WO2017039248A1 - 풍력을 이용한 유체 압축장치 - Google Patents

풍력을 이용한 유체 압축장치 Download PDF

Info

Publication number
WO2017039248A1
WO2017039248A1 PCT/KR2016/009548 KR2016009548W WO2017039248A1 WO 2017039248 A1 WO2017039248 A1 WO 2017039248A1 KR 2016009548 W KR2016009548 W KR 2016009548W WO 2017039248 A1 WO2017039248 A1 WO 2017039248A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
fluid
compression
compression unit
rotor
Prior art date
Application number
PCT/KR2016/009548
Other languages
English (en)
French (fr)
Inventor
송명호
홍혜정
안종효
허철구
허철기
정병기
황수빈
Original Assignee
(주)영광공작소
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)영광공작소, 동국대학교 산학협력단 filed Critical (주)영광공작소
Publication of WO2017039248A1 publication Critical patent/WO2017039248A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/008Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being a fluid transmission link
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/12Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Definitions

  • the present invention relates to a compression device for compressing a fluid using wind power, and more particularly, a rotor generating rotational force by wind power, and a swash plate type compression unit for compressing fluid drawn from the outside by the rotational force of the rotor;
  • the present invention relates to a fluid compression device using wind power, including a storage tank for storing fluid compressed by the swash plate compression unit, to provide a compressed fluid to a location in need.
  • the manufacturing sector currently accounts for most of the manufacturing of metal products, foodstuffs, and transportation equipment including machinery and equipment, and their production plants generally have compressed air production facilities of several hundred kilowatts.
  • Korean Patent Laid-Open Publication No. 10-2012-0051973 discloses a windmill having a large drive gear mounted on a windmill shaft, a plurality of compact driven gear-mounted compressors engaged with the drive gear, A generator that is dynamically connected to the windmill shaft, a pneumatic tank for storing the compressed air produced by the compressor, an air pipe for connecting the compressor discharge port and the pneumatic tank individually, and a reverse airflow prevention station for the compressed air in the pneumatic tanks installed in each air pipe.
  • a wind compressor including a speed sensor controlling a solenoid valve at a ground side, a rotation speed of a windmill shaft, and a solenoid valve installed in front of the reverse valve on an air pipe to be controlled by a speed sensor electrically connected to the generator.
  • a compressor for compressing air was used as a reciprocating compressor using a crankshaft having a simple structure and the highest compression efficiency.
  • the reciprocating compressor rotates the crankshaft by the rotational force generated through the windmill, and the piston is rotated by the crankshaft. While moving up and down, air was compressed and provided.
  • the reciprocating compressor when the reciprocating compressor is applied to a wind power compressor, the reciprocating compressor has a vertical mounting bad mounting ability, a problem of increasing the number of cylinders and a large torque variation.
  • the efficiency of the compression device using the wind power is dependent on the wind speed, the wind speed directly affects the change in the number of revolutions of the windmill.
  • the compression speed of the compressor decreases rapidly due to the low number of windmills. If the wind speed is too high than the wind speed of the area, the wind speed of the windmill is too high. There is a risk of overheating burnout or breakage, and the noise and vibration is greatly generated, in recent years to provide a braking device to control the rotation of the windmill.
  • Fluid compression apparatus using wind power is a rotor that is rotated by the wind to generate a rotational force, the central axis of the rotor is connected to the shaft joint, the swash plate to receive the rotational force of the rotor to compress the fluid by the rotational force And a storage tank connected to the swash plate compression unit and a pipe through which the fluid flows, and receiving and storing the fluid compressed in the swash plate compression unit.
  • the swash plate-type compression unit is provided on the discharge line side for discharging the compressed fluid, to separate the lubricating oil from the compressed fluid to include the oil separator for re-supply to the swash plate-type compression unit.
  • the swash plate compression unit includes a housing, a cylinder block in which a plurality of cylinder bores are formed, a drive shaft rotatably supported by the housing or the cylinder block, and fixedly mounted to the drive shaft, by rotation of the drive shaft. And a swash plate which rotates while the inclination angle changes, and a piston that is reciprocally movable in the cylinder bore by rotation of the swash plate.
  • the rotor and the swash plate compression unit according to the present invention is connected to the shaft joint, the rotational speed of the rotor between the rotor and the swash plate compression unit is adjusted to a preset rotation rate ratio, the swash plate type It may include a sensitizing gear provided to the compression unit.
  • the input end is connected to the central axis and the shaft joint of the rotor
  • the output end is connected to the drive shaft of the swash plate compression unit
  • the rotational speed input through the input end at a predetermined rotational speed ratio
  • a speed change gear for shifting and outputting to an output stage a braking device provided at the input end side and applying a load to reduce the rotation speed when the input rotation speed is input over a preset maximum rotation speed, and provided at the output end, and outputting It includes a tachometer to measure the number of revolutions.
  • the fluid compression apparatus using wind power according to the present invention is electrically connected to the increase / deceleration portion or the swash plate compression unit so that the compression efficiency is adjusted according to the wind speed, and selectively increases or decreases the electrical signal according to the wind speed. It is applied to the type compression unit and a control unit for controlling the compression efficiency.
  • the central axis of the rotor may include a load cell for measuring the thrust on the rotor.
  • the fluid compression apparatus using wind power includes a plurality of swash plate compression units and storage tanks, and compresses them in a relatively high pressure storage tank while performing multi-stage compression using all of the plurality of swash plate compression units. Compressed fluid is stored in the selected storage tank while storing the fluid or performing single stage compression using a single swash plate compression section.
  • the plurality of swash plate compression units are provided as a first stage compression unit and a second stage compression unit, and the storage tank stores a low pressure tank in which a relatively low pressure compressed fluid is stored, and a relatively high pressure compressed fluid is stored.
  • a high pressure tank that is, when the wind speed is relatively low, any one compression unit of the first stage compression unit and the second stage compression unit is performed in one stage, any one of the storage tank selected from the low pressure tank and the high pressure tank
  • the first stage compression unit is pre-compressed to store the compressed fluid in the low pressure tank, and when the storage capacity of the low pressure tank approaches the saturation state,
  • the stored compressed fluid is compressed once more through the second stage compression unit, so that the compressed fluid having a relatively high pressure is stored in the high pressure tank rather than the first compressed compressed fluid.
  • the fluid compression device using wind power according to the present invention has the following effects.
  • FIG. 1 is an exemplary view showing a fluid compression device using wind power according to an embodiment of the present invention.
  • Figure 2 is an exemplary view showing a connection state of the rotor, the increase and decrease gear and the swash plate compression unit according to an embodiment of the present invention.
  • FIG 3 is an exemplary view showing an increase and decrease gear according to an embodiment of the present invention.
  • Figure 4 is an exemplary view showing a swash plate fixed compression unit according to an embodiment of the present invention.
  • FIG. 5 is an exemplary view showing a swash plate variable compression unit according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a high efficiency region of a compressor according to the rotational speed and torque of the compressor.
  • FIG. 7 is a graph showing a state in which the compression efficiency is moved to the high efficiency region by adjusting the rotation speed of the compressor according to the embodiment of the present invention.
  • FIG 8 is an exemplary view illustrating a state in which the swash plate compression unit is operated in multiple stages according to another embodiment of the present invention.
  • the present invention is connected to the rotor generating a rotational force by the wind, the central axis and the shaft joint of the rotor, the swash plate compression unit and the swash plate compression to receive the rotational force generated from the rotor to compress the fluid based on the rotational force Including a storage tank connected to the flow section and the fluid flow pipe, and receives the compressed fluid in the swash plate compression unit, by adjusting the rotational speed of the compressor according to the wind speed, the fluid compression using wind power that can be stable operation Provide the device.
  • Figure 1 is an exemplary view showing a fluid compression apparatus using wind power according to an embodiment of the present invention
  • Figure 2 is an exemplary view showing a connection state of the rotor, the increase and decrease gear and the swash plate compression unit according to an embodiment of the present invention
  • 3 is an exemplary view showing an increase and decrease gear according to an embodiment of the present invention.
  • the present invention is a rotor 100 that is rotated by the wind to generate a rotational force, swash plate compression unit 200 for compressing the fluid drawn from the outside by the rotational force of the rotor 100, and the swash plate compression unit 200 Including a storage tank 400 for storing the compressed fluid in, relates to a fluid compression device using the wind power to provide the compressed fluid in place in need, referring to the drawings in more detail as follows.
  • a fluid compression apparatus using wind power includes a rotor 100 generating a rotational force by wind power, and a swash plate compression unit 200 compressing a fluid by the rotational force of the rotor 100. And a storage tank 400 for storing the compressed fluid.
  • the rotor 100 is used to generate rotational force by using wind, and includes a hub 101 having a circular shape, and a plurality of blades 102 are disposed radially based on the hub 101.
  • the center of the hub 101 of the rotor 100 is preferably formed to extend the central axis 103 in the rear.
  • the swash plate compression unit 200 is connected to the central axis 103 and the shaft joint of the rotor 100, the swash plate compression unit 200 receives the rotational force generated from the rotor 100 to receive the rotational force Compress the fluid on the basis.
  • the compressed fluid is transferred to the storage tank 400 connected to the swash plate compression unit 200 by a pipe in which the fluid flows, and the transferred fluid is compressed and stored in the storage tank 400.
