WO2017038628A1 - Nonaqueous secondary battery and method for manufacturing same - Google Patents

Nonaqueous secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2017038628A1
WO2017038628A1 PCT/JP2016/074829 JP2016074829W WO2017038628A1 WO 2017038628 A1 WO2017038628 A1 WO 2017038628A1 JP 2016074829 W JP2016074829 W JP 2016074829W WO 2017038628 A1 WO2017038628 A1 WO 2017038628A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
mixture layer
negative electrode
electrode mixture
Prior art date
Application number
PCT/JP2016/074829
Other languages
French (fr)
Japanese (ja)
Inventor
映理 児島
丈主 加味根
上田 篤司
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2017038628A1 publication Critical patent/WO2017038628A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/02Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine
    • C08F259/06Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine on to polymers of vinylidene chloride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous secondary battery excellent in charge / discharge characteristics at a large current and a method for producing the same.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for various portable devices because of their high voltage and high capacity.
  • medium-sized and large-sized tools such as power tools such as electric tools, electric vehicles, and electric bicycles has been spreading.
  • Non-aqueous secondary batteries are first widespread for consumer use, and at present, they are spreading for in-vehicle and industrial use. Under these circumstances, non-aqueous secondary batteries are desired to improve various battery characteristics.
  • Patent Document 1 uses a positive electrode using a specific lithium iron phosphate as a positive electrode active material and a negative electrode using amorphous carbon (amorphous carbon) such as soft carbon as a negative electrode active material.
  • amorphous carbon amorphous carbon
  • a lithium ion secondary battery has been proposed that has secured characteristics suitable for in-vehicle use.
  • non-aqueous secondary batteries in particular, considering application to in-vehicle and industrial applications, for example, it is required to have battery characteristics (high output characteristics) that can function well even when discharged with a large current. is assumed.
  • the positive electrode for a non-aqueous secondary battery was prepared by collecting a composition for forming a positive electrode mixture layer (a positive electrode mixture-containing composition) prepared by dispersing a positive electrode active material, a binder, a conductive additive and the like in a solvent. In general, it is manufactured by a method of forming a positive electrode mixture layer on the surface of the current collector through a process of applying the surface of the electric body and removing the solvent by drying.
  • a fluorine resin such as polyvinylidene fluoride is generally used for the binder for the positive electrode mixture layer.
  • lithium-containing composite oxides such as lithium iron phosphate, which are widely used as positive electrode active materials for non-aqueous secondary batteries, contain alkaline impurities because of their manufacturing method. For this reason, when such a positive electrode active material is formulated using a solvent containing water, the alkaline component of the impurity is easily eluted in the solvent, and a fluorine resin such as polyvinylidene fluoride as a binder is crosslinked. Cause.
  • the binder in the positive electrode mixture-containing composition when the binder in the positive electrode mixture-containing composition is cross-linked, the composition becomes a gel and loses fluidity, so that application to the current collector becomes difficult or impossible. Therefore, the positive electrode mixture-containing composition using a fluorine resin such as polyvinylidene fluoride as the binder must be used for forming the positive electrode mixture layer in a short time until the binder is crosslinked after the preparation. This tends to impair the productivity of the positive electrode for a non-aqueous secondary battery.
  • a fluorine resin such as polyvinylidene fluoride
  • the positive electrode active material having a high content of alkaline impurities tends to have a high water content, and in particular, when the surface is coated with a carbon material in order to improve the conductivity of the material, the water is adsorbed. It becomes easier and the water content is further increased. Therefore, when a positive electrode is produced using such a positive electrode active material and used as it is for producing a battery, a large amount of moisture is brought into the battery. In that case, the moisture contained in the positive electrode mixture reacts with a fluorine-containing inorganic lithium salt such as LiPF 6 used as the electrolyte of the non-aqueous electrolyte solution to generate hydrogen fluoride. For this reason, in a situation where the battery is left in a high temperature environment for a long time, the constituent materials of the electrode are deteriorated, and problems such as a decrease in capacity are likely to occur.
  • a fluorine-containing inorganic lithium salt such as LiPF 6 used as the electrolyte of the non-aqueous electroly
  • Patent Document 3 discloses that a phosphoric acid compound having a specific structure is added to the non-aqueous electrolyte, thereby suppressing the influence of moisture brought into the battery, load characteristics and high temperature. It has been proposed to improve the load characteristics after storage.
  • JP 2009-104983 A JP 2010-272272 A Japanese Patent Laid-Open No. 2001-319685
  • Patent Document 2 While the technique described in Patent Document 2 is effective in suppressing the cross-linking reaction of polyvinylidene fluoride that may be caused by an alkali component in the positive electrode active material and suppressing the gelation of the positive electrode mixture-containing composition, In order to improve rate characteristics and cycle characteristics using an active material with a specific surface area, the binder content is increased, and there is room for improvement in terms of improving charge / discharge characteristics at a large current.
  • An object of the present invention is to provide a non-aqueous secondary battery excellent in charge / discharge characteristics at a large current, and a method for producing the same, by preventing occurrence of problems associated with the positive electrode active material or moisture contained in the positive electrode.
  • One embodiment of the non-aqueous secondary battery of the present invention that can achieve the above object is a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a binder, and a conductive additive on one or both sides of a current collector, A negative electrode having a negative electrode mixture layer containing a negative electrode active material and a binder on one side or both sides of a current collector, a separator, and a non-aqueous electrolyte containing a lithium salt and an organic solvent.
  • a positive electrode mixture layer containing a binder and a conductive additive on one or both sides of the current collector the positive electrode mixture layer containing an olivine type compound as the positive electrode active material, and the following general formula
  • the polymer (A) having a unit represented by (1) in the molecule is contained as the binder.
  • R 1 represents H or a methyl group
  • R 2 represents an alkyl group having 1 to 18 carbon atoms.
  • the non-aqueous electrolyte in the non-aqueous secondary battery preferably includes a phosphoric acid compound having a group represented by the following general formula (2) in the molecule.
  • X represents Si, Ge or Sn
  • R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and part or all of the hydrogen atoms may be substituted with fluorine.
  • X represents Si, Ge or Sn
  • R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and part or all of the hydrogen atoms may be substituted with fluorine.
  • the method for producing a non-aqueous secondary battery of the present invention capable of achieving the above object includes a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a binder and a conductive auxiliary agent on one side or both sides of a current collector, A nonaqueous secondary battery comprising a negative electrode having a negative electrode mixture layer containing a negative electrode active material and a binder on one or both sides of a current collector, a separator, and a nonaqueous electrolyte containing a lithium salt and an organic solvent
  • a positive electrode having a water content of 500 to 3000 ppm in the positive electrode mixture layer and a nonaqueous electrolytic solution containing a phosphate compound having a group represented by the general formula (2) in the molecule are packaged. It is sealed inside the body.
  • the present invention it is possible to provide a non-aqueous secondary battery that is less prone to problems associated with moisture contained in the positive electrode active material or the positive electrode and has excellent charge / discharge characteristics at a large current, and a method for manufacturing the same.
  • the positive electrode (hereinafter simply referred to as “positive electrode”) according to the non-aqueous secondary battery of the present invention has a structure having a positive electrode mixture layer containing a positive electrode active material, a binder and a conductive additive on one side or both sides of a current collector.
  • positive electrode contains the polymer (A) which contains an olivine type compound as a positive electrode active material, and has the unit represented by the said General formula (1) in a molecule
  • the olivine type compound contains a lot of alkaline impurities as compared with a lithium-containing composite oxide such as lithium cobaltate. Therefore, when a composition (slurry) for forming a positive electrode mixture layer is prepared, Since the alkaline component of impurities elutes in the solvent (N-methyl-2-pyrrolidone, water, etc.) of the composition and crosslinks a fluororesin such as polyvinylidene fluoride (PVDF) as a binder, the composition over time The fluidity of the is reduced.
  • a fluororesin such as polyvinylidene fluoride (PVDF)
  • the polymer (A) that hardly causes a crosslinking reaction due to an alkaline impurity in the olivine type compound is used instead of PVDF.
  • the polymer (A) that hardly causes a crosslinking reaction due to an alkaline impurity in the olivine type compound is used instead of PVDF.
  • the group represented by the general formula (2) is combined with a positive electrode having a positive electrode mixture layer containing a large amount of water of 500 to 3000 ppm.
  • the phosphoric acid compound has a structure in which at least one of hydrogen atoms of phosphoric acid is substituted with a group represented by the general formula (2).
  • X is Si, Ge, or Sn.
  • a phosphoric acid silyl ester in which X is Si is preferably used.
  • R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. However, a methyl group or an ethyl group is more preferable.
  • R 3 , R 4, and R 5 may have some or all of their hydrogen atoms replaced with fluorine.
  • the group represented by the general formula (2) is particularly preferably a trimethylsilyl group.
  • the phosphoric acid compound only one of the hydrogen atoms possessed by phosphoric acid may be substituted with the group represented by the general formula (2). Two of them may be substituted with a group represented by the general formula (2), and all three hydrogen atoms of phosphoric acid may be substituted with a group represented by the general formula (2). However, it is more preferable that all three hydrogen atoms of phosphoric acid are substituted with the group represented by the general formula (2).
  • phosphoric acid (tris) trimethylsilyl is particularly preferable.
  • the moisture content of the positive electrode mixture layer is 500 ppm or more, preferably 1000 ppm or more, more preferably 1200 ppm or more, based on mass.
  • the water content of the positive electrode mixture layer may be 3000 ppm or less and 2500 ppm or less on a mass basis. Preferably, it is more preferably 2000 ppm or less.
  • the water content of the positive electrode mixture layer as used in the present specification can be determined by, for example, the following method.
  • a measurement sample positive electrode
  • a measurement sample positive electrode
  • the flowd nitrogen gas is introduced into the measurement cell of the Karl Fischer moisture meter, and the moisture content is measured.
  • the integrated value up to the end of titration is taken as the moisture content (the “moisture content” used as the standard for the calculation of “moisture content” described in the examples below) is a value determined by this method.
  • a value obtained by dividing the water content by the mass of the positive electrode mixture layer is referred to as “moisture content of the positive electrode mixture layer” in the present specification.
  • the moisture content is measured in a glove box having a dew point of ⁇ 70 ° C.
  • the moisture brought into the battery is mostly due to the positive electrode mixture layer, there are also those other than the positive electrode such as the negative electrode, the separator and the non-aqueous electrolyte, and these moisture are also contained in the non-aqueous electrolyte.
  • the phosphoric acid compound can contribute to the formation of an SEI film.
  • the water content of the entire battery including the moisture due to the configuration other than the positive electrode, to be within a preferable range for the SEI film formation by the phosphoric acid compound.
  • the SEI film of the phosphoric acid compound on the positive electrode is used.
  • the total amount of the non-aqueous electrolyte is preferably about 1000 ppm or more, more preferably 1500 ppm or more, and particularly preferably 1700 ppm or more, based on mass.
  • the water content of the entire battery is preferably 3500 ppm or less, more preferably 3000 ppm or less on a mass basis. It is especially preferable to set it as 2500 ppm or less.
  • moisture content of the entire battery is the measurement of the moisture content in the measurement of the moisture content when determining the moisture content of the positive electrode mixture layer, with the measurement sample as all the constituent materials of the battery with the battery container opened. And this is calculated
  • the olivine type compound exemplified as the positive electrode active material in the non-aqueous secondary battery of the present invention is typically represented by a chemical formula of LiM 1 PO 4 (M 1 : Co, Ni, Mn, Fe, etc.). However, it may contain one or more elements other than M 1 such as Al and Y as additive elements. Moreover, the olivine type compound contained in the positive electrode mixture layer may be only one kind of those not containing the above-mentioned additive elements or one containing the above-mentioned additive elements, or two or more kinds. May be.
  • the average particle size of the olivine type compound particles is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the average particle size of the olivine-type compound particles becomes too large, the conductivity of the positive electrode mixture layer decreases and the charge / discharge characteristics decrease, so the average particle size is preferably 20 ⁇ m or less, It is more preferably 17 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the olivine type compound particles may be composed of primary particles, but when the secondary particles are aggregated primary particles having a particle diameter of about 10 to 100 nm, or a granulated body obtained by granulating the primary particles, Compared with primary particles having the same particle size, charge / discharge characteristics can be further improved, which is preferable.
  • the average particle size in this case may be calculated based on the particle size of the secondary particles or the granulated body.
  • the average particle diameter is a number average particle diameter measured using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by Horiba, Ltd.).
  • a method of firing a mixture of an organic material that becomes a carbon precursor and an olivine type compound; a surface of an olivine type compound while decomposing a gas that becomes a carbon precursor by a vapor deposition (CVD) method and a general coating method such as:
  • the amount of carbon when the olivine type compound is coated with the carbon material is 1 mass per 100 parts by mass of the olivine type compound from the viewpoint of improving the conductivity of the positive electrode and enabling a more efficient charge / discharge reaction. Part or more.
  • the amount of carbon on the surface of the olivine type compound is too large, carbon may become a barrier during the lithium ion insertion / desorption reaction, which may cause a reduction in load characteristics of the non-aqueous secondary battery, for example. Therefore, the amount of carbon when the olivine type compound is coated with the carbon material is preferably 5 parts by mass or less with respect to 100 parts by mass of the olivine type compound.
  • the particle diameter in the case where a carbon coating layer is provided on the surface of the olivine-type compound particle may be regarded as the particle diameter of the olivine-type compound particle for the sake of simplicity. Good.
  • the content of the polymer (A) in the positive electrode mixture layer is reduced to, for example, 7% by mass or less, more preferably 5% by mass or less.
  • the BET specific surface area of the positive electrode active material is 25 m. 2 / g or less is preferable, 15 m 2 / g or less is more preferable, 13 m 2 / g or less is particularly preferable, and 10 m 2 / g or less is most preferable.
  • the BET specific surface area of the positive electrode active material is preferably 5 m 2 / g or more, and 8 m 2 / g or more. More preferably.
  • the BET specific surface area is a value obtained by analyzing a gas adsorption amount measured by a gas adsorption method using nitrogen gas using the BET method.
  • positive electrode active material in which an olivine type compound is used as the positive electrode active material, other positive electrode active materials may be used together with the olivine type compound.
  • positive electrode active material include various lithium-containing composite oxides (lithium-containing composite oxides other than olivine type compounds) used in non-aqueous secondary batteries such as lithium ion secondary batteries.
  • the amount of the positive electrode active material other than the olivine type compound in the total amount of the positive electrode active material is preferably 30% by mass or less.
  • the positive electrode active material used in the positive electrode in which the positive electrode mixture layer has a water content of 500 to 3000 ppm includes lithium nickelate and a part of the nickel, other materials such as Co and Al.
  • the content of the positive electrode active material in the positive electrode mixture layer is preferably 85 to 98% by mass.
  • the unit represented by the general formula (1) is a unit derived from an acrylic ester or a methacrylic ester [hereinafter referred to as acrylic acid and methacrylic ester.
  • the acid may be collectively referred to as “(meth) acrylic acid”]
  • the polymer (A) is synthesized by polymerizing the (meth) acrylic acid ester.
  • the (meth) acrylate ester examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth ) Isobutyl acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, ( Octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acryl
  • a monomer other than the (meth) acrylic acid ester may be used together with the (meth) acrylic acid ester.
  • the polymer is a copolymer having in the molecule also units derived from monomers other than (meth) acrylic acid ester.
  • Monomers that are polymerized with the (meth) acrylic acid ester include cyano group-containing monomers; aromatic vinyl compounds (styrene, ⁇ -methylstyrene, p-methylstyrene, chlorostyrene, divinylbenzene, vinyltoluene, etc.); conjugated dienes Compounds (butadiene, isoprene, chloroprene, 2-chloro-1,3-butadiene, etc.); unsaturated carboxylic acids; and the like.
  • aromatic vinyl compounds styrene, ⁇ -methylstyrene, p-methylstyrene, chlorostyrene, divinylbenzene, vinyltoluene, etc.
  • conjugated dienes Compounds butadiene, isoprene, chloroprene, 2-chloro-1,3-butadiene, etc.
  • unsaturated carboxylic acids and the like.
  • cyano group-containing monomer examples include unsaturated carboxylic acid nitriles such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, vinylidene cyanide; 2-cyanoethyl (meth) acrylate, 2-cyanopropyl (meth) acrylate, Cyanoalkyl esters of unsaturated carboxylic acid nitriles such as (meth) acrylic acid 3-cyanopropyl; and the like.
  • unsaturated carboxylic acid nitriles such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, vinylidene cyanide
  • 2-cyanoethyl (meth) acrylate 2-cyanopropyl (meth) acrylate
  • Cyanoalkyl esters of unsaturated carboxylic acid nitriles such as (meth) acrylic acid 3-cyanopropyl; and the like.
  • unsaturated carboxylic acid examples include unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid; unsaturated polycarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid; Can be mentioned.
  • the proportion of (meth) acrylic acid ester in all monomers is preferably 5% by mass or more, and more preferably 8% by mass or more. Preferably, it is 10 mass% or more.
  • the ratio of the cyano group-containing monomer in all monomers is preferably 1 to 50% by mass, and more preferably 2 to 15% by mass. Further, when the above aromatic vinyl compound is used, the ratio of the aromatic vinyl compound in all monomers is preferably 20 to 50% by mass, and more preferably 30 to 45% by mass.
  • the ratio of the conjugated diene compound in all monomers is preferably 10 to 60% by mass, and more preferably 20 to 40% by mass.
  • the proportion of the unsaturated carboxylic acid in all monomers is preferably 1 to 10% by mass, and more preferably 2 to 7% by mass.
  • the polymer (A) is derived from a cyano group-containing monomer, an aromatic vinyl compound, a conjugated diene compound and an unsaturated carboxylic acid together with a (meth) acrylic acid ester. It is preferable to have a structural unit.
  • the positive electrode mixture layer may contain a binder other than the polymer (A) having a unit represented by the general formula (1) in the molecule as a binder.
  • a binder other than the polymer (A) having a unit represented by the general formula (1) in the molecule as a binder.
  • a resin such as PVDF that is easily gelled by an alkali component is used.
  • the binder used in addition to the polymer (A) include polyvinylidene fluoride (PVDF), vinylidene fluoride copolymer (PVDF-HFP, etc.), polyimide, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC). And acrylic resin.
  • the proportion of the binder other than the polymer (A) having the unit represented by the general formula (1) in the molecule in the total binder contained in the positive electrode mixture layer may be 20% by mass or less. It is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably only the polymer (A).
  • the synthesis of the polymer (A), that is, the polymerization of the (meth) acrylic acid ester can be performed by an emulsion polymerization method.
  • the conditions at that time are not particularly limited, and may be the same as those usually employed in the emulsion polymerization of (meth) acrylic acid ester.
  • emulsifiers anionic surfactants, nonionic surfactants, amphoteric surfactants, etc.
  • polymerization initiators persulfates such as ammonium persulfate, hydroperoxides such as cumene hydroperoxide, polymerization initiators and (Meth) acrylic acid ester and other monomers used as needed are added to water to which a redox polymerization initiator combined with a reducing agent, etc.) is added, and 1 at a temperature of about 30 to 90 ° C. Polymerization may be performed for about 30 hours.
  • a copolymer of the (meth) acrylic acid ester and vinylidene fluoride or a mixture of the (meth) acrylic acid ester polymer and the vinylidene fluoride polymer (PVDF) as a binder.
  • PVDF vinylidene fluoride polymer
  • a composite obtained by polymerizing a (meth) acrylic acid ester in the presence of a polymer of vinylidene fluoride can also be used.
  • the (meth) acrylic acid ester is bonded to the vinylidene fluoride polymer molecule, and the polymerization proceeds, so that the copolymer [consists of units represented by the general formula (1).
  • a (meth) acrylic acid ester polymer is formed by the progress of homopolymerization of (meth) acrylic acid ester.
  • it can be a mixture of this and the polymer of vinylidene fluoride, but it is not certain which form it will take.
  • the polymerization of (meth) acrylic acid ester in the presence of the polymer of vinylidene fluoride can also be performed by an emulsion polymerization method.
  • the conditions at that time are not particularly limited, and for example, the synthesis conditions for the polymer (A) described above may be applied.
  • the unit which comprises a fluororesin is contained in a polymer (A) like the copolymer of (meth) acrylic acid ester and vinylidene fluoride
  • the proportion of the polymer (A) is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. Most preferably not.
  • the content of the polymer (A) in the positive electrode mixture layer is preferably 1% by mass or more, more preferably 1.5% by mass or more, and charging / discharging. In order to improve the characteristics, the content is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 4% by mass or less.
  • the total content of all binders in the positive electrode mixture layer is also preferably 1% by mass or more, more preferably 1.5% by mass or more, and preferably 7% by mass or less. It is more preferably 5% by mass or less, and particularly preferably 4% by mass or less. Therefore, when using another binder with the said polymer (A) for the binder of a positive mix layer, the ratio of binders other than the said polymer (A) in all the binders in a positive mix layer is the said suitable value. It is preferable that the total content of all the binders in the positive electrode mixture layer is adjusted so as to be the above-mentioned preferable value while limiting to be.
  • Conductive aids for the positive electrode mixture layer include natural graphite (such as flake graphite) and artificial graphite (graphite carbon material); acetylene black; ketjen black, channel black, furnace black, lamp black, thermal Carbon materials such as carbon black such as carbon black; carbon fibers (including carbon nanofibers); carbon nanotubes;
  • conductive aids it is preferable to use at least one of carbon nanotubes and carbon nanofibers and at least one of acetylene black and carbon black.
  • the olivine-type compound used as the positive electrode active material is a material having low conductivity.
  • particulate acetylene black or carbon Conductivity is ensured by black.
  • carbon nanotubes or carbon nanofibers having a fibrous form are used. Conductivity is ensured. Therefore, the conductivity in the positive electrode mixture layer can be better ensured by the combination of the conductive aids.
  • the average length of carbon nanotubes and carbon nanofibers is preferably 1 nm to 5 ⁇ m.
  • the average diameter of the carbon nanotube or carbon nanofiber is preferably 1 nm to 2 ⁇ m.
  • the average length and average diameter of the carbon nanotubes and carbon nanofibers used in the present specification are determined by using a transmission electron microscope (TEM such as “JEM series” manufactured by JEOL Ltd., “H-700H” manufactured by Hitachi, Ltd.), etc. Is measured from a photographed TEM image at 100 or 200 kV.
  • TEM images of 100 samples were taken at 20,000 to 40,000 magnification, and when viewing the average diameter at 200,000 to 400,000 magnification.
  • the length and diameter are measured one by one with a metal scale certified as No. 1, and the average is taken as the average length and average diameter.
  • graphite flaky graphite
  • graphite also contributes to ensuring the conductivity between these particles at a location where the distance between the positive electrode active material particles is relatively long, as in the case of carbon nanotubes and carbon nanofibers. Therefore, it is also preferable to use graphite together with at least one of acetylene black and carbon black as a conductive additive for the positive electrode mixture layer.
  • carbon nanotubes, carbon nanofibers and graphite and at least one of acetylene black and carbon black are used as a conductive additive
  • carbon nanotubes, carbon nanofibers and graphite in the positive electrode mixture layer are used.
  • the total amount (when only one of them is used) is preferably 0.1 to 5% by mass.
  • the total of acetylene black and carbon black in the positive electrode mixture layer is preferably 1 to 10% by mass.
  • the content of the conductive additive in the positive electrode mixture layer is preferably 1 to 10% by mass.
  • a positive electrode active material, a binder, and a conductive auxiliary agent are dispersed in a solvent such as water or an organic solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture-containing composition (however, , The binder may be dissolved in a solvent), and this may be applied to one or both sides of the current collector (however, if a coat layer is formed on the surface of the current collector as described later, the surface of the coat layer) ) And a method of forming a positive electrode mixture layer through a step of drying, that is, the production method of the present invention.
  • a solvent such as water or an organic solvent such as N-methyl-2-pyrrolidone (NMP)
  • NMP N-methyl-2-pyrrolidone
  • carboxymethyl cellulose CMC
  • PVP polyvinylpyrrolidone
  • a pressing process such as a calendar process may be performed.
  • the positive electrode current collector the same one as used for the positive electrode of a conventionally known non-aqueous secondary battery can be used.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable.
  • the positive electrode current collector is preferably a metal foil (such as an aluminum foil) having a plurality of through holes.
  • a metal foil such as an aluminum foil
  • the adhesion between the positive electrode mixture layer and the current collector is improved, and even if the battery is repeatedly charged and discharged, the positive electrode mixture layer and the current collector Since peeling becomes difficult to occur, the charge / discharge cycle characteristics of the battery are enhanced, and the conductivity in the positive electrode mixture layer is also improved.
  • the metal foil When a metal foil having a plurality of through holes is used for the positive electrode current collector, the metal foil is partially bonded to the main body of the metal foil without removing the metal in the part forming the through holes. It is more preferable to have a protrusion that is bent and raised from the flat surface of the metal foil. When a metal foil having such protrusions is used as a positive electrode current collector, the protrusion penetrates into the positive electrode mixture layer, and thus the adhesion between the positive electrode mixture layer and the current collector and the positive electrode mixture layer The conductivity of the is further improved.
  • the number of holes is preferably 5 to 30 per 1 cm 2 in a plan view of the current collector. Therefore, in the case of a positive electrode current collector made of a metal foil having a plurality of through-holes and the protrusions, the number of protrusions should be 5 to 30 per 1 cm 2 in plan view of the current collector. preferable.
  • the height of the protrusion is preferably 1 ⁇ 2 or less of the thickness of the positive electrode mixture layer formed on the side where the protrusion is provided.
  • the through holes and the protrusions may be regularly arranged or irregularly arranged, but are more preferably regularly arranged.
  • the positive electrode current collector is also preferably a metal foil (such as an aluminum foil) having a coating layer containing a carbon material on the surface. Also in this case, the adhesion between the positive electrode mixture layer and the positive electrode current collector is improved, and peeling of the positive electrode mixture layer and the current collector hardly occurs even when the battery is repeatedly charged and discharged. The charge / discharge cycle characteristics are enhanced, and the conductivity in the positive electrode mixture layer is also improved.
  • Examples of the carbon material contained in the coating layer include graphite (graphite carbon material) such as natural graphite (scaly graphite), artificial graphite; acetylene black; ketjen black, channel black, furnace black, lamp black, thermal black. Carbon black such as activated carbon; activated carbon; etc., and only one of these may be used, or two or more may be used in combination. Among these, activated carbon is more preferable because it can contribute to the capacity increase of the positive electrode.
  • the coat layer may contain a binder together with the carbon material.
  • a binder include various binders including a fluororesin such as PVDF and the polymer (A) exemplified above as a binder for a positive electrode mixture layer.
  • the carbon material content is preferably 40 to 95% by mass, and the binder content is preferably 5 to 60% by mass.
  • the thickness of the coat layer is preferably 0.1 to 5 ⁇ m.
  • the coating layer is a method in which a coating material containing a coating material prepared by dispersing and dissolving a carbon material and a binder in an organic solvent such as NMP or water is applied to the surface of a metal foil serving as a positive electrode current collector and dried. Etc. can be formed.
  • the thickness of the positive electrode mixture layer (when the positive electrode mixture layer is provided on both sides of the current collector, the thickness per side) is preferably 3 to 100 ⁇ m.
  • a lead body for electrical connection with other members in the battery may be formed on the positive electrode according to a conventional method.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution containing a lithium salt and an organic solvent, and the positive electrode may be the positive electrode of the above embodiment.
  • the positive electrode may be the positive electrode of the above embodiment.
  • a negative electrode mixture layer containing a negative electrode active material and a binder can be used on one or both sides of the current collector.
  • the negative electrode active material a conventionally known negative electrode active material used for the negative electrode of a non-aqueous secondary battery, that is, an active material capable of occluding and releasing lithium ions can be used.
  • a negative electrode active material include, for example, graphite (natural graphite; artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads, and carbon fibers at 2800 ° C.
  • the negative electrode only one type of the above illustrated negative electrode active materials may be used, or two or more types may be used in combination.
  • negative electrode active materials it is preferable to use at least one of graphitizable carbon (soft carbon) and non-graphitizable carbon (hard carbon).
  • Examples of the soft carbon include coke obtained by firing a pitch.
  • examples of the hard carbon include amorphous carbon obtained by low-temperature firing of furfuryl alcohol resin (PFA), polyparaphenylene (PPP), and phenol resin.
  • PFA furfuryl alcohol resin
  • PPP polyparaphenylene
  • phenol resin amorphous carbon obtained by low-temperature firing of furfuryl alcohol resin
  • Such a carbon material has a d 002 obtained by, for example, X-ray diffraction measurement of more than 0.340 nm (preferably 0.370 nm or more), preferably 0.400 nm or less.
  • graphite which is widely used as negative electrode active materials for batteries, the lithium ion accepting speed is faster, so by making these batteries with negative electrodes using negative electrode active materials, they are charged with a large current and per hour.
  • the amount of negative electrode active material other than soft carbon and hard carbon in the total amount of the negative electrode active material Is preferably 30% by weight or less. That is, the amount of soft carbon and hard carbon in the total amount of the negative electrode active material (when only one of them is used, it is the amount thereof, and when both are used together, it is the total amount thereof. The same applies hereinafter). Is preferably 70% by mass or more, and since only one of soft carbon and hard carbon may be used for the negative electrode active material, soft carbon and hard carbon in the total amount of the negative electrode active material The preferred upper limit of the amount is 100% by mass.
  • the negative electrode mixture layer contains a binder.
  • binder related to the negative electrode mixture layer include fluororesins such as PVDF, SBR, CMC, and acrylic resins.
  • acrylic resin examples include a copolymer of butyl acrylate and acrylic acid (a copolymer having a unit derived from butyl acrylate and a unit derived from acrylic acid in the molecule), and such a resin.
  • a copolymer of butyl acrylate and acrylic acid a copolymer having a unit derived from butyl acrylate and a unit derived from acrylic acid in the molecule
  • the binder of the negative electrode mixture layer By using such a binder, the heat resistance of the negative electrode can be improved, so that the storage characteristics of the battery in a high temperature environment can be further improved.
  • the negative electrode mixture layer may contain a conductive additive.
  • a conductive support agent which concerns on a positive mix layer can be used for the conductive support agent which concerns on a negative mix layer.
  • the negative electrode is prepared by, for example, preparing a negative electrode mixture-containing composition by dispersing a negative electrode active material, a binder, and a conductive auxiliary agent used as necessary in a solvent such as water or an organic solvent such as NMP.
