WO2017038594A1 - Vehicular heat management system - Google Patents

Vehicular heat management system Download PDF

Info

Publication number
WO2017038594A1
WO2017038594A1 PCT/JP2016/074727 JP2016074727W WO2017038594A1 WO 2017038594 A1 WO2017038594 A1 WO 2017038594A1 JP 2016074727 W JP2016074727 W JP 2016074727W WO 2017038594 A1 WO2017038594 A1 WO 2017038594A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
cooling water
heat
engine
Prior art date
Application number
PCT/JP2016/074727
Other languages
French (fr)
Japanese (ja)
Inventor
賢吾 杉村
加藤 吉毅
竹内 雅之
慧伍 佐藤
功嗣 三浦
憲彦 榎本
アリエル マラシガン
橋村 信幸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016146364A external-priority patent/JP6361703B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/757,047 priority Critical patent/US10717341B2/en
Priority to DE112016004004.0T priority patent/DE112016004004T5/en
Priority to CN201680050808.8A priority patent/CN107923304B/en
Publication of WO2017038594A1 publication Critical patent/WO2017038594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/12Cabin temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/14Condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/18Heater

Definitions

  • the present disclosure relates to a heat management device used for a vehicle.
  • Patent Document 1 describes a vehicle cooling system that uses a high-pressure refrigerant in a refrigeration cycle as a heat source for warming up an engine.
  • This prior art includes a first cooling water circuit, a second cooling water circuit, a water / refrigerant heat exchanger, and a switching valve.
  • Engine coolant flows through the first coolant circuit.
  • Cooling water having a temperature lower than that of the cooling water flowing through the first cooling water circuit flows through the second cooling water circuit.
  • the water / refrigerant heat exchanger exchanges heat between the high-pressure refrigerant of the refrigeration cycle and the cooling water.
  • the switching valve switches the flow path of the cooling water so that either the cooling water of the first cooling water circuit or the low-temperature cooling water of the second cooling water circuit flows into the water / refrigerant heat exchanger.
  • the switching valve switches the flow path of the cooling water so that the cooling water of the first cooling water circuit flows into the water / refrigerant heat exchanger.
  • the engine can be warmed up using the high-pressure refrigerant of the refrigeration cycle as a heat source.
  • an EGR cooler is provided in the second cooling water circuit.
  • the EGR cooler cools the exhaust gas recirculation gas by exchanging heat between the exhaust gas recirculation gas and the low-temperature cooling water in the second cooling water circuit.
  • the cooling water is heated by the exhaust gas recirculation gas. Therefore, the cooling water heated by the EGR cooler can be used for heating or the like. That is, the heat of the exhaust gas recirculation gas can be used for heating or the like.
  • the cooling water flowing into the EGR cooler may not be allowed to flow into the EGR cooler until the temperature of the cooling water in the second cooling water circuit rises to some extent.
  • the EGR cooler becomes a heat source that can function and heat the heat medium when the flowing heat medium reaches a predetermined temperature or higher.
  • This disclosure aims to warm up the engine early in view of the above points.
  • a vehicle thermal management apparatus exhibits a function when a heat medium circuit in which a heat medium that cools an engine circulates, a heat source unit that heats the heat medium, and an inflow heat medium is equal to or higher than a predetermined temperature. And a device capable of heating the heat medium. When the engine is warmed up, the heat generated in the heat source is preferentially supplied to the equipment over the engine.
  • the heat generated in the heat source unit is preferentially supplied to the equipment rather than the engine, so that the heat generated in the heat source unit can be prevented from being spent on warming up the engine.
  • the heat medium flowing into the device can be brought to a predetermined temperature or higher at an early stage, the function of the device can be exhibited early and the heat medium can be heated early using the device as a heat source. As a result, the engine can be warmed up early.
  • thermo management device for vehicles in a 1st embodiment of this indication It is a figure showing the thermal management device for vehicles in a 1st embodiment of this indication. It is sectional drawing which shows the indoor air conditioning unit in 1st Embodiment. It is a block diagram which shows the electric control part of the thermal management apparatus for vehicles in 1st Embodiment. It is a flowchart which shows the control processing which the control apparatus of the thermal management apparatus for vehicles in 1st Embodiment performs. It is a figure which shows the operation mode of the thermal management apparatus for vehicles in 1st Embodiment. It is a figure which shows the other operation mode of the thermal management apparatus for vehicles in 1st Embodiment. It is a time chart which shows an example of the operation result of the thermal management apparatus for vehicles in a 1st embodiment. It is a figure which shows the operation mode of the thermal management apparatus for vehicles in 2nd Embodiment of this indication. It is a time chart which shows an example of the operation result of the thermal management apparatus for vehicles in
  • the vehicle thermal management apparatus 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors included in a vehicle to an appropriate temperature.
  • the vehicle thermal management device 10 is applied to a hybrid vehicle that obtains driving force for vehicle traveling from an engine and an electric motor for traveling.
  • the hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source to a battery mounted on the vehicle when the vehicle is stopped.
  • a battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
  • the electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the vehicle thermal management apparatus 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
  • the vehicle thermal management device 10 includes a cooling water circuit 11 and a refrigeration cycle 12. Cooling water circulates in the cooling water circuit 11.
  • the refrigeration cycle 12 is a vapor compression refrigerator.
  • Cooling water is a fluid as a heat medium.
  • the cooling water is a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid.
  • the cooling water circuit 11 is a heat medium circuit in which the heat medium circulates.
  • the coolant circuit 11 includes an engine pump 20, an engine 21, a condenser pump 22, a condenser 23, an EGR cooler 24, a heater core 25, a first switching valve 26, a second switching valve 27, a third switching valve 28, and a fourth switching valve 29. have.
  • the engine pump 20 is an electric pump that sucks and discharges cooling water.
  • the engine pump 20 may be a belt-driven pump that is driven by transmitting the driving force of the engine 21 through a belt.
  • the engine pump 20 and the engine 21 are arranged in series with the engine flow path (engine side flow path) 30.
  • the condenser pump 22 is an electric pump that sucks and discharges cooling water.
  • the condenser 23 is a high-pressure side heat exchanger that heats the cooling water by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle 12 and the cooling water.
  • the condenser 23 is a heat source unit that heats the cooling water.
  • the capacitor pump 22 and the capacitor 23 are arranged in series with the capacitor channel 31.
  • the vehicle thermal management device 10 may include an electric heater instead of the capacitor 23.
  • the electric heater is a heat source unit that heats the cooling water.
  • the EGR cooler 24 is a heat exchanger that cools the exhaust gas by exchanging heat between the exhaust gas returned to the intake side of the engine 21 and the cooling water.
  • the operating temperature To is the cooling water temperature at which the EGR cooler 24 can operate.
  • the operating temperature To is 60 ° C.
  • the EGR cooler 24 When cooling water having an operating temperature To or higher is introduced into the EGR cooler 24, the cooling water is heated by the heat of the exhaust gas. That is, the EGR cooler 24 is a device that can function when the inflowing cooling water is equal to or higher than the predetermined temperature To and can heat the cooling water.
  • the heater core 25 is an air heating heat exchanger that heats air by exchanging heat between cooling water and air blown into the passenger compartment.
  • the heater core 25 is a heat exchanger used for heating the passenger compartment.
  • the EGR cooler 24 and the heater core 25 are arranged in parallel with each other in the flow of the cooling water.
  • the EGR cooler 24 is connected to the engine flow path 30 and the capacitor flow path 31 via the first switching valve 26 and the second switching valve 27.
  • the heater core 25 is connected to the engine flow path 30 and the capacitor flow path 31 via the third switching valve 28 and the fourth switching valve 29.
  • the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 are switching units that switch the flow of the cooling water.
  • the engine flow path 30 is connected to an engine bypass path 32.
  • the engine-side bypass flow path 32 is a flow path for circulating the coolant of the engine flow path 30 by bypassing the EGR cooler 24 and the heater core 25.
  • a capacitor-side bypass channel 33 is connected to the capacitor channel 31.
  • the capacitor side bypass flow path 33 is a flow path that circulates the cooling water of the capacitor flow path 31 by bypassing the EGR cooler 24 and the heater core 25.
  • the vehicle thermal management device 10 includes a radiator (not shown) and a thermostat (not shown).
  • the radiator is a heat exchanger that exchanges heat between cooling water and outside air.
  • the thermostat is a cooling water temperature responsive valve.
  • the cooling water temperature responsive valve is a valve provided with a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body with a thermo wax that changes in volume depending on temperature.
  • the thermostat closes the cooling water flow path on the radiator side to block the cooling water flow to the radiator, and the temperature of the cooling water exceeds the operating temperature To Then, the cooling water flow path on the radiator side is opened, and the cooling water is circulated to the radiator.
  • the temperature of the cooling water is lower than the operating temperature To, the heat release from the cooling water to the outside air is suppressed and the temperature rise of the cooling water is promoted.
  • the temperature of the cooling water is higher than the operating temperature To, heat is radiated from the cooling water to the outside air to suppress an excessive increase in the temperature of the cooling water.
  • the refrigeration cycle 12 includes a compressor 41, a condenser 23, an expansion valve 42, and an evaporator 43.
  • the refrigerant of the refrigeration cycle 12 is a fluorocarbon refrigerant.
  • the refrigeration cycle 12 is a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • the compressor 41 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 12.
  • the compressor 41 may be a variable capacity compressor driven by an engine belt by the driving force of the engine.
  • the condenser 23 is a heat exchanger that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 41 and the cooling water.
  • the expansion valve 42 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 23.
  • the expansion valve 42 is a temperature type expansion valve having a temperature sensing unit that detects the degree of superheat of the evaporator 43 outlet-side refrigerant based on the temperature and pressure of the evaporator 43 outlet-side refrigerant. That is, the expansion valve 42 is a temperature type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the refrigerant on the outlet side of the evaporator 43 falls within a predetermined range.
  • the expansion valve 42 may be an electric expansion valve that adjusts the throttle passage area by an electric mechanism.
  • the evaporator 43 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 42 and the air blown into the vehicle interior.
  • the gas-phase refrigerant evaporated in the evaporator 43 is sucked into the compressor 41 and compressed.
  • the vehicle thermal management device 10 may include a chiller instead of the evaporator 43.
  • the chiller is a low-pressure side heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 42 and the cooling water.
  • the evaporator 43 and the heater core 25 are accommodated in the casing 51 of the indoor air conditioning unit 50 of the vehicle air conditioner.
  • An air passage through which air flows is formed inside the casing 51.
  • an air / air switching box (not shown) and an indoor fan 61 shown in FIG.
  • the inside / outside air switching box is an inside / outside air switching unit that switches between outside air and inside air. Outside air is outside the passenger compartment. The inside air is the air in the passenger compartment.
  • the indoor blower 61 is a blower that sucks air and blows air.
  • the evaporator 43 and the heater core 25 are arranged on the downstream side of the air flow of the indoor blower 61.
  • the heater core 25 is disposed on the downstream side of the air flow from the evaporator 43.
  • the indoor blower 61 is an air flow rate adjusting unit that adjusts the flow rate of air in the heater core 25.
  • a cold air bypass passage 52 is formed on the downstream side of the air flow of the evaporator 43.
  • the cold air bypass passage 52 is a passage through which the cold air after passing through the evaporator 43 flows around the heater core 25.
  • an air mix door 53 that constitutes a temperature adjusting unit is disposed between the evaporator 43 and the heater core 25 between the evaporator 43 and the heater core 25, an air mix door 53 that constitutes a temperature adjusting unit is disposed.
  • the air mix door 53 adjusts the flow rate ratio between the cool air flowing into the heater core 25 and the cool air passing through the cool air bypass passage 52 by adjusting the opening degree of the cool air bypass passage 52 and the air passage on the heater core 25 side. It is an adjustment unit.
  • the air mix door 53 is a rotary door having a rotary shaft that is rotatably supported with respect to the casing 51, and a door substrate portion coupled to the rotary shaft.
