WO2017039131A1 - Acid gas collection system and acid gas collection method using same - Google Patents

Acid gas collection system and acid gas collection method using same Download PDF

Info

Publication number
WO2017039131A1
WO2017039131A1 PCT/KR2016/006713 KR2016006713W WO2017039131A1 WO 2017039131 A1 WO2017039131 A1 WO 2017039131A1 KR 2016006713 W KR2016006713 W KR 2016006713W WO 2017039131 A1 WO2017039131 A1 WO 2017039131A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid gas
absorbent
reboiler
stripping column
stripping
Prior art date
Application number
PCT/KR2016/006713
Other languages
French (fr)
Korean (ko)
Inventor
곽노상
장경룡
심재구
이인영
이지현
이동욱
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to CN201680032377.2A priority Critical patent/CN107743416B/en
Publication of WO2017039131A1 publication Critical patent/WO2017039131A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/12Washers with plural different washing sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to an acid gas collection system and an acid gas collection method using the same.
  • Fossil fuels such as coal, petroleum, and LNG, which are used as energy sources in the industrial sector, generate acidic gases such as CO 2 , H 2 S, and COS during combustion.
  • acid gases especially carbon dioxide, have been identified as a major cause of global warming, and regulations on emissions and disposal are becoming more stringent.
  • the capture technology is classified into pre-combustion, in-combustion, and post-combustion methods according to the treatment position of carbon dioxide, and may be classified into absorption method, adsorption method, membrane separation method, deep cooling method, etc.
  • the general acid gas absorption and stripping system includes a regeneration step of performing a stripping process of separating the absorbent and carbon dioxide after injecting the absorbent absorbing the acid gas to the top of the stripping column.
  • the conventional acid gas absorption and stripping system consumes a lot of energy in the heat supply process for regenerating the absorbent, and there is a problem that additional equipment is required because the stripping efficiency is not high.
  • One object of the present invention is to use a steam condensate recycling apparatus connected to the reboiler in the process of separating and recovering the acid gas from the exhaust gas, the acid gas collection system that can reduce the heat consumption of the reboiler, and improve the economic efficiency and using the same It is to provide an acid gas collection method.
  • One embodiment of the present invention absorbs the acid gas contained in the exhaust gas in the absorbent to produce an acid gas saturated absorbent;
  • a first heat exchanger configured to heat up the acid gas saturating absorbent and the absorbent discharged from the stripping tower by first heat exchange;
  • a stripping column for separating the acid gas saturated absorbent into an acid gas and an absorbent;
  • a reboiler for supplying thermal energy to the stripping column using steam;
  • a condensate recycling apparatus for recycling steam condensate discharged from the reboiler. It relates to an acid gas collection system comprising a.
  • Another embodiment of the present invention relates to an acid gas collection method using the acid gas collection system described above.
  • Acid gas collection system of the present invention and acid gas collection method using the same by using a steam condensate recycling apparatus connected to the reboiler in the process of separating and recovering the acid gas from the exhaust gas, it is possible to reduce the heat consumption of the reboiler, and improve the economic efficiency have.
  • FIG. 1 is a view showing an acid gas collection system of the first embodiment of the present invention.
  • FIG. 2 is a view showing an acid gas collection system according to a second embodiment of the present invention.
  • FIG 3 is a view showing an acid gas collection system of a third embodiment of the present invention.
  • FIG. 4 is a view showing an acid gas collection system according to a fourth embodiment of the present invention.
  • FIG. 5 is a view showing an acid gas collection system of Comparative Example 1 of the present invention.
  • FIG. 6 illustrates a reboiler used in an embodiment of the present invention.
  • One embodiment of the present invention absorbs the acid gas contained in the exhaust gas in the absorbent to produce an acid gas saturated absorbent;
  • a first heat exchanger configured to heat up the acid gas saturating absorbent and the absorbent discharged from the stripping tower by first heat exchange;
  • a stripping column for separating the acid gas saturated absorbent into an acid gas and an absorbent;
  • a reboiler for supplying thermal energy to the stripping column using steam;
  • a condensate recycling apparatus for recycling steam condensate discharged from the reboiler. It relates to an acid gas collection system comprising a.
  • the acid gas collection system recycles steam condensate discharged from the reboiler, thereby remarkably reducing the reboiler heat consumption and improving economic efficiency.
  • the absorption tower reacts the chemical process gas and the combustion exhaust gas with the absorbent to produce an acid gas saturated absorbent in which the acid gas contained in the chemical process gas or the combustion exhaust gas is absorbed into the absorbent.
  • the acid gas may include one or more of carbon dioxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide and carbonyl sulfide.
  • the acid gas absorbent may include one or more of an amine-based, amino acid salt and inorganic salt solution.
  • the acid gas saturated absorbent may be a rich amine saturated with carbon dioxide.
  • the acid gas absorbent discharged to the bottom of the stripping column after the acidic gas saturated absorbent is stripped may be lean amine. In this case, the collection efficiency for acidic gas, especially for carbon dioxide may be excellent.
  • the washing zone may be installed in two or more stages in the absorption tower.
  • the absorption tower may include two to three stages or more of the cleaning stages, and in this case, the effect of preventing the loss of the absorbent may be improved.
  • the first heat exchanger heats up the acid gas saturated absorbent generated in the absorption tower by first heat exchange with the absorbent discharged from the stripping column.
  • the heat of the absorbent discharged from the bottom of the stripping column is supplied to the acid gas saturated absorbent to increase the energy efficiency, and the acid gas saturated absorbent is partially removed by the elevated temperature before the injection of the stripping column so as to remove the acid gas capture system.
  • the stripping efficiency can be improved.
  • the first heat exchanger may be heated to about 95 °C ⁇ 105 °C by first heat-exchanging the rich amine, the acid gas saturated absorbent with the lean amine from the bottom of the stripping column.
  • the amine absorbent when used, the collection efficiency of carbon dioxide in the acid gas may be further improved, and the stripping effect by the first heat exchange may be more excellent.
  • the acid gas saturated absorbent and the absorbent discharged from the stripping column may have a temperature difference of about 10 ° C. or less, for example, about 5 ° C. or less.
  • the heat exchange efficiency in the first heat exchanger and the effect of reducing the total energy usage of the acidic gas collection system can be further improved.
  • the first heat exchanger may include an inlet for introducing the absorbent discharged from the stripping tower and an outlet for sending the acid gas saturated absorbent heated after the heat exchange to a device of a next stage (such as a reboiler or stripping tower). In this case, it is more advantageous to perform heat exchange between the absorbent discharged from the stripper bottom and the acid gas saturated absorbent.
  • the stripping column receives an acid gas saturated absorbent and separates the acid gas and the absorbent.
  • the acidic gas saturated absorbent supplied to the stripping column may be in a state where some stripping is performed by performing a first heat exchange by the first heat exchange. In this case, the effect of reducing the total energy consumption of the acid gas collection system is more excellent.
  • the process of regenerating the acid gas saturated absorbent into the absorbent in the stripping column is performed by stripping reaction at a temperature of about 110 ° C. to 140 ° C. and a pressure of about atmospheric pressure, and supplies heat through a reboiler to maintain such regeneration conditions. Receive.
  • the reboiler supplies steam to the stripping column using steam. Specifically, the reboiler transfers the heat energy of the steam introduced from the outside to the acid gas saturated absorbent injected into the reboiler, and partially vaporizes it, and then some of the acid gas absorbents which have been heated without being vaporized with some of the acid gas absorbent vaporized. Thermal energy can be supplied by resupplying the gas absorbent into the stripping column. Through this, the stripping column may be supplied with thermal energy from the heated acid gas saturated absorbent to achieve a regeneration temperature condition.
  • the reboiler may be disposed between the stripping tower and the first heat exchanger or at a rear end of the stripping tower. This arrangement can reduce the amount of heat consumed to produce the steam used in the reboiler.
  • the reboiler when the reboiler is disposed between the stripping tower and the first heat exchanger, the reboiler is supplied with a saturated acid gas saturated absorber heated in the first heat exchanger to reheat it using steam,
  • the steam generated upon reheating may be resupplied to the upper region of the stripping column, and may serve to supply a portion of the remaining liquid acid gas saturated absorbent to the central region of the stripping column.
  • the reboiler supplies the reheated liquid acid gas to the central region of the stripping column to increase the utilization rate of the thermal energy of the stripping tower, to lower the thermal energy consumption of the reboiler, and to remove the water contained in the absorber inside the stripping column. It can prevent evaporation and induce stripping by diffusion.
  • the reboiler may further supply the reheated steam to the upper region of the stripping column to further improve the acid gas capture rate.
  • the reboiler 12 may be a kettle type reboiler, as shown in FIG. 6.
  • the kettle-type reboiler may be used as a reboiler in which boiling occurs on the shell side.
  • This reboiler 12 has the simplest structure and can easily obtain cheap steam.
  • the reboiler's bundle uses a U-tube type, a double head type, and a fixed type, and evaporation may occur well at the shell side, and vapor may be separated to separate liquid and gas. There is a thread. In the case of using such a reboiler, the applicability to the acid gas collection system of the present invention may be more excellent.
  • the condensate recycling apparatus may reduce the amount of thermal energy used by the acid gas collection system by recycling steam condensate discharged from the reboiler.
  • the condensate recycling apparatus may include one or more of a Thermal Vapor Recompression (TVR) apparatus or a stripping tower reheat heat exchanger.
  • TVR Thermal Vapor Recompression
  • the TVR (Thermal Vapor Recompression) device includes a flash drum (Flash drum) for separating the steam condensate generated in the reboiler into a gas and a liquid, and pressurizes the separated gas through the flash drum to supply to the reboiler steam It may be. In this case, the amount of heat used for steam supply of the reboiler can be reduced.
  • flash drum Flash drum
  • the stripping tower reheating heat exchanger (second heat exchanger) heats up the heat condensate generated from the reboiler and the absorbent discharged from the stripping column by heat exchange for a second heat exchanger, and the absorber heated by the second heat exchanger is heated to the upper portion of the stripping column. It may be to reflux.
  • the steam condensate is condensed by steam transferring heat to the acid gas saturated absorbent, but since the steam still contains residual heat, the stripping tower reheating heat exchanger (second heat exchanger) uses the residual heat in the middle of the stripping column.
  • the absorbent discharged can be further heated. In this case, heat can be additionally supplied to the stripping column, thereby further reducing the amount of energy consumed in the entire acid gas collection system.
  • the acidic gas collection system may include the stripping column reheat heat exchanger and the Thermal Vapor Recompression (TVR) device at the same time.
  • the steam condensate discharged from the reboiler is connected to the stripping column reheating heat exchanger to further increase the absorbent discharged from the stripping column, and then moves to the TVR unit including the flash drum to separate the gas and liquid. It can be reused as boiler steam.
  • the acid gas collection system may further include an ultrasonic device (Ultrasonic Horn) for regenerating the acid gas saturated absorbent prior to the stripping column injection.
  • the ultrasonic apparatus may remove the acid gas saturated absorbent before injection of the stripping column by using a cavitation phenomenon and particle acceleration effects.
  • the ultrasonic device may be disposed between the absorption tower and the reboiler or the first heat exchanger. In this case, the temperature of the acid gas saturated absorbent removed in advance by the ultrasonic device can be added to further remove the effect.
  • the ultrasonic device may be disposed between the reboiler or the first heat exchanger and the stripping column. In this case, an additional stripping effect can be added to the acid gas saturated absorbent heated by the reboiler.
  • the ultrasonic device may separate the acid gas, for example, in an ultrasonic band of about 20 KHz to about 1 MHz. In this case, the stripping effect performed by the ultrasonic device may be more excellent.
  • the acid gas collection system of Example 1 includes: an absorption tower 9 for absorbing acid gas contained in exhaust gas into an absorbent to generate an acid gas saturated absorbent; A first heat exchanger 10 configured to heat up the acid gas saturated absorbent and the absorbent discharged from the stripping column by first heat exchange; A stripping column 11 for separating the acid gas saturated absorbent into an acid gas and an absorbent; A reboiler (12) for supplying thermal energy to the stripping column using steam; And a condensate recycling apparatus for recycling steam condensate discharged from the reboiler.
  • FIG. 1 shows a washing apparatus 22 installed in two stages in a stripping column, a reboiler 12 is arranged in a rear end of the stripping column, and a TVR device 21 is installed in the reboiler 12.
  • An example of a capture system is shown. In this case, the steam supplied to the reboiler 12 is refluxed through the TVR apparatus 21, thereby reducing the heat consumption of the reboiler.
  • An acid gas collection system of Example 2 includes: an absorption tower 9 for absorbing acid gas contained in exhaust gas into an absorbent to generate an acid gas saturated absorbent; A first heat exchanger 10 configured to heat up the acid gas saturated absorbent and the absorbent discharged from the stripping column by first heat exchange; A stripping column 11 for separating the acid gas saturated absorbent into an acid gas and an absorbent; A reboiler (12) for supplying thermal energy to the stripping column using steam; And a condensate recycling apparatus for recycling steam condensate discharged from the reboiler.
  • Embodiment 2 shows a collection system of Embodiment 2 in which a reboiler 12 is disposed between a stripping column 11 and a first heat exchanger 10, and a stripping column reheating heat exchanger 18 is installed in the reboiler 12.
  • a reboiler 12 is disposed between a stripping column 11 and a first heat exchanger 10
  • a stripping column reheating heat exchanger 18 is installed in the reboiler 12.
  • the steam condensate generated from the reboiler 12 and the absorbent discharged from the stripping column are heated and heated to the second heat exchanger through the stripping column reheating heat exchanger, and the absorbent heated by the heat exchanger is refluxed to the upper portion of the stripping column.
  • the heat consumption of the reboiler can be further reduced, and the acid gas saturated absorbent can be further removed from the apparatus other than the stripping column, so that the regeneration efficiency of the absorbent can be further improved.
  • FIG. 3 is a view showing an acid gas collection system according to a third embodiment of the present invention.
  • FIG. 3 shows the acid gas collection system of Example 3 which was implemented in the same manner as in Example 2 except that an ultrasonic device (Ultrasonic Horn) was additionally installed between the reboiler 12 and the stripping column 11. In this case it is possible to add an additional stripping effect to the partially stripped acid gas saturated absorbent which is heated up by the first heat exchanger and the reboiler.
  • an ultrasonic device Ultrasonic Horn
  • FIG. 4 is a view showing an acid gas collection system according to a fourth embodiment of the present invention.
  • FIG. 4 shows the acid gas collection system of Example 4 which was carried out in the same manner as in Example 2 except that an ultrasonic device (Ultrasonic Horn) was further installed between the absorption tower 9 and the first heat exchanger 10. .
  • an ultrasonic device Ultrasonic Horn
  • the reboiler and the stripping column several times, a more excellent stripping effect can be added.
  • Another embodiment of the present invention relates to an acid gas collection method using the acid gas collection system of the above-described embodiment.
  • the omitted part of the description of the acid gas collection method of the present invention is replaced by the description of the acid gas collection system mentioned above.
  • the acid gas collecting method includes contacting the absorbent and the exhaust gas in the absorption tower 9 to collect the acid gas, and through this process, the absorbent and carbon dioxide exotherm to generate an acid gas absorbent liquid (acid gas saturated absorbent). .
  • the acid gas collection method includes heat-exchanging the acid gas saturated absorbent generated in the absorption tower 9 with the lean amine discharged from the lower part of the stripping column 11 by using the heat exchanger 10 to raise the temperature.
  • heat exchange of the acidic gas saturated absorbent and lean amine may be referred to as lean-rich heat exchange.
  • the acid gas collection method includes sending the acid gas saturated absorbent to the stripping column 11 to separate the acid gas and the absorbent by heat supplied from the stripping column.
  • the acid gas collection method includes supplying heat energy by supplying steam to the stripping column 11 using the reboiler 12.
  • the acid gas collection method may be disposed between the reboiler 12 between the heat exchanger 10 and the stripping column 11 to significantly reduce the amount of renewable energy consumed in the carbon dioxide capture process.
  • This acid gas collection method can increase the stripping efficiency while significantly reducing the reboiler heat consumption than when the reboiler is generated at the rear of the stripping column.
  • the acid gas collection method is to remove the acid gas saturated absorbent first by lean-rich heat exchange, and then secondary stripping through the reboiler in the step before injection of the stripping column, and to perform the third stripping through the stripping tower. Can be.
  • the first to third processes may further improve the stripping efficiency of the entire system as well as further increase the heating rate before being injected into the stripping column, thereby further improving the regeneration efficiency.
  • a TVR device to be described later is added to further reduce heat consumption, or additional quaternary stripping is performed using a stripping column reheat heat exchanger.
  • the acid gas collection system separates steam condensate generated after reheating the acid gas absorbent in the reboiler 12 into a gas and a liquid through a flash drum, and then separates the separated gas into a TVR (Thermal Vapor Recompression).
  • the method may further include repressurizing and supplying the reboiler steam.
  • the acid gas collection method uses a stripping tower reheating heat exchanger connected to a reboiler, heats up the heat condensate generated in the reboiler and the absorbent discharged from the stripping column, and heats up the absorbent heated by the heat exchanger. It may further comprise reflux to the top.
  • the acid gas collection method is further characterized in that the acid gas collection system is to regenerate the absorbent by separating the acid gas in the ultrasonic band of 20KHz ⁇ 1MHz using an ultrasonic device (Ultrasonic Horn) prior to injection of the saturated acid absorbent gas stripping tower It may include.
  • the ultrasonic apparatus may remove the acid gas saturated absorbent before injection of the stripping column by using a cavitation phenomenon and particle acceleration effects.
  • the acid gas collection system of Example 1 includes an absorption tower (9) including a storage tank for temporarily storing the absorbent heated by the exothermic reaction of the absorbent and carbon dioxide and separating the gas-liquid, and the acid gas saturated absorbent discharged from the absorption tower.
  • an absorption tower 9 including a storage tank for temporarily storing the absorbent heated by the exothermic reaction of the absorbent and carbon dioxide and separating the gas-liquid, and the acid gas saturated absorbent discharged from the absorption tower.
  • first heat exchanger (10), stripping column (11), stripping column (11) of supplying to the upper end of the stripping column after the first heat exchange with a high temperature absorbent (lean amine) discharged from the stripping column It is arranged to include a reboiler 12 connected to the rear end and a TVR device 21 connected to the reboiler.
  • the absorption tower was installed to include a washing stage in two stages, the steam condensed water from the reboiler to separate the gas and liquid through the flash drum 20 to pressurize only the gas to the Thermal Vapor Recompression (21). Resupply with boiler steam.
  • the acidic gas collection system of this Example 1 is shown in FIG.
  • the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
  • the acid gas collection system of Example 2 includes an absorption tower (9) including a storage tank for temporarily storing the absorbent and the absorbent heated by the exothermic reaction of carbon dioxide and separating the gas-liquid, and the acid gas saturated absorbent discharged from the absorption tower.
  • an absorption tower 9 including a storage tank for temporarily storing the absorbent and the absorbent heated by the exothermic reaction of carbon dioxide and separating the gas-liquid, and the acid gas saturated absorbent discharged from the absorption tower.
  • the absorbent liquid from the absorption tower is removed by passing the absorbent in the order of the first heat exchanger with the high temperature absorbent liquid from the stripping tower, and then passing through the absorbent in the order of the reboiler and the stripping column. It was then refluxed to the stripping column.
  • the acidic gas collection system of this Example 2 is shown in FIG.
  • the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
  • Example 3 was arranged by adding an ultrasonic device 19 between the reboiler 12 and the stripping column 11.
  • the absorption liquid exiting the absorption tower was subjected to the same method as in Example 2 except that the first heat exchange was performed with the high temperature absorption liquid from the stripping column, and further regenerated after the first heat exchange using the ultrasonic device 19.
  • the acidic gas collection system of this Example 3 is shown in FIG.
  • the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
  • Example 4 was disposed by adding the ultrasonic device 19 between the absorption tower 9 and the first heat exchanger 10. The absorption liquid exiting the absorption tower was removed in advance by an ultrasonic device and then carried out in the same manner as in Example 2 except for the first heat exchange.
  • An acidic gas collection system of this Example 4 is shown in FIG.
  • the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
  • the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
  • Examples 1 to 4 of the present invention was confirmed that the heat consumption of the reboiler used to capture the same carbon dioxide in the removal efficiency (90%) of the same carbon dioxide. These results indicate that the application of the absorption and stripping process developed in the present invention on the basis of the same carbon dioxide removal rate can significantly reduce the amount of steam used in the reboiler. On the other hand, in Comparative Example 1, which does not include a condensate recycling apparatus, it was found that the reboiler heat consumption was higher than that of Examples 1 to 4, which consumed a lot of process costs.
  • Examples 2 to 4 of the present invention could promote additional temperature increase and thereby absorbent regeneration in devices other than the stripping column, and the reboiler is disposed between the first heat exchanger and the stripping column to further remove stripping efficiency. Excellent and lower reboiler heat usage.
  • the acid gas collection system of Examples 1 to 4 can realize an excellent stripping efficiency even when the stripping tower height of the stripping tower is low, and can reduce the initial investment cost.
  • flue gas 2 regenerated absorbent (linamine)
  • cleaning stage 4 exhaust gas from which carbon dioxide has been removed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