  • the binder may be dissolved in a solvent), which can be produced by a method in which the binder is applied to one or both sides of the current collector and dried to form a negative electrode mixture layer. Further, after the formation of the negative electrode mixture layer, for example, in order to adjust the density of the negative electrode mixture layer, press treatment such as calendaring may be performed.
  • the current collector for the negative electrode copper or nickel foil, punching metal, mesh, expanded metal, or the like can be used, but copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit of the thickness is 5 ⁇ m to ensure mechanical strength. Is desirable.
  • the content of the negative electrode active material (the total amount when a plurality of types of negative electrode active materials are used) is preferably 90 to 98% by mass, and the binder content is 2 to 2%. It is preferable that it is 10 mass%.
  • the content of the conductive aid in the active material layer is preferably 2 to 10% by mass.
  • the thickness of the negative electrode mixture layer (when the negative electrode mixture layer is provided on both sides of the current collector, the thickness per side) is preferably 20 to 100 ⁇ m.
  • the density of the negative electrode mixture layer is preferably 1.5 g / cm 3 or less from the viewpoint of further increasing the lithium ion receiving speed in the negative electrode, and the battery is provided with a certain amount of the negative electrode active material to secure the battery. From the viewpoint of increasing the capacity, it is preferably 0.9 g / cm 3 or more.
  • the density of the negative electrode mixture layer in the present specification is a value measured by the following method.
  • the negative electrode is cut into a predetermined area, the mass is measured using an electronic balance having a minimum scale of 0.1 mg, and the mass of the negative electrode mixture layer is calculated by subtracting the mass of the current collector.
  • the total thickness of the negative electrode was measured at 10 points with a micrometer having a minimum scale of 1 ⁇ m, and the volume of the negative electrode mixture layer was calculated from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. To do. Then, the density of the negative electrode mixture layer is calculated by dividing the mass of the negative electrode mixture layer by the volume.
  • a lead body for electrical connection with other members in the battery may be formed according to a conventional method.
  • the negative electrode and the positive electrode include, for example, a laminated body (laminated electrode body) stacked with a separator interposed therebetween, or a wound body obtained by further winding this laminated body in a spiral shape ( Used in the form of a wound electrode body).
  • the separator preferably has a property (that is, a shutdown function) that closes the pores at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower).
  • a property that is, a shutdown function
  • Separator used in non-aqueous secondary batteries for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
  • the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
  • non-aqueous electrolyte solution related to the non-aqueous secondary battery a solution containing a lithium salt and an organic solvent and dissolving the lithium salt in the organic solvent is used.
  • numerator is used.
  • the content of the phosphoric acid compound having in the molecule thereof the group represented by the general formula (2) in the non-aqueous electrolyte is 0.5 mass from the viewpoint of ensuring the above-mentioned effects better. % Or more, and more preferably 1% by mass or more.
  • the content of the phosphoric acid compound having a group represented by the general formula (2) in the molecule is preferably 7% by mass or less, more preferably 5% by mass or less, and 3% by mass or less. More preferably.
  • lithium salt examples include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (FSO 2 ) 2 [LiFSI], LiN (CF 3 SO 2 ) 2 [LiTFSI], LiN (C 2 F 5 SO 2 ) 2 , or an organic lithium salt such as lithium bisoxalate borate (LiBOB);
  • inorganic lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2
  • a fluorine-containing inorganic lithium salt such as LiPF 6 alone or another inorganic lithium salt such as LiClO 4 or lithium bisoxalate is used as the lithium salt.
  • a positive electrode with an organic lithium salt such as borate (LiBOB) and a positive electrode mixture layer containing a large amount of moisture, hydrogen fluoride is generated by reaction with the moisture of the positive electrode, and the phosphorus The formation of the SEI film derived from the acid compound can be efficiently advanced.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; ⁇ -butyrolactone, ⁇ Cyclic esters such as lactones having a substituent at the position; chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; Nitriles such as acetonitrile, propionitrile, methoxypropionitrile; sulfites such as ethylene glycol sulfite; These can be used as a mixture of two or more. In order to obtain a battery having better characteristics, it is
  • lactones having a substituent at the ⁇ -position are also preferable to use as the organic solvent. Since the lactone having a substituent at the ⁇ -position has a high boiling point of 150 ° C. or higher, it is difficult to volatilize even when the battery is placed in a high temperature environment, and the composition of the non-aqueous electrolyte changes and the outer body swells. Therefore, a battery having higher heat resistance and excellent storage characteristics at high temperatures can be configured.
  • high-boiling solvents having a boiling point of 150 ° C. or higher are known, but generally high-boiling solvents have low permeability to polyolefin separators, In order to increase the permeability of the non-aqueous electrolyte to the separator, it is necessary to use another solvent (generally having a low boiling point).
  • lactones having a substituent at the ⁇ -position have good permeability to polyolefin separators, by using a non-aqueous electrolyte using this, for example, without impairing the load characteristics of the battery, Heat resistance can be improved.
  • the lactone having a substituent at the ⁇ -position is preferably, for example, a 5-membered ring (having 4 carbon atoms constituting the ring).
  • the ⁇ -position substituent of the lactone may be one or two.
  • the substituent examples include a hydrocarbon group and a halogen group (fluoro group, chloro group, bromo group, iodo group) and the like.
  • a hydrocarbon group an alkyl group, an aryl group, etc. are preferable, and it is preferable that the carbon number is 1 or more and 15 or less (more preferably 6 or less).
  • the substituent is a hydrocarbon group, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, and the like are more preferable.
  • lactones having a substituent at the ⁇ -position include ⁇ -methyl- ⁇ -butyrolactone, ⁇ -ethyl- ⁇ -butyrolactone, ⁇ -propyl- ⁇ -butyrolactone, ⁇ -butyl- ⁇ -butyrolactone, ⁇ -phenyl - ⁇ -butyrolactone, ⁇ -fluoro- ⁇ -butyrolactone, ⁇ -chloro- ⁇ -butyrolactone, ⁇ -bromo- ⁇ -butyrolactone, ⁇ -iodo- ⁇ -butyrolactone, ⁇ , ⁇ -dimethyl- ⁇ -butyrolactone, ⁇ , ⁇ -Diethyl- ⁇ -butyrolactone, ⁇ , ⁇ -diphenyl- ⁇ -butyrolactone, ⁇ -ethyl- ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -phenyl- ⁇ -butyrolactone, ⁇ , ⁇ ,
  • lactones having a substituent at the ⁇ -position are used in the organic solvent, only lactones having a substituent at the ⁇ -position may be used, but when other organic solvents are used together, 150 ° C or higher It is preferable to use a high-boiling solvent having a boiling point (ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, sulfolane, trimethyl phosphate, triethyl phosphate, etc.).
  • a high-boiling solvent having a boiling point ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, sulfolane, trimethyl phosphate, triethyl phosphate, etc.
  • the ratio in the total organic solvent in the nonaqueous electrolytic solution is preferably 30 to 100% by volume.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / L, and more preferably 0.9 to 1.6 mol / L.
  • vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, biphenyl, fluorobenzene are added to the non-aqueous electrolyte.
  • Additives such as t-butylbenzene and halogen-substituted cyclic carbonates (4-fluoro-1,3-dioxolan-2-one etc.) can also be added as appropriate.
  • a gel (gel electrolyte) obtained by adding a gelling agent such as a known polymer to the non-aqueous electrolyte may be used.
  • non-aqueous secondary battery examples include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can, or a coin shape. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • Example 1 Synthesis of binder for positive electrode mixture layer> A latex in which PVDF is dispersed in water (the amount of PVDF is 40% by mass) is placed in a reaction vessel (the amount of PVDF is 20 parts by mass), and water: 150 parts by mass is added thereto, and the reaction vessel is filled with nitrogen. Replaced.
  • emulsifier ether sulfate type emulsifier: dispersion having a solid content of 25% by mass
  • 2 parts by mass as solid content
  • methyl methacrylate 20 parts by mass
  • 2-ethylhexyl acrylate 10 parts by mass
  • butyl acrylate 25 parts by mass
  • acrylonitrile 20 parts by mass
  • acrylic acid 5 parts by mass
  • the temperature inside the reaction vessel was started, and when the internal temperature reached 50 ° C., 0.5 parts by mass of ammonium persulfate and 0.1 part by mass of sodium sulfite were added to the reaction vessel. Subsequently, when the temperature in the reaction vessel reaches 60 ° C., dropping of the emulsion into the reaction vessel is started, and the total amount of the emulsion is reduced to 2 while maintaining the temperature in the reaction vessel at 60 ° C. Added over time. Then, the binder for the positive electrode mixture layer containing the polymer (A) having the unit represented by the general formula (1) in the molecule by polymerizing for 2 hours while maintaining the inside of the reaction vessel at 60 ° C. (B1) was synthesized.
  • olivine-type lithium iron phosphate LiFePO 4 , average particle diameter 13 ⁇ m, BET specific surface area: 9 m 2 / g
  • a carbon material 89 parts by mass
  • acetylene black as a conductive auxiliary agent: 3.5 parts by mass and 1.5 parts by mass of graphite
  • binder B1 3.3 parts by mass
  • polyvinylpyrrolidone disersing agent
  • CMC thickening agent
  • the olivine-type lithium iron phosphate whose surface is coated with a carbon material is obtained by mixing iron phosphate, lithium phosphate and sucrose, and firing at 800 ° C. in nitrogen gas.
  • the amount of carbon covering the surface was 2.3 parts by mass with respect to 100 parts by mass of lithium iron phosphate.
  • This positive electrode mixture-containing composition was applied to one side of an aluminum foil (current collector) having a thickness of 15 ⁇ m and dried to obtain a positive electrode having a positive electrode mixture layer having a thickness of 5 ⁇ m on one side of the current collector. .
  • the negative electrode active material-containing composition was prepared by mixing 96 parts by mass of soft carbon as the negative electrode active material, 2 parts by mass of SBR, 2 parts by mass of CMC, and water. This negative electrode mixture-containing composition was applied to one side of a 10 ⁇ m thick copper foil (current collector) and dried to obtain a negative electrode having a negative electrode mixture layer having a thickness of 6 ⁇ m on one side of the current collector. .
  • the density of the negative electrode mixture layer was 1.0 g / cm 3 .
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2.
  • ⁇ Battery assembly> The positive electrode and the negative electrode are overlapped via a separator (a separator made of microporous polyethylene film, thickness 16 ⁇ m, opening ratio 50%) to form a laminated electrode body, which is inserted into an aluminum laminate film exterior body, and this exterior After injecting the non-aqueous electrolyte into the body, the outer package was sealed to produce a laminated non-aqueous secondary battery having the cross-sectional structure shown in FIG. 2 with the appearance shown in FIG.
  • a separator a separator made of microporous polyethylene film, thickness 16 ⁇ m, opening ratio 50%
  • FIG. 1 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • the nonaqueous secondary battery 1 includes a laminated electrode body formed by laminating a positive electrode 5 and a negative electrode 6 via a separator 7 in a laminated film outer package 2 constituted by two laminated films, and a nonaqueous electrolytic solution. (Not shown) is accommodated, and the laminate film outer package 2 is sealed by heat-sealing the upper and lower laminate films at the outer peripheral portion thereof.
  • each layer constituting the laminate film outer package 2 and each layer of the positive electrode 5 and the negative electrode 6 are not shown separately in order to prevent the drawing from becoming complicated.
  • the positive electrode 5 is connected to the positive electrode external terminal 3 in the battery 1 through a lead body.
  • the negative electrode 6 is also connected to the negative electrode external terminal 4 in the battery 1 through a lead body. is doing.
  • the positive electrode external terminal 3 and the negative electrode external terminal 4 are drawn out to the outside of the laminate film exterior body 2 so that they can be connected to an external device or the like.
  • Example 2 A positive electrode was produced in the same manner as in Example 1, except that the binder of the positive electrode was changed to 3.0 parts by mass the same as that produced in Example 1 and 0.3 parts by mass of PVDF manufactured by Kureha Corporation. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • Example 3 A positive electrode current collector was prepared in the same manner as in Example 1 except that the positive electrode current collector was changed to an aluminum foil having a plurality of through-holes. A water secondary battery was produced.
  • the aluminum foil used for the positive electrode current collector had 10 holes per 1 cm 2 area in plan view of the foil and a hole diameter of 80 ⁇ m.
  • Example 4 A positive electrode was produced in the same manner as in Example 1 except that a coating layer having a thickness of 3 ⁇ m per side was formed on both sides of an aluminum foil as a positive electrode current collector before forming a positive electrode mixture layer.
  • a laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used.
  • the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin: 40 mass parts as a binder, and PVP: 1 mass part as a dispersing agent. Formed using.
  • Example 5 Implementation was conducted except that the conductive assistant for the positive electrode was changed to acetylene black: 2.5 parts by mass, graphite: 1.5 parts by mass, and carbon nanotubes (average length 2 ⁇ m, average diameter 10 nm): 1 part by mass.
  • a positive electrode was produced in the same manner as in Example 1, and a laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
  • Example 6 The non-aqueous electrolyte was changed to one prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, diethyl carbonate and ⁇ -methyl- ⁇ -butyrolactone were mixed at a volume ratio of 30:20:50.
  • a laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that.
  • Example 7 A negative electrode was produced in the same manner as in Example 1 except that the negative electrode active material was changed to natural graphite, and a laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Comparative Example 1 A laminate type nonaqueous secondary battery was produced in the same manner as in Example 1 except that the binder of the positive electrode mixture layer was changed to PVDF at the time of producing the positive electrode.
  • rated capacity (1C) was measured on condition of the following. First, constant current charging is performed at a constant current of 0.1 mA / cm 2 until it reaches 3.85 V, and then constant voltage charging is performed at a constant voltage of 3.85 V until the current value decreases to 0.01 mA / cm 2. went.
  • Each battery after charging was discharged at a constant current of 0.1 mA / cm 2 until the battery voltage became 1.5 V, and the discharge capacity (mAh) at that time was defined as the rated capacity (1 C) of each battery.
  • the voltage drop at each current value: ⁇ V and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) of each battery during discharge.
  • each battery was discharged until the charging depth reached 0% under the same conditions as in the rated capacity measurement, and predetermined current values [2C (20 mA), 5C (50 mA), 20C (200 mA), and 40 C (400 mA) were obtained. )] was measured for a voltage increase when charged for 10 seconds.
  • the voltage rise at each current value: ⁇ V and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) for charging each battery.
  • a negative electrode containing soft carbon as a negative electrode active material and having a negative electrode mixture layer having an appropriate density, lithium iron phosphate as a positive electrode active material, and a specific binder The non-aqueous secondary batteries of Examples 1 to 6 having a positive electrode that has a low DCR in both charging and discharging and a large current compared to the battery of Comparative Example 1 using PVDF as the positive electrode binder. Even in the case of discharge, good output characteristics were exhibited.
  • the battery of Example 7 using natural graphite as the negative electrode active material showed better charge / discharge characteristics than Comparative Example 1, but when charged at a current value of 40 C, lithium ions to the negative electrode Insertion could not catch up, and lithium dendrite was deposited on the negative electrode surface, which penetrated the separator to the positive electrode, causing a short circuit. Therefore, it was found that soft carbon and hard carbon are more suitable than graphite as the negative electrode active material of the non-aqueous secondary battery of the present invention.
  • Example 8 Preparation of positive electrode> The same positive electrode mixture-containing composition as that prepared in Example 1 was applied to both sides of an aluminum foil (current collector) having a thickness of 15 ⁇ m, and vacuum-dried at 120 ° C. for 12 hours to obtain both sides of the aluminum foil. A positive electrode mixture layer was formed on the substrate, pressed, and cut into a predetermined size to obtain a strip-like positive electrode.
  • the thickness of the positive electrode mixture layer of the obtained positive electrode was 41 ⁇ m.
  • FIG. 3 is a plan view schematically showing the battery positive electrode (however, in order to facilitate understanding of the structure of the positive electrode, the size of the positive electrode shown in FIG. 3 does not necessarily match the actual one).
  • the positive electrode 10 has a tab portion 13 punched out so that a part of the exposed portion of the positive electrode current collector 12 protrudes, and the shape of the forming portion of the positive electrode mixture layer 11 is a substantially rectangular shape with four corners curved.
  • the lengths a, b and c were 61 mm, 137 mm and 10 mm, respectively.
  • the negative electrode active material 96 parts by mass of soft carbon, acrylic resin: 2 parts by mass, CMC: 2 parts by mass, and water were mixed to prepare a negative electrode mixture-containing paste.
  • the negative electrode mixture-containing paste is applied to both sides of a copper foil having a thickness of 10 ⁇ m and dried to form a negative electrode mixture layer on both sides of the copper foil, and press treatment is performed to set the density of the negative electrode mixture layer to 1. After adjusting to 0 g / cm 3 , it was cut into a predetermined size to obtain a strip-shaped negative electrode.
  • the thickness of the negative electrode mixture layer of the obtained negative electrode was 61.5 ⁇ m.
  • FIG. 4 is a plan view schematically showing the battery negative electrode (however, in order to facilitate understanding of the structure of the negative electrode, the size of the negative electrode shown in FIG. 4 does not necessarily match the actual one).
  • the negative electrode 20 has a shape having a tab portion 23 punched out so that a part of the exposed portion of the negative electrode current collector 22 protrudes, and the shape of the forming portion of the negative electrode mixture layer 21 is a substantially rectangular shape with four corners curved.
  • the lengths d, e, and f were 64 mm, 142.5 mm, and 10 mm, respectively.
  • LiPF 6 is dissolved at a concentration of 1.2 mol / L in a solvent in which propylene carbonate (PC) and ⁇ -methyl- ⁇ -butyrolactone (MBL) are mixed at a volume ratio of 3: 7, and vinylene carbonate (VC) is further added to 2
  • PC propylene carbonate
  • MBL ⁇ -methyl- ⁇ -butyrolactone
  • VC vinylene carbonate
  • a laminated electrode body was formed using 18 positive electrodes for a battery in which a positive electrode mixture layer was formed on both sides of the positive electrode current collector and 19 negative electrodes for a battery in which a negative electrode mixture layer was formed on both sides of the negative electrode current collector.
  • the upper and lower ends are the negative electrodes for the battery, and the positive electrode for the battery and the negative electrode for the battery are interposed between them.
  • the tab portions between the positive electrodes and the tab portions between the negative electrodes were welded to each other with a ratio of 50%).
  • the laminated electrode body is inserted into the depression of an aluminum laminate film having a thickness of 5.7 mm, a width of 78 mm, and a height of 161 mm in which the depression is formed so that the laminated electrode body is accommodated, and the above-mentioned laminated electrode body is inserted thereon
  • the aluminum laminate film of the same size as the above was placed, and three sides of both aluminum laminate films were heat-welded.
  • the said non-aqueous electrolyte was inject
  • FIG. 5 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 5 is a cross-sectional view taken along the line II-II in FIG.
  • the nonaqueous secondary battery 100 includes a laminated electrode body 102 constituted by laminating a positive electrode and a negative electrode with a separator in an aluminum laminated film outer package 101 constituted by two aluminum laminated films, and a nonaqueous electrolytic solution. (Not shown) is housed, and the aluminum laminate film outer package 101 is sealed by heat-sealing the upper and lower aluminum laminate films at the outer peripheral portion thereof.
  • FIG. 6 in order to avoid complication of the drawing, each layer constituting the aluminum laminate film outer package 101 and the positive electrode, the negative electrode and the separator constituting the laminated electrode body 102 are shown separately. Absent.
  • Each positive electrode of the laminated electrode body 102 is integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the positive electrode external terminal 103 in the battery 100, although not shown.
  • the negative electrodes of the laminated electrode body 102 are also integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the negative electrode external terminal 104 in the battery 100.
  • the positive electrode external terminal 103 and the negative electrode external terminal 104 are drawn out to the outside of the aluminum laminate film exterior body 101 so that they can be connected to an external device or the like.
  • Example 9 A non-aqueous secondary battery was prepared in the same manner as in Example 8 except that the solvent of the non-aqueous electrolyte was changed to a mixture of PC, MBL, and ethyl methyl carbonate (EMC) at a volume ratio of 3: 5: 2. Produced.
  • Example 10 A non-aqueous secondary battery was produced in the same manner as in Example 8 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
  • Example 11 A non-aqueous secondary battery was produced in the same manner as in Example 9 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
  • Example 12 A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the solvent of the nonaqueous electrolyte was changed to a mixture of ethylene carbonate (EC) and MBL at a volume ratio of 3: 7.
  • EC ethylene carbonate
  • Example 13 A non-aqueous secondary battery was produced in the same manner as in Example 8, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
  • Example 14 A non-aqueous secondary battery was produced in the same manner as in Example 9 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
  • Example 15 A non-aqueous secondary battery was produced in the same manner as in Example 13 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
  • Example 16 A non-aqueous secondary battery was produced in the same manner as in Example 14 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
  • Example 17 A nonaqueous secondary battery was prepared in the same manner as in Example 9 except that a coating layer having a thickness of 1 ⁇ m per side was formed on both sides of an aluminum foil as a positive electrode current collector before forming the positive electrode mixture layer.
  • the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin: 40 mass parts as a binder, and PVP: 1 mass part as a dispersing agent. Formed using.
  • Example 18 A nonaqueous secondary battery was produced in the same manner as in Example 17 except that the thickness of the coat layer on the surface of the positive electrode current collector was changed to 10 ⁇ m.
  • Example 19 The solvent of the non-aqueous electrolyte was changed to a mixture of EC and diethyl carbonate (DEC) at a volume ratio of 3: 7, and VC was added to the non-aqueous electrolyte in an amount of 2.5% by mass. Produced a non-aqueous secondary battery in the same manner as in Example 8.
  • DEC diethyl carbonate
  • Comparative Example 2 A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the binder of the positive electrode mixture layer was changed to PVDF at the time of producing the positive electrode.
  • each battery is sequentially subjected to constant current-constant voltage charging under the above conditions and constant current discharge for 10 seconds at each current value of 10C, 20C, 30C, 40C, and 50C to obtain ⁇ V at each current value.
  • the maximum discharge pulse current exceeded 50 C, the current value was calculated by extending the straight line of the plot.
  • each battery subjected to constant current-constant voltage charging under the same conditions as the initial capacity measurement was stored in a constant temperature bath at 100 ° C. for 48 hours. Then, each battery was taken out from the thermostat, and after returning to room temperature, thickness was measured and the increase rate (%) of the thickness after high temperature storage was calculated
  • Table 2 shows the configurations of the nonaqueous electrolyte solutions according to the nonaqueous secondary batteries of Examples 8 to 19 and Comparative Example 2, and Table 3 shows the evaluation results.
  • the nonaqueous secondary batteries of Examples 8 to 19 using an olivine type compound as a positive electrode active material and using a positive electrode containing a specific binder were comparative examples using PVDF as the positive electrode binder.
  • the maximum discharge pulse current value was large and the output characteristics were excellent.
  • non-aqueous secondary batteries of Examples 8 to 18 using specific lactones as the non-aqueous electrolyte solvent have a general solvent configuration (combination of chain carbonate and cyclic carbonate) in the non-aqueous secondary battery.
  • the capacity recovery rate after high-temperature storage was higher than that of the non-aqueous secondary battery of Example 19 and the rate of increase in thickness was small, and the battery was excellent in high-temperature storage characteristics.
  • Example 20 As in Example 8, except that a nonwoven fabric (average pore diameter: 0.8 ⁇ m, thickness: 25 ⁇ m, porosity: 55%) composed of polyethylene nanofibers (average fiber diameter 500 nm) was used as the separator. Three types of non-aqueous secondary batteries were prepared.
  • Example 21 A nonaqueous secondary battery was produced in the same manner as in Example 20, except that the positive electrode current collector was changed to the aluminum foil having a plurality of through holes used in Example 3.
  • Example 22 Non-aqueous secondary as in Example 20, except that a coating layer having a thickness of 0.3 ⁇ m per side was formed on both sides of the aluminum foil as the positive electrode current collector before forming the positive electrode mixture layer. A battery was produced.
  • the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin binder: 40 mass parts, and polyvinylpyrrolidone: 1 mass part as a dispersing agent. Formed using.
  • Example 23 The non-aqueous electrolyte was changed to one prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, diethyl carbonate and ⁇ -methyl- ⁇ -butyrolactone were mixed at a volume ratio of 30:20:50.
  • a nonaqueous secondary battery was fabricated in the same manner as in Example 20 except that.
  • Example 24 In the same manner as in Example 20, three types of non-aqueous secondary batteries having different average pore diameters of the nonwoven fabric were produced.
  • the average pore diameter of the used nonwoven fabric is three types of 0.008 ⁇ m, 0.8 ⁇ m and 2 ⁇ m.
  • the voltage drop at each current value: ⁇ V and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) of each battery during discharge.
  • the voltage rise at each current value: ⁇ V and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) for charging each battery.
  • the ratio between the maintenance capacity (mAh) and the rated capacity was defined as a capacity maintenance ratio, and the ratio between the recovery capacity (mAh) and the rated capacity was determined as a capacity recovery ratio, and the high-temperature storage characteristics of each battery were evaluated.
  • the non-aqueous secondary batteries of Examples 20 to 23 using nonwoven fabrics having appropriate average pore diameters as separators are the batteries of Example 8 using general-purpose polyethylene microporous films.
  • the battery resistance can be lowered, and a battery having excellent output characteristics that can cope with both discharging with a large current and charging with a large current can be constructed.
  • a short circuit due to lithium dendrite precipitation during charging did not occur, and excellent results in high temperature storage characteristics and charge / discharge cycle characteristics were obtained.
  • the nonwoven fabric when a nonwoven fabric is used as the separator of the nonaqueous secondary battery of the present invention, if the average pore diameter is too large, lithium dendrite precipitation is caused. Since the output characteristics are liable to deteriorate if the average pore diameter is too small, the nonwoven fabric preferably has an average pore diameter of 0.1 to 1 ⁇ m.
  • Example 25 ⁇ Binder composition> Butadiene: 6 parts by mass, styrene, 11.5 parts by mass, methyl methacrylate: 3.5 parts by mass, acrylic acid: 0.5 parts by mass and itaconic acid: 2.5 parts by mass, sodium dodecylbenzenesulfonate: 0 Together with 1 part by weight, potassium persulfate: 1 part by weight, sodium bisulfite: 0.5 part by weight, ⁇ -methylstyrene dimer: 0.2 part by weight, dodecyl mercaptan: 0.1 part by weight and water: 200 parts by weight The mixture was put into an autoclave and reacted at 70 ° C. for 2 hours.
  • butadiene 31.5 parts by mass, styrene, 31.5 parts by mass, methyl methacrylate: 8 parts by mass, acrylonitrile: 4 parts by mass, acrylic acid: 0.5 parts by mass and itaconic acid: 0.5 parts by mass
  • styrene 31.5 parts by mass
  • methyl methacrylate 8 parts by mass
  • acrylonitrile 4 parts by mass
  • acrylic acid 0.5 parts by mass
  • itaconic acid 0.5 parts by mass
  • the pH of the composition after completion of the reaction is adjusted to 7.5, and the remaining monomer component is treated by steam distillation, whereby a polymer having a unit represented by the general formula (1) in the molecule (A ) Containing the binder B2 for the positive electrode mixture layer was synthesized.
  • a belt-like positive electrode was produced in the same manner as in Example 8 except that the binder B2 was used for the preparation of the positive electrode mixture-containing composition and the binder of the positive electrode mixture layer was changed to B2.
  • a nonaqueous secondary battery was produced in the same manner as in Example 8 except that the positive electrode was used.
  • Example 26 A nonaqueous secondary battery was produced in the same manner as in Example 25 except that the positive electrode current collector was changed to the aluminum foil having a plurality of through holes used in Example 3.
  • Example 27 Nonaqueous secondary as in Example 25, except that a coating layer having a thickness of 0.3 ⁇ m per side was formed on both sides of the aluminum foil as the positive electrode current collector before forming the positive electrode mixture layer. A battery was produced.
  • the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin binder: 40 mass parts, and polyvinylpyrrolidone: 1 mass part as a dispersing agent. Formed using.
  • Example 28 Implementation was conducted except that the conductive assistant for the positive electrode was changed to acetylene black: 2.5 parts by mass, graphite: 1.5 parts by mass, and carbon nanotubes (average length 2 ⁇ m, average diameter 10 nm): 1 part by mass.
  • a nonaqueous secondary battery was produced in the same manner as in Example 25.
  • Example 29 The non-aqueous electrolyte was changed to one prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, diethyl carbonate and ⁇ -methyl- ⁇ -butyrolactone were mixed at a volume ratio of 30:20:50.
  • a nonaqueous secondary battery was fabricated in the same manner as in Example 25 except that.
  • the positive electrode mixture-containing composition according to Example 1 using the binder synthesized in the coexistence of PVDF and the positive electrode mixture-containing composition according to Comparative Example 1 using PVDF as the binder were 12 hours after preparation. Later, it thickened and lost its fluidity.
  • the formation of the positive electrode mixture layer of the positive electrode according to the nonaqueous secondary battery of the present invention does not contain a fluorine-containing ethylenic unit such as vinylidene fluoride or the proportion thereof from the viewpoint of productivity. It is desirable to use a binder with a small amount.
  • the voltage drop at each current value: ⁇ V and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) of each battery during discharge.
  • the voltage rise at each current value: ⁇ V and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) for charging each battery.
  • the lithium iron phosphate which is an olivine type compound is used as a positive electrode active material, and the positive electrode mixture layer contains a polymer (A) having a unit represented by the general formula (1) in the molecule.
  • the non-aqueous secondary batteries of Examples 25 to 29 using the binder B2 that does not contain the fluorine-containing ethylenic unit when charged with a large current compared to the battery of Example 8 using the binder B1, In any of the discharges, the DCR value could be further reduced, and even more excellent output characteristics were exhibited.
  • Example 30 Preparation of non-aqueous electrolyte> LiPF 6 is dissolved at a concentration of 1.2 mol / L in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7, and further vinylene carbonate (2.5% by mass) VC) and 1.0% by mass of phosphoric acid (tris) trimethylsilyl were added to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • tris phosphoric acid
  • a nonaqueous secondary battery was produced in the same manner as in Example 8 except that the nonaqueous electrolyte was used.
  • Example 31 The non-aqueous electrolyte solution was changed to a mixture of propylene carbonate (PC) and ⁇ -methyl- ⁇ -butyrolactone (MBL) at a volume ratio of 3: 7 in the same manner as in Example 30. A secondary battery was produced.
  • PC propylene carbonate
  • MBL ⁇ -methyl- ⁇ -butyrolactone
  • Example 32 A non-aqueous secondary battery was prepared in the same manner as in Example 30 except that the solvent of the non-aqueous electrolyte was changed to a mixture of PC, MBL, and ethyl methyl carbonate (EMC) at a volume ratio of 3: 5: 2. Produced.
