0至4.5之间是正常,表示伤口3的没有感染,PH值在7.5至9.0之间是不正常,表示伤口3发炎。具体而言,当伤口3的PH值变化时,PH敏感膜2020上的PH值指示剂的颜色发生变化,从而对第一波长光的吸收率也发生变化。通过分析单模光纤202对第一波长光的吸收率的变化率,所述智能传感器20即可检测皮肤伤口的感染程度。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效功能变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种用于检测伤口感染程度的智能传感器,其特征在于,所述智能传感器包括第一多模光纤、第二多模光纤及单模光纤,所述单模光纤位于第一多模光纤及第二多模光纤之间并形成直线连接,其中:
    所述第一多膜光纤,用于将一束包含第一波长光与第二波长光的组合光传输至单膜光纤;
    所述单模光纤表面涂覆有一层包括由PH指示剂的PH敏感膜,该PH敏感膜检测皮肤伤口的PH值,并根据皮肤伤口的PH值的变化导致PH敏感膜颜色的变化对第一波长光进行吸收;
    所述第二多模光纤将被所述单模光纤中的PH敏感膜吸收后的组合光发送至监测设备,该监测设备根据所述PH敏感膜对第一波长光的吸收率与皮肤伤口的PH值之间的预设对应关系来确定皮肤伤口的感染程度。
  2. 如所述权利要求1的用于检测伤口感染程度的智能传感器,其特征在于,所述智能传感器通过第一多模光纤连接至所述监测设备的光纤耦合器上,并通过第二多模光纤连接至所述监测设备的光电二级管,该光纤耦合器连接至所述监测设备的第一光源和第二光源。
  3. 如所述权利要求2的用于检测伤口感染程度的智能传感器,其特征在于,所述光纤耦合器将所述第一光源产生的第二波长光及所述第二光源产生的第二波长光汇集成所述组合光,并将所述组合光发射到所述第一多模光纤中传播。
  4. 如所述权利要求3的用于检测伤口感染程度的智能传感器,其特征在于,所述第二波长光用于校正由所述第一多模光纤、单模光纤及第二多模光纤之间形成的光传播路径。
  5. 一种如权利要求1所述的智能传感器的制备方法,其特征在于,所述制备方法包括步骤:
    将PH指示剂浸渍在去离子的水中净化;
    将进化后的PH指示剂与原硅酸四乙酯、甲基三乙氧基硅烷并以盐酸为催化剂融合成PH敏感液并搅拌均匀;
    将单模光纤在PH敏感液中浸渍第一预设时间,使PH敏感液充分渗透到单模光纤中;
    将单模光纤从PH敏感液中取出,并在室温下放置第二预设时间晾干后形成包括有PH敏感膜的单模光纤;
    通过所述单模光纤将第一多模光纤与第二多模光纤形成直线连接以制成智能传感器。
  6. 如权利要求5所述的智能传感器的制备方法,其特征在于,所述PH指示剂是一种溴酚蓝PH指示剂、酚红PH指示剂或溴甲酚红紫PH指示剂。
  7. 如权利要求5所述的智能传感器的制备方法,其特征在于,所述PH指示剂由将溴酚蓝的PH指示剂、酚红的PH指示剂和溴甲酚红紫PH指示剂按照重量分数比为1:1:1混合而成。
  8. 如权利要求5所述的智能传感器的制备方法,其特征在于,所述PH指示剂、原硅酸四乙酯、甲基三乙氧基硅烷与盐酸的重量分数比为2:1:1:1。
  9. 如权利要求5所述的智能传感器的制备方法,其特征在于,所述第一预设时间为2至3小时,以及所述第二预设时间为72小时。
  10. 如权利要求5所述的智能传感器的制备方法,其特征在于,所述单模光纤的长度范围为2 cm 至4cm、直径为100μm,所述第一多模光纤与第二多模光纤的长度范围分别为2 cm 至4cm、直径分别为200μm,以及所述PH敏感膜2020的厚度为500μm至600μm。
PCT/CN2015/098612 2015-09-12 2015-12-24 用于检测伤口感染程度的智能传感器及其制备方法 WO2017041384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510581466.X 2015-09-12
CN201510581466.XA CN105105715A (zh) 2015-09-12 2015-09-12 用于检测伤口感染程度的智能传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2017041384A1 true WO2017041384A1 (zh) 2017-03-16

Family

ID=54654027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098612 WO2017041384A1 (zh) 2015-09-12 2015-12-24 用于检测伤口感染程度的智能传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN105105715A (zh)
WO (1) WO2017041384A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018191305A1 (en) * 2017-04-11 2018-10-18 Avery Levy Burn bandage