An embodiment of the present invention relates to an acid gas collection system comprising: an absorption column for absorbing acid gas contained in exhaust gas into an absorbent to generate an acid gas-saturated absorbent; a first heat exchanger for increasing the temperature of the acid gas-saturated absorbent through first heat exchange between the acid gas-saturated absorbent and an absorbent discharged from the bottom of a stripping column; the stripping column for separating the acid gas-saturated absorbent into acid gas and an absorbent; a reboiler for supplying heat energy to the stripping column using steam; and a condensate water recycling apparatus for recycling steam condensate water discharged from the reboiler.

Description

산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법Acid gas collection system and acid gas collection method using the same
본 발명은 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법에 관한 것이다.The present invention relates to an acid gas collection system and an acid gas collection method using the same.
산업분야에서 에너지원으로 사용되는 석탄, 석유, LNG 등의 화석연료는 연소 시 대기 중에 CO2, H2S, COS 등의 산성 가스를 발생시킨다. 이러한 산성 가스, 특히 이산화탄소는 지구 온난화의 주요한 원인으로 지목되어 배출 및 처리에 대한 규제가 엄격해지고 있다.Fossil fuels such as coal, petroleum, and LNG, which are used as energy sources in the industrial sector, generate acidic gases such as CO 2 , H 2 S, and COS during combustion. These acid gases, especially carbon dioxide, have been identified as a major cause of global warming, and regulations on emissions and disposal are becoming more stringent.
이산화탄소 배출 증가를 억제하기 위한 기술로서는, 이산화탄소 배출감소를 위한 에너지절약기술, 이산화탄소의 포집 및 저장 기술(Carbon dioxide capture and storage: CCS), 이산화탄소를 이용하거나 고정화시키는 기술, 이산화탄소를 배출하지 않는 대체에너지기술 등이 있다. 이러한 이산화탄소의 포집 및 저장 기술 중에서도 포집기술은 이산화탄소의 처리 위치에 따라 연소전, 연소중, 연소후 방법으로 나누어지며, 처리 방법에 따라 흡수법, 흡착법, 막분리법, 심냉법 등으로 구분할 수 있다.As a technology to suppress the increase of carbon dioxide emission, energy saving technology for reducing carbon dioxide emission, carbon dioxide capture and storage (CCS) technology, using or immobilizing carbon dioxide, alternative energy that does not emit carbon dioxide Technology. Among the technologies for capturing and storing carbon dioxide, the capture technology is classified into pre-combustion, in-combustion, and post-combustion methods according to the treatment position of carbon dioxide, and may be classified into absorption method, adsorption method, membrane separation method, deep cooling method, etc.
이 중에서도, 화학적 이산화탄소 흡수법은 높은 효율과 안정적인 기술로 가장 많이 연구되고 있다. 화학적 이산화탄소 흡수법은 석유화학 공정 중 개질공정에서 적용되고 있는 예가 많으나, 석유화학 공정가스가 아닌 연소 배가스에 적용하기 위해서는 추가적인 공정의 개선이 필요하다.Among them, the chemical carbon dioxide absorption method has been studied the most with high efficiency and stable technology. Chemical carbon dioxide absorption is used in many reforming processes in petrochemical processes, but additional processes need to be improved to be applied to combustion flue gas instead of petrochemical process gases.
한편, 일반적인 산성가스 흡수 및 탈거 시스템은 산성가스를 흡수한 흡수제를 탈거탑의 상부로 주입한 후 흡수제와 이산화탄소를 분리하는 탈거 공정을 수행하는 재생공정을 포함한다. 그러나, 종래의 산성가스 흡수 및 탈거 시스템은 흡수제의 재생을 위한 열 공급과정에서 많은 에너지가 소모되며, 탈거 효율이 높지 않아 추가의 설비가 필요한 문제점이 있었다. On the other hand, the general acid gas absorption and stripping system includes a regeneration step of performing a stripping process of separating the absorbent and carbon dioxide after injecting the absorbent absorbing the acid gas to the top of the stripping column. However, the conventional acid gas absorption and stripping system consumes a lot of energy in the heat supply process for regenerating the absorbent, and there is a problem that additional equipment is required because the stripping efficiency is not high.
이와 관련된 선행기술은 한국 공개특허공보 제2015-0041256호에 기재되어 있다.Related arts are described in Korean Patent Laid-Open Publication No. 2015-0041256.
본 발명의 하나의 목적은 배가스로부터 산성가스를 분리 회수하는 공정에서 리보일러에 연결된 스팀 응축수 재활용 장치를 이용하여, 리보일러의 열 사용량을 줄이고, 경제성을 향상시킬 수 있는 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법을 제공하는 것이다.One object of the present invention is to use a steam condensate recycling apparatus connected to the reboiler in the process of separating and recovering the acid gas from the exhaust gas, the acid gas collection system that can reduce the heat consumption of the reboiler, and improve the economic efficiency and using the same It is to provide an acid gas collection method.
본 발명의 일 구현예는 배가스 중에 함유된 산성가스를 흡수제에 흡수시켜 산성가스 포화 흡수제를 생성하는 흡수탑; 상기 산성가스 포화 흡수제와 탈거탑 하부에서 배출되는 흡수제를 제1 열교환하여 승온시키는 제1 열교환기; 상기 산성가스 포화 흡수제를 산성가스 및 흡수제로 분리하는 탈거탑; 상기 탈거탑에 스팀을 이용하여 열 에너지를 공급하는 리보일러; 및 상기 리보일러에서 배출되는 스팀 응축수를 재활용하는 응축수 재활용 장치; 를 포함하는 산성가스 포집 시스템에 관한 것이다. One embodiment of the present invention absorbs the acid gas contained in the exhaust gas in the absorbent to produce an acid gas saturated absorbent; A first heat exchanger configured to heat up the acid gas saturating absorbent and the absorbent discharged from the stripping tower by first heat exchange; A stripping column for separating the acid gas saturated absorbent into an acid gas and an absorbent; A reboiler for supplying thermal energy to the stripping column using steam; And a condensate recycling apparatus for recycling steam condensate discharged from the reboiler. It relates to an acid gas collection system comprising a.
본 발명의 다른 구현예는 전술한 산성가스 포집 시스템을 이용한 산성가스 포집방법에 관한 것이다.Another embodiment of the present invention relates to an acid gas collection method using the acid gas collection system described above.
본 발명의 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법은 배가스로부터 산성가스를 분리 회수하는 공정에서 리보일러에 연결된 스팀 응축수 재활용 장치를 이용하여, 리보일러의 열 사용량을 줄이고, 경제성을 향상시킬 수 있다.Acid gas collection system of the present invention and acid gas collection method using the same by using a steam condensate recycling apparatus connected to the reboiler in the process of separating and recovering the acid gas from the exhaust gas, it is possible to reduce the heat consumption of the reboiler, and improve the economic efficiency have.
도 1은 본 발명 실시예 1의 산성가스 포집 시스템을 나타내는 도면이다.1 is a view showing an acid gas collection system of the first embodiment of the present invention.
도 2는 본 발명 실시예 2의 산성가스 포집 시스템을 나타내는 도면이다.2 is a view showing an acid gas collection system according to a second embodiment of the present invention.
도 3은 본 발명 실시예 3의 산성가스 포집 시스템을 나타내는 도면이다.3 is a view showing an acid gas collection system of a third embodiment of the present invention.
도 4는 본 발명 실시예 4의 산성가스 포집 시스템을 나타내는 도면이다.4 is a view showing an acid gas collection system according to a fourth embodiment of the present invention.
도 5는 본 발명 비교예 1의 산성가스 포집 시스템을 나타내는 도면이다.5 is a view showing an acid gas collection system of Comparative Example 1 of the present invention.
도 6은 본 발명 일 실시예에 사용되는 리보일러를 나타내는 도면이다. 6 illustrates a reboiler used in an embodiment of the present invention.
본 발명의 일 구현예는 배가스 중에 함유된 산성가스를 흡수제에 흡수시켜 산성가스 포화 흡수제를 생성하는 흡수탑; 상기 산성가스 포화 흡수제와 탈거탑 하부에서 배출되는 흡수제를 제1 열교환하여 승온시키는 제1 열교환기; 상기 산성가스 포화 흡수제를 산성가스 및 흡수제로 분리하는 탈거탑; 상기 탈거탑에 스팀을 이용하여 열 에너지를 공급하는 리보일러; 및 상기 리보일러에서 배출되는 스팀 응축수를 재활용하는 응축수 재활용 장치; 를 포함하는 산성가스 포집 시스템에 관한 것이다. 이러한 일 구현예의 산성가스 포집 시스템은 리보일러에서 배출되는 스팀 응축수를 재활용함으로써, 리보일러 열 사용량을 현저하게 저감하고, 경제성을 향상시키는 효과를 구현한다. One embodiment of the present invention absorbs the acid gas contained in the exhaust gas in the absorbent to produce an acid gas saturated absorbent; A first heat exchanger configured to heat up the acid gas saturating absorbent and the absorbent discharged from the stripping tower by first heat exchange; A stripping column for separating the acid gas saturated absorbent into an acid gas and an absorbent; A reboiler for supplying thermal energy to the stripping column using steam; And a condensate recycling apparatus for recycling steam condensate discharged from the reboiler. It relates to an acid gas collection system comprising a. In one embodiment, the acid gas collection system recycles steam condensate discharged from the reboiler, thereby remarkably reducing the reboiler heat consumption and improving economic efficiency.
상기 흡수탑은 화학 공정 가스 및 연소 배가스와 흡수제를 반응시켜, 화학 공정 가스 또는 연소 배가스에 함유된 산성 가스가 흡수제에 흡수된 산성가스 포화 흡수제를 생성한다. 이때, 상기 산성가스는 이산화탄소, 황화수소, 이산화황, 이산화질소 및 황화카르보닐 중 하나 이상을 포함할 수 있다.The absorption tower reacts the chemical process gas and the combustion exhaust gas with the absorbent to produce an acid gas saturated absorbent in which the acid gas contained in the chemical process gas or the combustion exhaust gas is absorbed into the absorbent. In this case, the acid gas may include one or more of carbon dioxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide and carbonyl sulfide.
상기 산성가스 흡수제는 아민계, 아미노산염 및 무기염류 용액 중 하나 이상을 포함할 수 있다. 일 구체예에서, 상기 산성가스 포화 흡수제는 이산화탄소가 포화된 리치아민일 수 있다. 이와 같은 구체예에서, 상기 산성가스 포화 흡수제가 탈거된 후 탈거탑 하부로 배출되는 산성가스 흡수제는 린아민일 수 있다. 이러한 경우, 산성가스 중 특히 이산화탄소에 대한 포집 효율이 우수할 수 있다.The acid gas absorbent may include one or more of an amine-based, amino acid salt and inorganic salt solution. In one embodiment, the acid gas saturated absorbent may be a rich amine saturated with carbon dioxide. In such an embodiment, the acid gas absorbent discharged to the bottom of the stripping column after the acidic gas saturated absorbent is stripped may be lean amine. In this case, the collection efficiency for acidic gas, especially for carbon dioxide may be excellent.