  • Example 33 A nonaqueous secondary battery was fabricated in the same manner as in Example 30, except that LiBF 4 was used in an amount that would give a concentration of 1.0 mol / L instead of LiPF 6 as the lithium salt of the nonaqueous electrolyte.
  • Example 34 A non-aqueous secondary battery was produced in the same manner as in Example 31 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
  • Example 35 A non-aqueous secondary battery was produced in the same manner as in Example 32 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
  • Example 36 A non-aqueous secondary battery was produced in the same manner as in Example 30 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
  • Example 37 A non-aqueous secondary battery was produced in the same manner as in Example 31 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
  • Example 38 A nonaqueous secondary battery was fabricated in the same manner as in Example 32, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolyte.
  • Example 39 A nonaqueous secondary battery was produced in the same manner as in Example 33 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolyte.
  • Example 40 A nonaqueous secondary battery was produced in the same manner as in Example 34, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolytic solution.
  • Example 41 A nonaqueous secondary battery was produced in the same manner as in Example 35, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolyte.
  • Example 42 A nonaqueous secondary battery was produced in the same manner as in Example 30, except that the amount of phosphoric acid (tris) trimethylsilyl added in the nonaqueous electrolytic solution was changed to 0.1% by mass.
  • Comparative Example 3 LiNi 0.5 Co 0.2 Mn 0.3 O 2 as positive electrode active material: 93.7 parts by mass, acetylene black as conductive aid: 4.0 parts by mass, and PVDF as a binder at 2.0
  • a positive electrode was prepared in the same manner as in Example 8 except that a positive electrode mixture-containing composition was prepared by mixing 0.3 part by mass of polyvinyl pyrrolidone (PVP) as a dispersant with 0.3 part by mass and NMP. .
  • PVP polyvinyl pyrrolidone
  • a nonaqueous secondary battery was produced in the same manner as in Example 30 except that this positive electrode was used.
  • Example 19 For the nonaqueous secondary batteries of Example 19, Examples 30 to 42, and Comparative Example 3, the following evaluations were performed after measuring the rated capacity under the above conditions.
  • required by the said method is each Example: 1480 ppm and comparative example 3: 370 ppm.
  • the water content of each non-aqueous secondary battery as a whole was 1960 ppm for each example and 850 ppm for Comparative Example 3.
  • each battery subjected to constant current-constant voltage charging under the same conditions as the initial capacity measurement was stored in a constant temperature bath at 100 ° C. for 48 hours. Then, each battery was taken out from the thermostat and returned to room temperature, and then a constant current discharge was performed at 1 C until the battery voltage reached 2.0V. Further, constant current-constant voltage charging and constant current discharging were performed under the same conditions as those for initial capacity measurement, and the discharge capacity (recovery capacity) was measured. A value obtained by dividing the obtained recovery capacity by the initial capacity was expressed as a percentage to obtain a capacity recovery rate.
  • the battery after the measurement was subjected to constant current discharge at a current value of 0.1 C until the battery voltage reached 2.0 V, and then the battery voltage was adjusted to 3.85 V at a current value of 0.1 C.
  • Current charging was performed, and the charging capacity (0.1 C charging capacity) was measured.
  • constant current discharge was performed at a current value of 0.1 C until the voltage reached 2.0 V, and then constant current charging was performed until the battery voltage reached 3.85 V at a current value of 10 C.
  • the charge capacity (10 C charge capacity) was measured.
  • the value obtained by dividing the 10C discharge capacity by the 0.1C discharge capacity (capacity ratio) and the value obtained by dividing the 10C charge capacity by the 0.1C charge capacity (capacity ratio) are expressed as percentages, respectively. evaluated.
  • Tables 9 and 10 show the configurations of the nonaqueous secondary batteries of Examples 30 to 42, Example 19 and Comparative Example 3, and Tables 11 and 12 show the evaluation results.
  • non-aqueous secondary batteries of Example 30, Examples 33 to 36, and Examples 40 to 41 using the non-aqueous electrolyte containing the phosphoric acid compound are non-aqueous electrolytes that do not contain the compound. It has an excellent charge / discharge characteristic equivalent to that of the battery of Example 19 using the above, and it can be seen that the addition of the compound can improve the high-temperature storage characteristic without causing deterioration of the charge / discharge performance. It was.
  • non-aqueous secondary battery of the present invention is excellent in charge / discharge characteristics at a large current, it can be suitably used for in-vehicle or industrial storage batteries by taking advantage of the above characteristics, and is conventionally known. It can also be used for the same applications as non-aqueous secondary batteries such as lithium ion secondary batteries.

Abstract

Provided are: a nonaqueous secondary battery having excellent charge and discharge characteristics with a large current; and a method for manufacturing this nonaqueous secondary battery. A nonaqueous secondary battery according to the present invention is characterized by being provided with: a positive electrode that has a positive electrode mixture layer, which contains a positive electrode active material, a binder and a conductive assistant, on one surface or both surfaces of a collector; a negative electrode that has a negative electrode mixture layer, which contains a negative electrode active material and a binder, on one surface or both surfaces of a collector; a separator; and a nonaqueous electrolyte solution that contains a lithium salt and an organic solvent. This nonaqueous secondary battery is also characterized in that the positive electrode mixture layer contains an olivine-type compound as the positive electrode active material, while containing, as the binder, a polymer (A) that has a unit represented by general formula (1) in each molecule. (In general formula (1), R1 represents H or a methyl group; and R2 represents an alkyl group having 1-18 carbon atoms.)

Description

非水二次電池およびその製造方法Non-aqueous secondary battery and manufacturing method thereof
 本発明は、大電流での充放電特性に優れた非水二次電池およびその製造方法に関するものである。 The present invention relates to a non-aqueous secondary battery excellent in charge / discharge characteristics at a large current and a method for producing the same.
 リチウムイオン二次電池などの非水二次電池は、高電圧、高容量であることから、各種携帯機器の電源として広く採用されている。また、近年では電動工具などのパワーツールや電気自動車、電動式自転車などのように、中型や大型での用途も広がりを見せている。 Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for various portable devices because of their high voltage and high capacity. In recent years, the use of medium-sized and large-sized tools such as power tools such as electric tools, electric vehicles, and electric bicycles has been spreading.
 非水二次電池は、民生用途としてまず普及し、現時点では車載用や産業用としても広がりを見せつつある。こうした状況下で、非水二次電池には各種の電池特性の向上が望まれている。 Non-aqueous secondary batteries are first widespread for consumer use, and at present, they are spreading for in-vehicle and industrial use. Under these circumstances, non-aqueous secondary batteries are desired to improve various battery characteristics.
 非水二次電池の特性を改善するにあたっては、正極、負極、セパレータ、非水電解液など、電池を構成する各種要素の改良が試みられている。 In improving the characteristics of the non-aqueous secondary battery, attempts have been made to improve various elements constituting the battery, such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
 例えば、特許文献1には、正極活物質に特定のリン酸鉄リチウムを使用した正極と、負極活物質にソフトカーボンなどの無定形炭素(非晶質炭素)を使用した負極とを用いることで、車載用に適した特性を確保し得たリチウムイオン二次電池が提案されている。 For example, Patent Document 1 uses a positive electrode using a specific lithium iron phosphate as a positive electrode active material and a negative electrode using amorphous carbon (amorphous carbon) such as soft carbon as a negative electrode active material. A lithium ion secondary battery has been proposed that has secured characteristics suitable for in-vehicle use.
 非水二次電池においては、特に車載用や産業用への適用を考慮すると、例えば大電流で放電しても良好に機能し得るような電池特性(高出力特性)を備えることが求められると想定される。 In the case of non-aqueous secondary batteries, in particular, considering application to in-vehicle and industrial applications, for example, it is required to have battery characteristics (high output characteristics) that can function well even when discharged with a large current. is assumed.
 なお、非水二次電池用の正極は、正極活物質、バインダおよび導電助剤などを溶媒に分散させて調製した正極合剤層形成用の組成物(正極合剤含有組成物)を、集電体の表面の塗布し、乾燥により溶媒を除去する工程を経て正極合剤層を集電体の表面に形成する方法により製造されることが通常である。そして、正極合剤層用のバインダには、ポリフッ化ビニリデンのようなフッ素樹脂が一般に用いられている。 The positive electrode for a non-aqueous secondary battery was prepared by collecting a composition for forming a positive electrode mixture layer (a positive electrode mixture-containing composition) prepared by dispersing a positive electrode active material, a binder, a conductive additive and the like in a solvent. In general, it is manufactured by a method of forming a positive electrode mixture layer on the surface of the current collector through a process of applying the surface of the electric body and removing the solvent by drying. A fluorine resin such as polyvinylidene fluoride is generally used for the binder for the positive electrode mixture layer.
 ところが、非水二次電池の正極活物質に汎用されているリン酸鉄リチウムなどのリチウム含有複合酸化物は、その製造方法の関係からアルカリ性の不純物を含んでいる。このため、水を含む溶媒を用いてこのような正極活物質を合剤化する場合、溶媒中に、前記不純物のアルカリ成分が溶出しやすく、バインダであるポリフッ化ビニリデンなどのフッ素樹脂を架橋させる原因となる。また、合剤化に有機溶媒を用いる場合であっても、N-メチル-2-ピロリドンのように水が混入しやすい溶媒を用いる場合には、溶媒中に不純物として含有されている水や、正極活物質に含まれていて、合剤化の際に溶媒中に混入する水により、前記不純物のアルカリ成分が溶媒中に溶出することになり、同様に、フッ素樹脂の架橋反応を生じさせる原因となる。 However, lithium-containing composite oxides such as lithium iron phosphate, which are widely used as positive electrode active materials for non-aqueous secondary batteries, contain alkaline impurities because of their manufacturing method. For this reason, when such a positive electrode active material is formulated using a solvent containing water, the alkaline component of the impurity is easily eluted in the solvent, and a fluorine resin such as polyvinylidene fluoride as a binder is crosslinked. Cause. Further, even when an organic solvent is used for compounding, when a solvent that easily mixes water such as N-methyl-2-pyrrolidone is used, water contained as an impurity in the solvent, Causes that the alkaline component of the impurities is eluted in the solvent by the water mixed in the solvent at the time of compounding, and similarly causes a crosslinking reaction of the fluororesin. It becomes.
 このように正極合剤含有組成物中のバインダが架橋してしまった場合、当該組成物はゲル状となって流動性を失うため、集電体への塗布が困難または不可能となる。よって、ポリフッ化ビニリデンなどのフッ素樹脂をバインダに使用した正極合剤含有組成物は、調製後に、バインダが架橋してしまうまでの短時間で正極合剤層の形成に使用する必要があり、これが非水二次電池用正極の生産性を損なう一因となりやすい。 Thus, when the binder in the positive electrode mixture-containing composition is cross-linked, the composition becomes a gel and loses fluidity, so that application to the current collector becomes difficult or impossible. Therefore, the positive electrode mixture-containing composition using a fluorine resin such as polyvinylidene fluoride as the binder must be used for forming the positive electrode mixture layer in a short time until the binder is crosslinked after the preparation. This tends to impair the productivity of the positive electrode for a non-aqueous secondary battery.
 一方、こうした正極活物質中のアルカリ成分によるバインダの架橋による問題の解決を図る技術も検討されている。例えば、特許文献2には、化学式LiMn1-xPO(0.3≦x≦1、Mは、Li、Fe、Ni、Co、Ti、Cu、Zn、Mg、およびZrから選ばれる一種以上の元素)で表されるオリビン型リン酸リチウムを含む正極の結着剤(バインダ)として、アクリロニトリルまたはメタクリロニトリルと、化学式CH=CR-CO-O-R(RはHまたはCH、Rは任意のアルキル基)で表されるエステル基を含有するモノマーとの共重合体を用いることにより、正極合剤含有組成物のゲル化を抑制し、レート特性やサイクル寿命に優れたリチウム二次電池用正極とする技術が提案されている。 On the other hand, a technique for solving the problem caused by the crosslinking of the binder by the alkali component in the positive electrode active material has been studied. For example, in Patent Document 2, the chemical formula LiMn x M 1-x PO 4 (0.3 ≦ x ≦ 1, M is selected from Li, Fe, Ni, Co, Ti, Cu, Zn, Mg, and Zr) As a binder of a positive electrode containing an olivine type lithium phosphate represented by one or more elements), acrylonitrile or methacrylonitrile and a chemical formula CH 2 ═CR 1 —CO—O—R 2 (R 1 is By using a copolymer with a monomer containing an ester group represented by H or CH 3 , R 2 is an arbitrary alkyl group), the gelation of the positive electrode mixture-containing composition is suppressed, rate characteristics and cycle A technique for forming a positive electrode for a lithium secondary battery having an excellent lifetime has been proposed.
 ところが、アルカリ性の不純物の含有量が多い正極活物質は、含有水分量も多くなりやすく、特に、材料の導電性を向上させるためにその表面を炭素材料で被覆した場合には、水分が吸着されやすくなり、含有水分量がより一層多くなってしまう。よって、このような正極活物質を用いて正極を作製し、これをそのまま電池の作製に用いた場合、電池内に多くの水分が持ち込まれることになる。その場合、正極合剤中に含まれる前記水分は、非水電解液の電解質として使用されるLiPFなどのフッ素含有無機リチウム塩と反応してフッ化水素を発生させてしまう。このため、電池が高温環境下に長時間置かれるような状況では、電極の構成材料などの劣化が生じ、容量が低下するなどの問題を生じやすくなる。 However, the positive electrode active material having a high content of alkaline impurities tends to have a high water content, and in particular, when the surface is coated with a carbon material in order to improve the conductivity of the material, the water is adsorbed. It becomes easier and the water content is further increased. Therefore, when a positive electrode is produced using such a positive electrode active material and used as it is for producing a battery, a large amount of moisture is brought into the battery. In that case, the moisture contained in the positive electrode mixture reacts with a fluorine-containing inorganic lithium salt such as LiPF 6 used as the electrolyte of the non-aqueous electrolyte solution to generate hydrogen fluoride. For this reason, in a situation where the battery is left in a high temperature environment for a long time, the constituent materials of the electrode are deteriorated, and problems such as a decrease in capacity are likely to occur.
 こうしたことから、正極合剤による電池内への水分の持ち込みによる前記問題を防ぐためには、電池の組み立て前に正極を真空中で乾燥させるなど充分に脱水処理を行う必要があり、電池の生産性を損なう一因となりやすい。 For this reason, in order to prevent the above-mentioned problem due to the water content brought into the battery by the positive electrode mixture, it is necessary to sufficiently perform a dehydration process such as drying the positive electrode in a vacuum before assembling the battery. It is easy to contribute to the damage.
 このような貯蔵劣化の問題に対し、特許文献3には、特定構造のリン酸化合物などを非水電解液に添加することで、電池内に持ち込まれる水分の影響を抑制し、負荷特性および高温貯蔵後の負荷特性を改善することが提案されている。 In order to solve the problem of storage deterioration, Patent Document 3 discloses that a phosphoric acid compound having a specific structure is added to the non-aqueous electrolyte, thereby suppressing the influence of moisture brought into the battery, load characteristics and high temperature. It has been proposed to improve the load characteristics after storage.
特開2009-104983号公報JP 2009-104983 A 特開2010-272272号公報JP 2010-272272 A 特開2001-319685号公報Japanese Patent Laid-Open No. 2001-319685
 特許文献2に記載の技術は、正極活物質中のアルカリ成分によって生じ得るポリフッ化ビニリデンの架橋反応を抑えて、正極合剤含有組成物のゲル化を抑制するには有効である一方で、高比表面積の活物質を用い、レート特性やサイクル特性を良好にするために、バインダの含有量を多くしており、大電流での充放電特性向上の面では、改善の余地がある。 While the technique described in Patent Document 2 is effective in suppressing the cross-linking reaction of polyvinylidene fluoride that may be caused by an alkali component in the positive electrode active material and suppressing the gelation of the positive electrode mixture-containing composition, In order to improve rate characteristics and cycle characteristics using an active material with a specific surface area, the binder content is increased, and there is room for improvement in terms of improving charge / discharge characteristics at a large current.
 また、特許文献3に記載の技術では、実際には、実施例に記載されているように、電極シートやセパレータの長時間の真空乾燥により、電解液量に対する電池内に持ち込まれる水分量の和が30~800重量ppmとなるように調整して、前記リン酸化合物を有効に機能させている。そのため、電池の生産性の点で課題が残っており、電池内に持ち込まれる水分量の和が上記範囲より多くなる場合、例えば、電池組み立て時の正極合剤の含有水分量が400ppmより多くなるような場合に、前記リン酸化合物を有効に作用させる方法については、未だ検討の余地がある。 In addition, in the technique described in Patent Document 3, in fact, as described in the examples, the sum of the amount of moisture brought into the battery with respect to the amount of the electrolyte by long-time vacuum drying of the electrode sheet or the separator. Is adjusted to be 30 to 800 ppm by weight so that the phosphoric acid compound functions effectively. Therefore, a problem remains in terms of battery productivity, and when the sum of the amount of moisture brought into the battery exceeds the above range, for example, the amount of moisture contained in the positive electrode mixture at the time of battery assembly exceeds 400 ppm. In such a case, there is still room for study on a method for effectively causing the phosphate compound to act.
 本発明は、正極活物質あるいは正極に含まれる水分に伴う問題の発生を防ぎ、大電流での充放電特性に優れた非水二次電池およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a non-aqueous secondary battery excellent in charge / discharge characteristics at a large current, and a method for producing the same, by preventing occurrence of problems associated with the positive electrode active material or moisture contained in the positive electrode.
 前記目的を達成し得る本発明の非水二次電池の実施態様の1つは、正極活物質、バインダおよび導電助剤を含有する正極合剤層を集電体の片面または両面に有する正極と、負極活物質およびバインダを含有する負極合剤層を集電体の片面または両面に有する負極と、セパレータ、並びにリチウム塩および有機溶媒を含有する非水電解液とを備えており、正極活物質、バインダおよび導電助剤を含有する正極合剤層を集電体の片面または両面に有しており、前記正極合剤層は、オリビン型化合物を前記正極活物質として含有し、かつ下記一般式(1)で表されるユニットを分子内に有する重合体(A)を前記バインダとして含有していることを特徴とするものである。 One embodiment of the non-aqueous secondary battery of the present invention that can achieve the above object is a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a binder, and a conductive additive on one or both sides of a current collector, A negative electrode having a negative electrode mixture layer containing a negative electrode active material and a binder on one side or both sides of a current collector, a separator, and a non-aqueous electrolyte containing a lithium salt and an organic solvent. And a positive electrode mixture layer containing a binder and a conductive additive on one or both sides of the current collector, the positive electrode mixture layer containing an olivine type compound as the positive electrode active material, and the following general formula The polymer (A) having a unit represented by (1) in the molecule is contained as the binder.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記一般式(1)中、RはHまたはメチル基を表し、Rは炭素数1~18のアルキル基を表す。 In the general formula (1), R 1 represents H or a methyl group, and R 2 represents an alkyl group having 1 to 18 carbon atoms.
 前記非水二次電池における非水電解液は、下記一般式(2)で表される基を分子内に有するリン酸化合物を含有していることを好ましい実施態様とする。
Figure JPOXMLDOC01-appb-C000005
〔前記一般式(2)中、XはSi、GeまたはSnであり、R、RおよびRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基または炭素数6~10のアリール基を表し、水素原子の一部または全部がフッ素で置換されていてもよい。〕
The non-aqueous electrolyte in the non-aqueous secondary battery preferably includes a phosphoric acid compound having a group represented by the following general formula (2) in the molecule.
Figure JPOXMLDOC01-appb-C000005
[In the general formula (2), X represents Si, Ge or Sn, and R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and part or all of the hydrogen atoms may be substituted with fluorine. ]
 また、前記目的を達成し得る本発明の非水二次電池の製造方法は、正極活物質、バインダおよび導電助剤を含有する正極合剤層を集電体の片面または両面に有する正極と、負極活物質およびバインダを含有する負極合剤層を集電体の片面または両面に有する負極と、セパレータ、並びにリチウム塩および有機溶媒を含有する非水電解液とを備えた非水二次電池を製造するにあたり、前記正極合剤層の水分量が500~3000ppmである正極と、前記一般式(2)で表される基を分子内に有するリン酸化合物を含有する非水電解液とを外装体の内部に封入することを特徴とする。 Further, the method for producing a non-aqueous secondary battery of the present invention capable of achieving the above object includes a positive electrode having a positive electrode mixture layer containing a positive electrode active material, a binder and a conductive auxiliary agent on one side or both sides of a current collector, A nonaqueous secondary battery comprising a negative electrode having a negative electrode mixture layer containing a negative electrode active material and a binder on one or both sides of a current collector, a separator, and a nonaqueous electrolyte containing a lithium salt and an organic solvent In manufacturing, a positive electrode having a water content of 500 to 3000 ppm in the positive electrode mixture layer and a nonaqueous electrolytic solution containing a phosphate compound having a group represented by the general formula (2) in the molecule are packaged. It is sealed inside the body.
 本発明によれば、正極活物質あるいは正極に含まれる水分に伴う問題を生じ難く、大電流での充放電特性に優れた非水二次電池およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a non-aqueous secondary battery that is less prone to problems associated with moisture contained in the positive electrode active material or the positive electrode and has excellent charge / discharge characteristics at a large current, and a method for manufacturing the same.
本発明の非水二次電池の一例を模式的に表す平面図である。It is a top view which represents typically an example of the non-aqueous secondary battery of this invention. 図1のI-I線断面図である。It is the II sectional view taken on the line of FIG. 本発明の非水二次電池に係る正極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the positive electrode which concerns on the nonaqueous secondary battery of this invention. 本発明の非水二次電池に係る負極の一例を模式的に表す平面図である。It is a top view which represents typically an example of the negative electrode which concerns on the nonaqueous secondary battery of this invention. 本発明の非水二次電池の他の例を模式的に表す平面図である。It is a top view which represents typically the other example of the non-aqueous secondary battery of this invention. 図5のII-II線断面図である。It is the II-II sectional view taken on the line of FIG.
 本発明の非水二次電池に係る正極(以下、単に「正極」という)は、正極活物質、バインダおよび導電助剤を含有する正極合剤層を集電体の片面または両面に有する構造を備えている。そして、前記正極の実施態様の1例は、正極活物質としてオリビン型化合物を含有し、かつバインダとして前記一般式(1)で表されるユニットを分子内に有する重合体(A)を含有している。 The positive electrode (hereinafter simply referred to as “positive electrode”) according to the non-aqueous secondary battery of the present invention has a structure having a positive electrode mixture layer containing a positive electrode active material, a binder and a conductive additive on one side or both sides of a current collector. I have. And one example of the embodiment of the said positive electrode contains the polymer (A) which contains an olivine type compound as a positive electrode active material, and has the unit represented by the said General formula (1) in a molecule | numerator as a binder. ing.
 オリビン型化合物は、コバルト酸リチウムなどのリチウム含有複合酸化物と比較してアルカリ性の不純物を多く含有しており、そのため、正極合剤層を形成するための組成物(スラリー)を作製すると、前記不純物のアルカリ成分が前記組成物の溶媒(N-メチル-2-ピロリドン、水など)に溶出し、バインダであるポリフッ化ビニリデン(PVDF)などのフッ素樹脂を架橋させるため、時間の経過と共に組成物の流動性が低下する。 The olivine type compound contains a lot of alkaline impurities as compared with a lithium-containing composite oxide such as lithium cobaltate. Therefore, when a composition (slurry) for forming a positive electrode mixture layer is prepared, Since the alkaline component of impurities elutes in the solvent (N-methyl-2-pyrrolidone, water, etc.) of the composition and crosslinks a fluororesin such as polyvinylidene fluoride (PVDF) as a binder, the composition over time The fluidity of the is reduced.
 一方、本発明の非水二次電池における前記実施態様の正極では、PVDFに代えて、オリビン型化合物中のアルカリ性の不純物による架橋反応が生じ難い前記の重合体(A)を使用する。これにより、表面が炭素材料で被覆されたオリビン型化合物を用いる場合においても、前記組成物がゲル状となることを防止することが可能となり、非水二次電池の生産性を向上させるとともに、均質で良好な性状の正極合剤層を形成することができるので、正極の抵抗値を低減して大電流での充放電特性に優れた電池を構成することが可能となる。 On the other hand, in the positive electrode of the above embodiment in the non-aqueous secondary battery of the present invention, the polymer (A) that hardly causes a crosslinking reaction due to an alkaline impurity in the olivine type compound is used instead of PVDF. As a result, even when using an olivine-type compound whose surface is coated with a carbon material, it becomes possible to prevent the composition from becoming a gel, improving the productivity of the non-aqueous secondary battery, Since it is possible to form a positive electrode mixture layer having a uniform and good property, it becomes possible to reduce the resistance value of the positive electrode and to constitute a battery having excellent charge / discharge characteristics at a large current.
 また、オリビン型化合物だけでなく、リチウムニッケル複合酸化物など、アルカリ性の不純物の混在により水分を多く含有しやすい正極活物質を使用する場合、特に、その表面が炭素材料で被覆されている場合には、正極合剤層を形成するための組成物を乾燥する条件など、電池を組み立てる際の条件によっては、主に正極を通じて電池内に水分が多く持ち込まれ、電池の組み合立て後に、非水電解液の電解質塩(LiPFなどのフッ素含有無機リチウム塩)と反応してフッ化水素を発生させる要因となってしまう。 In addition, when using a positive electrode active material that easily contains a lot of water due to the mixture of alkaline impurities such as lithium nickel composite oxide as well as olivine type compounds, especially when the surface is coated with a carbon material Depending on the conditions for assembling the battery, such as the conditions for drying the composition for forming the positive electrode mixture layer, a large amount of moisture is mainly brought into the battery through the positive electrode. It reacts with the electrolyte salt of the electrolytic solution (fluorine-containing inorganic lithium salt such as LiPF 6 ) to generate hydrogen fluoride.
 しかし、本発明の非水二次電池の製造方法によれは、500~3000ppmと多くの水分を含有する正極合剤層を備えた正極とともに、前記一般式(2)で表される基を分子内に有するリン酸化合物を含有する非水電解液を外装体の内部に封入することにより、前記正極の含有水分量を低減する格別な処理を行わなくとも、フッ化水素を発生に伴う電池の特性劣化を抑制することができる。 However, according to the method for producing a non-aqueous secondary battery of the present invention, the group represented by the general formula (2) is combined with a positive electrode having a positive electrode mixture layer containing a large amount of water of 500 to 3000 ppm. By enclosing the non-aqueous electrolyte containing the phosphoric acid compound contained in the exterior body, the battery of the battery accompanying the generation of hydrogen fluoride can be obtained without performing a special treatment to reduce the moisture content of the positive electrode. Characteristic deterioration can be suppressed.
 前記の含有量で水分を保持する正極合剤層を備えた正極を用いることにより、前記リン酸化合物由来のSEI(Solid Electrolyte Interface)皮膜を形成するトリガーとなるフッ素化水素を、電池内で、前記正極の表面に前記SEI皮膜を効率的に形成させるのに必要な量発生させることができる。一方、発生したフッ化水素は、SEI皮膜の形成反応によって消費される。 By using a positive electrode including a positive electrode mixture layer that retains moisture at the above content, hydrogen fluoride serving as a trigger for forming a SEI (Solid Electrolyte Interface) film derived from the phosphoric acid compound, An amount necessary to efficiently form the SEI film on the surface of the positive electrode can be generated. On the other hand, the generated hydrogen fluoride is consumed by the formation reaction of the SEI film.
 このため、例えば電池が充電状態で高温下に置かれても、正極と非水電解液との接触による非水電解液の分解の問題や、発生したフッ化水素による電池特性の劣化の問題を防ぐことができ、良好な電池特性を維持することが可能となる。 For this reason, for example, even when the battery is placed in a charged state at a high temperature, there is a problem of decomposition of the non-aqueous electrolyte due to contact between the positive electrode and the non-aqueous electrolyte, and deterioration of battery characteristics due to the generated hydrogen fluoride. Therefore, it is possible to maintain good battery characteristics.
 前記リン酸化合物は、リン酸が有する水素原子のうちの少なくとも1つが、前記一般式(2)で表される基で置換された構造を有している。 The phosphoric acid compound has a structure in which at least one of hydrogen atoms of phosphoric acid is substituted with a group represented by the general formula (2).
 前記一般式(2)において、XはSi、GeまたはSnであるが、前記リン酸化合物としては、XがSiであるリン酸シリルエステルが好ましく用いられる。また、前記一般式(2)において、R、RおよびRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基または炭素数6~10のアリール基であるが、メチル基またはエチル基がより好ましい。また、R、RおよびRは、その水素原子の一部または全部がフッ素で置換されていてもよい。そして、前記一般式(2)で表される基としては、トリメチルシリル基が特に好ましい。 In the general formula (2), X is Si, Ge, or Sn. As the phosphoric acid compound, a phosphoric acid silyl ester in which X is Si is preferably used. In the general formula (2), R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms. However, a methyl group or an ethyl group is more preferable. R 3 , R 4, and R 5 may have some or all of their hydrogen atoms replaced with fluorine. The group represented by the general formula (2) is particularly preferably a trimethylsilyl group.
 また、前記リン酸化合物においては、リン酸が有する水素原子のうちの1つのみが前記一般式(2)で表される基で置換されていてもよく、リン酸が有する水素原子のうちの2つが前記一般式(2)で表される基で置換されていてもよく、リン酸が有する水素原子の3つ全てが前記一般式(2)で表される基で置換されていてもよいが、リン酸が有する水素原子の3つ全てが前記一般式(2)で表される基で置換されていることが、より好ましい。 In the phosphoric acid compound, only one of the hydrogen atoms possessed by phosphoric acid may be substituted with the group represented by the general formula (2). Two of them may be substituted with a group represented by the general formula (2), and all three hydrogen atoms of phosphoric acid may be substituted with a group represented by the general formula (2). However, it is more preferable that all three hydrogen atoms of phosphoric acid are substituted with the group represented by the general formula (2).
 このような前記リン酸化合物としては、リン酸(トリス)トリメチルシリルが、特に好ましいものとして挙げられる。 As such a phosphoric acid compound, phosphoric acid (tris) trimethylsilyl is particularly preferable.