  • the hot air that has passed through the heater core 25 and the cold air that has passed through the cold air bypass passage 52 are mixed, and the temperature of the conditioned air blown into the vehicle interior space is adjusted. Therefore, the temperature of the conditioned air can be adjusted to a desired temperature by adjusting the opening position of the air mix door 53.
  • a defroster opening 54, a face opening 55, a foot opening 56A, and a rear foot opening 56B are formed in the most downstream portion of the casing 51 in the air flow.
  • the defroster opening 54 is connected to a defroster outlet (not shown) disposed in the vehicle interior space via a defroster duct (not shown).
  • the defroster outlet is disposed in the vehicle interior space. Air-conditioned air is blown out from the defroster outlet toward the inner surface of the vehicle window glass.
  • the face opening 55 is connected to a face outlet (not shown) via a face duct (not shown).
  • the face outlet is located in the vehicle interior space. Air-conditioned air is blown out from the face outlet toward the upper body of the passenger.
  • the foot opening 56A is connected to a foot duct (not shown).
  • the foot duct extends downward. Air-conditioned air is blown out from the foot outlet at the tip of the foot duct toward the feet of the front seat occupant.
  • the rear foot opening 56B is connected to a rear foot duct (not shown).
  • the rear foot duct extends rearward of the vehicle. Air-conditioned air is blown out from the rear foot outlet at the tip of the rear foot duct toward the feet of the rear seat occupant.
  • the defroster opening 54 is opened and closed by a defroster door 57.
  • the face opening 55, the foot opening 56 ⁇ / b> A, and the rear foot opening 56 ⁇ / b> B are opened and closed by a face / foot door 58.
  • the face / foot door 58 opens and closes the foot opening 56A and the rear foot opening 56B by opening and closing the foot passage entrance 59.
  • the foot passage inlet 59 is an air passage inlet from the vicinity of the face opening 55 to the foot opening 56A and the rear foot opening 56B.
  • the defroster door 57 and the face / foot door 58 are rotary doors having a rotary shaft that is rotatably supported with respect to the casing 51, and a door substrate portion coupled to the rotary shaft.
  • the control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and peripheral circuits thereof.
  • the control device 60 performs various calculations and processes based on the control program stored in the ROM.
  • Various devices to be controlled are connected to the output side of the control device 60.
  • the control device 60 is a control unit that controls the operation of various devices to be controlled.
  • the control target devices controlled by the control device 60 are the engine pump 20, the condenser pump 22, the first switching valve 26, the second switching valve 27, the third switching valve 28, the fourth switching valve 29, the compressor 41, and the indoor air conditioning. These are the air mix door 53 of the unit 50, the indoor blower 61, and the like.
  • detection signals of sensor groups such as an inside air temperature sensor 62, an outside air temperature sensor 63, a solar radiation sensor 64, an engine water temperature sensor 65, a condenser water temperature sensor 66, a refrigerant pressure sensor 67, an evaporator temperature sensor 68, and the like. Is entered.
  • the inside air temperature sensor 62 is an inside air temperature detector that detects the temperature of the inside air.
  • the outside temperature sensor 63 is an outside temperature detector that detects the temperature of the outside air.
  • the solar radiation sensor 64 is a solar radiation amount detector that detects the amount of solar radiation in the passenger compartment.
  • the engine water temperature sensor 65 is a cooling water temperature detection unit that detects the temperature of the cooling water flowing through the engine flow path 30.
  • the condenser water temperature sensor 66 is a cooling water temperature detector that detects the temperature of the cooling water flowing through the condenser flow path 31.
  • the refrigerant pressure sensor 67 is a refrigerant pressure detector that detects the pressure of the refrigerant.
  • the evaporator temperature sensor 68 is a heat exchanger temperature detector that detects the temperature of the evaporator 43.
  • the evaporator temperature sensor 68 is a fin thermistor that detects the temperature of the heat exchange fins of the evaporator 43.
  • the evaporator temperature sensor 68 may be a refrigerant temperature sensor that detects the temperature of the refrigerant flowing through the evaporator 43.
  • Operation signals from various air conditioning operation switches provided on the operation panel 69 are input to the input side of the control device 60.
  • the operation panel 69 is disposed near the instrument panel in the front part of the vehicle interior.
  • the various air conditioning operation switches provided on the operation panel 69 are a vehicle interior temperature setting switch 69a, an auto switch, an air conditioner switch, an air volume setting switch, an air conditioning stop switch, and the like.
  • Each switch may be a push switch in which electrical contacts are made conductive by being mechanically pressed, or may be a touch screen system that reacts by touching a predetermined area on the electrostatic panel.
  • the vehicle interior temperature setting switch 69a is a target temperature setting unit that sets the vehicle interior target temperature Tset by the operation of the passenger.
  • the auto switch is a switch for setting or canceling automatic control of air conditioning.
  • the air conditioner switch is a switch for switching between operation and stop of cooling or dehumidification.
  • the air volume setting switch is a switch for setting the air volume blown from the indoor blower.
  • the air conditioning stop switch is a switch that stops air conditioning.
  • the control device 60 determines the air conditioning mode based on the outside air temperature and the target blowing temperature TAO of the vehicle cabin blowing air.
  • the target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C F1
  • Tset is the target temperature in the vehicle interior set by the vehicle interior temperature setting switch 69a
  • Tr is the internal air temperature detected by the internal air temperature sensor 62
  • Tam is the external air detected by the external air temperature sensor 63.
  • Temperature and Ts is the amount of solar radiation detected by the solar radiation sensor 64.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • control device 60 executes a control process shown in the flowchart of FIG.
  • step S100 it is determined whether or not the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are both lower than the operating temperature To.
  • the coolant temperature on the engine 21 side is the coolant temperature detected by the engine coolant temperature sensor 65.
  • the cooling water temperature on the condenser 23 side is the temperature detected by the condenser water temperature sensor 66.
  • the operating temperature To is 60 ° C. If cooling water having an operating temperature To lower than that is introduced into the EGR cooler 24, condensed water may be generated when the exhaust gas is cooled by the EGR cooler 24. Therefore, it is necessary to prevent the cooling water having an operating temperature To lower than the EGR cooler 24 from being introduced.
  • step S100 If it is determined in step S100 that both the coolant temperature on the engine 21 side and the coolant temperature on the condenser 23 side are lower than the operating temperature To, the process proceeds to step S110. For example, immediately after the compressor 41 and the engine 21 are started, the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are both lower than the operating temperature To.
  • step S110 the operation of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled so that the cooling water is not introduced into the EGR cooler 24 and the heater core 25.
  • step S110 compared to the case where the cooling water temperature on the condenser 23 side is equal to or higher than the operating temperature To, the flow rate of the cooling water introduced into the EGR cooler 24 and the heater core 25 among the cooling water on the condenser 23 side is reduced.
  • the operations of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 may be controlled.
  • the first switching valve 26, the second switching valve 27, and the third switching valve so that the EGR cooler 24 and the heater core 25 are cut off from the engine flow path 30 and the condenser flow path 31. 28 and the operation of the fourth switching valve 29 are controlled.
  • the coolant on the engine 21 side circulates through the engine pump 20, the engine 21, and the engine-side bypass passage 32.
  • the cooling water on the condenser 23 side circulates through the condenser pump 22, the condenser 23, and the condenser-side bypass passage 33.
  • step S100 determines whether the coolant temperature on the engine 21 side and the coolant temperature on the condenser 23 side is not lower than the operating temperature To. If it is determined in step S100 that at least one of the coolant temperature on the engine 21 side and the coolant temperature on the condenser 23 side is not lower than the operating temperature To, the process proceeds to step S120.
  • step S120 it is determined whether or not the coolant temperature on the engine 21 side is lower than the operating temperature To and the coolant temperature on the condenser 23 side is equal to or higher than the operating temperature To.
  • step S120 If it is determined in step S120 that the coolant temperature on the engine 21 side is lower than the operating temperature To and the coolant temperature on the condenser 23 side is equal to or higher than the operating temperature To, the process proceeds to step S130. For example, when a certain amount of time has elapsed since the compressor 41 and the engine 21 are started, the coolant temperature on the condenser 23 side becomes equal to or higher than the operating temperature To.
  • step S130 the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 26 are introduced into the EGR cooler 24 and the heater core 25 so that the cooling water on the condenser 23 side and the cooling water on the engine 21 side are introduced.
  • the operation of the switching valve 29 is controlled.
  • the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching are made so that the EGR cooler 24 and the heater core 25 are connected to the condenser flow path 31.
  • the operation of the valve 29 is controlled.
  • the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 are connected so that the EGR cooler 24 and the heater core 25 are connected to both the condenser flow path 31 and the engine flow path 30. Control the operation.
  • step S120 determines whether the cooling water temperature on the engine 21 side is lower than the operating temperature to. If it is determined in step S120 that the cooling water temperature on the engine 21 side is not lower than the operating temperature To, the process proceeds to step S140, and the first cooling water is introduced into the EGR cooler 24 and the heater core 25 so that the cooling water on the engine 21 side is introduced.
  • the operation of the switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled.
  • the operations of the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29 are controlled so that the EGR cooler 24 and the heater core 25 are connected to the engine flow path 30. .
  • FIG. 7 shows changes in the coolant temperature and the engine temperature since the compressor 41 and the engine 21 are started.
  • the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are both outside air equivalent temperatures, which are lower than the operating temperature To. Therefore, the cooling water circuit shown in FIG. 5 is switched to prevent the cooling water from being introduced into the EGR cooler 24 and the heater core 25.
  • the outside air equivalent temperature may be a temperature corresponding to the outside air temperature.
  • the outside air equivalent temperature may be substantially the same as the outside air temperature.
  • the cooling water on the engine 21 side gradually rises in temperature due to heat radiation from the engine 21, and the cooling water on the condenser 23 side gradually rises in temperature due to heat radiation from the capacitor 23. That is, as shown in FIG. 7, heat is supplied from the engine 21 to the cooling water on the engine 21 side, and heat is supplied from the condenser 23 to the cooling water on the condenser 23 side.
  • the temperature rise of the cooling water on the condenser 23 side is faster than the temperature rise of the cooling water on the engine 21 side. Therefore, the cooling water on the condenser 23 side becomes equal to or higher than the operating temperature To before the cooling water on the engine 21 side.
  • the cooling water circuit shown in FIG. 6 is switched to introduce the cooling water on the condenser 23 side into the EGR cooler 24 and the heater core 25.
  • the temperature of the cooling water introduced into the EGR cooler 24 is equal to or higher than the operating temperature To, it is possible to suppress the generation of condensed water when the exhaust gas is cooled by the EGR cooler 24.
  • the cooling water circuit is switched so that not only the cooling water on the condenser 23 side but also the cooling water on the engine 21 side is introduced into the EGR cooler 24 and the heater core 25.
  • the two-dot chain line in the lower graph of FIG. 7 shows a comparative example.
  • the cooling water on the condenser 23 side is introduced into the engine 21 immediately after the compressor 41 and the engine 21 are started. Therefore, the engine 21 is warmed up by heat radiation from the engine 21 and the capacitor 23.
  • the engine 21 is warmed up by heat radiation from the engine 21 until the temperature of the cooling water on the condenser 23 side reaches the operating temperature To, and the heat radiation from the capacitor 23 is warmed up. Therefore, the temperature rise of the engine 21 is slower than that of the comparative example.
  • the heat radiation from the condenser 23 and the EGR cooler 24 is used for warming up the engine 21.
  • the temperature rise of the engine 21 becomes faster than that of the comparative example, and as a result, the engine 21 can be warmed up early.
  • the control device 60, the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 are used to warm up the engine 21.
  • the flow of the cooling water is controlled so that the heat generated by the condenser 23 is preferentially supplied to the EGR cooler 24 rather than the engine 21.
