WO2017041328A1 - 导光板及导光板的制备方法 - Google Patents

导光板及导光板的制备方法 Download PDF

Info

Publication number
WO2017041328A1
WO2017041328A1 PCT/CN2015/090396 CN2015090396W WO2017041328A1 WO 2017041328 A1 WO2017041328 A1 WO 2017041328A1 CN 2015090396 W CN2015090396 W CN 2015090396W WO 2017041328 A1 WO2017041328 A1 WO 2017041328A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
substrate
light guide
pressure roller
quantum dot
Prior art date
Application number
PCT/CN2015/090396
Other languages
English (en)
French (fr)
Inventor
陈仕祥
郑颖博
Original Assignee
深圳市华星光电技术有限公司
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司, 武汉华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/901,044 priority Critical patent/US10078166B2/en
Publication of WO2017041328A1 publication Critical patent/WO2017041328A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00673Supports for light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00875Applying coatings; tinting; colouring on light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0003Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being doped with fluorescent agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0093Means for protecting the light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of flat display, and in particular to a method for preparing a light guide plate and a light guide plate.
  • the liquid crystal display device includes a liquid crystal display panel and a backlight module, and the backlight module is disposed adjacent to the liquid crystal display panel for providing a surface light source for the liquid crystal display panel.
  • the backlight module usually includes a light source and a light guide plate. Light emitted from the light source enters the light incident surface of the light guide plate and enters the light guide plate. After being diffused by the light guide plate, the light is emitted from the light exit surface of the light guide plate.
  • the liquid crystal display panel provides a surface light source. Quantum dots can achieve better imaging color because they can emit monochromatic light with concentrated spectrum, which is very pure.
  • the quantum dot application has a quantum dot film in the backlight module.
  • the quantum dot film is cut and applied to the backlight module.
  • a certain range of the edge of the quantum dot film for example, about 1 mm
  • oxygen and water in the air resulting in failure of the edge of the quantum dot film after being cut.
  • the quality of the light emitted from the edge after the quantum dot film is cut is further affected, and the performance of the display screen of the liquid crystal display device is further affected.
  • the present invention provides a light guide plate, the light guide plate includes a light emitting surface and a plurality of quantum dot modules, wherein the quantum dot module is filled with quantum dots, and the quantum dot module is buried in the light guide plate, and the quantum The dot module is disposed adjacent to the light emitting surface of the light guide plate, and the quantum dot modules are distributed in a matrix.
  • the light guide plate further includes a substrate and an insulation layer, the substrate includes a first surface, the first Forming a matrix-shaped accommodating portion, wherein the accommodating portion is filled with quantum dots, and the insulating layer covers the first surface of the substrate to make the accommodating portion and the quantum dot
  • the quantum dot module is formed, and the insulating layer is for isolating water vapor and oxygen, and the surface of the insulating layer away from the first surface is the light emitting surface.
  • the receiving portion is a groove, or the receiving portion has an arc shape.
  • the invention also provides a preparation method of a light guide plate, and the preparation method of the light guide plate comprises:
  • the substrate including a first surface
  • An insulating layer is overlaid on the first surface of the substrate.
  • the step of “providing a substrate, the substrate including the first surface” includes:
  • the substrate forming apparatus for preparing a substrate material in a molten state as the substrate, the substrate forming apparatus comprising a first press roll and a second press roll, the first press roll and the A first predetermined spacing is disposed between the second pressure rollers, and the first pressure roller is formed of a rigid material, and the second pressure roller is formed of an elastic material, and the substrate material in a molten state is passed through the first pressure roller And the first predetermined spacing between the second pressure rollers and cooled to form the substrate.
  • the step of “forming a housing portion distributed in a matrix on the first surface” includes:
  • Providing a third pressure roller and a fourth pressure roller wherein the surface of the third pressure roller is a smooth plane, the surface of the fourth pressure roller is provided with a protrusion, and the third pressure roller is set to a first temperature, The fourth pressure roller is set to a second temperature, the first temperature is less than the second temperature and less than a melting point of the substrate material, and between the third pressure roller and the fourth pressure roller Setting a second preset distance;
  • the accommodating portion defines a surface of the accommodating portion as a first surface.
  • the substrate material is a plastic material
  • the substrate material has a melting point of 220 ° C
  • the first temperature is 180 ° C
  • the second temperature is 200 ° C.
  • the step of “filling the accommodating portion with quantum dots” includes:
  • the fifth pressure roller comprising a groove
  • the groove is provided with a quantum dot
  • the quantum dot in the groove is rotated when the fifth pressure roller rotates on the first surface Fall into the containment department,
  • the quantum portion is filled in the accommodating portion.
  • step of “covering the isolation layer on the first surface of the substrate” comprises:
  • the insulating material is used for isolating water vapor and oxygen;
  • the insulating material is cured to form the insulating layer.
  • the step of “curing the insulating material to form the insulating layer” includes:
  • the insulating material is UV cured to form the insulating layer.
  • the light guide plate of the present invention embeds the quantum dot module in the light guide plate, and the quantum dot module is disposed adjacent to the light exit surface, so that the quantum dots in the quantum dot module are not easy to be combined with air.