  • the housing 210, the cylinder block 220 is formed with a plurality of cylinder bores 221, the housing 210 or A drive shaft 230 rotatably supported on the cylinder block 220, a swash plate 240 fixedly installed on the drive shaft 230, the inclination angle of which changes as the drive shaft 230 rotates, and the swash plate ( It includes a piston 250 is accommodated in the cylinder bore 221 reciprocating by the rotation of 240.
  • the swash plate type compression unit 200 is classified into a swash plate fixed type in which the inclination angle of the swash plate is not changed, and a swash plate variable type in which the inclination angle of the swash plate is changed.
  • a swash plate fixed type is described with reference to FIG. 4.
  • the housing 210 is coupled to the front and rear of the cylinder block 220 so as to form a cylinder block 220 having a plurality of horizontally formed cylinder bores 221 and to seal the cylinder block 220. .
  • the front housing 210 is coupled to the front of the cylinder block 220, and the rear housing 210 having a valve plate is coupled to the rear of the cylinder block 220.
  • One end of the drive shaft 230 is rotatably supported through the bearing in the front housing 210, while the other end of the drive shaft 230 passes through the swash chamber and the rear housing 210 through the bearing installed in the cylinder block 220. Is supported).
  • a swash plate 240 inclined at a corresponding angle is provided around the driving shaft 230.
  • both side surfaces near the outer circumferential surface of the swash plate 240 are fitted to the piston 250 so as to be able to slide through the shoe.
  • front and rear housings 210 are formed with suction chambers and discharge chambers, respectively, and the valve plates interposed between the front and rear housings 210 and the cylinder blocks 220 correspond to the respective cylinder bores 221. Intake valves and discharge valves are formed therein to control the suction and discharge of the fluid.
  • the fluid in the suction chamber is sucked into the cylinder bore 221 by the reciprocating motion of the piston 250, compressed, and then discharged into the discharge chamber.
  • the intake valve is connected to the inlet line for introducing the fluid from the outside
  • the discharge valve is connected to the storage tank 400 as a discharge line through which the compressed fluid flows.
  • the swash plate compression unit 200 has a high efficiency region of the compressor according to the rotational speed and torque as shown in Figure 6, the swash plate compression unit 200 to maintain the high efficiency at all times regardless of high and low wind speed By adjusting the rotational speed of the swash plate compression unit 200, the compression efficiency is located in the high efficiency region as shown in FIG.
  • the increase and decrease gear unit 300 is connected to the rotor 100 and the swash plate compression unit 200 by a shaft joint.
  • the increase / deceleration portion 300 adjusts the rotational speed of the rotor 100 at a predetermined rotational speed ratio between the rotor 100 and the swash plate compression unit 200, and thus the swash plate-type compression is constantly adjusted. Provided to the unit 200.
  • the increase / deceleration transmission unit 300 includes a increase / deceleration shifting unit 310, a braking device 320, and a tachometer 330.
  • the increase / deceleration transmission means 310 outputs the rotation speed adjusted to the output end by adjusting the rotation speed of the input end with a gear ratio in the same structure as a conventional transmission, and the input end is connected to the central axis 103 of the rotor 100. It is connected to the shaft joint, the output end is connected to the drive shaft 230 of the swash plate type compression unit 200, and outputs to the output stage by shifting the rotation speed input through the input terminal at a predetermined rotation speed ratio.
  • CVT Continuous Variable Transmission
  • CVT Continuous Variable Transmission
  • a braking device 320 may be provided at the input end side in consideration of the installation environment, and the braking device 320 may reduce the load so that the rotation speed is lowered when the input rotation speed is input over a preset maximum rotation speed. Can be added.
  • the tachometer 330 is provided at an output end of the increase / deceleration transmission means 310 to provide a measurement value by measuring an output rotation speed, wherein the tachometer 330 is based on the rotation speed of the output end measured by the tachometer 330.
  • the output stage of the increase / deceleration transmission unit 300 is controlled.
  • the increase / deceleration transmission means 310 of the increase / decrease speed change unit 300 is electrically connected to the control unit 500, and a load cell 104 is further provided on the central axis 103 of the rotor 100, by the wind speed. The thrust on the rotor 100 is measured, and the measured value is transmitted to the controller 500.
  • control unit 500 combines the number of revolutions of the output stage measured by the tachometer 330 and the thrust on the rotor 100 measured by the load cell 104 to increase and decrease the speed change unit 310.
  • the rotation speed of the swash plate compression unit 200 is adjusted to always be a stable operation, to maintain a high efficiency of compression efficiency.
  • an oil separator 260 is provided at the discharge line side for discharging the compressed fluid of the swash plate compression unit 200, and separates the lubricating oil from the compressed fluid and resupplies it to the swash plate compression unit 200.
  • the cylinder block 220 having a plurality of cylinder bores 221 horizontally formed along the longitudinal direction on an inner circumferential surface thereof is formed as in the conventional variable displacement compressor.
  • the housing 210 is coupled to the front and rear of the cylinder block 220 so that the 220 is sealed.
  • the front housing 210 is coupled to the front of the cylinder block 220, and the rear housing 210 having a valve plate is coupled to the rear of the cylinder block 220.
  • One end of the drive shaft 230 is rotatably supported through the bearing in the front housing 210, while the other end of the drive shaft 230 passes through the swash chamber and the rear housing 210 through the bearing installed in the cylinder block 220. Is supported).
  • a lug plate 241 and a swash plate 240 are installed around the drive shaft 230.
  • An inclined surface is formed on the lug plate 241, and a compression support arm protrudes from the front surface of the swash plate 240 so that the compression support arm of the swash plate 240 rotates as the lug plate 241 rotates.
  • the inclination angle of the swash plate 240 is variable while sliding on the inclined surface.
  • the inclined surface is in contact with the compression support arm serves as a temporary change of the swash plate 240, and supports the force of the swash plate 240 by the compressive force transmitted from the piston 250.
  • both side surfaces near the outer circumferential surface of the swash plate 240 are fitted to the piston 250 so as to be able to slide through the shoe.
  • a suction chamber and a discharge chamber are respectively formed in the rear housing 210, and a valve plate interposed between the rear housing 210 and the cylinder block 220 has a suction valve at a position corresponding to each cylinder bore 221. Discharge valves are formed respectively.
  • the air in the suction chamber is sucked into the cylinder bore 221 by the reciprocating motion of the piston 250, compressed, and then discharged into the discharge chamber.
  • an oil separator 260 is provided at the discharge line side for discharging the compressed fluid of the swash plate compression unit 200, and separates the lubricating oil from the compressed fluid and resupplies it to the swash plate compression unit 200.
  • the swash plate compression unit 200 has a high efficiency region of the compressor according to the rotational speed and torque as shown in Figure 6, the swash plate compression unit 200 to maintain the high efficiency at all times regardless of high and low wind speed By adjusting the rotational speed of the swash plate compression unit 200, as shown in Figure 7 so that the compression efficiency is located in the high efficiency region.
  • the swash plate variable compression unit is made of a change in the inclination angle of the swash plate 240 as described above to adjust the rotational speed, the inclination angle control of the swash plate 240 is made by the control unit 500.
  • the control unit 500 is electrically connected to the valve for adjusting the pressure of the swash plate chamber, the thrust on the rotor 100 measured by the load cell 104 provided on the central axis 103 of the rotor 100 In total, by controlling the inclination angle of the swash plate 240 by adjusting the pressure of the swash plate chamber, the rotation speed of the swash plate compression unit 200 is adjusted, so that it is always stable operation and maintains a high efficiency of compression efficiency.
  • the storage tank 400 can be utilized as a receiver tank for temporarily receiving the refrigerant liquefied in the condenser, that is, the refrigerant liquid, the rotor 100 and the swash plate compression unit 200 is a condenser, expansion valve and evaporator and circulation pipe
  • the refrigerant is circulated in the order of the swash plate compression unit 200, the condenser, expansion valve and the evaporator.
  • the swash plate type compression unit 200 receives the rotational force of the rotor 100 to compress the refrigerant at high temperature and high pressure, and provides the condenser.
  • the refrigerant compressed at a high temperature and high pressure is liquefied through the condenser in a gaseous state and converted into a refrigerant liquid.
  • the high pressure, high temperature refrigerant liquid liquefied by the condenser is provided to the expansion valve.
  • the expansion valve converts the liquefied high temperature and high pressure refrigerant liquid into a low temperature low pressure refrigerant liquid so as to easily evaporate and provides the evaporator.
  • the evaporator evaporates the low temperature low pressure refrigerant liquid provided by the expansion valve, takes heat around the evaporator to perform cooling, and the evaporated refrigerant liquid is converted into a low temperature low pressure refrigerant, and the swash plate compression unit 200 To achieve a cooling cycle.
  • the compression apparatus includes a first stage compression unit 201, a second stage compression unit 202, a low pressure tank 401 and a high pressure tank 402.
  • the first stage compression unit 201 when the wind speed is relatively low, only the first stage compression unit 201 is driven to produce compressed air.
  • the compressed air compressed through the first stage compression unit 201 is stored as the first low pressure tank 401. .
  • the compressed air stored in the low pressure tank 401 is supplied to the second stage compression unit 202, and the second stage compression unit 202 is supplied. Compressed air is compressed once again, so that compressed air having a relatively high pressure is stored in the high pressure tank 402 than the first compressed compressed air.
  • both the first stage compression unit 201 and the second stage compression unit 202 are driven to perform two stages of air compression, and the first stage compression unit 201 and the second stage are compressed.
  • the compressed air passing through the compression unit 202 in turn is stored in the high pressure tank 402 as high pressure compressed air.
  • the first stage air compression is performed in which only one of the first stage compression unit 201 or the second stage compression unit 202 is driven according to the storage capacity of the low pressure and high pressure storage tank and the expected demand.
  • the non-driven compression unit by adjusting the angle of the swash plate does not consume torque and does not participate in the production of compressed air.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Wind Motors (AREA)