 本発明の非水二次電池の製造方法では、正極合剤層の水分量を、質量基準で、500ppm以上とし、1000ppm以上とすることが好ましく、1200ppm以上とすることがより好ましい。これにより、正極での前記リン酸化合物によるSEI皮膜形成をより効率的に進めて、非水二次電池の高温貯蔵特性を高めることができる。ただし、正極合剤層の水分量が多すぎると、フッ化水素の発生量が多くなりすぎて、電池特性が低下してしまう虞が生じる。このため、より良好な電池特性を確保する観点から、本発明の非水二次電池の製造方法では、正極合剤層の水分量を、質量基準で、3000ppm以下とし、2500ppm以下とすることが好ましく、2000ppm以下とすることがより好ましい。 In the method for producing a non-aqueous secondary battery of the present invention, the moisture content of the positive electrode mixture layer is 500 ppm or more, preferably 1000 ppm or more, more preferably 1200 ppm or more, based on mass. Thereby, SEI film formation by the said phosphoric acid compound in a positive electrode can be advanced more efficiently, and the high temperature storage characteristic of a non-aqueous secondary battery can be improved. However, if the amount of water in the positive electrode mixture layer is too large, the amount of hydrogen fluoride generated becomes too large, and the battery characteristics may be deteriorated. For this reason, from the viewpoint of securing better battery characteristics, in the non-aqueous secondary battery manufacturing method of the present invention, the water content of the positive electrode mixture layer may be 3000 ppm or less and 2500 ppm or less on a mass basis. Preferably, it is more preferably 2000 ppm or less.
 本明細書でいう正極合剤層の水分量は、例えば、下記の方法によって求めることができる。窒素ガスをフローした150℃の加熱炉に測定サンプル(正極)を入れ、1分間保持する。そして、フローした窒素ガスをカールフィーッシャー水分計の測定セルに導入し、水分量を測定する。滴定終点までの積算値を含有水分量とする(後記の実施例に記載の「水分量」算出の基準とした「含有水分量」は、この方法で求めた値である)。この含有水分量を正極合剤層の質量で割った値を本明細書でいう「正極合剤層の水分量」とする。また、水分量の測定は、露点-70℃のグローブボックス中で行う。 The water content of the positive electrode mixture layer as used in the present specification can be determined by, for example, the following method. A measurement sample (positive electrode) is put into a 150 ° C. heating furnace in which nitrogen gas is flowed, and held for 1 minute. Then, the flowd nitrogen gas is introduced into the measurement cell of the Karl Fischer moisture meter, and the moisture content is measured. The integrated value up to the end of titration is taken as the moisture content (the “moisture content” used as the standard for the calculation of “moisture content” described in the examples below) is a value determined by this method. A value obtained by dividing the water content by the mass of the positive electrode mixture layer is referred to as “moisture content of the positive electrode mixture layer” in the present specification. The moisture content is measured in a glove box having a dew point of −70 ° C.
 なお、電池内に持ち込まれる水分は、正極合剤層によるものが多いものの、負極、セパレータおよび非水電解液など、正極以外の構成によるものもあり、これらの水分も、非水電解液中で、前記リン酸化合物のSEI皮膜形成に寄与することが可能である。 In addition, although the moisture brought into the battery is mostly due to the positive electrode mixture layer, there are also those other than the positive electrode such as the negative electrode, the separator and the non-aqueous electrolyte, and these moisture are also contained in the non-aqueous electrolyte. The phosphoric acid compound can contribute to the formation of an SEI film.
 そこで、正極以外の構成による水分も含め、電池全体の含有水分量を、前記リン酸化合物によるSEI皮膜形成にとって好ましい範囲となるように調整することが望ましい。電池全体の水分が全て非水電解液中に含有されていると仮定した場合の含有水分量(以下、単に「電池全体の水分量」という)としては、正極での前記リン酸化合物によるSEI皮膜形成をより効率的に進めるために、非水電解液全量中において、質量基準でおよそ1000ppm以上であることが好ましく、1500ppm以上であることがより好ましく、1700ppm以上であることが特に好ましい。 Therefore, it is desirable to adjust the water content of the entire battery, including the moisture due to the configuration other than the positive electrode, to be within a preferable range for the SEI film formation by the phosphoric acid compound. Assuming that the water content of the entire battery is all contained in the non-aqueous electrolyte (hereinafter referred to simply as “the water content of the entire battery”), the SEI film of the phosphoric acid compound on the positive electrode is used. In order to promote the formation more efficiently, the total amount of the non-aqueous electrolyte is preferably about 1000 ppm or more, more preferably 1500 ppm or more, and particularly preferably 1700 ppm or more, based on mass.
 一方、SEI皮膜を比較的薄く形成することにより、電池特性の低下を抑制するために、電池全体の水分量は、質量基準で、3500ppm以下とすることが好ましく、3000ppm以下とすることがより好ましく、2500ppm以下とすることが特に好ましい。 On the other hand, in order to suppress deterioration of battery characteristics by forming the SEI film relatively thin, the water content of the entire battery is preferably 3500 ppm or less, more preferably 3000 ppm or less on a mass basis. It is especially preferable to set it as 2500 ppm or less.
 前記の「電池全体の水分量」は、正極合剤層の水分量を求める場合の含有水分量の測定において、測定サンプルを、電池容器を開放した電池の構成材料全てとして、含有水分量を測定し、これを電池が含有する非水電解液の質量で割ることで求められる。 The above-mentioned “moisture content of the entire battery” is the measurement of the moisture content in the measurement of the moisture content when determining the moisture content of the positive electrode mixture layer, with the measurement sample as all the constituent materials of the battery with the battery container opened. And this is calculated | required by dividing by the mass of the non-aqueous electrolyte which a battery contains.
 本発明の非水二次電池における正極活物質として例示される前記オリビン型化合物は、典型的には、LiMPO(M:Co、Ni、Mn、Feなど)の化学式で表されるものであるが、添加元素として、Al、Yなどの、前記M以外の1種以上の元素を含有していてもよい。また、正極合剤層が含有するオリビン型化合物は、前記のような添加元素を含有しないものや、前記の添加元素を含有するもののうちの1種のみであってもよく、2種以上であってもよい。 The olivine type compound exemplified as the positive electrode active material in the non-aqueous secondary battery of the present invention is typically represented by a chemical formula of LiM 1 PO 4 (M 1 : Co, Ni, Mn, Fe, etc.). However, it may contain one or more elements other than M 1 such as Al and Y as additive elements. Moreover, the olivine type compound contained in the positive electrode mixture layer may be only one kind of those not containing the above-mentioned additive elements or one containing the above-mentioned additive elements, or two or more kinds. May be.
 オリビン型化合物粒子の平均粒子径は、5μm以上であることが好ましく、8μm以上であることがより好ましく、10μm以上であることが特に好ましい。前記粒径とすることにより、正極合剤層中の前記重合体(A)の含有量を低減しても優れた結着性を維持することができ、充放電特性をより一層向上させることができる。 The average particle size of the olivine type compound particles is preferably 5 μm or more, more preferably 8 μm or more, and particularly preferably 10 μm or more. By setting the particle size, excellent binding properties can be maintained even when the content of the polymer (A) in the positive electrode mixture layer is reduced, and the charge / discharge characteristics can be further improved. it can.
 一方、オリビン型化合物粒子の平均粒子径が大きくなりすぎると、正極合剤層の導電性が低下して充放電特性が低下してしまうため、平均粒子径は、20μm以下であることが好ましく、17μm以下であることがより好ましく、15μm以下であることが特に好ましい。 On the other hand, if the average particle size of the olivine-type compound particles becomes too large, the conductivity of the positive electrode mixture layer decreases and the charge / discharge characteristics decrease, so the average particle size is preferably 20 μm or less, It is more preferably 17 μm or less, and particularly preferably 15 μm or less.
 オリビン型化合物粒子は、一次粒子で構成されていてもよいが、粒子径が10~100nm程度の一次粒子が凝集した二次粒子や、前記一次粒子を造粒した造粒体である場合は、同じ粒子径の一次粒子と比較して充放電特性をより一層向上させることができるので好ましい。この場合の平均粒子径は、二次粒子や造粒体の粒子径を基に算出すればよい。 The olivine type compound particles may be composed of primary particles, but when the secondary particles are aggregated primary particles having a particle diameter of about 10 to 100 nm, or a granulated body obtained by granulating the primary particles, Compared with primary particles having the same particle size, charge / discharge characteristics can be further improved, which is preferable. The average particle size in this case may be calculated based on the particle size of the secondary particles or the granulated body.
 本明細書における前記平均粒子径は、レーザー散乱粒度分布計(例えば、堀場製作所製「LA-920」)を用いて測定した数平均粒子径である。 In the present specification, the average particle diameter is a number average particle diameter measured using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by Horiba, Ltd.).
 なお、導電性の低いオリビン型化合物の粒子の導電性を高めるため、粒子表面に炭素の被覆層を設けることが望ましく、これにより、正極合剤層内の導電性がより良好なものとなる。 In addition, in order to increase the conductivity of the particles of the olivine type compound having a low conductivity, it is desirable to provide a carbon coating layer on the particle surface, and thereby the conductivity in the positive electrode mixture layer becomes better.
 オリビン型化合物を炭素材料で被覆する方法については、従来から知られている方法を採用することができる。具体的には、例えば、炭素前駆体となる有機材料とオリビン型化合物との混合物を焼成する方法;気相成長(CVD)法によって炭素前駆体となるガスを分解しながら、オリビン型化合物の表面に炭素を析出させる方法:などの一般的な被覆方法が挙げられる。 Conventionally known methods can be employed for coating the olivine type compound with a carbon material. Specifically, for example, a method of firing a mixture of an organic material that becomes a carbon precursor and an olivine type compound; a surface of an olivine type compound while decomposing a gas that becomes a carbon precursor by a vapor deposition (CVD) method And a general coating method such as:
 オリビン型化合物を炭素材料で被覆する場合の炭素の量は、正極の導電性を良好にしてより効率的な充放電反応を可能にする観点から、オリビン型化合物:100質量部に対して1質量部以上であることが好ましい。ただし、オリビン型化合物表面の炭素の量が多すぎると、リチウムイオンの挿入脱離反応に際して炭素が障壁となって、例えば非水二次電池の負荷特性低下の要因となる虞がある。よって、オリビン型化合物を炭素材料で被覆した場合の炭素の量は、オリビン型化合物:100質量部に対して5質量部以下であることが好ましい。 The amount of carbon when the olivine type compound is coated with the carbon material is 1 mass per 100 parts by mass of the olivine type compound from the viewpoint of improving the conductivity of the positive electrode and enabling a more efficient charge / discharge reaction. Part or more. However, if the amount of carbon on the surface of the olivine type compound is too large, carbon may become a barrier during the lithium ion insertion / desorption reaction, which may cause a reduction in load characteristics of the non-aqueous secondary battery, for example. Therefore, the amount of carbon when the olivine type compound is coated with the carbon material is preferably 5 parts by mass or less with respect to 100 parts by mass of the olivine type compound.
 なお、オリビン型化合物の粒子表面に炭素の被覆層を設けた場合の粒子径は、簡単化のため、前記被覆層を含む粒子全体の粒子径を、オリビン型化合物粒子の粒子径とみなしてもよい。 The particle diameter in the case where a carbon coating layer is provided on the surface of the olivine-type compound particle may be regarded as the particle diameter of the olivine-type compound particle for the sake of simplicity. Good.
 また、電池の充放電特性をより一層向上させるためには、正極合剤層中の前記重合体(A)の含有量を、例えば7質量%以下、より好ましくは5質量%またはそれ未満に低減することが望ましいが、バインダの含有量を低減しても優れた結着性を維持し、正極合剤層の剥離などの問題が生じることを防ぐため、正極活物質のBET比表面積は、25m/g以下とすることが好ましく、15m/g以下とすることがより好ましく、13m/g以下とすることが特に好ましく、10m/g以下とすることが最も好ましい。一方、一定以上の反応面積を確保し、大電流での充放電特性を向上させるために、正極活物質のBET比表面積は、5m/g以上とすることが好ましく、8m/g以上とすることがより好ましい。 In order to further improve the charge / discharge characteristics of the battery, the content of the polymer (A) in the positive electrode mixture layer is reduced to, for example, 7% by mass or less, more preferably 5% by mass or less. However, in order to maintain excellent binding properties even when the binder content is reduced and prevent problems such as peeling of the positive electrode mixture layer, the BET specific surface area of the positive electrode active material is 25 m. 2 / g or less is preferable, 15 m 2 / g or less is more preferable, 13 m 2 / g or less is particularly preferable, and 10 m 2 / g or less is most preferable. On the other hand, in order to secure a reaction area of a certain level or more and improve charge / discharge characteristics at a large current, the BET specific surface area of the positive electrode active material is preferably 5 m 2 / g or more, and 8 m 2 / g or more. More preferably.
 本明細書における前記BET比表面積は、窒素ガスを用いたガス吸着法により測定されたガス吸着量を、BET法を用いて解析し求まる値である。 In the present specification, the BET specific surface area is a value obtained by analyzing a gas adsorption amount measured by a gas adsorption method using nitrogen gas using the BET method.
 また、正極活物質にオリビン型化合物を使用する前記実施態様の正極では、オリビン型化合物と共に他の正極活物質を用いてもよい。このような正極活物質としては、リチウムイオン二次電池などの非水二次電池において使用されている各種のリチウム含有複合酸化物(オリビン型化合物以外のリチウム含有複合酸化物)が挙げられる。 In addition, in the positive electrode of the above embodiment in which an olivine type compound is used as the positive electrode active material, other positive electrode active materials may be used together with the olivine type compound. Examples of such a positive electrode active material include various lithium-containing composite oxides (lithium-containing composite oxides other than olivine type compounds) used in non-aqueous secondary batteries such as lithium ion secondary batteries.
 ただし、オリビン型化合物以外の正極活物質を使用する場合には、正極活物質全量中のオリビン型化合物以外の正極活物質の量は、30質量%以下であることが好ましい。 However, when a positive electrode active material other than the olivine type compound is used, the amount of the positive electrode active material other than the olivine type compound in the total amount of the positive electrode active material is preferably 30% by mass or less.
 また、前記正極合剤層の水分量が500~3000ppmである正極において用いられる正極活物質としては、前記オリビン型化合物以外に、ニッケル酸リチウムおよびそのニッケルの一部を、Co、Alなど他の元素で置換したリチウムニッケル複合酸化物〔Li1+aNiO、Li1+aNi1-xCo、Li1+aNi1-x-yCoAl(-0.15≦a≦0.1、x≦0.4、x+y≦0.4)など〕などが好ましいものとして挙げられる。 In addition to the olivine type compound, the positive electrode active material used in the positive electrode in which the positive electrode mixture layer has a water content of 500 to 3000 ppm includes lithium nickelate and a part of the nickel, other materials such as Co and Al. Lithium nickel composite oxides substituted with elements [Li 1 + a NiO 2 , Li 1 + a Ni 1-x Co x O 2 , Li 1 + a Ni 1-xy Co x Al y O 2 (−0.15 ≦ a ≦ 0. 1, x ≦ 0.4, x + y ≦ 0.4) and the like.
 正極合剤層における正極活物質の含有量は、85~98質量%であることが好ましい。 The content of the positive electrode active material in the positive electrode mixture layer is preferably 85 to 98% by mass.
 正極合剤層のバインダとして使用する前記重合体(A)において、前記一般式(1)で表されるユニットは、アクリル酸エステルまたはメタアクリル酸エステル由来のユニットである〔以下、アクリル酸とメタクリル酸とを纏めて「(メタ)アクリル酸」という場合がある〕であり、(メタ)アクリル酸エステルを重合することにより前記重合体(A)が合成される。 In the polymer (A) used as the binder of the positive electrode mixture layer, the unit represented by the general formula (1) is a unit derived from an acrylic ester or a methacrylic ester [hereinafter referred to as acrylic acid and methacrylic ester. The acid may be collectively referred to as “(meth) acrylic acid”], and the polymer (A) is synthesized by polymerizing the (meth) acrylic acid ester.
 前記(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリルなどが挙げられ、これらのうちの1種のみを使用してもよく、2種以上を使用してもよい。 Specific examples of the (meth) acrylate ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth ) Isobutyl acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, ( Octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, (Meth) acrylic acid dodecyl, (meth) acrylic acid lauryl, (meta Stearyl acrylate, (meth) isostearyl acrylate, and the like, may be used only one of these may be used or two or more kinds.
 また、前記(メタ)アクリル酸エステルの重合の際には、(メタ)アクリル酸エステルと共に、(メタ)アクリル酸エステル以外のモノマーを使用してもよい。この場合、前記重合体は、(メタ)アクリル酸エステル以外のモノマー由来のユニットも分子内に有する共重合体となる。 In the polymerization of the (meth) acrylic acid ester, a monomer other than the (meth) acrylic acid ester may be used together with the (meth) acrylic acid ester. In this case, the polymer is a copolymer having in the molecule also units derived from monomers other than (meth) acrylic acid ester.
 前記(メタ)アクリル酸エステルと共に重合されるモノマーとしては、シアノ基含有モノマー;芳香族ビニル化合物(スチレン、α-メチルスチレン、p-メチルスチレン、クロルスチレン、ジビニルベンゼン、ビニルトルエンなど);共役ジエン化合物(ブタジエン、イソプレン、クロロプレン、2-クロロ-1,3-ブタジエンなど);不飽和カルボン酸;などが挙げられる。 Monomers that are polymerized with the (meth) acrylic acid ester include cyano group-containing monomers; aromatic vinyl compounds (styrene, α-methylstyrene, p-methylstyrene, chlorostyrene, divinylbenzene, vinyltoluene, etc.); conjugated dienes Compounds (butadiene, isoprene, chloroprene, 2-chloro-1,3-butadiene, etc.); unsaturated carboxylic acids; and the like.
 前記のシアノ基含有モノマーとしては、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、シアン化ビニリデンなどの不飽和カルボン酸ニトリル;(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸2-シアノプロピル、(メタ)アクリル酸3-シアノプロピルなどの不飽和カルボン酸ニトリルのシアノアルキルエステル;などが挙げられる。また、前記の不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸などの不飽和カルボン酸;マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸などの不飽和ポリカルボン酸; などが挙げられる。 Examples of the cyano group-containing monomer include unsaturated carboxylic acid nitriles such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, vinylidene cyanide; 2-cyanoethyl (meth) acrylate, 2-cyanopropyl (meth) acrylate, Cyanoalkyl esters of unsaturated carboxylic acid nitriles such as (meth) acrylic acid 3-cyanopropyl; and the like. Examples of the unsaturated carboxylic acid include unsaturated carboxylic acids such as (meth) acrylic acid and crotonic acid; unsaturated polycarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, and mesaconic acid; Can be mentioned.
 (メタ)アクリル酸エステルと他のモノマーとを共重合する場合、全モノマー中の(メタ)アクリル酸エステルの割合は、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。 When (meth) acrylic acid ester and other monomer are copolymerized, the proportion of (meth) acrylic acid ester in all monomers is preferably 5% by mass or more, and more preferably 8% by mass or more. Preferably, it is 10 mass% or more.
 また、前記のシアノ基含有モノマーを使用する場合、全モノマー中のシアノ基含有モノマーの割合は、1~50質量%であることが好ましく、2~15質量%であることがより好ましい。更に、前記の芳香族ビニル化合物を使用する場合、全モノマー中の芳香族ビニル化合物の割合は、20~50質量%であることが好ましく、30~45質量%であることがより好ましい。また、前記の共役ジエン化合物を使用する場合、全モノマー中の共役ジエン化合物の割合は、10~60質量%であることが好ましく、20~40質量%であることがより好ましい。更に、前記の不飽和カルボン酸を使用する場合、全モノマー中の不飽和カルボン酸の割合は、1~10質量%であることが好ましく、2~7質量%であることがより好ましい。 In addition, when the cyano group-containing monomer is used, the ratio of the cyano group-containing monomer in all monomers is preferably 1 to 50% by mass, and more preferably 2 to 15% by mass. Further, when the above aromatic vinyl compound is used, the ratio of the aromatic vinyl compound in all monomers is preferably 20 to 50% by mass, and more preferably 30 to 45% by mass. When the conjugated diene compound is used, the ratio of the conjugated diene compound in all monomers is preferably 10 to 60% by mass, and more preferably 20 to 40% by mass. Further, when the above unsaturated carboxylic acid is used, the proportion of the unsaturated carboxylic acid in all monomers is preferably 1 to 10% by mass, and more preferably 2 to 7% by mass.
 なお、充放電特性や結着力の点からは、重合体(A)としては、(メタ)アクリル酸エステルと共に、シアノ基含有モノマー、芳香族ビニル化合物、共役ジエン化合物および不飽和カルボン酸に由来する構造単位を有するものあることが好ましい。 From the viewpoint of charge / discharge characteristics and binding power, the polymer (A) is derived from a cyano group-containing monomer, an aromatic vinyl compound, a conjugated diene compound and an unsaturated carboxylic acid together with a (meth) acrylic acid ester. It is preferable to have a structural unit.
 また、正極合剤層には、バインダとして、前記一般式(1)で表されるユニットを分子内に有する重合体(A)以外のバインダを含有していてもよく、正極合剤含有組成物のゲル化の影響が生じ難い条件、例えば、前記組成物の作製から正極の組み立てまでを短時間で行うような場合には、PVDFなどの、アルカリ成分によるゲル化が進行しやすい樹脂のみを用いることも可能である。重合体(A)以外に使用するバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンの共重合体(PVDF-HFPなど)、ポリイミド、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、アクリル樹脂などが挙げられる。 The positive electrode mixture layer may contain a binder other than the polymer (A) having a unit represented by the general formula (1) in the molecule as a binder. In the case where the effect of gelation is difficult to occur, for example, in the case where the preparation of the composition to the assembly of the positive electrode are performed in a short time, only a resin such as PVDF that is easily gelled by an alkali component is used. It is also possible. Examples of the binder used in addition to the polymer (A) include polyvinylidene fluoride (PVDF), vinylidene fluoride copolymer (PVDF-HFP, etc.), polyimide, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC). And acrylic resin.
 ただし、正極合剤層が含有する全バインダのうちの、前記一般式(1)で表されるユニットを分子内に有する重合体(A)以外のものの割合は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましく、重合体(A)のみとするのが最もよい。 However, the proportion of the binder other than the polymer (A) having the unit represented by the general formula (1) in the molecule in the total binder contained in the positive electrode mixture layer may be 20% by mass or less. It is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably only the polymer (A).
 重合体(A)の合成、すなわち、(メタ)アクリル酸エステルの重合は、乳化重合法によって行うことができる。その際の条件には特に制限はなく、(メタ)アクリル酸エステルの乳化重合の際に通常採用されている条件と同様とすればよい。例えば、乳化剤(アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤など)、重合開始剤(過硫酸アンモニウムなどの過硫酸塩、クメンハイドロパーオキサイドなどのハイドロパーオキサイド類、重合開始剤と還元剤とを組み合わせたレドックス系重合開始剤など)などを添加した水中に、(メタ)アクリル酸エステルや必要に応じて使用される他のモノマーを添加し、30~90℃程度の温度で1~30時間程度重合すればよい。 The synthesis of the polymer (A), that is, the polymerization of the (meth) acrylic acid ester can be performed by an emulsion polymerization method. The conditions at that time are not particularly limited, and may be the same as those usually employed in the emulsion polymerization of (meth) acrylic acid ester. For example, emulsifiers (anionic surfactants, nonionic surfactants, amphoteric surfactants, etc.), polymerization initiators (persulfates such as ammonium persulfate, hydroperoxides such as cumene hydroperoxide, polymerization initiators and (Meth) acrylic acid ester and other monomers used as needed are added to water to which a redox polymerization initiator combined with a reducing agent, etc.) is added, and 1 at a temperature of about 30 to 90 ° C. Polymerization may be performed for about 30 hours.
 また、前記(メタ)アクリル酸エステルとフッ化ビニリデンとの共重合体や、前記(メタ)アクリル酸エステルの重合体とフッ化ビニリデンの重合体(PVDF)との混合物をバインダに用いる場合には、例えば、フッ化ビニリデンの重合体の存在下で、(メタ)アクリル酸エステルを重合することにより得られる合成物を用いることもできる。ただし、この重合によって、(メタ)アクリル酸エステルが前記フッ化ビニリデンの重合体の分子に結合し、重合が進むことで、共重合体〔前記一般式(1)で表されるユニットで構成されるブロックとフッ化ビニリデン由来のユニットで構成されるブロックとを分子内に有するブロック共重合体;フッ化ビニリデンの重合体の分子を主鎖とし、そこに前記一般式(1)で表されるユニットを有する側鎖が結合しているグラフト共重合体;など〕が形成されるか、または(メタ)アクリル酸エステルの単独重合が進行して(メタ)アクリル酸エステルの重合体が形成されることで、これと前記フッ化ビニリデンの重合体との混合物となり得るが、いずれの形態となるかについては定かではない。 In the case of using a copolymer of the (meth) acrylic acid ester and vinylidene fluoride or a mixture of the (meth) acrylic acid ester polymer and the vinylidene fluoride polymer (PVDF) as a binder. For example, a composite obtained by polymerizing a (meth) acrylic acid ester in the presence of a polymer of vinylidene fluoride can also be used. However, by this polymerization, the (meth) acrylic acid ester is bonded to the vinylidene fluoride polymer molecule, and the polymerization proceeds, so that the copolymer [consists of units represented by the general formula (1). A block copolymer having in its molecule a block composed of vinylidene fluoride-derived units; and a vinylidene fluoride polymer molecule as a main chain, represented by the general formula (1) Or the like, or a (meth) acrylic acid ester polymer is formed by the progress of homopolymerization of (meth) acrylic acid ester. Thus, it can be a mixture of this and the polymer of vinylidene fluoride, but it is not certain which form it will take.
 前記フッ化ビニリデンの重合体の存在下での(メタ)アクリル酸エステルの重合も、乳化重合法によって行うことができる。その際の条件には特に制限はなく、例えば、前述した重合体(A)の合成条件を適用すればよい。 The polymerization of (meth) acrylic acid ester in the presence of the polymer of vinylidene fluoride can also be performed by an emulsion polymerization method. The conditions at that time are not particularly limited, and for example, the synthesis conditions for the polymer (A) described above may be applied.
 なお、(メタ)アクリル酸エステルとフッ化ビニリデンとの共重合体のように、重合体(A)にフッ素樹脂を構成するユニットが含まれる場合、正極活物質のアルカリ成分によるゲル化を防ぐために、その割合を重合体(A)全体の20質量%以下とすることが好ましく、10質量%以下とすることがより好ましく、5質量%以下とすることが特に好ましく、フッ素樹脂を構成するユニットを含まないことが最も好ましい。 In addition, in order to prevent gelation by the alkali component of a positive electrode active material, when the unit which comprises a fluororesin is contained in a polymer (A) like the copolymer of (meth) acrylic acid ester and vinylidene fluoride The proportion of the polymer (A) is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. Most preferably not.
 正極合剤層における前記重合体(A)の含有量は、優れた結着性を維持するために1質量%以上が好ましく、1.5質量%以上であることがより好ましく、また、充放電特性を向上させるために、7質量%以下であることが好ましく、5質量%またはそれ未満であることがより好ましく、4質量%以下であることが特に好ましい。 In order to maintain excellent binding properties, the content of the polymer (A) in the positive electrode mixture layer is preferably 1% by mass or more, more preferably 1.5% by mass or more, and charging / discharging. In order to improve the characteristics, the content is preferably 7% by mass or less, more preferably 5% by mass or less, and particularly preferably 4% by mass or less.
 なお、正極合剤層中の全バインダの合計含有量も、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、また、7質量%以下であることが好ましく、5質量%またはそれ未満であることがより好ましく、4質量%以下であることが特に好ましい。よって、正極合剤層のバインダに前記重合体(A)と共に他のバインダを使用する場合には、正極合剤層における全バインダ中の前記重合体(A)以外のバインダの割合が前記好適値となるように制限しつつ、正極合剤層中の全バインダの合計含有量が、前記好適値となるように調整することが好ましい。 The total content of all binders in the positive electrode mixture layer is also preferably 1% by mass or more, more preferably 1.5% by mass or more, and preferably 7% by mass or less. It is more preferably 5% by mass or less, and particularly preferably 4% by mass or less. Therefore, when using another binder with the said polymer (A) for the binder of a positive mix layer, the ratio of binders other than the said polymer (A) in all the binders in a positive mix layer is the said suitable value. It is preferable that the total content of all the binders in the positive electrode mixture layer is adjusted so as to be the above-mentioned preferable value while limiting to be.
 正極合剤層に係る導電助剤としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛(黒鉛質炭素材料);アセチレンブラック;ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック;炭素繊維(カーボンナノファイバーを含む);カーボンナノチューブ;などの炭素材料などが挙げられる。 Conductive aids for the positive electrode mixture layer include natural graphite (such as flake graphite) and artificial graphite (graphite carbon material); acetylene black; ketjen black, channel black, furnace black, lamp black, thermal Carbon materials such as carbon black such as carbon black; carbon fibers (including carbon nanofibers); carbon nanotubes;
 これらの導電助剤の中でも、カーボンナノチューブおよびカーボンナノファイバーのうちの少なくとも一方と、アセチレンブラックおよびカーボンブラックのうちの少なくとも一方とを使用することが好ましい。正極活物質として使用するオリビン型化合物は導電性が低い材料であるが、前記の導電助剤を使用した場合には、正極活物質粒子間の距離が短い箇所では、粒子状のアセチレンブラックやカーボンブラックによって導電性が確保され、一方で、正極活物質粒子間の距離がアセチレンブラックやカーボンブラックでは導電性を確保し難い程度に長い箇所では、繊維状の形態を有するカーボンナノチューブやカーボンナノファイバーによって導電性が確保される。よって、前記の導電助剤の組み合わせによって、正極合剤層内の導電性をより良好に確保できるようになる。 Among these conductive aids, it is preferable to use at least one of carbon nanotubes and carbon nanofibers and at least one of acetylene black and carbon black. The olivine-type compound used as the positive electrode active material is a material having low conductivity. However, when the above-mentioned conductive auxiliary is used, in the place where the distance between the positive electrode active material particles is short, particulate acetylene black or carbon Conductivity is ensured by black. On the other hand, in places where the distance between the positive electrode active material particles is long enough to make it difficult to secure conductivity with acetylene black or carbon black, carbon nanotubes or carbon nanofibers having a fibrous form are used. Conductivity is ensured. Therefore, the conductivity in the positive electrode mixture layer can be better ensured by the combination of the conductive aids.
 カーボンナノチューブやカーボンナノファイバーの平均長さは、1nm~5μmであることが好ましい。また、カーボンナノチューブやカーボンナノファイバーの平均径は、1nm~2μmであることが好ましい。 The average length of carbon nanotubes and carbon nanofibers is preferably 1 nm to 5 μm. The average diameter of the carbon nanotube or carbon nanofiber is preferably 1 nm to 2 μm.