  • the oxygen in the water reacts with the water vapor to improve the quality of the light emitted from the light guide plate, and further improves the performance of the display screen of the liquid crystal display device using the light guide plate.
  • FIG. 1 is a schematic structural view of a light guide plate according to a preferred embodiment of the present invention.
  • Figure 2 is a schematic enlarged view of the structure I in Figure 1.
  • FIG. 3 is a flow chart of a method of fabricating a light guide plate according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a substrate according to a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a substrate molding apparatus according to a preferred embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a first surface of a substrate according to a preferred embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a substrate as shown in Figure 6 in accordance with a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram of filling a quantum dot and a cover insulating layer in a housing portion of a substrate according to a preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a light guide plate according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic enlarged view of a portion I of FIG.
  • the light guide plate 100 includes a light emitting surface 110 and a plurality of quantum dot modules 120.
  • the quantum dot module 120 is embedded in the light guide plate 100, and the quantum dot module 120 is adjacent to the light emitting surface of the light guide plate 100. 110 is disposed, and the quantum dot modules 120 are distributed in a matrix.
  • the light guide plate 110 is a plastic material, such as polymethyl methacrylate (PMMA), and the PMMA material has strong hygroscopicity and good air tightness.
  • the thermal conductivity of the PMMA material is weak, and the material of the light guide plate 100 is selected as PMMA. Therefore, the light guide plate 100 can well isolate the heat emitted by the light source to avoid the quantum dot module.
  • the quantum dots in 120 are quenched when heated.
  • the PMMA material has a good UV transmittance, and therefore, the light guide plate 100 is not suitable for yellowing to cause yellowing.
  • the quantum dot module 120 can illuminate the quantum dot module 120 to emit a high-color solid color light, and the light emitted by the light source and the high-color solid color light excited by the quantum dot module 120 are excited. The light is mixed to produce a high-color white light.
  • Quantum dots can be used to convert light rays emitted by light emitting diodes to produce light in the visible or infrared regions.
  • a quantum dot is a nanocrystal having a diameter smaller than a bulk radius of a bulk exciton. Due to the quantum confinement effect, the energy difference between the electronic states of a quantum dot is a function of both the composition and the physical size of the quantum dot.
  • Quantum dots absorb all wavelengths shorter than the absorption peak wavelength and emit light at longer wavelengths.
  • the 2 nm CdSe quantum dots are emitted in the blue region of the visible spectrum, while the 10 nm CdSe quantum dots are emitted in the red region of the visible spectrum.
  • the application of quantum dots to display technology can produce high-quality red/green monochromatic light with concentrated spectrum and very pure color by means of quantum dots, completely surpassing the fluorescent light-emitting characteristics of conventional LED backlights to achieve better imaging color. Therefore, quantum dot display technology is regarded as the best solution to effectively improve the display color gamut value in the future, and it is a new technical wind vane in the global display industry.
  • the light guide plate 100 includes a substrate 130 and an isolation layer 140, and the substrate 130 includes On the first surface 131, a plurality of accommodating portions 131a each having a matrix shape are formed on the first surface 131, and the accommodating portion 131a is filled with quantum dots.
  • the isolation layer 140 covers the first surface 131 of the substrate 130 such that the receiving portion 131a and the quantum dots form the quantum dot module 120, and the isolation layer 140 is used to isolate water vapor. And oxygen, the surface of the insulating layer 140 away from the first surface 131 is the light emitting surface 110.
  • the receiving portion 131a is a groove.
  • the shape of the accommodating portion 131a is an arc shape, and when the accommodating portion 131a has an arc shape, light emitted from the light source enters the light guide plate 100, and the arc shape is The accommodating portion 131a can uniformly diffuse the light entering the light guide plate 100, thereby further making the light emitted from the light exit surface 110 of the light guide plate 100 more uniform.
  • the light guide plate 100 of the present invention embeds the quantum dot module 120 in the light guide plate 100, and the quantum dot module 120 is disposed adjacent to the light exit surface 110, thereby causing the quantum dot module 120 to
  • the quantum dots do not easily react with oxygen and water vapor in the air, thereby improving the quality of the light emitted from the light guide plate 100, and further improving the performance of the display screen of the liquid crystal display device using the light guide plate 100.
  • the light guide plate 100 of the present invention embeds the quantum dot module 120 in the light guide plate 100.
  • the design of the quantum dot module 120 can be designed according to the size of the light guide plate 100, and does not need to be used for the quantum dots as in the prior art.
  • the film is cut. Therefore, the light guide plate 100 of the present invention has no technical problem that the quantum dot film is edge-cut after the quantum dot film is cut in the prior art.
  • the guide can be made The frame of the liquid crystal display device to which the light panel 100 is applied is narrow.
  • the quantum dot film is disposed on the light-emitting surface of the light guide plate, and when the light passes through the light-guiding plate, the boundary between the light guide plate and the quantum dot film is normally guided when passing through the quantum dot film. Since the material of the light plate is different from the material of the quantum dot film that encapsulates the quantum dots, in the prior art, when light is emitted from the light-emitting surface of the light guide plate through the quantum dot film, light loss occurs due to excessive passage of the interface.