Abstract

본 발명은 풍력에 의해 회전력을 발생하는 로터와, 상기 로터의 중심축과 축이음으로 연결되고, 로터에서 발생된 회전력을 전달받아 그 회전력을 토대로 유체를 압축하는 사판식 압축부 및 상기 사판식 압축부와 유체가 유동하는 관으로 연결되고, 상기 사판식 압축부에서 압축된 유체를 받아 저장하는 저장탱크를 포함하여, 풍속에 따라 압축기의 회전수를 조절하여, 풍속의 높고 낮음에 영향 없이 적정한 압축효율을 유지할 수 있고, 풍속이 매우 높은 상황이 발생하여도 압축기의 회전수를 감소시켜 안정적인 운전이 가능한 풍력을 이용한 유체 압축장치를 제공한다.

Description

풍력을 이용한 유체 압축장치
본 발명은 풍력을 이용하여 유체를 압축하는 압축장치에 관한 것으로, 더욱 상세하게는 풍력에 의해 회전력이 발생하는 로터와, 상기 로터의 회전력으로 외부에서 인입된 유체를 압축하는 사판식 압축부와, 상기 사판식 압축부에서 압축한 유체를 저장하는 저장탱크를 포함하여, 압축된 유체를 필요로 하는 적소에 제공하는 풍력을 이용한 유체 압축장치에 관한 것이다.
일반적으로 현재 제조업분야는 기계 및 장비를 포함하는 금속가공제품, 식료품, 운송장비 제조업이 대부분을 차지하고 있는데, 이들 제품 생산공장은 통상 수백 KW에 해당하는 압축공기 생산설비를 보유하고 있다.
상기한 압축공기는 주간에 계통 전력을 소비하여 현장에서 생산되고 단시간 저장 및 사용되므로 공장 전기 사용량의 상당부분을 차지한다고 해도 과언은 아니다.
그래서 근래에는 비교적 적은 양의 압축공기를 소모하는 현장에서는 풍력으로 압축공기를 생산하는 설비를 사용하기 시작했는데, 풍차에 의해 가동하는 압축기는 제너레이터 발전용 동력원을 비롯하여, 하천수 정화용 기포발생기나 농업 약제용 또는 해충박멸용 분무기 또는 분수장치 등의 공압원으로 유용한 압축공기를 생산하는 자연친화적이면서도 경제적인 설비이다.
종래의 기술을 살펴보면, 공개특허 제10-2012-0051973호(2012.05.23)에서는 풍차축에 장착된 대형 구동기어를 가진 풍차와, 상기 구동기어에 맞물려 도는 소형 피동기어 장착형 복수의 압축기와, 상기 풍차축에 동력적으로 연결된 제너레이터와, 압축기에서 생산되는 압축공기를 저장하는 공압탱크와, 압축기의 토출구와 공압탱크를 개별적으로 연결하는 공기관과, 각 공기관에 설치된 공압탱크 내 압축공기의 역류 방지용 역지변과, 풍차축의 회전수로 솔레노이드 밸브를 제어하는 속도 센서와, 상기 제너레이터에 전기적으로 연결된 속도 센서에 의해 통제되도록 공기관 상에서 상기 역지변 전방에 설치된 솔레노이드 밸브를 포함하는 풍력식 압축기를 제공하였다.
이때 공기를 압축하는 압축기로는 구조가 간단하고 압축효율이 가장 높은 크랭크축을 이용한 왕복동식 압축기를 사용하였는데, 상기 왕복동식 압축기는 풍차를 통해 발생된 회전력으로 크랭크축을 회전시켜, 상기 크랭크축의 회전으로 피스톤이 상하운동하면서, 공기를 압축하여 제공하였다.
하지만 풍력을 이용한 압축장치에 왕복동식 압축기를 적용할 경우, 왕복동식 압축기가 수직형으로 장착성이 나쁘고, 기통수를 늘리는 문제와 토크 변동이 큰 문제점을 안고 있었다.
또한 풍력을 이용한 압축장치는 효율이 풍속에 의해 좌우되는데, 상기한 풍속은 풍차의 회전수 변화에 직접적인 영향을 준다.
일례로 풍속이 해당 영역의 풍속보다 낮으면 풍차의 회전수가 적어 압축기의 압축효율이 급격히 떨어지고, 풍속이 해당 영역의 풍속보다 너무 높으면, 풍차의 회전수가 많아 압축기의 압축효율이 떨어짐은 물론, 압축기가 과열되어 소손되거나 파손될 우려가 있고, 소음과 진동 크게 발생하여, 근래에는 풍차의 회전을 단속하는 제동장치를 제공하였다.
본 발명은 풍속의 높고 낮음에 영향 없이 적정 압축효율을 유지하고, 풍속이 매우 높은 상황이 발생하여도 안정적인 운전이 가능한 풍력을 이용한 유체 압축장치를 제공하는 것을 그 목적으로 한다.
본 발명에 따른 풍력을 이용한 유체 압축장치는 풍력에 의해 회전되어 회전력이 발생하는 로터와, 상기 로터의 중심축과 축이음으로 연결되고, 상기 로터의 회전력을 전달받아 그 회전력으로 유체를 압축하는 사판식 압축부 및 상기 사판식 압축부와 유체가 유동하는 관으로 연결되고, 상기 사판식 압축부에서 압축된 유체를 받아 저장하는 저장탱크를 포함한다.
이때 본 발명에 따른 상기 사판식 압축부 중 압축된 유체를 배출하는 배출라인 측에 구비되어, 압축된 유체에서 윤활오일을 분리하여 상기 사판식 압축부로 재공급하는 오일분리기를 포함한다.
그리고 본 발명에 따른 상기 사판식 압축부는 하우징과, 복수개의 실린더 보어가 형성된 실린더블록과, 상기 하우징 또는 실린더블록에 회전 가능하게 지지되는 구동축과, 상기 구동축에 고정 설치되어, 상기 구동축의 회전에 의해 회전하면서 경사각이 변하는 사판과, 상기 사판의 회전에 의해서 상기 실린더 보어 내에 왕복이동이 가능하게 수용되는 피스톤을 포함한다.
또한 본 발명에 따른 상기 로터와 사판식 압축부 사이에 축이음으로 연결되고, 상기 로터와 사판식 압축부 사이에서 상기 로터의 회전수가 기 설정 회전수 비율로 조절되어, 조절된 회전수를 사판식 압축부로 제공하는 증감변속부를 포함할 수 있다.
여기서 본 발명에 따른 상기 증감변속부는 입력단은 상기 로터의 중심축과 축이음으로 연결되고, 출력단은 상기 사판식 압축부의 구동축과 연결되며, 상기 입력단을 통해 입력된 회전수를 기 설정 회전수 비율로 변속하여 출력단으로 출력하는 증감변속수단과, 상기 입력단 측에 구비되어, 입력된 회전수가 기 설정 최대 회전수 이상으로 입력되면 회전수를 낮추도록 부하를 가하는 제동장치와, 상기 출력단에 구비되어, 출력 회전수를 측정하는 타코미터를 포함한다.