산성가스를 포함하고 있는 화학 공정 가스 및 연소 배가스는 흡수탑에 의해 발생되는 압력강하를 극복하기 위하여 팬을 이용하여 배가스 냉각기로 보내지고, 흡수탑 내의 냉각된 배가스는 통상적으로 약 40℃ 내지 약 60℃의 온도에서 흡수제와 접촉할 수 있다. 상기 냉각된 배가스 흡수제와 접촉되어 산성가스가 특이적으로 흡수제에 흡수되며, 산성가스를 빼앗긴 배가스는 흡수제 증기가 비말하는 것을 방지하기 위한 세정장치를 거친 후 흡수탑에서 배출된다. Chemical process gases and combustion flue gases containing acidic gases are sent to a flue gas cooler using a fan to overcome the pressure drop generated by the absorption tower, and the cooled flue gas in the absorption tower is typically from about 40 ° C. to about 60 Contact with the absorbent at a temperature of < RTI ID = 0.0 > The acid gas is specifically absorbed by the absorbent by contact with the cooled exhaust gas absorbent, and the exhaust gas deprived of the acid gas is discharged from the absorption tower after passing through a cleaning device to prevent the absorbent vapor from splashing.
상기 세정단(washing zone)은 흡수탑 내에 2단 이상으로 설치될 수 있다. 예를 들면 흡수탑은 세정단을 2단 내지 3단 또는 그 이상으로 포함할 수 있고, 이러한 경우 흡수제의 손실을 방지하는 효과가 향상될 수 있다.The washing zone may be installed in two or more stages in the absorption tower. For example, the absorption tower may include two to three stages or more of the cleaning stages, and in this case, the effect of preventing the loss of the absorbent may be improved.
상기 제1 열교환기는 흡수탑에서 생성된 상기 산성가스 포화 흡수제를 탈거탑 하부에서 배출되는 흡수제와 제1 열교환하여 승온시킨다. 이를 통해, 탈거탑의 하부에서 배출되는 흡수제의 열을 산성가스 포화 흡수제에 공급하여 에너지 효율을 높이고, 탈거탑의 주입 이전과정에서 산성가스 포화 흡수제가 승온에 의해 일부 탈거되도록하여 산성가스 포집 시스템의 탈거효율을 향상시킬 수 있다.The first heat exchanger heats up the acid gas saturated absorbent generated in the absorption tower by first heat exchange with the absorbent discharged from the stripping column. Through this, the heat of the absorbent discharged from the bottom of the stripping column is supplied to the acid gas saturated absorbent to increase the energy efficiency, and the acid gas saturated absorbent is partially removed by the elevated temperature before the injection of the stripping column so as to remove the acid gas capture system. The stripping efficiency can be improved.
일 구체예에서, 제1 열교환기는 산성가스 포화 흡수제인 리치아민을 탈거탑의 하부에서 나오는 흡수제인 린아민과 1차 열교환하여 약 95℃~105℃로 승온시킬 수 있다. 이와 같이 아민계 흡수제를 사용하는 경우, 산성가스 중 이산화탄소에 대한 포집 효율이 더욱 향상될 수 있으며, 제1차 열교환에 의한 탈거 효과가 더욱 우수할 수 있다.In one embodiment, the first heat exchanger may be heated to about 95 ℃ ~ 105 ℃ by first heat-exchanging the rich amine, the acid gas saturated absorbent with the lean amine from the bottom of the stripping column. As such, when the amine absorbent is used, the collection efficiency of carbon dioxide in the acid gas may be further improved, and the stripping effect by the first heat exchange may be more excellent.
상기 산성가스 포화 흡수제와 탈거탑 하부에서 배출되는 흡수제는 각각의 온도차가 약 10℃ 이하, 예를 들면, 약 5℃ 이하일 수 있다. 이러한 경우, 제1 열교환기에서의 열교환 효율 및 산성가스 포집 시스템의 전체 에너지 사용량 저감효과가 더욱 향상될 수 있다.The acid gas saturated absorbent and the absorbent discharged from the stripping column may have a temperature difference of about 10 ° C. or less, for example, about 5 ° C. or less. In this case, the heat exchange efficiency in the first heat exchanger and the effect of reducing the total energy usage of the acidic gas collection system can be further improved.
상기 제1 열교환기는 탈거탑 하부에서 배출되는 흡수제를 유입하는 유입구와, 열교환 후 승온된 산성가스 포화 흡수제를 다음단계의 장치(리보일러 또는 탈거탑 등)로 송출하는 유출구를 구비할 수 있다. 이러한 경우, 탈거탑 하부에서 배출되는 흡수제와 산성가스 포화 흡수제의 열교환을 수행하기에 더욱 유리하다.The first heat exchanger may include an inlet for introducing the absorbent discharged from the stripping tower and an outlet for sending the acid gas saturated absorbent heated after the heat exchange to a device of a next stage (such as a reboiler or stripping tower). In this case, it is more advantageous to perform heat exchange between the absorbent discharged from the stripper bottom and the acid gas saturated absorbent.
상기 탈거탑은 산성가스 포화 흡수제를 공급받아 산성가스 및 흡수제로 분리한다. 이때, 탈거탑으로 공급되는 산성가스 포화 흡수제는 상기 제1 열교환에 의해 1차 열교환이 수행되어 일부 탈거가 진행된 상태일 수 있다. 이러한 경우, 산성가스 포집 시스템의 전체 에너지 사용량 저감효과가 더욱 우수하다.The stripping column receives an acid gas saturated absorbent and separates the acid gas and the absorbent. In this case, the acidic gas saturated absorbent supplied to the stripping column may be in a state where some stripping is performed by performing a first heat exchange by the first heat exchange. In this case, the effect of reducing the total energy consumption of the acid gas collection system is more excellent.
상기 탈거탑에서 산성가스 포화 흡수제가 흡수제로 재생되는 과정은 약 110℃ 내지 140℃의 온도 및 대기압 정도의 압력에서 탈거반응에 의해 수행되며, 이러한 재생 조건을 유지하기 위해 리보일러를 통해 열을 공급받는다.The process of regenerating the acid gas saturated absorbent into the absorbent in the stripping column is performed by stripping reaction at a temperature of about 110 ° C. to 140 ° C. and a pressure of about atmospheric pressure, and supplies heat through a reboiler to maintain such regeneration conditions. Receive.
상기 리보일러는 스팀을 이용하여 열 에너지를 탈거탑에 공급한다. 구체적으로, 리보일러는 외부에서 유입되는 스팀이 갖는 열 에너지를 리보일러에 주입되는 산성가스 포화 흡수제에 전달하여 일부 기화시킨 후, 기화된 일부의 산성가스 흡수제와 기화되지 않고 승온된 다른 일부의 산성가스 흡수제를 탈거탑 내부로 재공급함으로써 열 에너지를 공급할 수 있다. 이를 통해, 탈거탑은 승온된 산성가스 포화 흡수제로부터 열 에너지를 공급받아 재생온도 조건을 달성할 수 있다.The reboiler supplies steam to the stripping column using steam. Specifically, the reboiler transfers the heat energy of the steam introduced from the outside to the acid gas saturated absorbent injected into the reboiler, and partially vaporizes it, and then some of the acid gas absorbents which have been heated without being vaporized with some of the acid gas absorbent vaporized. Thermal energy can be supplied by resupplying the gas absorbent into the stripping column. Through this, the stripping column may be supplied with thermal energy from the heated acid gas saturated absorbent to achieve a regeneration temperature condition.
상기 리보일러는 탈거탑과 제1 열교환기 사이에 배치되거나, 또는 탈거탑의 후단부에 배치될 수 있다. 이러한 배치를 통해, 리보일러에서 사용되는 스팀을 제조하기 위해 소모되는 열 사용량을 저감할 수 있다.The reboiler may be disposed between the stripping tower and the first heat exchanger or at a rear end of the stripping tower. This arrangement can reduce the amount of heat consumed to produce the steam used in the reboiler.
일 구체예에서, 상기 리보일러가 상기 탈거탑과 제1 열교환기 사이에 배치되는 경우, 상기 리보일러는 상기 제1 열교환기에서 승온된 산성가스 포화 흡수제를 공급받아 스팀을 이용하여 이를 재가열하고, 재가열시 발생하는 증기는 탈거탑의 상부영역에 재공급하며, 남은 일부의 액상 산성가스 포화 흡수제를 탈거탑의 중부영역에 공급하는 역할을 수행할 수 있다. 이러한 경우, 리보일러는 재가열된 액상의 산성가스를 포화 흡수제를 탈거탑의 중부영역에 공급함으로써 탈거탑의 열 에너지 이용률을 높이고 리보일러의 열 에너지 사용량을 낮추며, 탈거탑 내부의 흡수제에 포함된 물의 증발을 막고, 확산에 의한 탈거를 유도할 수 있다. 또한, 리보일러는 재가열된 증기를 탈거탑의 상부영역에 공급하여 산성가스 포집률을 더욱 향상시킬 수 있다.In one embodiment, when the reboiler is disposed between the stripping tower and the first heat exchanger, the reboiler is supplied with a saturated acid gas saturated absorber heated in the first heat exchanger to reheat it using steam, The steam generated upon reheating may be resupplied to the upper region of the stripping column, and may serve to supply a portion of the remaining liquid acid gas saturated absorbent to the central region of the stripping column. In this case, the reboiler supplies the reheated liquid acid gas to the central region of the stripping column to increase the utilization rate of the thermal energy of the stripping tower, to lower the thermal energy consumption of the reboiler, and to remove the water contained in the absorber inside the stripping column. It can prevent evaporation and induce stripping by diffusion. In addition, the reboiler may further supply the reheated steam to the upper region of the stripping column to further improve the acid gas capture rate.
예를 들면, 리보일러(12)는 도 6에 도시된 바와 같이, 케틀형(Kettle type)의 리보일러일 수 있다. 즉, 케틀형의 리보일러는 쉘 측(Shell Side)에서 보일링(Boiling)이 일어나는 형태의 리보일러로 사용될 수 있다. 이러한 리보일러(12)는 가장 구조가 간단하고 손쉽게 값싼 증기를 얻을 수 있다. 예를 들면, 리보일러의 번들(Bundle)은 유튜브형(U-tube type), 유동두형, 고정형(Fixed type)을 사용하며 쉘 측에 증발이 잘 일어날 수 있고, 액체와 기체를 분리하기 위하여 증기실이 있다. 이러한 리보일러를 사용하는 경우, 본 발명의 산성가스 포집 시스템에의 적용성이 더욱 우수할 수 있다.For example, the reboiler 12 may be a kettle type reboiler, as shown in FIG. 6. In other words, the kettle-type reboiler may be used as a reboiler in which boiling occurs on the shell side. This reboiler 12 has the simplest structure and can easily obtain cheap steam. For example, the reboiler's bundle uses a U-tube type, a double head type, and a fixed type, and evaporation may occur well at the shell side, and vapor may be separated to separate liquid and gas. There is a thread. In the case of using such a reboiler, the applicability to the acid gas collection system of the present invention may be more excellent.
상기 응축수 재활용 장치는 상기 리보일러에서 배출되는 스팀 응축수를 재활용함으로써 산성가스 포집 시스템의 열 에너지 사용량을 저감할 수 있다. 상기 응축수 재활용 장치는 TVR(Thermal Vapor Recompression) 장치 또는 탈거탑 재가열 열교환기 중 하나 이상을 포함할 수 있다.The condensate recycling apparatus may reduce the amount of thermal energy used by the acid gas collection system by recycling steam condensate discharged from the reboiler. The condensate recycling apparatus may include one or more of a Thermal Vapor Recompression (TVR) apparatus or a stripping tower reheat heat exchanger.