 本明細書でいうカーボンナノチューブ並びにカーボンナノファイバーの平均長さおよび平均径は、透過型電子顕微鏡(TEM、例えば日本電子製「JEMシリーズ」、日立製作所製「H-700H」など)により、加速電圧を100または200kVとして、撮影したTEM像から測定されるものである。平均長さを見る場合には、20,000~40,000倍率にて、平均径を見る場合には200,000~400,000倍率にて、100本のサンプルについてTEM像を撮影し、JISの1級に認定された金尺で1本ずつ長さと径を測定し、平均化したものを平均長さおよび平均径とする。 The average length and average diameter of the carbon nanotubes and carbon nanofibers used in the present specification are determined by using a transmission electron microscope (TEM such as “JEM series” manufactured by JEOL Ltd., “H-700H” manufactured by Hitachi, Ltd.), etc. Is measured from a photographed TEM image at 100 or 200 kV. When viewing the average length, TEM images of 100 samples were taken at 20,000 to 40,000 magnification, and when viewing the average diameter at 200,000 to 400,000 magnification. The length and diameter are measured one by one with a metal scale certified as No. 1, and the average is taken as the average length and average diameter.
 また、黒鉛(鱗片状の黒鉛)も、カーボンナノチューブやカーボンナノファーバーと同様に、正極活物質粒子間の距離が比較的長い箇所での、これらの粒子同士の導電性確保に寄与する。よって、正極合剤層に係る導電助剤として、アセチレンブラックおよびカーボンブラックのうちの少なくとも一方と共に、黒鉛を使用することも好ましい。 In addition, graphite (flaky graphite) also contributes to ensuring the conductivity between these particles at a location where the distance between the positive electrode active material particles is relatively long, as in the case of carbon nanotubes and carbon nanofibers. Therefore, it is also preferable to use graphite together with at least one of acetylene black and carbon black as a conductive additive for the positive electrode mixture layer.
 導電助剤としてカーボンナノチューブ、カーボンナノファイバーおよび黒鉛のうちの少なくとも1種と、アセチレンブラックおよびカーボンブラックのうちの少なくとも一方とを使用する場合、正極合剤層におけるカーボンナノチューブ、カーボンナノファイバーおよび黒鉛の合計量(いずれか1種のみを使用する場合は、その量)は、0.1~5質量%であることが好ましい。また、導電助剤としてカーボンナノチューブ、カーボンナノファイバーおよび黒鉛のうちの少なくとも1種と、アセチレンブラックおよびカーボンブラックのうちの少なくとも一方とを使用する場合、正極合剤層におけるアセチレンブラックおよびカーボンブラックの合計量(いずれか一方のみを使用する場合は、その量)は、1~10質量%であることが好ましい。 When at least one of carbon nanotubes, carbon nanofibers and graphite and at least one of acetylene black and carbon black are used as a conductive additive, carbon nanotubes, carbon nanofibers and graphite in the positive electrode mixture layer are used. The total amount (when only one of them is used) is preferably 0.1 to 5% by mass. Further, when at least one of carbon nanotubes, carbon nanofibers and graphite and at least one of acetylene black and carbon black are used as a conductive additive, the total of acetylene black and carbon black in the positive electrode mixture layer The amount (when only one of them is used) is preferably 1 to 10% by mass.
 正極合剤層における導電助剤の含有量は、1~10質量%であることが好ましい。 The content of the conductive additive in the positive electrode mixture layer is preferably 1 to 10% by mass.
 正極は、例えば、正極活物質、バインダおよび導電助剤などを、水やN-メチル-2-ピロリドン(NMP)などの有機溶媒といった溶媒に分散させて正極合剤含有組成物を調製し(ただし、バインダは溶媒に溶解していてもよい)、これを集電体の片面または両面(ただし、後述するように、集電体の表面にコート層が形成されている場合は、コート層の表面)に塗布し乾燥する工程を経て正極合剤層を形成する方法、すなわち本発明の製造方法によって製造することができる。なお、前記正極合剤含有組成物を調製する際に、組成物の粘度を調整したり、構成物の分散性を高めたりするため、カルボキシメチルセルロース(CMC)や、ポリビニルピロリドン(PVP)などを、増粘剤や分散剤として添加することもできる。 For the positive electrode, for example, a positive electrode active material, a binder, and a conductive auxiliary agent are dispersed in a solvent such as water or an organic solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture-containing composition (however, , The binder may be dissolved in a solvent), and this may be applied to one or both sides of the current collector (however, if a coat layer is formed on the surface of the current collector as described later, the surface of the coat layer) ) And a method of forming a positive electrode mixture layer through a step of drying, that is, the production method of the present invention. In preparing the positive electrode mixture-containing composition, in order to adjust the viscosity of the composition or increase the dispersibility of the composition, carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), etc. It can also be added as a thickener or dispersant.
 また、正極合剤層の形成後に、例えば、正極合剤層の密度を調整するために、カレンダ処理などのプレス処理を施してもよい。 Further, after the formation of the positive electrode mixture layer, for example, in order to adjust the density of the positive electrode mixture layer, a pressing process such as a calendar process may be performed.
 正極集電体には、従来から知られている非水二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10~30μmのアルミニウム箔が好ましい。 As the positive electrode current collector, the same one as used for the positive electrode of a conventionally known non-aqueous secondary battery can be used. For example, an aluminum foil having a thickness of 10 to 30 μm is preferable.
 なお、正極集電体は、複数の貫通孔を有する金属箔(アルミニウム箔など)であることが好ましい。このような金属箔を正極の集電体に用いることで、正極合剤層と集電体との密着性が向上し、電池の充放電を繰り返しても正極合剤層と集電体との剥離が生じ難くなるため、電池の充放電サイクル特性が高まると共に、正極合剤層内の導電性も向上する。 The positive electrode current collector is preferably a metal foil (such as an aluminum foil) having a plurality of through holes. By using such a metal foil for the positive electrode current collector, the adhesion between the positive electrode mixture layer and the current collector is improved, and even if the battery is repeatedly charged and discharged, the positive electrode mixture layer and the current collector Since peeling becomes difficult to occur, the charge / discharge cycle characteristics of the battery are enhanced, and the conductivity in the positive electrode mixture layer is also improved.
 複数の貫通孔を有する金属箔を正極集電体に使用する場合、その金属箔には、貫通孔を形成する部分の金属を除去せずに、一部を金属箔の本体部と結合した状態で残し、これを折り曲げて金属箔の平板面から立たせた突起を有するものであることが、より好ましい。このような突起を有する金属箔を正極集電体とした場合には、前記突起が正極合剤層内に侵入するため、正極合剤層と集電体との密着性や正極合剤層内の導電性がより向上する。 When a metal foil having a plurality of through holes is used for the positive electrode current collector, the metal foil is partially bonded to the main body of the metal foil without removing the metal in the part forming the through holes. It is more preferable to have a protrusion that is bent and raised from the flat surface of the metal foil. When a metal foil having such protrusions is used as a positive electrode current collector, the protrusion penetrates into the positive electrode mixture layer, and thus the adhesion between the positive electrode mixture layer and the current collector and the positive electrode mixture layer The conductivity of the is further improved.
 複数の貫通孔を有する金属箔からなる正極集電体においては、孔の個数は、集電体の平面視での面積1cmあたり、5~30個であることが好ましい。よって、複数の貫通孔と前記の突起とを有する金属箔からなる正極集電体の場合、突起の個数も、集電体の平面視での面積1cmあたり、5~30個であることが好ましい。また、突起の高さは、突起が設けられた側に形成された正極合剤層の厚みの1/2以下であることが好ましい。 In a positive electrode current collector made of a metal foil having a plurality of through holes, the number of holes is preferably 5 to 30 per 1 cm 2 in a plan view of the current collector. Therefore, in the case of a positive electrode current collector made of a metal foil having a plurality of through-holes and the protrusions, the number of protrusions should be 5 to 30 per 1 cm 2 in plan view of the current collector. preferable. In addition, the height of the protrusion is preferably ½ or less of the thickness of the positive electrode mixture layer formed on the side where the protrusion is provided.
 正極集電体において、前記貫通孔および前記突起は、規則的に配置されていてもよく、不規則に配置されていてもよいが、規則的に配置されていることがより好ましい。 In the positive electrode current collector, the through holes and the protrusions may be regularly arranged or irregularly arranged, but are more preferably regularly arranged.
 また、正極集電体には、炭素材料を含有するコート層を表面に有する金属箔(アルミニウム箔など)であることも好ましい。この場合にも、正極合剤層と正極集電体との密着性が向上して、電池の充放電を繰り返しても正極合剤層と集電体との剥離が生じ難くなるため、電池の充放電サイクル特性が高まると共に、正極合剤層内の導電性も向上する。 The positive electrode current collector is also preferably a metal foil (such as an aluminum foil) having a coating layer containing a carbon material on the surface. Also in this case, the adhesion between the positive electrode mixture layer and the positive electrode current collector is improved, and peeling of the positive electrode mixture layer and the current collector hardly occurs even when the battery is repeatedly charged and discharged. The charge / discharge cycle characteristics are enhanced, and the conductivity in the positive electrode mixture layer is also improved.
 前記コート層が含有する炭素材料としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛(黒鉛質炭素材料);アセチレンブラック;ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック;活性炭;などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。これらの中でも、正極の容量向上にも寄与し得ることから、活性炭がより好ましい。 Examples of the carbon material contained in the coating layer include graphite (graphite carbon material) such as natural graphite (scaly graphite), artificial graphite; acetylene black; ketjen black, channel black, furnace black, lamp black, thermal black. Carbon black such as activated carbon; activated carbon; etc., and only one of these may be used, or two or more may be used in combination. Among these, activated carbon is more preferable because it can contribute to the capacity increase of the positive electrode.
 前記コート層は、炭素材料と共にバインダを含有していてもよい。このようなバインダとしては、例えば、PVDFなどのフッ素樹脂や、正極合剤層用のバインダとして先に例示した重合体(A)をはじめとする各種バインダなどが挙げられる。 The coat layer may contain a binder together with the carbon material. Examples of such a binder include various binders including a fluororesin such as PVDF and the polymer (A) exemplified above as a binder for a positive electrode mixture layer.
 前記コート層の組成としては、炭素材料の含有量が40~95質量%であることが好ましく、バインダの含有量が5~60質量%であることが好ましい。また、前記コート層の厚み(集電体の片面あたりの厚み)は、0.1~5μmであることが好ましい。 As the composition of the coating layer, the carbon material content is preferably 40 to 95% by mass, and the binder content is preferably 5 to 60% by mass. The thickness of the coat layer (the thickness per one side of the current collector) is preferably 0.1 to 5 μm.
 前記コート層は、炭素材料およびバインダなどをNMPなどの有機溶媒や水に分散・溶解させて調製したコート層含有組成物を、正極集電体となる金属箔の表面に塗布し、乾燥する方法などによって形成することができる。 The coating layer is a method in which a coating material containing a coating material prepared by dispersing and dissolving a carbon material and a binder in an organic solvent such as NMP or water is applied to the surface of a metal foil serving as a positive electrode current collector and dried. Etc. can be formed.
 正極合剤層の厚み(集電体の両面に正極合剤層を有する場合は、片面あたりの厚み)は、3~100μmであることが好ましい。 The thickness of the positive electrode mixture layer (when the positive electrode mixture layer is provided on both sides of the current collector, the thickness per side) is preferably 3 to 100 μm.
 正極には、電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 A lead body for electrical connection with other members in the battery may be formed on the positive electrode according to a conventional method.
 本発明の非水二次電池は、正極、負極、セパレータ、並びにリチウム塩および有機溶媒を含有する非水電解液を備えており、正極が前記実施態様の正極であればよく、その他の構成および構造については特に制限はなく、従来から知られている非水二次電池で採用されている各種構成および構造を適用することができる。 The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution containing a lithium salt and an organic solvent, and the positive electrode may be the positive electrode of the above embodiment. There is no restriction | limiting in particular about a structure, The various structure and structure employ | adopted by the conventionally known nonaqueous secondary battery are applicable.
 非水二次電池の負極には、例えば、負極活物質およびバインダを含有する負極合剤層を、集電体の片面または両面に有する構造のものを使用することができる。 For the negative electrode of the nonaqueous secondary battery, for example, a negative electrode mixture layer containing a negative electrode active material and a binder can be used on one or both sides of the current collector.
 負極活物質には、従来から知られている非水二次電池の負極に使用されている負極活物質、すなわち、リチウムイオンを吸蔵放出可能な活物質を用いることができる。このような負極活物質の具体例としては、例えば、黒鉛(天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;など)、易黒鉛化炭素、難黒鉛化炭素、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソフェーズカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料;リチウムと合金化可能な金属(Si、Snなど)や、これらの金属を含む材料(合金、酸化物など);などの粒子が挙げられる。負極には、前記例示の負極活物質のうち、1種のみを使用してもよく、2種以上を併用してもよい。 As the negative electrode active material, a conventionally known negative electrode active material used for the negative electrode of a non-aqueous secondary battery, that is, an active material capable of occluding and releasing lithium ions can be used. Specific examples of such a negative electrode active material include, for example, graphite (natural graphite; artificial graphite obtained by graphitizing graphitized carbon such as pyrolytic carbons, mesophase carbon microbeads, and carbon fibers at 2800 ° C. or higher; ), Graphitizable carbon, non-graphitizable carbon, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, mesophase carbon microbeads, carbon fibers, activated carbon and other carbon materials; lithium and alloys Examples of such particles include metals that can be converted (Si, Sn, etc.) and materials containing these metals (alloys, oxides, etc.). In the negative electrode, only one type of the above illustrated negative electrode active materials may be used, or two or more types may be used in combination.
 これらの負極活物質の中でも、易黒鉛化炭素(ソフトカーボン)および難黒鉛化炭素(ハードカーボン)のうちの少なくとも一方を使用することが好ましい。 Among these negative electrode active materials, it is preferable to use at least one of graphitizable carbon (soft carbon) and non-graphitizable carbon (hard carbon).
 ソフトカーボンとしては、ピッチを焼成して得られるコークスなどが挙げられる。また、ハードカーボンとしては、フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などが挙げられる。このような炭素材料は、例えば、X線回折測定により求められるd002が、0.340nm超(好ましくは0.370nm以上)で、好ましくは、0.400nm以下のものであり、非水二次電池の負極活物質に汎用されている黒鉛に比べて、リチウムイオンの受け入れスピードが速いため、これらを負極活物質に用いた負極を備えた電池とすることで、大電流で充電され、時間あたりの正極からのリチウムイオンの放出量が増大しても、負極近傍でのリチウムイオンの停滞を抑えてリチウムデンドライトの析出を抑えることができ、例えば急速充電時の容量低下や短絡の発生を抑えることが可能となる。また、ソフトカーボンやハードカーボンを負極活物質とする負極であれば、電池の放電時の負極からのリチウムイオンの放出もスムーズに進む。よって、これらを負極活物質に使用することで、非水二次電池の大電流での充放電特性を更に高めることができる。 Examples of the soft carbon include coke obtained by firing a pitch. Further, examples of the hard carbon include amorphous carbon obtained by low-temperature firing of furfuryl alcohol resin (PFA), polyparaphenylene (PPP), and phenol resin. Such a carbon material has a d 002 obtained by, for example, X-ray diffraction measurement of more than 0.340 nm (preferably 0.370 nm or more), preferably 0.400 nm or less. Compared to graphite, which is widely used as negative electrode active materials for batteries, the lithium ion accepting speed is faster, so by making these batteries with negative electrodes using negative electrode active materials, they are charged with a large current and per hour. Even if the amount of lithium ions released from the positive electrode increases, it is possible to suppress the precipitation of lithium dendrite by suppressing the stagnation of lithium ions in the vicinity of the negative electrode. Is possible. In addition, in the case of a negative electrode using soft carbon or hard carbon as a negative electrode active material, the release of lithium ions from the negative electrode during battery discharge proceeds smoothly. Therefore, by using these for the negative electrode active material, the charge / discharge characteristics at a large current of the nonaqueous secondary battery can be further enhanced.
 負極活物質として、ソフトカーボンやハードカーボンと他の負極活物質(例えば前記例示のもの)とを共に使用する場合には、負極活物質全量中のソフトカーボンおよびハードカーボン以外の負極活物質の量は、30量%以下であることが好ましい。すなわち、負極活物質全量中でのソフトカーボンおよびハードカーボンの量(いずれか一方のみを使用する場合は、その量であり、両者を併用する場合はそれらの合計量である。以下、同じ。)は、70質量%以上であることが好ましく、また、負極活物質にはソフトカーボンおよびハードカーボンのうちのいずれか一方のみを使用してもよいため、負極活物質全量中におけるソフトカーボンおよびハードカーボンの量の好適上限値は100質量%である。 When soft carbon or hard carbon and another negative electrode active material (for example, those exemplified above) are used together as the negative electrode active material, the amount of negative electrode active material other than soft carbon and hard carbon in the total amount of the negative electrode active material Is preferably 30% by weight or less. That is, the amount of soft carbon and hard carbon in the total amount of the negative electrode active material (when only one of them is used, it is the amount thereof, and when both are used together, it is the total amount thereof. The same applies hereinafter). Is preferably 70% by mass or more, and since only one of soft carbon and hard carbon may be used for the negative electrode active material, soft carbon and hard carbon in the total amount of the negative electrode active material The preferred upper limit of the amount is 100% by mass.
 負極合剤層には、バインダを含有させる。負極合剤層に係るバインダとしては、PVDFなどのフッ素樹脂、SBR、CMC、アクリル樹脂などが挙げられる。 The negative electrode mixture layer contains a binder. Examples of the binder related to the negative electrode mixture layer include fluororesins such as PVDF, SBR, CMC, and acrylic resins.
 前記のアクリル樹脂としては、アクリル酸ブチルとアクリル酸との共重合体(アクリル酸ブチル由来のユニットとアクリル酸由来のユニットとを分子内に有する共重合体)などが挙げられ、このような樹脂を負極合剤層のバインダに使用することがより好ましい。このようなバインダを使用することで、負極の耐熱性を向上させ得るため、電池の高温環境下での貯蔵特性をより高めることができる。 Examples of the acrylic resin include a copolymer of butyl acrylate and acrylic acid (a copolymer having a unit derived from butyl acrylate and a unit derived from acrylic acid in the molecule), and such a resin. Is more preferably used for the binder of the negative electrode mixture layer. By using such a binder, the heat resistance of the negative electrode can be improved, so that the storage characteristics of the battery in a high temperature environment can be further improved.
 負極合剤層には導電助剤を含有させてもよい。負極合剤層に係る導電助剤には、正極合剤層に係る導電助剤として先に例示したものと同じものを使用することができる。 The negative electrode mixture layer may contain a conductive additive. The same thing as what was illustrated previously as a conductive support agent which concerns on a positive mix layer can be used for the conductive support agent which concerns on a negative mix layer.
 負極は、例えば、負極活物質やバインダ、更には必要に応じて使用される導電助剤などを、水やNMPなどの有機溶媒といった溶媒に分散させて負極合剤含有組成物を調製し(ただし、バインダは溶媒に溶解していてもよい)、これを集電体の片面または両面に塗布し乾燥して負極合剤層を形成する方法で製造することができる。また、負極合剤層の形成後に、例えば負極合剤層の密度を調整するために、カレンダ処理などのプレス処理を施してもよい。 The negative electrode is prepared by, for example, preparing a negative electrode mixture-containing composition by dispersing a negative electrode active material, a binder, and a conductive auxiliary agent used as necessary in a solvent such as water or an organic solvent such as NMP. The binder may be dissolved in a solvent), which can be produced by a method in which the binder is applied to one or both sides of the current collector and dried to form a negative electrode mixture layer. Further, after the formation of the negative electrode mixture layer, for example, in order to adjust the density of the negative electrode mixture layer, press treatment such as calendaring may be performed.
 負極に係る集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体を薄くする場合、厚みの上限は30μmであることが好ましく、機械的強度を確保するために厚みの下限は5μmであることが望ましい。 As the current collector for the negative electrode, copper or nickel foil, punching metal, mesh, expanded metal, or the like can be used, but copper foil is usually used. In the negative electrode current collector, when the entire negative electrode is thinned in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit of the thickness is 5 μm to ensure mechanical strength. Is desirable.
 負極合剤層においては、負極活物質の含有量(複数種の負極活物質を使用する場合は、それらの合計量)は90~98質量%であることが好ましく、バインダの含有量は2~10質量%であることが好ましい。また、負極合剤層に導電助剤を含有させる場合には、活物質層における導電助剤の含有量は、2~10質量%であることが好ましい。更に、負極合剤層の厚み(集電体の両面に負極合剤層を有する場合は、片面あたりの厚み)は、20~100μmであることが好ましい。 In the negative electrode mixture layer, the content of the negative electrode active material (the total amount when a plurality of types of negative electrode active materials are used) is preferably 90 to 98% by mass, and the binder content is 2 to 2%. It is preferable that it is 10 mass%. In addition, when the conductive additive is contained in the negative electrode mixture layer, the content of the conductive aid in the active material layer is preferably 2 to 10% by mass. Furthermore, the thickness of the negative electrode mixture layer (when the negative electrode mixture layer is provided on both sides of the current collector, the thickness per side) is preferably 20 to 100 μm.
 また、負極合剤層の密度は、負極でのリチウムイオンの受け入れスピードをより高める観点から、1.5g/cm以下であることが好ましく、負極活物質の充填量をある程度確保して、電池の容量を大きくする観点から、0.9g/cm以上であることが好ましい。 In addition, the density of the negative electrode mixture layer is preferably 1.5 g / cm 3 or less from the viewpoint of further increasing the lithium ion receiving speed in the negative electrode, and the battery is provided with a certain amount of the negative electrode active material to secure the battery. From the viewpoint of increasing the capacity, it is preferably 0.9 g / cm 3 or more.
 本明細書における負極合剤層の密度は、以下の方法により測定される値である。負極を所定面積に切り取り、その質量を最小目盛0.1mgの電子天秤を用いて測定し、集電体の質量を差し引いて負極合剤層の質量を算出する。一方、負極の全厚を最小目盛1μmのマイクロメーターで10点測定し、これらの測定値から集電体の厚みを差し引いた値の平均値と、面積とから、負極合剤層の体積を算出する。そして、前記負極合剤層の質量を前記体積で割ることにより負極合剤層の密度を算出する。 The density of the negative electrode mixture layer in the present specification is a value measured by the following method. The negative electrode is cut into a predetermined area, the mass is measured using an electronic balance having a minimum scale of 0.1 mg, and the mass of the negative electrode mixture layer is calculated by subtracting the mass of the current collector. On the other hand, the total thickness of the negative electrode was measured at 10 points with a micrometer having a minimum scale of 1 μm, and the volume of the negative electrode mixture layer was calculated from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. To do. Then, the density of the negative electrode mixture layer is calculated by dividing the mass of the negative electrode mixture layer by the volume.
 負極には、電池内の他の部材と電気的に接続するためのリード体を、常法に従って形成してもよい。 In the negative electrode, a lead body for electrical connection with other members in the battery may be formed according to a conventional method.
 非水二次電池において、前記の負極と前記の正極とは、例えば、セパレータを介して重ね合わせた積層体(積層電極体)や、この積層体を更に渦巻状に巻回した巻回体(巻回電極体)の形態で使用される。 In the non-aqueous secondary battery, the negative electrode and the positive electrode include, for example, a laminated body (laminated electrode body) stacked with a separator interposed therebetween, or a wound body obtained by further winding this laminated body in a spiral shape ( Used in the form of a wound electrode body).
 セパレータには、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわち、シャットダウン機能)を有していることが好ましく、通常の非水二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。また、耐熱性の優れている(分解温度200℃以上)セルロースやポリイミド製の不織布を用いてもよい。 The separator preferably has a property (that is, a shutdown function) that closes the pores at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower). Separator used in non-aqueous secondary batteries, for example, a microporous membrane made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used. The microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be. Moreover, you may use the nonwoven fabric made from a cellulose or a polyimide excellent in heat resistance (decomposition temperature 200 degreeC or more).
 非水二次電池に係る非水電解液には、リチウム塩および有機溶媒を含有し、このリチウム塩が有機溶媒に溶解した溶液が使用される。また、本発明の非水二次電池の製造方法においては、前記一般式(2)で表される基を分子内に有するリン酸化合物を更に含有する電解液が使用される。 As the non-aqueous electrolyte solution related to the non-aqueous secondary battery, a solution containing a lithium salt and an organic solvent and dissolving the lithium salt in the organic solvent is used. Moreover, in the manufacturing method of the non-aqueous secondary battery of this invention, the electrolyte solution which further contains the phosphoric acid compound which has group represented by the said General formula (2) in a molecule | numerator is used.
 非水電解液中の、前記一般式(2)で表される基を分子内に有するリン酸化合物の含有量は、その使用による前記の効果をより良好に確保する観点から、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましい。また、含有量が多くなりすぎると、電極界面に形成され得るSEI皮膜の厚みが増大し、これにより抵抗が大きくなって負荷特性が低下する虞があることから、非水電解液中の、前記一般式(2)で表される基を分子内に有するリン酸化合物の含有量は、7質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。 The content of the phosphoric acid compound having in the molecule thereof the group represented by the general formula (2) in the non-aqueous electrolyte is 0.5 mass from the viewpoint of ensuring the above-mentioned effects better. % Or more, and more preferably 1% by mass or more. In addition, if the content is too large, the thickness of the SEI film that can be formed at the electrode interface increases, which may increase resistance and decrease load characteristics. Therefore, in the non-aqueous electrolyte, The content of the phosphoric acid compound having a group represented by the general formula (2) in the molecule is preferably 7% by mass or less, more preferably 5% by mass or less, and 3% by mass or less. More preferably.
 リチウム塩には、例えば、LiPF、LiBF、LiAsF、LiSbF、LiClOなどの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(FSO〔LiFSI〕、LiN(CFSO〔LiTFSI〕、LiN(CSO、リチウムビスオキサレートボレート(LiBOB)などの有機リチウム塩;のうちの1種または2種以上を用いることができる。 Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (FSO 2 ) 2 [LiFSI], LiN (CF 3 SO 2 ) 2 [LiTFSI], LiN (C 2 F 5 SO 2 ) 2 , or an organic lithium salt such as lithium bisoxalate borate (LiBOB);
 なお、前記リン酸化合物を非水電解液に含有させる場合には、リチウム塩としてLiPFなどのフッ素含有無機リチウム塩を単独で、あるいは、LiClOなどの他の無機リチウム塩やリチウムビスオキサレートボレート(LiBOB)などの有機リチウム塩と共に用い、かつ、水分を多く含有する正極合剤層を備えた正極を用いることにより、前記正極の水分との反応でフッ化水素を発生させて、前記リン酸化合物に由来するSEI皮膜の形成を効率的に進行させることができる。 When the phosphoric acid compound is contained in the non-aqueous electrolyte, a fluorine-containing inorganic lithium salt such as LiPF 6 alone or another inorganic lithium salt such as LiClO 4 or lithium bisoxalate is used as the lithium salt. By using a positive electrode with an organic lithium salt such as borate (LiBOB) and a positive electrode mixture layer containing a large amount of moisture, hydrogen fluoride is generated by reaction with the moisture of the positive electrode, and the phosphorus The formation of the SEI film derived from the acid compound can be efficiently advanced.
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトン、α位に置換基を有するラクトン類などの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。より良好な特性の電池とするためには、前記例示の環状カーボネートと前記例示の鎖状カーボネートとの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。 Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; γ-butyrolactone, α Cyclic esters such as lactones having a substituent at the position; chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; Nitriles such as acetonitrile, propionitrile, methoxypropionitrile; sulfites such as ethylene glycol sulfite; These can be used as a mixture of two or more. In order to obtain a battery having better characteristics, it is desirable to use a combination that can obtain a high conductivity, such as a mixed solvent of the above-mentioned cyclic carbonate and the above-mentioned chain carbonate.
 また、有機溶媒には、α位に置換基を有するラクトン類を使用することも好ましい。α位に置換基を有するラクトン類は150℃以上の高い沸点を有しているため、電池が高温環境下に置かれても揮発し難く、非水電解液の組成の変動や外装体の膨れによる電池特性の低下を抑制し得るため、より耐熱性が高く高温下での貯蔵特性に優れた電池を構成することができる。 It is also preferable to use lactones having a substituent at the α-position as the organic solvent. Since the lactone having a substituent at the α-position has a high boiling point of 150 ° C. or higher, it is difficult to volatilize even when the battery is placed in a high temperature environment, and the composition of the non-aqueous electrolyte changes and the outer body swells. Therefore, a battery having higher heat resistance and excellent storage characteristics at high temperatures can be configured.
 なお、α位に置換基を有するラクトン類以外にも、150℃以上の沸点を有する高沸点溶媒は知られているが、一般に高沸点溶媒はポリオレフィン製のセパレータへの浸透性が低いことから、非水電解液のセパレータへの浸透性を高めるために別の溶媒(一般に沸点が低い)を併用する必要がある。これに対し、α位に置換基を有するラクトン類はポリオレフィン製セパレータへの浸透性が良好であるため、これを使用した非水電解液を用いることで、例えば電池の負荷特性を損なうことなく、耐熱性を高めることができる。 In addition to lactones having a substituent at the α-position, high-boiling solvents having a boiling point of 150 ° C. or higher are known, but generally high-boiling solvents have low permeability to polyolefin separators, In order to increase the permeability of the non-aqueous electrolyte to the separator, it is necessary to use another solvent (generally having a low boiling point). On the other hand, since lactones having a substituent at the α-position have good permeability to polyolefin separators, by using a non-aqueous electrolyte using this, for example, without impairing the load characteristics of the battery, Heat resistance can be improved.
 α位に置換基を有するラクトン類は、例えば5員環のもの(環を構成する炭素数が4つのもの)が好ましい。前記ラクトン類のα位の置換基は、1つであってもよく、2つであってもよい。 The lactone having a substituent at the α-position is preferably, for example, a 5-membered ring (having 4 carbon atoms constituting the ring). The α-position substituent of the lactone may be one or two.
 前記置換基としては、炭化水素基、ハロゲン基(フルオロ基、クロロ基、ブロモ基、ヨード基)などが挙げられる。炭化水素基としては、アルキル基、アリール基などが好ましく、その炭素数は1以上15以下(より好ましくは6以下)であることが好ましい。前記置換基が炭化水素基の場合、メチル基、エチル基、プロピル基、ブチル基、フェニル基などが更に好ましい。 Examples of the substituent include a hydrocarbon group and a halogen group (fluoro group, chloro group, bromo group, iodo group) and the like. As a hydrocarbon group, an alkyl group, an aryl group, etc. are preferable, and it is preferable that the carbon number is 1 or more and 15 or less (more preferably 6 or less). When the substituent is a hydrocarbon group, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, and the like are more preferable.