더불어 본 발명에 따른 풍력을 이용한 유체 압축장치는 풍속에 따라 압축효율이 조절되도록, 상기 증감변속부 또는 사판식 압축부와 전기적으로 연결되어, 풍속에 따라 전기적 신호를 선택적으로 상기 증감변속부 또는 사판식 압축부에 인가하여 압축효율을 제어하는 제어부를 포함한다.
또한 본 발명에 따른 상기 로터의 중심축에 구비되어, 로터에 미치는 추력을 측정하는 로드셀을 포함할 수 있다.
그리고 본 발명에 따른 풍력을 이용한 유체 압축장치는 상기 사판식 압축부 및 저장탱크를 복수 개로 구비하고, 상기 복수 개의 사판식 압축부를 모두 이용하여 다단 압축을 실시하면서, 상대적으로 고압의 저장탱크에 압축유체를 저장하거나, 또는 단수의 사판식 압축부를 선별적으로 이용하여 1단 압축을 실시하면서, 선택된 저장탱크에 압축유체를 저장한다.
이때 복수 개로 구비되는 상기 사판식 압축부는 제1단 압축부 및 제2단 압축부로 구비되고, 저장탱크는 상대적으로 낮은 압력의 압축유체가 저장되는 저압탱크와, 상대적으로 높은 압력의 압축유체가 저장되는 고압탱크로 구비되어, 풍속이 상대적으로 낮을 경우, 제1단 압축부 및 제2단 압축부 중 어느 한 압축부만 1단의 압축이 실시되면서, 저압탱크 및 고압탱크 중 선택된 어느 한 저장탱크에 압축유체가 저장되고, 풍속이 상대적으로 높을 경우, 제1단 압축부로 선 압축이 실시되어 압축유체를 저압탱크에 선 저장되고, 상기 저압탱크의 저장량이 포화상태에 근접하면, 상기 저압탱크에 저장된 압축유체가 제2단 압축부를 통해 다시 한번 더 압축되어, 최초 압축된 압축유체보다 상대적 고압의 압축유체가 고압탱크에 저장되는 것이 바람직하다.
본 발명에 따른 풍력을 이용한 유체 압축장치는 다음과 같은 효과를 가진다.
풍력에 의해 발생된 회전력으로 유체를 압축하는 압축부에 사판식 압축부를 채용하고, 로터의 회전력을 항시 일정한 비율로 회전수를 변속하여 압축부로 제공하는 증감변속부가 포함되어, 풍속에 따라 압축기의 회전수를 조절하여, 풍속의 높고 낮음에 영향 없이 적정한 압축효율을 유지할 수 있고, 풍속이 매우 높은 상황이 발생하여도 압축기의 회전수를 감소시켜 안정적인 운전이 가능한 효과를 가진다.
도 1은 본 발명의 일 실시예에 따른 풍력을 이용한 유체 압축장치를 보인 예시도이다.
도 2는 본 발명의 일 실시예에 따른 로터, 증감변속부 및 사판식 압축부의 연계상태를 보인 예시도이다.
도 3은 본 발명의 일 실시예에 따른 증감변속부를 보인 예시도이다.
도 4는 본 발명의 일 실시예에 따른 사판 고정형 압축부를 보인 예시도이다.
도 5는 본 발명의 일 실시예에 따른 사판 가변형 압축부를 보인 예시도이다.
도 6은 압축기의 회전수 및 토크에 따른 압축기의 고효율영역을 보인 그래프이다.
도 7은 본 발명의 실시에 따라 압축기의 회전수를 조절하여 압축효율을 고효율영역으로 이동시킨 상태를 보인 그래프이다.
도 8은 본 발명의 다른 실시예에 따라 사판식 압축부를 다단으로 운영하는 상태를 예시한 예시도이다.
본 발명은 풍력에 의해 회전력을 발생하는 로터와, 상기 로터의 중심축과 축이음으로 연결되고, 로터에서 발생된 회전력을 전달받아 그 회전력을 토대로 유체를 압축하는 사판식 압축부 및 상기 사판식 압축부와 유체가 유동하는 관으로 연결되고, 상기 사판식 압축부에서 압축된 유체를 받아 저장하는 저장탱크를 포함하여, 풍속에 따라 압축기의 회전수를 조절하여, 안정적인 운전이 가능한 풍력을 이용한 유체 압축장치를 제공한다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 풍력을 이용한 유체 압축장치를 보인 예시도이고, 도 2는 본 발명의 일 실시예에 따른 로터, 증감변속부 및 사판식 압축부의 연계상태를 보인 예시도이며, 도 3은 본 발명의 일 실시예에 따른 증감변속부를 보인 예시도이다.
본 발명은 풍력에 의해 회전되어 회전력을 발하는 로터(100)와, 상기 로터(100)의 회전력으로 외부에서 인입된 유체를 압축하는 사판식 압축부(200)와, 상기 사판식 압축부(200)에서 압축한 유체를 저장하는 저장탱크(400)를 포함하여, 압축된 유체를 필요로 하는 적소에 제공하는 풍력을 이용한 유체 압축장치에 관한 것으로, 도면을 참조하여 더욱 상세하게 살펴보면 다음과 같다.
도 1 및 도 2를 참조하여 본 발명에 따른 풍력을 이용한 유체 압축장치는 풍력에 의해 회전력을 발생하는 로터(100)와, 로터(100)의 회전력으로 유체를 압축하는 사판식 압축부(200)와, 압축된 유체를 저장하는 저장탱크(400)를 포함한다.
먼저 상기 로터(100)를 살펴보면, 풍력을 이용해 회전력을 발생하는 것으로, 원형을 이루는 허브(101)를 구비하고, 상기 허브(101)를 기준으로 복수 개의 블레이드(102)가 방사상으로 배치된다.
이때 상기 로터(100)의 허브(101) 중심에는 중심축(103)을 후방으로 연장 형성하는 것이 바람직하다.
그리고 상기 로터(100)의 중심축(103)과 축이음으로 사판식 압축부(200)가 연결되어, 상기 사판식 압축부(200)가 로터(100)에서 발생된 회전력을 전달받아 그 회전력을 토대로 유체를 압축한다.
이때 압축된 유체는 상기 사판식 압축부(200)와 유체가 유동하는 관으로 연결된 저장탱크(400)로 이송되고, 이송된 상기 유체는 상기 저장탱크(400)에서 압축저장된다.
여기서 상기 사판식 압축부(200)의 실시예를 살펴보면, 통상의 사판식 압축기와 같이 하우징(210)과, 복수 개의 실린더보어(221)가 형성된 실린더블록(220)과, 상기 하우징(210) 또는 실린더블록(220)에 회전 가능하게 지지되는 구동축(230)과, 상기 구동축(230)에 고정 설치되어, 상기 구동축(230)이 회전함에 따라 회전하면서 경사각이 변하는 사판(240)과, 상기 사판(240)의 회전에 의해서 상기 실린더보어(221) 내에 왕복이동이 가능하게 수용되는 피스톤(250)을 포함한다.