상기 TVR(Thermal Vapor Recompression) 장치는 리보일러에서 발생하는 스팀 응축수를 기체와 액체로 분리하는 플래쉬 드럼(Flash drum)을 포함하고, 상기 플래쉬 드럼을 통해 분리된 기체를 가압하여 리보일러 스팀으로 공급하는 것일 수 있다. 이러한 경우, 리보일러의 스팀공급에 사용되는 열 사용량을 감소시킬 수 있다. The TVR (Thermal Vapor Recompression) device includes a flash drum (Flash drum) for separating the steam condensate generated in the reboiler into a gas and a liquid, and pressurizes the separated gas through the flash drum to supply to the reboiler steam It may be. In this case, the amount of heat used for steam supply of the reboiler can be reduced.
상기 탈거탑 재가열 열교환기(제2 열교환기)는 상기 리보일러에서 발생하는 스팀 응축수와 탈거탑 중부에서 배출되는 흡수제를 제2 열교환하여 승온시키고, 제2 열교환에 의해 승온된 흡수제를 탈거탑의 상부로 환류시키는 것일 수 있다. 상기 스팀 응축수는 스팀이 산성가스 포화 흡수제에 열을 전달하는 과정에 의해 응축된 것이나, 여전히 잔열을 포함하고 있기 때문에 탈거탑 재가열 열교환기(제2 열교환기)는 상기 잔열을 이용하여 탈거탑 중부에서 배출되는 흡수제를 추가로 승온 시킬 수 있다. 이러한 경우, 탈거탑에 추가로 열을 공급할 수 있어, 전체 산성가스 포집 시스템에서 소모되는 에너지량을 더욱 저감할 수 있다. The stripping tower reheating heat exchanger (second heat exchanger) heats up the heat condensate generated from the reboiler and the absorbent discharged from the stripping column by heat exchange for a second heat exchanger, and the absorber heated by the second heat exchanger is heated to the upper portion of the stripping column. It may be to reflux. The steam condensate is condensed by steam transferring heat to the acid gas saturated absorbent, but since the steam still contains residual heat, the stripping tower reheating heat exchanger (second heat exchanger) uses the residual heat in the middle of the stripping column. The absorbent discharged can be further heated. In this case, heat can be additionally supplied to the stripping column, thereby further reducing the amount of energy consumed in the entire acid gas collection system.
일 구체예에서, 상기 산성가스 포집 시스템은 전술한 탈거탑 재가열 열교환기 및 TVR(Thermal Vapor Recompression) 장치를 동시에 포함할 수 있다. 이러한 경우, 리보일러에서 배출된 스팀 응축수는 탈거탑 재가열 열교환기와 연결되어 탈거탑 중부에서 배출되는 흡수제를 추가로 승온시킨 이후, 플래쉬드럼을 포함하는 TVR 장치로 이동하여 기체와 액체로 분리된 후 리보일러 스팀으로 재이용될 수 있다. 이러한 경우, 산성가스 포집 시스템의 전체 에너지 사용량 저감 효과, 리보일러 열 사용량 저감 효과 및 탈거효율 향상 효과를 복합적으로 구현할 수 있다.In one embodiment, the acidic gas collection system may include the stripping column reheat heat exchanger and the Thermal Vapor Recompression (TVR) device at the same time. In this case, the steam condensate discharged from the reboiler is connected to the stripping column reheating heat exchanger to further increase the absorbent discharged from the stripping column, and then moves to the TVR unit including the flash drum to separate the gas and liquid. It can be reused as boiler steam. In this case, it is possible to complexly implement the effect of reducing the total energy consumption, the effect of reducing the reboiler heat usage and the stripping efficiency of the acid gas collection system.
상기 산성가스 포집 시스템은 탈거탑 주입 이전에 상기 산성가스 포화 흡수제를 재생시키는 초음파 기기(Ultrasonic Horn)를 더 포함할 수 있다. 이러한 초음파기기는 캐비테이션(cavitation) 현상 및 입자가속도 효과를 이용하여 산성가스 포화 흡수제를 탈거탑 주입 이전에 미리 탈거시킬 수 있다. 일 구현예에서, 상기 초음파 기기는 흡수탑과 리보일러 또는 제1 열교환기의 사이에 배치될 수 있다. 이러한 경우 초음파기기에 의해 미리 탈거된 산성가스 포화 흡수제를 승온하여 더욱 탈거하는 효과를 부가할 수 있다. 다른 구현예에서, 상기 초음파 기기는 리보일러 또는 제1 열교환기와 탈거탑의 사이에 배치될 수 있다. 이러한 경우 리보일러에 의해 승온된 산성가스 포화 흡수제에 추가의 탈거 효과를 부가할 수 있다.The acid gas collection system may further include an ultrasonic device (Ultrasonic Horn) for regenerating the acid gas saturated absorbent prior to the stripping column injection. The ultrasonic apparatus may remove the acid gas saturated absorbent before injection of the stripping column by using a cavitation phenomenon and particle acceleration effects. In one embodiment, the ultrasonic device may be disposed between the absorption tower and the reboiler or the first heat exchanger. In this case, the temperature of the acid gas saturated absorbent removed in advance by the ultrasonic device can be added to further remove the effect. In another embodiment, the ultrasonic device may be disposed between the reboiler or the first heat exchanger and the stripping column. In this case, an additional stripping effect can be added to the acid gas saturated absorbent heated by the reboiler.
상기 초음파 기기는 예를 들면, 약 20KHz ~ 약 1MHz의 초음파 대역에서 산성가스를 분리할 수 있다. 이러한 경우, 초음파 기기에 의해 수행되는 탈거 효과가 더욱 우수할 수 있다. The ultrasonic device may separate the acid gas, for example, in an ultrasonic band of about 20 KHz to about 1 MHz. In this case, the stripping effect performed by the ultrasonic device may be more excellent.
이하, 본 발명의 다양한 실시예들에 따른 산성가스 포집 시스템에 대하여 도면을 참조하여 설명한다.Hereinafter, an acid gas collection system according to various embodiments of the present disclosure will be described with reference to the accompanying drawings.
도 1은 본 발명의 실시예 1에 따른 산성가스 포집 시스템을 나타내는 도면이다. 실시예 1의 산성가스 포집 시스템은 배가스 중에 함유된 산성가스를 흡수제에 흡수시켜 산성가스 포화 흡수제를 생성하는 흡수탑(9); 상기 산성가스 포화 흡수제와 탈거탑 하부에서 배출되는 흡수제를 제1 열교환하여 승온시키는 제1 열교환기(10); 상기 산성가스 포화 흡수제를 산성가스 및 흡수제로 분리하는 탈거탑(11); 상기 탈거탑에 스팀을 이용하여 열 에너지를 공급하는 리보일러(12); 및 상기 리보일러에서 배출되는 스팀 응축수를 재활용하는 응축수 재활용 장치를 포함한다. 도 1은 탈거탑에 세정장치(22)가 2단으로 설치되어 있고, 리보일러(12)가 탈거탑의 후단에 배치되며, 상기 리보일러(12)에 TVR 장치(21)가 설치된 실시예 1의 포집 시스템을 예시적으로 나타내고 있다. 이러한 경우, 리보일러(12)에 공급되는 스팀은 TVR 장치(21)를 통해 환류되며, 이를 통해 리보일러의 열 사용량을 저감할 수 있다.1 is a view showing an acid gas collection system according to a first embodiment of the present invention. The acid gas collection system of Example 1 includes: an absorption tower 9 for absorbing acid gas contained in exhaust gas into an absorbent to generate an acid gas saturated absorbent; A first heat exchanger 10 configured to heat up the acid gas saturated absorbent and the absorbent discharged from the stripping column by first heat exchange; A stripping column 11 for separating the acid gas saturated absorbent into an acid gas and an absorbent; A reboiler (12) for supplying thermal energy to the stripping column using steam; And a condensate recycling apparatus for recycling steam condensate discharged from the reboiler. 1 shows a washing apparatus 22 installed in two stages in a stripping column, a reboiler 12 is arranged in a rear end of the stripping column, and a TVR device 21 is installed in the reboiler 12. An example of a capture system is shown. In this case, the steam supplied to the reboiler 12 is refluxed through the TVR apparatus 21, thereby reducing the heat consumption of the reboiler.
도 2는 본 발명의 실시예 2에 따른 산성가스 포집 시스템을 나타내는 도면이다. 실시예 2의 산성가스 포집 시스템은 배가스 중에 함유된 산성가스를 흡수제에 흡수시켜 산성가스 포화 흡수제를 생성하는 흡수탑(9); 상기 산성가스 포화 흡수제와 탈거탑 하부에서 배출되는 흡수제를 제1 열교환하여 승온시키는 제1 열교환기(10); 상기 산성가스 포화 흡수제를 산성가스 및 흡수제로 분리하는 탈거탑(11); 상기 탈거탑에 스팀을 이용하여 열 에너지를 공급하는 리보일러(12); 및 상기 리보일러에서 배출되는 스팀 응축수를 재활용하는 응축수 재활용 장치를 포함한다. 도 2는 리보일러(12)가 탈거탑(11)과 제1 열교환기(10) 사이에 배치되고, 상기 리보일러(12)에 탈거탑 재가열 열교환기(18)가 설치된 실시예 2의 포집 시스템을 예시적으로 나타내고 있다. 이러한 경우, 상기 리보일러(12)에서 발생하는 스팀 응축수와 탈거탑 중부에서 배출되는 흡수제는 탈거탑 재가열 열교환기를 통해 제2 열교환되어 승온되며, 열교환에 의해 승온된 흡수제는 탈거탑의 상부로 환류될 수 있다. 이러한 경우, 리보일러의 열 사용량을 더욱 저감할 수 있으며, 산성가스 포화 흡수제가 탈거탑 이외의 장치에서 추가로 탈거될 수 있어 흡수제의 재생 효율이 더욱 향상될 수 있다. 2 is a view showing an acid gas collection system according to a second embodiment of the present invention. An acid gas collection system of Example 2 includes: an absorption tower 9 for absorbing acid gas contained in exhaust gas into an absorbent to generate an acid gas saturated absorbent; A first heat exchanger 10 configured to heat up the acid gas saturated absorbent and the absorbent discharged from the stripping column by first heat exchange; A stripping column 11 for separating the acid gas saturated absorbent into an acid gas and an absorbent; A reboiler (12) for supplying thermal energy to the stripping column using steam; And a condensate recycling apparatus for recycling steam condensate discharged from the reboiler. FIG. 2 shows a collection system of Embodiment 2 in which a reboiler 12 is disposed between a stripping column 11 and a first heat exchanger 10, and a stripping column reheating heat exchanger 18 is installed in the reboiler 12. Is shown by way of example. In this case, the steam condensate generated from the reboiler 12 and the absorbent discharged from the stripping column are heated and heated to the second heat exchanger through the stripping column reheating heat exchanger, and the absorbent heated by the heat exchanger is refluxed to the upper portion of the stripping column. Can be. In this case, the heat consumption of the reboiler can be further reduced, and the acid gas saturated absorbent can be further removed from the apparatus other than the stripping column, so that the regeneration efficiency of the absorbent can be further improved.
도 3은 본 발명의 실시예 3에 따른 산성가스 포집 시스템을 나타내는 도면이다. 도 3은 초음파 기기(Ultrasonic Horn)를 리보일러(12)와 탈거탑(11)의 사이에 추가로 설치한 것을 제외하고 실시예 2와 동일하게 실시한 실시예 3의 산성가스 포집 시스템을 나타낸다. 이러한 경우 제1 열교환기 및 리보일러에 의해 승온되어 일부 탈거된 산성가스 포화 흡수제에 추가의 탈거 효과를 부가할 수 있다.3 is a view showing an acid gas collection system according to a third embodiment of the present invention. FIG. 3 shows the acid gas collection system of Example 3 which was implemented in the same manner as in Example 2 except that an ultrasonic device (Ultrasonic Horn) was additionally installed between the reboiler 12 and the stripping column 11. In this case it is possible to add an additional stripping effect to the partially stripped acid gas saturated absorbent which is heated up by the first heat exchanger and the reboiler.
도 4는 본 발명의 실시예 4에 따른 산성가스 포집 시스템을 나타내는 도면이다. 도 4는 초음파 기기(Ultrasonic Horn)를 흡수탑(9)과 제1 열교환기(10)의 사이에 추가로 설치한 것을 제외하고 실시예 2와 동일하게 실시한 실시예 4의 산성가스 포집 시스템을 나타낸다. 이러한 경우, 초음파 기기에 의해 미리 탈거된 산성가스 포화 흡수제를 제1 열교환기, 리보일러 및 탈거탑에 의해 여러 번 탈거함으로써, 더욱 우수한 탈거 효과를 부가할 수 있다.4 is a view showing an acid gas collection system according to a fourth embodiment of the present invention. FIG. 4 shows the acid gas collection system of Example 4 which was carried out in the same manner as in Example 2 except that an ultrasonic device (Ultrasonic Horn) was further installed between the absorption tower 9 and the first heat exchanger 10. . In such a case, by removing the acid gas saturated absorbent previously removed by the ultrasonic device by the first heat exchanger, the reboiler and the stripping column several times, a more excellent stripping effect can be added.
본 발명의 다른 구현예는 전술한 일 구현예의 산성가스 포집 시스템을 이용한 산성가스 포집 방법에 관한 것이다. 이하, 본 발명의 산성가스 포집 방법에 대한 설명 중 생략된 부분은 앞서 언급한 산성가스 포집 시스템에 대한 설명으로 대신한다.Another embodiment of the present invention relates to an acid gas collection method using the acid gas collection system of the above-described embodiment. Hereinafter, the omitted part of the description of the acid gas collection method of the present invention is replaced by the description of the acid gas collection system mentioned above.
상기 산성가스 포집 방법은 흡수탑(9)에서 흡수제와 배가스를 접촉하여 산성가스를 포집하며, 이러한 과정을 통해 흡수제와 이산화탄소가 발열반응하여 산성가스 흡수액(산성가스 포화 흡수제)을 생성하는 것을 포함한다.The acid gas collecting method includes contacting the absorbent and the exhaust gas in the absorption tower 9 to collect the acid gas, and through this process, the absorbent and carbon dioxide exotherm to generate an acid gas absorbent liquid (acid gas saturated absorbent). .
상기 산성가스 포집 방법은 열교환기(10)를 이용하여 흡수탑(9)에서 생성된 산성가스 포화 흡수제를 탈거탑(11)의 하부에서 배출되는 린아민과 열교환하여, 승온시키는 것을 포함한다. 이하, 산성가스 포화 흡수제와 린아민의 열교환은 린-리치 열교환으로 지칭되는 경우가 있다.The acid gas collection method includes heat-exchanging the acid gas saturated absorbent generated in the absorption tower 9 with the lean amine discharged from the lower part of the stripping column 11 by using the heat exchanger 10 to raise the temperature. Hereinafter, heat exchange of the acidic gas saturated absorbent and lean amine may be referred to as lean-rich heat exchange.
상기 산성가스 포집 방법은 상기 산성가스 포화 흡수제를 탈거탑(11)으로 송출하여 탈거탑에서 공급되는 열에 의해 산성가스와 흡수제를 분리하는 것을 포함한다. The acid gas collection method includes sending the acid gas saturated absorbent to the stripping column 11 to separate the acid gas and the absorbent by heat supplied from the stripping column.
상기 산성가스 포집 방법은 리보일러(12)를 이용해 탈거탑(11)으로 스팀을 공급하여 열 에너지를 공급하는 것을 포함한다.The acid gas collection method includes supplying heat energy by supplying steam to the stripping column 11 using the reboiler 12.
일 구체예에서, 산성가스 포집방법은 리보일러(12)를 열교환기(10)와 탈거탑(11)의 사이에 배치하여 이산화탄소 포집 공정에 소비되는 재생에너지 사용량을 현저하게 저감할 수 있다. 이러한 산성가스 포집방법은 리보일러를 탈거탑의 후단에 생성하는 경우보다 리보일러 열사용량을 현저하게 저감하면서도 탈거 효율을 높일 수 있다. 또한, 이러한 산성가스 포집방법은 산성가스 포화 흡수제를 린-리치 열교환에 의해 1차 탈거한 후, 탈거탑 주입 이전 단계에서 리보일러를 통해 2차 탈거하고, 탈거탑을 통해 3차 탈거를 수행할 수 있다. 이러한 경우, 1차 내지 3차의 과정을 통해 전체 시스템의 탈거 효율을 더욱 향상시킬 뿐 아니라 탈거탑에 주입되기 전에 승온율을 더욱 향상시킬 수 있어 재생 효율이 더욱 향상될 수 있다. 또한, 탈거탑의 후단에는 후술하는 TVR 장치를 추가하여 열 사용량을 더욱 저감하거나, 탈거탑 재가열 열교환기를 이용하여 추가의 4차 탈거를 수행한다.In one embodiment, the acid gas collection method may be disposed between the reboiler 12 between the heat exchanger 10 and the stripping column 11 to significantly reduce the amount of renewable energy consumed in the carbon dioxide capture process. This acid gas collection method can increase the stripping efficiency while significantly reducing the reboiler heat consumption than when the reboiler is generated at the rear of the stripping column. In addition, the acid gas collection method is to remove the acid gas saturated absorbent first by lean-rich heat exchange, and then secondary stripping through the reboiler in the step before injection of the stripping column, and to perform the third stripping through the stripping tower. Can be. In this case, the first to third processes may further improve the stripping efficiency of the entire system as well as further increase the heating rate before being injected into the stripping column, thereby further improving the regeneration efficiency. In addition, at the rear end of the stripping column, a TVR device to be described later is added to further reduce heat consumption, or additional quaternary stripping is performed using a stripping column reheat heat exchanger.
상기 산성가스 포집 시스템은 상기 리보일러(12)에서 산성가스 흡수제를 재가열한 후 발생하는 스팀 응축수를 플래쉬 드럼(Flash drum)을 통해 기체와 액체로 분리한 후, 분리된 기체를 TVR(Thermal Vapor Recompression)로 가압하여 리보일러 스팀으로 재공급하는 방법을 더 포함할 수 있다.The acid gas collection system separates steam condensate generated after reheating the acid gas absorbent in the reboiler 12 into a gas and a liquid through a flash drum, and then separates the separated gas into a TVR (Thermal Vapor Recompression). The method may further include repressurizing and supplying the reboiler steam.
상기 산성가스 포집방법은 리보일러에 연결된 탈거탑 재가열 열교환기를 이용하여, 상기 리보일러에서 발생하는 스팀 응축수와 탈거탑 중부에서 배출되는 흡수제를 열교환하여 승온시키고, 열교환에 의해 승온된 흡수제를 탈거탑의 상부로 환류시키는 것을 더 포함할 수 있다.The acid gas collection method uses a stripping tower reheating heat exchanger connected to a reboiler, heats up the heat condensate generated in the reboiler and the absorbent discharged from the stripping column, and heats up the absorbent heated by the heat exchanger. It may further comprise reflux to the top.
상기 산성가스 포집방법은 상기 산성가스 포집 시스템은 상기 산성가스 포화 흡수제를 탈거탑 주입 이전에 초음파 기기(Ultrasonic Horn)를 이용하여 20KHz ~ 1MHz의 초음파 대역에서 산성가스를 분리하여 흡수제를 재생시키는 것을 더 포함할 수 있다. 이러한 초음파기기는 캐비테이션(cavitation) 현상 및 입자가속도 효과를 이용하여 산성가스 포화 흡수제를 탈거탑 주입 이전에 미리 탈거시킬 수 있다. The acid gas collection method is further characterized in that the acid gas collection system is to regenerate the absorbent by separating the acid gas in the ultrasonic band of 20KHz ~ 1MHz using an ultrasonic device (Ultrasonic Horn) prior to injection of the saturated acid absorbent gas stripping tower It may include. The ultrasonic apparatus may remove the acid gas saturated absorbent before injection of the stripping column by using a cavitation phenomenon and particle acceleration effects.
실시예Example
이하에서는, 실시예 및 비교예를 통하여 본 발명을 상세히 설명하기로 한다. 그러나 이들은 본 발명을 상세히 설명하기 위한 것으로 제공되는 것일 뿐 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. However, these are provided only to explain the present invention in detail, but the scope of the present invention is not limited thereto.
실시예 1Example 1
30wt%의 MEA(Monoethanolamine)를 흡수제로 이용하여 15 vol%의 이산화탄소를 포함하고 있는 40℃로 조절된 연소배가스를 2.0m3유량으로 흡수탑 하부에 투입하였다. 흡수제의 순환량은 100ml/min, 흡수탑에 투입되는 흡수제의 온도는 40℃로 하였다. 실시예 1의 산성가스 포집 시스템은 흡수제와 이산화탄소의 발열반응에 의해 승온된 흡수제를 일시적으로 저장하여 기-액 분리하는 저장조를 포함하는 흡수탑(9), 상기 흡수탑에서 배출된 산성가스 포화 흡수제를 탈거탑 하부에서 배출되는 고온의 흡수제(린아민)와 제1 열교환한 후 탈거탑 상단(16)으로 공급하는 제1 열교환기(10), 탈거탑(11), 상기 탈거탑(11)의 후단에 연결된 리보일러(12) 및 상기 리보일러와 연결된 TVR 장치(21)를 포함하도록 배치하였다. 또한, 상기 흡수탑은 세정단을 2단으로 포함하도록 설치하였고, 상기 리보일러에서 나오는 스팀 응축수를 플래쉬 드럼(20)을 통해 기체와 액체를 분리하여 기체만을 Thermal Vapor Recompression(21)로 가압하여 리보일러 스팀으로 재공급하였다. 이러한 실시예 1의 산성가스 포집 시스템을 도 1에 표시하였다.Using 30 wt% of monoethanolamine (MEA) as an absorbent, a combustion flue gas adjusted to 40 ° C. containing 15 vol% of carbon dioxide was introduced at the bottom of the absorption tower at a flow rate of 2.0 m 3 . The circulation amount of the absorbent was 100 ml / min, and the temperature of the absorbent introduced into the absorption tower was 40 ° C. The acid gas collection system of Example 1 includes an absorption tower (9) including a storage tank for temporarily storing the absorbent heated by the exothermic reaction of the absorbent and carbon dioxide and separating the gas-liquid, and the acid gas saturated absorbent discharged from the absorption tower. Of the first heat exchanger (10), stripping column (11), stripping column (11) of supplying to the upper end of the stripping column after the first heat exchange with a high temperature absorbent (lean amine) discharged from the stripping column It is arranged to include a reboiler 12 connected to the rear end and a TVR device 21 connected to the reboiler. In addition, the absorption tower was installed to include a washing stage in two stages, the steam condensed water from the reboiler to separate the gas and liquid through the flash drum 20 to pressurize only the gas to the Thermal Vapor Recompression (21). Resupply with boiler steam. The acidic gas collection system of this Example 1 is shown in FIG.
또한, 흡수탑으로 들어오기 전과 흡수탑을 거친 배가스의 이산화탄소 농도를 가스 분석기를 이용하여 측정하여 이산화탄소 제거율이 90%일 때의 이산화탄소 포집량(ton)당 리보일러 열사용량을 계산하여 그 결과를 표 1에 나타내었다. In addition, the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
실시예 2Example 2