 α位に置換基を有するラクトン類の具体例としては、α-メチル-γ-ブチロラクトン、α-エチル-γ-ブチロラクトン、α-プロピル-γ-ブチロラクトン、α-ブチル-γ-ブチロラクトン、α-フェニル-γ-ブチロラクトン、α-フルオロ-γ-ブチロラクトン、α-クロロ-γ-ブチロラクトン、α-ブロモ-γ-ブチロラクトン、α-ヨード-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、α,α-ジエチル-γ-ブチロラクトン、α,α-ジフェニル-γ-ブチロラクトン、α-エチル-α-メチル-γ-ブチロラクトン、α-メチル-α-フェニル-γ-ブチロラクトン、α,α-ジフルオロ-γ-ブチロラクトン、α,α-ジクロロ-γ-ブチロラクトン、α,α-ジブロモ-γ-ブチロラクトン、α,α-ジヨード-γ-ブチロラクトンなどが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。これらの中でも、α-メチル-γ-ブチロラクトンがより好ましい。 Specific examples of lactones having a substituent at the α-position include α-methyl-γ-butyrolactone, α-ethyl-γ-butyrolactone, α-propyl-γ-butyrolactone, α-butyl-γ-butyrolactone, α-phenyl -Γ-butyrolactone, α-fluoro-γ-butyrolactone, α-chloro-γ-butyrolactone, α-bromo-γ-butyrolactone, α-iodo-γ-butyrolactone, α, α-dimethyl-γ-butyrolactone, α, α -Diethyl-γ-butyrolactone, α, α-diphenyl-γ-butyrolactone, α-ethyl-α-methyl-γ-butyrolactone, α-methyl-α-phenyl-γ-butyrolactone, α, α-difluoro-γ-butyrolactone , Α, α-dichloro-γ-butyrolactone, α, α-dibromo-γ-butyrolactone, α, α-diiodo-γ-butyrolactone Tons, and the like, it may be used only one of these may be used in combination of two or more. Among these, α-methyl-γ-butyrolactone is more preferable.
 有機溶媒にα位に置換基を有するラクトン類を使用する場合、α位に置換基を有するラクトン類のみを用いてもよいが、他の有機溶媒を共に使用する場合には、150℃以上の沸点を有する高沸点溶媒(エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、スルホラン、トリメチルホスフェート、トリエチルホスフェートなど)を使用することが好ましい。 When lactones having a substituent at the α-position are used in the organic solvent, only lactones having a substituent at the α-position may be used, but when other organic solvents are used together, 150 ° C or higher It is preferable to use a high-boiling solvent having a boiling point (ethylene carbonate, propylene carbonate, γ-butyrolactone, sulfolane, trimethyl phosphate, triethyl phosphate, etc.).
 有機溶媒にα位に置換基を有するラクトン類を使用する場合の、非水電解液における全有機溶媒中の割合は、30~100体積%であることが好ましい。 When the lactone having a substituent at the α-position is used as the organic solvent, the ratio in the total organic solvent in the nonaqueous electrolytic solution is preferably 30 to 100% by volume.
 リチウム塩の非水電解液中の濃度は、0.6~1.8mol/Lであることが好ましく、0.9~1.6mol/Lであることがより好ましい。 The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.6 to 1.8 mol / L, and more preferably 0.9 to 1.6 mol / L.
 また、前記の非水電解液に、電池の安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、ビフェニル、フルオロベンゼン、t-ブチルベンゼン、ハロゲン置換された環状カーボネート(4-フルオロ-1,3-ジオキソラン-2-オンなど)などの添加剤を適宜加えることもできる。 In addition, for the purpose of improving characteristics such as battery safety, charge / discharge cycleability, and high-temperature storage stability, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, biphenyl, fluorobenzene are added to the non-aqueous electrolyte. Additives such as t-butylbenzene and halogen-substituted cyclic carbonates (4-fluoro-1,3-dioxolan-2-one etc.) can also be added as appropriate.
 更に、本発明の非水二次電池には、前記の非水電解液に公知のポリマーなどのゲル化剤を添加してゲル状としたもの(ゲル状電解質)を用いてもよい。 Furthermore, in the non-aqueous secondary battery of the present invention, a gel (gel electrolyte) obtained by adding a gelling agent such as a known polymer to the non-aqueous electrolyte may be used.
 非水二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)やコイン形などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Examples of the form of the non-aqueous secondary battery include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can, or a coin shape. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.
実施例1
<正極合剤層用のバインダの合成>
 水中にPVDFが分散したラテックス(PVDFの量が40質量%)を反応容器に入れ(PVDFの量で20質量部となる量)、ここに水:150質量部を添加し、反応容器内を窒素置換した。
Example 1
<Synthesis of binder for positive electrode mixture layer>
A latex in which PVDF is dispersed in water (the amount of PVDF is 40% by mass) is placed in a reaction vessel (the amount of PVDF is 20 parts by mass), and water: 150 parts by mass is added thereto, and the reaction vessel is filled with nitrogen. Replaced.
 水:60質量部と、乳化剤(エーテルサルフェート型乳化剤:固形分含量が25質量%の分散液):2質量部(固形分量として)と、メタクリル酸メチル:20質量部と、アクリル酸2-エチルヘキシル:10質量部と、アクリル酸ブチル:25質量部と、アクリロニトリル:20質量部と、アクリル酸:5質量部とを別の容器に入れ、十分に攪拌してモノマーを含有する乳化液を調製した。 Water: 60 parts by mass, emulsifier (ether sulfate type emulsifier: dispersion having a solid content of 25% by mass): 2 parts by mass (as solid content), methyl methacrylate: 20 parts by mass, 2-ethylhexyl acrylate : 10 parts by mass, butyl acrylate: 25 parts by mass, acrylonitrile: 20 parts by mass, and acrylic acid: 5 parts by mass were put in another container and sufficiently stirred to prepare an emulsion containing the monomer. .
 前記の反応容器内の昇温を開始し、その内部温度が50℃に達した段階で、過硫酸アンモニウム:0.5質量部と亜硫酸ナトリウム:0.1質量部とを反応容器内に添加した。続いて、反応容器内の温度が60℃に達した段階で、前記乳化液の反応容器内への滴下を開始し、反応容器内の温度を60℃に保ちつつ、前記乳化液の全量を2時間かけて添加した。その後反応容器内を60℃に保ったままで2時間重合させることにより、前記一般式(1)で表されるユニットを分子内に有する重合体(A)を含有する、正極合剤層用のバインダ(B1)を合成した。 The temperature inside the reaction vessel was started, and when the internal temperature reached 50 ° C., 0.5 parts by mass of ammonium persulfate and 0.1 part by mass of sodium sulfite were added to the reaction vessel. Subsequently, when the temperature in the reaction vessel reaches 60 ° C., dropping of the emulsion into the reaction vessel is started, and the total amount of the emulsion is reduced to 2 while maintaining the temperature in the reaction vessel at 60 ° C. Added over time. Then, the binder for the positive electrode mixture layer containing the polymer (A) having the unit represented by the general formula (1) in the molecule by polymerizing for 2 hours while maintaining the inside of the reaction vessel at 60 ° C. (B1) was synthesized.
<正極の作製>
 正極活物質として、表面を炭素材料で被覆したオリビン型リン酸鉄リチウム(LiFePO、平均粒子径13μm、BET比表面積:9m/g):89質量部と、導電助剤であるアセチレンブラック:3.5質量部および黒鉛1.5質量部と、バインダB1:3.3質量部と、ポリビニルピロリドン(分散剤):0.3質量部と、CMC(増粘剤):2.4質量部と、水とを混合して、正極合剤含有組成物を調製した。なお、表面を炭素材料で被覆した前記オリビン型リン酸鉄リチウムは、リン酸鉄、リン酸リチウムおよびショ糖を混合し、窒素ガス中800℃で焼成することにより得たものであり、オリビン型リン酸鉄リチウム:100質量部に対し、表面を被覆する炭素の量が2.3質量部であった。
<Preparation of positive electrode>
As the positive electrode active material, olivine-type lithium iron phosphate (LiFePO 4 , average particle diameter 13 μm, BET specific surface area: 9 m 2 / g) whose surface is coated with a carbon material: 89 parts by mass, and acetylene black as a conductive auxiliary agent: 3.5 parts by mass and 1.5 parts by mass of graphite, binder B1: 3.3 parts by mass, polyvinylpyrrolidone (dispersing agent): 0.3 parts by mass, and CMC (thickening agent): 2.4 parts by mass And water were mixed to prepare a positive electrode mixture-containing composition. The olivine-type lithium iron phosphate whose surface is coated with a carbon material is obtained by mixing iron phosphate, lithium phosphate and sucrose, and firing at 800 ° C. in nitrogen gas. The amount of carbon covering the surface was 2.3 parts by mass with respect to 100 parts by mass of lithium iron phosphate.
 この正極合剤含有組成物を、厚みが15μmのアルミニウム箔(集電体)の片面に塗布し、乾燥させて、集電体の片面に厚みが5μmの正極合剤層を有する正極を得た。 This positive electrode mixture-containing composition was applied to one side of an aluminum foil (current collector) having a thickness of 15 μm and dried to obtain a positive electrode having a positive electrode mixture layer having a thickness of 5 μm on one side of the current collector. .
<負極の作製>
 負極活物質であるソフトカーボン:96質量部と、SBR:2質量部と、CMC:2質量部と、水とを混合して負極合剤含有組成物を調製した。この負極合剤含有組成物を、厚みが10μmの銅箔(集電体)の片面に塗布し、乾燥させて、集電体の片面に厚みが6μmの負極合剤層を有する負極を得た。負極合剤層の密度は、1.0g/cmであった。
<Production of negative electrode>
The negative electrode active material-containing composition was prepared by mixing 96 parts by mass of soft carbon as the negative electrode active material, 2 parts by mass of SBR, 2 parts by mass of CMC, and water. This negative electrode mixture-containing composition was applied to one side of a 10 μm thick copper foil (current collector) and dried to obtain a negative electrode having a negative electrode mixture layer having a thickness of 6 μm on one side of the current collector. . The density of the negative electrode mixture layer was 1.0 g / cm 3 .
<非水電解液の調製>
 エチレンカーボネートとジエチルカーボネートとを体積比1:2で混合した溶媒に、LiPFを濃度1mol/Lで溶解させて非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
A non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2.
<電池の組み立て>
 前記正極と前記負極とを、セパレータ(微多孔性ポリエチレンフィルム製セパレータ、厚み16μm、開口率50%)を介して重ね合わせて積層電極体とし、これをアルミニウムラミネートフィルム外装体内に挿入し、この外装体内に前記非水電解液を注入した後、外装体を封止して、図1に示す外観で、図2に示す断面構造のラミネート形非水二次電池を作製した。
<Battery assembly>
The positive electrode and the negative electrode are overlapped via a separator (a separator made of microporous polyethylene film, thickness 16 μm, opening ratio 50%) to form a laminated electrode body, which is inserted into an aluminum laminate film exterior body, and this exterior After injecting the non-aqueous electrolyte into the body, the outer package was sealed to produce a laminated non-aqueous secondary battery having the cross-sectional structure shown in FIG. 2 with the appearance shown in FIG.
 ここで、図1および図2について説明すると、図1は非水二次電池を模式的に表す平面図であり、図2は、図1のI-I線断面図である。非水二次電池1は、2枚のラミネートフィルムで構成したラミネートフィルム外装体2内に、正極5と負極6とをセパレータ7を介して積層して構成した積層電極体と、非水電解液(図示しない)とを収容しており、ラミネートフィルム外装体2は、その外周部において、上下のラミネートフィルムを熱融着することにより封止されている。なお、図2では、図面が煩雑になることを避けるために、ラミネートフィルム外装体2を構成している各層、並びに正極5および負極6の各層を区別して示していない。 Here, FIG. 1 and FIG. 2 will be described. FIG. 1 is a plan view schematically showing a non-aqueous secondary battery, and FIG. 2 is a cross-sectional view taken along the line II of FIG. The nonaqueous secondary battery 1 includes a laminated electrode body formed by laminating a positive electrode 5 and a negative electrode 6 via a separator 7 in a laminated film outer package 2 constituted by two laminated films, and a nonaqueous electrolytic solution. (Not shown) is accommodated, and the laminate film outer package 2 is sealed by heat-sealing the upper and lower laminate films at the outer peripheral portion thereof. In FIG. 2, each layer constituting the laminate film outer package 2 and each layer of the positive electrode 5 and the negative electrode 6 are not shown separately in order to prevent the drawing from becoming complicated.
 正極5は、電池1内でリード体を介して正極外部端子3と接続しており、また、図示していないが、負極6も、電池1内でリード体を介して負極外部端子4と接続している。そして、正極外部端子3および負極外部端子4は、外部の機器などと接続可能なように、片端側がラミネートフィルム外装体2の外側に引き出されている。 The positive electrode 5 is connected to the positive electrode external terminal 3 in the battery 1 through a lead body. Although not shown, the negative electrode 6 is also connected to the negative electrode external terminal 4 in the battery 1 through a lead body. is doing. The positive electrode external terminal 3 and the negative electrode external terminal 4 are drawn out to the outside of the laminate film exterior body 2 so that they can be connected to an external device or the like.
実施例2
 正極のバインダを、実施例1で作製したものと同じバインダ:3.0質量部と呉羽社製のPVDF:0.3質量部とに変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Example 2
A positive electrode was produced in the same manner as in Example 1, except that the binder of the positive electrode was changed to 3.0 parts by mass the same as that produced in Example 1 and 0.3 parts by mass of PVDF manufactured by Kureha Corporation. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例3
 正極集電体を、複数の貫通孔を有するアルミニウム箔に変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。なお、正極集電体に用いたアルミニウム箔は、孔の個数が箔の平面視での面積1cmあたり10個であり、孔径が80μmであった。
Example 3
A positive electrode current collector was prepared in the same manner as in Example 1 except that the positive electrode current collector was changed to an aluminum foil having a plurality of through-holes. A water secondary battery was produced. The aluminum foil used for the positive electrode current collector had 10 holes per 1 cm 2 area in plan view of the foil and a hole diameter of 80 μm.
実施例4
 正極集電体であるアルミニウム箔の両面に、正極合剤層を形成する前に、片面あたりの厚みが3μmのコート層を形成した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。なお、正極集電体上の前記コート層は、アセチレンブラック:59質量部を含む水分散体と、バインダとしてアクリル樹脂:40質量部と、分散剤としてPVP:1質量部とを混合した塗液を用いて形成した。
Example 4
A positive electrode was produced in the same manner as in Example 1 except that a coating layer having a thickness of 3 μm per side was formed on both sides of an aluminum foil as a positive electrode current collector before forming a positive electrode mixture layer. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used. In addition, the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin: 40 mass parts as a binder, and PVP: 1 mass part as a dispersing agent. Formed using.
実施例5
 正極の導電助剤を、アセチレンブラック:2.5質量部と、黒鉛:1.5質量部と、カーボンナノチューブ(平均長さ2μm、平均径10nm):1質量部とに変更した以外は、実施例1と同様にして正極を作製し、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Example 5
Implementation was conducted except that the conductive assistant for the positive electrode was changed to acetylene black: 2.5 parts by mass, graphite: 1.5 parts by mass, and carbon nanotubes (average length 2 μm, average diameter 10 nm): 1 part by mass. A positive electrode was produced in the same manner as in Example 1, and a laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
実施例6
 非水電解液を、エチレンカーボネートとジエチルカーボネートとα-メチル-γ-ブチロラクトンとを体積比30:20:50で混合した溶媒に、LiPFを濃度1mol/Lで溶解させて調製したものに変更した以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Example 6
The non-aqueous electrolyte was changed to one prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, diethyl carbonate and α-methyl-γ-butyrolactone were mixed at a volume ratio of 30:20:50. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that.
実施例7
 負極活物質を天然黒鉛に変更した以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてラミネート形非水二次電池を作製した。
Example 7
A negative electrode was produced in the same manner as in Example 1 except that the negative electrode active material was changed to natural graphite, and a laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
比較例1
 正極作製時に、正極合剤層のバインダをPVDFに変更した以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
Comparative Example 1
A laminate type nonaqueous secondary battery was produced in the same manner as in Example 1 except that the binder of the positive electrode mixture layer was changed to PVDF at the time of producing the positive electrode.
 実施例および比較例の非水二次電池について、下記の方法で充放電特性評価を行った。 The charge / discharge characteristics of the non-aqueous secondary batteries of Examples and Comparative Examples were evaluated by the following method.
<定格容量の測定>
 実施例および比較例の各評価用電池について、下記条件で定格容量(1C)を測定した。先ず、0.1mA/cmの定電流で3.85Vになるまで定電流充電を行い、引き続いて3.85Vの定電圧で電流値が0.01mA/cmに低下するまで定電圧充電を行った。
<Measurement of rated capacity>
About each battery for evaluation of an Example and a comparative example, rated capacity (1C) was measured on condition of the following. First, constant current charging is performed at a constant current of 0.1 mA / cm 2 until it reaches 3.85 V, and then constant voltage charging is performed at a constant voltage of 3.85 V until the current value decreases to 0.01 mA / cm 2. went.
 ただし、実施例7の電池については、定電流充電の終止電圧および定電圧充電時の電圧を、4.2Vとした。 However, for the battery of Example 7, the end voltage of constant current charging and the voltage during constant voltage charging were set to 4.2V.
 充電後の各電池を、0.1mA/cmの定電流で電池電圧が1.5Vになるまで放電させて、その時の放電容量(mAh)を各電池の定格容量(1C)とした。 Each battery after charging was discharged at a constant current of 0.1 mA / cm 2 until the battery voltage became 1.5 V, and the discharge capacity (mAh) at that time was defined as the rated capacity (1 C) of each battery.
<充放電特性評価>
 前記の定格容量測定時と同じ条件で、各々の電池を充電深度(SOC:定格容量に対する充電容量の比率)が100%になるまで充電した後、所定の電流値〔2C(20mA)、5C(50mA)、20C(200mA)および50C(500mA)〕で10秒間放電したときの電圧低下を測定した。
<Charge / discharge characteristics evaluation>
After charging each battery until the depth of charge (SOC: ratio of the charge capacity to the rated capacity) reaches 100% under the same conditions as the above-mentioned rated capacity measurement, a predetermined current value [2C (20 mA), 5C ( 50 mA), 20 C (200 mA) and 50 C (500 mA)], the voltage drop was measured when discharged for 10 seconds.
 各電流値での電圧の低下分:ΔVと、そのときの電流値:Iとをそれぞれ縦軸および横軸にプロットすることにより、各電池の放電における抵抗値(DCR)を求めた。 The voltage drop at each current value: ΔV and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) of each battery during discharge.
 また、各電池について、前記の定格容量測定時と同じ条件で充電深度が0%になるまで放電し、所定の電流値〔2C(20mA)、5C(50mA)、20C(200mA)および40C(400mA)〕で10秒間充電したときの電圧上昇を測定した。 In addition, each battery was discharged until the charging depth reached 0% under the same conditions as in the rated capacity measurement, and predetermined current values [2C (20 mA), 5C (50 mA), 20C (200 mA), and 40 C (400 mA) were obtained. )] Was measured for a voltage increase when charged for 10 seconds.
 各電流値での電圧の上昇分:ΔVと、そのときの電流値:Iとをそれぞれ縦軸および横軸にプロットすることにより、各電池の充電における抵抗値(DCR)を求めた。 The voltage rise at each current value: ΔV and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) for charging each battery.
 前記の評価結果を表1に示す。なお、表1の各欄には、特に問題がなく前記の各測定ができた場合には、DCRの値(Ω)を示し、測定時に何らかの問題が生じた場合には、その問題を記載した。 The evaluation results are shown in Table 1. In each column of Table 1, the DCR value (Ω) is shown when there is no particular problem and each measurement can be performed, and the problem is described when any problem occurs during measurement. .
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示す通り、ソフトカーボンを負極活物質として含有し、かつ適正な密度を有する負極合剤層を備えた負極と、リン酸鉄リチウムを正極活物質として含有し、かつ特定のバインダを含有する正極とを有する実施例1~6の非水二次電池は、正極のバインダにPVDFを使用した比較例1の電池に比べて、充電、放電のいずれにおいてもDCRが低く、大電流での放電であっても良好な出力特性を示していた。 As shown in Table 1, a negative electrode containing soft carbon as a negative electrode active material and having a negative electrode mixture layer having an appropriate density, lithium iron phosphate as a positive electrode active material, and a specific binder The non-aqueous secondary batteries of Examples 1 to 6 having a positive electrode that has a low DCR in both charging and discharging and a large current compared to the battery of Comparative Example 1 using PVDF as the positive electrode binder. Even in the case of discharge, good output characteristics were exhibited.
 一方、負極活物質に天然黒鉛を使用した実施例7の電池では、比較例1に比べて良好な充放電特性を示したが、40Cの電流値で充電をした際に、負極へのリチウムイオンの挿入が追い付かず、負極表面にリチウムデンドライトが析出し、これがセパレータを貫通して正極に至り、短絡を引き起こした。従って、本発明の非水二次電池の負極活物質としては、黒鉛よりもソフトカーボンやハードカーボンの方がより好適であることが分かった。 On the other hand, the battery of Example 7 using natural graphite as the negative electrode active material showed better charge / discharge characteristics than Comparative Example 1, but when charged at a current value of 40 C, lithium ions to the negative electrode Insertion could not catch up, and lithium dendrite was deposited on the negative electrode surface, which penetrated the separator to the positive electrode, causing a short circuit. Therefore, it was found that soft carbon and hard carbon are more suitable than graphite as the negative electrode active material of the non-aqueous secondary battery of the present invention.
実施例8
<正極の作製>
 実施例1で調製したものと同じ正極合剤含有組成物を、厚みが15μmのアルミニウム箔(集電体)の両面に塗布し、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成し、プレス処理を行い、所定の大きさで切断して、帯状の正極を得た。
Example 8
<Preparation of positive electrode>
The same positive electrode mixture-containing composition as that prepared in Example 1 was applied to both sides of an aluminum foil (current collector) having a thickness of 15 μm, and vacuum-dried at 120 ° C. for 12 hours to obtain both sides of the aluminum foil. A positive electrode mixture layer was formed on the substrate, pressed, and cut into a predetermined size to obtain a strip-like positive electrode.
 なお、アルミニウム箔への正極合剤含有ペーストの塗布の際には、アルミニウム箔の一部が露出するようにし、表面で塗布部とした箇所は裏面も塗布部とした。得られた正極の正極合剤層の厚み(正極集電体であるアルミニウム箔の片面あたりの厚み)は、41μmであった。 In addition, when applying the positive electrode mixture-containing paste to the aluminum foil, a part of the aluminum foil was exposed, and the back surface was also applied as the application portion on the surface. The thickness of the positive electrode mixture layer of the obtained positive electrode (thickness per one side of the aluminum foil as the positive electrode current collector) was 41 μm.
 前記帯状の正極を、タブ部とするためにアルミニウム箔(正極集電体)の露出部の一部が突出するように、かつ正極合剤層の形成部が四隅を曲線状とした略四角形状になるようにトムソン刃で打ち抜いて、正極集電体の両面に正極合剤層を有する電池用正極を得た。図3に、前記電池用正極を模式的に表す平面図を示している(ただし、正極の構造の理解を容易にするために、図3に示す正極のサイズは、必ずしも実際のものと一致していない)。正極10は、正極集電体12の露出部の一部が突出するように打ち抜いたタブ部13を有する形状とし、正極合剤層11の形成部の形状を、四隅を曲線状にした略四角形とし、図中a、bおよびcの長さを、それぞれ61mm、137mmおよび10mmとした。 In order to make the strip-shaped positive electrode into a tab portion, a part of the exposed portion of the aluminum foil (positive electrode current collector) protrudes, and a portion where the positive electrode mixture layer is formed has a substantially rectangular shape with curved corners. Thus, a positive electrode for a battery having a positive electrode mixture layer on both surfaces of the positive electrode current collector was obtained. FIG. 3 is a plan view schematically showing the battery positive electrode (however, in order to facilitate understanding of the structure of the positive electrode, the size of the positive electrode shown in FIG. 3 does not necessarily match the actual one). Not) The positive electrode 10 has a tab portion 13 punched out so that a part of the exposed portion of the positive electrode current collector 12 protrudes, and the shape of the forming portion of the positive electrode mixture layer 11 is a substantially rectangular shape with four corners curved. In the figure, the lengths a, b and c were 61 mm, 137 mm and 10 mm, respectively.
<負極の作製>
 負極活物質であるソフトカーボン:96質量部と、アクリル樹脂:2質量部と、CMC:2質量部と、水とを混合して負極合剤含有ペーストを調製した。前記負極合剤含有ペーストを厚みが10μmの銅箔の両面に塗布し乾燥を行って、銅箔の両面に負極合剤層を形成し、プレス処理を行って負極合剤層の密度を1.0g/cmに調整した後に所定の大きさで切断して、帯状の負極を得た。なお、銅箔への負極合剤含有ペーストの塗布の際には、銅箔の一部が露出するようにし、表面で塗布部とした箇所は裏面も塗布部とした。得られた負極の負極合剤層の厚み(負極集電体である銅箔の片面あたりの厚み)は、61.5μmであった。
<Production of negative electrode>
The negative electrode active material: 96 parts by mass of soft carbon, acrylic resin: 2 parts by mass, CMC: 2 parts by mass, and water were mixed to prepare a negative electrode mixture-containing paste. The negative electrode mixture-containing paste is applied to both sides of a copper foil having a thickness of 10 μm and dried to form a negative electrode mixture layer on both sides of the copper foil, and press treatment is performed to set the density of the negative electrode mixture layer to 1. After adjusting to 0 g / cm 3 , it was cut into a predetermined size to obtain a strip-shaped negative electrode. In addition, when apply | coating the negative mix containing paste to copper foil, a part of copper foil was exposed and the back surface also made the application part the part made into the application part on the surface. The thickness of the negative electrode mixture layer of the obtained negative electrode (thickness per one side of the copper foil as the negative electrode current collector) was 61.5 μm.
 前記帯状の負極を、タブ部とするために銅箔(負極集電体)の露出部の一部が突出するように、かつ負極合剤層の形成部が四隅を曲線状とした略四角形状になるようにトムソン刃で打ち抜いて、負極集電体の両面に負極合剤層を有する電池用負極を得た。図4に、前記電池用負極を模式的に表す平面図を示している(ただし、負極の構造の理解を容易にするために、図4に示す負極のサイズは、必ずしも実際のものと一致していない)。負極20は、負極集電体22の露出部の一部が突出するように打ち抜いたタブ部23を有する形状とし、負極合剤層21の形成部の形状を、四隅を曲線状にした略四角形とし、図中d、eおよびfの長さを、それぞれ64mm、142.5mmおよび10mmとした。 In order to make the strip-shaped negative electrode into a tab portion, a part of the exposed portion of the copper foil (negative electrode current collector) protrudes, and the negative electrode mixture layer forming portion has a substantially square shape with four corners curved. Then, a negative electrode for a battery having a negative electrode mixture layer on both surfaces of the negative electrode current collector was obtained. FIG. 4 is a plan view schematically showing the battery negative electrode (however, in order to facilitate understanding of the structure of the negative electrode, the size of the negative electrode shown in FIG. 4 does not necessarily match the actual one). Not) The negative electrode 20 has a shape having a tab portion 23 punched out so that a part of the exposed portion of the negative electrode current collector 22 protrudes, and the shape of the forming portion of the negative electrode mixture layer 21 is a substantially rectangular shape with four corners curved. In the drawing, the lengths d, e, and f were 64 mm, 142.5 mm, and 10 mm, respectively.
<非水電解液の調製>
 プロピレンカーボネート(PC)とα-メチル-γ-ブチロラクトン(MBL)とを体積比3:7で混合した溶媒に、LiPFを濃度1.2mol/Lで溶解させ、更にビニレンカーボネート(VC)を2.5質量%となる量で添加して非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 is dissolved at a concentration of 1.2 mol / L in a solvent in which propylene carbonate (PC) and α-methyl-γ-butyrolactone (MBL) are mixed at a volume ratio of 3: 7, and vinylene carbonate (VC) is further added to 2 A nonaqueous electrolytic solution was prepared by adding in an amount of 5% by mass.
<電池の組み立て>
 正極集電体の両面に正極合剤層を形成した電池用正極18枚、および負極集電体の両面に負極合剤層を形成した電池用負極19枚を用いて積層電極体を形成した。積層電極体では、上下の両端を電池用負極として、それらの間に電池用正極と電池用負極とを、セパレータである微多孔性ポリエチレンフィルム(厚み:16μm、平均細孔径:0.02μm、開口率:50%)を介在させつつ交互に配置し、正極同士のタブ部、負極同士のタブ部を、それぞれ溶接した。
<Battery assembly>
A laminated electrode body was formed using 18 positive electrodes for a battery in which a positive electrode mixture layer was formed on both sides of the positive electrode current collector and 19 negative electrodes for a battery in which a negative electrode mixture layer was formed on both sides of the negative electrode current collector. In the laminated electrode body, the upper and lower ends are the negative electrodes for the battery, and the positive electrode for the battery and the negative electrode for the battery are interposed between them. The tab portions between the positive electrodes and the tab portions between the negative electrodes were welded to each other with a ratio of 50%).
 次に、前記積層電極体が収まるように窪みを形成した厚み:5.7mm、幅:78mm、高さ:161mmのアルミニウムラミネートフィルムの、前記窪みに前記積層電極体を挿入し、その上に前記と同じサイズのアルミニウムラミネートフィルムを置いて、両アルミニウムラミネートフィルムの3辺を熱溶着した。そして、両アルミニウムラミネートフィルムの残りの1辺から前記非水電解液を注入した。その後、両アルミニウムラミネートフィルムの前記残りの1辺を真空熱封止して、図5に示す外観で、図6に示す断面構造の非水二次電池を作製した。 Next, the laminated electrode body is inserted into the depression of an aluminum laminate film having a thickness of 5.7 mm, a width of 78 mm, and a height of 161 mm in which the depression is formed so that the laminated electrode body is accommodated, and the above-mentioned laminated electrode body is inserted thereon The aluminum laminate film of the same size as the above was placed, and three sides of both aluminum laminate films were heat-welded. And the said non-aqueous electrolyte was inject | poured from the remaining 1 side of both aluminum laminate films. Thereafter, the remaining one side of both aluminum laminate films was vacuum heat sealed to produce a non-aqueous secondary battery having the cross-sectional structure shown in FIG. 6 with the appearance shown in FIG.