상기한 사판식 압축부(200)는 사판의 경사각이 변하지 않는 사판 고정형과, 사판의 경사각이 변하는 사판 가변형으로 분류되는데, 먼저 사판 고정형의 일례를 도 4를 참조하여 살펴보면, 내주면에 길이방향을 따라 수평으로 형성된 복수 개의 실린더보어(221)를 갖는 실린더블럭(220)을 구성하고, 상기 실린더블럭(220)이 밀폐되도록, 상기 실린더블럭(220)의 전,후방에 하우징(210)이 각각 결합된다.
이때 상기 실린더블럭(220)의 전방에는 전방 하우징(210)이 결합되고, 상기 실린더블럭(220)의 후방에는 밸브플레이트가 개재된 후방 하우징(210)이 결합된다.
상기 전방 하우징(210)에는 구동축(230)의 일단이 베어링을 통해 회전가능하게 지지되는 한편, 상기 구동축(230)의 타단은 사판실을 지나 실린더블럭(220)에 설치된 베어링을 통해 후방 하우징(210)에 지지된다.
상기 사판실 내에는 구동축(230) 둘레에 해당 각도로 경사진 사판(240)이 설치되어 있다.
또한 상기 사판(240)의 외주면 근방의 양측면은 슈를 개재하여 각 피스톤(250)에 미끄럼이동이 가능하게 끼워진다.
따라서 상기 사판(240)이 경사진 상태에서 회전함에 따라, 상기 슈를 개재하여 끼워진 피스톤(250)들은 상기 실린더블럭(220)의 각 실린더보어(221) 내에서 왕복 운동하게 된다.
그리고 상기 전,후방 하우징(210)에는 흡입실과 토출실이 각각 형성되어 있고, 상기 전,후방 하우징(210)과 실린더블럭(220) 사이에 개재되는 밸브플레이트에는 각 실린더보어(221)에 대응하는 곳에 유체의 흡입 및 토출을 단속하는 흡입밸브와 토출밸브가 각각 형성되어 있다.
따라서 상기 피스톤(250)의 왕복운동에 의해 흡입실의 유체가 실린더보어(221) 내에 흡입되어 압축된 후 토출실로 배출된다.
여기서 상기 흡입밸브는 외부에서 유체를 유입하는 유입라인과 연결되고, 토출밸브는 압축된 유체가 유동하는 배출라인으로 저장탱크(400)와 연결된다.
상기한 사판 압축부(200)는 도 6에 나타낸 바와 같이 회전수 및 토크에 따른 압축기의 고효율영역을 갖는데, 상기 사판 압축부(200)가 풍속의 높고 낮음에 상관없이 항시 고효율을 유지하기 위해 상기 사판 압축부(200)의 회전수를 조절하여, 도 7에서와 같이 압축효율을 고효율영역에 위치한다.
여기서 상기 사판 고정형 압축부의 회전수를 조절하기 위해 상기 로터(100)와 사판식 압축부(200) 사이에 축이음으로 증감변속부(300)가 연결된다.
상기 증감변속부(300)는 로터(100)와 사판식 압축부(200) 사이에서 상기 로터(100)의 회전수를 기 설정 회전수 비율로 조절하여, 일정하게 조절된 회전수를 사판식 압축부(200)로 제공한다.
도 2 및 도 3을 참조하면 상기한 증감변속부(300)는 증감변속수단(310)과, 제동장치(320)와, 타코미터(330)를 포함한다.
먼저 상기 증감변속수단(310)은 통상의 변속기와 같은 구조로 입력단의 회전수를 기어비로 조절하여 출력단으로 조절된 회전수를 출력하는 것으로, 입력단이 상기 로터(100)의 중심축(103)과 축이음으로 연결되고, 출력단은 상기 사판식 압축부(200)의 구동축(230)과 연결되며, 상기 입력단을 통해 입력된 회전수를 기 설정 회전수 비율로 변속하여 출력단으로 출력한다.
이때 상기 증감변속수단(310)으로 무단변속장치인 CVT(Continuously Variable Transmission)을 적용할 수 있다.
그리고 설치 환경을 고려하여 필요에 따라 상기 입력단 측에는 제동장치(320)가 구비될 수 있는데, 상기 제동장치(320)는 입력된 회전수가 기 설정 최대 회전수 이상으로 입력되면 회전수를 낮추도록 부하를 가할 수 있다.
그리고 상기 타코미터(330)는 상기 증감변속수단(310)의 출력단에 구비되어, 출력 회전수를 측정하여 측정값을 제공하는데, 이때 상기 타코미터(330)에 의해 측정된 출력단의 회전수를 기준으로 상기 증감변속부(300)의 출력단을 제어한다.
여기서 상기 증감변속부(300)의 증감변속수단(310)는 제어부(500)와 전기적으로 연결되고, 상기 로터(100)의 중심축(103)에는 로드셀(104)을 더 구비하여, 풍속에 의해 상기 로터(100)에 미치는 추력을 측정하여, 측정값을 상기 제어부(500)로 전송한다.
따라서 상기 제어부(500)는 상기 타코미터(330)에 의해 측정된 출력단의 회전수와, 상기 로드셀(104)에 의해 측정된 상기 로터(100)에 미치는 추력을 종합하여, 상기 증감변속수단(310)의 변속단을 제어함으로써, 상기 사판 압축부(200)의 회전수가 조절되어, 항시 안정적인 운전이 되고, 고효율의 압축효율을 유지하도록 한다.
또한 상기 사판식 압축부(200) 중 압축된 유체를 배출하는 배출라인 측에는 오일분리기(260)를 구비되어, 압축된 유체에서 윤활오일을 분리하여 상기 사판식 압축부(200)로 재공급한다.
그리고 사판 가변형의 일례를 도 5를 참조하여 살펴보면, 통상의 용량 가변형 압축기와 같이 내주면에 길이방향을 따라 수평으로 형성된 복수의 실린더보어(221)를 갖는 실린더블럭(220)을 구성하고, 상기 실린더블럭(220)이 밀폐되도록, 상기 실린더블럭(220)의 전,후방에 하우징(210)이 각각 결합된다.
이때 상기 실린더블럭(220)의 전방에는 전방 하우징(210)이 결합되고, 상기 실린더블럭(220)의 후방에는 밸브플레이트가 개재된 후방 하우징(210)이 결합된다.