30wt%의 MEA(Monoethanolamine)를 흡수제로 이용하여 15 vol%의 이산화탄소를 포함하고 있는 40℃로 조절된 연소배가스를 2.0m3유량으로 흡수탑 하부에 투입하였다. 흡수제의 순환량은 100ml/min, 흡수탑에 투입되는 흡수제의 온도는 40℃로 하였다. 실시예 2의 산성가스 포집 시스템은 흡수제와 이산화탄소의 발열반응에 의해 승온된 흡수제를 일시적으로 저장하여 기-액 분리하는 저장조를 포함하는 흡수탑(9), 상기 흡수탑에서 배출된 산성가스 포화 흡수제를 탈거탑 하부에서 배출되는 고온의 흡수제(린아민)와 제1 열교환한 후 탈거탑 상단(16)으로 공급하는 제1 열교환기(10), 탈거탑(11), 상기 탈거탑(11)과 제1 열교환기(10) 사이에 배치된 리보일러(12) 및 상기 리보일러 및 탈거탑과 연결된 탈거탑 재가열 열교환기(18)를 포함하도록 배치하였다. 이를 이용하여, 흡수탑을 나온 흡수액을 탈거탑에서 나온 고온의 흡수액으로 제1 열교환하고 리보일러와 탈거탑 순으로 흡수제를 통과시켜 탈거하며, 리보일러에서 배출된 스팀 응축수를 이용하여 제2 열교환 한 후 탈거탑에 환류하였다. 이러한 실시예 2의 산성가스 포집 시스템을 도 2에 표시하였다.Using 30 wt% of monoethanolamine (MEA) as an absorbent, a combustion flue gas adjusted to 40 ° C. containing 15 vol% of carbon dioxide was introduced at the bottom of the absorption tower at a flow rate of 2.0 m 3 . The circulation amount of the absorbent was 100 ml / min, and the temperature of the absorbent introduced into the absorption tower was 40 ° C. The acid gas collection system of Example 2 includes an absorption tower (9) including a storage tank for temporarily storing the absorbent and the absorbent heated by the exothermic reaction of carbon dioxide and separating the gas-liquid, and the acid gas saturated absorbent discharged from the absorption tower. The first heat exchanger 10, the stripping column 11, the stripping column 11 and the first heat exchanger (lean amine) discharged from the stripping tower and the first heat exchange after supplying to the stripping tower top 16 And a reboiler 12 disposed between the first heat exchanger 10 and a stripping column reheating heat exchanger 18 connected to the reboiler and the stripping column. By using this, the absorbent liquid from the absorption tower is removed by passing the absorbent in the order of the first heat exchanger with the high temperature absorbent liquid from the stripping tower, and then passing through the absorbent in the order of the reboiler and the stripping column. It was then refluxed to the stripping column. The acidic gas collection system of this Example 2 is shown in FIG.
또한, 흡수탑으로 들어오기 전과 흡수탑을 거친 배가스의 이산화탄소 농도를 가스 분석기를 이용하여 측정하여 이산화탄소 제거율이 90%일 때의 이산화탄소 포집량(ton)당 리보일러 열사용량을 계산하여 그 결과를 표 1에 나타내었다. In addition, the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
실시예 3Example 3
상기 실시예 2에서 리보일러(12)와 탈거탑(11) 사이에 초음파 기기(19)를 추가하여 실시예 3을 배치하였다. 흡수탑을 나온 흡수액을 탈거탑에서 나온 고온의 흡수액으로 제1 열교환하고, 초음파 기기(19)를 이용하여 제1 열교환에 이어 추가 재생한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 실시하였다. 이러한 실시예 3의 산성가스 포집 시스템을 도 3에 표시하였다.In Example 2, Example 3 was arranged by adding an ultrasonic device 19 between the reboiler 12 and the stripping column 11. The absorption liquid exiting the absorption tower was subjected to the same method as in Example 2 except that the first heat exchange was performed with the high temperature absorption liquid from the stripping column, and further regenerated after the first heat exchange using the ultrasonic device 19. The acidic gas collection system of this Example 3 is shown in FIG.
또한, 흡수탑으로 들어오기 전과 흡수탑을 거친 배가스의 이산화탄소 농도를 가스 분석기를 이용하여 측정하여 이산화탄소 제거율이 90%일 때의 이산화탄소 포집량(ton)당 리보일러 열사용량을 계산하여 그 결과를 표 1에 나타내었다. In addition, the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
실시예 4Example 4
상기 실시예 2에서 초음파 기기(19)를 흡수탑(9)과 제1 열교환기(10) 사이에 추가하여 실시예 4를 배치하였다. 흡수탑을 나온 흡수액을 초음파 기기로 미리 탈거한 후 제1 열교환한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 실시하였다. 이러한 실시예 4의 산성가스 포집 시스템을 도 4에 표시하였다.In Example 2, Example 4 was disposed by adding the ultrasonic device 19 between the absorption tower 9 and the first heat exchanger 10. The absorption liquid exiting the absorption tower was removed in advance by an ultrasonic device and then carried out in the same manner as in Example 2 except for the first heat exchange. An acidic gas collection system of this Example 4 is shown in FIG.
또한, 흡수탑으로 들어오기 전과 흡수탑을 거친 배가스의 이산화탄소 농도를 가스 분석기를 이용하여 측정하여 이산화탄소 제거율이 90%일 때의 이산화탄소 포집량(ton)당 리보일러 열사용량을 계산하여 그 결과를 표 1에 나타내었다. In addition, the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
비교예 1Comparative Example 1
30wt%의 MEA(Monoethanolamine)를 흡수제로 이용하여 15 vol%의 이산화탄소를 포함하고 있는 40℃로 조절된 연소배가스를 2.0m3 유량으로 흡수탑 하부에 투입하였다. 흡수제의 순환량은 100ml/min, 흡수탑에 투입되는 흡수제의 온도는 40℃로 하였다. 비교예 1은 흡수탑(9), 열교환 장치(10), 탈거탑(11) 및 리보일러(12)의 순서로 배치하여 산성가스 흡수제를 포집하였다. 이러한 비교예 1의 산성가스 포집 시스템을 도 5에 표시하였다. Using 30 wt% of monoethanolamine (MEA) as an absorbent, a combustion flue gas adjusted to 40 ° C. containing 15 vol% of carbon dioxide was introduced at the bottom of the absorption tower at a flow rate of 2.0 m 3 . The circulation amount of the absorbent was 100 ml / min, and the temperature of the absorbent introduced into the absorption tower was 40 ° C. In Comparative Example 1, an acid gas absorbent was collected by arranging the absorption tower 9, the heat exchanger 10, the stripping column 11, and the reboiler 12 in this order. The acidic gas collection system of Comparative Example 1 is shown in FIG. 5.
또한, 흡수탑으로 들어오기 전과 흡수탑을 거친 배가스의 이산화탄소 농도를 가스 분석기를 이용하여 측정하여 이산화탄소 제거율이 90%일 때의 이산화탄소 포집량(ton)당 리보일러 열사용량을 계산하여 그 결과를 표 1에 나타내었다. In addition, the carbon dioxide concentration of the flue-gas before entering the absorption tower and passing through the absorption tower was measured using a gas analyzer, and the reboiler heat consumption per ton of carbon dioxide (ton) when the carbon dioxide removal rate was 90% was calculated. 1 is shown.
공정순서Process order 공정도Process chart 냉각수 순환량(cc/min)Coolant circulation rate (cc / min) 리보일러 열 사용량Reboiler Heat Usage 흡수제Absorbent
실시예 1Example 1 1)린-리치(제1)열교환2)탈거탑3)리보일러4)TVR1) Lean-Rich (No. 1) Heat Exchange 2) Extraction Tower 3) Reboiler 4) TVR 도 11 500500 3.463.46 MEAMEA
실시예 2Example 2 1)린-리치(제1)열교환2)리보일러3)탈거탑4)재가열 열교환1) Lean-Rich (first) heat exchange 2) reboiler 3) stripping column 4) reheat heat exchange 도 22 500500 3.083.08 MEAMEA
실시예 3Example 3 1)린-리치(제1)열교환2)리보일러3)탈거탑4)초음파 재생5)재가열 열교환1) Lean-Rich (No. 1) heat exchange 2) Reboiler 3) Extraction tower 4) Ultrasonic regeneration 5) Reheat heat exchange 도 33 500500 2.852.85 MEAMEA
실시예 4Example 4 1)린-리치(제1)열교환2)초음파 재생3)리보일러4)탈거탑5)재가열 열교환1) Lean-Rich (First) Heat Exchange 2) Ultrasonic Regeneration 3) Reboiler 4) Extraction Tower 5) Reheat Heat Exchanger 도 44 500500 2.902.90 MEAMEA
비교예 1Comparative Example 1 1)린-리치(제1)열교환2)탈거탑3)리보일러1) Lean-Rich (No. 1) heat exchange 2) Extraction tower 3) Reboiler 도 55 500500 3.853.85 MEA, 상용흡수제MEA, Commercial Absorbent
상기 표 1을 통해, 본 발명의 실시예 1 내지 4는 동일한 이산화탄소의 제거효율(90%)에서 동일한 이산화탄소를 포집하는데 사용되는 리보일러의 열 사용량이 낮음을 확인할 수 있었다. 이와 같은 결과를 통해 동일한 이산화탄소 제거율을 기준으로 본 발명에서 개발한 흡수 및 탈거공정을 적용할 경우 리보일러에 사용되는 스팀 사용량을 획기적으로 감소시킬 수 있음을 알 수 있었다. 반면, 응축수 재활용 장치를 포함하지 않는 비교예 1은 리보일러 열 사용량이 실시예 1 내지 4에 비하여 높아 공정비용이 많이 소모되는 것을 알 수 있었다.Through Table 1, Examples 1 to 4 of the present invention was confirmed that the heat consumption of the reboiler used to capture the same carbon dioxide in the removal efficiency (90%) of the same carbon dioxide. These results indicate that the application of the absorption and stripping process developed in the present invention on the basis of the same carbon dioxide removal rate can significantly reduce the amount of steam used in the reboiler. On the other hand, in Comparative Example 1, which does not include a condensate recycling apparatus, it was found that the reboiler heat consumption was higher than that of Examples 1 to 4, which consumed a lot of process costs.
또한, 본 발명의 실시예 2 내지 4는 탈거탑 외의 장치들에서 추가의 승온 및 이에 의한 흡수제 재생을 촉진할 수 있었으며, 리보일러를 제1 열교환 장치 및 탈거탑의 사이에 배치하여 탈거 효율이 더욱 우수하고 리보일러 열 사용량이 더욱 낮음을 확인할 수 있었다. In addition, Examples 2 to 4 of the present invention could promote additional temperature increase and thereby absorbent regeneration in devices other than the stripping column, and the reboiler is disposed between the first heat exchanger and the stripping column to further remove stripping efficiency. Excellent and lower reboiler heat usage.
이에 따라, 실시예 1 내지 4의 산성가스 포집 시스템은 탈거탑의 탈거탑 높이를 낮게 설비하는 경우에도 우수한 탈거효율을 구현함은 물론 초기 투자비를 감소시킬 수 있다.Accordingly, the acid gas collection system of Examples 1 to 4 can realize an excellent stripping efficiency even when the stripping tower height of the stripping tower is low, and can reduce the initial investment cost.
이상에서 설명한 내용은 본 발명에 의한 탈거공정 개선을 통한 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법을 실시하기 위한 예시들에 불과한 것으로서, 본 발명은 상기 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.The contents described above are merely examples for implementing an acid gas collecting system and an acid gas collecting method using the same by improving the stripping process according to the present invention, and the present invention is not limited to the above embodiment, and the following claims As claimed in the scope of the present invention, those skilled in the art to which the present invention pertains will have the technical spirit of the present invention to the extent that various modifications can be made.
(부호의 설명)(Explanation of the sign)
1: 배가스 2: 재생된 흡수제(린아민) 1: flue gas 2: regenerated absorbent (linamine)
3: 세정단 4: 이산화탄소가 제거된 배가스3: cleaning stage 4: exhaust gas from which carbon dioxide has been removed
5: 이산화탄소가 포화된 흡수제(리치아민) 5: Carbon dioxide-Saturated Absorbent (Richamine)
6: 이산화탄소와 수증기 혼합가스 7: 이산화탄소6: CO2 and water vapor mixed gas 7: CO2
8: 응축수 9: 흡수탑 10: 린-리치아민 열교환기 8: Condensate 9: Absorption Tower 10: Lean-Richamine Heat Exchanger
11: 탈거탑 12: 리보일러 13: 응축기 11: stripping tower 12: reboiler 13: condenser
14: 린아민 냉각기 15: 기액분리장치 16: 탈거탑 상부 14: rinamine cooler 15: gas-liquid separator 16: upper stripping tower
17: 스팀 응축수 18: 탈거탑 재가열 열교환기17: steam condensate 18: stripping tower reheat heat exchanger
19: 초음파 기기(흡수제 2차 재생용) 19: Ultrasonic apparatus (for absorbent secondary regeneration)
20: 응축수 플래쉬 드럼 20: condensate flash drum
21: TVR 장치(Thermal Vapor Recompression)21: TVR device (Thermal Vapor Recompression)
22: 2단 세정단(Washing zone)22: two-stage washing zone

Claims (12)

  1. 배가스 중에 함유된 산성가스를 흡수제에 흡수시켜 산성가스 포화 흡수제를 생성하는 흡수탑;An absorption tower for absorbing the acid gas contained in the exhaust gas into the absorbent to generate an acid gas saturated absorbent;
    상기 산성가스 포화 흡수제와 탈거탑 하부에서 배출되는 흡수제를 제1 열교환하여 승온시키는 제1 열교환기;A first heat exchanger configured to heat up the acid gas saturating absorbent and the absorbent discharged from the stripping tower by first heat exchange;
    상기 산성가스 포화 흡수제를 산성가스 및 흡수제로 분리하는 탈거탑;A stripping column for separating the acid gas saturated absorbent into an acid gas and an absorbent;
    상기 탈거탑에 스팀을 이용하여 열 에너지를 공급하는 리보일러; 및A reboiler for supplying thermal energy to the stripping column using steam; And
    상기 리보일러에서 배출되는 스팀 응축수를 재활용하는 응축수 재활용 장치; 를 포함하는 산성가스 포집 시스템.A condensate recycling apparatus for recycling steam condensate discharged from the reboiler; Acid gas collection system comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 산성가스 포화 흡수제는 이산화탄소가 포화된 리치아민이고, 상기 탈거탑 하부에서 배출되는 흡수제는 린아민인 산성가스 포집 시스템. The acid gas saturated absorbent is a carbon dioxide saturated rich amine, the absorber discharged from the stripping column is a lean amine acid gas collection system.
  3. 제1항에 있어서,The method of claim 1,
    상기 산성가스 포화 흡수제는 아민계, 아미노산염 및 무기염류 용액 중 하나 이상을 포함하는 산성가스 포집 시스템.The acid gas saturated absorbent comprises an acid gas capture system comprising at least one of amine-based, amino acid salt and inorganic salt solution.
  4. 제1항에 있어서,The method of claim 1,
    상기 응축수 재활용 장치는 TVR(Thermal Vapor Recompression) 장치 또는 탈거탑 재가열 열교환기 중 하나 이상을 포함하는 산성가스 포집 시스템.The condensate recycling apparatus includes at least one of a Thermal Vapor Recompression (TVR) apparatus or a stripping tower reheat heat exchanger.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 TVR(Thermal Vapor Recompression) 장치는 리보일러에서 발생하는 스팀 응축수를 기체와 액체로 분리하는 플래쉬 드럼(Flash drum)을 포함하고, 상기 플래쉬 드럼을 통해 분리된 기체를 가압하여 리보일러 스팀으로 재공급하는 것인 산성가스 포집 시스템.The TVR (Thermal Vapor Recompression) device includes a flash drum for separating steam condensate generated from the reboiler into a gas and a liquid, and pressurizes the separated gas through the flash drum to resupply the reboiler steam. Acid gas collection system.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 탈거탑 재가열 열교환기는 상기 리보일러에서 발생하는 스팀 응축수와 탈거탑 중부에서 배출되는 흡수제를 제2 열교환하여 승온시키고, 제2 열교환에 의해 승온된 흡수제를 탈거탑의 상부로 환류시키는 것인 산성가스 포집 시스템.The stripping tower reheating heat exchanger is an acidic gas to heat up the condensate generated in the reboiler and the absorbent discharged from the stripping column to the second heat exchange, and to reflux the absorber heated by the second heat exchanger to the upper portion of the stripping tower. Collection system.
  7. 제1항에 있어서, The method of claim 1,
    상기 흡수탑은 세정단(washing zone)을 2단 이상으로 포함하는 것인 산성가스 포집 시스템.The absorption tower is an acid gas collection system comprising a washing zone (washing zone) in two or more stages.
  8. 제1항에 있어서, The method of claim 1,
    상기 산성가스 포집 시스템은 상기 산성가스 포화 흡수제를 탈거탑 주입 이전에 약 20KHz 내지 약 1MHz의 초음파 대역에서 산성가스를 분리하여 흡수제를 재생시키는 초음파 기기(Ultrasonic Horn)를 더 포함하는 산성가스 포집 시스템. The acid gas collection system further comprises an ultrasonic device (Ultrasonic Horn) for separating the acid gas in the ultrasonic band of about 20KHz to about 1MHz to regenerate the absorbent prior to the stripping column injection of the acid gas saturated absorbent.
  9. 제1항에 있어서,The method of claim 1,
    상기 리보일러는 상기 탈거탑과 상기 열교환기 사이에 배치되고, 상기 제1 열교환기에서 승온된 산성가스 포화 흡수제를 공급받아 외부의 스팀을 이용하여 재가열하고, 재가열시 발생하는 산성가스를 포함하는 흡수제의 증기는 탈거탑의 상부영역에 공급하며, 재가열시 발생하는 액상 흡수제는 탈거탑의 중부영역에 공급하는 산성가스 포집 시스템.The reboiler is disposed between the stripping column and the heat exchanger, and receives an acidic gas saturated absorber heated in the first heat exchanger to reheat using external steam, and includes an acidic gas generated during reheating. The steam is supplied to the upper region of the stripping column, and the liquid absorbent generated during reheating is supplied to the middle region of the stripping column.
  10. 제1항에 있어서,The method of claim 1,
    상기 산성가스 포화 흡수제는 상기 탈거탑 하부에서 배출되는 흡수제와의 온도차가 약 10℃ 이하인 산성가스 포집 시스템.Wherein the acid gas saturated absorbent has a temperature difference of about 10 ° C. or less from an absorbent discharged from the bottom of the stripping column.
  11. 제1항에 있어서,The method of claim 1,
    상기 산성가스는 이산화탄소, 황화수소, 이산화황, 이산화질소 및 황화카르보닐 중 하나 이상을 포함하는 산성가스 포집 시스템.Wherein the acid gas comprises at least one of carbon dioxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide and carbonyl sulfide.
  12. 제1항 내지 제11항 중 어느 한항에 따른 산성가스 포집 시스템을 이용한 산성가스 포집방법.An acid gas collection method using an acid gas collection system according to any one of claims 1 to 11.
PCT/KR2016/006713 2015-09-04 2016-06-23 Acid gas collection system and acid gas collection method using same WO2017039131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680032377.2A CN107743416B (en) 2015-09-04 2016-06-23 Acid gas collecting system and acid gas collecting method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150125848A KR101751723B1 (en) 2015-09-04 2015-09-04 Acid gas scrubbing system and method for acid gas scrubbing using thereof
KR10-2015-0125848 2015-09-04

