WO2017041273A1 - Procédé et appareil de transmission de données - Google Patents

Procédé et appareil de transmission de données Download PDF

Info

Publication number
WO2017041273A1
WO2017041273A1 PCT/CN2015/089387 CN2015089387W WO2017041273A1 WO 2017041273 A1 WO2017041273 A1 WO 2017041273A1 CN 2015089387 W CN2015089387 W CN 2015089387W WO 2017041273 A1 WO2017041273 A1 WO 2017041273A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
ofdm
orthogonal
ofdma
fdma
Prior art date
Application number
PCT/CN2015/089387
Other languages
English (en)
Inventor
Doron Ezri
Oded Redlich
Shimi Shilo
Genadiy Tsodik
Wei Lin
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to PCT/CN2015/089387 priority Critical patent/WO2017041273A1/fr
Priority to CN201580083002.4A priority patent/CN108353048B/zh
Publication of WO2017041273A1 publication Critical patent/WO2017041273A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2643Modulators using symbol repetition, e.g. time domain realization of distributed FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26

Definitions

  • Embodiments of the present invention relate to computer and communication technologies and, in particular, to a data transmission method and apparatus.
  • IoT features should coexist with existing WLAN devices, and also fulfill the requirements (e.g., low Peak to Average Power Ratio (PAPR) waveforms) to make sure the high power efficiency for IoT devices.
  • PAPR Peak to Average Power Ratio
  • Embodiments of the present invention provide a data transmission method and apparatus, which is used to solve the problem that far users are limited by the PAPR of their transmitted signals.
  • a data transmission method which includes:
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier FDMA
  • CP Cyclic Prefix
  • SC Single Carrier
  • the SC transmission includes:
  • a p ⁇ QAM and is a periodic waveform, band limited to the OFDM tones 0, ..., Q-1 (Q ⁇ M)
  • M is the equivalent data bandwidth interpreted by OFDM tones
  • T and T g denotes the duration of OFDM symbol and duration of CP respectively
  • g k denotes the frequency coefficient of the SC waveform.
  • orthogonal concurrent transmission can be processed using a single FFT at the receiver.
  • a data transmission apparatus which includes:
  • a circuit configured to perform An orthogonal, concurrent transmission of an Orthogonal Frequency Division Multiplexing (OFDM) and/or Orthogonal Frequency Division Multiple Access (OFDMA) transmission, and/or single-carrier FDMA (SC-FDMA) transmission together with a Cyclic Prefix (CP) Augmented Single Carrier (SC) transmission, which remain orthogonal at the receiver.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier FDMA
  • the SC transmission includes:
  • a p ⁇ QAM and is a periodic waveform, band limited to the OFDM tones 0, ..., Q-1 (Q ⁇ M)
  • M is the equivalent data bandwidth interpreted by OFDM tones
  • T and T g denotes the duration of OFDM symbol and duration of CP respectively
  • g k denotes the frequency coefficient of the SC waveform.
  • orthogonal concurrent transmission can be processed using a single FFT at the receiver.
  • the data transmission method and apparatus provided by the present invention includes an Orthogonal Frequency Division Multiplexing (OFDM) /Orthogonal Frequency Division Multiple Access (OFDMA) transmission and a Single Carrier (SC) transmission, , thus the method is superior to Long Term Evolution (LTE) , which can: 1) Allows concurrent transmission with OFDMA; 2) Allows receiver processing with a single FFT (at the receiver) concurrently with other OFDMA signals; 3) Simple transmission; 4) Of course, has lower PAPR than OFDM/OFDMA (and possibly lower than SC-FDMA) .
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC Single Carrier
  • FIG. 1 is a transmission scheme of the present invention.
  • FIG. 2 is a transmission structure with DFT according to the present invention.
  • FIG. 3 is an equivalent transmission structure without DFT according to an embodiment of the present invention.
  • FIG. 4 is CCDF curve comparisons of scheme disclosed in this invention, OFDM/OFDMA, and SC-FDMA schemes according to an embodiment of the present invention.
  • a data transmission method which includes an Orthogonal Frequency Division Multiplexing (OFDM) /Orthogonal Frequency Division Multiple Access (OFDMA) transmission and a Single Carrier (SC) transmission, .
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC Single Carrier
  • the SC transmission includes:
  • a p ⁇ QAM and is a periodic waveform, band limited to the OFDM tones 0, ..., Q-1 (Q ⁇ M)
  • M is the equivalent data bandwidth interpreted by OFDM tones
  • T and T g denotes the duration of OFDM symbol and duration of CP respectively
  • g k denotes the frequency coefficient of the SC waveform.
  • PAPR Optimized Single Carrier (POSC) as a new low-PAPR transmission scheme for range extension of 11ax and other wireless standards
  • the proposed structure includes: Joint OFDM/OFDMA and Single-Carrier (with cyclic prefix) transmission and reception with a single FFT; Implementation at the transmitter using the direct form; Implementation adopting single-carrier FDMA based transmission; Related signaling respective to choice between OFDMA and (PAPR optimized) single-carrier transmission mode.
  • Fig. 1 depicts the general transmission scheme of the proposed POSC scheme, it can be seen that, IoT clients can transmit using PAPR optimized single carrier waveforms, which also fully orthogonal with OFDMA part signals of 11ax clients. At the receiving side, a single FFT operation can both get the IoT data and traditional 11ax data simultaneously without mutual interference.