상기 전방 하우징(210)에는 구동축(230)의 일단이 베어링을 통해 회전가능하게 지지되는 한편, 상기 구동축(230)의 타단은 사판실을 지나 실린더블럭(220)에 설치된 베어링을 통해 후방 하우징(210)에 지지된다.
상기 사판실 내에는 구동축(230) 둘레에 러그플레이트(241)와 사판(240)이 설치되어 있다.
상기 러그플레이트(241)에는 경사면이 형성되어 있고, 상기 사판(240)의 전면에는 압축지지암이 돌출되게 형성되어 있어, 상기 러그플레이트(241)가 회전함에 따라 상기 사판(240)의 압축지지암이 상기 경사면 위를 미끄럼 이동하면서 사판(240)의 경사각이 가변되게 되어 있다.
즉 상기 경사면은 상기 압축지지암에 접하여 사판(240)의 가변경로 역할을 하며, 상기 피스톤(250)으로부터 전달되는 압축력에 의한 사판(240)의 힘을 지지하게 된다.
또한 상기 사판(240)의 외주면 근방의 양측면은 슈를 개재하여 각 피스톤(250)에 미끄럼이동이 가능하게 끼워진다.
따라서 상기 사판(240)이 경사진 상태에서 회전함에 따라, 상기 슈를 개재하여 끼워진 피스톤(250)들은 상기 실린더블럭(220)의 각 실린더보어(221) 내에서 왕복 운동하게 된다.
그리고 상기 후방 하우징(210)에는 흡입실과 토출실이 각각 형성되어 있고, 상기 후방 하우징(210)과 실린더블럭(220) 사이에 개재되는 밸브플레이트에는 각 실린더보어(221)에 대응하는 곳에 흡입밸브와 토출밸브가 각각 형성되어 있다.
따라서 상기 피스톤(250)의 왕복운동에 의해 흡입실의 공기가 실린더보어(221) 내에 흡입되어 압축된 후 토출실로 배출된다.
또한 상기 사판식 압축부(200) 중 압축된 유체를 배출하는 배출라인 측에는 오일분리기(260)를 구비되어, 압축된 유체에서 윤활오일을 분리하여 상기 사판식 압축부(200)로 재공급한다.
상기한 사판 압축부(200)는 도 6에 나타낸 바와 같이 회전수 및 토크에 따른 압축기의 고효율영역을 갖는데, 상기 사판 압축부(200)가 풍속의 높고 낮음에 상관없이 항시 고효율을 유지하기 위해 상기 사판 압축부(200)의 회전수를 조절하여, 도 7에서와 같이 압축효율을 고효율영역에 위치되도록 한다.
상기한 사판 가변형 압축부는 회전수를 조절하기 위해 상술한 바와 같이 사판(240)의 경사각 변화로 이루어지는데, 상기 사판(240)의 경사각 제어는 제어부(500)에 의해 이루어진다.
상기 제어부(500)는 사판실의 압력을 조절하는 밸브와 전기적으로 연결되고, 상기 로터(100)의 중심축(103)에 구비되는 로드셀(104)에서 측정한 상기 로터(100)에 미치는 추력을 종합하여, 사판실의 압력을 조절하여 사판(240)의 경사각을 제어함으로써, 상기 사판 압축부(200)의 회전수가 조절되어, 항시 안정적인 운전이 되고, 고효율의 압축효율을 유지하도록 한다.
또한 본 발명에 따른 풍력을 이용한 유체 압축장치의 다른 실시예로 유체로 냉매를 적용하여, 로터(100) 및 사판식 압축부(200)를 포함하는 냉각시스템을 구현할 수 있다.
이때 상기 저장탱크(400)는 응축기에서 액화된 냉매 즉, 냉매액을 일시 수용하는 리시버탱크로 활용 가능하고, 로터(100) 및 사판식 압축부(200)는 응축기, 팽창밸브 및 증발기와 순환관으로 연결되어, 냉매가 사판식 압축부(200), 응축기, 팽창밸브 및 증발기 순으로 순환되도록 한다.
여기서 상기 사판식 압축부(200)는 로터(100)의 회전력을 전달받아 냉매를 고온고압으로 압축하여, 응축기로 제공한다.
이때 고온고압으로 압축된 냉매는 기체 상태로 상기 응축기를 통해 액화되어, 냉매액으로 변환된다.
상기 응축기에 의해 액화된 고압고온의 냉매액은 팽창밸브로 제공한다.
상기 팽창밸브는 액화된 고온고압의 냉매액을 증발하기 쉽게 저온저압의 냉매액으로 변화하여 증발기로 제공한다.
상기 증발기는 팽창밸브에서 제공한 저온저압의 냉매액을 증발시키면서, 증발기 주변의 열을 빼앗아 냉각이 이루어지도록 하고, 증발된 냉매액은 저온저압의 냉매로 변환되어, 다시 상기 사판식 압축부(200)로 제공하는 냉각사이클을 이룬다.
더불어 본 발명에 따른 풍력을 이용한 유체 압축장치의 다른 실시예로, 도 8을 참조하면 복수 개의 사판식 압축부를 직렬 또는 병렬로 연계하여 공기압축을 실시할 수도 있는데, 일례로 사판식 압축부를 2단으로 운영할 경우, 압축장치는 제1단 압축부(201), 제2단 압축부(202), 저압탱크(401)와 고압탱크(402)를 구비한다.
이때 풍속이 상대적으로 낮을 경우, 제1단 압축부(201)만 구동하여 압축공기를 생산하는데, 상기 제1단 압축부(201)를 통해 압축된 압축공기는 최초 저압탱크(401)로 저장된다.
만일 상기 저압탱크(401)의 압축공기 저장량이 포화상태에 근접하면, 상기 저압탱크(401)에 저장된 압축공기를 제2단 압축부(202)로 공급되어, 상기 제2단 압축부(202)를 통해 압축공기가 다시 한번 더 압축되어, 최초 압축된 압축공기보다 상대적 고압의 압축공기가 고압탱크(402)에 저장된다.
그리고 풍속이 상대적으로 높을 경우, 제1단 압축부(201)와 제2단 압축부(202) 모두가 구동되어, 2단의 공기압축이 실시되는데, 제1단 압축부(201)와 제2단 압축부(202)를 차례로 통과한 압축공기는 고압의 압축공기로 고압탱크(402)에 저장된다.
이때 풍속이 상대적으로 낮은 경우 저압 및 고압 저장탱크의 저장량과 예측되는 수요에 따라 제1단 압축부(201) 또는 제2단 압축부(202) 중 하나만 구동되는 1단 공기 압축이 실시되는데, 이 경우 구동되지 않는 압축부는 사판의 각도를 조절하여 토크를 소비하지 않고 압축 공기의 생산에도 관여하지 않는다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (9)