  • the light guide plate 100 of the present invention embeds the quantum dot module 120 in the light guide plate 100, that is, the quantum dot module 120 is directly disposed in the light guide plate 100.
  • the light emitted from the light guide plate 100 does not need to pass through much.
  • the boundary of one layer therefore, the light emitted from the light guide plate 100 of the present invention is smaller than that of the prior art, thereby increasing the brightness of the light emitted from the light guide plate 100 of the present invention.
  • FIG. 3 is a flowchart of a method for fabricating a light guide plate according to a preferred embodiment of the present invention.
  • the method for preparing the light guide plate includes, but is not limited to, the following steps.
  • step S101 a substrate 130 is provided, and the substrate 130 includes a first surface 131 as shown in FIG.
  • the step S101 includes: providing a substrate forming device 220 for preparing a substrate material in a molten state as the substrate 130, the substrate forming device 220 A first pressing roller 210 and a second pressing roller 220 are disposed, a first predetermined spacing is disposed between the first pressing roller 210 and the second pressing roller 220, and the first pressing roller 210 is formed of a rigid material, The second pressure roller 220 is formed of an elastic material.
  • the substrate material in a molten state is passed through the first predetermined pitch between the first press roll 210 and the second press roll 220, and cooled to form the substrate 130.
  • the first pressure roller 210 and the second pressure roller 220 have a cylindrical shape. If the first pressure roller 210 and the second pressure roller 220 are both formed of a rigid material, when the partial substrate material is excessive, then the first pressure roller 210 and the second pressure roller 220 are passed.
  • the first predetermined spacing When the first predetermined spacing is between, more local substrate material is subjected to greater pressure by the first pressure roller 210 and the second pressure roller 220, and the internal stress of the formed substrate is larger; When the material is less, when the first predetermined spacing between the first pressure roller 210 and the second pressure roller 220 is passed, less local substrate material is subjected to the first pressure roller 210 and The pressure of the second pressure roller 220 is small, and the denseness of the formed substrate is poor, so that the resulting substrate is not flat or even partially warped.
  • the second pressure roller 220 is formed of an elastic material such that the substrate material passes through the first pressure roller 210 and the second pressure roller
  • the first predetermined interval between 220 the pressure value due to the unevenness of the substrate material is absorbed by the second pressure roller 220 formed of the elastic material, thereby ensuring uniform stress value inside the substrate material, and reducing The unevenness of the substrate and the degree of warpage of the substrate.
  • step S102 the first surface 131 is formed with the accommodating portion 131a distributed in a matrix, as shown in FIG. Specifically, please refer to FIG. 7 together, and the step S102 includes the following steps.
  • a third pressure roller 300 and a fourth pressure roller 400 are provided, wherein the surface of the third pressure roller 300 is a smooth plane, and the surface of the fourth pressure roller 400 is provided with a protrusion 410, and the third pressure roller 300 is set to a first temperature, the fourth pressure roller 400 is set to a second temperature, the first temperature is less than the second temperature and less than a melting point of the substrate material, and the third pressure roller 300 and the fourth pressure roller A second preset distance is set between 400.
  • the substrate material is a plastic material, such as polymethyl methacrylate (PMMA), and the PMMA material has strong hygroscopicity and good air tightness.
  • PMMA polymethyl methacrylate
  • the thermal conductivity of the PMMA material is weak, and the material of the light guide plate 100 is selected as PMMA. Therefore, the light guide plate 100 can well isolate the heat emitted by the light source to avoid the quantum dot module.
  • the quantum dots in 120 are quenched when heated.
  • the PMMA material has a good UV transmittance, and therefore, the light guide plate 100 is not suitable for yellowing to cause yellowing.
  • the substrate material has a melting point of 220 ° C, the first temperature is 180 ° C, and the second temperature is 200 ° C.
  • the substrate 130 is softened, but has not yet melted, and when the fourth pressure roller 400 provided with the protruding portion 410 passes through the substrate 130, the surface of the substrate 130 is The shape of the projection 410 is transferred to one surface of the substrate 130 to form the housing portion 131a.
  • Step II passing the substrate 130 through the second predetermined distance between the third pressure roller 300 and the fourth pressure roller 400 to be adjacent to the fourth pressure roller 400 of the substrate 130
  • a matrix accommodating portion 131a is formed on the surface, and a surface forming the accommodating portion 131a is defined as a first surface 131.
  • the accommodating portion 131a is filled with quantum dots.
  • the step S103 includes: providing a fifth pressure roller 500, the fifth pressure roller 500 including a groove 510, wherein the groove 510 is filled with a quantum dot, and when the fifth pressure roller 500 is in the When the first surface 131 is rotated, the quantum dots in the groove 510 fall into the accommodating portion 131a, so that the accommodating portion 131a fills the quantum dots.
  • step S104 the isolation layer 140 is covered on the first surface 131 of the substrate 130.
  • the surface of the isolation layer 140 away from the first surface 131 of the substrate 130 is the light emitting surface 110 of the light guide plate 100.
  • the step S104 includes the following steps.
  • step III an insulating material is coated on the first surface 131 and the receiving portion 131a is sealed, and the insulating material is used to insulate water vapor and oxygen.
  • step IV the insulating material is cured to form the insulating layer 140.
  • curing the insulating material to form the insulating layer includes UV curing the insulating material to form the insulating layer 140.
  • the insulating material is subjected to UV curing using a UV curing oven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种导光板及导光板的制备方法,其中导光板(100)包括出光面(110)和多个量子点模块(120)。量子点模块(120)内填充有量子点。量子点模块(120)内埋在导光板(100)内,且临近导光板(100)的出光面(110)设置。量子点模块(120)呈矩阵状分布。

Description

导光板及导光板的制备方法
本发明要求2015年9月10日递交的发明名称为“导光板及导光板的制备方法”的申请号201510574558.5的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及平面显示领域,尤其涉及一种导光板及导光板的制备方法。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)作为一种常见的电子装置,由于其具有功耗低、体积小、质量轻等特点,而备受用户的青睐。液晶显示装置包括液晶显示面板和背光模组,所述背光模组邻近所述液晶显示面板设置,用于为所述液晶显示面板提供面光源。所述背光模组中通常包括光源及导光板,自光源发出的光线进入自所述导光板的入光面进入到导光板中,经由导光板的扩散之后由导光板的出光面出射以为所述液晶显示面板提供面光源。量子点由于能够发射出能谱集中、非常纯正的单色光,能够实现更佳的成像色彩,因此有望能够超越传统的荧光粉的荧光灯而在背光模组中得到应用。目前,量子点应用在背光模组中有量子点膜,通常,将量子点膜裁切后应用于背光模组中。然而,由于量子点的不稳定性,量子点膜被裁切后边缘一定范围(比如,1mm左右)容易与空气中的氧气和水发生反应,从而导致量子点膜被裁切后的边缘失效,进而影响量子点膜被裁切后的边缘的射出的光线的质量,进一步地影响到液晶显示装置显示画面的性能。
发明内容
本发明提供一种导光板,所述导光板包括出光面及多个量子点模块,所述量子点模块内填充有量子点,所述量子点模块内埋在所述导光板内,所述量子点模块邻近所述导光板的所述出光面设置,且所述量子点模块呈矩阵状分布。
其中,所述导光板还包括基板及隔绝层,所述基板包括第一表面,所述第 一表面上形成有呈矩阵状分布的收容部,所述收容部内填充有量子点,所述隔绝层覆盖在所述基板的所述第一表面上,以使所述收容部及所述量子点形成所述量子点模块,且所述隔绝层用于隔绝水汽以及氧气,所述隔绝层远离所述第一表面的表面为所述出光面。
其中,所述收容部为凹槽,或者所述收容部的形状为圆弧状。
本发明还提供了一种导光板的制备方法,所述导光板的制备方法包括:
提供一基板,所述基板包括第一表面;
在所述第一表面形成呈矩阵状分布的收容部;
将所述收容部内填充量子点;
将隔绝层覆盖在所述基板的所述第一表面上。
其中,所述步骤“提供一基板,所述基板包括第一表面”包括:
提供基板成型装置,所述基板成型装置用于将熔融状态的基材材料制备成所述基板,所述基板成型装置包括第一压辊以及第二压辊,所述第一压辊及所述第二压辊之间设置第一预设间距,且所述第一压辊由刚性材料形成,所述第二压辊由弹性材料形成,将熔融状态的基材材料经过所述第一压辊及所述第二压辊之间的所述第一预设间距,并冷却后以形成所述基板。
其中,所述步骤“在所述第一表面形成呈矩阵状分布的收容部”包括:
提供第三压辊及第四压辊,其中,所述第三压辊表面为光滑平面,所述第四压辊表面设置有凸出部,所述第三压辊被设置为第一温度,所述第四压辊被设置为第二温度,所述第一温度小于所述第二温度且小于所述基材材料的熔点,且所述第三压辊及所述第四压辊之间设置第二预设距离;
将所述基板通过所述第三压辊及所述第四压辊之间的所述第二预设距离,以在所述基板的邻近所述第四压辊的表面上形成矩阵状分布的收容部,形成所述收容部的表面被定义为第一表面。
其中,所述基材材料为塑料材料,所述基材材料的熔点为220℃,所述第一温度为180℃,所述第二温度为200℃。
其中,所述步骤“将所述收容部内填充量子点”包括:
提供第五压辊,所述第五压辊包括凹槽,所述凹槽内装有量子点,当所述第五压辊在所述第一表面上转动时,所述凹槽内的量子点落入所述收容部内, 以使所述收容部内填充量子点。
其中,所述步骤“将隔绝层覆盖在所述基板的所述第一表面上”包括:
将隔绝材料涂布在所述第一表面上,且密封所述收容部,所述隔绝材料用于隔绝水汽及氧气;
对所述隔绝材料进行固化,以形成所述隔绝层。
其中,所述步骤“对所述隔绝材料进行固化,以形成所述隔绝层”包括:
对所述隔绝材料进行UV固化,以形成所述隔绝层。
相交于现有技术,本发明的导光板将量子点模块内埋在导光板内,且所述量子点模块邻近所述出光面设置,从而使得所述量子点模块中的量子点不容易与空气中的氧气和水汽发生反应,提高了自所述导光板出射的光线的质量,进一步提高了使用所述导光板的液晶显示装置的显示画面的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一较佳实施方式的导光板的结构示意图。
图2为图1中I处的放大结构示意图。
图3为本发明一较佳实施方式的导光板的制备方法的流程图。
图4为本发明一较佳实施方式的基板的结构示意图。
图5为本发明中一较佳实施方式的基板成型装置的结构示意图。
图6为本发明一较佳实施方式中的基板的第一表面的结构示意图。
图7为本发明中一较佳实施方式的制备如图6所述的基板的结构的示意图。
图8为本发明一较佳实施方式的在基板的收容部填充量子点及覆盖绝缘层的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1和图2,图1为本发明一较佳实施方式的导光板的结构示意图;图2为图1中I处的放大结构示意图。所述导光板100包括出光面110及多个量子点模块120,所述量子点模块120内埋在所述导光板100内,所述量子点模块120邻近所述导光板100的所述出光面110设置,且所述量子点模块120呈矩阵状分布。
所述导光板110为塑料材料,比如为聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA),所述PMMA材料具有较强的吸湿性,具有较好的气密性。而所述PMMA材料的导热性能较弱,将所述导光板100的材料选为PMMA,因此,所述导光板100能够很好地隔绝所述光源散发出来的热量,以避免所述量子点模块120中的量子点在受热时淬灭。同时,所述PMMA材料具有较好的UV穿透率,因此,所述导光板100不宜变黄而产生黄化现象。
通过光线照射所述量子点模块120可以激发所述量子点模块120内部的量子点发出高色度的纯色光线,光源发出的光线与所述量子点模块120内部被激发的高色度的纯色光线混光,从而生产了高色度的白光。而量子点,是可以被用来转换由发光二极管发射的光线光以生成可见或红外区域中的光。量子点是具有比散装(bulk)激子波尔半径小的直径的纳米晶体。归因于量子局限效应,量子点的电子态之间的能量差是量子点的组分和物理尺寸二者的函数。因此,可以通过改变量子点的物理尺寸来调谐和调整量子点的光学和光电子学属性。量子点吸收比吸收峰值波长更短的所有波长,并发射更长波长处的光。2nm CdSe量子点在可见光谱的蓝色区域中发射,而10nmCdSe量子点在可见光谱的红色区域中发射。量子点应用到显示技术上,可以借助量子点发出能谱集中、非常纯正的高质量红/绿单色光,完全超越传统发光二极管背光的荧光粉发光特性,实现更佳的成像色彩。因此,量子点显示技术被视为未来高效提高显示色域值的最佳方案,更是全球显示行业新的技术风向标。
具体地,所述导光板100包括基板130及隔绝层140,所述基板130包括 第一表面131,所述第一表面131上形成有呈矩阵状分别的多个收容部131a,所述收容部131a内填充有量子点。所述隔绝层140覆盖在所述基板130的所述第一表面131上,以使所述收容部131a及所述量子点形成所述量子点模块120,且所述隔绝层140用于隔绝水汽及氧气,所述隔绝层140远离所述第一表面131的表面为所述出光面110。在一实施方式中,所述收容部131a为凹槽。在另一实施方式中所述收容部131a的形状为圆弧状,当所述收容部131a为圆弧状时,自光源发出的光线进入到所述导光板100中,圆弧状的所述收容部131a可以对进入到所述导光板100中的光线起到较为均匀的扩散作用,进而使得自所述导光板100的所述出光面110出射的光线更加均匀。
相交于现有技术,本发明的导光板100将量子点模块120内埋在导光板100内,且所述量子点模块120邻近所述出光面110设置,从而使得所述量子点模块120中的量子点不容易与空气中的氧气和水汽发生反应,提高了自所述导光板100出射的光线的质量,进一步提高了使用所述导光板100的液晶显示装置的显示画面的性能。
进一步地,本发明的导光板100将量子点模块120内埋在所述导光板100内,量子点模块120的设计可以根据导光板100的尺寸进行设计,不需要像现有技术那样对量子点膜进行裁切。因此,本发明的导光板100更不会存在现有技术中量子点膜被裁切后量子点产生边缘失效的技术问题,当本发明的导光板100应用在液晶显示装置中时,可以使得导光板100应用的液晶显示装置的边框较窄。
进一步地,现有技术中,量子点膜设置在导光板的出光面上,当光线经过导光板之后在经过量子点膜时,由于导光板和量子点膜之间存在边界,而通常情况下导光板的材质和封装量子点的量子点膜的材质不同,因此,在现有技术中,光线从导光板的出光面再经由量子点膜出射时,会由于经过的界面过多而产生光损。而本发明的导光板100将量子点模块120内埋在导光板100内,即量子点模块120直接设置在导光板100内,因此,自所述导光板100中出射的光线不需要再经过多一层的边界,因此,自本发明的导光板100出射的光线相较于现有技术中光线的损耗更小,进而提升了自本发明的导光板100出射的光线的亮度。
下面结合图1和图2对本发明的导光板的制备方法进行介绍。请一并参阅图3,图3为本发明一较佳实施方式的导光板的制备方法的流程图。所述导光板的制备方法包括但不仅限于包括以下步骤。
步骤S101,提供一基板130,所述基板130包括第一表面131,如图4所示。具体地,请一并参阅图5,所述步骤S101包括:提供基板成型装置220,所述基板成型装置220用于将熔融状态的基材材料制备成所述基板130,所述基板成型装置220包括第一压辊210以及第二压辊220,第一压辊210及所述第二压辊220之间设置第一预设间距,且所述第一压辊210由刚性材料形成,所述第二压辊220由弹性材料形成。将熔融状态的基材材料经过所述第一压辊210以及所述第二压辊220之间的所述第一预设间距,并冷却后以形成所述基板130。在本实施方式中,所述第一压辊210及所述第二压辊220的形状为圆柱形。如果所述第一压辊210及所述第二压辊220均由刚性材料形成,那么,当局部基材材料过多时,则在通过所述第一压辊210及所述第二压辊220之间的第一预设间距时,较多的局部基材材料受到所述第一压辊210及所述第二压辊220的压力比较大,形成的基板的内应力较大;若局部基材材料较少时,则在通过所述第一压辊210及所述第二压辊220之间的第一预设间距时,较少的局部基材材料受到所述第一压辊210以及所述第二压辊220压力较小,形成的基板之致密性较差,因此,使得最后得到的基板不平整,甚至部分翘曲。而本发明的所述第一压辊210由刚性材料形成,所述第二压辊220由弹性材料形成,从而使得所述基材材料经过所述第一压辊210及所述第二压辊220之间的第一预设间距时,由于基材材料的多少不均匀产生的压力值会被由弹性材料形成的第二压辊220吸收,从而保证基材材料内部的应力值均匀,降低了基板的不平整度以及基板的翘曲程度。
步骤S102,在所述第一表面131形成呈矩阵状分布的收容部131a,如图6所示。具体地,请一并参阅图7,所述步骤S102包括如下步骤。
步骤I,提供第三压辊300及第四压辊400,其中,所述第三压辊300表面为光滑平面,所述第四压辊400表面设置凸出部410,所述第三压辊300被设置为第一温度,所述第四压辊400被设置为第二温度,所述第一温度小于所述第二温度且小于所述基材材料的熔点,且所述第三压辊300及所述第四压辊 400之间设置第二预设距离。在一实施方式中,所述基材材料为塑料材料,比如为聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA),所述PMMA材料具有较强的吸湿性,具有较好的气密性。而所述PMMA材料的导热性能较弱,将所述导光板100的材料选为PMMA,因此,所述导光板100能够很好地隔绝所述光源散发出来的热量,以避免所述量子点模块120中的量子点在受热时淬灭。同时,所述PMMA材料具有较好的UV穿透率,因此,所述导光板100不宜变黄而产生黄化现象。所述基材材料的熔点为220℃,所述第一温度为180℃,所述第二温度为200℃。此时,所述基板130变软,但是还没融化,设置有所述凸出部410的所述第四压辊400经过所述基板130时,在所述基板130的一个表面上将所述凸出部410的形状转印到所述基板130的一个表面,以形成所述收容部131a。
步骤II,将所述基板130通过所述第三压辊300及所述第四压辊400之间的所述第二预设距离,以在所述基板130的邻近所述第四压辊400的表面上形成矩阵分别的收容部131a,形成所述收容部131a的表面被定义为第一表面131。
步骤S103,将所述收容部131a内填充量子点。请参阅图8,所述步骤S103包括:提供第五压辊500,所述第五压辊500包括凹槽510,所述凹槽510内装有量子点,当所述第五压辊500在所述第一表面131上转动时,所述凹槽510内的量子点落入所述收容部131a,以使所述收容部131a填充量子点。
步骤S104,将隔绝层140覆盖在所述基板130的所述第一表面131。所述隔绝层140远离所述基板130的第一表面131的表面为所述导光板100的出光面110。请参阅图8,所述步骤S104包括如下步骤。
步骤III,将隔绝材料涂布在所述第一表面131上且密封所述收容部131a,所述隔绝材料用于隔绝水汽及氧气。
步骤IV,将所述隔绝材料进行固化,以形成所述隔绝层140。在一实施方式中,将所述隔绝材料进行固化,以形成所述隔绝层包括:对所述隔绝材料进行UV固化,以形成所述隔绝层140。在对所述隔绝材料进行UV固化时,使用UV固化炉对所述隔绝材料进行UV固化。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发 明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种导光板,其中,所述导光板包括出光面及多个量子点模块,所述量子点模块内填充有量子点,所述量子点模块内埋在所述导光板内,所述量子点模块邻近所述导光板的所述出光面设置,且所述量子点模块呈矩阵状分布。
  2. 如权利要求1所述的导光板,其中,所述导光板还包括基板及隔绝层,所述基板包括第一表面,所述第一表面上形成有呈矩阵状分布的收容部,所述收容部内填充有量子点,所述隔绝层覆盖在所述基板的所述第一表面上,以使所述收容部及所述量子点形成所述量子点模块,且所述隔绝层用于隔绝水汽以及氧气,所述隔绝层远离所述第一表面的表面为所述出光面。
  3. 如权利要求2所述的导光板,其中,所述收容部为凹槽,或者所述收容部的形状为圆弧状。
  4. 一种导光板的制备方法,其中,所述导光板的制备方法包括:
    提供一基板,所述基板包括第一表面;
    在所述第一表面形成呈矩阵状分布的收容部;
    将所述收容部内填充量子点;
    将隔绝层覆盖在所述基板的所述第一表面上。
  5. 如权利要求4所述的导光板的制备方法,其中,所述步骤“提供一基板,所述基板包括第一表面”包括:
    提供基板成型装置,所述基板成型装置用于将熔融状态的基材材料制备成所述基板,所述基板成型装置包括第一压辊以及第二压辊,所述第一压辊及所述第二压辊之间设置第一预设间距,且所述第一压辊由刚性材料形成,所述第二压辊由弹性材料形成,将熔融状态的基材材料经过所述第一压辊及所述第二压辊之间的所述第一预设间距,并冷却后以形成所述基板。
  6. 如权利要求5所述的导光板的制备方法,其中,所述步骤“在所述第一表面形成呈矩阵状分布的收容部”包括:
    提供第三压辊及第四压辊,其中,所述第三压辊表面为光滑平面,所述第四压辊表面设置有凸出部,所述第三压辊被设置为第一温度,所述第四压辊被设置为第二温度,所述第一温度小于所述第二温度且小于所述基材材料的熔点,且所述第三压辊及所述第四压辊之间设置第二预设距离;
    将所述基板通过所述第三压辊及所述第四压辊之间的所述第二预设距离,以在所述基板的邻近所述第四压辊的表面上形成矩阵状分布的收容部,形成所述收容部的表面被定义为第一表面。
  7. 如权利要求6所述的导光板的制备方法,其中,所述基材材料为塑料材料,所述基材材料的熔点为220℃,所述第一温度为180℃,所述第二温度为200℃。
  8. 如权利要求6所述的导光板的制备方法,其中,所述步骤“将所述收容部内填充量子点”包括:
    提供第五压辊,所述第五压辊包括凹槽,所述凹槽内装有量子点,当所述第五压辊在所述第一表面上转动时,所述凹槽内的量子点落入所述收容部内,以使所述收容部内填充量子点。
  9. 如权利要求8所述的导光板的制备方法,其中,所述步骤“将隔绝层覆盖在所述基板的所述第一表面上”包括:
    将隔绝材料涂布在所述第一表面上,且密封所述收容部,所述隔绝材料用于隔绝水汽及氧气;
    对所述隔绝材料进行固化,以形成所述隔绝层。
  10. 如权利要求9所述的导光板的制备方法,其中,所述步骤“对所述隔绝材料进行固化,以形成所述隔绝层”包括:
    对所述隔绝材料进行UV固化,以形成所述隔绝层。
PCT/CN2015/090396 2015-09-10 2015-09-23 导光板及导光板的制备方法 WO2017041328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/901,044 US10078166B2 (en) 2015-09-10 2015-09-23 Light guide plate and manufacture method of light guide plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510574558.5A CN105158972A (zh) 2015-09-10 2015-09-10 导光板及导光板的制备方法
CN201510574558.5 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017041328A1 true WO2017041328A1 (zh) 2017-03-16

Family

ID=54799875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090396 WO2017041328A1 (zh) 2015-09-10 2015-09-23 导光板及导光板的制备方法

Country Status (3)

Country Link
US (1) US10078166B2 (zh)
CN (1) CN105158972A (zh)
WO (1) WO2017041328A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511011B (zh) * 2016-02-02 2016-12-28 苏州星烁纳米科技有限公司 导光板、背光模组和显示装置
CN105676341B (zh) * 2016-02-25 2019-06-07 福州大学 一种基于蓝光激发的内嵌量子点微结构导光板的背光模组
CN106054449A (zh) * 2016-06-23 2016-10-26 深圳市华星光电技术有限公司 Lcd显示装置、基于量子点的背光模组及其制作方法
KR102627073B1 (ko) * 2016-11-30 2024-01-19 삼성디스플레이 주식회사 백라이트 유닛, 표시 장치 및 표시 장치의 제조 방법
CN107065299A (zh) * 2016-12-31 2017-08-18 惠科股份有限公司 背光模块的制造方法
CN106597746A (zh) * 2016-12-31 2017-04-26 惠科股份有限公司 背光模块及显示装置
CN108303819B (zh) * 2017-01-12 2020-11-24 京东方科技集团股份有限公司 背光源及其制造方法、导光板及其制造方法及显示装置
CN108361566A (zh) * 2017-01-25 2018-08-03 深圳市绎立锐光科技开发有限公司 一种光源装置
US10312228B2 (en) * 2017-01-25 2019-06-04 Innolux Corporation Display device
CN107092134B (zh) * 2017-06-07 2021-04-09 深圳Tcl新技术有限公司 背光模组和显示装置
CN108020881A (zh) * 2017-12-04 2018-05-11 福州大学 一种针对表面含有量子点微结构阵列的导光板封装结构及其制作方法
CN108020958B (zh) * 2017-12-04 2020-09-01 福州大学 一种用于直下式背光源的封装结构及其制作方法
CN108398742B (zh) * 2018-03-13 2020-02-18 京东方科技集团股份有限公司 一种导光板、背光结构及其制作方法、显示装置
CN111061087A (zh) * 2018-10-16 2020-04-24 深圳Tcl新技术有限公司 一种分体式量子点透镜及背光模组
KR20210034995A (ko) * 2019-09-23 2021-03-31 삼성전자주식회사 디스플레이 장치, 이에 구비되는 도광판 및 그 제조 방법
CN113741098B (zh) * 2021-11-04 2022-03-01 拓米(成都)应用技术研究院有限公司 一种utg-qd型mini-led板及其应用、制备方法和光学架构
CN115061311B (zh) * 2022-06-20 2023-06-02 Tcl华星光电技术有限公司 背光模组及其制作方法、显示终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032765A (zh) * 2012-12-11 2013-04-10 京东方科技集团股份有限公司 一种光源模组、液晶显示装置以及霓虹灯显示装置
CN104149323A (zh) * 2014-07-22 2014-11-19 合肥京东方显示光源有限公司 一种热辊压装置、导光板及其制备方法、背光模组
CN104344328A (zh) * 2014-10-22 2015-02-11 汕头超声显示器(二厂)有限公司 一种用于高色域液晶显示器的背光模组及其制造方法
WO2015030037A1 (ja) * 2013-08-28 2015-03-05 富士フイルム株式会社 導光板、これを含むバックライトユニットおよび液晶表示装置、ならびに光学シート
CN104566015A (zh) * 2014-12-01 2015-04-29 深圳市华星光电技术有限公司 一种量子点背光模组以及显示装置
CN104793284A (zh) * 2015-04-30 2015-07-22 武汉华星光电技术有限公司 导光板、背光模块及液晶显示器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459855B2 (en) * 2008-07-28 2013-06-11 Munisamy Anandan UV LED based color pixel backlight incorporating quantum dots for increasing color gamut of LCD
KR20120113503A (ko) * 2011-04-05 2012-10-15 엘지디스플레이 주식회사 도광판의 제조장치와 도광판
TWI447450B (zh) * 2011-11-30 2014-08-01 Au Optronics Corp 導光板結構、背光模組及其製造方法
KR102132220B1 (ko) * 2013-12-27 2020-07-10 삼성디스플레이 주식회사 양자점 광학 소자의 제조 방법 및 양자점 광학 소자를 포함한 백라이트 유닛

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032765A (zh) * 2012-12-11 2013-04-10 京东方科技集团股份有限公司 一种光源模组、液晶显示装置以及霓虹灯显示装置
WO2015030037A1 (ja) * 2013-08-28 2015-03-05 富士フイルム株式会社 導光板、これを含むバックライトユニットおよび液晶表示装置、ならびに光学シート
CN104149323A (zh) * 2014-07-22 2014-11-19 合肥京东方显示光源有限公司 一种热辊压装置、导光板及其制备方法、背光模组
CN104344328A (zh) * 2014-10-22 2015-02-11 汕头超声显示器(二厂)有限公司 一种用于高色域液晶显示器的背光模组及其制造方法
CN104566015A (zh) * 2014-12-01 2015-04-29 深圳市华星光电技术有限公司 一种量子点背光模组以及显示装置
CN104793284A (zh) * 2015-04-30 2015-07-22 武汉华星光电技术有限公司 导光板、背光模块及液晶显示器

Also Published As

Publication number Publication date
CN105158972A (zh) 2015-12-16
US10078166B2 (en) 2018-09-18
US20170199314A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2017041328A1 (zh) 导光板及导光板的制备方法
WO2017080077A1 (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
KR101460155B1 (ko) 백라이트 유닛 및 이를 구비한 액정 디스플레이 장치
WO2018018696A1 (zh) 一种量子点液晶背光源
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
CN101789485B (zh) 颜色转换部件及其制造方法、光发射装置及显示装置
TWI514044B (zh) 顯示裝置
CN102509759B (zh) 发光装置以及光源模块
US20160380170A1 (en) White led, backlight module and liquid crystal display device
WO2018120502A1 (zh) 背光模块及显示装置
US10175409B2 (en) Backlight module and display apparatus
JP5367260B2 (ja) 光源モジュール、照明装置、及び液晶表示装置
US20120127752A1 (en) Display device
US20170222096A1 (en) Led light source structure and packaging method
WO2016074267A1 (zh) 背光模块及液晶显示装置
WO2017118205A1 (zh) 偏振片及其制作方法、显示装置
US20210333584A1 (en) Adhesive, display panel and manufacturing method thereof, display device
US20170301833A1 (en) Quantum dots (qd) glass cells, and the manufacturing methods and applications thereof
WO2015089882A1 (zh) 白光发光二极管及背光模块
TWI621898B (zh) 光學構件及具有其之顯示裝置
CN107420856A (zh) 一种反射片及其制作方法、背光模组
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
US11131879B2 (en) Backlight module and applications thereof
WO2017020381A1 (zh) 背光模组及背光模组的制备方法
TWI690749B (zh) 顯示裝置及其製作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14901044

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903431

Country of ref document: EP

Kind code of ref document: A1