WO2017038802A1 - Multi-layer coating - Google Patents

Multi-layer coating Download PDF

Info

Publication number
WO2017038802A1
WO2017038802A1 PCT/JP2016/075288 JP2016075288W WO2017038802A1 WO 2017038802 A1 WO2017038802 A1 WO 2017038802A1 JP 2016075288 W JP2016075288 W JP 2016075288W WO 2017038802 A1 WO2017038802 A1 WO 2017038802A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
coating composition
coating
multilayer coating
layer
Prior art date
Application number
PCT/JP2016/075288
Other languages
French (fr)
Japanese (ja)
Inventor
匡弥 星野
厚志 金城
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Publication of WO2017038802A1 publication Critical patent/WO2017038802A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B13/12Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a multilayer coating film formed on the surface of a concrete substrate.
  • a primer layer made of an epoxy resin, a resin layer made of a visible light curable vinyl ester resin, and a concrete reinforcing layer made of a reinforcing net and a reinforcing sheet are concreted.
  • a technique of forming on the surface of a structure is known (for example, see Patent Document 1 described later).
  • Patent Document 1 has sufficient transparency by setting the total light transmittance of the resin layer to at least 30% or more, and further making the refractive index of the resin layer equal to the glass cloth used as the primer layer and the reinforcing sheet. To ensure. However, since the concrete surface cannot be prevented from becoming wet when the primer layer is applied, the visibility of the concrete surface has not been sufficient.
  • Patent Document 2 since the resin waterproofing material of the overcoat layer does not penetrate directly into the concrete surface, it depends on the difference in the wet color and the penetration rate of the material due to the penetration of the resin prevention material of the overcoat layer. Color unevenness is prevented. However, it is impossible to prevent the concrete surface from becoming wet when applying the primer layer. In addition, the prevention of the wet color in Patent Document 2 is intended to maintain the design, and the visibility when the visual inspection work for the maintenance of the concrete structure is performed is not sufficiently ensured.
  • the multilayer coating film in which the concrete surface does not become a wet color when the coating film is formed has been sufficiently studied. There is no current situation.
  • the present invention has been made in view of the above, and is a multilayer coating film for covering the surface of a concrete base material, which has high transparency and does not turn the concrete surface into a wet color when applied. The purpose is to provide.
  • the present invention is a transparent multi-layer coating film formed on the surface of a concrete substrate, and includes an undercoat containing at least one selected from the group consisting of acrylic resins, urethane resins, urea resins, and modified products of these resins Before forming the multilayer coating film, comprising: an undercoat layer formed from the coating composition; an intermediate coating layer formed from the intermediate coating composition; and an overcoating layer formed from the top coating composition.
  • a multilayer coating in which the difference between the L value (brightness) in the L * a * b * color system on the concrete substrate surface and the L value on the multilayer coating surface is ⁇ 2.0 to 4.0 Relates to the membrane.
  • the film thickness of the multilayer coating film is preferably 300 ⁇ m to 1,500 ⁇ m.
  • the top coating composition preferably contains an epoxy resin (a1) having no aromatic ring, a modified aliphatic amine compound (b1), and flat inorganic particles (c1).
  • the top coating composition preferably further includes a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and a silane coupling agent (e1).
  • the inorganic particles (c1) are preferably made of at least one of mica and glass flakes, and the average aspect ratio of the inorganic particles (c) is preferably 20 to 1,000.
  • the intermediate coating composition preferably contains an epoxy resin (a2) having no aromatic ring and a modified aliphatic amine compound (b2).
  • a transparent multilayer coating film that covers the surface of a concrete base material, has weather resistance and high transparency, and does not turn the concrete surface wet by application.
  • the multilayer coating film according to this embodiment is a transparent multilayer corrosion-resistant multilayer coating film formed on the surface of a concrete substrate.
  • the concrete base material that is the object to be coated may be a concrete structure. Concrete structures include bridges, tunnels, elevated roads and buildings.
  • the multilayer coating film is formed by sequentially arranging an undercoat layer, an intermediate coat layer, and an overcoat layer. Specifically, after the base coating composition is applied to the concrete surface and cured, the intermediate coating composition is further applied and cured, and then the top coating composition is applied and cured to form a multilayer coating film.
  • the multilayer coating film according to the present embodiment formed an L value (brightness) in the L * a * b * color system on the surface of the concrete substrate before the multilayer coating film formation, and the multilayer coating film.
  • the difference from the L value on the surface of the subsequent multilayer coating film is ⁇ 2.0 to 4.0.
  • the undercoat coating composition according to the present embodiment includes at least one of acrylic resin, urethane resin, urea resin, and modified compositions of these resins. Moreover, it is preferable that an epoxy resin is not contained in a primer coating composition. Since the epoxy resin is not included, the base material does not become a wet color even if an undercoat layer is formed.
  • the acrylic resin contained in the undercoat coating composition in the present embodiment is a copolymer of acrylic monomers or a copolymer of acrylic monomers and other ethylenically unsaturated monomers.
  • acrylic monomers include acrylic acid or methacrylic acid methyl, ethyl, propyl, n-butyl, i-butyl, t-butyl, 2-ethylhexyl, lauryl, phenyl, benzyl, 2-hydroxyethyl, 2-hydroxy
  • esterified products such as propyl and 4-hydroxybutyl; ring-opening adducts of caprolactone of acrylic acid or 2-hydroxyethyl methacrylate.
  • the acrylic resin in the present embodiment may be an emulsion polymerized acrylic emulsion resin or an aqueous resin such as an aqueous acrylic resin.
  • the acrylic emulsion resin include an acrylic emulsion, an acrylic styrene emulsion, and a vinyl acetate emulsion.
  • aqueous acrylic resin examples include a one-component aqueous resin and a two-component curable aqueous acrylic urethane resin composed of an aqueous acrylic polyol and a water-dispersible polyisocyanate.
  • the urethane resin contained in the undercoat coating composition in the present embodiment is a resin having a urethane bond obtained by reaction of various polyol components such as acrylic polyol, polyester polyol, polyether polyol, polycarbonate polyol and the like with an isocyanate compound.
  • various polyol components such as acrylic polyol, polyester polyol, polyether polyol, polycarbonate polyol and the like with an isocyanate compound.
  • the isocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and mixtures thereof, diphenylmethane-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate, and mixtures thereof.
  • the urea resin contained in the primer coating composition in this embodiment is a resin having a urea group (—NH ⁇ CO ⁇ NH—) in the molecule, obtained by a reaction between an amine compound and an isocyanate compound.
  • the isocyanate compound the same isocyanate compound as that used for the urethane resin is used.
  • the amine compound for example, ether amine and primary amine are used. Examples include 2-methoxyethylamine, 2-ethoxyethylamine, 3-methoxy-1-propylamine, ethanolamine, 6-aminohexanol, p-methoxybenzylamine and the like.
  • the undercoat paint composition containing the above compound may be in any form of an organic solvent-type paint, an aqueous paint containing an emulsion paint, or a solventless form.
  • an organic solution-type paint or water-based paint a one-component paint may be used, or a two-component mixed paint comprising a main agent and a curing agent may be used.
  • the concrete base material does not become a wet color, and therefore, good visibility of the concrete base material surface can be secured.
  • the primer coating composition described above is different in the permeability to the concrete base material and the refractive index of the formed primer layer from the coating composition containing an epoxy resin.
  • the intermediate coating composition used for forming the intermediate coating layer according to this embodiment preferably includes an epoxy resin (a2) having no aromatic ring and a modified aliphatic amine compound (b2).
  • the top coating composition used for forming the top coating layer comprises an epoxy resin (a1) having no aromatic ring, a modified aliphatic amine compound (b1), and flat inorganic particles (c1). It is preferable to include, and it is more preferable to further include a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and a silane coupling agent (e1).
  • the epoxy resin (a) according to this embodiment does not have an aromatic ring. Since the epoxy resin (a) does not have an aromatic ring, a transparent coating film having high weather resistance can be formed.
  • the epoxy resin (a) having no aromatic ring include hydrogenated bisphenol type epoxy resin, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol di Examples thereof include glycidyl ether, glycerin diglycidyl ether, and trimethylolpropane triglycidyl ether.
  • Examples of the hydrogenated bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol B type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type.
  • Examples thereof include hydrogenated bisphenol type diglycidyl ether (for example, hydrogenated bisphenol A type epoxy resin) obtained by adding a hydrogen atom to a bisphenol polyglycidyl ether type epoxy resin such as an epoxy resin.
  • Specific examples of the hydrogenated bisphenol type epoxy resin include Epolite 4000 (Kyoeisha Chemical Co., Ltd.), EPICLON EXA-7015 (DIC Corporation), ST-3000 (Nippon Steel & Sumikin Chemical Co., Ltd.) and the like. .
  • the epoxy resin (a) having at least two epoxy groups in one molecule has high reactivity with the modified aliphatic amine compound (b) described later, and the cured product can easily form a three-dimensional network.
  • compatibility with the other component of an epoxy resin (a) is high.
  • a hydrogenated bisphenol A type epoxy resin is preferable because it has high compatibility with other components, and it is easy to obtain a transparent cured product, and the obtained cured coating film is excellent in weather resistance.
  • the epoxy resin (a1) used for the top coating composition and the epoxy resin (a2) used for the intermediate coating composition may be the same epoxy resin or different epoxy resins.
  • the content of the epoxy resin (a) in the solid content of the coating composition according to this embodiment is preferably 25 to 70% by mass.
  • content of the epoxy resin (a) in solid content of a coating composition is less than 25 mass%, it exists in the tendency for the intensity
  • content of the epoxy resin (a) in the solid content of the coating composition is higher than 70% by mass, the weather resistance of the formed coating film is lowered and tends to be yellowed.
  • the modified aliphatic amine compound (b) in this embodiment reacts with the epoxy resin (a) to form a transparent coating film having high weather resistance.
  • the modified aliphatic amine compound (b) has high reactivity with the epoxy resin (a) and high compatibility with the (meth) acrylic resin (d) described later.
  • Examples of the modified aliphatic amine compound (b) include aliphatic polyamine epoxy adducts, alicyclic (alicyclic) polyamines, and polyamide amines.
  • modified aliphatic amine compound (b) examples include tomide 225X, Fujicure FXU870, Fujicure 5420F (manufactured by T & K TOKA Co., Ltd.) and Ancamide 500 (produced by Air Products Japan Co., Ltd.).
  • the modified aliphatic amine compound (b1) used for the top coating composition and the modified aliphatic amine compound (b2) used for the intermediate coating composition may be the same modified aliphatic amine compound or different modified fats. Group amine compounds may be used.
  • the solid content of the modified aliphatic amine compound (b) in the solid content of the coating composition according to this embodiment is preferably 2 to 26% by mass.
  • the content of the modified aliphatic amine compound (b) in the solid content of the coating composition is less than 2% by mass, the strength of the formed coating film and the adhesiveness to the concrete structure tend to decrease.
  • the content of the modified aliphatic amine compound (b) in the solid content of the coating composition is higher than 26% by mass, the weather resistance of the formed coating film tends to decrease and yellowing tends to occur.
  • the inorganic particles (c1) in the present embodiment are flat.
  • the inorganic particles (c1) are preferably composed of at least one of mica and glass flakes, and the average aspect ratio is preferably 20 to 1,000.
  • the oxygen barrier property of the formed coating film can be improved, and the weather resistance of the coating film can be improved.
  • the average aspect ratio of the inorganic particles (c1) is less than 20, the oxygen barrier property of the formed coating film decreases, and when it exceeds 1,000, handling of the coating composition becomes difficult.
  • the average aspect ratio of the inorganic particles (c1) is more preferably 20 to 200, and further preferably 32 to 150.
  • an inorganic particle (c1) is a glass flake from a viewpoint of improving the transparency of a coating film by reducing the concealment rate of the coating film formed.
  • the average particle diameter of the inorganic particles (c1) is preferably 10 to 1,000 ⁇ m. When the average particle diameter of the inorganic particles (c1) is less than 10 ⁇ m, the weather resistance of the formed coating film tends to decrease, and when it exceeds 1,000 ⁇ m, the transparency of the formed coating film tends to decrease. is there.
  • the average particle size of the inorganic particles (c1) can be measured by a laser diffraction particle size distribution measuring device (SALD-3100: manufactured by Shimadzu Corporation).
  • mica used as the inorganic particles (c1) examples include A-21S (average aspect ratio 70, average particle diameter 23 ⁇ m), A-41S (average aspect ratio 80, average particle diameter 47 ⁇ m), and SYA-21RS (average aspect). Ratio 90, average particle diameter 27 ⁇ m) and B-82 (average aspect ratio 100, average particle diameter 180 ⁇ m, all of which are manufactured by Yamaguchi Mica Co., Ltd.).
  • glass flakes used as the inorganic particles (c1) include RCF-600 (average aspect ratio 120, average thickness 5 ⁇ m, ratio of particles 150 to 1,700 ⁇ m is 80% or more), RCF -2300 (average aspect ratio 1150, average thickness 2 ⁇ m, the proportion of particles 150 to 1,700 ⁇ m is 85% or less), RCF-160 (average aspect ratio 32, average thickness 5 ⁇ m, particle diameter 45 to 300 ⁇ m) (The ratio of which is accounted for 65% or more), (all of which are manufactured by Nippon Sheet Glass Co., Ltd.)
  • the content of the inorganic particles (c1) in the total solid content of the coating composition according to this embodiment is preferably 6 to 28% by mass.
  • the content of the inorganic particles (c1) in the total solid content of the coating composition is less than 6% by mass, the weather resistance of the formed coating film is lowered.
  • the content of the inorganic particles (c1) in the total solid content of the coating composition is higher than 28% by mass, the transparency of the formed coating film is lost.
  • the content of the inorganic particles (c1) is more preferably 8 to 22% by mass, and further preferably 10 to 20% by mass.
  • the (meth) acrylic resin (d1) having at least one crosslinkable silyl group according to the present embodiment is a so-called acrylic silicon resin.
  • the (meth) acrylic resin (d1) may be obtained by copolymerizing a crosslinkable silyl group-containing ethylenically unsaturated monomer and another ethylenically unsaturated monomer, and already exists as a polymer.
  • the acrylic resin to be obtained may be obtained by modifying with a silicate oligomer having a crosslinkable silyl group.
  • silicate oligomer having a crosslinkable silyl group tetraalkoxysilane such as tetramethoxysilane or tetraethoxysilane, tetraphenoxysilane or a hydrolysis condensate thereof is used.
  • crosslinkable silyl group-containing ethylenically unsaturated monomer examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, allyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, and ⁇ -methacryloxypropyl.
  • examples include trimethoxysilane, ⁇ -acryloxypropyltributoxysilane, and ⁇ -methacryloxypropylmethyldimethoxysilane.
  • ethylenically unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Examples include cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, styrene, vinyltoluene, ⁇ -methylstyrene, (meth) acrylonitrile, (meth) acrylamide, vinyl acetate and the like.
  • the method of modifying the acrylic resin with a silicate oligomer having a crosslinkable silyl group is not particularly limited, and an ordinary radical polymerization method can be exemplified.
  • the organic solvent used at that time can be appropriately selected as long as it dissolves the silicate oligomer and the (meth) acrylic resin. Specific examples thereof include methanol, ethanol, ethylene glycol monomethyl ether, toluene, xylene and the like.
  • Examples of the crosslinkable silyl group possessed by the (meth) acrylic resin (d1) include a functional group represented by the formula (1).
  • R 1 and R 2 are all alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO— (R 'Is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R's may be the same or different), and represents a triorganosiloxy group represented by R 1 or When two or more R 2 are present, they may be the same or different.
  • Y represents a hydroxyl group or a hydrolyzable group, and when two or more Y exist, they may be the same or different.
  • a represents 0, 1, 2, or 3
  • b represents 0, 1, or 2.
  • m is an integer from 0 to 19. However, it shall be satisfied that a + mb ⁇ 1. ⁇
  • hydrolyzable group examples include functional groups such as a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • an alkoxy group, an amide group, and an aminooxy group are preferable, but an alkoxy group is particularly preferable because it is easily hydrolyzed under mild conditions.
  • alkoxy groups the lower the number of carbon atoms, the higher the reactivity. For example, since the reactivity decreases in the order of methoxy group, ethoxy group, and propoxy group, these functional groups can be selected according to the purpose and application.
  • Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3, and (a + ⁇ b) is preferably in the range of 1 to 5.
  • two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silyl group, they may be the same or different.
  • the number of silicon atoms forming the crosslinkable silyl group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less.
  • the crosslinkable silyl group represented by the general formula (2) is preferable because it is easily available. [Chemical 2] -Si (R 2 ) 3-c (Y) c (2) (Wherein R 2 and Y are the same as above, c is an integer of 1 to 3)
  • the (meth) acrylic resin (d1) condenses by forming a siloxane bond between silicon of crosslinkable silyl groups.
  • the coating composition according to the present embodiment further contains the (meth) acrylic resin (d1), a cured coating film having higher weather resistance can be formed.
  • the content of the (meth) acrylic resin (d1) in the solid content of the coating composition according to this embodiment is preferably 30 to 70% by mass, and more preferably 50 to 60% by mass.
  • the content of the (meth) acrylic resin (d) in the solid content of the coating composition is less than 30% by mass, the weather resistance of the formed coating film is lowered and tends to be yellowed.
  • the content of the (meth) acrylic resin (d1) in the solid content of the coating composition is higher than 70% by mass, the amount of the crosslinkable silyl group becomes relatively large, so that the storage stability of the resulting coating composition is increased. There is a tendency for the property to easily decline.
  • (meth) acrylic resin (d1) TA polymer SA120S, TA polymer SA110S, TA polymer SA100S (above, manufactured by Kaneka Corporation), ARUFON US-66170, ARUFUON US-6170 (above, Toagosei Co., Ltd.) Company-made).
  • the silane coupling agent (e1) comprises a polymer of (meth) acrylic resin (d1), an epoxy resin (a), and a modified aliphatic amine compound.
  • the compatibility with the reactant (b) is increased, and the strength of the formed coating film is further improved.
  • the silane coupling agent (e1) preferably contains at least one of an amino group-containing silane coupling agent and an epoxy group-containing silane coupling agent.
  • the amino group-containing silane coupling agent reacts with the epoxy group of the epoxy resin (a), and the silanol group derived from the amino group-containing silane coupling agent is It reacts with the crosslinkable silyl group of the (meth) acrylic resin (d1).
  • the epoxy group of the epoxy group-containing silane coupling agent reacts with the amino group of the modified aliphatic amine compound (b) and is derived from the epoxy group-containing silane coupling agent.
  • the silanol group reacts with the crosslinkable silyl group of the (meth) acrylic resin (d1).
  • the polymer of the (meth) acrylic resin (d1) and the reaction product of the epoxy resin (a) and the modified aliphatic amine compound (b) are cross-linked, and the strength of the coating film formed is further increased. improves.
  • amino group-containing silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropylmethyl.
  • Diethoxysilane ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2 -Aminoethyl) aminopropylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ -ureidopropyltrimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N-benzyl- ⁇ -amino B pills trimethoxysilane, N- vinylbenzyl - ⁇ - aminopropyltriethoxysilane, and the like.
  • amino group-containing silane coupling agents include KBE-903 (3-aminopropyltriethoxysilane), KBM-602 (N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane) and KBM- 603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) (all of which are manufactured by Shin-Etsu Chemical Co., Ltd.).
  • epoxy group-containing silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ - (3,4-epoxy Cyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like.
  • epoxy group-containing silane coupling agent examples include KBM-403 (3-glycidoxypropyltrimethoxysilane), KBE-403 (3-glycidoxypropyltriethoxysilane), KBE-402 (3-glycidyl). Sidoxypropylmethyldimethoxysilane), KBM-303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane), KBM-402 (3-glycidoxypropylmethyldiethoxysilane) (all above, Shin-Etsu Chemical) And the like).
  • the content of the silane coupling agent (e1) in the solid content of the coating composition according to this embodiment is preferably 0.1 to 20% by mass.
  • content of the silane coupling agent (e) in solid content of a coating composition is less than 0.1 mass%, it exists in the tendency for the transparency of the coating film formed to fall.
  • content of the silane coupling agent (e1) in the solid content of the coating composition exceeds 20% by mass, the curability of the coating composition tends to decrease.
  • the coating composition according to the present embodiment may contain additives other than the above components as necessary within a range that does not impede its function.
  • Additives include viscosity modifiers, condensation catalysts, UV absorbing compounds, antioxidants, curability modifiers, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, colored particles, Examples include an antifoaming agent, a foaming agent, an antifungal agent, and an antifungal agent.
  • the intermediate coating composition and the top coating composition according to this embodiment are a two-component mixed coating composition including a main agent containing an epoxy resin (a) and a curing agent containing a modified aliphatic amine compound (b). It is.
  • a two-component mixed paint composition workability at the site where repainting is performed is improved.
  • the silane coupling agent (e1) is appropriately blended into one of the main agent and the curing agent according to the type of functional group of the silane coupling agent. Specifically, when an epoxy-containing silane coupling agent is used as the silane coupling agent (e1), the modified aliphatic amine compound (b) and the silane coupling agent (e1) react in the curing agent.
  • the silane coupling agent (e1) is blended in the main agent.
  • an amino group-containing silane coupling agent is used as the silane coupling agent (e1)
  • a ring agent (e1) is mix
  • a special method is not required, and a method commonly used by those skilled in the art can be used.
  • a preparation method of the main agent the above additives and the like are added to a resin vehicle component, that is, a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and an epoxy resin (a) in advance as a varnish.
  • a resin vehicle component that is, a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and an epoxy resin (a) in advance as a varnish.
  • disperse ball mill, S. G.
  • distributing with dispersers, such as a mill and a roll mill, can be mentioned.
  • a modified aliphatic amine compound (b), a silane coupling agent (e1), and an organic solvent as necessary are mixed.
  • the undercoat layer, the intermediate coat layer, and the overcoat layer according to the present embodiment each have a mixing process, a coating process, and a curing process.
  • a mixing process In the case of using a one-component paint in the undercoating step, there is no mixing step.
  • the main agent and the curing agent in the above embodiment are mixed to obtain a mixed coating composition (coating composition).
  • the mixing method of the main agent and the curing agent of the two-component mixed coating composition in the mixing step is not particularly limited.
  • Examples of the mixing method include a method in which the main agent and the curing agent are blended and mixed with a hand mixer or a static mixer.
  • the mixing ratio of the main agent and the curing agent is preferably 70/30 to 90/10 in terms of the total solid content. By setting it as such a compounding ratio, formation of a coating film advances smoothly. In addition, you may add 3rd components other than a main ingredient and a hardening
  • the total solid concentration of the coating composition is preferably 80 to 100% by mass.
  • the structural viscosity of the mixed coating composition tends to decrease.
  • an organic solvent having no functional group that reacts with the silyl group of the (meth) acrylic resin (d1) is added to the mixed coating composition. It is also possible to adjust to an appropriate viscosity by adding. Specific examples thereof include methanol, ethanol, ethylene glycol monomethyl ether, toluene, xylene and the like.
  • each coating composition is coated on the surface of the concrete structure using a trowel or a roller so that the total multilayer film thickness (target dry film thickness) after curing is 300 ⁇ m to 1,500 ⁇ m. .
  • target dry film thickness target dry film thickness
  • it since it coats by hand painting using a trowel or a roller, it can work simply also in the field where the concrete structure was installed.
  • each coating composition applied to the surface of the concrete structure is cured to form a transparent coating film.
  • the curing method of the mixed coating composition in the curing step is not particularly limited, since a concrete structure is usually installed outdoors, a coating film is formed by leaving it under natural conditions.
  • the undercoat layer is formed by applying and curing the undercoat paint composition, and then the intermediate coat layer is formed by further applying and curing the intermediate coat composition, and then further the overcoat paint.
  • an overcoat layer is formed to form a multilayer coating film.
  • the L value on the surface of the concrete base material before the formation of the multilayer coating film, and the L value on the surface of the multilayer coating film after forming the multilayer coating film on the substrate surface A multilayer coating film is formed so that the difference ( ⁇ L) is ⁇ 2.0 to 4.0.
  • ⁇ L is within the above range, it becomes easy to visually detect cracks, blisters, and defects generated on the concrete surface even after the formation of the multilayer coating film.
  • ⁇ L exceeds 4.0, the degree of whiteness increases and the multi-layer coating film conceals the concrete base material, making it difficult to visually determine the state of cracks, blisters and defects on the surface of the base material. become.
  • ⁇ L is more preferably in the range of ⁇ 0.5 to 2.0.
  • the multilayer coating film according to this embodiment may be applied to a concrete structure immediately after construction for the purpose of preventive maintenance, or a concrete structure that has already been cracked for the purpose of repair. You may apply to. Moreover, you may apply to what is called a precast concrete product manufactured beforehand at the factory.
  • the oxygen permeability of a multilayer coating film formed using the coating composition and having a cured film thickness of 1,000 ⁇ m is 0.05 mg / (cm 2 ⁇ day) or less.
  • the oxygen permeability of a multilayer coating film having a thickness of 1000 ⁇ m after curing exceeds 0.05 mg / (cm 2 ⁇ day)
  • the content of the inorganic particles (c1) increases, so the coating film formed is transparent. Sexuality is impaired.
  • the oxygen permeability can be measured using a Seikaken type film oxygen permeability meter.
  • the concealment rate of a multilayer coating film formed using the above coating composition and having a film thickness after curing of 300 ⁇ m is 45% or less.
  • the concealment rate of the multilayer coating film having a thickness of 300 ⁇ m after curing exceeds 45%, it becomes difficult to observe the surface state of the concrete structure because the transparency of the coating film is impaired.
  • the concealment rate of the coating film having a thickness of 300 ⁇ m after curing is preferably 5 to 45%.
  • the concealment ratio of the coating film having a thickness of 300 ⁇ m after curing is less than 5%, the amount of inorganic particles (c1) is substantially reduced, so that the oxygen permeability of the coating film tends to increase. It is in.
  • the concealment rate of the coating film can be determined by the following method. First, the coating composition is applied to a concealment rate test paper (manufactured by Nippon Test Panel Co., Ltd.) used in a general coating test method in accordance with JIS K 5600-4-1 (b). Next, for the test specimens that were left at room temperature for 7 days at 23 ° C., the tristimulus value Y in the white part (Y W ) and the black part (Y B ) was obtained using a color difference meter (CR-400, manufactured by Konica Minolta Co., Ltd.). Measure and calculate the concealment rate Y B / Y W as a percentage.
  • a concealment rate test paper manufactured by Nippon Test Panel Co., Ltd.
  • JIS K 5600-4-1 JIS K 5600-4-1
  • transparent of the transparent coating film in the present embodiment is not limited as long as it can recognize the state and the object on the other side from one side through the coating film, and requires that the other side can be clearly recognized. Not what you want.
  • the transparent coating film may be colored or cloudy as long as the state of the object on the other side can be visually recognized through the transparent coating film.
  • the undercoat layer of this embodiment is formed of an undercoat paint composition containing at least one of acrylic resin, urethane resin, urea resin, or modified compositions of these resins.
  • the surface of the concrete does not become wet color due to the formation of the primer layer.
  • the difference between the L value on the surface of the base material and the L value on the surface of the multi-layer coating film after forming the multi-layer coating film on the concrete base material surface is ⁇ 2.0 to 4.0, preferably Since the multilayer coating film is formed so as to be ⁇ 0.5 to 2.0, the surface of the concrete base material does not become a wet color, and good visibility is ensured.
  • the multilayer coating film of the present embodiment is formed to have a film thickness of 300 ⁇ m to 1,500 ⁇ m, preferably 700 ⁇ m to 1,300 ⁇ m, so that the protective effect of the concrete base material is maintained and sufficient Transparency is obtained.
  • the topcoat layer of this embodiment comprises an epoxy resin (a1) having no aromatic ring, a modified aliphatic amine compound (b1), flat inorganic particles (c1), and preferably a crosslinkable silyl
  • the top coat layer has good oxygen barrier properties and transparency because it is formed by a top coat composition further comprising (meth) acrylic resin (d1) having at least one group and silane coupling agent (e1).
  • the intermediate coating layer of this embodiment is formed because it is formed of an intermediate coating composition containing the epoxy resin (a2) having no aromatic ring and the modified aliphatic amine compound (b2).
  • the intermediate coating layer has good transparency.
  • the resin shown in Table 1 is water-based resin (for example, VONCOAT 40-418EF (manufactured by DIC)), water is used as a diluent, and solvent-based resin is xylene.
  • the solution was diluted by 1: 1 and sufficiently stirred with a desktop disper.
  • Epolite 4000 manufactured by Kyoeisha Chemical Co., Ltd.
  • the epoxy resin (a2) was used for the solid content (unit: parts by mass) shown in Table 1, respectively.
  • the main component of the intermediate coating composition was obtained by adding xylene to adjust the total solid content concentration to 90% by mass and sufficiently stirring with a desktop disper.
  • xylene was added to adjust the total solid content concentration to 90% by mass, and the mixture was sufficiently stirred with a desktop disper to obtain the main component of the top coating composition. Adjust the solid content concentration to 90 mass% by adding xylene to tomide 225X (manufactured by T & K TOKA Co., Ltd.) as the modified aliphatic amine compound (b1), and sufficiently stir with a desktop disper Thus, a curing agent for the top coating composition was obtained.
  • the silane coupling agent (e1) was further blended so as to have the solid content (unit: parts by mass) shown in Table 1.
  • the silane coupling agent (e1) the amino group-containing silane coupling agent was blended in the curing agent, and the epoxy group-containing silane coupling agent was blended in the main agent.
  • Epolite 4000 manufactured by Kyoeisha Chemical Co., Ltd.
  • ST-3000 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Epicoat 1001 X75 made by Japan Epoxy Resin Co., Ltd.
  • TA polymer SA120S made by Kaneka Corporation
  • Fuji Cure 5420F manufactured by T & K TOKA Co., Ltd.
  • JER cure W made by Mitsubishi Chemical Corporation was used as a modified aromatic amine compound.
  • inorganic particles (c1) glass flake A (RCF-600, average aspect ratio 120, average thickness 5 ⁇ m, proportion of particles 150 to 1,700 ⁇ m accounted for 80% or more), glass flake B (RCF -2300, average aspect ratio 150, average thickness 2 ⁇ m, component ratio of particle diameter 150-1700 ⁇ m accounted for 85% or less), glass flake C (RCF-160, average aspect ratio 32, average thickness 5 ⁇ m, particles The proportion of components having a diameter of 45 to 300 ⁇ m is 65% or more), glass flake D (RCF-015, average aspect ratio 3, average thickness 5 ⁇ m, the proportion of components having a particle size of 45 ⁇ m or less is 88% or more) (above, All manufactured by Nippon Sheet Glass Co., Ltd.).
  • titanium dioxide TI-PURE R-706, manufactured by DuPont was used.
  • silane coupling agents e1
  • KBM-602 N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane
  • KBM-603 N-2- (aminoethyl) -3-aminopropyl) Trimethoxysilane
  • KBM-402 3-glycidoxypropylmethyldiethoxysilane
  • a multilayer coating film was formed by the following method. Created.
  • the mixed coating compositions (test coating liquids) obtained in Examples 1 to 31 and Comparative Examples 1 to 3 were applied to a mortar plate (ISO compliant, manufactured by Nippon Test Panel Co., Ltd.) having a length of 70 mm, a width of 70 mm, and a thickness of 20 mm.
  • the undercoat layer was painted with a brush, and the intermediate coat layer and the top coat layer were coated with a trowel so that the multilayer film thickness would be the target dry film thickness.
  • the coating interval of each layer was applied as 1 day.
  • the film thickness of the multilayer coating film after curing obtained by the mixed coating compositions of Examples 1 to 5, 12 to 14, 17 to 31 and Comparative Examples 1 to 3 was 1000 ⁇ m.
  • the film thicknesses of the multilayer coating films obtained by the mixed coating compositions of Examples 6 to 11, 15 and 16 were 350 ⁇ m, 1450 ⁇ m, 650 ⁇ m, 750 ⁇ m, 1250 ⁇ m, 1350 ⁇ m, 250 ⁇ m. 1600 ⁇ m.
  • the following evaluation was performed using the coating composition obtained by the above method or the formed multilayer coating film. The results are shown in Table 1.
  • a color difference meter (manufactured by Konica Minolta, CR-400) was used for lightness (L value) measurement.
  • L value lightness
  • a release paper is laid on a Teflon (registered trademark) board, and the mixed coating compositions obtained in Examples 1 to 29 and Comparative Examples 1 to 3 have a dry film thickness (film thickness after curing) of the multilayer coating film, respectively.
  • the coating film was coated so as to have a film thickness shown in Table 1, and after drying, the release paper was peeled off to obtain a free coating film.
  • the free coating film was cured at a temperature of 23 ° C. and a relative humidity of 50% for 28 days after coating.
  • the measurement of oxygen permeability was performed by the following procedure using a Seikaken type film oxygen permeability meter. The calculated oxygen permeability is shown in Table 1. 1.
  • a platinum electrode (cathode) was adhered to the surface side of the free coating film. 2.
  • An electrode containing 5 mL of 0.5 N calcium chloride solution in an electrode cell was placed in a beaker filled with distilled water. 3. The electrode was placed in a beaker filled with distilled water. 4).
  • Nitrogen gas was blown into distilled water at a flow rate of 200 mL / min, oxygen gas was completely expelled to stabilize the recorder current, and then the zero point of the recorder was adjusted. 5).
  • Oxygen gas was blown into distilled water at a flow rate of 200 mL / min, and the current value when the oxygen permeation amount became constant was read to calculate the oxygen permeability (unit: mg / (cm 2 ⁇ day)).
  • the following evaluation needs to be 2 or more. In order to perform visual inspection easily, it is preferably 3, and more preferably 4. When it is 1, it becomes difficult to visually observe changes in the state of the surface of the concrete structure (such as the occurrence of cracks). Therefore, 2 or more was considered acceptable.
  • the results are shown in Table 1. (Evaluation criteria) 4: The substrate and cracks can be easily seen as in the case of no painting. 3: Although not completely transparent, the substrate and cracks are easily visible. 2: Concealment by the coating film occurs to some extent, but the substrate and cracks can be visually observed. 1: It is very difficult to visually check the substrate and cracks due to concealment of the coating film and wet color after primer coating.
  • the degree of yellowing of the coating after irradiation with ultraviolet rays for 100 hours was confirmed.
  • the degree of yellowing is measured by the reflection method according to JIS K 7105 (fiscal 2004) and the b value measured by the reflection method according to JIS K 5600 4-1 B method.
  • the difference (color difference ⁇ b) between the b value and the b value after reflection was determined.
  • the results are shown in Table 1. If ⁇ b was less than 25, the result was acceptable. Among these, less than 20 is preferable and less than 10 is more preferable.
  • the multilayer coating films of Examples 1 to 31 in which acrylic resin, urethane resin, or urea resin was used for the primer layer The ⁇ L value after formation of the multilayer coating film is within the range of -2.0 to 4.0, compared with the multilayer coating films of Comparative Examples 1 and 2 that are not used for the coating layer, that is, the substrate has a wet color. It was confirmed that it was preferable in order not to become. Further, from the comparison between Examples 1 to 31 and Comparative Examples 1 to 3, the multilayer coating film of Examples 1 to 31 was formed more than the multilayer coating film of Comparative Examples 1 to 3. It was found that the visibility of the subsequent substrate was good.
  • acrylic resin, urethane resin, or urea resin is included in the undercoat coating composition, and the ⁇ L value after formation of the multilayer coating film is within the range of ⁇ 2.0 to 4.0, It was confirmed that the visibility of the base material after the multilayer coating film was formed was improved.
  • Example 1 From comparison between Example 1 and Example 28, it was found that the coating composition of Example 1 had higher weather resistance than the coating composition of Example 28. From this result, it was confirmed that the weather resistance of the formed coating film was improved by including an epoxy resin having no aromatic ring as the epoxy resin in the top coating composition.
  • Example 1 From comparison between Example 1 and Example 29, it was found that the coating composition of Example 1 had higher weather resistance than the coating composition of Example 29. From this result, it was confirmed that the weather resistance of the coating film to be formed is improved by containing the modified aliphatic amine compound as an amine compound in the top coating composition.
  • Example 1 From a comparison between Example 1 and Example 23, it was found that the coating composition of Example 1 had a higher oxygen barrier property of the coating film formed than the coating composition of Example 23. From these results, it was confirmed that the oxygen barrier property of the formed coating film was improved by containing inorganic particles having a specific aspect ratio (20 to 1,000) in the top coating composition.
  • Example 1 From a comparison between Example 1 and Example 30, it was found that the coating composition of Example 1 had higher weather resistance of the coating film formed than the coating composition of Example 30. From this result, it was confirmed that the weather resistance of the coating film formed was improved by including an epoxy resin having no aromatic ring as the epoxy resin in the intermediate coating composition.
  • Example 1 From comparison between Example 1 and Example 31, it was found that the coating composition of Example 1 had higher weather resistance than the coating composition of Example 31. From this result, it was confirmed that the weather resistance of the coating film to be formed is improved by containing the modified aliphatic amine compound as an amine compound in the intermediate coating composition.
  • Example 6 Furthermore, from the comparison between Example 6 and Example 15 in which the coating films having different film thicknesses were formed, the coating film having a film thickness of 350 ⁇ m formed using the coating composition of Example 6 was the coating material of Example 15. It was found that the oxygen barrier property was higher than that of a coating film having a thickness of 250 ⁇ m formed using the composition. On the other hand, from a comparison between Example 7 and Example 16 in which coatings having different thicknesses were formed, a coating having a thickness of 1,450 ⁇ m formed using the coating composition of Example 7 was It was found that the concealment rate was lower than that of the coating film having a film thickness of 1,600 ⁇ m formed using the coating composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

To provide a multi-layer coating for covering the surface of a concrete substrate, the multi-layer coating having high transparency and application thereof not imparting a wet coloring onto the surface of the concrete. The transparent multi-layer coating includes: a lower coating layer derived from a lower coating composition, which contains at least one selected from the group consisting of acrylic resins, urethane resins, urea resins, and modified forms of these resins; a middle coating layer derived from a middle coating composition; and an upper coating layer derived from an upper coating composition. The transparent multi-layer coating is formed on the surface of a concrete substrate so that the difference between the L value of the concrete substrate surface before forming of the multi-layer coating and the L value of the concrete substrate surface after forming of the multi-layer coating is ‒2.0 to 4.0.

Description

複層塗膜Multilayer coating
 本発明は、コンクリート基材の表面に形成される複層塗膜に関する。 The present invention relates to a multilayer coating film formed on the surface of a concrete substrate.
 従来、コンクリート構造物の表面に硬化性(塗料)組成物によって塗膜を形成することで、風雨や塩害によるコンクリート構造物の経年劣化の進行を抑える技術、すなわち耐候性を付与する技術が知られている。更に、コンクリート構造物の保全の観点からは、コンクリートの経年劣化に伴い表面に生じる亀裂や膨れ及び欠損等を早期に発見する必要があり、コンクリート構造物の表面が目視で確認可能であることが要請される。一方でコンクリート構造物の意匠性確保等の要請もあり、これらを総合するとコンクリート構造物の表面に形成される塗膜はコンクリート構造物の経年劣化の進行を抑える効果を有すると共に、透明であることが望ましい。 Conventionally, a technology that suppresses the progress of aging of a concrete structure due to wind and rain or salt damage by forming a coating film on the surface of the concrete structure with a curable (paint) composition, that is, a technology that imparts weather resistance is known. ing. Furthermore, from the viewpoint of the maintenance of concrete structures, it is necessary to detect cracks, bulges and defects on the surface as the concrete deteriorates over time, and the surface of the concrete structure can be visually confirmed. Requested. On the other hand, there is also a demand for ensuring the design properties of concrete structures, and when these are combined, the coating film formed on the surface of the concrete structure has the effect of suppressing the progress of aging of the concrete structure and is transparent. Is desirable.
 そこで、十分な補強効果と視認性を併せ持つコンクリート補強層として、エポキシ系樹脂からなるプライマー層と、可視光硬化型ビニルエステル樹脂からなる樹脂層と、補強ネット及び補強シートからなるコンクリート補強層をコンクリート構造物の表面上に形成する技術が知られている(例えば、後述の特許文献1参照)。 Therefore, as a concrete reinforcing layer having sufficient reinforcing effect and visibility, a primer layer made of an epoxy resin, a resin layer made of a visible light curable vinyl ester resin, and a concrete reinforcing layer made of a reinforcing net and a reinforcing sheet are concreted. A technique of forming on the surface of a structure is known (for example, see Patent Document 1 described later).
 更に、撥水系の防水材による下塗りと、エマルション系樹脂による中塗りと、樹脂防水材からなる上塗りを含むコンクリート表面仕上げ方法において、エマルション系樹脂が弾性を有することでコンクリート表面のひび割れに伴う防水材の破断を防止する技術が知られている(例えば、後述の特許文献2参照)。 Furthermore, in a concrete surface finishing method including an undercoat with a water-repellent waterproof material, an intermediate coat with an emulsion resin, and a top coat made of a resin waterproof material, the waterproof material accompanying cracks in the concrete surface due to the elasticity of the emulsion resin Is known (for example, see Patent Document 2 described later).
特開2007-2514号公報JP 2007-2514 A 特開2002-89006号公報JP 2002-89006 A
 ところで、コンクリート構造物の表面に透明塗膜を形成する際、コンクリート基材表面の巣穴由来の発泡を抑える事等を目的としてシーラー等により下塗層(プライマー層)を形成する方法が従来から知られている。しかしプライマー層の塗布を行った箇所の明度が塗布を行っていない箇所と比較して低くなる現象、すなわち基材表面が濡れ色になる現象が生じるため、このような状態のプライマー層に透明な塗膜層を形成してもコンクリート基材表面に生じる亀裂等を目視で確認することが困難になる問題が生じる。よってプライマー層を有する複層塗膜により被覆されたコンクリート構造物において、保全のための目視検査作業をより容易なものとするためには、塗膜層が透明であるだけではなく、プライマー層の形成によりコンクリート基材表面が濡れ色にならないことが必要である。 By the way, when forming a transparent coating film on the surface of a concrete structure, a method of forming an undercoat layer (primer layer) with a sealer or the like has been conventionally used for the purpose of suppressing foaming derived from burrows on the surface of a concrete base material. Are known. However, since the phenomenon that the brightness of the part where the primer layer is applied is lower than the part where the primer layer is not applied, that is, the phenomenon that the surface of the substrate becomes wet color occurs, the primer layer in such a state is transparent. Even if the coating layer is formed, there arises a problem that it is difficult to visually confirm cracks and the like generated on the surface of the concrete substrate. Therefore, in a concrete structure coated with a multilayer coating film having a primer layer, in order to make the visual inspection work for maintenance easier, the coating layer is not only transparent, It is necessary that the concrete substrate surface does not become wet color due to the formation.
 特許文献1に記載された発明は、樹脂層の全光線透過率を少なくとも30%以上とし、更に樹脂層の屈折率をプライマー層及び補強シートとして用いられるガラスクロスと同等とすることで透明度を十分に確保している。しかしながらプライマー層を塗布する際コンクリート表面が濡れ色となることは防止できないため、コンクリート表面の視認性は十分なものではなかった。 The invention described in Patent Document 1 has sufficient transparency by setting the total light transmittance of the resin layer to at least 30% or more, and further making the refractive index of the resin layer equal to the glass cloth used as the primer layer and the reinforcing sheet. To ensure. However, since the concrete surface cannot be prevented from becoming wet when the primer layer is applied, the visibility of the concrete surface has not been sufficient.
 特許文献2に記載された発明は、上塗層の樹脂防水材がコンクリート表面へ直接浸透することがないため、上塗層の樹脂防止材の浸透による、濡れ色や材料の浸透率の違いによる色むらが防止される。しかしながらプライマー層を塗布する際にコンクリート表面が濡れ色となることは防止できない。また特許文献2における濡れ色の防止は意匠性の維持を目的としたものであり、コンクリート構造物の保全のための目視検査作業を行う際の視認性が十分に確保されるものではなかった。 In the invention described in Patent Document 2, since the resin waterproofing material of the overcoat layer does not penetrate directly into the concrete surface, it depends on the difference in the wet color and the penetration rate of the material due to the penetration of the resin prevention material of the overcoat layer. Color unevenness is prevented. However, it is impossible to prevent the concrete surface from becoming wet when applying the primer layer. In addition, the prevention of the wet color in Patent Document 2 is intended to maintain the design, and the visibility when the visual inspection work for the maintenance of the concrete structure is performed is not sufficiently ensured.
 このように、コンクリート基材の表面を被覆する透明で且つ耐候性を有する複層塗膜において、塗膜形成時にコンクリート表面が濡れ色にならないような複層塗膜については十分に検討がなされていないのが現状である。
 本発明は、上記に鑑みてなされたものであり、コンクリート基材の表面を被覆する複層塗膜であって、高い透明性を有し且つ塗布によりコンクリート表面が濡れ色にならない複層塗膜を提供することを目的とする。
Thus, in the transparent and weather-resistant multilayer coating film covering the surface of the concrete base material, the multilayer coating film in which the concrete surface does not become a wet color when the coating film is formed has been sufficiently studied. There is no current situation.
The present invention has been made in view of the above, and is a multilayer coating film for covering the surface of a concrete base material, which has high transparency and does not turn the concrete surface into a wet color when applied. The purpose is to provide.
 本発明は、コンクリート基材の表面に形成された透明な複層塗膜であって、アクリル樹脂、ウレタン樹脂、ウレア樹脂及びこれらの樹脂の変性物からなる群より選ばれる少なくとも1種を含む下塗塗料組成物により形成された下塗層と、中塗塗料組成物により形成された中塗層と、上塗塗料組成物により形成された上塗層と、を含み、前記複層塗膜を形成する前の前記コンクリート基材表面のL*a*b*表色系におけるL値(明度)と、前記複層塗膜表面のL値との差が-2.0~4.0である複層塗膜に関する。 The present invention is a transparent multi-layer coating film formed on the surface of a concrete substrate, and includes an undercoat containing at least one selected from the group consisting of acrylic resins, urethane resins, urea resins, and modified products of these resins Before forming the multilayer coating film, comprising: an undercoat layer formed from the coating composition; an intermediate coating layer formed from the intermediate coating composition; and an overcoating layer formed from the top coating composition. A multilayer coating in which the difference between the L value (brightness) in the L * a * b * color system on the concrete substrate surface and the L value on the multilayer coating surface is −2.0 to 4.0 Relates to the membrane.
 また、前記複層塗膜の膜厚が300μm~1,500μmであることが好ましい。 The film thickness of the multilayer coating film is preferably 300 μm to 1,500 μm.
 また、前記上塗塗料組成物は、芳香環を有さないエポキシ樹脂(a1)と、変性脂肪族アミン化合物(b1)と、扁平状の無機粒子(c1)と、を含むことが好ましい。 The top coating composition preferably contains an epoxy resin (a1) having no aromatic ring, a modified aliphatic amine compound (b1), and flat inorganic particles (c1).
 また、前記上塗塗料組成物は、架橋性シリル基を少なくとも1個有する(メタ)アクリル樹脂(d1)と、シランカップリング剤(e1)と、を更に含むことが好ましい。 The top coating composition preferably further includes a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and a silane coupling agent (e1).
 また、前記無機粒子(c1)は、マイカ及びガラスフレークの少なくとも一方からなり、前記無機粒子(c)の平均アスペクト比は、20~1,000であることが好ましい。 The inorganic particles (c1) are preferably made of at least one of mica and glass flakes, and the average aspect ratio of the inorganic particles (c) is preferably 20 to 1,000.
 また、前記中塗塗料組成物は、芳香環を有さないエポキシ樹脂(a2)と、変性脂肪族アミン化合物(b2)と、を含むことが好ましい。 The intermediate coating composition preferably contains an epoxy resin (a2) having no aromatic ring and a modified aliphatic amine compound (b2).
 本発明によれば、コンクリート基材の表面を被覆する、耐候性及び高い透明性を有し且つ塗布によりコンクリート表面が濡れ色にならない透明複層塗膜を提供できる。 According to the present invention, it is possible to provide a transparent multilayer coating film that covers the surface of a concrete base material, has weather resistance and high transparency, and does not turn the concrete surface wet by application.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<複層塗膜>
 本実施形態に係る複層塗膜は、コンクリート基材の表面に形成される透明なコンクリート防食用複層塗膜である。本実施形態において、被塗物であるコンクリート基材は、コンクリート構造物であってもよい。コンクリート構造物としては橋梁、トンネル、高架道路、建築物等が挙げられる。複層塗膜は下塗層、中塗層、及び上塗層を順次配設することにより形成される。具体的には、下塗塗料組成物をコンクリート表面に塗装し硬化させた後、更に中塗塗料組成物を塗装し硬化させ、更に上塗塗料組成物を塗装し硬化させることで複層塗膜は形成される。
 また、本実施形態に係る複層塗膜は、複層塗膜形成前のコンクリート基材表面上のL*a*b*表色系におけるL値(明度)と、複層塗膜を形成した後の複層塗膜表面上のL値との差が-2.0~4.0となる。
 以下、下塗層、中塗層、上塗層それぞれの塗膜層で用いられる各塗料組成物について順次説明する。
<Multilayer coating film>
The multilayer coating film according to this embodiment is a transparent multilayer corrosion-resistant multilayer coating film formed on the surface of a concrete substrate. In this embodiment, the concrete base material that is the object to be coated may be a concrete structure. Concrete structures include bridges, tunnels, elevated roads and buildings. The multilayer coating film is formed by sequentially arranging an undercoat layer, an intermediate coat layer, and an overcoat layer. Specifically, after the base coating composition is applied to the concrete surface and cured, the intermediate coating composition is further applied and cured, and then the top coating composition is applied and cured to form a multilayer coating film. The
In addition, the multilayer coating film according to the present embodiment formed an L value (brightness) in the L * a * b * color system on the surface of the concrete substrate before the multilayer coating film formation, and the multilayer coating film. The difference from the L value on the surface of the subsequent multilayer coating film is −2.0 to 4.0.
Hereinafter, the respective coating compositions used in the respective coating layers of the undercoat layer, the intermediate coat layer, and the top coat layer will be sequentially described.
<下塗塗料組成物>
 本実施形態に係る下塗塗料組成物は、アクリル樹脂、ウレタン樹脂、ウレア樹脂、又はこれらの樹脂の変性組成物のうち少なくともいずれか1種を含む。また、下塗塗料組成物にはエポキシ樹脂が含まれないことが好ましい。エポキシ樹脂が含まれないことで、下塗層を形成しても基材が濡れ色とならない。
<Undercoat paint composition>
The undercoat coating composition according to the present embodiment includes at least one of acrylic resin, urethane resin, urea resin, and modified compositions of these resins. Moreover, it is preferable that an epoxy resin is not contained in a primer coating composition. Since the epoxy resin is not included, the base material does not become a wet color even if an undercoat layer is formed.
 本実施形態における下塗塗料組成物に含まれるアクリル樹脂は、アクリル系モノマーの共重合体、あるいは、アクリル系モノマーと他のエチレン性不飽和モノマーとの共重合体である。アクリル系モノマーとしては、例えば、アクリル酸又はメタクリル酸のメチル、エチル、プロピル、n-ブチル、i-ブチル、t-ブチル、2-エチルヘキシル、ラウリル、フェニル、ベンジル、2-ヒドロキシエチル、2-ヒドロキシプロピル、4-ヒドロキシブチル等のエステル化物類;アクリル酸又はメタクリル酸2-ヒドロキシエチルのカプロラクトンの開環付加物類等が挙げられる。これらと共重合可能なエチレン性不飽和モノマーとしては、例えば、スチレン、α-メチルスチレン、イタコン酸、マレイン酸、酢酸ビニル等が挙げられる。
 本実施形態におけるアクリル樹脂は、乳化重合したアクリルエマルジョン樹脂や、水性アクリル樹脂等の水系樹脂であってもよい。アクリルエマルジョン樹脂としてはアクリル系エマルジョン、アクリルスチレンエマルジョン、酢酸ビニル系エマルジョン等が挙げられる。水性アクリル樹脂としては、1液型の水性樹脂や、水性アクリルポリオールと水分散性ポリイソシアネートからなる2液硬化型水性アクリルウレタン樹脂等が挙げられる。
The acrylic resin contained in the undercoat coating composition in the present embodiment is a copolymer of acrylic monomers or a copolymer of acrylic monomers and other ethylenically unsaturated monomers. Examples of acrylic monomers include acrylic acid or methacrylic acid methyl, ethyl, propyl, n-butyl, i-butyl, t-butyl, 2-ethylhexyl, lauryl, phenyl, benzyl, 2-hydroxyethyl, 2-hydroxy Examples include esterified products such as propyl and 4-hydroxybutyl; ring-opening adducts of caprolactone of acrylic acid or 2-hydroxyethyl methacrylate. Examples of the ethylenically unsaturated monomer copolymerizable with these include styrene, α-methylstyrene, itaconic acid, maleic acid, and vinyl acetate.
The acrylic resin in the present embodiment may be an emulsion polymerized acrylic emulsion resin or an aqueous resin such as an aqueous acrylic resin. Examples of the acrylic emulsion resin include an acrylic emulsion, an acrylic styrene emulsion, and a vinyl acetate emulsion. Examples of the aqueous acrylic resin include a one-component aqueous resin and a two-component curable aqueous acrylic urethane resin composed of an aqueous acrylic polyol and a water-dispersible polyisocyanate.
 本実施形態における下塗塗料組成物に含まれるウレタン樹脂は、アクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール等の各種ポリオール成分とイソシアネート化合物との反応によって得られるウレタン結合を有する樹脂である。イソシアネート化合物としては、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート及びこれらの混合物、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、及びこれらの混合物、ナフタレン-1,5-ジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、キシリレンジイソシアネート、ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、水素化キシリレンジイソシアネート等が挙げられる。 The urethane resin contained in the undercoat coating composition in the present embodiment is a resin having a urethane bond obtained by reaction of various polyol components such as acrylic polyol, polyester polyol, polyether polyol, polycarbonate polyol and the like with an isocyanate compound. Examples of the isocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and mixtures thereof, diphenylmethane-4,4′-diisocyanate, diphenylmethane-2,4′-diisocyanate, and mixtures thereof. Naphthalene-1,5-diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate and the like.
 本実施形態における下塗塗料組成物に含まれるウレア樹脂は、アミン化合物とイソシアネート化合物との反応によって得られる、分子中に尿素基(-NH・CO・NH-)を有する樹脂である。イソシアネート化合物としては前述のウレタン樹脂に用いられるものと同様のイソシアネート化合物が用いられる。アミン化合物としては例えばエーテルアミン及び一級アミン等が用いられる。例えば、2-メトキシエチルアミン、2-エトキシエチルアミン、3-メトキシ-1-プロピルアミン、エタノールアミン、6-アミノヘキサノール、p-メトキシベンジルアミン等が挙げられる。 The urea resin contained in the primer coating composition in this embodiment is a resin having a urea group (—NH · CO · NH—) in the molecule, obtained by a reaction between an amine compound and an isocyanate compound. As the isocyanate compound, the same isocyanate compound as that used for the urethane resin is used. As the amine compound, for example, ether amine and primary amine are used. Examples include 2-methoxyethylamine, 2-ethoxyethylamine, 3-methoxy-1-propylamine, ethanolamine, 6-aminohexanol, p-methoxybenzylamine and the like.
 上記化合物が含まれる下塗塗料組成物は、有機溶剤形塗料、エマルジョン塗料を含む水性塗料又は無溶剤形のいずれの形態であってもよい。有機溶液形塗料又は水性塗料としては、一液形塗料を用いてもよいし、主剤及び硬化剤からなる二液混合形塗料を用いてもよい。 The undercoat paint composition containing the above compound may be in any form of an organic solvent-type paint, an aqueous paint containing an emulsion paint, or a solventless form. As the organic solution-type paint or water-based paint, a one-component paint may be used, or a two-component mixed paint comprising a main agent and a curing agent may be used.
 本実施形態において、これらの下塗塗料組成物を用いて下塗層を形成しても、コンクリート基材が濡れ色とならないため、コンクリート基材表面の良好な視認性が確保できる。
 この理由として詳細は不明であるが、上記の下塗塗料組成物はコンクリート基材への浸透性及び形成された下塗層の屈折率が、エポキシ樹脂を含む塗料組成物と異なるためと考えられる。
In this embodiment, even if an undercoat layer is formed using these undercoat paint compositions, the concrete base material does not become a wet color, and therefore, good visibility of the concrete base material surface can be secured.
Although details are unknown as this reason, it is considered that the primer coating composition described above is different in the permeability to the concrete base material and the refractive index of the formed primer layer from the coating composition containing an epoxy resin.
<中塗、上塗塗料組成物>
 本実施形態に係る中塗層の形成に用いられる中塗塗料組成物は、芳香環を有さないエポキシ樹脂(a2)と、変性脂肪族アミン化合物(b2)を含むことが好ましい。また、上塗層の形成に用いられる上塗塗料組成物は、芳香環を有さないエポキシ樹脂(a1)と、変性脂肪族アミン化合物(b1)と、扁平状の無機粒子(c1)と、を含むことが好ましく、架橋性シリル基を少なくとも1個有する(メタ)アクリル樹脂(d1)と、シランカップリング剤(e1)とを更に含むことがより好ましい。
<Inner coating, top coating composition>
The intermediate coating composition used for forming the intermediate coating layer according to this embodiment preferably includes an epoxy resin (a2) having no aromatic ring and a modified aliphatic amine compound (b2). Moreover, the top coating composition used for forming the top coating layer comprises an epoxy resin (a1) having no aromatic ring, a modified aliphatic amine compound (b1), and flat inorganic particles (c1). It is preferable to include, and it is more preferable to further include a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and a silane coupling agent (e1).
 本実施形態に係るエポキシ樹脂(a)は、芳香環を有さない。エポキシ樹脂(a)が芳香環を有さないことで、耐候性の高い透明塗膜を形成することができる。芳香環を有さないエポキシ樹脂(a)としては、水添ビスフェノール型エポキシ樹脂、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンジルグリコールジグリシジルエーテル、グレセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等を例示することができる。
 水添ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールC型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノールポリグリシジルエーテル型エポキシ樹脂に水素原子を付加して得られる水添ビスフェノール型ジグリシジルエーテル(例えば水添ビスフェノールA型エポキシ樹脂)が挙げられる。水添ビスフェノール型エポキシ樹脂として、具体的には、エポライト4000(共栄社化学株式会社)、EPICLON EXA-7015(DIC株式会社製)、ST-3000(新日鉄住金化学株式会社製)等を挙げることができる。
The epoxy resin (a) according to this embodiment does not have an aromatic ring. Since the epoxy resin (a) does not have an aromatic ring, a transparent coating film having high weather resistance can be formed. Examples of the epoxy resin (a) having no aromatic ring include hydrogenated bisphenol type epoxy resin, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol di Examples thereof include glycidyl ether, glycerin diglycidyl ether, and trimethylolpropane triglycidyl ether.
Examples of the hydrogenated bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol B type epoxy resin, bisphenol C type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type. Examples thereof include hydrogenated bisphenol type diglycidyl ether (for example, hydrogenated bisphenol A type epoxy resin) obtained by adding a hydrogen atom to a bisphenol polyglycidyl ether type epoxy resin such as an epoxy resin. Specific examples of the hydrogenated bisphenol type epoxy resin include Epolite 4000 (Kyoeisha Chemical Co., Ltd.), EPICLON EXA-7015 (DIC Corporation), ST-3000 (Nippon Steel & Sumikin Chemical Co., Ltd.) and the like. .
 エポキシ樹脂(a)としては、エポキシ基を一分子中に少なくとも2個有するものが、後述の変性脂肪族アミン化合物(b)との反応性が高く、硬化物が3次元的網目を作りやすいことから好ましい。また、本実施形態に係る塗料組成物を硬化させた時の硬化物が透明であるためには、エポキシ樹脂(a)の他の成分との相溶性が高いことが好ましい。例えば、水添ビスフェノールA型エポキシ樹脂は、他の成分との相溶性が高く、透明な硬化物を得やすい上に、得られる硬化塗膜が耐候性に優れることから好ましい。 The epoxy resin (a) having at least two epoxy groups in one molecule has high reactivity with the modified aliphatic amine compound (b) described later, and the cured product can easily form a three-dimensional network. To preferred. Moreover, in order for the hardened | cured material when hardening the coating composition which concerns on this embodiment to be transparent, it is preferable that compatibility with the other component of an epoxy resin (a) is high. For example, a hydrogenated bisphenol A type epoxy resin is preferable because it has high compatibility with other components, and it is easy to obtain a transparent cured product, and the obtained cured coating film is excellent in weather resistance.
 なお、上塗塗料組成物に用いるエポキシ樹脂(a1)と、中塗塗料組成物に用いるエポキシ樹脂(a2)とは、同じエポキシ樹脂を用いても良く、異なるエポキシ樹脂を用いても良い。 The epoxy resin (a1) used for the top coating composition and the epoxy resin (a2) used for the intermediate coating composition may be the same epoxy resin or different epoxy resins.
 本実施形態に係る塗料組成物の固形分におけるエポキシ樹脂(a)の含有量は、25~70質量%であることが好ましい。塗料組成物の固形分におけるエポキシ樹脂(a)の含有量が、25質量%未満の場合、形成される塗膜の強度や、コンクリート構造物への接着性が低下する傾向にある。塗料組成物の固形分におけるエポキシ樹脂(a)の含有量が、70質量%よりも高い場合、形成される塗膜の耐候性が低下し、黄変しやすくなる傾向にある。 The content of the epoxy resin (a) in the solid content of the coating composition according to this embodiment is preferably 25 to 70% by mass. When content of the epoxy resin (a) in solid content of a coating composition is less than 25 mass%, it exists in the tendency for the intensity | strength of the coating film formed and the adhesiveness to a concrete structure to fall. When the content of the epoxy resin (a) in the solid content of the coating composition is higher than 70% by mass, the weather resistance of the formed coating film is lowered and tends to be yellowed.
 本実施形態における変性脂肪族アミン化合物(b)は、エポキシ樹脂(a)と反応して耐候性の高い透明塗膜を形成する。変性脂肪族アミン化合物(b)は、エポキシ樹脂(a)との反応性が高く、後述の(メタ)アクリル樹脂(d)との相溶性も高い。
 変性脂肪族アミン化合物(b)としては、脂肪族ポリアミンのエポキシ付加物、脂環族(脂環式)ポリアミン、ポリアミドアミン等が挙げられる。変性脂肪族アミン化合物(b)としては、例えば、トーマイド225X、フジキュアーFXU870、フジキュアー5420F(以上、株式会社T&K TOKA社製)や、アンカマイド500(エアプロダクツジャパン株式会社製)が挙げられる。
The modified aliphatic amine compound (b) in this embodiment reacts with the epoxy resin (a) to form a transparent coating film having high weather resistance. The modified aliphatic amine compound (b) has high reactivity with the epoxy resin (a) and high compatibility with the (meth) acrylic resin (d) described later.
Examples of the modified aliphatic amine compound (b) include aliphatic polyamine epoxy adducts, alicyclic (alicyclic) polyamines, and polyamide amines. Examples of the modified aliphatic amine compound (b) include tomide 225X, Fujicure FXU870, Fujicure 5420F (manufactured by T & K TOKA Co., Ltd.) and Ancamide 500 (produced by Air Products Japan Co., Ltd.).
 なお、上塗塗料組成物に用いる変性脂肪族アミン化合物(b1)と、中塗塗料組成物に用いる変性脂肪族アミン化合物(b2)とは、同じ変性脂肪族アミン化合物を用いても良く、異なる変性脂肪族アミン化合物を用いても良い。 The modified aliphatic amine compound (b1) used for the top coating composition and the modified aliphatic amine compound (b2) used for the intermediate coating composition may be the same modified aliphatic amine compound or different modified fats. Group amine compounds may be used.
 本実施形態に係る塗料組成物の固形分における変性脂肪族アミン化合物(b)の固形分含有量は、2~26質量%であることが好ましい。塗料組成物の固形分における変性脂肪族アミン化合物(b)の含有量が、2質量%未満の場合、形成される塗膜の強度や、コンクリート構造物への接着性が低下する傾向にある。塗料組成物の固形分における変性脂肪族アミン化合物(b)の含有量が、26質量%よりも高い場合、形成される塗膜の耐候性が低下し、黄変しやすくなる傾向にある。 The solid content of the modified aliphatic amine compound (b) in the solid content of the coating composition according to this embodiment is preferably 2 to 26% by mass. When the content of the modified aliphatic amine compound (b) in the solid content of the coating composition is less than 2% by mass, the strength of the formed coating film and the adhesiveness to the concrete structure tend to decrease. When the content of the modified aliphatic amine compound (b) in the solid content of the coating composition is higher than 26% by mass, the weather resistance of the formed coating film tends to decrease and yellowing tends to occur.
 本実施形態における無機粒子(c1)は、扁平状である。また、無機粒子(c1)は、マイカ及びガラスフレークの少なくとも一方からなることが好ましく、その平均アスペクト比は、20~1,000であることが好ましい。無機粒子(c1)として平均アスペクト比が上記範囲のマイカ及びガラスフレークを用いることで、形成される塗膜の酸素遮断性が向上し、塗膜の耐候性を向上させることができる。無機粒子(c1)の平均アスペクト比が、20未満の場合には形成される塗膜の酸素遮断性が低下し、1,000を超える場合には塗料組成物の取り扱いが難しくなる。また、無機粒子(c1)の平均アスペクト比は、20~200であることがより好ましく、32~150であることが更に好ましい。また、形成される塗膜の隠ぺい率を低下させることで、塗膜の透明性を向上させる観点から、無機粒子(c1)はガラスフレークであることが好ましい。 The inorganic particles (c1) in the present embodiment are flat. The inorganic particles (c1) are preferably composed of at least one of mica and glass flakes, and the average aspect ratio is preferably 20 to 1,000. By using mica and glass flakes having an average aspect ratio in the above range as the inorganic particles (c1), the oxygen barrier property of the formed coating film can be improved, and the weather resistance of the coating film can be improved. When the average aspect ratio of the inorganic particles (c1) is less than 20, the oxygen barrier property of the formed coating film decreases, and when it exceeds 1,000, handling of the coating composition becomes difficult. Further, the average aspect ratio of the inorganic particles (c1) is more preferably 20 to 200, and further preferably 32 to 150. Moreover, it is preferable that an inorganic particle (c1) is a glass flake from a viewpoint of improving the transparency of a coating film by reducing the concealment rate of the coating film formed.
 なお、無機粒子(c1)の平均アスペクト比は、例えば、レーザー回折式粒度分布測定装置(LMS-30;株式会社セイシン企業製)による50%平均粒子径(L)、及び透過型電子顕微鏡による面間隔の平均厚さ(a)から、平均アスペクト比=L/aとして算出することが出来る。 The average aspect ratio of the inorganic particles (c1) is, for example, 50% average particle size (L) measured by a laser diffraction particle size distribution measuring device (LMS-30; manufactured by Seishin Enterprise Co., Ltd.), and the surface measured by a transmission electron microscope. From the average thickness (a) of the interval, it can be calculated as average aspect ratio = L / a.
 無機粒子(c1)の平均粒子径は、10~1,000μmであることが好ましい。無機粒子(c1)の平均粒子径が、10μm未満であると形成される塗膜の耐候性が低下する傾向にあり、1,000μmを超えると形成される塗膜の透明性が低下する傾向にある。
 無機粒子(c1)の平均粒子径は、レーザー回折式粒子径分布測定装置(SALD-3100:株式会社島津製作所製)によって測定することが可能である。
The average particle diameter of the inorganic particles (c1) is preferably 10 to 1,000 μm. When the average particle diameter of the inorganic particles (c1) is less than 10 μm, the weather resistance of the formed coating film tends to decrease, and when it exceeds 1,000 μm, the transparency of the formed coating film tends to decrease. is there.
The average particle size of the inorganic particles (c1) can be measured by a laser diffraction particle size distribution measuring device (SALD-3100: manufactured by Shimadzu Corporation).
 無機粒子(c1)として用いられるマイカとしては、例えば、A-21S(平均アスペクト比70、平均粒子径23μm)、A-41S(平均アスペクト比80、平均粒子径47μm)、SYA-21RS(平均アスペクト比90、平均粒子径27μm)、B-82(平均アスペクト比100、平均粒子径180μm、以上全て株式会社ヤマグチマイカ製)が挙げられる。
 また、無機粒子(c1)として用いられるガラスフレークとしては、例えば、RCF-600(平均アスペクト比120、平均厚さ5μm、粒子径150~1,700μmの成分が占める割合が80%以上)、RCF-2300(平均アスペクト比1150、平均厚さ2μm、粒子径150~1,700μmの成分が占める割合が85%以下)、RCF-160(平均アスペクト比32、平均厚さ5μm、粒子径45~300μmの成分が占める割合が65%以上)、(以上、全て日本板硝子株式会社製)等が挙げられる。
Examples of mica used as the inorganic particles (c1) include A-21S (average aspect ratio 70, average particle diameter 23 μm), A-41S (average aspect ratio 80, average particle diameter 47 μm), and SYA-21RS (average aspect). Ratio 90, average particle diameter 27 μm) and B-82 (average aspect ratio 100, average particle diameter 180 μm, all of which are manufactured by Yamaguchi Mica Co., Ltd.).
Examples of glass flakes used as the inorganic particles (c1) include RCF-600 (average aspect ratio 120, average thickness 5 μm, ratio of particles 150 to 1,700 μm is 80% or more), RCF -2300 (average aspect ratio 1150, average thickness 2 μm, the proportion of particles 150 to 1,700 μm is 85% or less), RCF-160 (average aspect ratio 32, average thickness 5 μm, particle diameter 45 to 300 μm) (The ratio of which is accounted for 65% or more), (all of which are manufactured by Nippon Sheet Glass Co., Ltd.)
 本実施形態に係る塗料組成物の全固形分における無機粒子(c1)の含有量は、6~28質量%であることが好ましい。塗料組成物の全固形分における無機粒子(c1)の含有量が、6質量%未満の場合、形成される塗膜の耐候性が低下する。塗料組成物の全固形分における無機粒子(c1)の含有量が、28質量%よりも高い場合、形成される塗膜の透明性が失われる。無機粒子(c1)の含有量は、8~22質量%であることがより好ましく、10~20質量%であることが更に好ましい。 The content of the inorganic particles (c1) in the total solid content of the coating composition according to this embodiment is preferably 6 to 28% by mass. When the content of the inorganic particles (c1) in the total solid content of the coating composition is less than 6% by mass, the weather resistance of the formed coating film is lowered. When the content of the inorganic particles (c1) in the total solid content of the coating composition is higher than 28% by mass, the transparency of the formed coating film is lost. The content of the inorganic particles (c1) is more preferably 8 to 22% by mass, and further preferably 10 to 20% by mass.
 本実施形態に係る架橋性シリル基を少なくとも1個有する(メタ)アクリル樹脂(d1)は、いわゆるアクリルシリコン樹脂である。
 (メタ)アクリル樹脂(d1)は、架橋性シリル基含有エチレン性不飽和モノマーと、他のエチレン性不飽和モノマーとを共重合させることにより得られるものであってもよく、すでに重合体として存在するアクリル樹脂を、架橋性シリル基を有するシリケートオリゴマーで変性して得られるものであってもよい。架橋性シリル基を有するシリケートオリゴマーとしては、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン又はテトラフェノキシシランもしくはこれらの加水分解縮合物が用いられる。
The (meth) acrylic resin (d1) having at least one crosslinkable silyl group according to the present embodiment is a so-called acrylic silicon resin.
The (meth) acrylic resin (d1) may be obtained by copolymerizing a crosslinkable silyl group-containing ethylenically unsaturated monomer and another ethylenically unsaturated monomer, and already exists as a polymer. The acrylic resin to be obtained may be obtained by modifying with a silicate oligomer having a crosslinkable silyl group. As the silicate oligomer having a crosslinkable silyl group, tetraalkoxysilane such as tetramethoxysilane or tetraethoxysilane, tetraphenoxysilane or a hydrolysis condensate thereof is used.
 架橋性シリル基含有エチレン性不飽和モノマーの具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、アリルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリブトキシシラン及びγ-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。 Specific examples of the crosslinkable silyl group-containing ethylenically unsaturated monomer include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, allyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, and γ-methacryloxypropyl. Examples include trimethoxysilane, γ-acryloxypropyltributoxysilane, and γ-methacryloxypropylmethyldimethoxysilane.
 他のエチレン性不飽和モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、スチレン、ビニルトルエン、α-メチルスチレン、(メタ)アクリロニトリル、(メタ)アクリルアミド、酢酸ビニル等が挙げられる。 Other ethylenically unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, Examples include cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, styrene, vinyltoluene, α-methylstyrene, (meth) acrylonitrile, (meth) acrylamide, vinyl acetate and the like.
 架橋性シリル基を有するシリケートオリゴマーでアクリル樹脂を変性する方法は特に限定されないが、通常のラジカル重合法を挙げることができる。そのときに使用される有機溶剤としては、上記シリケートオリゴマーと(メタ)アクリル樹脂を溶解するものであれば適宜選択できる。その具体例としては、メタノール、エタノール、エチレングリコールモノメチルエーテル、トルエン、キシレン等が挙げられる。 The method of modifying the acrylic resin with a silicate oligomer having a crosslinkable silyl group is not particularly limited, and an ordinary radical polymerization method can be exemplified. The organic solvent used at that time can be appropriately selected as long as it dissolves the silicate oligomer and the (meth) acrylic resin. Specific examples thereof include methanol, ethanol, ethylene glycol monomethyl ether, toluene, xylene and the like.
 (メタ)アクリル樹脂(d1)の有する架橋性シリル基としては、式(1)で表される官能基が挙げられる。
[化1]
  -[Si(R2-b(Y)O]-Si(R3-a(Y)  (1)
 
{式中、R、Rは、いずれも炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、又は(R’)SiO-(R’は炭素数1~20の1価の炭化水素基であって、3個のR’は同一であってもよく、異なっていてもよい)で示されるトリオルガノシロキシ基を示し、R又はRが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは水酸基又は加水分解性基を示し、Yが2個以上存在するときそれらは同一であってもよく、異なっていてもよい。aは0,1,2,又は3を、また、bは0,1,又は2を示す。mは0~19の整数である。ただし、a+mb≧1であることを満足するものとする。}
Examples of the crosslinkable silyl group possessed by the (meth) acrylic resin (d1) include a functional group represented by the formula (1).
[Chemical 1]
-[Si (R 1 ) 2-b (Y) b O] m -Si (R 2 ) 3-a (Y) a (1)

{In the formula, R 1 and R 2 are all alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R ′) 3 SiO— (R 'Is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R's may be the same or different), and represents a triorganosiloxy group represented by R 1 or When two or more R 2 are present, they may be the same or different. Y represents a hydroxyl group or a hydrolyzable group, and when two or more Y exist, they may be the same or different. a represents 0, 1, 2, or 3, and b represents 0, 1, or 2. m is an integer from 0 to 19. However, it shall be satisfied that a + mb ≧ 1. }
 加水分解性基としては、例えば、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等の官能基が挙げられる。これらのうちでも、アルコキシ基、アミド基、アミノオキシ基が好ましいが、温和な条件で加水分解されることから取り扱いやすいという点で、アルコキシ基がとくに好ましい。アルコキシ基の中では炭素数の少ないものほど反応性が高くなる。例えば、メトキシ基、エトキシ基、プロポキシ基の順に反応性が低くなるので、目的や用途に応じてこれらの官能基を選択できる。 Examples of the hydrolyzable group include functional groups such as a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, an alkoxy group, an amide group, and an aminooxy group are preferable, but an alkoxy group is particularly preferable because it is easily hydrolyzed under mild conditions. Among alkoxy groups, the lower the number of carbon atoms, the higher the reactivity. For example, since the reactivity decreases in the order of methoxy group, ethoxy group, and propoxy group, these functional groups can be selected according to the purpose and application.
 加水分解性基や水酸基は、1個のケイ素原子に1~3個の範囲で結合することができ、(a+Σb)は1~5個の範囲が好ましい。加水分解性基や水酸基が架橋性シリル基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。架橋性シリル基を形成するケイ素原子は1個以上であるが、シロキサン結合等により連結されたケイ素原子の場合には、20個以下であることが好ましい。特に、一般式(2)で表される架橋性シリル基が、入手が容易である点で好ましい。
[化2]
   -Si(R3-c(Y)   (2)
 
(式中、R、Yは前記と同じ、cは1~3の整数)
Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3, and (a + Σb) is preferably in the range of 1 to 5. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silyl group, they may be the same or different. The number of silicon atoms forming the crosslinkable silyl group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less. In particular, the crosslinkable silyl group represented by the general formula (2) is preferable because it is easily available.
[Chemical 2]
-Si (R 2 ) 3-c (Y) c (2)

(Wherein R 2 and Y are the same as above, c is an integer of 1 to 3)
 (メタ)アクリル樹脂(d1)は、架橋性シリル基のケイ素同士がシロキサン結合を形成することで縮合する。本実施形態に係る塗料組成物が(メタ)アクリル樹脂(d1)を更に含有することで、より耐候性の高い硬化塗膜を形成することができる。 The (meth) acrylic resin (d1) condenses by forming a siloxane bond between silicon of crosslinkable silyl groups. When the coating composition according to the present embodiment further contains the (meth) acrylic resin (d1), a cured coating film having higher weather resistance can be formed.
 本実施形態に係る塗料組成物の固形分における(メタ)アクリル樹脂(d1)の含有量は、30~70質量%であることが好ましく、50~60質量%であることがより好ましい。塗料組成物の固形分における(メタ)アクリル樹脂(d)の含有量が、30質量%未満の場合、形成される塗膜の耐候性が低下し、黄変しやすくなる傾向にある。塗料組成物の固形分における(メタ)アクリル樹脂(d1)の含有量が、70質量%よりも高い場合、相対的に架橋性シリル基の量が大きくなるので、得られる塗料組成物の貯蔵安定性が低下しやすくなる傾向にある。(メタ)アクリル樹脂(d1)として、具体的には、TAポリマーSA120S、TAポリマーSA110S、TAポリマーSA100S(以上、株式会社カネカ製)、ARUFON US-66170、ARUFON US-6170(以上、東亞合成株式会社製)等を挙げることができる。 The content of the (meth) acrylic resin (d1) in the solid content of the coating composition according to this embodiment is preferably 30 to 70% by mass, and more preferably 50 to 60% by mass. When the content of the (meth) acrylic resin (d) in the solid content of the coating composition is less than 30% by mass, the weather resistance of the formed coating film is lowered and tends to be yellowed. When the content of the (meth) acrylic resin (d1) in the solid content of the coating composition is higher than 70% by mass, the amount of the crosslinkable silyl group becomes relatively large, so that the storage stability of the resulting coating composition is increased. There is a tendency for the property to easily decline. Specifically, as the (meth) acrylic resin (d1), TA polymer SA120S, TA polymer SA110S, TA polymer SA100S (above, manufactured by Kaneka Corporation), ARUFON US-66170, ARUFUON US-6170 (above, Toagosei Co., Ltd.) Company-made).
 本実施形態に係るシランカップリング剤(e1)は、塗料組成物が塗膜を形成する際に、(メタ)アクリル樹脂(d1)の重合体と、エポキシ樹脂(a)及び変性脂肪族アミン化合物(b)の反応物との相溶性を高め、形成される塗膜の強度を更に向上させる。 When the coating composition forms a coating film, the silane coupling agent (e1) according to this embodiment comprises a polymer of (meth) acrylic resin (d1), an epoxy resin (a), and a modified aliphatic amine compound. The compatibility with the reactant (b) is increased, and the strength of the formed coating film is further improved.
 シランカップリング剤(e1)としては、アミノ基含有シランカップリング剤及びエポキシ基含有シランカップリング剤の少なくとも一方を含有することが好ましい。アミノ基含有シランカップリング剤を用いた場合には、アミノ基含有シランカップリング剤のアミノ基がエポキシ樹脂(a)のエポキシ基と反応し、アミノ基含有シランカップリング剤に由来するシラノール基が(メタ)アクリル樹脂(d1)の架橋性シリル基と反応する。エポキシ基含有シランカップリング剤を用いた場合には、エポキシ基含有シランカップリング剤のエポキシ基が変性脂肪族アミン化合物(b)のアミノ基と反応し、エポキシ基含有シランカップリング剤に由来するシラノール基が(メタ)アクリル樹脂(d1)の架橋性シリル基と反応する。このような反応によって、(メタ)アクリル樹脂(d1)の重合体と、エポキシ樹脂(a)及び変性脂肪族アミン化合物(b)の反応物とが架橋され、形成される塗膜の強度が更に向上する。 The silane coupling agent (e1) preferably contains at least one of an amino group-containing silane coupling agent and an epoxy group-containing silane coupling agent. When the amino group-containing silane coupling agent is used, the amino group of the amino group-containing silane coupling agent reacts with the epoxy group of the epoxy resin (a), and the silanol group derived from the amino group-containing silane coupling agent is It reacts with the crosslinkable silyl group of the (meth) acrylic resin (d1). When an epoxy group-containing silane coupling agent is used, the epoxy group of the epoxy group-containing silane coupling agent reacts with the amino group of the modified aliphatic amine compound (b) and is derived from the epoxy group-containing silane coupling agent. The silanol group reacts with the crosslinkable silyl group of the (meth) acrylic resin (d1). By such a reaction, the polymer of the (meth) acrylic resin (d1) and the reaction product of the epoxy resin (a) and the modified aliphatic amine compound (b) are cross-linked, and the strength of the coating film formed is further increased. improves.
 アミノ基含有シランカップリング剤としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-ウレイドプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン等が挙げられる。
 アミノ基含有シランカップリング剤の具体例としては、KBE-903(3-アミノプロピルトリエトキシシラン)、KBM-602(N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン)及びKBM-603(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)(以上、全て信越化学工業株式会社製)等を挙げることができる。
Examples of amino group-containing silane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, and γ-aminopropylmethyl. Diethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2 -Aminoethyl) aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropyltriisopropoxysilane, γ-ureidopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl- γ-amino B pills trimethoxysilane, N- vinylbenzyl -γ- aminopropyltriethoxysilane, and the like.
Specific examples of amino group-containing silane coupling agents include KBE-903 (3-aminopropyltriethoxysilane), KBM-602 (N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane) and KBM- 603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) (all of which are manufactured by Shin-Etsu Chemical Co., Ltd.).
 エポキシ基含有シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられる。
 エポキシ基含有シランカップリング剤の具体例としては、KBM-403(3-グリシドキシプロピルトリメトキシシラン)、KBE-403(3-グリシドキシプロピルトリエトキシシラン)、KBE-402(3-グリシドキシプロピルメチルジメトキシシラン)、KBM-303(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン)、KBM-402(3-グリシドキシプロピルメチルジエトキシシラン)(以上、全て信越化学工業株式会社製)等を挙げることができる。
Examples of the epoxy group-containing silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxy Cyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like.
Specific examples of the epoxy group-containing silane coupling agent include KBM-403 (3-glycidoxypropyltrimethoxysilane), KBE-403 (3-glycidoxypropyltriethoxysilane), KBE-402 (3-glycidyl). Sidoxypropylmethyldimethoxysilane), KBM-303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane), KBM-402 (3-glycidoxypropylmethyldiethoxysilane) (all above, Shin-Etsu Chemical) And the like).
 本実施形態に係る塗料組成物の固形分におけるシランカップリング剤(e1)の含有量は、0.1~20質量%であることが好ましい。塗料組成物の固形分におけるシランカップリング剤(e)の含有量が、0.1質量%未満の場合、形成される塗膜の透明性が低下する傾向にある。塗料組成物の固形分におけるシランカップリング剤(e1)の含有量が、20質量%を超える場合、塗料組成物の硬化性が低下する傾向にある。 The content of the silane coupling agent (e1) in the solid content of the coating composition according to this embodiment is preferably 0.1 to 20% by mass. When content of the silane coupling agent (e) in solid content of a coating composition is less than 0.1 mass%, it exists in the tendency for the transparency of the coating film formed to fall. When the content of the silane coupling agent (e1) in the solid content of the coating composition exceeds 20% by mass, the curability of the coating composition tends to decrease.
 本実施形態に係る塗料組成物は、その機能を阻害しない範囲内で、必要に応じて上記成分以外の添加剤を含有してもよい。添加剤としては、粘性調整剤、縮合触媒、紫外線吸収性化合物、酸化防止剤、硬化性調整剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、有色粒子、消泡剤、発泡剤、防蟻剤、防かび剤等が挙げられる。 The coating composition according to the present embodiment may contain additives other than the above components as necessary within a range that does not impede its function. Additives include viscosity modifiers, condensation catalysts, UV absorbing compounds, antioxidants, curability modifiers, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, colored particles, Examples include an antifoaming agent, a foaming agent, an antifungal agent, and an antifungal agent.
 本実施形態に係る中塗塗料組成物及び上塗塗料組成物は、エポキシ樹脂(a)を含有する主剤と変性脂肪族アミン化合物(b)を含有する硬化剤とを含む二液混合形の塗料組成物である。二液混合形塗料組成物であることで、塗り替えを実施する現場での作業性が向上する。
 なお、上塗塗料組成物において、シランカップリング剤(e1)は、シランカップリング剤の有する官能基の種類に応じて、主剤と硬化剤の一方に適宜配合される。具体的には、シランカップリング剤(e1)としてエポキシ含有シランカップリング剤を用いる場合、変性脂肪族アミン化合物(b)とシランカップリング剤(e1)とが硬化剤中で反応してしまうのを避けるために、シランカップリング剤(e1)は主剤に配合される。一方、シランカップリング剤(e1)としてアミノ基含有シランカップリング剤を用いる場合、エポキシ樹脂(a)とシランカップリング剤(e1)とが主剤中で反応してしまうのを避けるため、シランカップリング剤(e1)は硬化剤に配合される。
The intermediate coating composition and the top coating composition according to this embodiment are a two-component mixed coating composition including a main agent containing an epoxy resin (a) and a curing agent containing a modified aliphatic amine compound (b). It is. By being a two-component mixed paint composition, workability at the site where repainting is performed is improved.
In the top coating composition, the silane coupling agent (e1) is appropriately blended into one of the main agent and the curing agent according to the type of functional group of the silane coupling agent. Specifically, when an epoxy-containing silane coupling agent is used as the silane coupling agent (e1), the modified aliphatic amine compound (b) and the silane coupling agent (e1) react in the curing agent. In order to avoid this, the silane coupling agent (e1) is blended in the main agent. On the other hand, when an amino group-containing silane coupling agent is used as the silane coupling agent (e1), in order to prevent the epoxy resin (a) and the silane coupling agent (e1) from reacting in the main agent, A ring agent (e1) is mix | blended with a hardening | curing agent.
 上記二液混合形の塗料組成物における、主剤及び硬化剤の調製方法としては、特別の方法を必要とせず、当業者において通常用いられる方法を使用することができる。
 例えば主剤の調製方法としては、樹脂ビヒクル成分、すなわち、架橋性シリル基を少なくとも1個を有する(メタ)アクリル樹脂(d1)とエポキシ樹脂(a)を予めワニスにしたものに、上記添加剤等のその他の成分を混入し、ディスパー、ボールミル、S.G.ミル、ロールミル等の分散機で分散することにより調製する方法を挙げることができる。
 また、例えば硬化剤の調製方法としては、変性脂肪族アミン化合物(b)と、シランカップリング剤(e1)と、更に必要に応じて有機溶媒を混入し、ディスパー、ボールミル、S.G.ミル、ロールミル等の分散機で分散することにより調製する方法を挙げることができる。
As a method for preparing the main agent and the curing agent in the two-component mixed coating composition, a special method is not required, and a method commonly used by those skilled in the art can be used.
For example, as a preparation method of the main agent, the above additives and the like are added to a resin vehicle component, that is, a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and an epoxy resin (a) in advance as a varnish. Of other components, disperse, ball mill, S. G. The method of preparing by disperse | distributing with dispersers, such as a mill and a roll mill, can be mentioned.
Further, for example, as a method for preparing a curing agent, a modified aliphatic amine compound (b), a silane coupling agent (e1), and an organic solvent as necessary are mixed. G. The method of preparing by disperse | distributing with dispersers, such as a mill and a roll mill, can be mentioned.
<下塗層、中塗層、上塗層の形成>
 本実施形態に係る下塗層、中塗層及び上塗層は、それぞれ混合工程と、塗装工程と、硬化工程と、を有する。なお、下塗工程において一液形塗料を用いる場合、混合工程は有さない。
 混合工程では、上記実施形態における主剤及び硬化剤を混合して混合塗料組成物(塗料組成物)を得る。
<Formation of undercoat layer, intermediate coat layer, and overcoat layer>
The undercoat layer, the intermediate coat layer, and the overcoat layer according to the present embodiment each have a mixing process, a coating process, and a curing process. In the case of using a one-component paint in the undercoating step, there is no mixing step.
In the mixing step, the main agent and the curing agent in the above embodiment are mixed to obtain a mixed coating composition (coating composition).
 混合工程における上記二液混合形の塗料組成物の主剤及び硬化剤の混合方法は特に限定されない。混合方法としては、主剤及び硬化剤を配合し、ハンドミキサーやスタティックミキサーで混合する方法が挙げられる。 The mixing method of the main agent and the curing agent of the two-component mixed coating composition in the mixing step is not particularly limited. Examples of the mixing method include a method in which the main agent and the curing agent are blended and mixed with a hand mixer or a static mixer.
 主剤及び硬化剤の配合比は、全固形分換算で70/30~90/10とすることが好ましい。このような配合比とすることで、塗膜の形成が円滑に進行する。
 なお、主剤及び硬化剤以外の第三成分を必要に応じて添加してもよい。
The mixing ratio of the main agent and the curing agent is preferably 70/30 to 90/10 in terms of the total solid content. By setting it as such a compounding ratio, formation of a coating film advances smoothly.
In addition, you may add 3rd components other than a main ingredient and a hardening | curing agent as needed.
 本実施形態において、塗料組成物の全固形分濃度は、80~100質量%であることが好ましい。塗料組成物の全固形分濃度が、80質量%未満であると、混合塗料組成物の構造粘性が低下する傾向にある。また、塗料組成物が(メタ)アクリル樹脂(d1)を含有する場合には、(メタ)アクリル樹脂(d1)のシリル基と反応する官能基を有さない有機溶剤を、混合塗料組成物に添加して、適正な粘度に調整することも可能である。その具体例としては、メタノール、エタノール、エチレングリコールモノメチルエーテル、トルエン、キシレン等が挙げられる。 In this embodiment, the total solid concentration of the coating composition is preferably 80 to 100% by mass. When the total solid content concentration of the coating composition is less than 80% by mass, the structural viscosity of the mixed coating composition tends to decrease. When the coating composition contains the (meth) acrylic resin (d1), an organic solvent having no functional group that reacts with the silyl group of the (meth) acrylic resin (d1) is added to the mixed coating composition. It is also possible to adjust to an appropriate viscosity by adding. Specific examples thereof include methanol, ethanol, ethylene glycol monomethyl ether, toluene, xylene and the like.
 塗装工程では、各塗料組成物を、コテ又はローラーを用いて、硬化後の合計複層膜厚(目標乾燥膜厚)が300μm~1,500μmとなるように、コンクリート構造物の表面に塗装する。本実施形態において、コテ又はローラーを用いて手塗りによって塗装するので、コンクリート構造物の設置された現場においても簡便に作業を行うことができる。本実施形態では、下塗塗料組成物の塗装工程においては刷毛又はローラーを用い、中塗塗料組成物及び上塗塗料組成物の塗装工程においてはコテを用いることが好ましい。 In the painting process, each coating composition is coated on the surface of the concrete structure using a trowel or a roller so that the total multilayer film thickness (target dry film thickness) after curing is 300 μm to 1,500 μm. . In this embodiment, since it coats by hand painting using a trowel or a roller, it can work simply also in the field where the concrete structure was installed. In this embodiment, it is preferable to use a brush or a roller in the coating process of the undercoat coating composition, and to use a trowel in the coating process of the intermediate coating composition and the top coating composition.
 塗装工程において、各塗料組成物を、硬化後の合計膜厚が300μm未満となるように塗装した場合、コンクリート構造物の防食及び保護効果が低くなってしまう。一方、混合塗料組成物を、硬化後の膜厚が1,500μmを超えるように塗装した場合、塗膜の形成のために使用する塗料組成物の量が多くなるのでコストが高くなる上に、塗膜の透明性が低下する。更に、垂直面において塗料流れ(ダレ)が生じるため、塗装作業性が著しく低下する。硬化後の合計膜厚が700μm~1,300μmとなるように塗装することがより好ましい。 In the painting process, when each coating composition is coated such that the total film thickness after curing is less than 300 μm, the corrosion protection and protective effect of the concrete structure is lowered. On the other hand, when the mixed coating composition is applied so that the film thickness after curing exceeds 1,500 μm, the amount of the coating composition used for forming the coating film increases, so the cost increases. The transparency of the coating film decreases. Furthermore, since paint flow (sag) occurs on the vertical surface, the paint workability is significantly reduced. It is more preferable to apply the coating so that the total film thickness after curing is 700 μm to 1,300 μm.
 硬化工程では、コンクリート構造物の表面に塗装された各塗料組成物を硬化させて透明塗膜を形成させる。硬化工程における、混合塗料組成物の硬化方法は特に限定されないが、通常コンクリート構造物は屋外に設置されているので、自然条件で放置することにより塗膜を形成させる。 In the curing process, each coating composition applied to the surface of the concrete structure is cured to form a transparent coating film. Although the curing method of the mixed coating composition in the curing step is not particularly limited, since a concrete structure is usually installed outdoors, a coating film is formed by leaving it under natural conditions.
 本実施形態においては、下塗塗料組成物の塗装及び硬化を行うことで下塗層を形成し、その後更に中塗塗料組成物の塗装及び硬化を行うことで中塗層を形成し、その後更に上塗塗料組成物の塗装及び硬化を行うことで上塗層を形成して複層塗膜を形成する。 In this embodiment, the undercoat layer is formed by applying and curing the undercoat paint composition, and then the intermediate coat layer is formed by further applying and curing the intermediate coat composition, and then further the overcoat paint. By applying and curing the composition, an overcoat layer is formed to form a multilayer coating film.
 また、本実施形態においては、複層塗膜形成前の前記コンクリート基材表面上のL値と、基材表面上に複層塗膜を形成した後の複層塗膜表面上のL値との差(△L)が-2.0~4.0となるように、複層塗膜を形成する。△Lが上記範囲内にあることで、コンクリート表面に生じた亀裂や膨れ及び欠損等を、複層塗膜形成後であっても目視で発見することが容易となる。△Lが4.0を超えると白色度が増して複層塗膜がコンクリート基材を隠ぺいしてしまい、基材表面に生じた亀裂や膨れ及び欠損等の状態を目視で判定することが困難になる。また、△Lが-2.0を超えると、基材表面が濡れ色になる現象が生じるため、基材表面に生じた亀裂や膨れ及び欠損等の状態を目視で確認することが困難になる。△Lは、-0.5~2.0の範囲内であることがより好ましい。 In the present embodiment, the L value on the surface of the concrete base material before the formation of the multilayer coating film, and the L value on the surface of the multilayer coating film after forming the multilayer coating film on the substrate surface A multilayer coating film is formed so that the difference (ΔL) is −2.0 to 4.0. When ΔL is within the above range, it becomes easy to visually detect cracks, blisters, and defects generated on the concrete surface even after the formation of the multilayer coating film. When △ L exceeds 4.0, the degree of whiteness increases and the multi-layer coating film conceals the concrete base material, making it difficult to visually determine the state of cracks, blisters and defects on the surface of the base material. become. Further, if ΔL exceeds −2.0, a phenomenon that the surface of the base material becomes wet color occurs, so that it is difficult to visually confirm the state of cracks, blisters and defects generated on the surface of the base material. . ΔL is more preferably in the range of −0.5 to 2.0.
 本実施形態に係る複層塗膜は、予防保全をする目的で、建造直後のコンクリート構造物に対して適用してもよいし、補修をする目的で、既に亀裂の入ってしまったコンクリート構造物に対して適用してもよい。また、工場等で予め製造されたいわゆるプレキャストコンクリート製品に適用してもよい。 The multilayer coating film according to this embodiment may be applied to a concrete structure immediately after construction for the purpose of preventive maintenance, or a concrete structure that has already been cracked for the purpose of repair. You may apply to. Moreover, you may apply to what is called a precast concrete product manufactured beforehand at the factory.
 上記の塗料組成物を用いて形成され且つ硬化後の膜厚が1,000μmである複層塗膜の酸素透過度は、0.05mg/(cm2・day)以下である。硬化後の膜厚が1000μmである複層塗膜の酸素透過度が0.05mg/(cm2・day)を超える場合、無機粒子(c1)の含有量が多くなるので形成される塗膜の透明性が損なわれる。
 酸素透過度の測定は、製科研式フィルム酸素透過率計を用いて行うことができる。
The oxygen permeability of a multilayer coating film formed using the coating composition and having a cured film thickness of 1,000 μm is 0.05 mg / (cm 2 · day) or less. When the oxygen permeability of a multilayer coating film having a thickness of 1000 μm after curing exceeds 0.05 mg / (cm 2 · day), the content of the inorganic particles (c1) increases, so the coating film formed is transparent. Sexuality is impaired.
The oxygen permeability can be measured using a Seikaken type film oxygen permeability meter.
 上記の塗料組成物を用いて形成され且つ硬化後の膜厚が300μmである複層塗膜の隠ぺい率は、45%以下である。硬化後の膜厚が300μmである複層塗膜の隠ぺい率が45%を超える場合には、塗膜の透明性が損なわれるので、コンクリート構造物の表面の状態を観察するのが困難になる。なお、硬化後の膜厚が300μmである塗膜の隠ぺい率は5~45%であることが好ましい。硬化後の膜厚が300μmである塗膜の隠ぺい率が5%未満である場合には、実質的に無機粒子(c1)の配合量が少なくなるため、塗膜の酸素透過度が大きくなる傾向にある。 The concealment rate of a multilayer coating film formed using the above coating composition and having a film thickness after curing of 300 μm is 45% or less. When the concealment rate of the multilayer coating film having a thickness of 300 μm after curing exceeds 45%, it becomes difficult to observe the surface state of the concrete structure because the transparency of the coating film is impaired. . The concealment rate of the coating film having a thickness of 300 μm after curing is preferably 5 to 45%. When the concealment ratio of the coating film having a thickness of 300 μm after curing is less than 5%, the amount of inorganic particles (c1) is substantially reduced, so that the oxygen permeability of the coating film tends to increase. It is in.
 塗膜の隠ぺい率は以下のような方法で求めることができる。
 まず、JIS K 5600-4-1 (b)に準拠した、塗料の一般的な試験方法に用いる隠ぺい率試験紙(日本テストパネル株式会社製)に、塗料組成物を塗装する。次いで、23℃で7日間室温放置した試験体について、色彩色差計(コニカミノルタ社製、CR―400)を用いて、白色部(Y)と黒色部(Y)における三刺激値Yを測定し、隠ぺい率Y/Yを百分率で算出する。
The concealment rate of the coating film can be determined by the following method.
First, the coating composition is applied to a concealment rate test paper (manufactured by Nippon Test Panel Co., Ltd.) used in a general coating test method in accordance with JIS K 5600-4-1 (b). Next, for the test specimens that were left at room temperature for 7 days at 23 ° C., the tristimulus value Y in the white part (Y W ) and the black part (Y B ) was obtained using a color difference meter (CR-400, manufactured by Konica Minolta Co., Ltd.). Measure and calculate the concealment rate Y B / Y W as a percentage.
 なお、本実施形態における透明塗膜の「透明」とは、塗膜を介して一方の側から、他方側の状態や物体を認識できるものであればよく、他方側が鮮明に認識できることを必要とするものではない。透明塗膜は、それを介して一方側から他方側の物体の状態を視認できるものであれば、着色していてもよいし、濁っていてもよい。 In addition, “transparent” of the transparent coating film in the present embodiment is not limited as long as it can recognize the state and the object on the other side from one side through the coating film, and requires that the other side can be clearly recognized. Not what you want. The transparent coating film may be colored or cloudy as long as the state of the object on the other side can be visually recognized through the transparent coating film.
 以上、本実施形態における複層塗膜によれば、以下の効果が奏される。
 (1)本実施形態の下塗層は、アクリル樹脂、ウレタン樹脂、ウレア樹脂、又はこれらの樹脂の変性組成物のうち少なくともいずれか1種を含む下塗塗料組成物により形成するものであるため、下塗層の形成によってコンクリート表面が濡れ色とならない。また、基材表面上のL値と、コンクリート基材表面上に複層塗膜を形成した後の複層塗膜表面上のL値との差が-2.0~4.0、好ましくは-0.5~2.0となるように複層塗膜が形成されるため、コンクリート基材表面が濡れ色とならず、良好な視認性が確保される。
 (2)本実施形態の複層塗膜は、膜厚が300μm~1,500μm、好ましくは700μm~1,300μmとなるように形成されるため、コンクリート基材の保護効果を維持しつつ、十分な透明性が得られる。
 (3)本実施形態の上塗層は、芳香環を有さないエポキシ樹脂(a1)と、変性脂肪族アミン化合物(b1)と、扁平状の無機粒子(c1)と、好ましくは架橋性シリル基を少なくとも1個有する(メタ)アクリル樹脂(d1)と、シランカップリング剤(e1)と、を更に含む上塗塗料組成物により形成されるため、上塗層は良好な酸素遮断性及び透明性を有する。
 (4)本実施形態の上塗層に用いられる無機粒子(c1)の平均アスペクト比は、20~1,000であるため、形成される上塗層はより良好な酸素遮断性及び透明性を有する。
 (5)本実施形態の中塗層は、芳香環を有さないエポキシ樹脂(a2)と、変性脂肪族アミン化合物(b2)と、を含む中塗塗料組成物により形成されるため、形成される中塗層は良好な透明性を有する。
As mentioned above, according to the multilayer coating film in this embodiment, the following effects are produced.
(1) Since the undercoat layer of this embodiment is formed of an undercoat paint composition containing at least one of acrylic resin, urethane resin, urea resin, or modified compositions of these resins, The surface of the concrete does not become wet color due to the formation of the primer layer. The difference between the L value on the surface of the base material and the L value on the surface of the multi-layer coating film after forming the multi-layer coating film on the concrete base material surface is −2.0 to 4.0, preferably Since the multilayer coating film is formed so as to be −0.5 to 2.0, the surface of the concrete base material does not become a wet color, and good visibility is ensured.
(2) The multilayer coating film of the present embodiment is formed to have a film thickness of 300 μm to 1,500 μm, preferably 700 μm to 1,300 μm, so that the protective effect of the concrete base material is maintained and sufficient Transparency is obtained.
(3) The topcoat layer of this embodiment comprises an epoxy resin (a1) having no aromatic ring, a modified aliphatic amine compound (b1), flat inorganic particles (c1), and preferably a crosslinkable silyl The top coat layer has good oxygen barrier properties and transparency because it is formed by a top coat composition further comprising (meth) acrylic resin (d1) having at least one group and silane coupling agent (e1). Have
(4) Since the average aspect ratio of the inorganic particles (c1) used in the topcoat layer of this embodiment is 20 to 1,000, the formed topcoat layer has better oxygen barrier properties and transparency. Have.
(5) The intermediate coating layer of this embodiment is formed because it is formed of an intermediate coating composition containing the epoxy resin (a2) having no aromatic ring and the modified aliphatic amine compound (b2). The intermediate coating layer has good transparency.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[実施例1~31、比較例1~3]
 下塗塗料組成物として、それぞれ表1に示す樹脂を水系樹脂(例えばVONCOAT 40-418EF(DIC社製))であれば希釈液として水を、溶剤系樹脂であればキシレンを用いて、樹脂:希釈液=1:1にて希釈し、卓上ディスパーで十分に攪拌したものを用いた。
 エポキシ樹脂(a2)としてのエポライト4000(共栄社化学株式会社製)を、それぞれ表1に示した固形分含有量(単位:質量部)用いた。更に、キシレンを添加して全体の固形分濃度が90質量%となるように調整して、卓上ディスパーで十分に攪拌することで中塗塗料組成物の主剤を得た。
 変性脂肪族アミン化合物(b2)としてのトーマイド225X(株式会社T&K TOKA製)に、キシレンを添加することで固形分濃度が90質量%となるように調整して、卓上ディスパーで十分に攪拌することで中塗塗料組成物の硬化剤を得た。
 エポキシ樹脂(a1)としてのエポライト4000(共栄社化学株式会社製)と、無機粒子(c1)としてのRCF-600(ガラスフレーク、平均アスペクト比120、日本板硝子社製)とを、それぞれ表1に示した固形分含有量(単位:質量部)となるように配合した。更に、キシレンを添加して全体の固形分濃度が90質量%となるように調整して、卓上ディスパーで十分に攪拌することで上塗塗料組成物の主剤を得た。
 変性脂肪族アミン化合物(b1)としてのトーマイド225X(株式会社T&K TOKA製)に、キシレンを添加することで固形分濃度が90質量%となるように調整して、卓上ディスパーで十分に攪拌することで上塗塗料組成物の硬化剤を得た。
 なお、実施例9~11においてはシランカップリング剤(e1)を表1に示した固形分含有量(単位:質量部)となるように更に配合した。シランカップリング剤(e1)のうち、アミノ基含有シランカップリング剤は硬化剤に配合し、エポキシ基含有シランカップリング剤は主剤に配合した。
[Examples 1 to 31, Comparative Examples 1 to 3]
As the undercoating composition, the resin shown in Table 1 is water-based resin (for example, VONCOAT 40-418EF (manufactured by DIC)), water is used as a diluent, and solvent-based resin is xylene. The solution was diluted by 1: 1 and sufficiently stirred with a desktop disper.
Epolite 4000 (manufactured by Kyoeisha Chemical Co., Ltd.) as the epoxy resin (a2) was used for the solid content (unit: parts by mass) shown in Table 1, respectively. Furthermore, the main component of the intermediate coating composition was obtained by adding xylene to adjust the total solid content concentration to 90% by mass and sufficiently stirring with a desktop disper.
Adjust the solid content concentration to 90 mass% by adding xylene to tomide 225X (manufactured by T & K TOKA Co., Ltd.) as the modified aliphatic amine compound (b2), and sufficiently stir with a desktop disper Thus, a curing agent for the intermediate coating composition was obtained.
Table 1 shows Epolite 4000 (produced by Kyoeisha Chemical Co., Ltd.) as the epoxy resin (a1) and RCF-600 (glass flake, average aspect ratio 120, produced by Nippon Sheet Glass Co., Ltd.) as the inorganic particles (c1). The solid content (unit: part by mass) was blended. Further, xylene was added to adjust the total solid content concentration to 90% by mass, and the mixture was sufficiently stirred with a desktop disper to obtain the main component of the top coating composition.
Adjust the solid content concentration to 90 mass% by adding xylene to tomide 225X (manufactured by T & K TOKA Co., Ltd.) as the modified aliphatic amine compound (b1), and sufficiently stir with a desktop disper Thus, a curing agent for the top coating composition was obtained.
In Examples 9 to 11, the silane coupling agent (e1) was further blended so as to have the solid content (unit: parts by mass) shown in Table 1. Of the silane coupling agent (e1), the amino group-containing silane coupling agent was blended in the curing agent, and the epoxy group-containing silane coupling agent was blended in the main agent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例においては、エポキシ樹脂(a)として、エポライト4000(共栄社化学株式会社製)、ST-3000(新日鉄住金化学株式会社製)を用いた。また、芳香族部分を含むエポキシ樹脂として、エピコート1001 X75(ジャパンエポキシレジン株式会社製)を用いた。また、(メタ)アクリル樹脂(d1)として、TAポリマーSA120S(株式会社カネカ製)、を用いた。また、変性脂肪族アミン化合物(b)として、フジキュアー5420F(株式会社T&K TOKA製)を用いた。また、変性芳香族アミン化合物として、JERキュアW(三菱化学株式会社社製)を用いた。また、無機粒子(c1)として、ガラスフレークA(RCF-600、平均アスペクト比120、平均厚さ5μm、粒子径150~1,700μmの成分が占める割合が80%以上)、ガラスフレークB(RCF-2300、平均アスペクト比150、平均厚さ2μm、粒子径150~1,700μmの成分が占める割合が85%以下)、ガラスフレークC(RCF-160、平均アスペクト比32、平均厚さ5μm、粒子径45~300μmの成分が占める割合が65%以上)、ガラスフレークD(RCF-015、平均アスペクト比3、平均厚さ5μm、粒子径45μm以下の成分が占める割合が88%以上)(以上、全て日本板硝子株式会社製)、を用いた。また、二酸化チタン(TI-PURE R-706、デュポン社製)を用いた。また、シランカップリング剤(e1)として、KBM-602(N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン)、KBM-603(N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン)、KBM-402(3-グリシドキシプロピルメチルジエトキシシラン)を用いた。 In the examples and comparative examples, Epolite 4000 (manufactured by Kyoeisha Chemical Co., Ltd.) and ST-3000 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) were used as the epoxy resin (a). Moreover, Epicoat 1001 X75 (made by Japan Epoxy Resin Co., Ltd.) was used as an epoxy resin containing an aromatic part. Moreover, TA polymer SA120S (made by Kaneka Corporation) was used as the (meth) acrylic resin (d1). Further, as the modified aliphatic amine compound (b), Fuji Cure 5420F (manufactured by T & K TOKA Co., Ltd.) was used. Moreover, JER cure W (made by Mitsubishi Chemical Corporation) was used as a modified aromatic amine compound. In addition, as the inorganic particles (c1), glass flake A (RCF-600, average aspect ratio 120, average thickness 5 μm, proportion of particles 150 to 1,700 μm accounted for 80% or more), glass flake B (RCF -2300, average aspect ratio 150, average thickness 2 μm, component ratio of particle diameter 150-1700 μm accounted for 85% or less), glass flake C (RCF-160, average aspect ratio 32, average thickness 5 μm, particles The proportion of components having a diameter of 45 to 300 μm is 65% or more), glass flake D (RCF-015, average aspect ratio 3, average thickness 5 μm, the proportion of components having a particle size of 45 μm or less is 88% or more) (above, All manufactured by Nippon Sheet Glass Co., Ltd.). Further, titanium dioxide (TI-PURE R-706, manufactured by DuPont) was used. Further, as silane coupling agents (e1), KBM-602 (N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane), KBM-603 (N-2- (aminoethyl) -3-aminopropyl) Trimethoxysilane) and KBM-402 (3-glycidoxypropylmethyldiethoxysilane) were used.
 続いて、表1中の実施例1~31及び比較例1~3に記載された各塗料組成物(主剤及び硬化剤を混合した試験塗液)を用い、以下の方法で複層塗膜を作成した。
 縦70mm×横70mm×厚み20mmのモルタル板(ISO準拠,日本テストパネル株式会社製)に、実施例1~31及び比較例1~3で得られた混合塗料組成物(試験塗液)を、複層膜厚が目標となる乾燥膜厚となるように、下塗層は刷毛、中塗層及び上塗層はコテにて塗装した。また、それぞれの層の塗装間隔を1日として塗装した。
 実施例1~5、12~14、17~31及び比較例1~3の混合塗料組成物によって得られた硬化後の複層塗膜の膜厚は表1に示したように1000μmであった。
 実施例6~11、15及び16の混合塗料組成物によって得られた硬化後の複層塗膜の膜厚は、表1に示したように350μm、1450μm、650μm、750μm、1250μm、1350μm、250μm、1600μmであった。
 上記方法で得られた塗料組成物又は形成した複層塗膜を用いて下記の評価を行った。結果を表1に示す。
Subsequently, using each coating composition described in Examples 1 to 31 and Comparative Examples 1 to 3 in Table 1 (test coating liquid in which the main agent and curing agent were mixed), a multilayer coating film was formed by the following method. Created.
The mixed coating compositions (test coating liquids) obtained in Examples 1 to 31 and Comparative Examples 1 to 3 were applied to a mortar plate (ISO compliant, manufactured by Nippon Test Panel Co., Ltd.) having a length of 70 mm, a width of 70 mm, and a thickness of 20 mm. The undercoat layer was painted with a brush, and the intermediate coat layer and the top coat layer were coated with a trowel so that the multilayer film thickness would be the target dry film thickness. Moreover, the coating interval of each layer was applied as 1 day.
As shown in Table 1, the film thickness of the multilayer coating film after curing obtained by the mixed coating compositions of Examples 1 to 5, 12 to 14, 17 to 31 and Comparative Examples 1 to 3 was 1000 μm. .
As shown in Table 1, the film thicknesses of the multilayer coating films obtained by the mixed coating compositions of Examples 6 to 11, 15 and 16 were 350 μm, 1450 μm, 650 μm, 750 μm, 1250 μm, 1350 μm, 250 μm. 1600 μm.
The following evaluation was performed using the coating composition obtained by the above method or the formed multilayer coating film. The results are shown in Table 1.
<濡れ色評価(△L、目視)>
 複層塗膜が形成された試験体を、23℃で7日間室温養生、及び、5℃で7日間室温養生したのち、それぞれの試験体の濡れ色をL*a*b*表色系における明度の差(△L値)により評価した。
 具体的には、塗膜形成前の基材表面(非塗装部分)のL値(Y0)と、塗膜形成後の基材表面(複層塗膜表面)上のL値(Y1)を測定し、塗膜形成前L値と塗膜形成後L値との差を求めることにより△Lを算出した(△L=Y1-Y0)。明度(L値)測定には色彩色差計(コニカミノルタ社製、CR―400)を用いた。
 △Lが-2.0~4.0の範囲内にあるものはコンクリート基材表面が濡れ色とならず、良好な視認性が確保されるため合格とした。
<Wetting color evaluation (ΔL, visual inspection)>
After the test body on which the multilayer coating film was formed was cured at room temperature for 7 days at room temperature and for 7 days at room temperature at 5 ° C., the wet color of each test body was measured in the L * a * b * color system. Evaluation was based on the difference in lightness (ΔL value).
Specifically, the L value (Y0) of the substrate surface (non-painted part) before coating film formation and the L value (Y1) on the substrate surface (multilayer coating film surface) after coating film formation are measured. ΔL was calculated by calculating the difference between the L value before coating film formation and the L value after coating film formation (ΔL = Y1−Y0). A color difference meter (manufactured by Konica Minolta, CR-400) was used for lightness (L value) measurement.
When ΔL is in the range of -2.0 to 4.0, the concrete substrate surface did not become wet color, and good visibility was ensured.
<塗装時の隠ぺい率(塗膜の透明性)>
 JIS K 5600-4-1 (b)に準拠した、塗料の一般的な試験方法に用いる隠ぺい率試験紙(日本テストパネル株式会社製)に、実施例1~29及び比較例1~3で得られた混合塗料組成物(試験塗液)を、ローラー及びコテにて塗装した。なお、塗装する混合塗料組成物の量は、複層塗膜の乾燥膜厚(硬化後の膜厚)がそれぞれ表1に示す膜厚となる量とした。
 次いで、23℃で7日間室温放置することで複層塗膜を形成させた試験体について、色彩色差計(コニカミノルタ社製、CR―400)を用いて、白色部(YW)と黒色部(YB)における三刺激値Yを測定し、隠ぺい率YB/YWを百分率で算出した。当該隠ぺい率の結果を塗膜の透明性として評価した。結果を表1に示す。
 YB/YWの値が小さいほど塗膜の透明性が高い。YB/YWは、55以下が好ましく、45以下がより好ましい。一方、YB/YWが55を超える塗膜は透明性が不良で、コンクリート構造物の表面の状態の変化(亀裂の発生等)を目視で観察することが困難である。
<Concealment rate during painting (transparency of coating film)>
Obtained in Examples 1 to 29 and Comparative Examples 1 to 3 on concealment rate test paper (manufactured by Nippon Test Panel Co., Ltd.) used in a general coating test method in accordance with JIS K 5600-4-1 (b). The obtained mixed coating composition (test coating liquid) was applied with a roller and a trowel. In addition, the quantity of the mixed coating composition to apply | coat was made into the quantity from which the dry film thickness (film thickness after hardening) of a multilayer coating film becomes a film thickness shown in Table 1, respectively.
Subsequently, about the test body which formed the multilayer coating film by leaving at room temperature for 7 days at 23 degreeC, using a color difference meter (the Konica Minolta company make, CR-400), a white part (YW) and a black part ( The tristimulus value Y in YB) was measured, and the concealment rate YB / YW was calculated as a percentage. The result of the concealment rate was evaluated as the transparency of the coating film. The results are shown in Table 1.
The smaller the value of YB / YW, the higher the transparency of the coating film. YB / YW is preferably 55 or less, and more preferably 45 or less. On the other hand, the coating film with YB / YW exceeding 55 has poor transparency, and it is difficult to visually observe the change in the state of the surface of the concrete structure (such as the occurrence of cracks).
<酸素透過度>
 テフロン(登録商標)板上に離型紙を敷き、実施例1~29及び比較例1~3で得られた混合塗料組成物を複層塗膜の乾燥膜厚(硬化後の膜厚)がそれぞれ表1に示す膜厚となるよう塗装し、乾燥後、離型紙を剥がすことで遊離塗膜を得た。上記遊離塗膜は塗装後、28日間、温度23℃、相対湿度50%で養生した。酸素透過度の測定は、製科研式フィルム酸素透過率計を用いて、下記の手順で行なった。算出された酸素透過度を表1に示す。
1.遊離塗膜の表面側に白金電極(陰極)を密着させた。
2.電極セル中に0.5N塩化カルシウム溶液を5mL入れた電極を、蒸留水を満たしたビーカーの中に入れた。
3.蒸留水を満たしたビーカーの中へ電極を入れた。
4.蒸留水中に窒素ガスを200mL/minの流速で吹き込み、酸素ガスを完全に追い出すことで記録計電流を安定させた後、記録計のゼロ点を合わせた。
5.蒸留水中に酸素ガスを200mL/minの流速で吹き込み、酸素の透過量が一定となった時の電流値を読み取り、酸素透過度(単位:mg/(cm2・day))を算出した。
<Oxygen permeability>
A release paper is laid on a Teflon (registered trademark) board, and the mixed coating compositions obtained in Examples 1 to 29 and Comparative Examples 1 to 3 have a dry film thickness (film thickness after curing) of the multilayer coating film, respectively. The coating film was coated so as to have a film thickness shown in Table 1, and after drying, the release paper was peeled off to obtain a free coating film. The free coating film was cured at a temperature of 23 ° C. and a relative humidity of 50% for 28 days after coating. The measurement of oxygen permeability was performed by the following procedure using a Seikaken type film oxygen permeability meter. The calculated oxygen permeability is shown in Table 1.
1. A platinum electrode (cathode) was adhered to the surface side of the free coating film.
2. An electrode containing 5 mL of 0.5 N calcium chloride solution in an electrode cell was placed in a beaker filled with distilled water.
3. The electrode was placed in a beaker filled with distilled water.
4). Nitrogen gas was blown into distilled water at a flow rate of 200 mL / min, oxygen gas was completely expelled to stabilize the recorder current, and then the zero point of the recorder was adjusted.
5). Oxygen gas was blown into distilled water at a flow rate of 200 mL / min, and the current value when the oxygen permeation amount became constant was read to calculate the oxygen permeability (unit: mg / (cm 2 · day)).
<ひび割れ視認性(ひび割れ目視評価)>
 40mm×120mm×10mmのU溝ありモルタル板(ISO準拠,日本テストパネル株式会社製)をU字に沿って1/2に切断した。次いで、1/2に割った板を鋼あるいはステンレス板上で突合せ、側面全周を粘着テープで巻いて固定し試験体を作成した。これらの試験体に実施例1~31及び比較例1~3で得られた混合塗料組成物を複層塗膜の乾燥膜厚(硬化後の膜厚)がそれぞれ表1に示す膜厚となるよう塗装した。塗膜乾燥後、サンプル表面を以下の基準に従って目視により評価した。塗装後、コンクリート躯体の表面素地を目視で確認するためには、下記評価が2以上である必要がある。容易に目視点検を行うためには3であることが好ましく、4であることが更に好ましい。1となると、コンクリート構造物の表面の状態の変化(亀裂の発生等)を目視で観察することが困難となる。従って2以上を合格とした。結果を表1に示す。
(評価基準)
4:無塗装の時と同様に容易に素地、ひびを目視できる。
3:完全に透明ではないが、容易に素地、ひびを目視できる。
2:塗膜による隠ぺいは多少発生するが、素地、ひびを目視できる。
1:塗膜の隠ぺい、プライマー塗装後の濡れ色によって、素地、ひびの目視が非常に困難。
<Crack visibility (crack visual evaluation)>
A 40 mm × 120 mm × 10 mm mortar plate with U groove (ISO compliant, manufactured by Nippon Test Panel Co., Ltd.) was cut in half along the U-shape. Next, the halved plates were butted on a steel or stainless steel plate, and the entire circumference of the side surface was wound with an adhesive tape and fixed to prepare a test specimen. For these specimens, the mixed coating compositions obtained in Examples 1 to 31 and Comparative Examples 1 to 3 have the dry film thickness (film thickness after curing) of the multilayer coating film as shown in Table 1. I painted like this. After the coating film was dried, the sample surface was visually evaluated according to the following criteria. In order to visually confirm the surface substrate of the concrete frame after painting, the following evaluation needs to be 2 or more. In order to perform visual inspection easily, it is preferably 3, and more preferably 4. When it is 1, it becomes difficult to visually observe changes in the state of the surface of the concrete structure (such as the occurrence of cracks). Therefore, 2 or more was considered acceptable. The results are shown in Table 1.
(Evaluation criteria)
4: The substrate and cracks can be easily seen as in the case of no painting.
3: Although not completely transparent, the substrate and cracks are easily visible.
2: Concealment by the coating film occurs to some extent, but the substrate and cracks can be visually observed.
1: It is very difficult to visually check the substrate and cracks due to concealment of the coating film and wet color after primer coating.
<耐候性試験(色差)>
 試験板(70mm×70mm×20mmのモルタル、水:セメント:砂=0.6:1:2)に、実施例1~31及び比較例1~3で得られた混合塗料組成物(試験塗液)を、コテにて塗装した。なお、塗装する混合塗料組成物の量は、表1に記載された目標となる乾燥膜厚(硬化後の膜厚)となる量とした。続いて、試験板表面の塗膜にスーパーUV試験機(アイスーパーテスターSUV-W151、岩崎電気株式会社製)を用いて、波長295~450nm、照度100mW/cm、ブラックパネル温度63±3℃の紫外線を、光源から240nmの距離で照射した。紫外線の照射4時間、結露(イオン交換水シャワーリング)4時間、休止0.1時間のサイクルを、紫外線の照射時間が合計100時間となるまで繰り返した。紫外線を100時間照射した後の、塗膜の黄変度を確認した。
 黄変度は、JIS K 5600 4-1 B法に準拠した隠ぺい率試験紙の白色部に塗膜をあわせ、b値をJIS K 7105(2004年度)にしたがって反射法で測定し、反射前のb値と反射後のb値との差(色差Δb)を求めた。結果を表1に示す。Δbが25未満を合格とした。その中でも20未満が好ましく、10未満であることがより好ましい。
<Weather resistance test (color difference)>
Mixed coating compositions (test coating solutions) obtained in Examples 1-31 and Comparative Examples 1-3 on a test plate (70 mm × 70 mm × 20 mm mortar, water: cement: sand = 0.6: 1: 2) ) Was painted with a trowel. In addition, the quantity of the mixed coating composition to apply | coat was made into the quantity used as the target dry film thickness (film thickness after hardening) described in Table 1. Subsequently, using a Super UV tester (I Super Tester SUV-W151, manufactured by Iwasaki Electric Co., Ltd.) on the coating film on the surface of the test plate, a wavelength of 295 to 450 nm, an illuminance of 100 mW / cm, and a black panel temperature of 63 ± 3 ° C. Ultraviolet rays were irradiated at a distance of 240 nm from the light source. A cycle of 4 hours of UV irradiation, 4 hours of dew condensation (ion-exchange water showering) and 0.1 hour of rest was repeated until the total UV irradiation time reached 100 hours. The degree of yellowing of the coating after irradiation with ultraviolet rays for 100 hours was confirmed.
The degree of yellowing is measured by the reflection method according to JIS K 7105 (fiscal 2004) and the b value measured by the reflection method according to JIS K 5600 4-1 B method. The difference (color difference Δb) between the b value and the b value after reflection was determined. The results are shown in Table 1. If Δb was less than 25, the result was acceptable. Among these, less than 20 is preferable and less than 10 is more preferable.
 実施例1~31と、比較例1、2との比較から、アクリル樹脂、ウレタン樹脂、又はウレア樹脂を下塗層に用いた実施例1~31の複層塗膜は、これらの樹脂を下塗層に用いていない比較例1、2の複層塗膜よりも、複層塗膜形成後の△L値を-2.0~4.0の範囲内とする、すなわち基材が濡れ色とならないようにするために好ましいことが確認された。
 また、実施例1~31と、比較例1~3との比較から、実施例1~31の複層塗膜の方が、比較例1~3の複層塗膜よりも複層塗膜形成後の基材の視認性が良いことが分かった。この結果から、アクリル樹脂、ウレタン樹脂、又はウレア樹脂を下塗塗料組成物に含有させ、且つ複層塗膜形成後の△L値を-2.0~4.0の範囲内とすることで、複層塗膜形成後の基材の視認性が良くなることが確認された。
From the comparison between Examples 1 to 31 and Comparative Examples 1 and 2, the multilayer coating films of Examples 1 to 31 in which acrylic resin, urethane resin, or urea resin was used for the primer layer, The ΔL value after formation of the multilayer coating film is within the range of -2.0 to 4.0, compared with the multilayer coating films of Comparative Examples 1 and 2 that are not used for the coating layer, that is, the substrate has a wet color. It was confirmed that it was preferable in order not to become.
Further, from the comparison between Examples 1 to 31 and Comparative Examples 1 to 3, the multilayer coating film of Examples 1 to 31 was formed more than the multilayer coating film of Comparative Examples 1 to 3. It was found that the visibility of the subsequent substrate was good. From this result, acrylic resin, urethane resin, or urea resin is included in the undercoat coating composition, and the ΔL value after formation of the multilayer coating film is within the range of −2.0 to 4.0, It was confirmed that the visibility of the base material after the multilayer coating film was formed was improved.
 実施例1と、実施例28との比較から、実施例1の塗料組成物の方が、実施例28の塗料組成物よりも形成される塗膜の耐候性が高いことが分かった。この結果から、エポキシ樹脂として芳香環を有さないエポキシ樹脂を上塗塗料組成物に含有させることで、形成される塗膜の耐候性が向上することが確認された。 From comparison between Example 1 and Example 28, it was found that the coating composition of Example 1 had higher weather resistance than the coating composition of Example 28. From this result, it was confirmed that the weather resistance of the formed coating film was improved by including an epoxy resin having no aromatic ring as the epoxy resin in the top coating composition.
 実施例1と、実施例29との比較から、実施例1の塗料組成物の方が、実施例29の塗料組成物よりも形成される塗膜の耐候性が高いことが分かった。この結果から、アミン化合物として変性脂肪族アミン化合物を上塗塗料組成物に含有させることで、形成される塗膜の耐候性が向上することが確認された。 From comparison between Example 1 and Example 29, it was found that the coating composition of Example 1 had higher weather resistance than the coating composition of Example 29. From this result, it was confirmed that the weather resistance of the coating film to be formed is improved by containing the modified aliphatic amine compound as an amine compound in the top coating composition.
 実施例1と、実施例23との比較から、実施例1の塗料組成物の方が、実施例23の塗料組成物よりも形成される塗膜の酸素遮断性が高いことが分かった。この結果から、特定のアスペクト比(20~1,000)を有する無機粒子を上塗塗料組成物に含有させることで、形成される塗膜の酸素遮断性が向上することが確認された。 From a comparison between Example 1 and Example 23, it was found that the coating composition of Example 1 had a higher oxygen barrier property of the coating film formed than the coating composition of Example 23. From these results, it was confirmed that the oxygen barrier property of the formed coating film was improved by containing inorganic particles having a specific aspect ratio (20 to 1,000) in the top coating composition.
 実施例1と、実施例30との比較から、実施例1の塗料組成物の方が、実施例30の塗料組成物よりも形成される塗膜の耐候性が高いことが分かった。この結果から、エポキシ樹脂として芳香環を有さないエポキシ樹脂を中塗塗料組成物に含有させることで、形成される塗膜の耐候性が向上することが確認された。 From a comparison between Example 1 and Example 30, it was found that the coating composition of Example 1 had higher weather resistance of the coating film formed than the coating composition of Example 30. From this result, it was confirmed that the weather resistance of the coating film formed was improved by including an epoxy resin having no aromatic ring as the epoxy resin in the intermediate coating composition.
 実施例1と、実施例31との比較から、実施例1の塗料組成物の方が、実施例31の塗料組成物よりも形成される塗膜の耐候性が高いことが分かった。この結果から、アミン化合物として変性脂肪族アミン化合物を中塗塗料組成物に含有させることで、形成される塗膜の耐候性が向上することが確認された。 From comparison between Example 1 and Example 31, it was found that the coating composition of Example 1 had higher weather resistance than the coating composition of Example 31. From this result, it was confirmed that the weather resistance of the coating film to be formed is improved by containing the modified aliphatic amine compound as an amine compound in the intermediate coating composition.
 更に、膜厚の異なる塗膜を形成した実施例6と実施例15との比較から、実施例6の塗料組成物を用いて形成された膜厚が350μmの塗膜は、実施例15の塗料組成物を用いて形成された膜厚が250μmの塗膜よりも酸素遮断性が高いことが分かった。
 一方、膜厚の異なる塗膜を形成した実施例7と実施例16との比較から、実施例7の塗料組成物を用いて形成された膜厚が1,450μmの塗膜は、実施例16の塗料組成物を用いて形成された膜厚が1,600μmの塗膜よりも隠ぺい率が低いことが分かった。
 これらの結果から、コンクリート構造物の表面に本実施形態に係る塗料組成物を塗布する場合には、硬化後の膜厚を300μm~1,500μmとすることで、高い透明性及び酸素遮断性を備えた塗膜を形成できることが確認された。
 
Furthermore, from the comparison between Example 6 and Example 15 in which the coating films having different film thicknesses were formed, the coating film having a film thickness of 350 μm formed using the coating composition of Example 6 was the coating material of Example 15. It was found that the oxygen barrier property was higher than that of a coating film having a thickness of 250 μm formed using the composition.
On the other hand, from a comparison between Example 7 and Example 16 in which coatings having different thicknesses were formed, a coating having a thickness of 1,450 μm formed using the coating composition of Example 7 was It was found that the concealment rate was lower than that of the coating film having a film thickness of 1,600 μm formed using the coating composition.
From these results, when the coating composition according to the present embodiment is applied to the surface of a concrete structure, by setting the film thickness after curing to 300 μm to 1,500 μm, high transparency and oxygen barrier properties are achieved. It was confirmed that the provided coating film can be formed.

Claims (6)

  1.  コンクリート基材の表面に形成された透明な複層塗膜であって、
     アクリル樹脂、ウレタン樹脂、ウレア樹脂及びこれらの樹脂の変性物からなる群より選ばれる少なくとも1種を含む下塗塗料組成物により形成された下塗層と、
     中塗塗料組成物により形成された中塗層と、
     上塗塗料組成物により形成された上塗層と、を含み、
     前記複層塗膜を形成する前の前記コンクリート基材表面のL値と、前記複層塗膜表面のL値との差が-2.0~4.0である複層塗膜。
    A transparent multilayer coating film formed on the surface of a concrete substrate,
    An undercoat layer formed of an undercoat paint composition containing at least one selected from the group consisting of acrylic resins, urethane resins, urea resins and modified products of these resins;
    An intermediate coating layer formed by the intermediate coating composition;
    A topcoat layer formed by a topcoat composition,
    A multilayer coating film in which a difference between an L value on the surface of the concrete base material before forming the multilayer coating film and an L value on the surface of the multilayer coating film is -2.0 to 4.0.
  2.  前記複層塗膜の膜厚が300μm~1,500μmである請求項1に記載の複層塗膜。 2. The multilayer coating film according to claim 1, wherein the multilayer coating film has a thickness of 300 μm to 1,500 μm.
  3.  前記上塗塗料組成物は、芳香環を有さないエポキシ樹脂(a1)と、変性脂肪族アミン化合物(b1)と、扁平状の無機粒子(c1)と、を含む請求項1又は2に記載の複層塗膜。 The said top coat composition contains the epoxy resin (a1) which does not have an aromatic ring, a modified | denatured aliphatic amine compound (b1), and a flat inorganic particle (c1). Multi-layer coating.
  4.  前記上塗塗料組成物は、架橋性シリル基を少なくとも1個有する(メタ)アクリル樹脂(d1)と、シランカップリング剤(e1)と、を更に含む請求項3に記載の複層塗膜。 The multilayer coating film according to claim 3, wherein the top coating composition further comprises a (meth) acrylic resin (d1) having at least one crosslinkable silyl group and a silane coupling agent (e1).
  5.  前記無機粒子(c1)は、マイカ及びガラスフレークの少なくとも一方からなり、
     前記無機粒子(c1)の平均アスペクト比は、20~1,000である請求項3又は4に記載の複層塗膜。
    The inorganic particles (c1) are made of at least one of mica and glass flakes,
    The multilayer coating film according to claim 3 or 4, wherein the inorganic particles (c1) have an average aspect ratio of 20 to 1,000.
  6.  前記中塗塗料組成物は、芳香環を有さないエポキシ樹脂(a2)と、変性脂肪族アミン化合物(b2)と、を含む請求項1から5いずれかに記載の複層塗膜。 The multilayer coating film according to any one of claims 1 to 5, wherein the intermediate coating composition contains an epoxy resin (a2) having no aromatic ring and a modified aliphatic amine compound (b2).
PCT/JP2016/075288 2015-08-31 2016-08-30 Multi-layer coating WO2017038802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015170899A JP6704228B2 (en) 2015-08-31 2015-08-31 Multi-layer coating
JP2015-170899 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038802A1 true WO2017038802A1 (en) 2017-03-09

Family

ID=58187603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075288 WO2017038802A1 (en) 2015-08-31 2016-08-30 Multi-layer coating

Country Status (2)

Country Link
JP (1) JP6704228B2 (en)
WO (1) WO2017038802A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6921713B2 (en) * 2017-11-02 2021-08-18 日本ペイント株式会社 Base adjustment coating composition and method for forming a multi-layer coating film
JP7398937B2 (en) * 2019-11-29 2023-12-15 中国塗料株式会社 Epoxy resin coating composition, laminated coating film, and coating film repair method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302239A (en) * 1995-04-28 1996-11-19 Toyo Ink Mfg Co Ltd Transparent coating
JP2005218914A (en) * 2004-02-03 2005-08-18 Sk Kaken Co Ltd Coating method for exposed surface of concrete
JP2014047585A (en) * 2012-09-03 2014-03-17 Misawa Homes Co Ltd Concrete member for housing and deterioration preventing method thereof
JP2014152584A (en) * 2013-02-13 2014-08-25 Yahagi Construction Co Ltd Concrete structure and concrete surface coating method
JP5616548B1 (en) * 2014-03-25 2014-10-29 日本ペイント株式会社 Two-component mixed coating composition and coating film forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302239A (en) * 1995-04-28 1996-11-19 Toyo Ink Mfg Co Ltd Transparent coating
JP2005218914A (en) * 2004-02-03 2005-08-18 Sk Kaken Co Ltd Coating method for exposed surface of concrete
JP2014047585A (en) * 2012-09-03 2014-03-17 Misawa Homes Co Ltd Concrete member for housing and deterioration preventing method thereof
JP2014152584A (en) * 2013-02-13 2014-08-25 Yahagi Construction Co Ltd Concrete structure and concrete surface coating method
JP5616548B1 (en) * 2014-03-25 2014-10-29 日本ペイント株式会社 Two-component mixed coating composition and coating film forming method

Also Published As

Publication number Publication date
JP2017047558A (en) 2017-03-09
JP6704228B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6921713B2 (en) Base adjustment coating composition and method for forming a multi-layer coating film
US20170009010A1 (en) Dual curable composition
KR101787129B1 (en) Silicone resin composition and protective coating method using silicone resin composition
JP6162912B1 (en) Rust preventive coating composition, coating film forming method and multilayer coating film forming method
BRPI0913054B1 (en) LOW VOC COATING SYSTEM, ULTRA-HIGH SOLID CONTENT, FAST CURING, FOR AGGRESSIVE CORROSIVE ENVIRONMENTS
JP2014196418A (en) Aqueous resin composition and article obtained by applying the same
JP5616548B1 (en) Two-component mixed coating composition and coating film forming method
KR101336976B1 (en) Water-soluble epoxy resin composition and method of forming a coating film using the same
JP6704228B2 (en) Multi-layer coating
JP6335092B2 (en) Coating composition, coating film forming method, and transparent coating film
JP7128144B2 (en) water-based coating
JP5037025B2 (en) Epoxy resin composition and epoxy-polysiloxane coating composition
KR20210013944A (en) Aqueous Coating Composition
JP2019183043A (en) Aqueous coating material
JP7527160B2 (en) Hardener and water-based coating material
JP2022132594A (en) Aqueous coating material
JP2010235652A (en) Solvent-free curable resin composition
JP6496290B2 (en) Anticorrosion coating composition, coating film comprising the composition, laminate and structure provided with the coating film, and additive for anticorrosion coating
JP2005325169A (en) Aqueous coating composition
WO2018173662A1 (en) Concrete exfoliation prevention structure
JP2022132170A (en) Aqueous coating material
JP2004300196A (en) Water-based coating composition
JP2022130813A (en) Film formation method
JP2024031888A (en) Curing agent, and aqueous coating material
JP2023107492A (en) Building structure rapairing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841834

Country of ref document: EP

Kind code of ref document: A1