  1. 풍력에 의해 회전되어 회전력이 발생하는 로터;
    상기 로터의 중심축과 축이음으로 연결되고, 상기 로터의 회전력을 전달받아 그 회전력으로 유체를 압축하는 사판식 압축부; 및
    상기 사판식 압축부와 유체가 유동하는 관으로 연결되고, 상기 사판식 압축부에서 압축된 유체를 받아 저장하는 저장탱크를 포함하는 풍력을 이용한 유체 압축.
  2. 청구항 1에 있어서,
    상기 사판식 압축부 중 압축된 유체를 배출하는 배출라인 측에 구비되어, 압축된 유체에서 윤활오일을 분리하여 상기 사판식 압축부로 재공급하는 오일분리기를 포함하는 풍력을 이용한 유체 압축장치.
  3. 청구항 1에 있어서,
    상기 사판식 압축부는
    하우징과,
    복수개의 실린더 보어가 형성된 실린더블록과,
    상기 하우징 또는 실린더블록에 회전 가능하게 지지되는 구동축과,
    상기 구동축에 고정 설치되어, 상기 구동축의 회전에 의해 회전하면서 경사각이 변하는 사판과,
    상기 사판의 회전에 의해서 상기 실린더 보어 내에 왕복이동이 가능하게 수용되는 피스톤을 포함하는 풍력을 이용한 유체 압축장치.
  4. 청구항 1에 있어서,
    상기 로터와 사판식 압축부 사이에 축이음으로 연결되고, 상기 로터와 사판식 압축부 사이에서 상기 로터의 회전수를 기 설정 회전수 비율로 조절하여, 조절된 회전수를 사판식 압축부로 제공하는 증감변속부를 포함하는 풍력을 이용한 유체 압축장치.
  5. 청구항 4에 있어서,
    상기 증감변속부는
    입력단은 상기 로터의 중심축과 축이음으로 연결되고, 출력단은 상기 사판식 압축부의 구동축과 연결되며, 상기 입력단을 통해 입력된 회전수를 기 설정 회전수 비율로 변속하여 출력단으로 출력하는 증감변속수단과;
    상기 입력단 측에 구비되어, 입력된 회전수가 기 설정 최대 회전수 이상으로 입력되면 회전수를 낮추도록 부하를 가하는 제동장치와;
    상기 출력단에 구비되어, 출력 회전수를 측정하는 타코미터를 포함하는 풍력을 이용한 유체 압축장치.
  6. 청구항 1 또는 청구항 4 중 어느 한 항에 있어서,
    풍속에 따라 압축효율이 조절되도록, 증감변속부 또는 사판식 압축부와 전기적으로 연결되어, 풍속에 따라 전기적 신호를 선택적으로 상기 증감변속부 또는 사판식 압축부에 인가하여 압축효율을 제어하는 제어부를 포함하는 풍력을 이용한 유체 압축장치.
  7. 청구항 1에 있어서,
    상기 로터의 중심축에 구비되어, 로터에 미치는 추력을 측정하는 로드셀을 포함하는 풍력을 이용한 유체 압축장치.
  8. 청구항 1에 있어서,
    상기 사판식 압축부 및 저장탱크를 복수 개로 구비하고, 상기 복수 개의 사판식 압축부를 모두 이용하여 다단 압축을 실시하면서, 상대적으로 고압의 저장탱크에 압축유체를 저장하거나, 또는 단수의 사판식 압축부를 선별적으로 이용하여 1단 압축을 실시하면서, 선택된 저장탱크에 압축유체를 저장하는 풍력을 이용한 유체 압축장치.
  9. 청구항 8에 있어서,
    복수 개로 구비되는 상기 사판식 압축부는 제1단 압축부 및 제2단 압축부로 구비되고, 저장탱크는 상대적으로 낮은 압력의 압축유체가 저장되는 저압탱크와, 상대적으로 높은 압력의 압축유체가 저장되는 고압탱크로 구비되어,
    풍속이 상대적으로 낮을 경우, 제1단 압축부 및 제2단 압축부 중 어느 한 압축부만 1단의 압축이 실시되면서, 저압탱크 및 고압탱크 중 선택된 어느 한 저장탱크에 압축유체가 저장되고,
    풍속이 상대적으로 높을 경우, 제1단 압축부로 선 압축이 실시되어 압축유체를 저압탱크에 선 저장되고, 상기 저압탱크의 저장량이 포화상태에 근접하면, 상기 저압탱크에 저장된 압축유체가 제2단 압축부를 통해 다시 한번 더 압축되어, 최초 압축된 압축유체보다 상대적 고압의 압축유체가 고압탱크에 저장되는 풍력을 이용한 유체 압축장치.
PCT/KR2016/009548 2015-08-28 2016-08-26 풍력을 이용한 유체 압축장치 WO2017039248A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0121469 2015-08-28
KR1020150121469A KR101678006B1 (ko) 2015-08-28 2015-08-28 풍력을 이용한 유체 압축장치