 ここで、図5および図6について説明すると、図5は非水二次電池を模式的に表す平面図であり、図5は、図6のII-II線断面図である。非水二次電池100は、2枚のアルミニウムラミネートフィルムで構成したアルミニウムラミネートフィルム外装体101内に、正極と負極とをセパレータを介して積層して構成した積層電極体102と、非水電解液(図示しない)とを収容しており、アルミニウムラミネートフィルム外装体101は、その外周部において、上下のアルミニウムラミネートフィルムを熱融着することにより封止されている。なお、図6では、図面が複雑になることを避けるために、アルミニウムラミネートフィルム外装体101を構成している各層や、積層電極体102を構成している正極、負極およびセパレータを区別して示していない。 Here, FIG. 5 and FIG. 6 will be described. FIG. 5 is a plan view schematically showing a non-aqueous secondary battery, and FIG. 5 is a cross-sectional view taken along the line II-II in FIG. The nonaqueous secondary battery 100 includes a laminated electrode body 102 constituted by laminating a positive electrode and a negative electrode with a separator in an aluminum laminated film outer package 101 constituted by two aluminum laminated films, and a nonaqueous electrolytic solution. (Not shown) is housed, and the aluminum laminate film outer package 101 is sealed by heat-sealing the upper and lower aluminum laminate films at the outer peripheral portion thereof. In FIG. 6, in order to avoid complication of the drawing, each layer constituting the aluminum laminate film outer package 101 and the positive electrode, the negative electrode and the separator constituting the laminated electrode body 102 are shown separately. Absent.
 積層電極体102の有する各正極は、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池100内で正極外部端子103と接続しており、また、図示していないが、積層電極体102の有する各負極も、タブ部同士を溶接して一体化し、この溶接したタブ部の一体化物を電池100内で負極外部端子104と接続している。そして、正極外部端子103および負極外部端子104は、外部の機器などと接続可能なように、片端側をアルミニウムラミネートフィルム外装体101の外側に引き出している。 Each positive electrode of the laminated electrode body 102 is integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the positive electrode external terminal 103 in the battery 100, although not shown. The negative electrodes of the laminated electrode body 102 are also integrated by welding the tab portions together, and the integrated product of the welded tab portions is connected to the negative electrode external terminal 104 in the battery 100. The positive electrode external terminal 103 and the negative electrode external terminal 104 are drawn out to the outside of the aluminum laminate film exterior body 101 so that they can be connected to an external device or the like.
実施例9
 非水電解液の溶媒を、PCとMBLとエチルメチルカーボネート(EMC)とを体積比3:5:2で混合したものに変更した以外は、実施例8と同様にして非水二次電池を作製した。
Example 9
A non-aqueous secondary battery was prepared in the same manner as in Example 8 except that the solvent of the non-aqueous electrolyte was changed to a mixture of PC, MBL, and ethyl methyl carbonate (EMC) at a volume ratio of 3: 5: 2. Produced.
実施例10
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例8と同様にして非水二次電池を作製した。
Example 10
A non-aqueous secondary battery was produced in the same manner as in Example 8 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
実施例11
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例9と同様にして非水二次電池を作製した。
Example 11
A non-aqueous secondary battery was produced in the same manner as in Example 9 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
実施例12
 非水電解液の溶媒を、エチレンカーボネート(EC)とMBLとを体積比3:7で混合したものに変更した以外は、実施例8と同様にして非水二次電池を作製した。
Example 12
A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the solvent of the nonaqueous electrolyte was changed to a mixture of ethylene carbonate (EC) and MBL at a volume ratio of 3: 7.
実施例13
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例8と同様にして非水二次電池を作製した。
Example 13
A non-aqueous secondary battery was produced in the same manner as in Example 8, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
実施例14
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例9と同様にして非水二次電池を作製した。
Example 14
A non-aqueous secondary battery was produced in the same manner as in Example 9 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
実施例15
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例13と同様にして非水二次電池を作製した。
Example 15
A non-aqueous secondary battery was produced in the same manner as in Example 13 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
実施例16
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例14と同様にして非水二次電池を作製した。
Example 16
A non-aqueous secondary battery was produced in the same manner as in Example 14 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
実施例17
 正極集電体であるアルミニウム箔の両面に、正極合剤層を形成する前に、片面あたりの厚みが1μmのコート層を形成した以外は、実施例9と同様にして非水二次電池を作製した。なお、正極集電体上の前記コート層は、アセチレンブラック:59質量部を含む水分散体と、バインダとしてアクリル樹脂:40質量部と、分散剤としてPVP:1質量部とを混合した塗液を用いて形成した。
Example 17
A nonaqueous secondary battery was prepared in the same manner as in Example 9 except that a coating layer having a thickness of 1 μm per side was formed on both sides of an aluminum foil as a positive electrode current collector before forming the positive electrode mixture layer. Produced. In addition, the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin: 40 mass parts as a binder, and PVP: 1 mass part as a dispersing agent. Formed using.
実施例18
 正極集電体の表面のコート層の厚みを10μmに変更した以外は、実施例17と同様にして非水二次電池を作製した。
Example 18
A nonaqueous secondary battery was produced in the same manner as in Example 17 except that the thickness of the coat layer on the surface of the positive electrode current collector was changed to 10 μm.
実施例19
 非水電解液の溶媒を、ECとジエチルカーボネート(DEC)とを体積比3:7で混合したものに変更し、更に非水電解液にVCを2.5質量%となる量で添加した以外は、実施例8と同様にして非水二次電池を作製した。
Example 19
The solvent of the non-aqueous electrolyte was changed to a mixture of EC and diethyl carbonate (DEC) at a volume ratio of 3: 7, and VC was added to the non-aqueous electrolyte in an amount of 2.5% by mass. Produced a non-aqueous secondary battery in the same manner as in Example 8.
比較例2
 正極作製時に、正極合剤層のバインダをPVDFに変更した以外は、実施例8と同様にして非水二次電池を作製した。
Comparative Example 2
A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the binder of the positive electrode mixture layer was changed to PVDF at the time of producing the positive electrode.
 実施例8~19および比較例2の各非水二次電池について、前記条件で定格容量を測定した後、下記の各評価を行った。 For each of the nonaqueous secondary batteries of Examples 8 to 19 and Comparative Example 2, the following evaluations were made after measuring the rated capacity under the above conditions.
<高出力特性評価(最大放電パルス電流測定)>
 実施例8~19および比較例2の各電池について、室温(25℃)で、1Cの電流値で3.85Vになるまで定電流充電を行い、引き続いて電流値が0.1Cに低下するまで3.85Vで定電圧充電を行った後、5Cの電流値で10秒間放電し、放電開始から10秒間で低下した電圧:ΔVを測定した。
<High output characteristics evaluation (maximum discharge pulse current measurement)>
For each of the batteries of Examples 8 to 19 and Comparative Example 2, constant current charging was performed at room temperature (25 ° C.) until the current value of 1C reached 3.85 V, and then the current value decreased to 0.1 C. After performing a constant voltage charge at 3.85 V, the battery was discharged at a current value of 5 C for 10 seconds, and a voltage ΔV reduced in 10 seconds from the start of discharge was measured.
 更に、各電池に前記条件での定電流-定電圧充電と、10C、20C、30C、40C、50Cの各電流値での10秒間の定電流放電とを順次行って、各電流値でのΔVを同様に測定し、各電流値でのΔVをプロットした。プロットした点はほぼ直線上に並んでおり、その直線とΔV=1.3Vの線が交差する点の電流値を最大放電パルス電流とした。また、最大放電パルス電流が50Cを超える場合は、プロットの直線を延長して電流値を算出した。 Further, each battery is sequentially subjected to constant current-constant voltage charging under the above conditions and constant current discharge for 10 seconds at each current value of 10C, 20C, 30C, 40C, and 50C to obtain ΔV at each current value. Was measured in the same manner, and ΔV at each current value was plotted. The plotted points are arranged almost on a straight line, and the current value at the point where the straight line intersects the line of ΔV = 1.3 V is defined as the maximum discharge pulse current. When the maximum discharge pulse current exceeded 50 C, the current value was calculated by extending the straight line of the plot.
<高温貯蔵特性評価>
 実施例8~19および比較例2の各電池について、室温(25℃)で、1Cの電流値で3.85Vになるまで定電流充電を行い、引き続いて電流値が0.1Cに低下するまで3.85Vで定電圧充電を行った後、電池電圧が2.0Vになるまで1Cの電流値で定電流放電を行い、放電容量(初期容量)を測定した。
<High temperature storage characteristics evaluation>
For each of the batteries of Examples 8 to 19 and Comparative Example 2, constant current charging was performed at room temperature (25 ° C.) until the current value of 1C reached 3.85 V, and then the current value decreased to 0.1 C. After performing constant voltage charging at 3.85 V, constant current discharging was performed at a current value of 1 C until the battery voltage reached 2.0 V, and the discharge capacity (initial capacity) was measured.
 次に、初期容量測定時と同じ条件で定電流-定電圧充電を行った各電池を、100℃の恒温槽内で48時間貯蔵した。その後、各電池を恒温槽から取り出して、室温に戻した後に厚みを測定し、貯蔵前の厚みとの比較から、高温貯蔵後の厚みの増加率(%)を求めた。 Next, each battery subjected to constant current-constant voltage charging under the same conditions as the initial capacity measurement was stored in a constant temperature bath at 100 ° C. for 48 hours. Then, each battery was taken out from the thermostat, and after returning to room temperature, thickness was measured and the increase rate (%) of the thickness after high temperature storage was calculated | required from the comparison with the thickness before storage.
 また、厚み測定を行った各電池について、電池電圧が2.0Vになるまで1Cで定電流放電を行った後に、初期容量測定時と同じ条件で、定電流-定電圧充電および定電流放電を行って、放電容量(回復容量)を測定した。そして、得られた回復容量を初期容量で除した値を百分率で表して容量回復率とした。 For each battery whose thickness was measured, after performing constant current discharge at 1 C until the battery voltage reached 2.0 V, constant current-constant voltage charging and constant current discharging were performed under the same conditions as at the initial capacity measurement. The discharge capacity (recovery capacity) was measured. A value obtained by dividing the obtained recovery capacity by the initial capacity was expressed as a percentage to obtain a capacity recovery rate.
 実施例8~19および比較例2の非水二次電池に係る非水電解液の構成を表2に示し、前記の評価結果を表3に示す。 Table 2 shows the configurations of the nonaqueous electrolyte solutions according to the nonaqueous secondary batteries of Examples 8 to 19 and Comparative Example 2, and Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表3に示す通り、正極活物質にオリビン型化合物を使用し、特定のバインダを含有する正極を使用した実施例8~19の非水二次電池は、正極のバインダにPVDFを使用した比較例2の電池に比べて、最大放電パルス電流値が大きく、出力特性が優れていた。 As shown in Table 3, the nonaqueous secondary batteries of Examples 8 to 19 using an olivine type compound as a positive electrode active material and using a positive electrode containing a specific binder were comparative examples using PVDF as the positive electrode binder. Compared with the battery No. 2, the maximum discharge pulse current value was large and the output characteristics were excellent.
 また、非水電解液溶媒に特定のラクトン類を使用した実施例8~18の非水二次電池は、非水二次電池における一般的な溶媒構成(鎖状カーボネートと環状カーボネートの組み合わせ)とした実施例19の非水二次電池よりも高温貯蔵後の容量回復率が高く、かつ厚みの増加率が小さく、高温貯蔵特性に優れた電池となった。 In addition, the non-aqueous secondary batteries of Examples 8 to 18 using specific lactones as the non-aqueous electrolyte solvent have a general solvent configuration (combination of chain carbonate and cyclic carbonate) in the non-aqueous secondary battery. Thus, the capacity recovery rate after high-temperature storage was higher than that of the non-aqueous secondary battery of Example 19 and the rate of increase in thickness was small, and the battery was excellent in high-temperature storage characteristics.
実施例20
 セパレータとして、ポリエチレンのナノファイバー(平均繊維径500nm)で構成された不織布(平均細孔径:0.8μm、厚み:25μm、空孔率:55%)を使用した以外は、実施例8と同様にして3種の非水二次電池を作製した。
Example 20
As in Example 8, except that a nonwoven fabric (average pore diameter: 0.8 μm, thickness: 25 μm, porosity: 55%) composed of polyethylene nanofibers (average fiber diameter 500 nm) was used as the separator. Three types of non-aqueous secondary batteries were prepared.
実施例21
 正極の集電体を、実施例3で用いた複数の貫通孔を有するアルミニウム箔に変更した以外は、実施例20と同様にして非水二次電池を作製した。
Example 21
A nonaqueous secondary battery was produced in the same manner as in Example 20, except that the positive electrode current collector was changed to the aluminum foil having a plurality of through holes used in Example 3.
実施例22
 正極集電体であるアルミニウム箔の両面に、正極合剤層を形成する前に、片面あたりの厚みが0.3μmのコート層を形成した以外は、実施例20と同様にして非水二次電池を作製した。なお、正極集電体上の前記コート層は、アセチレンブラック:59質量部を含む水分散体と、アクリル樹脂バインダ:40質量部と、分散剤としてポリビニルピロリドン:1質量部とを混合した塗液を用いて形成した。
Example 22
Non-aqueous secondary as in Example 20, except that a coating layer having a thickness of 0.3 μm per side was formed on both sides of the aluminum foil as the positive electrode current collector before forming the positive electrode mixture layer. A battery was produced. In addition, the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin binder: 40 mass parts, and polyvinylpyrrolidone: 1 mass part as a dispersing agent. Formed using.
実施例23
 非水電解液を、エチレンカーボネートとジエチルカーボネートとα-メチル-γ-ブチロラクトンとを体積比30:20:50で混合した溶媒に、LiPFを濃度1mol/Lで溶解させて調製したものに変更した以外は、実施例20と同様にして非水二次電池を作製した。
Example 23
The non-aqueous electrolyte was changed to one prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, diethyl carbonate and α-methyl-γ-butyrolactone were mixed at a volume ratio of 30:20:50. A nonaqueous secondary battery was fabricated in the same manner as in Example 20 except that.
実施例24
 実施例20と同様にして、不織布の平均細孔径が異なる3種類の非水二次電池を作製した。用いた不織布の平均細孔径は、0.008μm、0.8μmおよび2μmの3種類である。
Example 24
In the same manner as in Example 20, three types of non-aqueous secondary batteries having different average pore diameters of the nonwoven fabric were produced. The average pore diameter of the used nonwoven fabric is three types of 0.008 μm, 0.8 μm and 2 μm.
 実施例20~24および実施例8の各非水二次電池について、前記条件で定格容量を測定した後、下記の各評価を行った。 For each of the nonaqueous secondary batteries of Examples 20 to 24 and Example 8, the rated capacity was measured under the above conditions, and the following evaluations were made.
<充放電特性評価>
 前記の定格容量測定時と同じ条件で、各々の電池をSOCが100%になるまで充電した後、所定の電流値(2C、5C、20Cおよび50C)で10秒間放電したときの電圧低下を測定した。
<Charge / discharge characteristics evaluation>
Under the same conditions as the above-mentioned rated capacity measurement, each battery was charged until the SOC reached 100%, and then the voltage drop was measured when discharged at a predetermined current value (2C, 5C, 20C and 50C) for 10 seconds. did.
 各電流値での電圧の低下分:ΔVと、そのときの電流値:Iとをそれぞれ縦軸および横軸にプロットすることにより、各電池の放電における抵抗値(DCR)を求めた。 The voltage drop at each current value: ΔV and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) of each battery during discharge.
 また、各電池について、前記の定格容量測定時と同じ条件で充電深度が0%になるまで放電し、所定の電流値(2C、5C、20Cおよび40C)で10秒間充電したときの電圧上昇を測定した。 Moreover, about each battery, it discharged until the charge depth became 0% on the same conditions as the time of the said rated capacity measurement, and the voltage rise when charging for 10 seconds with a predetermined current value (2C, 5C, 20C and 40C) It was measured.
 各電流値での電圧の上昇分:ΔVと、そのときの電流値:Iとをそれぞれ縦軸および横軸にプロットすることにより、各電池の充電における抵抗値(DCR)を求めた。 The voltage rise at each current value: ΔV and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) for charging each battery.
<高温貯蔵特性評価>
 実施例20~24および実施例8の各電池について、前記の定格容量測定時と同じ条件で、各々の電池をSOC:100%になるまで充電した。次いで、充電後の各電池を100℃の恒温槽中で48時間貯蔵し、室温で2時間放冷した後、0.1mA/cmで定電流放電(放電終止電圧:1.5V)を行って、放電容量(維持容量)を測定した。
<High temperature storage characteristics evaluation>
For each of the batteries of Examples 20 to 24 and Example 8, each battery was charged until the SOC reached 100% under the same conditions as those for the rated capacity measurement. Next, each battery after charging was stored in a constant temperature bath at 100 ° C. for 48 hours, allowed to cool at room temperature for 2 hours, and then subjected to constant current discharge (discharge end voltage: 1.5 V) at 0.1 mA / cm 2. The discharge capacity (maintenance capacity) was measured.
 更に、各電池について、前記条件で定電流-定電圧充電(充電終止電流:0.01mA/cm)を行った後に、0.2mA/cmで定電流放電(放電終止電圧:1.5V)を行い、放電容量(回復容量)を測定した。 Furthermore, for each battery, after performing constant current-constant voltage charging (charge end current: 0.01 mA / cm 2 ) under the above conditions, constant current discharge (discharge end voltage: 1.5 V) at 0.2 mA / cm 2 was performed. ) And the discharge capacity (recovery capacity) was measured.
 前記維持容量(mAh)と前記定格容量との比を容量維持率とし、前記回復容量(mAh)と前記定格容量との比を容量回復率として求め、各電池の高温貯蔵特性を評価した。 The ratio between the maintenance capacity (mAh) and the rated capacity was defined as a capacity maintenance ratio, and the ratio between the recovery capacity (mAh) and the rated capacity was determined as a capacity recovery ratio, and the high-temperature storage characteristics of each battery were evaluated.
<充放電サイクル特性評価>
 実施例20~24および実施例8の各電池について、50℃の環境下で、1mA/cmの定電流および3.85Vの定電圧による定電流-定電圧充電(充電終止電流:0.01mA/cm)と、1mA/cmの定電流放電(放電終止電圧:1.5V)とを1サイクルとする充放電サイクルを1000サイクル繰り返し、1サイクル目の放電容量に対する1000サイクル目の放電容量の割合を容量維持率とした。
<Charge / discharge cycle characteristics evaluation>
For each of the batteries of Examples 20 to 24 and Example 8, constant current-constant voltage charging with a constant current of 1 mA / cm 2 and a constant voltage of 3.85 V under an environment of 50 ° C. (end-of-charge current: 0.01 mA) / Cm 2 ) and a 1 mA / cm 2 constant current discharge (end-of-discharge voltage: 1.5 V) is repeated 1000 cycles, and the discharge capacity at the 1000th cycle relative to the discharge capacity at the 1st cycle. The ratio was defined as the capacity maintenance rate.
 実施例20~23の電池における前記の評価結果を表4および表5に示し、実施例24の電池における前記の評価結果を表6および表7に示す。 The evaluation results for the batteries of Examples 20 to 23 are shown in Tables 4 and 5, and the evaluation results for the battery of Example 24 are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表4および表5に示す通り、セパレータとして、適切な平均細孔径を有する不織布を用いた実施例20~23の非水二次電池は、汎用のポリエチレン微多孔フィルムを用いた実施例8の電池よりも、電池の抵抗を低くすることができ、大電流での放電および大電流での充電のいずれにも対応可能な優れた出力特性を備えている電池を構成することができた。また、実施例20~23の電池では、充電時のリチウムデンドライト析出による短絡も生じず、高温貯蔵特性および充放電サイクル特性にも優れる結果が得られた。 As shown in Tables 4 and 5, the non-aqueous secondary batteries of Examples 20 to 23 using nonwoven fabrics having appropriate average pore diameters as separators are the batteries of Example 8 using general-purpose polyethylene microporous films. As a result, the battery resistance can be lowered, and a battery having excellent output characteristics that can cope with both discharging with a large current and charging with a large current can be constructed. In addition, in the batteries of Examples 20 to 23, a short circuit due to lithium dendrite precipitation during charging did not occur, and excellent results in high temperature storage characteristics and charge / discharge cycle characteristics were obtained.
 なお、表6および表7に示す実施例24の結果より明らかなように、本発明の非水二次電池のセパレータとして不織布を用いる場合には、平均細孔径を大きくしすぎると、リチウムデンドライト析出による短絡が発生しやすくなり、平均細孔径が小さくしすぎると、出力特性が低下しやすくなるため、不織布の平均細孔径は0.1~1μmとすることが望ましい。 As is clear from the results of Example 24 shown in Tables 6 and 7, when a nonwoven fabric is used as the separator of the nonaqueous secondary battery of the present invention, if the average pore diameter is too large, lithium dendrite precipitation is caused. Since the output characteristics are liable to deteriorate if the average pore diameter is too small, the nonwoven fabric preferably has an average pore diameter of 0.1 to 1 μm.
実施例25
<バインダの合成>
 ブタジエン:6質量部、スチレン、11.5質量部、メタクリル酸メチル:3.5質量部、アクリル酸:0.5質量部およびイタコン酸:2.5質量部を、ドデシルベンゼンスルホン酸ナトリウム:0.1質量部、過硫酸カリウム:1質量部、重亜硫酸ナトリウム:0.5質量部、α-メチルスチレンダイマー:0.2質量部、ドデシルメルカプタン:0.1質量部および水:200質量部と共にオートクレーブに投入し、70℃で2時間反応させた。更に、ブタジエン:31.5質量部、スチレン、31.5質量部、メタクリル酸メチル:8質量部、アクリロニトリル:4質量部、アクリル酸:0.5質量部およびイタコン酸:0.5質量部を、6時間かけてゆっくりと添加して反応させた。前記成分の添加開始から3時間後にα-メチルスチレンダイマー:0.5質量部とドデシルメルカプタン:0.1質量部とを添加し、全成分の添加終了後に、反応温度を80℃に上昇させて、更に2時間反応させた。次いで反応終了後の組成物のpHを7.5に調整し、残留するモノマー成分を水蒸気蒸留により処理することにより、前記一般式(1)で表されるユニットを分子内に有する重合体(A)を含有する、正極合剤層用のバインダB2を合成した。
Example 25
<Binder composition>
Butadiene: 6 parts by mass, styrene, 11.5 parts by mass, methyl methacrylate: 3.5 parts by mass, acrylic acid: 0.5 parts by mass and itaconic acid: 2.5 parts by mass, sodium dodecylbenzenesulfonate: 0 Together with 1 part by weight, potassium persulfate: 1 part by weight, sodium bisulfite: 0.5 part by weight, α-methylstyrene dimer: 0.2 part by weight, dodecyl mercaptan: 0.1 part by weight and water: 200 parts by weight The mixture was put into an autoclave and reacted at 70 ° C. for 2 hours. Furthermore, butadiene: 31.5 parts by mass, styrene, 31.5 parts by mass, methyl methacrylate: 8 parts by mass, acrylonitrile: 4 parts by mass, acrylic acid: 0.5 parts by mass and itaconic acid: 0.5 parts by mass , Slowly added over 6 hours to react. Three hours after the start of the addition of the above components, 0.5 part by mass of α-methylstyrene dimer and 0.1 part by mass of dodecyl mercaptan were added, and after the addition of all the components was completed, the reaction temperature was raised to 80 ° C. The mixture was further reacted for 2 hours. Next, the pH of the composition after completion of the reaction is adjusted to 7.5, and the remaining monomer component is treated by steam distillation, whereby a polymer having a unit represented by the general formula (1) in the molecule (A ) Containing the binder B2 for the positive electrode mixture layer was synthesized.
<正極の作製>
 前記バインダB2を正極合剤含有組成物の調製に用い、正極合剤層のバインダをB2に変更した以外は実施例8と同様にして帯状の正極を作製した。
<Preparation of positive electrode>
A belt-like positive electrode was produced in the same manner as in Example 8 except that the binder B2 was used for the preparation of the positive electrode mixture-containing composition and the binder of the positive electrode mixture layer was changed to B2.
<電池の組み立て>
 前記正極を用いた以外は、実施例8と同様にして非水二次電池を作製した。
<Battery assembly>
A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the positive electrode was used.
実施例26
 正極の集電体を、実施例3で用いた複数の貫通孔を有するアルミニウム箔に変更した以外は、実施例25と同様にして非水二次電池を作製した。
Example 26
A nonaqueous secondary battery was produced in the same manner as in Example 25 except that the positive electrode current collector was changed to the aluminum foil having a plurality of through holes used in Example 3.
実施例27
 正極集電体であるアルミニウム箔の両面に、正極合剤層を形成する前に、片面あたりの厚みが0.3μmのコート層を形成した以外は、実施例25と同様にして非水二次電池を作製した。なお、正極集電体上の前記コート層は、アセチレンブラック:59質量部を含む水分散体と、アクリル樹脂バインダ:40質量部と、分散剤としてポリビニルピロリドン:1質量部とを混合した塗液を用いて形成した。
Example 27
Nonaqueous secondary as in Example 25, except that a coating layer having a thickness of 0.3 μm per side was formed on both sides of the aluminum foil as the positive electrode current collector before forming the positive electrode mixture layer. A battery was produced. In addition, the said coating layer on a positive electrode electrical power collector is a coating liquid which mixed the water dispersion containing acetylene black: 59 mass parts, acrylic resin binder: 40 mass parts, and polyvinylpyrrolidone: 1 mass part as a dispersing agent. Formed using.
実施例28
 正極の導電助剤を、アセチレンブラック:2.5質量部と、黒鉛:1.5質量部と、カーボンナノチューブ(平均長さ2μm、平均径10nm):1質量部とに変更した以外は、実施例25と同様にして非水二次電池を作製した。
Example 28
Implementation was conducted except that the conductive assistant for the positive electrode was changed to acetylene black: 2.5 parts by mass, graphite: 1.5 parts by mass, and carbon nanotubes (average length 2 μm, average diameter 10 nm): 1 part by mass. A nonaqueous secondary battery was produced in the same manner as in Example 25.
実施例29
 非水電解液を、エチレンカーボネートとジエチルカーボネートとα-メチル-γ-ブチロラクトンとを体積比30:20:50で混合した溶媒に、LiPFを濃度1mol/Lで溶解させて調製したものに変更した以外は、実施例25と同様にして非水二次電池を作製した。
Example 29
The non-aqueous electrolyte was changed to one prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent in which ethylene carbonate, diethyl carbonate and α-methyl-γ-butyrolactone were mixed at a volume ratio of 30:20:50. A nonaqueous secondary battery was fabricated in the same manner as in Example 25 except that.
<正極合剤含有組成物の保存性評価>
 実施例1、実施例25および比較例1の非水二次電池に係る正極の正極合剤層の形成に使用した正極合剤含有組成物について、調製から12時間後の増粘の有無を観察した。観察の結果、フッ化ビニリデンのユニットを分子内に含有しないバインダを用いた実施例25に係る正極合剤含有組成物は、調製から12時間を経ても増粘しておらず流動性が保たれており、良好な保存性を有していた。
<Evaluation of storage stability of positive electrode mixture-containing composition>
For the positive electrode mixture-containing composition used for forming the positive electrode mixture layer of the positive electrode according to the nonaqueous secondary battery of Example 1, Example 25 and Comparative Example 1, the presence or absence of thickening after 12 hours from the preparation was observed. did. As a result of observation, the positive electrode mixture-containing composition according to Example 25 using a binder that does not contain a vinylidene fluoride unit in the molecule does not increase in viscosity even after 12 hours from preparation, and fluidity is maintained. And had good storage stability.
 一方、PVDFの共存下で合成したバインダを用いた実施例1に係る正極合剤含有組成物、およびPVDFをバインダとして用いた比較例1に係る正極合剤含有組成物は、調製から12時間経過後には、増粘して流動性を失っていた。 On the other hand, the positive electrode mixture-containing composition according to Example 1 using the binder synthesized in the coexistence of PVDF and the positive electrode mixture-containing composition according to Comparative Example 1 using PVDF as the binder were 12 hours after preparation. Later, it thickened and lost its fluidity.
 以上の結果から、本発明の非水二次電池に係る正極の正極合剤層の形成には、生産性の点からは、フッ化ビニリデンなどのフッ素含有エチレン性ユニットを含まないか、その割合の少ないバインダを用いることが望ましい。 From the above results, the formation of the positive electrode mixture layer of the positive electrode according to the nonaqueous secondary battery of the present invention does not contain a fluorine-containing ethylenic unit such as vinylidene fluoride or the proportion thereof from the viewpoint of productivity. It is desirable to use a binder with a small amount.
 実施例25~29の各非水二次電池について、前記条件で定格容量を測定した後、下記の評価を行った。 For each of the nonaqueous secondary batteries of Examples 25 to 29, the rated capacity was measured under the above conditions, and then the following evaluation was performed.
<充放電特性評価>
 前記の定格容量測定時と同じ条件で、各々の電池をSOCが100%になるまで充電した後、所定の電流値(2C、5C、20Cおよび50C)で10秒間放電したときの電圧低下を測定した。
<Charge / discharge characteristics evaluation>
Under the same conditions as the above-mentioned rated capacity measurement, each battery was charged until the SOC reached 100%, and then the voltage drop was measured when discharged at a predetermined current value (2C, 5C, 20C and 50C) for 10 seconds. did.
 各電流値での電圧の低下分:ΔVと、そのときの電流値:Iとをそれぞれ縦軸および横軸にプロットすることにより、各電池の放電における抵抗値(DCR)を求めた。 The voltage drop at each current value: ΔV and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) of each battery during discharge.
 また、各電池について、前記の定格容量測定時と同じ条件で充電深度が0%になるまで放電し、所定の電流値(2C、5C、20Cおよび40C)で10秒間充電したときの電圧上昇を測定した。 Moreover, about each battery, it discharged until the charge depth became 0% on the same conditions as the time of the said rated capacity measurement, and the voltage rise when charging for 10 seconds with a predetermined current value (2C, 5C, 20C and 40C) It was measured.
 各電流値での電圧の上昇分:ΔVと、そのときの電流値:Iとをそれぞれ縦軸および横軸にプロットすることにより、各電池の充電における抵抗値(DCR)を求めた。 The voltage rise at each current value: ΔV and the current value at that time: I were plotted on the vertical and horizontal axes, respectively, to determine the resistance value (DCR) for charging each battery.