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105105715A (zh) * 2015-09-12 2015-12-02 深圳市前海安测信息技术有限公司 用于检测伤口感染程度的智能传感器及其制备方法
CN111135341B (zh) * 2020-01-20 2021-10-29 浙江大学 一种用于感染创面预警和可控治疗的智能水凝胶敷料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450519A2 (en) * 1990-04-03 1991-10-09 Minnesota Mining And Manufacturing Company Ionic component sensor and method for making and using same
EP0726467A1 (de) * 1995-02-01 1996-08-14 AVL Medical Instruments AG Verfahren zur Kalibrierung eines pH-Messelementes
CN101982760A (zh) * 2010-09-20 2011-03-02 北京邮电大学 一种光纤pH计
CN102076376A (zh) * 2008-04-30 2011-05-25 新磁有限公司 刺激愈合过程的装置
CN103645141A (zh) * 2013-11-16 2014-03-19 中山欧麦克仪器设备有限公司 一种光纤ph计
CN105105715A (zh) * 2015-09-12 2015-12-02 深圳市前海安测信息技术有限公司 用于检测伤口感染程度的智能传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450519A2 (en) * 1990-04-03 1991-10-09 Minnesota Mining And Manufacturing Company Ionic component sensor and method for making and using same
EP0726467A1 (de) * 1995-02-01 1996-08-14 AVL Medical Instruments AG Verfahren zur Kalibrierung eines pH-Messelementes
CN102076376A (zh) * 2008-04-30 2011-05-25 新磁有限公司 刺激愈合过程的装置
CN101982760A (zh) * 2010-09-20 2011-03-02 北京邮电大学 一种光纤pH计
CN103645141A (zh) * 2013-11-16 2014-03-19 中山欧麦克仪器设备有限公司 一种光纤ph计
CN105105715A (zh) * 2015-09-12 2015-12-02 深圳市前海安测信息技术有限公司 用于检测伤口感染程度的智能传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING, MIAO ET AL.: "Applications of organically Modified Silicate Films for Stable Optical Fibre pH Sensor With Sol-Gel Film", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 20, no. 3, 31 March 2007 (2007-03-31), pages 486, ISSN: 1004-1699 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018191305A1 (en) * 2017-04-11 2018-10-18 Avery Levy Burn bandage
US11712372B2 (en) 2017-04-11 2023-08-01 Avery Levy Wound covering apparatus

Also Published As

Publication number Publication date
CN105105715A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2017041387A1 (zh) 用于检测伤口愈合程度的智能传感器及其制备方法
WO2017041386A1 (zh) 伤口感染程度监测系统及方法
WO2017041385A1 (zh) 伤口愈合程度监测系统及方法
US8233954B2 (en) Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
JP4571502B2 (ja) 分泌物試験物品
CA2463060C (en) Stacked adhesive optical sensor
JP2019512676A (ja) センサを備える吸収性物品
WO2017041384A1 (zh) 用于检测伤口感染程度的智能传感器及其制备方法
JP2001149349A (ja) 生体用センサ
KR20100106387A (ko) 수화 시험 장치
Patel et al. Wearable electronics for skin wound monitoring and healing
AU2008337169A1 (en) Urine volume hydration test devices
CN108309250A (zh) 伤口愈合程度监测装置及监测方法
CN107684433B (zh) 一种同时检测创面多种生理参数指标的装置及方法
CN204951332U (zh) 用于检测伤口感染程度及愈合程度的智能绷带和监测装置
LU501232B1 (en) Wound dressing
CN204951335U (zh) 监测伤口愈合程度及加快伤口愈合的智能绷带和监测装置
WO2024183330A1 (zh) 一种具有保护装置的体表切口引流系统
CN204971866U (zh) 监测伤口感染程度及加快伤口愈合的智能绷带及监测装置
Martin et al. Fibre-optics and optical sensors in medicine
Cho et al. Wireless, Battery‐Free, Optoelectronic Diagnostic Sensor Integrated Colorimetric Dressing for Advanced Wound Care
CN204951330U (zh) 即时检测伤口状况的智能绷带和监测装置
CN205007119U (zh) 用于检测伤口感染程度的智能传感器及智能绷带
CN110274700B (zh) 一种wifi版无线电子体温监测系统
CN107961445B (zh) 经皮黄疸仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903487

Country of ref document: EP

Kind code of ref document: A1