Publications (1)

Publication Number Publication Date
WO2017039248A1 true WO2017039248A1 (ko) 2017-03-09

Family

ID=57540158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009548 WO2017039248A1 (ko) 2015-08-28 2016-08-26 풍력을 이용한 유체 압축장치

Country Status (3)

Country Link
KR (1) KR101678006B1 (ko)
CN (1) CN106481530A (ko)
WO (1) WO2017039248A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102105673B1 (ko) * 2018-05-17 2020-06-02 주식회사 썬스타 풍력과 공압을 이용한 발전장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199745A (ko) * 1975-02-27 1976-09-02 Organo Kk
JP2004301091A (ja) * 2003-03-31 2004-10-28 Toyota Industries Corp 電動圧縮機
CN101825119A (zh) * 2010-04-14 2010-09-08 董修安 一种风能转换蓄能机构
KR20120051973A (ko) * 2010-11-15 2012-05-23 이달은 풍력식 압축기
KR20140022846A (ko) * 2011-03-23 2014-02-25 아쿠아-구타 비.브이. 가스압축 장치 및 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101025143A (zh) * 2006-02-23 2007-08-29 邓小刚 连续稳定供电的风力发电系统
CN201090375Y (zh) * 2007-07-23 2008-07-23 周国华 风能水轮发电机
CN101672266B (zh) * 2009-09-22 2011-05-25 金光溢 利用风力进行空气压缩的装置
CN104131954A (zh) * 2014-08-03 2014-11-05 刘典军 风力机驱动的空气压缩系统
CN204327407U (zh) * 2014-12-01 2015-05-13 王旭东 一种多级加压的风力空气压缩装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199745A (ko) * 1975-02-27 1976-09-02 Organo Kk
JP2004301091A (ja) * 2003-03-31 2004-10-28 Toyota Industries Corp 電動圧縮機
CN101825119A (zh) * 2010-04-14 2010-09-08 董修安 一种风能转换蓄能机构
KR20120051973A (ko) * 2010-11-15 2012-05-23 이달은 풍력식 압축기
KR20140022846A (ko) * 2011-03-23 2014-02-25 아쿠아-구타 비.브이. 가스압축 장치 및 방법

Also Published As

Publication number Publication date
CN106481530A (zh) 2017-03-08
KR101678006B1 (ko) 2016-11-22

Similar Documents

Publication Publication Date Title
JP5071967B2 (ja) ロータリコンプレッサ及びその運転制御方法
NL1038701C2 (en) Device for extracting humid from air by using a wind-turbine in combination with a mechanically driven heat-pump system, as well as heat-pump system applicable with such a device.
CN1780987A (zh) 控制包含几个压缩机的压缩空气设备的方法、应用于此的控制箱和应用该方法的压缩空气设备
CN1573115A (zh) 多个压缩机
US20180112666A1 (en) Vacuum pump system
JP7121416B2 (ja) 多段ルーツ型ドライ真空ポンプ
WO2017039248A1 (ko) 풍력을 이용한 유체 압축장치
CN101379294A (zh) 气流压缩机控制系统及方法
KR20080101735A (ko) 다단계 가스 압축 장치
US4358254A (en) Variable capacity compressor
CA1094520A (en) Variable capacity compressor
CN202326246U (zh) 一种罗茨和爪式转子组合多级干式真空泵
CN106536935B (zh) 具有主轴压缩机的压缩制冷设备
US20040052651A1 (en) Single stage piston compressor or multistage piston compressor for cooling of an electrical motor for a single stage piston compressor or for a multistage piston compressor
CN109578275A (zh) 双级螺杆压缩机及其使用的双级转子组安装结构
CN106523364A (zh) 一种多螺杆式变频制冷压缩机
US2860828A (en) Compressor
WO2023243854A1 (ko) 로터리 압축기 및 이를 포함하는 가전기기
CN117231537B (zh) 一种双向轴流通风装置
WO2018151512A1 (ko) 스크롤 압축기
GB2065776A (en) Rotary-piston Fluid-machines
CN209510633U (zh) 单螺杆两级空气压缩机
WO2022097917A1 (ko) 로터리 압축기 및 이를 포함하는 가전기기
WO2023286942A1 (ko) 로터리 압축기 및 이를 포함하는 가전기기
CN104776025B (zh) 多螺杆压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/06/2018)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 14/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16842214

Country of ref document: EP

Kind code of ref document: A1