Publications (1)

Publication Number Publication Date
WO2017039131A1 true WO2017039131A1 (en) 2017-03-09

Family

ID=58187883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006713 WO2017039131A1 (en) 2015-09-04 2016-06-23 Acid gas collection system and acid gas collection method using same

Country Status (3)

Country Link
KR (1) KR101751723B1 (en)
CN (1) CN107743416B (en)
WO (1) WO2017039131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3887021A4 (en) * 2018-11-30 2022-09-21 Carbonreuse Finland OY System and method for recovery of carbon dioxide
WO2023094670A1 (en) 2021-11-29 2023-06-01 Totalenergies Onetech Regeneration of solvents used in carbon dioxide capture process

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180330A (en) * 2019-06-25 2019-08-30 中国石油大学(华东) For removing the New Absorbent and its preparation method and application of sulfide in exhaust gas
KR102234534B1 (en) 2019-09-06 2021-03-31 삼성중공업 주식회사 Exhaust pipe and vessel having the same
KR20210109744A (en) 2020-02-28 2021-09-07 삼성중공업 주식회사 Apparatus for purifying exhaust gas
CN114517846B (en) * 2020-11-20 2024-05-28 中国石油化工股份有限公司 Water seal system for acid gas and torch combustion system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100333A (en) * 1993-10-06 1995-04-18 Kansai Electric Power Co Inc:The Carbon dioxide removing method in combustion waste gas
KR20130139109A (en) * 2012-06-12 2013-12-20 한국전력기술 주식회사 Co2 absorption device using heat of reboiler steam condensate
KR20140014657A (en) * 2012-07-25 2014-02-06 서강대학교산학협력단 System for capturing gas using absorbent or adsorbent and method thereof
KR20140042997A (en) * 2012-09-28 2014-04-08 한국전력공사 Carbon dioxide capture process using steam condensate vapor recycle and system using the same
KR20150024190A (en) * 2013-08-26 2015-03-06 한국전력공사 System for solvent scrubbing acid gas by improvement of stripper process flow and method for solvent scrubbing acid gas using thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100333A (en) * 1993-10-06 1995-04-18 Kansai Electric Power Co Inc:The Carbon dioxide removing method in combustion waste gas
KR20130139109A (en) * 2012-06-12 2013-12-20 한국전력기술 주식회사 Co2 absorption device using heat of reboiler steam condensate
KR20140014657A (en) * 2012-07-25 2014-02-06 서강대학교산학협력단 System for capturing gas using absorbent or adsorbent and method thereof
KR20140042997A (en) * 2012-09-28 2014-04-08 한국전력공사 Carbon dioxide capture process using steam condensate vapor recycle and system using the same
KR20150024190A (en) * 2013-08-26 2015-03-06 한국전력공사 System for solvent scrubbing acid gas by improvement of stripper process flow and method for solvent scrubbing acid gas using thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3887021A4 (en) * 2018-11-30 2022-09-21 Carbonreuse Finland OY System and method for recovery of carbon dioxide
WO2023094670A1 (en) 2021-11-29 2023-06-01 Totalenergies Onetech Regeneration of solvents used in carbon dioxide capture process

Also Published As

Publication number Publication date
CN107743416B (en) 2021-01-05
KR20170029086A (en) 2017-03-15
CN107743416A (en) 2018-02-27
KR101751723B1 (en) 2017-07-03

Similar Documents

Publication Publication Date Title
WO2017039131A1 (en) Acid gas collection system and acid gas collection method using same
RU2230599C2 (en) Method of extraction of aminicompound from accompanying decarburized exhaust gas in a column of absorption
US8080089B1 (en) Method and apparatus for efficient gas treating system
JP2882950B2 (en) Method for removing carbon dioxide in flue gas
WO2011002198A2 (en) System and method for absorbing and separating acid gas
JP2001025627A (en) Recovery of carbon dioxide using composite amine blend
US20120219482A1 (en) Systems and processes for removing volatile degradation products produced in gas purification
KR20110085983A (en) Reabsorber for ammonia stripper offgas
JP5597260B2 (en) Carbon dioxide removal device in combustion exhaust gas
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
WO2014196757A1 (en) Carbon dioxide separation device having improved sensible heat recovery efficiency using pressure reduction and phase separation
WO2015080324A1 (en) Energy-saving acidic gas capture system and method using separated water
JP2007284273A (en) Co2 recovery apparatus and co2 recovery method
KR101199473B1 (en) Apparatus for separating and recovering acid gas
US20130192470A1 (en) Co2 recovery system
KR20140042997A (en) Carbon dioxide capture process using steam condensate vapor recycle and system using the same
KR20140042393A (en) Apparatus for treating acidic gas and methof thereof
US8961665B2 (en) Exhaust gas treatment system
WO2015133666A1 (en) Low energy-type acid gas capture system and method using recirculation of absorbent
KR20180023373A (en) System for collecting acid gas including acidic catalyst and method for collecting the same
JP5737916B2 (en) CO2 recovery system
KR102091882B1 (en) System for solvent scrubbing acid gas by improvement of stripper process flow and method for solvent scrubbing acid gas using thereof
WO2011049281A1 (en) Carbon dioxide isolating device and method
WO2021117912A1 (en) Distillation regeneration method of amine-based carbon dioxide absorbent using metal oxide catalyst
JPH05184866A (en) Equipment for removing carbon dioxide in combustion exhaust gas and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842097

Country of ref document: EP

Kind code of ref document: A1