  • a p ⁇ QAM denote the QAM modulation constellation points, and is a periodic waveform, band limited to the OFDM/OFDMA tones 0, ..., Q-1 (Q ⁇ M)
  • M is the equivalent data bandwidth interpreted by OFDM/OFDMA tones
  • T and T g denotes the duration of OFDM/OFDMA symbol and duration of CP, respectively.
  • g k denotes the properly designed frequency coefficient of the corresponding single carrier waveform. It should be noted that these Q tones may occupy any continuous portion of the available bandwidth, not necessarily the first tones as depicted here for simplicity.
  • N is the total number of tones (including the DC and side guard tones) for OFDMA transmission.
  • the incoming signal is a sum of both SC and OFDMA signals
  • FIG. 2 illustrates the adopted SC-FDMA transmitter structure for POSC transmission
  • FIG. 3 depicts an alternative transmitter structure without DFT processing, where a polyphase interpolator is included.
  • POSC a new low-PAPR transmission scheme for range extension of wireless devices (for example, 802.11ax devices) .
  • the advantages of the suggested scheme are: 1) significantly lower PAPR than OFDMA and SC-FDMA; 2) full coexistence with OFDMA transmission and a single FFT reception; 3) Simple transmission implementations; 4) excellent detection performance, thus the PAPR reduction can be directly translated into range extension applications;
  • the advantages of the suggested scheme, in terms of PAPR, is depicted in FIG. 4.
  • a data transmission apparatus which includes: a circuit configured to perform an Orthogonal Frequency Division Multiplexing (OFDM) /Orthogonal Frequency Division Multiple Access (OFDMA) transmission and a Single Carrier (SC) transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC Single Carrier
  • the SC transmission includes:
  • a p ⁇ QAM and is a periodic waveform, band limited to the OFDM tones 0, ..., Q-1 (Q ⁇ M)
  • M is the equivalent data bandwidth interpreted by OFDM tones
  • T and T g denotes the duration of OFDM symbol and duration of CP respectively
  • g k denotes the frequency coefficient of the SC waveform.
  • aspects or possible implementation of various aspects of the present invention may be embodied as a system, method or computer program products. Accordingly, aspects, or possible implementation of various aspects of the present invention may use a form of an embodiment of entirely hardware, an embodiment of entirely software (including firmware, resident software, etc. ) , or an embodiment of a combination of software and hardware, which are referred to as “circuit” , “module” or “system” herein. Moreover, various aspects or possible implementations of various aspects of the present invention may use the form of a computer program product, where the computer program product refers to computer readable program codes stored in a computer readable medium.
  • the computer readable storage medium may be a computer readable signal medium or a computer readable storage medium.
  • the computer readable storage medium includes but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or apparatuses, or any suitable combination of the foregoing, such as a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read only memory (EPROM or flash memory) , an optical fiber, or a portable read-only memory (CD-ROM) .
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable read-only memory
  • the processor in a computer reads the computer readable program code stored in the computer readable medium, such that the processor can execute a functional action as specified in each step or a combination of different steps in the flow chart; generate an apparatus that implements the functional action as specified in each block or a combination of different blocks in the diagram.
  • the computer readable program code may be entirely executed on a user's computer, partly executed on the user's computer, as a separate package, partly executed on the user's computer and partly executed on a remote computer, or entirely executed on a remote computer or a processor. It should also be noted that, in some alternative embodiments, each step in the flowchart, or function indicated in each block in the diagram, may not occur in accordance with the sequence indicated in the figures. For example, depending on the functionality involved, two steps or two blocks shown in succession, may actually be executed concurrently, or the blocks may sometimes be executed in the reverse order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Des modes de réalisation de la présente invention se rapportent à un procédé et à un appareil de transmission de données. Ledit procédé comprend une transmission orthogonale et simultanée d'une transmission par OFDM (multiplexage par répartition orthogonale de la fréquence) et/ou par OFDMA (accès multiple par répartition orthogonale de la fréquence) et/ou une transmission par SC-FDMA (FDMA à porteuse unique) conjointement avec une transmission à porteuse unique (SC) augmentée d'un préfixe cyclique (CP), qui restent orthogonales dans le récepteur et qui peuvent être traitées à l'aide d'une seule transformée FFT dans le récepteur, le procédé étant ainsi supérieur au système LTE (évolution à long terme).
PCT/CN2015/089387 2015-09-10 2015-09-10 Procédé et appareil de transmission de données WO2017041273A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/089387 WO2017041273A1 (fr) 2015-09-10 2015-09-10 Procédé et appareil de transmission de données
CN201580083002.4A CN108353048B (zh) 2015-09-10 2015-09-10 数据传输方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/089387 WO2017041273A1 (fr) 2015-09-10 2015-09-10 Procédé et appareil de transmission de données

Publications (1)

Publication Number Publication Date
WO2017041273A1 true WO2017041273A1 (fr) 2017-03-16

Family

ID=58240194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089387 WO2017041273A1 (fr) 2015-09-10 2015-09-10 Procédé et appareil de transmission de données

Country Status (2)

Country Link
CN (1) CN108353048B (fr)
WO (1) WO2017041273A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197448A3 (fr) * 2019-03-25 2021-11-25 Khan Abdul Rauf Schéma de transmission multi-débit à porteuse unique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080031376A1 (en) * 2006-08-04 2008-02-07 Kabushiki Kaisha Toshiba Transmission apparatus, reception apparatus and radio communication system
EP1936900A1 (fr) * 2006-12-18 2008-06-25 Nokia Siemens Networks Gmbh & Co. Kg Procédé et dispositif OFDM destinés à la transmission de données SC-FDMA
CN104836767A (zh) * 2015-04-13 2015-08-12 江苏技睿通信科技有限公司 一种可灵活配置保护间隔的毫米波室内通信系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730369B1 (ko) * 2010-01-17 2017-04-26 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
JP5734960B2 (ja) * 2010-04-13 2015-06-17 レノボ・イノベーションズ・リミテッド(香港) Ofdm変調器、ofdm送信装置、及びofdm変調方法並びにプログラム
US9160511B2 (en) * 2012-01-30 2015-10-13 Qualcomm Incorporated Cyclic prefix in evolved multimedia broadcast multicast service with high transmit power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080031376A1 (en) * 2006-08-04 2008-02-07 Kabushiki Kaisha Toshiba Transmission apparatus, reception apparatus and radio communication system
EP1936900A1 (fr) * 2006-12-18 2008-06-25 Nokia Siemens Networks Gmbh & Co. Kg Procédé et dispositif OFDM destinés à la transmission de données SC-FDMA
CN104836767A (zh) * 2015-04-13 2015-08-12 江苏技睿通信科技有限公司 一种可灵活配置保护间隔的毫米波室内通信系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197448A3 (fr) * 2019-03-25 2021-11-25 Khan Abdul Rauf Schéma de transmission multi-débit à porteuse unique

Also Published As

Publication number Publication date
CN108353048B (zh) 2020-06-16
CN108353048A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN110089083B (zh) 用于离散傅里叶变换-扩频-正交频分复用的峰值平均功率比抑制的系统和方法
US8542573B2 (en) Uplink baseband signal compression method, decompression method, device and system
US10742356B2 (en) Multi-window fast convolution processing
US10177941B2 (en) Method and apparatus for estimating and correcting phase error in wireless communication system
US20140192925A1 (en) Method of and apparatus for reducing papr in filter-bank multi-carrier system
EP3985891B1 (fr) Appareil de transmission
CN111727591B (zh) 基于序列的信号处理方法及信号处理装置
WO2018050117A1 (fr) Procédé de modulation, procédé de démodulation, et dispositif et système associés
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
US8724716B2 (en) Method and apparatus for inverse fast fourier transform (IFFT) in communication system
WO2020056225A1 (fr) Procédés, appareils et systèmes destinés à un codage de séquence complémentaire et à des transmissions de séquence complémentaire codée
WO2018058678A1 (fr) Procédé et dispositif de traitement de signal
WO2017041273A1 (fr) Procédé et appareil de transmission de données
EP3391606B1 (fr) Procédé et appareil permettant d'estimer et de corriger une erreur de phase dans un système de communication sans fil
US20230344577A1 (en) Reference signal transmission method and device, communication node, and storage medium
WO2022253116A1 (fr) Procédé de communication multiutilisateur et appareil de communication associé
CN110089082B (zh) 滤波的cp-ofdm波形的构造
CN106850492B (zh) 一种适用于ofdm系统的峰均比降低方法
CN107438037B (zh) 一种数据传输方法和相关装置
WO2017101602A1 (fr) Procédé et appareil d'émission et de réception de diversité à plusieurs antennes
WO2018113540A1 (fr) Procédé et appareil d'envoi de signal de synchronisation
CN114629762A (zh) 一种相位噪声的抑制方法及相关装置
KR20200112401A (ko) 폴리페이즈 필터를 이용한 2차원 ftn 송신기 및 그의 송신 방법
KR20090029345A (ko) 보간 기법과 고속 푸리에 변환을 이용한 이산 푸리에변환을 위한 장치 및 방법
KR20170089148A (ko) 저지연 웨이브폼을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903380

Country of ref document: EP

Kind code of ref document: A1