 前記の各評価結果を、前述した実施例8の電池の評価結果と併せて表8に示す。 The evaluation results are shown in Table 8 together with the evaluation results of the battery of Example 8 described above.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表8に示す通り、オリビン型化合物であるリン酸鉄リチウムを正極活物質とし、正極合剤層に、一般式(1)で表されるユニットを分子内に有する重合体(A)を含有し、かつ、フッ素含有エチレン性ユニットを含まないバインダB2を用いた実施例25~29の非水二次電池は、バインダB1を用いた実施例8の電池に比べて、大電流での充電時、放電時のいずれにおいても、DCRの値を更に低減することができ、より一層優れた出力特性を示していた。 As shown in Table 8, the lithium iron phosphate which is an olivine type compound is used as a positive electrode active material, and the positive electrode mixture layer contains a polymer (A) having a unit represented by the general formula (1) in the molecule. In addition, the non-aqueous secondary batteries of Examples 25 to 29 using the binder B2 that does not contain the fluorine-containing ethylenic unit, when charged with a large current compared to the battery of Example 8 using the binder B1, In any of the discharges, the DCR value could be further reduced, and even more excellent output characteristics were exhibited.
実施例30
<非水電解液の調製>
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合した溶媒に、LiPFを濃度1.2mol/Lで溶解させ、更に2.5質量%の量となるビニレンカーボネート(VC)と、1.0質量%の量となるリン酸(トリス)トリメチルシリルとを添加して非水電解液を調製した。 
Example 30
<Preparation of non-aqueous electrolyte>
LiPF 6 is dissolved at a concentration of 1.2 mol / L in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7, and further vinylene carbonate (2.5% by mass) VC) and 1.0% by mass of phosphoric acid (tris) trimethylsilyl were added to prepare a non-aqueous electrolyte.
<電池の組み立て>
 前記非水電解液を用いた以外は、実施例8と同様にして非水二次電池を作製した。
<Battery assembly>
A nonaqueous secondary battery was produced in the same manner as in Example 8 except that the nonaqueous electrolyte was used.
実施例31
 非水電解液の溶媒を、プロピレンカーボネート(PC)とα-メチル-γ-ブチロラクトン(MBL)とを体積比3:7で混合したものに変更した以外は、実施例30と同様にして非水二次電池を作製した。
Example 31
The non-aqueous electrolyte solution was changed to a mixture of propylene carbonate (PC) and α-methyl-γ-butyrolactone (MBL) at a volume ratio of 3: 7 in the same manner as in Example 30. A secondary battery was produced.
実施例32
 非水電解液の溶媒を、PCとMBLとエチルメチルカーボネート(EMC)とを体積比3:5:2で混合したものに変更した以外は、実施例30と同様にして非水二次電池を作製した。
Example 32
A non-aqueous secondary battery was prepared in the same manner as in Example 30 except that the solvent of the non-aqueous electrolyte was changed to a mixture of PC, MBL, and ethyl methyl carbonate (EMC) at a volume ratio of 3: 5: 2. Produced.
実施例33
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例30と同様にして非水二次電池を作製した。
Example 33
A nonaqueous secondary battery was fabricated in the same manner as in Example 30, except that LiBF 4 was used in an amount that would give a concentration of 1.0 mol / L instead of LiPF 6 as the lithium salt of the nonaqueous electrolyte.
実施例34
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例31と同様にして非水二次電池を作製した。
Example 34
A non-aqueous secondary battery was produced in the same manner as in Example 31 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
実施例35
 非水電解液のリチウム塩として、LiPFに代えてLiBFを濃度が1.0mol/Lとなる量で使用した以外は、実施例32と同様にして非水二次電池を作製した。
Example 35
A non-aqueous secondary battery was produced in the same manner as in Example 32 except that LiBF 4 was used in an amount of 1.0 mol / L instead of LiPF 6 as the lithium salt of the non-aqueous electrolyte.
実施例36
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例30と同様にして非水二次電池を作製した。
Example 36
A non-aqueous secondary battery was produced in the same manner as in Example 30 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
実施例37
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例31と同様にして非水二次電池を作製した。
Example 37
A non-aqueous secondary battery was produced in the same manner as in Example 31 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the non-aqueous electrolyte.
実施例38
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例32と同様にして非水二次電池を作製した。
Example 38
A nonaqueous secondary battery was fabricated in the same manner as in Example 32, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolyte.
実施例39
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例33と同様にして非水二次電池を作製した。
Example 39
A nonaqueous secondary battery was produced in the same manner as in Example 33 except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolyte.
実施例40
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例34と同様にして非水二次電池を作製した。
Example 40
A nonaqueous secondary battery was produced in the same manner as in Example 34, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolytic solution.
実施例41
 非水電解液のリチウム塩として、LiBOBを0.03mol/Lの濃度となる量で更に添加した以外は、実施例35と同様にして非水二次電池を作製した。
Example 41
A nonaqueous secondary battery was produced in the same manner as in Example 35, except that LiBOB was further added in an amount of 0.03 mol / L as the lithium salt of the nonaqueous electrolyte.
実施例42
 非水電解液中のリン酸(トリス)トリメチルシリルの添加量を0.1質量%に変更した以外は、実施例30と同様にして非水二次電池を作製した。
Example 42
A nonaqueous secondary battery was produced in the same manner as in Example 30, except that the amount of phosphoric acid (tris) trimethylsilyl added in the nonaqueous electrolytic solution was changed to 0.1% by mass.
比較例3
 正極活物質であるLiNi0.5Co0.2Mn0.3:93.7質量部と、導電助剤であるアセチレンブラック:4.0質量部と、バインダであるPVDFを2.0質量部と、分散剤であるポリビニルピロリドン(PVP):0.3質量部と、NMPとを混合して正極合剤含有組成物を調製した以外は、実施例8と同様にして正極を作製した。
Comparative Example 3
LiNi 0.5 Co 0.2 Mn 0.3 O 2 as positive electrode active material: 93.7 parts by mass, acetylene black as conductive aid: 4.0 parts by mass, and PVDF as a binder at 2.0 A positive electrode was prepared in the same manner as in Example 8 except that a positive electrode mixture-containing composition was prepared by mixing 0.3 part by mass of polyvinyl pyrrolidone (PVP) as a dispersant with 0.3 part by mass and NMP. .
 この正極を用いた以外は、実施例30と同様にして非水二次電池を作製した。 A nonaqueous secondary battery was produced in the same manner as in Example 30 except that this positive electrode was used.
 実施例19、実施例30~42および比較例3の各非水二次電池について、前記条件で定格容量を測定した後、下記の評価を行った。 For the nonaqueous secondary batteries of Example 19, Examples 30 to 42, and Comparative Example 3, the following evaluations were performed after measuring the rated capacity under the above conditions.
 なお、前記各実施例および比較例3の非水二次電池の組み立てに使用した正極について、前記の方法で求めた正極合剤層の水分量は、各実施例:1480ppm、比較例3:370ppmであり、それぞれの非水二次電池全体の含有水分量は、各実施例:1960ppm、比較例3:850ppmであった。 In addition, about the positive electrode used for the assembly of the non-aqueous secondary battery of each said Example and the comparative example 3, the moisture content of the positive mix layer calculated | required by the said method is each Example: 1480 ppm and comparative example 3: 370 ppm. The water content of each non-aqueous secondary battery as a whole was 1960 ppm for each example and 850 ppm for Comparative Example 3.
<高温貯蔵特性評価>
 定格容量測定後の各電池について、室温(25℃)で、1Cの電流値で3.85Vになるまで定電流充電を行い、引き続いて電流値が0.1Cに低下するまで3.85Vで定電圧充電を行った後、電池電圧が2.0Vになるまで1Cの電流値で定電流放電を行い、放電容量(初期容量)を測定した。
<High temperature storage characteristics evaluation>
Each battery after the rated capacity measurement is charged at a constant current at room temperature (25 ° C.) until the current value reaches 1.85 V at a current value of 1 C, and then constant at 3.85 V until the current value decreases to 0.1 C. After voltage charging, constant current discharge was performed at a current value of 1 C until the battery voltage reached 2.0 V, and the discharge capacity (initial capacity) was measured.
 次に、初期容量測定時と同じ条件で定電流-定電圧充電を行った各電池を、100℃の恒温槽内で48時間貯蔵した。その後、各電池を恒温槽から取り出して、室温に戻した後、電池電圧が2.0Vになるまで1Cで定電流放電を行った。さらに、初期容量測定時と同じ条件で、定電流-定電圧充電および定電流放電を行って、放電容量(回復容量)を測定した。そして、得られた回復容量を初期容量で除した値を百分率で表して容量回復率とした。 Next, each battery subjected to constant current-constant voltage charging under the same conditions as the initial capacity measurement was stored in a constant temperature bath at 100 ° C. for 48 hours. Then, each battery was taken out from the thermostat and returned to room temperature, and then a constant current discharge was performed at 1 C until the battery voltage reached 2.0V. Further, constant current-constant voltage charging and constant current discharging were performed under the same conditions as those for initial capacity measurement, and the discharge capacity (recovery capacity) was measured. A value obtained by dividing the obtained recovery capacity by the initial capacity was expressed as a percentage to obtain a capacity recovery rate.
<充放電特性評価>
 定格容量測定後の実施例30、実施例33~36、実施例40~41および実施例19の各非水二次電池について、初期容量測定時と同じ条件で、定電流-定電圧充電を行った後、電池電圧が2.0Vになるまで0.1Cの電流値で定電流放電を行い、放電容量(0.1C放電容量)を測定した。次いで、前記と同じ条件で、定電流-定電圧充電を行った後、電池電圧が2.0Vになるまで10Cの電流値で定電流放電を行い、放電容量(10C放電容量)を測定した。
<Charge / discharge characteristics evaluation>
The non-aqueous secondary batteries of Example 30, Example 33 to 36, Example 40 to 41 and Example 19 after the rated capacity measurement were subjected to constant current-constant voltage charging under the same conditions as at the initial capacity measurement. Thereafter, constant current discharge was performed at a current value of 0.1 C until the battery voltage reached 2.0 V, and the discharge capacity (0.1 C discharge capacity) was measured. Next, after performing constant current-constant voltage charging under the same conditions as described above, constant current discharge was performed at a current value of 10 C until the battery voltage reached 2.0 V, and the discharge capacity (10 C discharge capacity) was measured.
 更に、前記測定後の電池を、電池電圧が2.0Vになるまで0.1Cの電流値で定電流放電を行った後、0.1Cの電流値で電池電圧が3.85Vになるまで定電流充電を行い、充電容量(0.1C充電容量)を測定した。引き続いて、2.0Vになるまで0.1Cの電流値で定電流放電を行った後、10Cの電流値で電池電圧が3.85Vになるまで定電流充電を行い、充電容量(10C充電容量)を測定した。 Further, the battery after the measurement was subjected to constant current discharge at a current value of 0.1 C until the battery voltage reached 2.0 V, and then the battery voltage was adjusted to 3.85 V at a current value of 0.1 C. Current charging was performed, and the charging capacity (0.1 C charging capacity) was measured. Subsequently, constant current discharge was performed at a current value of 0.1 C until the voltage reached 2.0 V, and then constant current charging was performed until the battery voltage reached 3.85 V at a current value of 10 C. The charge capacity (10 C charge capacity) ) Was measured.
 そして、10C放電容量を0.1C放電容量で除した値(容量比)、および、10C充電容量を0.1C充電容量で除した値(容量比)を、それぞれ百分率で表して充放電特性を評価した。 Then, the value obtained by dividing the 10C discharge capacity by the 0.1C discharge capacity (capacity ratio) and the value obtained by dividing the 10C charge capacity by the 0.1C charge capacity (capacity ratio) are expressed as percentages, respectively. evaluated.
 実施例30~42、実施例19および比較例3の各非水二次電池の構成を表9および表10に示し、前記の各評価結果を表11および表12に示す。 Tables 9 and 10 show the configurations of the nonaqueous secondary batteries of Examples 30 to 42, Example 19 and Comparative Example 3, and Tables 11 and 12 show the evaluation results.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表9~表12に示す通り、正極合剤層における水分量が適正(500~3000ppm)である正極を用い、前記一般式(2)で表される基を分子内に有するリン酸化合物を含有する非水電解液を用いた実施例30~42の非水二次電池は、高温貯蔵後の室温での容量回復率が高く、優れた高温貯蔵特性を有していた。 As shown in Tables 9 to 12, using a positive electrode with an appropriate amount of water (500 to 3000 ppm) in the positive electrode mixture layer, containing a phosphate compound having a group represented by the general formula (2) in the molecule The non-aqueous secondary batteries of Examples 30 to 42 using the non-aqueous electrolyte had high capacity recovery at room temperature after high-temperature storage and had excellent high-temperature storage characteristics.
 また、前記リン酸化合物を含有する非水電解液を用いた実施例30、実施例33~36、実施例40~41の非水二次電池は、前記化合物を含有していない非水電解液を用いた実施例19の電池と同等の優れた充放電特性を有しており、前記化合物の添加により、充放電性能の低下を生じさせることなく高温貯蔵特性の改善が可能となることがわかった。 In addition, the non-aqueous secondary batteries of Example 30, Examples 33 to 36, and Examples 40 to 41 using the non-aqueous electrolyte containing the phosphoric acid compound are non-aqueous electrolytes that do not contain the compound. It has an excellent charge / discharge characteristic equivalent to that of the battery of Example 19 using the above, and it can be seen that the addition of the compound can improve the high-temperature storage characteristic without causing deterioration of the charge / discharge performance. It was.
 一方、前記リン酸化合物を含有する非水電解液を用いても、正極合剤層の含有水分量が少なすぎる比較例3の電池では、リン酸化合物の作用が充分に発揮されないため、高温貯蔵特性を充分に改善することができなかった。 On the other hand, even when the nonaqueous electrolyte containing the phosphoric acid compound is used, the battery of Comparative Example 3 in which the positive electrode mixture layer contains too little water does not sufficiently exhibit the action of the phosphoric acid compound. The characteristics could not be improved sufficiently.
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。 The present invention can be implemented in other forms as long as it does not depart from the spirit of the present invention. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. included.
 本発明の非水二次電池は、大電流での充放電特性に優れていることから、前記特性を生かして車載用や産業用の蓄電池などに好適に使用できるほか、従来から知られているリチウムイオン二次電池などの非水二次電池が適用されている用途と同じ用途にも使用することができる。 Since the non-aqueous secondary battery of the present invention is excellent in charge / discharge characteristics at a large current, it can be suitably used for in-vehicle or industrial storage batteries by taking advantage of the above characteristics, and is conventionally known. It can also be used for the same applications as non-aqueous secondary batteries such as lithium ion secondary batteries.
  1  非水二次電池
  2  ラミネートフィルム外装体
  3  正極外部端子
  4  負極外部端子
  5  正極
  6  負極
  7  セパレータ
 10  正極
 11  正極合剤層
 12  正極集電体
 13  タブ部
 20  負極
 21  負極合剤層
 22  負極集電体
 23  タブ部
100  非水二次電池
101  金属ラミネートフィルム外装体
102  積層電極体
103  正極外部端子
104  負極外部端子
DESCRIPTION OF SYMBOLS 1 Non-aqueous secondary battery 2 Laminate film exterior 3 Positive electrode external terminal 4 Negative electrode external terminal 5 Positive electrode 6 Negative electrode 7 Separator 10 Positive electrode 11 Positive electrode mixture layer 12 Positive electrode collector 13 Tab part 20 Negative electrode 21 Negative electrode mixture layer 22 Negative electrode collection Electrical body 23 Tab portion 100 Non-aqueous secondary battery 101 Metal laminate film exterior body 102 Laminated electrode body 103 Positive electrode external terminal 104 Negative electrode external terminal

Claims (16)

  1.  正極活物質、バインダおよび導電助剤を含有する正極合剤層を集電体の片面または両面に有する正極と、
     負極活物質およびバインダを含有する負極合剤層を集電体の片面または両面に有する負極と、
     セパレータ、並びにリチウム塩および有機溶媒を含有する非水電解液と
    を備えた非水二次電池であって、
     前記正極合剤層は、オリビン型化合物を前記正極活物質として含有し、かつ下記一般式(1)で表されるユニットを分子内に有する重合体(A)を前記バインダとして含有していることを特徴とする非水二次電池。
    Figure JPOXMLDOC01-appb-C000001
    〔前記一般式(1)中、RはHまたはメチル基を表し、Rは炭素数1~18のアルキル基を表す。〕
    A positive electrode having a positive electrode mixture layer containing a positive electrode active material, a binder and a conductive additive on one or both sides of the current collector;
    A negative electrode having a negative electrode mixture layer containing a negative electrode active material and a binder on one or both sides of a current collector;
    A non-aqueous secondary battery comprising a separator and a non-aqueous electrolyte containing a lithium salt and an organic solvent,
    The positive electrode mixture layer contains an olivine-type compound as the positive electrode active material and a polymer (A) having a unit represented by the following general formula (1) in the molecule as the binder. Non-aqueous secondary battery characterized by.
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 represents H or a methyl group, and R 2 represents an alkyl group having 1 to 18 carbon atoms. ]
  2.  前記オリビン型化合物は、表面が炭素材料で被覆されている請求項1に記載の非水二次電池 The non-aqueous secondary battery according to claim 1, wherein the olivine type compound has a surface coated with a carbon material.
  3.  前記正極合剤層中の前記重合体(A)の含有量が、1質量%以上7質量%以下である請求項1または2に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1 or 2, wherein the content of the polymer (A) in the positive electrode mixture layer is 1 mass% or more and 7 mass% or less.
  4.  前記オリビン型化合物のBET比表面積が、5m/g以上である請求項1~3のいずれかに記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 3, wherein the olivine type compound has a BET specific surface area of 5 m 2 / g or more.
  5.  前記オリビン型化合物のBET比表面積が、25m/g以下である請求項1~4のいずれかに記載の非水二次電池。 The non-aqueous secondary battery according to any one of claims 1 to 4, wherein the olivine type compound has a BET specific surface area of 25 m 2 / g or less.
  6.  前記集電体が、複数の貫通孔を有する金属箔であるか、または、炭素材料を含有するコート層を表面に有する金属箔である請求項1~5のいずれかに記載の非水二次電池。 The non-aqueous secondary according to any one of claims 1 to 5, wherein the current collector is a metal foil having a plurality of through-holes, or a metal foil having a coating layer containing a carbon material on a surface thereof. battery.
  7.  前記正極合剤層は、前記導電助剤として、カーボンナノチューブ、カーボンナノファイバーおよび黒鉛よりなる群から選択される少なくとも1種と、アセチレンブラックおよびカーボンブラックのうちの少なくとも一方とを含有している請求項1~6のいずれかに記載の非水二次電池。 The positive electrode mixture layer contains, as the conductive auxiliary agent, at least one selected from the group consisting of carbon nanotubes, carbon nanofibers, and graphite, and at least one of acetylene black and carbon black. Item 7. The nonaqueous secondary battery according to any one of Items 1 to 6.
  8.  前記負極合剤層は、易黒鉛化炭素および難黒鉛化炭素のうちの少なくとも一方を前記負極活物質として含有している請求項1~7のいずれかに記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 7, wherein the negative electrode mixture layer contains at least one of graphitizable carbon and non-graphitizable carbon as the negative electrode active material.
  9.  前記セパレータとして、平均細孔径が0.1~1μmの不織布を有する請求項1~8のいずれかに記載の非水二次電池。 The non-aqueous secondary battery according to any one of claims 1 to 8, wherein the separator has a nonwoven fabric having an average pore diameter of 0.1 to 1 µm.
  10.  前記不織布は、平均繊維径が1μm以下のナノファイバーにより形成されている請求項9に記載の非水二次電池。 The non-aqueous secondary battery according to claim 9, wherein the nonwoven fabric is formed of nanofibers having an average fiber diameter of 1 μm or less.
  11.  前記非水電解液は、下記一般式(2)で表される基を分子内に有するリン酸化合物を含有している請求項1~10のいずれかに記載の非水二次電池。
    Figure JPOXMLDOC01-appb-C000002
    〔前記一般式(2)中、XはSi、GeまたはSnであり、R、RおよびRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基または炭素数6~10のアリール基を表し、水素原子の一部または全部がフッ素で置換されていてもよい。〕
    The nonaqueous secondary battery according to any one of claims 1 to 10, wherein the nonaqueous electrolytic solution contains a phosphoric acid compound having a group represented by the following general formula (2) in the molecule.
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (2), X represents Si, Ge or Sn, and R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and part or all of the hydrogen atoms may be substituted with fluorine. ]
  12.  前記非水電解液中の、前記一般式(2)で表される基を分子内に有するリン酸化合物の含有量が、7質量%以下である請求項11に記載の非水二次電池。 The non-aqueous secondary battery according to claim 11, wherein the content of the phosphoric acid compound having a group represented by the general formula (2) in the molecule in the non-aqueous electrolyte is 7% by mass or less.
  13.  前記非水電解液は、α位に置換基を有するラクトン類を含有している請求項1~12のいずれかに記載の非水二次電池。 The non-aqueous secondary battery according to claim 1, wherein the non-aqueous electrolyte contains a lactone having a substituent at the α-position.
  14.  前記非水電解液は、LiBFまたはLiBOBを含有している請求項1~13のいずれかに記載の非水二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 13, wherein the nonaqueous electrolyte contains LiBF 4 or LiBOB.
  15.  正極活物質、バインダおよび導電助剤を含有する正極合剤層を集電体の片面または両面に有する正極と、
     負極活物質およびバインダを含有する負極合剤層を集電体の片面または両面に有する負極と、
     セパレータ、並びにリチウム塩および有機溶媒を含有する非水電解液と
    を備えた非水二次電池の製造方法であって、
     前記正極合剤層の水分量が500~3000ppmである正極と、下記一般式(2)で表される基を分子内に有するリン酸化合物を含有する非水電解液とを外装体の内部に封入することを特徴とする非水二次電池の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    〔前記一般式(2)中、XはSi、GeまたはSnであり、R、RおよびRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数2~10のアルケニル基または炭素数6~10のアリール基を表し、水素原子の一部または全部がフッ素で置換されていてもよい。〕
    A positive electrode having a positive electrode mixture layer containing a positive electrode active material, a binder and a conductive additive on one or both sides of the current collector;
    A negative electrode having a negative electrode mixture layer containing a negative electrode active material and a binder on one or both sides of a current collector;
    A method for producing a non-aqueous secondary battery comprising a separator and a non-aqueous electrolyte containing a lithium salt and an organic solvent,
    A positive electrode having a moisture content of 500 to 3000 ppm in the positive electrode mixture layer and a nonaqueous electrolytic solution containing a phosphoric acid compound having a group represented by the following general formula (2) in the molecule are provided inside the outer package. A method for producing a non-aqueous secondary battery, characterized by enclosing.
    Figure JPOXMLDOC01-appb-C000003
    [In the general formula (2), X represents Si, Ge or Sn, and R 3 , R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms. Alternatively, it represents an aryl group having 6 to 10 carbon atoms, and part or all of the hydrogen atoms may be substituted with fluorine. ]
  16.  前記正極合剤層は、オリビン型化合物を前記正極活物質として含有する請求項15に記載の非水二次電池の製造方法。 The method for producing a non-aqueous secondary battery according to claim 15, wherein the positive electrode mixture layer contains an olivine type compound as the positive electrode active material.
PCT/JP2016/074829 2015-08-28 2016-08-25 Nonaqueous secondary battery and method for manufacturing same WO2017038628A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015168942 2015-08-28
JP2015-168942 2015-08-28
JP2016021438 2016-02-08
JP2016-021438 2016-02-08
JP2016-041948 2016-03-04
JP2016041948 2016-03-04
JP2016-050669 2016-03-15
JP2016050669 2016-03-15
JP2016116059 2016-06-10
JP2016-116059 2016-06-10

Publications (1)

Publication Number Publication Date
WO2017038628A1 true WO2017038628A1 (en) 2017-03-09

Family

ID=58187582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074829 WO2017038628A1 (en) 2015-08-28 2016-08-25 Nonaqueous secondary battery and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017038628A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054173A1 (en) * 2017-09-15 2019-03-21 日本ゼオン株式会社 Slurry composition for electrochemical element electrodes, electrode for electrochemical elements, electrochemical element, and method for producing slurry composition for electrochemical element electrodes
JP2020024919A (en) * 2018-08-08 2020-02-13 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method of forming energy storage
CN112840477A (en) * 2018-10-12 2021-05-25 日产自动车株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2022202576A1 (en) * 2021-03-25 2022-09-29 株式会社Gsユアサ Nonaqueous electrolyte power storage element
WO2022210910A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous-electrolyte secondary battery and nonaqueous-electrolyte secondary battery using same
WO2022210902A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Conductive material liquid dispersion, positive electrode slurry for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2022165058A (en) * 2021-04-19 2022-10-31 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery
JP2023512389A (en) * 2021-03-19 2023-03-27 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
CN112840477B (en) * 2018-10-12 2024-04-19 日产自动车株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319685A (en) * 1999-03-16 2001-11-16 Sumitomo Chem Co Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2004327279A (en) * 2003-04-25 2004-11-18 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2005222829A (en) * 2004-02-06 2005-08-18 Sony Corp Electrolyte and battery
JP2010205430A (en) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JP2010212041A (en) * 2009-03-10 2010-09-24 Sei Kk Load leveling power supply system
JP2010272272A (en) * 2009-05-20 2010-12-02 Hitachi Ltd Positive electrode for lithium secondary battery, and lithium secondary battery
JP2012133895A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
JP2012216518A (en) * 2011-03-28 2012-11-08 Toyo Ink Sc Holdings Co Ltd Binder resin composition for nonaqueous secondary battery electrode
JP2013187034A (en) * 2012-03-08 2013-09-19 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
JP2014139903A (en) * 2013-01-21 2014-07-31 Daicel Corp Method for manufacturing laminate for storage element and lithium ion battery
WO2015025915A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Secondary cell

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319685A (en) * 1999-03-16 2001-11-16 Sumitomo Chem Co Ltd Nonaqueous electrolyte and lithium secondary battery using the same
JP2004327279A (en) * 2003-04-25 2004-11-18 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
JP2005222829A (en) * 2004-02-06 2005-08-18 Sony Corp Electrolyte and battery
JP2010205430A (en) * 2009-02-27 2010-09-16 Hitachi Vehicle Energy Ltd Positive electrode for lithium secondary battery and lithium secondary battery
JP2010212041A (en) * 2009-03-10 2010-09-24 Sei Kk Load leveling power supply system
JP2010272272A (en) * 2009-05-20 2010-12-02 Hitachi Ltd Positive electrode for lithium secondary battery, and lithium secondary battery
JP2012133895A (en) * 2010-12-17 2012-07-12 Eliiy Power Co Ltd Nonaqueous electrolyte secondary battery and battery module
JP2012216518A (en) * 2011-03-28 2012-11-08 Toyo Ink Sc Holdings Co Ltd Binder resin composition for nonaqueous secondary battery electrode
JP2013187034A (en) * 2012-03-08 2013-09-19 Hitachi Ltd Positive electrode for lithium ion secondary battery, lithium ion secondary battery and battery module
JP2014139903A (en) * 2013-01-21 2014-07-31 Daicel Corp Method for manufacturing laminate for storage element and lithium ion battery
WO2015025915A1 (en) * 2013-08-23 2015-02-26 日本電気株式会社 Secondary cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192774B2 (en) 2017-09-15 2022-12-20 日本ゼオン株式会社 Electrochemical element electrode slurry composition, electrochemical element electrode, electrochemical element, and method for producing slurry composition for electrochemical element electrode
WO2019054173A1 (en) * 2017-09-15 2019-03-21 日本ゼオン株式会社 Slurry composition for electrochemical element electrodes, electrode for electrochemical elements, electrochemical element, and method for producing slurry composition for electrochemical element electrodes
CN111033825A (en) * 2017-09-15 2020-04-17 日本瑞翁株式会社 Slurry composition for electrochemical device electrode, electrode for electrochemical device, and method for producing slurry composition for electrochemical device electrode
JPWO2019054173A1 (en) * 2017-09-15 2020-08-27 日本ゼオン株式会社 Slurry composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method for producing slurry composition for electrochemical device electrode
CN111033825B (en) * 2017-09-15 2023-07-14 日本瑞翁株式会社 Slurry composition for electrochemical element electrode, electrode for electrochemical element, and method for producing slurry composition for electrochemical element electrode
JP2020024919A (en) * 2018-08-08 2020-02-13 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method of forming energy storage
CN112840477A (en) * 2018-10-12 2021-05-25 日产自动车株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
CN112840477B (en) * 2018-10-12 2024-04-19 日产自动车株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
JP2023512389A (en) * 2021-03-19 2023-03-27 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
JP7323713B2 (en) 2021-03-19 2023-08-08 積水化学工業株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using the same
WO2022202576A1 (en) * 2021-03-25 2022-09-29 株式会社Gsユアサ Nonaqueous electrolyte power storage element
WO2022210910A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Positive electrode for nonaqueous-electrolyte secondary battery and nonaqueous-electrolyte secondary battery using same
WO2022210902A1 (en) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 Conductive material liquid dispersion, positive electrode slurry for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7288479B2 (en) 2021-04-19 2023-06-07 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP2022165058A (en) * 2021-04-19 2022-10-31 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
WO2017038628A1 (en) Nonaqueous secondary battery and method for manufacturing same
JP4725594B2 (en) Method for manufacturing lithium secondary battery
RU2668970C2 (en) Reduction of gassing in lithium titanate cells
JP6253411B2 (en) Lithium secondary battery
US20180219250A1 (en) Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt
KR102211037B1 (en) Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
CN110785886A (en) Lithium secondary battery
WO2014147983A1 (en) Non-aqueous electrolyte secondary battery
KR102255281B1 (en) Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery
JP6545052B2 (en) Non-aqueous secondary battery
JP2018110076A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6477691B2 (en) Secondary battery electrode binder composition, secondary battery electrode slurry composition, secondary battery electrode, and secondary battery
KR20140013885A (en) Lithium ion secondary battery
JP2018190582A (en) Method for manufacturing lithium ion secondary battery
KR20210081303A (en) Electrolytes and electrochemical devices
JP2022551058A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP6396136B2 (en) Lithium secondary battery
JP2019175657A (en) Lithium ion secondary battery
JPWO2016068033A1 (en) Lithium ion secondary battery
WO2015040891A1 (en) Lithium ion secondary cell
JP2022545000A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5271751B2 (en) Lithium ion secondary battery
JP7176821B2 (en) Non-aqueous electrolyte additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2022545203A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP