WO2017039478A1 - Procédé de traitement de matériaux utilisant un balayage laser à rayons multiples - Google Patents

Procédé de traitement de matériaux utilisant un balayage laser à rayons multiples Download PDF

Info

Publication number
WO2017039478A1
WO2017039478A1 PCT/RU2016/000002 RU2016000002W WO2017039478A1 WO 2017039478 A1 WO2017039478 A1 WO 2017039478A1 RU 2016000002 W RU2016000002 W RU 2016000002W WO 2017039478 A1 WO2017039478 A1 WO 2017039478A1
Authority
WO
WIPO (PCT)
Prior art keywords
sectors
scanning
processing
laser scanning
sector
Prior art date
Application number
PCT/RU2016/000002
Other languages
English (en)
Russian (ru)
Inventor
Владимир Валентинович ПАВЛОВ
Original Assignee
Владимир Валентинович ПАВЛОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Валентинович ПАВЛОВ filed Critical Владимир Валентинович ПАВЛОВ
Publication of WO2017039478A1 publication Critical patent/WO2017039478A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • This invention relates to the field of laser processing of materials, including laser cutting, welding, surfacing, selective sintering or melting of large parts or when processing a large number of products on a single laser complex using multi-beam laser scanning.
  • the level of technology includes laser cutting, welding, surfacing, selective sintering or melting of large parts or when processing a large number of products on a single laser complex using multi-beam laser scanning.
  • the disadvantage of the analogue is to limit the processing speed, since the volume of the treated surface is, as a rule, distributed unevenly across the regions and part of the laser beams that are not included in the overlap zone of the region most loaded with the treatment will not be used to full capacity.
  • the laser beams are physically separated, the scanning areas of each beam are smaller than the total surface to be processed and mutually intersect, forming overlap zones of more than 10% , 20%, 30%, 40%, or 50% of each scan area.
  • the choice of a laser beam for scanning each sector is carried out before the beginning of the additive process in a special data processing unit based on determining the length of time when each laser beam scans each layer.
  • a laser beam is selected for scanning a specific sector by the criterion of uniform loading of a multipath laser source.
  • the disadvantage of the method proposed in the prototype is that when using a multipath laser source that generates dozens and hundreds of rays, for example, using a multipath active element proposed in patent source RU2541735, the algorithm for selecting rays becomes too cumbersome, and the program for its implementation unreliable.
  • the disadvantages associated with the prior art are overcome in the embodiment of the present invention due to the use of a regular structure of the processed sectors within the working field.
  • the working field with the material being processed is conventionally divided by a grid with cells in the form of equilateral triangles into identical triangular sectors or with a grid with cells in the form of squares or rectangles into identical square or rectangular sectors.
  • the output windows of the laser scanning heads are set above the sector tops at a height determined by the formula h> d / tga, where d is the length of the side of the triangular sector or the length of the diagonal of a square or rectangle, a is the maximum scan angle.
  • the scanning area of each beam When using triangular sectors, the scanning area of each beam completely covers up to six sectors, and in each sector it is possible to process the material simultaneously with at least three rays.
  • the scanning area of each beam When using square or rectangular sectors, the scanning area of each beam completely covers up to four sectors and in each sector it is possible to process the material simultaneously with at least four rays. This allows for a more uniform loading of each beam by grouping at each step of processing several rays in sectors with the largest amount of raw material. After completion of material processing in sectors associated with any laser head and before completion of material processing in other sectors, this head can be used to deliver a defocused beam to sectors that have received the least amount of electromagnetic energy to equalize thermal gradients.
  • steps are provided for calculating corrections to compensate for alignment errors of the laser scanning heads by pointing each beam to several sensors common to each pair of rays with an exactly known position in the coordinate system associated with the working field.
  • the proposed method allows the simultaneous use of a large number of laser beams, which makes it possible to multiply increase the productivity of the installation, allowing the manufacture of large-volume products or the simultaneous production of a large number of products in one installation.
  • Fig.1 - shows the layout of the elements used in the processing of materials using multi-beam laser scanning across triangular-shaped sectors.
  • Fig.2a shows a multipath laser active element.
  • Fig.2b shows the layout of one of the variants of a multi-beam laser source.
  • Fig.3 - shows the layout of the elements used in the processing of materials using multi-beam laser scanning across square or rectangular sectors.
  • Fig.4 installation of sensors to compensate for alignment errors of scanning heads is shown.
  • the implementation of the proposed method of processing materials using multipath laser scanning is divided, as shown in Fig.1, into triangular sectors with a virtual grid 102 with cells in the form of equilateral triangles.
  • the grid nodes are placed opposite the output windows of the scanning laser heads 9, which are installed above the working field at a height determined by the formula h> d / tga, where d is the length of the side of the triangular sector, a is the maximum scan angle.
  • the output beams 5 of a multipath laser source are formed, for example, using an amplifier 7 with a multichannel solid-state active element proposed in patent source RU2541735.
  • FIG. 2a A nine-channel active element of this type is shown in Fig. 2a It sequentially installs crossed packages from parallel composite laser plates. These plates consist of alternating inactive layers 10 and active layers 11. Pumping is done through narrow faces 33, and cooling through the wide faces of 25 composite plates.
  • Fig. 2b shows an amplifier with a 49-channel active element.
  • Such an amplifier can be very compact, since it has a pumping system common to all amplification channels, consisting of arrays of laser diodes 32 and a cooling system consisting of heat-removing plates 21, coolant collector 22 with fitting 23.
  • the broad beam 4 received from the output beam of the master oscillator 1 is directed to the amplifier input with the help of expander 3.
  • Fig.1 shows the course of only one beam from the general array created by a multipath laser source.
  • the scanning area 91 of each output beam of the scanning laser head 9 can completely cover up to six sectors and in each sector the material can be processed simultaneously with at least three beams.
  • the implementation of the proposed method of processing materials using multipath laser scanning shown in Fig.3, the working field of the frame 100, on which is placed the processed material is divided into a virtual grid 102 square or rectangular sector.
  • the output window of the scanning laser heads 9 are placed opposite the sector tops at a height determined by the formula h> d / tga, where d is the diagonal length of the square or rectangular sector, a is the maximum scanning angle.
  • the beams 5 formed by the amplifier are directed to the input windows of the scanning laser heads 9, for example, by means of reflective prisms 8. Mirrors or optical fibers can also be used for this purpose.
  • Fig. 3 shows the course of only some of the beams from the common array, created by a multipath laser source.
  • the scanning area 91 of each output beam of the scanning laser head 9 can completely cover up to four sectors and in each sector the material can be processed simultaneously with at least four beams.
  • the processing of the material for example, sintering of the powder, is carried out in accordance with the proposed method as follows.
  • the material to be processed in the quantity necessary for sintering one layer is poured onto the working field of the bed 100, then leveled and compacted.
  • the computer program that controls the processing process divides the working field into triangular, square or rectangular sectors forming a virtual grid 102 on the surface to be processed, the nodes of which will be placed opposite the output windows of the scanning heads.
  • each processing step determined by a computer program an estimate is made of the volume of the raw powder for each sector of the grid 102.
  • Each laser beam is directed to one of the adjacent sectors, in which the maximum amount of raw material remains and is processed in accordance with the program provided for this processing steps.
  • the amount of raw material in the sectors is again estimated and the rays are distributed to sectors with priority to the sectors with the maximum amount of raw material. If the processing of all sectors related to a certain beam is completed before the processing of sectors belonging to other beams, then the finished processing beam in a defocused form is used to heat the material in the processed sectors to reduce temperature gradients within the field being processed.
  • each beam is successively directed to several sensors 104, common to each pair of rays, as shown in Fig.4.
  • the calculation of corrections can be made using triangulation methods, for example, as suggested in patent source US7916375.
  • the sensors 104 are mounted on the ribs of the rigid frame 103 between the treated field of the bed 100 and the output windows of the laser heads 9 in the peripheral scanning zone 92, which is not used in the processing of materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Procédé de traitement de matériaux utilisant un balayage laser à rayons multiples qui se distingue en ce que le champ à traiter est divisé en plusieurs secteurs se présentant comme des carrés, des rectangles ou des triangles équilatéraux. Les ouvertures de sortie des têtes laser de balayage sont disposées au-dessus des sommets de ces secteurs à une hauteur déterminée par la formule hd/tg dans laquelle d est la longueur de côté du secteur triangulaire ou la diagonale du secteur carré ou rectangulaire, avec un angle de balayage minimal. A chaque stade de traitement déterminé par un programme d'ordinateur, dans chaque secteur, on évalue le volume de matériau non traité et on dirige les faisceaux dans les secteurs possédant le plus grand volume de matériau non traité. Entre les têtes de balayage et le champ de traitement on a monté des capteurs permettant de calculer la correction de compensation d'erreurs d'ajustement des têtes de balayage. Par conséquent, il est possible d'assurer une charge plus régulière d'un grand nombre de faisceaux laser, ce qui à son tour permet de multiplier considérablement la productivité de l'installation permettant la fabrication d'articles de grand volume ou la fabrication simultanée d'un grand nombre d'articles dans une seule installation.
PCT/RU2016/000002 2015-08-28 2016-01-13 Procédé de traitement de matériaux utilisant un balayage laser à rayons multiples WO2017039478A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015136478A RU2015136478A (ru) 2015-08-28 2015-08-28 Способ обработки материалов с использованием многолучевого источника лазерного излучения
RU2015136478 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017039478A1 true WO2017039478A1 (fr) 2017-03-09

Family

ID=58188094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000002 WO2017039478A1 (fr) 2015-08-28 2016-01-13 Procédé de traitement de matériaux utilisant un balayage laser à rayons multiples

Country Status (2)

Country Link
RU (1) RU2015136478A (fr)
WO (1) WO2017039478A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036901A (zh) * 2019-12-10 2020-04-21 西安航天发动机有限公司 一种多材料零件的激光选区熔化成形方法
CN111805181A (zh) * 2020-07-20 2020-10-23 石家庄恒融世通电子科技有限公司 预成型焊片的制备方法
DE102020107800A1 (de) 2020-03-20 2021-09-23 Carl Zeiss Ag Fertigungsvorrichtung zur additiven fertigung eines objekts und verfahren zum additiven herstellen eines objekts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130043A1 (fr) * 2017-12-26 2019-07-04 Arcelormittal Procédé de soudage bout à bout au laser de deux feuilles métalliques avec des premier et deuxième faisceaux laser avant et un faisceau laser arrière

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2132761C1 (ru) * 1993-10-20 1999-07-10 Юнайтид Текнолоджиз Копэрейшн Устройство и способ лазерного спекания
RU2386517C1 (ru) * 2008-08-07 2010-04-20 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания при лазерном послойном порошковом синтезе объемных деталей
WO2014199134A1 (fr) * 2013-06-10 2014-12-18 Renishaw Plc Appareil et procédé de solidification sélective par laser
EP2878409A1 (fr) * 2013-11-27 2015-06-03 SLM Solutions Group AG Procédé et dispositif de commande d'un système d'irradiation
WO2015083104A1 (fr) * 2013-12-03 2015-06-11 Layerwise N.V. Procédé et dispositif de calibrage de multiples rayons d'énergie pour l'impression 3d d'un objet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2132761C1 (ru) * 1993-10-20 1999-07-10 Юнайтид Текнолоджиз Копэрейшн Устройство и способ лазерного спекания
RU2386517C1 (ru) * 2008-08-07 2010-04-20 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания при лазерном послойном порошковом синтезе объемных деталей
WO2014199134A1 (fr) * 2013-06-10 2014-12-18 Renishaw Plc Appareil et procédé de solidification sélective par laser
EP2878409A1 (fr) * 2013-11-27 2015-06-03 SLM Solutions Group AG Procédé et dispositif de commande d'un système d'irradiation
WO2015083104A1 (fr) * 2013-12-03 2015-06-11 Layerwise N.V. Procédé et dispositif de calibrage de multiples rayons d'énergie pour l'impression 3d d'un objet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036901A (zh) * 2019-12-10 2020-04-21 西安航天发动机有限公司 一种多材料零件的激光选区熔化成形方法
DE102020107800A1 (de) 2020-03-20 2021-09-23 Carl Zeiss Ag Fertigungsvorrichtung zur additiven fertigung eines objekts und verfahren zum additiven herstellen eines objekts
CN111805181A (zh) * 2020-07-20 2020-10-23 石家庄恒融世通电子科技有限公司 预成型焊片的制备方法

Also Published As

Publication number Publication date
RU2015136478A (ru) 2017-03-07

Similar Documents

Publication Publication Date Title
WO2017039478A1 (fr) Procédé de traitement de matériaux utilisant un balayage laser à rayons multiples
US11478856B2 (en) Selective laser solidification apparatus and method
JP6224707B2 (ja) 積層を利用して三次元立体物を製造する装置及び製造方法
US20230150191A1 (en) Device for the generative production of a three-dimensional object
JP7407832B2 (ja) 制御方法、制御装置及び製造装置
JP2016527101A5 (fr)
US20190329323A1 (en) Additive manufacturing apparatus and method
CN107039885A (zh) 应用于3d成像的激光阵列
EP2926980B1 (fr) Équipement de moulage de stratifié
CN106972347A (zh) 用于3d成像的激光阵列
EP3213905B1 (fr) Ensemble tête multivoie pour appareil de modélisation en trois dimension, ayant un miroir polygonal tournant dans une seule direction et appareil de modélisation en trois dimensions utilisant ce dernier
KR20150115595A (ko) 3차원 조형 장치
CN107953552B (zh) 激光扫描方法、可读存储介质及激光扫描控制设备
AU2016273986A1 (en) 3D printing device for producing a spatially extended product
US20170326646A1 (en) Additive manufacturing apparatus and methods
TW201603992A (zh) 控制至少兩個屬於光固化機的光輻射源的活動的改良方法
US20220080652A1 (en) Energy dosing for additive manufacturing
US20190224750A1 (en) Method for additively manufacturing at least one three-dimensional object
CN107297897B (zh) 一种分层制造三维物体的设备及温度场调节方法
US20160064262A1 (en) Semiconductor manufacturing apparatus, semiconductor manufacturing system, and semiconductor manufacturing method
KR20230037596A (ko) 적층 제조에서의 광학 줌
US20190143606A1 (en) Method for additively manufacturing three-dimensional objects
EP3393760B1 (fr) Appareil et procédés de fabrication additive
JP6884807B2 (ja) 積層造形装置および積層造形方法
US20230234135A1 (en) Planning device and method for planning a locally selective irradiation of a work region using an energy beam, computer program product for carrying out such a method, manufacturing device having such a planning device, and method for the additive manufacture of a component from a powder material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842400

Country of ref document: EP

Kind code of ref document: A1