  • the cooling water flowing into the EGR cooler 24 can be quickly brought to the operating temperature To or higher, so that the function of the EGR cooler 24 can be exhibited early, and the cooling water can be used early using the EGR cooler 24 as a heat source. Can be heated. As a result, the engine 21 can be warmed up early.
  • the EGR cooler 24 and the heater core 25 are arranged in parallel with each other in the flow of the cooling water. According to this, compared with the case where the EGR cooler 24 and the heater core 25 are arranged in series with each other, the temperature of the cooling water flowing into the EGR cooler 24 can be raised earlier.
  • the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29 are the cooling water between the EGR cooler 24 and the heater core 25, the engine 21 and the condenser 23. Switch the circulation state.
  • control device 60 causes the cooling water heated by the condenser 23 to be introduced into the EGR cooler 24 when the temperature of the cooling water detected by the condenser water temperature sensor 66 becomes equal to or higher than the operating temperature To.
  • the operation of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled.
  • the control device 60 detects the cooling water temperature detected by the condenser water temperature sensor 66 when the cooling water temperature is lower than the operating temperature To. Compared to the case where the temperature of the cooling water is equal to or higher than the operating temperature To, the first switching valve 26 and the second switching valve are set such that the flow rate of the cooling water flowing through the heater core 25 out of the cooling water heated by the condenser 23 is reduced. 27, the operation of the third switching valve 28 and the fourth switching valve 29 is controlled.
  • the control device 60 causes the cooling heated by the condenser 23 when the temperature of the cooling water detected by the condenser water temperature sensor 66 becomes equal to or higher than the operating temperature To.
  • the operation of the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29 is controlled so that water is introduced into the EGR cooler 24 and also into the heater core 25.
  • the cooling water heated by the condenser 23 becomes the operating temperature To or higher, not only the cooling water heated by the condenser 23 but also the air heated by the heater core 25 using the cooling water heated by the EGR cooler 24. Can be heated. Therefore, the energy consumed by the capacitor 23 for heating the passenger compartment can be reduced. In other words, the power consumption of the compressor 41 can be reduced.
  • the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching are performed so that the cooling water on the condenser 23 side is introduced into the heater core 25 and the cooling water is not introduced into the EGR cooler 24.
  • the operation of the valve 29 is controlled.
  • the heater core 25 can perform a certain amount of heating even during the period from when the temperature of the cooling water on the condenser 23 side rises to the operating temperature To.
  • the control device 60 reduces the flow rate of the cooling water flowing into the heater core 25 by the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29, and It is desirable to reduce the flow rate of air flowing into the heater core 25. This is because the heat exchange performance of the heater core 25 is lowered, so that the temperature of the cooling water on the condenser 23 side can be raised to the operating temperature To early.
  • the cooling water temperature in the heater core 25 rises to the operating temperature To.
  • the operating temperature To is set to a temperature higher than the target blowing temperature TAO.
  • the operating temperature To is 60 ° C.
  • the target blowing temperature TAO is 50 ° C. Therefore, the temperature of the air blown out through the heater core 25 becomes higher than the target blowing temperature TAO.
  • control device 60 controls the operation of the air mix door 53 so that the temperature of the air blown from the indoor air conditioning unit 50 approaches the target blow temperature TAO as shown by the solid line in FIG.
  • the control device 60 when the temperature of the cooling water detected by the condenser water temperature sensor 66 is rising toward the operating temperature To, the control device 60 introduces the cooling water heated by the condenser 23 into the heater core 25. Thus, the operation of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled.
  • the control device 60 determines that the temperature of the cooling water detected by the condenser water temperature sensor 66 is the operating temperature.
  • the indoor blower 61, the first switching valve 26, the second switching valve 27, and the third switching valve are set so that at least one of the air flow rate and the cooling water flow rate in the heater core 25 is smaller than that in the case of being equal to or higher than To. 28 and the operation of the fourth switching valve 29 are controlled.
  • the temperature of the cooling water can be raised to the operating temperature To early.
  • the high-pressure side refrigerant pressure of the refrigeration cycle 12 can be increased, the temperature increase rate of the cooling water can be increased.
  • the controller 60 determines that the temperature of the cooling water detected by the condenser water temperature sensor 66 is the target outlet temperature TAO.
  • the operation of the air mix door 53 is controlled so that the ratio of the flow rate of air flowing into the heater core 25 becomes smaller and the ratio of the flow rate of air flowing by bypassing the heater core 25 becomes larger.
  • the temperature of the cooling water heated by the condenser 23 is higher than the target blowing temperature TAO, the temperature of the air blown into the vehicle interior can be suppressed from exceeding the target blowing temperature TAO.
  • the temperature of the air blown out can be adjusted appropriately.
  • cooling water is used as the heat medium circulating in the cooling water circuit 11, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • antifreeze liquid ethylene glycol
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the amount of heat stored in the heat medium itself can be increased.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio between the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like may be used. Good.
  • the refrigeration cycle 12 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but constitutes a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. You may do it.

Abstract

A vehicular heat management system is provided with a heat transfer medium circuit (11), a heat source unit (23), and a device (24). A heat transfer medium for cooling an engine (21) circulates through the heat transfer medium circuit. The heat source unit heats the heat transfer medium. When the heat transfer medium flowing into the device is at a temperature equal to or greater than a prescribed temperature (To), the device can exhibit a function and can heat the heat transfer medium. When the engine is warming up, the heat generated by the heat source unit is supplied preferentially to the device rather than the engine. Accordingly, because the heat generated by the heat source unit is supplied preferentially to the device rather than the engine when the engine is warming up, the engine can be warmed up quickly.

Description

車両用熱管理装置Vehicle thermal management device 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年9月4日に出願された日本特許出願2015-174348および、2016年7月26日に出願された日本特許出願2016-146364を基にしている。 This application includes Japanese Patent Application No. 2015-174348 filed on September 4, 2015 and Japanese Patent Application No. 2016- filed on July 26, 2016, the disclosure of which is incorporated herein by reference. 146364.
 本開示は、車両に用いられる熱管理装置に関する。 The present disclosure relates to a heat management device used for a vehicle.
 従来、特許文献1には、エンジンを暖機する熱源として、冷凍サイクルの高圧冷媒を利用する車両用冷却システムが記載されている。 Conventionally, Patent Document 1 describes a vehicle cooling system that uses a high-pressure refrigerant in a refrigeration cycle as a heat source for warming up an engine.
 この従来技術では、第1冷却水回路、第2冷却水回路、水・冷媒熱交換器および切替弁を備えている。第1冷却水回路には、エンジン冷却水が流通する。第2冷却水回路には、第1冷却水回路を流通する冷却水よりも低温の冷却水が流通する。水・冷媒熱交換器は、冷凍サイクルの高圧冷媒と冷却水とを熱交換させる。切替弁は、第1冷却水回路の冷却水、および第2冷却水回路の低温冷却水のいずれかを水・冷媒熱交換器に流入させるように冷却水の流路を切り替える。 This prior art includes a first cooling water circuit, a second cooling water circuit, a water / refrigerant heat exchanger, and a switching valve. Engine coolant flows through the first coolant circuit. Cooling water having a temperature lower than that of the cooling water flowing through the first cooling water circuit flows through the second cooling water circuit. The water / refrigerant heat exchanger exchanges heat between the high-pressure refrigerant of the refrigeration cycle and the cooling water. The switching valve switches the flow path of the cooling water so that either the cooling water of the first cooling water circuit or the low-temperature cooling water of the second cooling water circuit flows into the water / refrigerant heat exchanger.
 エンジン暖機時、切替弁は、第1冷却水回路の冷却水を水・冷媒熱交換器に流入させるように冷却水の流路を切り替える。これにより、冷凍サイクルの高圧冷媒を熱源としてエンジンを暖機できる。 When the engine is warming up, the switching valve switches the flow path of the cooling water so that the cooling water of the first cooling water circuit flows into the water / refrigerant heat exchanger. As a result, the engine can be warmed up using the high-pressure refrigerant of the refrigeration cycle as a heat source.
 この従来技術では、第2冷却水回路にEGRクーラが設けられている。EGRクーラは、排気再循環ガスと第2冷却水回路の低温冷却水とを熱交換させて排気再循環ガスを冷却する。 In this prior art, an EGR cooler is provided in the second cooling water circuit. The EGR cooler cools the exhaust gas recirculation gas by exchanging heat between the exhaust gas recirculation gas and the low-temperature cooling water in the second cooling water circuit.
特開2010-064527号公報JP 2010-064527 A
 EGRクーラでは、排気再循環ガスによって冷却水が加熱される。そのため、EGRクーラで加熱された冷却水を暖房等に利用することが可能である。すなわち、排気再循環ガスの熱を暖房等に利用することが可能である。 In the EGR cooler, the cooling water is heated by the exhaust gas recirculation gas. Therefore, the cooling water heated by the EGR cooler can be used for heating or the like. That is, the heat of the exhaust gas recirculation gas can be used for heating or the like.
 しかしながら、EGRクーラに流入する冷却水の温度が低すぎると、EGRクーラで排気再循環ガスが冷却される際に凝縮水が発生するので腐食が発生しやすくなるおそれがある。そのため、第2冷却水回路の冷却水の温度がある程度上昇するまではEGRクーラに冷却水を流入させることができない場合がある。 However, if the temperature of the cooling water flowing into the EGR cooler is too low, the condensed water is generated when the exhaust gas recirculation gas is cooled by the EGR cooler, so that corrosion may easily occur. Therefore, the cooling water may not be allowed to flow into the EGR cooler until the temperature of the cooling water in the second cooling water circuit rises to some extent.
 したがって、第2冷却水回路の冷却水の温度がある程度上昇するまでは、排気再循環ガスの熱を暖房等に利用できない場合があるのみならず、排気ガスをエンジンに再循環させることによる燃費向上効果を得ることもできない場合がある。 Therefore, until the temperature of the cooling water in the second cooling water circuit rises to some extent, not only the heat of the exhaust recirculation gas may not be used for heating, but also the fuel efficiency is improved by recirculating the exhaust gas to the engine. It may not be possible to obtain an effect.
 すなわち、EGRクーラは、流入する熱媒体が所定温度以上になると機能を発揮可能になるとともに熱媒体を加熱する熱源になる。このような機器に対しては、所定温度以上の熱媒体を早期に流入させることが望ましいのであるが、エンジン暖機時は、エンジン冷却系の熱容量が大きいことから熱媒体の温度を早期に所定温度以上に上昇させるのが困難な場合がある。 That is, the EGR cooler becomes a heat source that can function and heat the heat medium when the flowing heat medium reaches a predetermined temperature or higher. For such devices, it is desirable to allow a heat medium of a predetermined temperature or more to flow in early, but when the engine is warmed up, the heat capacity of the engine cooling system is large, so the temperature of the heat medium is determined as early as possible. It may be difficult to raise above the temperature.
 本開示は上記点に鑑みて、エンジンを早期に暖機することを目的とする。 This disclosure aims to warm up the engine early in view of the above points.
 本開示の一態様による車両用熱管理装置は、エンジンを冷却する熱媒体が循環する熱媒体回路と、熱媒体を加熱する熱源部と、流入する熱媒体が所定温度以上であると機能を発揮できるとともに熱媒体を加熱できる機器とを備える。エンジンの暖機時、熱源部で生成された熱がエンジンよりも機器に優先的に供給される。 A vehicle thermal management apparatus according to an aspect of the present disclosure exhibits a function when a heat medium circuit in which a heat medium that cools an engine circulates, a heat source unit that heats the heat medium, and an inflow heat medium is equal to or higher than a predetermined temperature. And a device capable of heating the heat medium. When the engine is warmed up, the heat generated in the heat source is preferentially supplied to the equipment over the engine.
 これによると、エンジンの暖機時、熱源部で生成された熱がエンジンよりも機器に優先的に供給されるので、熱源部で生成された熱がエンジンの暖機に費やされることを抑制できる。 According to this, when the engine is warmed up, the heat generated in the heat source unit is preferentially supplied to the equipment rather than the engine, so that the heat generated in the heat source unit can be prevented from being spent on warming up the engine. .
 そのため、機器に流入する熱媒体を早期に所定温度以上にすることができるので、機器の機能を早期に発揮させることができるとともに、機器を熱源として熱媒体を早期に加熱できる。その結果、エンジンを早期に暖機できる。 Therefore, since the heat medium flowing into the device can be brought to a predetermined temperature or higher at an early stage, the function of the device can be exhibited early and the heat medium can be heated early using the device as a heat source. As a result, the engine can be warmed up early.
本開示の第1実施形態における車両用熱管理装置を示す図である。It is a figure showing the thermal management device for vehicles in a 1st embodiment of this indication. 第1実施形態における室内空調ユニットを示す断面図である。It is sectional drawing which shows the indoor air conditioning unit in 1st Embodiment. 第1実施形態における車両用熱管理装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the thermal management apparatus for vehicles in 1st Embodiment. 第1実施形態における車両用熱管理装置の制御装置が実行する制御処理を示すフローチャートである。It is a flowchart which shows the control processing which the control apparatus of the thermal management apparatus for vehicles in 1st Embodiment performs. 第1実施形態における車両用熱管理装置の作動モードを示す図である。It is a figure which shows the operation mode of the thermal management apparatus for vehicles in 1st Embodiment. 第1実施形態における車両用熱管理装置の他の作動モードを示す図である。It is a figure which shows the other operation mode of the thermal management apparatus for vehicles in 1st Embodiment. 第1実施形態における車両用熱管理装置の作動結果の一例を示すタイムチャートである。It is a time chart which shows an example of the operation result of the thermal management apparatus for vehicles in a 1st embodiment. 本開示の第2実施形態における車両用熱管理装置の作動モードを示す図である。It is a figure which shows the operation mode of the thermal management apparatus for vehicles in 2nd Embodiment of this indication. 第2実施形態における車両用熱管理装置の作動結果の一例を示すタイムチャートである。It is a time chart which shows an example of the operation result of the thermal management apparatus for vehicles in a 2nd embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1に示す車両用熱管理装置10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。
(First embodiment)
The vehicle thermal management apparatus 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors included in a vehicle to an appropriate temperature.
 本実施形態では、車両用熱管理装置10を、エンジンおよび走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。 In the present embodiment, the vehicle thermal management device 10 is applied to a hybrid vehicle that obtains driving force for vehicle traveling from an engine and an electric motor for traveling.
 本実施形態のハイブリッド自動車は、車両停車時に外部電源から供給された電力を、車両に搭載された電池に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。 The hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source to a battery mounted on the vehicle when the vehicle is stopped. As the battery, for example, a lithium ion battery can be used.
 エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄えることができ、電池に蓄えられた電力は、走行用電動モータのみならず、車両用熱管理装置10を構成する電動式構成機器をはじめとする各種車載機器に供給される。 The driving force output from the engine is used not only for driving the vehicle but also for operating the generator. The electric power generated by the generator and the electric power supplied from the external power source can be stored in the battery, and the electric power stored in the battery constitutes the vehicle thermal management apparatus 10 as well as the electric motor for traveling. It is supplied to various in-vehicle devices such as electric components.
 車両用熱管理装置10は、冷却水回路11および冷凍サイクル12を備えている。冷却水回路11には冷却水が循環する。冷凍サイクル12は蒸気圧縮式冷凍機である。 The vehicle thermal management device 10 includes a cooling water circuit 11 and a refrigeration cycle 12. Cooling water circulates in the cooling water circuit 11. The refrigeration cycle 12 is a vapor compression refrigerator.
 冷却水は、熱媒体としての流体である。例えば、冷却水は、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体である。冷却水回路11は、熱媒体が循環する熱媒体回路である。 Cooling water is a fluid as a heat medium. For example, the cooling water is a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid. The cooling water circuit 11 is a heat medium circuit in which the heat medium circulates.
 冷却水回路11は、エンジンポンプ20、エンジン21、コンデンサポンプ22、コンデンサ23、EGRクーラ24、ヒータコア25、第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29を有している。 The coolant circuit 11 includes an engine pump 20, an engine 21, a condenser pump 22, a condenser 23, an EGR cooler 24, a heater core 25, a first switching valve 26, a second switching valve 27, a third switching valve 28, and a fourth switching valve 29. have.
 エンジンポンプ20は、冷却水を吸入して吐出する電動ポンプである。エンジンポンプ20は、エンジン21の駆動力をベルトを介して動力伝達することによって駆動されるベルト駆動式ポンプであってもよい。エンジンポンプ20およびエンジン21は、エンジン流路(エンジン側流路)30に直列に配置されている。 The engine pump 20 is an electric pump that sucks and discharges cooling water. The engine pump 20 may be a belt-driven pump that is driven by transmitting the driving force of the engine 21 through a belt. The engine pump 20 and the engine 21 are arranged in series with the engine flow path (engine side flow path) 30.
 コンデンサポンプ22は、冷却水を吸入して吐出する電動ポンプである。コンデンサ23は、冷凍サイクル12の高圧側冷媒と冷却水とを熱交換させることによって冷却水を加熱する高圧側熱交換器である。コンデンサ23は、冷却水を加熱する熱源部である。コンデンサポンプ22およびコンデンサ23は、コンデンサ流路31に直列に配置されている。 The condenser pump 22 is an electric pump that sucks and discharges cooling water. The condenser 23 is a high-pressure side heat exchanger that heats the cooling water by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle 12 and the cooling water. The condenser 23 is a heat source unit that heats the cooling water. The capacitor pump 22 and the capacitor 23 are arranged in series with the capacitor channel 31.
 車両用熱管理装置10は、コンデンサ23の代わりに電気ヒータを備えていてもよい。電気ヒータは、冷却水を加熱する熱源部である。 The vehicle thermal management device 10 may include an electric heater instead of the capacitor 23. The electric heater is a heat source unit that heats the cooling water.
 EGRクーラ24は、エンジン21の吸気側に戻される排気ガスと冷却水とを熱交換して排気ガスを冷却する熱交換器である。 The EGR cooler 24 is a heat exchanger that cools the exhaust gas by exchanging heat between the exhaust gas returned to the intake side of the engine 21 and the cooling water.
 稼動温度To未満の冷却水がEGRクーラ24に導入されると、EGRクーラ24で排気ガスが冷却される際に凝縮水が発生する。そのため、稼動温度To未満の冷却水がEGRクーラ24に導入されないようにする必要がある。稼動温度Toは、EGRクーラ24が稼動可能になる冷却水温度である。例えば、稼動温度Toは60℃である。 When cooling water having a temperature lower than the operating temperature To is introduced into the EGR cooler 24, condensed water is generated when the exhaust gas is cooled by the EGR cooler 24. Therefore, it is necessary to prevent the cooling water having an operating temperature To lower than the EGR cooler 24 from being introduced. The operating temperature To is the cooling water temperature at which the EGR cooler 24 can operate. For example, the operating temperature To is 60 ° C.
 稼動温度To以上の冷却水がEGRクーラ24に導入されると、排気ガスの熱によって冷却水が加熱される。すなわち、EGRクーラ24は、流入する冷却水が所定温度To以上であると機能を発揮できるとともに冷却水を加熱できる機器である。 When cooling water having an operating temperature To or higher is introduced into the EGR cooler 24, the cooling water is heated by the heat of the exhaust gas. That is, the EGR cooler 24 is a device that can function when the inflowing cooling water is equal to or higher than the predetermined temperature To and can heat the cooling water.
 ヒータコア25は、冷却水と車室内へ送風される空気とを熱交換させて空気を加熱する空気加熱用熱交換器である。ヒータコア25は、車室内を暖房するために用いられる熱交換器である。 The heater core 25 is an air heating heat exchanger that heats air by exchanging heat between cooling water and air blown into the passenger compartment. The heater core 25 is a heat exchanger used for heating the passenger compartment.
 EGRクーラ24およびヒータコア25は、冷却水の流れにおいて互いに並列に配置されている。 The EGR cooler 24 and the heater core 25 are arranged in parallel with each other in the flow of the cooling water.
 EGRクーラ24は、第1切替弁26および第2切替弁27を介してエンジン流路30およびコンデンサ流路31に接続されている。 The EGR cooler 24 is connected to the engine flow path 30 and the capacitor flow path 31 via the first switching valve 26 and the second switching valve 27.
 ヒータコア25は、第3切替弁28および第4切替弁29を介してエンジン流路30およびコンデンサ流路31に接続されている。 The heater core 25 is connected to the engine flow path 30 and the capacitor flow path 31 via the third switching valve 28 and the fourth switching valve 29.
 第1切替弁26、第2切替弁27、第3切替弁28、第4切替弁29は、冷却水の流れを切り替える切替部である。 The first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 are switching units that switch the flow of the cooling water.
 エンジン流路30には、エンジン側バイパス流路32が接続されている。エンジン側バイパス流路32は、エンジン流路30の冷却水を、EGRクーラ24およびヒータコア25をバイパスして循環させる流路である。 The engine flow path 30 is connected to an engine bypass path 32. The engine-side bypass flow path 32 is a flow path for circulating the coolant of the engine flow path 30 by bypassing the EGR cooler 24 and the heater core 25.
 コンデンサ流路31には、コンデンサ側バイパス流路33が接続されている。コンデンサ側バイパス流路33は、コンデンサ流路31の冷却水を、EGRクーラ24およびヒータコア25をバイパスして循環させる流路である。 A capacitor-side bypass channel 33 is connected to the capacitor channel 31. The capacitor side bypass flow path 33 is a flow path that circulates the cooling water of the capacitor flow path 31 by bypassing the EGR cooler 24 and the heater core 25.
 車両用熱管理装置10は、図示しないラジエータと、図示しないサーモスタットとを備えている。ラジエータは、冷却水と外気とを熱交換させる熱交換器である。サーモスタットは冷却水温度応動弁である。冷却水温度応動弁は、温度によって体積変化するサーモワックスによって弁体を変位させて冷却水流路を開閉する機械的機構を備える弁である。 The vehicle thermal management device 10 includes a radiator (not shown) and a thermostat (not shown). The radiator is a heat exchanger that exchanges heat between cooling water and outside air. The thermostat is a cooling water temperature responsive valve. The cooling water temperature responsive valve is a valve provided with a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body with a thermo wax that changes in volume depending on temperature.
 サーモスタットは、冷却水の温度が稼動温度Toを下回っている場合、ラジエータ側の冷却水流路を閉じてラジエータへの冷却水の流れを遮断し、冷却水の温度が稼動温度Toを上回っている場合、ラジエータ側の冷却水流路を開いてラジエータへ冷却水を流通させる。 When the temperature of the cooling water is lower than the operating temperature To, the thermostat closes the cooling water flow path on the radiator side to block the cooling water flow to the radiator, and the temperature of the cooling water exceeds the operating temperature To Then, the cooling water flow path on the radiator side is opened, and the cooling water is circulated to the radiator.
 これにより、冷却水の温度が稼動温度Toを下回っている場合、冷却水から外気への放熱を抑制させて冷却水の昇温を促進する。冷却水の温度が稼動温度Toを上回っている場合、冷却水から外気へ放熱させて冷却水の過剰な昇温を抑制する。 Thus, when the temperature of the cooling water is lower than the operating temperature To, the heat release from the cooling water to the outside air is suppressed and the temperature rise of the cooling water is promoted. When the temperature of the cooling water is higher than the operating temperature To, heat is radiated from the cooling water to the outside air to suppress an excessive increase in the temperature of the cooling water.
 冷凍サイクル12は、圧縮機41、コンデンサ23、膨張弁42および蒸発器43を有している。冷凍サイクル12の冷媒はフロン系冷媒である。冷凍サイクル12は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルである。 The refrigeration cycle 12 includes a compressor 41, a condenser 23, an expansion valve 42, and an evaporator 43. The refrigerant of the refrigeration cycle 12 is a fluorocarbon refrigerant. The refrigeration cycle 12 is a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
 圧縮機41は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル12の冷媒を吸入して圧縮して吐出する。圧縮機41は、エンジンの駆動力によってエンジンベルトで駆動される可変容量圧縮機であってもよい。 The compressor 41 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 12. The compressor 41 may be a variable capacity compressor driven by an engine belt by the driving force of the engine.
 コンデンサ23は、圧縮機41から吐出された高圧側冷媒と冷却水とを熱交換させることによって高圧側冷媒を凝縮させる熱交換器である。 The condenser 23 is a heat exchanger that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 41 and the cooling water.
 膨張弁42は、コンデンサ23から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁42は、蒸発器43出口側冷媒の温度および圧力に基づいて蒸発器43出口側冷媒の過熱度を検出する感温部を有する温度式膨張弁である。すなわち、膨張弁42は、蒸発器43出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。膨張弁42は、電気的機構によって絞り通路面積を調節する電気式膨張弁であってもよい。 The expansion valve 42 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 23. The expansion valve 42 is a temperature type expansion valve having a temperature sensing unit that detects the degree of superheat of the evaporator 43 outlet-side refrigerant based on the temperature and pressure of the evaporator 43 outlet-side refrigerant. That is, the expansion valve 42 is a temperature type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the refrigerant on the outlet side of the evaporator 43 falls within a predetermined range. The expansion valve 42 may be an electric expansion valve that adjusts the throttle passage area by an electric mechanism.
 蒸発器43は、膨張弁42で減圧膨張された低圧冷媒と車室内へ送風される空気とを熱交換させることによって低圧冷媒を蒸発させる低圧側熱交換器である。蒸発器43で蒸発した気相冷媒は圧縮機41に吸入されて圧縮される。 The evaporator 43 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 42 and the air blown into the vehicle interior. The gas-phase refrigerant evaporated in the evaporator 43 is sucked into the compressor 41 and compressed.
 車両用熱管理装置10は、蒸発器43の代わりにチラーを備えていてもよい。チラーは、膨張弁42で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって冷却水を冷却する低圧側熱交換器である。 The vehicle thermal management device 10 may include a chiller instead of the evaporator 43. The chiller is a low-pressure side heat exchanger that cools the cooling water by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 42 and the cooling water.
 図2に示すように、蒸発器43およびヒータコア25は、車両用空調装置の室内空調ユニット50のケーシング51に収容されている。ケーシング51の内部には、空気が流れる空気通路が形成されている。 As shown in FIG. 2, the evaporator 43 and the heater core 25 are accommodated in the casing 51 of the indoor air conditioning unit 50 of the vehicle air conditioner. An air passage through which air flows is formed inside the casing 51.
 ケーシング51内において空気流れ最上流部には、図示しない内外気切替箱および図3に示す室内送風機61が配置されている。内外気切替箱は、外気と内気とを切替導入する内外気切替部である。外気は車室外の空気である。内気は車室内の空気である。 In the casing 51, an air / air switching box (not shown) and an indoor fan 61 shown in FIG. The inside / outside air switching box is an inside / outside air switching unit that switches between outside air and inside air. Outside air is outside the passenger compartment. The inside air is the air in the passenger compartment.
 室内送風機61は、空気を吸入して送風する送風部である。ケーシング51内において室内送風機61の空気流れ下流側には、蒸発器43およびヒータコア25が配置されている。ヒータコア25は、蒸発器43よりも空気流れ下流側に配置されている。室内送風機61は、ヒータコア25における空気の流量を調整する空気流量調整部である。 The indoor blower 61 is a blower that sucks air and blows air. In the casing 51, the evaporator 43 and the heater core 25 are arranged on the downstream side of the air flow of the indoor blower 61. The heater core 25 is disposed on the downstream side of the air flow from the evaporator 43. The indoor blower 61 is an air flow rate adjusting unit that adjusts the flow rate of air in the heater core 25.
 ケーシング51内において蒸発器43の空気流れ下流側には、冷風バイパス通路52が形成されている。冷風バイパス通路52は、蒸発器43通過後の冷風がヒータコア25を迂回して流れる通路である。 In the casing 51, a cold air bypass passage 52 is formed on the downstream side of the air flow of the evaporator 43. The cold air bypass passage 52 is a passage through which the cold air after passing through the evaporator 43 flows around the heater core 25.
 蒸発器43とヒータコア25との間には、温度調整部をなすエアミックスドア53が配置されている。エアミックスドア53は、冷風バイパス通路52とヒータコア25側の通風路の開度を調整することにより、ヒータコア25に流入する冷風と冷風バイパス通路52を通過する冷風との流量割合を調整する流量割合調整部である。 Between the evaporator 43 and the heater core 25, an air mix door 53 that constitutes a temperature adjusting unit is disposed. The air mix door 53 adjusts the flow rate ratio between the cool air flowing into the heater core 25 and the cool air passing through the cool air bypass passage 52 by adjusting the opening degree of the cool air bypass passage 52 and the air passage on the heater core 25 side. It is an adjustment unit.
 エアミックスドア53は、ケーシング51に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。 The air mix door 53 is a rotary door having a rotary shaft that is rotatably supported with respect to the casing 51, and a door substrate portion coupled to the rotary shaft.
 ケーシング51内において、ヒータコア25を通過した温風と冷風バイパス通路52を通過した冷風とが混合されて、車室内空間に吹き出される空調風の温度調整がなされる。したがって、エアミックスドア53の開度位置を調整することによって、空調風の温度を所望温度に調整できる。 In the casing 51, the hot air that has passed through the heater core 25 and the cold air that has passed through the cold air bypass passage 52 are mixed, and the temperature of the conditioned air blown into the vehicle interior space is adjusted. Therefore, the temperature of the conditioned air can be adjusted to a desired temperature by adjusting the opening position of the air mix door 53.
 ケーシング51の空気流れ最下流部には、デフロスタ開口部54、フェイス開口部55、フット開口部56Aおよびリヤフット開口部56Bが形成されている。 A defroster opening 54, a face opening 55, a foot opening 56A, and a rear foot opening 56B are formed in the most downstream portion of the casing 51 in the air flow.
 デフロスタ開口部54は、図示しないデフロスタダクトを介して車室内空間に配置された図示しないデフロスタ吹出口に接続されている。デフロスタ吹出口は車室内空間に配置されている。デフロスタ吹出口から車両窓ガラスの内面に向けて空調風が吹き出される。 The defroster opening 54 is connected to a defroster outlet (not shown) disposed in the vehicle interior space via a defroster duct (not shown). The defroster outlet is disposed in the vehicle interior space. Air-conditioned air is blown out from the defroster outlet toward the inner surface of the vehicle window glass.
 フェイス開口部55は、図示しないフェイスダクトを介して図示しないフェイス吹出口に接続されている。フェイス吹出口は車室内空間に配置されている。フェイス吹出口から乗員の上半身側に向けて空調風が吹き出される。 The face opening 55 is connected to a face outlet (not shown) via a face duct (not shown). The face outlet is located in the vehicle interior space. Air-conditioned air is blown out from the face outlet toward the upper body of the passenger.
 フット開口部56Aは、図示しないフットダクトに接続されている。フットダクトは下方に向かって延びている。フットダクトの先端部のフット吹出口から前席乗員の足元部に向けて空調風が吹き出される。 The foot opening 56A is connected to a foot duct (not shown). The foot duct extends downward. Air-conditioned air is blown out from the foot outlet at the tip of the foot duct toward the feet of the front seat occupant.
 リヤフット開口部56Bは、図示しないリヤフットダクトに接続されている。リヤフットダクトは車両後方へ延びている。リヤフットダクトの先端部のリヤフット吹出口から後席乗員の足元部に向けて空調風が吹き出される。 The rear foot opening 56B is connected to a rear foot duct (not shown). The rear foot duct extends rearward of the vehicle. Air-conditioned air is blown out from the rear foot outlet at the tip of the rear foot duct toward the feet of the rear seat occupant.
 デフロスタ開口部54は、デフロスタドア57によって開閉される。フェイス開口部55、フット開口部56Aおよびリヤフット開口部56Bは、フェイス・フットドア58によって開閉される。 The defroster opening 54 is opened and closed by a defroster door 57. The face opening 55, the foot opening 56 </ b> A, and the rear foot opening 56 </ b> B are opened and closed by a face / foot door 58.
 フェイス・フットドア58は、フット通路入口部59を開閉することによって、フット開口部56Aおよびリヤフット開口部56Bを開閉する。フット通路入口部59は、フェイス開口部55近傍からフット開口部56Aおよびリヤフット開口部56Bに至る空気通路の入口部である。 The face / foot door 58 opens and closes the foot opening 56A and the rear foot opening 56B by opening and closing the foot passage entrance 59. The foot passage inlet 59 is an air passage inlet from the vicinity of the face opening 55 to the foot opening 56A and the rear foot opening 56B.
 デフロスタドア57およびフェイス・フットドア58は、ケーシング51に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。 The defroster door 57 and the face / foot door 58 are rotary doors having a rotary shaft that is rotatably supported with respect to the casing 51, and a door substrate portion coupled to the rotary shaft.
 次に、車両用熱管理装置10の電気制御部を図3に基づいて説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置60の出力側には各種制御対象機器が接続されている。制御装置60は、各種制御対象機器の作動を制御する制御部である。 Next, the electric control unit of the vehicle thermal management apparatus 10 will be described with reference to FIG. The control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and peripheral circuits thereof. The control device 60 performs various calculations and processes based on the control program stored in the ROM. Various devices to be controlled are connected to the output side of the control device 60. The control device 60 is a control unit that controls the operation of various devices to be controlled.
 制御装置60によって制御される制御対象機器は、エンジンポンプ20、コンデンサポンプ22、第1切替弁26、第2切替弁27、第3切替弁28、第4切替弁29、圧縮機41、室内空調ユニット50のエアミックスドア53、室内送風機61等である。 The control target devices controlled by the control device 60 are the engine pump 20, the condenser pump 22, the first switching valve 26, the second switching valve 27, the third switching valve 28, the fourth switching valve 29, the compressor 41, and the indoor air conditioning. These are the air mix door 53 of the unit 50, the indoor blower 61, and the like.
 制御装置60の入力側には、内気温度センサ62、外気温度センサ63、日射センサ64、エンジン水温センサ65、コンデンサ水温センサ66、冷媒圧力センサ67、蒸発器温度センサ68等のセンサ群の検出信号が入力される。 On the input side of the control device 60, detection signals of sensor groups such as an inside air temperature sensor 62, an outside air temperature sensor 63, a solar radiation sensor 64, an engine water temperature sensor 65, a condenser water temperature sensor 66, a refrigerant pressure sensor 67, an evaporator temperature sensor 68, and the like. Is entered.
 内気温度センサ62は、内気の温度を検出する内気温度検出部である。外気温度センサ63は、外気の温度を検出する外気温度検出部である。日射センサ64は、車室内の日射量を検出する日射量検出部である。 The inside air temperature sensor 62 is an inside air temperature detector that detects the temperature of the inside air. The outside temperature sensor 63 is an outside temperature detector that detects the temperature of the outside air. The solar radiation sensor 64 is a solar radiation amount detector that detects the amount of solar radiation in the passenger compartment.
 エンジン水温センサ65は、エンジン流路30を流れる冷却水の温度を検出する冷却水温度検出部である。コンデンサ水温センサ66は、コンデンサ流路31を流れる冷却水の温度を検出する冷却水温度検出部である。 The engine water temperature sensor 65 is a cooling water temperature detection unit that detects the temperature of the cooling water flowing through the engine flow path 30. The condenser water temperature sensor 66 is a cooling water temperature detector that detects the temperature of the cooling water flowing through the condenser flow path 31.
 冷媒圧力センサ67は、冷媒の圧力を検出する冷媒圧力検出部である。蒸発器温度センサ68は、蒸発器43の温度を検出する熱交換器温度検出部である。例えば、蒸発器温度センサ68は、蒸発器43の熱交換フィンの温度を検出するフィンサーミスタである。蒸発器温度センサ68は、蒸発器43を流れる冷媒の温度を検出する冷媒温度センサであってもよい。 The refrigerant pressure sensor 67 is a refrigerant pressure detector that detects the pressure of the refrigerant. The evaporator temperature sensor 68 is a heat exchanger temperature detector that detects the temperature of the evaporator 43. For example, the evaporator temperature sensor 68 is a fin thermistor that detects the temperature of the heat exchange fins of the evaporator 43. The evaporator temperature sensor 68 may be a refrigerant temperature sensor that detects the temperature of the refrigerant flowing through the evaporator 43.
 制御装置60の入力側には、操作パネル69に設けられた各種空調操作スイッチからの操作信号が入力される。例えば、操作パネル69は、車室内前部の計器盤付近に配置されている。 Operation signals from various air conditioning operation switches provided on the operation panel 69 are input to the input side of the control device 60. For example, the operation panel 69 is disposed near the instrument panel in the front part of the vehicle interior.
 操作パネル69に設けられた各種空調操作スイッチは、車室内温度設定スイッチ69a、オートスイッチ、エアコンスイッチ、風量設定スイッチおよび空調停止スイッチ等である。 The various air conditioning operation switches provided on the operation panel 69 are a vehicle interior temperature setting switch 69a, an auto switch, an air conditioner switch, an air volume setting switch, an air conditioning stop switch, and the like.
 各スイッチは機械的に押し込むことによって電気接点を導通させる方式のプッシュスイッチでもよいし、静電パネル上の所定の領域に触れることによって反応するタッチスクリーン方式でもよい。 Each switch may be a push switch in which electrical contacts are made conductive by being mechanically pressed, or may be a touch screen system that reacts by touching a predetermined area on the electrostatic panel.
 車室内温度設定スイッチ69aは、乗員の操作によって車室内目標温度Tsetを設定する目標温度設定部である。オートスイッチは、空調の自動制御を設定または解除するスイッチである。エアコンスイッチは、冷房または除湿の作動・停止を切り替えるスイッチである。風量設定スイッチは、室内送風機から送風される風量を設定するスイッチである。空調停止スイッチは、空調を停止させるスイッチである。 The vehicle interior temperature setting switch 69a is a target temperature setting unit that sets the vehicle interior target temperature Tset by the operation of the passenger. The auto switch is a switch for setting or canceling automatic control of air conditioning. The air conditioner switch is a switch for switching between operation and stop of cooling or dehumidification. The air volume setting switch is a switch for setting the air volume blown from the indoor blower. The air conditioning stop switch is a switch that stops air conditioning.
 制御装置60は、外気温度と車室内吹出空気の目標吹出温度TAOとに基づいて空調モードを決定する。目標吹出温度TAOは、内気温Trを速やかに乗員の所望の目標温度Tsetに近づけるために決定される値であって、下記数式F1により算出される。 The control device 60 determines the air conditioning mode based on the outside air temperature and the target blowing temperature TAO of the vehicle cabin blowing air. The target blowing temperature TAO is a value that is determined in order to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F1.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C …F1
 この数式において、Tsetは車室内温度設定スイッチ69aによって設定された車室内の目標温度であり、Trは内気温度センサ62によって検出された内気温度であり、Tamは外気温度センサ63によって検出された外気温度であり、Tsは日射センサ64によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C F1
In this equation, Tset is the target temperature in the vehicle interior set by the vehicle interior temperature setting switch 69a, Tr is the internal air temperature detected by the internal air temperature sensor 62, and Tam is the external air detected by the external air temperature sensor 63. Temperature, and Ts is the amount of solar radiation detected by the solar radiation sensor 64. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 次に、上記構成における作動を説明する。圧縮機41およびエンジン21が始動すると、制御装置60は、図4のフローチャートに示す制御処理を実行する。 Next, the operation in the above configuration will be described. When the compressor 41 and the engine 21 are started, the control device 60 executes a control process shown in the flowchart of FIG.
 まず、ステップS100では、エンジン21側の冷却水温度およびコンデンサ23側の冷却水温度がともに稼動温度To未満であるか否かを判定する。エンジン21側の冷却水温度とは、エンジン水温センサ65が検出した冷却水温度のことである。コンデンサ23側の冷却水温度とは、コンデンサ水温センサ66が検出した温度のことである。 First, in step S100, it is determined whether or not the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are both lower than the operating temperature To. The coolant temperature on the engine 21 side is the coolant temperature detected by the engine coolant temperature sensor 65. The cooling water temperature on the condenser 23 side is the temperature detected by the condenser water temperature sensor 66.
 例えば、稼動温度Toは60℃である。稼動温度To未満の冷却水がEGRクーラ24に導入されると、EGRクーラ24で排気ガスが冷却される際に凝縮水が発生するおそれがある。そのため、稼動温度To未満の冷却水がEGRクーラ24に導入されないようにする必要がある。 For example, the operating temperature To is 60 ° C. If cooling water having an operating temperature To lower than that is introduced into the EGR cooler 24, condensed water may be generated when the exhaust gas is cooled by the EGR cooler 24. Therefore, it is necessary to prevent the cooling water having an operating temperature To lower than the EGR cooler 24 from being introduced.
 ステップS100にてエンジン21側の冷却水温度およびコンデンサ23側の冷却水温度がともに稼動温度To未満であると判定した場合、ステップS110へ進む。例えば、圧縮機41およびエンジン21が始動した直後の場合、エンジン21側の冷却水温度およびコンデンサ23側の冷却水温度がともに稼動温度To未満になる。 If it is determined in step S100 that both the coolant temperature on the engine 21 side and the coolant temperature on the condenser 23 side are lower than the operating temperature To, the process proceeds to step S110. For example, immediately after the compressor 41 and the engine 21 are started, the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are both lower than the operating temperature To.
 ステップS110では、EGRクーラ24およびヒータコア25に冷却水が導入されないように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。ステップS110では、コンデンサ23側の冷却水温度が稼動温度To以上である場合と比較して、コンデンサ23側の冷却水のうちEGRクーラ24およびヒータコア25に導入される冷却水の流量が少なくなるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御してもよい。 In step S110, the operation of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled so that the cooling water is not introduced into the EGR cooler 24 and the heater core 25. In step S110, compared to the case where the cooling water temperature on the condenser 23 side is equal to or higher than the operating temperature To, the flow rate of the cooling water introduced into the EGR cooler 24 and the heater core 25 among the cooling water on the condenser 23 side is reduced. In addition, the operations of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 may be controlled.
 具体的には、図5に示すように、EGRクーラ24およびヒータコア25がエンジン流路30およびコンデンサ流路31から遮断されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 Specifically, as shown in FIG. 5, the first switching valve 26, the second switching valve 27, and the third switching valve so that the EGR cooler 24 and the heater core 25 are cut off from the engine flow path 30 and the condenser flow path 31. 28 and the operation of the fourth switching valve 29 are controlled.
 これにより、エンジン21側の冷却水は、エンジンポンプ20、エンジン21およびエンジン側バイパス流路32を循環する。コンデンサ23側の冷却水は、コンデンサポンプ22、コンデンサ23およびコンデンサ側バイパス流路33を循環する。 Thereby, the coolant on the engine 21 side circulates through the engine pump 20, the engine 21, and the engine-side bypass passage 32. The cooling water on the condenser 23 side circulates through the condenser pump 22, the condenser 23, and the condenser-side bypass passage 33.
 一方、ステップS100にてエンジン21側の冷却水温度およびコンデンサ23側の冷却水温度のうち少なくとも一方が稼動温度To未満でないと判定した場合、ステップS120へ進む。 On the other hand, if it is determined in step S100 that at least one of the coolant temperature on the engine 21 side and the coolant temperature on the condenser 23 side is not lower than the operating temperature To, the process proceeds to step S120.
 ステップS120では、エンジン21側の冷却水温度が稼動温度To未満であり且つコンデンサ23側の冷却水温度が稼動温度To以上であるか否かを判定する。 In step S120, it is determined whether or not the coolant temperature on the engine 21 side is lower than the operating temperature To and the coolant temperature on the condenser 23 side is equal to or higher than the operating temperature To.
 ステップS120にてエンジン21側の冷却水温度が稼動温度To未満であり且つコンデンサ23側の冷却水温度が稼動温度To以上であると判定した場合、ステップS130へ進む。例えば、例えば圧縮機41およびエンジン21が始動してからある程度の時間が経過した場合、コンデンサ23側の冷却水温度が稼動温度To以上になる。 If it is determined in step S120 that the coolant temperature on the engine 21 side is lower than the operating temperature To and the coolant temperature on the condenser 23 side is equal to or higher than the operating temperature To, the process proceeds to step S130. For example, when a certain amount of time has elapsed since the compressor 41 and the engine 21 are started, the coolant temperature on the condenser 23 side becomes equal to or higher than the operating temperature To.
 ステップS130では、EGRクーラ24およびヒータコア25にコンデンサ23側の冷却水およびエンジン21側の冷却水が導入されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 In step S130, the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 26 are introduced into the EGR cooler 24 and the heater core 25 so that the cooling water on the condenser 23 side and the cooling water on the engine 21 side are introduced. The operation of the switching valve 29 is controlled.
 具体的には、図6に示すように、EGRクーラ24およびヒータコア25がコンデンサ流路31に接続されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。その後、EGRクーラ24およびヒータコア25がコンデンサ流路31およびエンジン流路30の両方に接続されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 Specifically, as shown in FIG. 6, the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching are made so that the EGR cooler 24 and the heater core 25 are connected to the condenser flow path 31. The operation of the valve 29 is controlled. Thereafter, the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 are connected so that the EGR cooler 24 and the heater core 25 are connected to both the condenser flow path 31 and the engine flow path 30. Control the operation.
 一方、ステップS120にてエンジン21側の冷却水温度が稼動温度To未満でないと判定した場合、ステップS140へ進み、EGRクーラ24およびヒータコア25にエンジン21側の冷却水が導入されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 On the other hand, if it is determined in step S120 that the cooling water temperature on the engine 21 side is not lower than the operating temperature To, the process proceeds to step S140, and the first cooling water is introduced into the EGR cooler 24 and the heater core 25 so that the cooling water on the engine 21 side is introduced. The operation of the switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled.
 具体的には、EGRクーラ24およびヒータコア25がエンジン流路30に接続されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 Specifically, the operations of the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29 are controlled so that the EGR cooler 24 and the heater core 25 are connected to the engine flow path 30. .
 本実施形態における作動結果の一例を図7に示す。図7は、圧縮機41およびエンジン21が始動してからの冷却水温度およびエンジン温度の推移を示している。 An example of the operation result in this embodiment is shown in FIG. FIG. 7 shows changes in the coolant temperature and the engine temperature since the compressor 41 and the engine 21 are started.
 図7に示すように、圧縮機41およびエンジン21が始動した直後では、エンジン21側の冷却水温度およびコンデンサ23側の冷却水温度がともに外気相当温度であり、稼動温度To未満である。そのため、図5に示す冷却水回路に切り替えられて、EGRクーラ24およびヒータコア25に冷却水が導入されない。外気相当温度は、外気温に相当する温度であってもよい。外気相当温度は、外気温とほぼ同じ温度であってもよい。 As shown in FIG. 7, immediately after the compressor 41 and the engine 21 are started, the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are both outside air equivalent temperatures, which are lower than the operating temperature To. Therefore, the cooling water circuit shown in FIG. 5 is switched to prevent the cooling water from being introduced into the EGR cooler 24 and the heater core 25. The outside air equivalent temperature may be a temperature corresponding to the outside air temperature. The outside air equivalent temperature may be substantially the same as the outside air temperature.
 これにより、エンジン21側の冷却水は、エンジン21からの放熱によって徐々に昇温し、コンデンサ23側の冷却水は、コンデンサ23からの放熱によって徐々に昇温する。すなわち、図7に示すように、エンジン21側の冷却水へエンジン21から熱が供給され、コンデンサ23側の冷却水へコンデンサ23から熱が供給される。 Thereby, the cooling water on the engine 21 side gradually rises in temperature due to heat radiation from the engine 21, and the cooling water on the condenser 23 side gradually rises in temperature due to heat radiation from the capacitor 23. That is, as shown in FIG. 7, heat is supplied from the engine 21 to the cooling water on the engine 21 side, and heat is supplied from the condenser 23 to the cooling water on the condenser 23 side.
 このとき、エンジン21の熱容量が大きいことから、コンデンサ23側の冷却水の温度上昇は、エンジン21側の冷却水の温度上昇よりも早くなる。そのため、コンデンサ23側の冷却水がエンジン21側の冷却水よりも先に稼動温度To以上になる。 At this time, since the heat capacity of the engine 21 is large, the temperature rise of the cooling water on the condenser 23 side is faster than the temperature rise of the cooling water on the engine 21 side. Therefore, the cooling water on the condenser 23 side becomes equal to or higher than the operating temperature To before the cooling water on the engine 21 side.
 コンデンサ23側の冷却水が稼動温度To以上になると、図6に示す冷却水回路に切り替えられて、EGRクーラ24およびヒータコア25にコンデンサ23側の冷却水が導入される。 When the cooling water on the condenser 23 side becomes equal to or higher than the operating temperature To, the cooling water circuit shown in FIG. 6 is switched to introduce the cooling water on the condenser 23 side into the EGR cooler 24 and the heater core 25.
 EGRクーラ24に導入される冷却水の温度が稼動温度To以上であるので、EGRクーラ24で排気ガスが冷却される際に凝縮水が発生することを抑制できる。 Since the temperature of the cooling water introduced into the EGR cooler 24 is equal to or higher than the operating temperature To, it is possible to suppress the generation of condensed water when the exhaust gas is cooled by the EGR cooler 24.
 EGRクーラ24に冷却水が導入されると、EGRクーラ24から冷却水に熱が供給される。すなわち、排気ガスの熱がEGRクーラ24を介して冷却水に供給される。そのため、コンデンサ23側の冷却水へ供給される熱量が増加する。 When the cooling water is introduced into the EGR cooler 24, heat is supplied from the EGR cooler 24 to the cooling water. That is, the heat of the exhaust gas is supplied to the cooling water through the EGR cooler 24. Therefore, the amount of heat supplied to the cooling water on the condenser 23 side increases.
 ヒータコア25に冷却水が導入されると、車室内へ送風される空気がヒータコア25で加熱される。すなわち、車室内が暖房される。このとき、コンデンサ23から冷却水に供給された熱のみならずEGRクーラ24から冷却水に供給された熱もヒータコア25で利用される。そのため、暖房のためにコンデンサ23から冷却水に供給される熱量を低減できるので、暖房のための圧縮機41の消費動力を低減できる。 When cooling water is introduced into the heater core 25, the air blown into the passenger compartment is heated by the heater core 25. That is, the vehicle interior is heated. At this time, not only the heat supplied from the condenser 23 to the cooling water but also the heat supplied from the EGR cooler 24 to the cooling water is used by the heater core 25. Therefore, since the amount of heat supplied from the condenser 23 to the cooling water for heating can be reduced, the power consumption of the compressor 41 for heating can be reduced.
 EGRクーラ24およびヒータコア25にコンデンサ23側の冷却水が導入される場合、ヒータコア25に導入される冷却水の温度がある所定の温度になるように、EGRクーラ24に導入される冷却水の流量とヒータコア25に導入される冷却水の流量とを調整してもよい。 When the cooling water on the condenser 23 side is introduced into the EGR cooler 24 and the heater core 25, the flow rate of the cooling water introduced into the EGR cooler 24 so that the temperature of the cooling water introduced into the heater core 25 becomes a predetermined temperature. And the flow rate of the cooling water introduced into the heater core 25 may be adjusted.
 その後、EGRクーラ24およびヒータコア25にコンデンサ23側の冷却水のみならずエンジン21側の冷却水も導入されるように冷却水回路が切り替えられる。 Thereafter, the cooling water circuit is switched so that not only the cooling water on the condenser 23 side but also the cooling water on the engine 21 side is introduced into the EGR cooler 24 and the heater core 25.
 これにより、図7に示すように、エンジン21側の冷却水へコンデンサ23およびEGRクーラ24からも熱が供給されるので、エンジン21側の冷却水が稼動温度To以上に早期に加熱される。そのため、エンジン21の温度が早期に稼動温度Toに到達し、エンジン21が早期に暖機される。 As a result, as shown in FIG. 7, since heat is also supplied to the cooling water on the engine 21 side from the condenser 23 and the EGR cooler 24, the cooling water on the engine 21 side is heated earlier than the operating temperature To. Therefore, the temperature of the engine 21 reaches the operating temperature To early, and the engine 21 is warmed up early.
 図7の下側のグラフにおける二点鎖線は比較例を示している。この比較例では、圧縮機41およびエンジン21が始動した直後から、エンジン21にコンデンサ23側の冷却水を導入させる。したがって、エンジン21およびコンデンサ23からの放熱によってエンジン21が暖機される。 The two-dot chain line in the lower graph of FIG. 7 shows a comparative example. In this comparative example, the cooling water on the condenser 23 side is introduced into the engine 21 immediately after the compressor 41 and the engine 21 are started. Therefore, the engine 21 is warmed up by heat radiation from the engine 21 and the capacitor 23.
 これに対し、本実施形態では、コンデンサ23側の冷却水の温度が稼動温度Toに達するまでは、エンジン21からの放熱によってエンジン21が暖機され、コンデンサ23からの放熱をエンジン21の暖機に利用しないので、エンジン21の温度上昇が比較例よりも遅くなる。 On the other hand, in the present embodiment, the engine 21 is warmed up by heat radiation from the engine 21 until the temperature of the cooling water on the condenser 23 side reaches the operating temperature To, and the heat radiation from the capacitor 23 is warmed up. Therefore, the temperature rise of the engine 21 is slower than that of the comparative example.
 本実施形態においてコンデンサ23側の冷却水の温度が稼動温度Toに達した後は、エンジン21からの放熱に加えてコンデンサ23およびEGRクーラ24からの放熱がエンジン21の暖機に利用されるので、エンジン21の温度上昇が比較例よりも早くなり、その結果、エンジン21の早期暖機が可能となる。 In this embodiment, after the temperature of the cooling water on the condenser 23 side reaches the operating temperature To, in addition to the heat radiation from the engine 21, the heat radiation from the condenser 23 and the EGR cooler 24 is used for warming up the engine 21. The temperature rise of the engine 21 becomes faster than that of the comparative example, and as a result, the engine 21 can be warmed up early.
 本実施形態では、ステップS130および図6で説明したように、制御装置60、第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29は、エンジン21の暖機時、コンデンサ23で生成された熱がエンジン21よりもEGRクーラ24に優先的に供給されるように冷却水の流れを制御する。 In the present embodiment, as described in step S130 and FIG. 6, the control device 60, the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 are used to warm up the engine 21. At this time, the flow of the cooling water is controlled so that the heat generated by the condenser 23 is preferentially supplied to the EGR cooler 24 rather than the engine 21.
 これによると、コンデンサ23で生成された熱がエンジン21よりもEGRクーラ24に優先的に供給されるので、コンデンサ23で生成された熱がエンジン21の暖機に費やされることを抑制できる。 According to this, since the heat generated by the condenser 23 is preferentially supplied to the EGR cooler 24 rather than the engine 21, it is possible to suppress the heat generated by the condenser 23 from being used to warm up the engine 21.
 そのため、EGRクーラ24に流入する冷却水を早期に稼動温度To以上にすることができるので、EGRクーラ24の機能を早期に発揮させることができるとともに、EGRクーラ24を熱源として冷却水を早期に加熱できる。その結果、エンジン21を早期に暖機できる。 As a result, the cooling water flowing into the EGR cooler 24 can be quickly brought to the operating temperature To or higher, so that the function of the EGR cooler 24 can be exhibited early, and the cooling water can be used early using the EGR cooler 24 as a heat source. Can be heated. As a result, the engine 21 can be warmed up early.
 本実施形態では、EGRクーラ24およびヒータコア25は、冷却水の流れにおいて互いに並列に配置されている。これによると、EGRクーラ24およびヒータコア25が互いに直列に配置されている場合と比較して、EGRクーラ24に流入する冷却水の温度を早期に上昇させることができる。 In this embodiment, the EGR cooler 24 and the heater core 25 are arranged in parallel with each other in the flow of the cooling water. According to this, compared with the case where the EGR cooler 24 and the heater core 25 are arranged in series with each other, the temperature of the cooling water flowing into the EGR cooler 24 can be raised earlier.
 本実施形態では、第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29は、EGRクーラ24およびヒータコア25と、エンジン21およびコンデンサ23との間における冷却水の循環状態を切り替える。 In the present embodiment, the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29 are the cooling water between the EGR cooler 24 and the heater core 25, the engine 21 and the condenser 23. Switch the circulation state.
 これによると、EGRクーラ24およびヒータコア25に対して、エンジン21で加熱された冷却水が供給される場合と、コンデンサ23で加熱された冷却水が供給される場合とを切り替えることができる。 According to this, it is possible to switch between the case where the cooling water heated by the engine 21 is supplied to the EGR cooler 24 and the heater core 25 and the case where the cooling water heated by the condenser 23 is supplied.
 本実施形態では、制御装置60は、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度To以上になった場合、コンデンサ23で加熱された冷却水がEGRクーラ24に導入されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 In the present embodiment, the control device 60 causes the cooling water heated by the condenser 23 to be introduced into the EGR cooler 24 when the temperature of the cooling water detected by the condenser water temperature sensor 66 becomes equal to or higher than the operating temperature To. The operation of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled.
 これにより、EGRクーラ24に稼動温度To未満の冷却水が流れることを抑制できるので、EGRクーラ24で凝縮水が発生することを抑制できる。 Thereby, since it is possible to suppress the flow of cooling water below the operating temperature To through the EGR cooler 24, it is possible to suppress the generation of condensed water in the EGR cooler 24.
 本実施形態では、ステップS110および図5で説明したように、制御装置60は、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度To未満である場合、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度To以上である場合と比較して、コンデンサ23で加熱された冷却水のうちヒータコア25を流れる冷却水の流量が少なくなるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 In the present embodiment, as described in step S110 and FIG. 5, the control device 60 detects the cooling water temperature detected by the condenser water temperature sensor 66 when the cooling water temperature is lower than the operating temperature To. Compared to the case where the temperature of the cooling water is equal to or higher than the operating temperature To, the first switching valve 26 and the second switching valve are set such that the flow rate of the cooling water flowing through the heater core 25 out of the cooling water heated by the condenser 23 is reduced. 27, the operation of the third switching valve 28 and the fourth switching valve 29 is controlled.
 これによると、コンデンサ23で加熱された冷却水が稼動温度To未満である場合、コンデンサ23で加熱された冷却水がヒータコア25で熱交換されることを抑制できるので、コンデンサ23で加熱された冷却水を早期に稼動温度To以上に上昇させることができる。 According to this, when the cooling water heated by the capacitor 23 is lower than the operating temperature To, it is possible to suppress the heat exchange of the cooling water heated by the capacitor 23 by the heater core 25, and thus the cooling heated by the capacitor 23 Water can be raised to the operating temperature To at an early stage.
 本実施形態では、ステップS130および図6で説明したように、制御装置60は、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度To以上になった場合、コンデンサ23で加熱された冷却水がEGRクーラ24に導入されるとともにヒータコア25にも導入されるように、第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 In the present embodiment, as described in step S130 and FIG. 6, the control device 60 causes the cooling heated by the condenser 23 when the temperature of the cooling water detected by the condenser water temperature sensor 66 becomes equal to or higher than the operating temperature To. The operation of the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29 is controlled so that water is introduced into the EGR cooler 24 and also into the heater core 25.
 これによると、コンデンサ23で加熱された冷却水が稼動温度To以上になった場合、コンデンサ23で加熱された冷却水のみならずEGRクーラ24で加熱された冷却水を利用してヒータコア25で空気を加熱できる。そのため、車室内を暖房するためにコンデンサ23で消費されるエネルギーを低減できる。換言すれば、圧縮機41の消費動力を低減できる。 According to this, when the cooling water heated by the condenser 23 becomes the operating temperature To or higher, not only the cooling water heated by the condenser 23 but also the air heated by the heater core 25 using the cooling water heated by the EGR cooler 24. Can be heated. Therefore, the energy consumed by the capacitor 23 for heating the passenger compartment can be reduced. In other words, the power consumption of the compressor 41 can be reduced.
 (第2実施形態)
 上記実施形態では、エンジン21側の冷却水温度およびコンデンサ23側の冷却水温度がともに稼動温度To未満である場合、EGRクーラ24およびヒータコア25に冷却水を導入しないが、本実施形態では、エンジン21側の冷却水温度およびコンデンサ23側の冷却水温度がともに稼動温度To未満である場合、図8に示すように、ヒータコア25にコンデンサ23側の冷却水を導入する。
(Second Embodiment)
In the above embodiment, when both the cooling water temperature on the engine 21 side and the cooling water temperature on the condenser 23 side are less than the operating temperature To, the cooling water is not introduced into the EGR cooler 24 and the heater core 25. When both the cooling water temperature on the 21 side and the cooling water temperature on the condenser 23 side are lower than the operating temperature To, the cooling water on the condenser 23 side is introduced into the heater core 25 as shown in FIG.
 具体的には、ヒータコア25にコンデンサ23側の冷却水が導入され、EGRクーラ24に冷却水が導入されないように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 Specifically, the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching are performed so that the cooling water on the condenser 23 side is introduced into the heater core 25 and the cooling water is not introduced into the EGR cooler 24. The operation of the valve 29 is controlled.
 これにより、圧縮機41およびエンジン21が始動した直後から、コンデンサ23側の冷却水の温度が稼動温度Toまで上昇するまでの間においても、ヒータコア25である程度の暖房を行うことができる。 Thereby, even after the compressor 41 and the engine 21 are started, the heater core 25 can perform a certain amount of heating even during the period from when the temperature of the cooling water on the condenser 23 side rises to the operating temperature To.
 このとき、制御装置60は、第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29によってヒータコア25に流入する冷却水の流量を減少させるとともに、室内送風機61によってヒータコア25に流入する空気の流量を減少させるのが望ましい。ヒータコア25の熱交換性能が低下するので、コンデンサ23側の冷却水の温度を早期に稼動温度Toまで上昇させることができるからである。 At this time, the control device 60 reduces the flow rate of the cooling water flowing into the heater core 25 by the first switching valve 26, the second switching valve 27, the third switching valve 28 and the fourth switching valve 29, and It is desirable to reduce the flow rate of air flowing into the heater core 25. This is because the heat exchange performance of the heater core 25 is lowered, so that the temperature of the cooling water on the condenser 23 side can be raised to the operating temperature To early.
 図9の一点鎖線は、ヒータコア25における冷却水温度の推移を示している。ヒータコア25における冷却水温度は稼動温度Toまで上昇する。通常、稼動温度Toは目標吹出温度TAOよりも高い温度に設定される。図9の例では、稼動温度Toは60℃であり、目標吹出温度TAOは50℃である。したがって、ヒータコア25を通って吹き出される空気の温度は、目標吹出温度TAOよりも高くなってしまう。 9 represents the transition of the cooling water temperature in the heater core 25. The cooling water temperature in the heater core 25 rises to the operating temperature To. Usually, the operating temperature To is set to a temperature higher than the target blowing temperature TAO. In the example of FIG. 9, the operating temperature To is 60 ° C., and the target blowing temperature TAO is 50 ° C. Therefore, the temperature of the air blown out through the heater core 25 becomes higher than the target blowing temperature TAO.
 そこで、制御装置60がエアミックスドア53の作動を制御することによって、図9の実線に示すように室内空調ユニット50から吹き出される空気の温度を目標吹出温度TAOに近づけるのが望ましい。 Therefore, it is desirable that the control device 60 controls the operation of the air mix door 53 so that the temperature of the air blown from the indoor air conditioning unit 50 approaches the target blow temperature TAO as shown by the solid line in FIG.
 本実施形態では、制御装置60は、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度Toに向かって上昇している場合、コンデンサ23で加熱された冷却水がヒータコア25に導入されるように第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 In the present embodiment, when the temperature of the cooling water detected by the condenser water temperature sensor 66 is rising toward the operating temperature To, the control device 60 introduces the cooling water heated by the condenser 23 into the heater core 25. Thus, the operation of the first switching valve 26, the second switching valve 27, the third switching valve 28, and the fourth switching valve 29 is controlled.
 これによると、コンデンサ23で加熱された冷却水が稼動温度To未満であっても、車室内へ送風される空気をヒータコア25で加熱できる。そのため、車室内の暖房を早期に開始できる。 According to this, even if the cooling water heated by the condenser 23 is lower than the operating temperature To, the air blown into the passenger compartment can be heated by the heater core 25. Therefore, heating of the passenger compartment can be started early.
 本実施形態では、制御装置60は、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度Toに向かって上昇している場合、コンデンサ水温センサ66で検出された冷却水の温度が稼動温度To以上である場合と比較して、ヒータコア25における空気の流量および冷却水の流量のうち少なくとも一方が小さくなるように室内送風機61、第1切替弁26、第2切替弁27、第3切替弁28および第4切替弁29の作動を制御する。 In the present embodiment, when the temperature of the cooling water detected by the condenser water temperature sensor 66 increases toward the operating temperature To, the control device 60 determines that the temperature of the cooling water detected by the condenser water temperature sensor 66 is the operating temperature. The indoor blower 61, the first switching valve 26, the second switching valve 27, and the third switching valve are set so that at least one of the air flow rate and the cooling water flow rate in the heater core 25 is smaller than that in the case of being equal to or higher than To. 28 and the operation of the fourth switching valve 29 are controlled.
 これによると、ヒータコア25での熱交換量を抑制できるので、冷却水の温度を稼動温度Toまで早期に上昇させることができる。しかも、冷凍サイクル12の高圧側冷媒圧力を上昇できるので、冷却水の温度上昇速度を高めることができる。 According to this, since the amount of heat exchange in the heater core 25 can be suppressed, the temperature of the cooling water can be raised to the operating temperature To early. In addition, since the high-pressure side refrigerant pressure of the refrigeration cycle 12 can be increased, the temperature increase rate of the cooling water can be increased.
 本実施形態では、制御装置60は、コンデンサ水温センサ66で検出された冷却水の温度が目標吹出温度TAOを上回っている場合、コンデンサ水温センサ66で検出された冷却水の温度が目標吹出温度TAO以下である場合と比較して、ヒータコア25に流入する空気の流量の割合が小さくなり、ヒータコア25をバイパスして流れる空気の流量の割合が大きくなるようにエアミックスドア53の作動を制御する。 In the present embodiment, when the temperature of the cooling water detected by the condenser water temperature sensor 66 is higher than the target outlet temperature TAO, the controller 60 determines that the temperature of the cooling water detected by the condenser water temperature sensor 66 is the target outlet temperature TAO. Compared with the case below, the operation of the air mix door 53 is controlled so that the ratio of the flow rate of air flowing into the heater core 25 becomes smaller and the ratio of the flow rate of air flowing by bypassing the heater core 25 becomes larger.
 これによると、コンデンサ23で加熱された冷却水の温度が目標吹出温度TAOよりも高くなっても、車室内へ吹き出される空気の温度が目標吹出温度TAOを上回ることを抑制できるので、車室内へ吹き出される空気の温度を適切に調整できる。 According to this, even if the temperature of the cooling water heated by the condenser 23 is higher than the target blowing temperature TAO, the temperature of the air blown into the vehicle interior can be suppressed from exceeding the target blowing temperature TAO. The temperature of the air blown out can be adjusted appropriately.
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。 The above embodiments can be appropriately combined. The above embodiment can be variously modified as follows, for example.
 上記各実施形態では、冷却水回路11を循環する熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。 In each of the above embodiments, cooling water is used as the heat medium circulating in the cooling water circuit 11, but various media such as oil may be used as the heat medium.
 熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。 Nanofluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. In addition to the effect of lowering the freezing point as in the case of cooling water using ethylene glycol (so-called antifreeze liquid), the following effects can be obtained by mixing the nanoparticles with the heat medium.
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。 That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。 Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。 According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
 また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。 In addition, since the heat capacity of the heat medium can be increased, the amount of heat stored in the heat medium itself (cold heat stored by sensible heat) can be increased.
 蓄冷熱量を増加させることにより、圧縮機41を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理装置10の省動力化が可能になる。 Even if the compressor 41 is not operated by increasing the amount of cold storage heat, it is possible to control the temperature and cooling of the equipment using the cold storage heat for a certain amount of time. Motorization becomes possible.
 ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦と横の比率を表す形状指標である。 The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio between the vertical and horizontal dimensions of the nanoparticles.
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。 Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
 上記各実施形態の冷凍サイクル12では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。 In the refrigeration cycle 12 of each of the above embodiments, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like may be used. Good.
 上記各実施形態の冷凍サイクル12は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。 The refrigeration cycle 12 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but constitutes a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. You may do it.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  エンジン(21)を冷却する熱媒体が循環する熱媒体回路(11)と、
     前記熱媒体を加熱する熱源部(23)と、
     流入する前記熱媒体が所定温度(To)以上であると機能を発揮できるとともに前記熱媒体を加熱できる機器(24)とを備え、
     前記エンジン(21)の暖機時、前記熱源部(23)で生成された熱が前記エンジン(21)よりも前記機器(24)に優先的に供給される車両用熱管理装置。
    A heat medium circuit (11) in which a heat medium for cooling the engine (21) circulates;
    A heat source section (23) for heating the heat medium;
    A device (24) capable of exhibiting a function when the heat medium flowing in is at a predetermined temperature (To) or higher and capable of heating the heat medium,
    The vehicle thermal management device in which, when the engine (21) is warmed up, heat generated by the heat source unit (23) is preferentially supplied to the device (24) over the engine (21).
  2.  車室内へ送風される空気と前記熱媒体とを熱交換して前記空気を加熱するヒータコア(25)をさらに備え、
     前記機器(24)および前記ヒータコア(25)は、前記熱媒体の流れにおいて互いに並列に配置されている請求項1に記載の車両用熱管理装置。
    It further includes a heater core (25) for heating the air by exchanging heat between the air blown into the passenger compartment and the heat medium,
    The vehicle thermal management device according to claim 1, wherein the device (24) and the heater core (25) are arranged in parallel with each other in the flow of the heat medium.
  3.  前記機器(24)、前記ヒータコア(25)、前記エンジン(21)、前記熱源部(23)の間における前記熱媒体の循環状態を切り替える切替部(26、27、28、29)をさらに備える請求項1または2に記載の車両用熱管理装置。 A switching unit (26, 27, 28, 29) that switches a circulation state of the heat medium among the device (24), the heater core (25), the engine (21), and the heat source unit (23). Item 3. The vehicle thermal management device according to Item 1 or 2.
  4.  前記熱源部(23)で加熱された前記熱媒体の温度を検出する温度検出部(66)と、
     前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)以上になった場合、前記熱源部(23)で加熱された前記熱媒体が前記機器(24)に導入されるように前記切替部(26、27、28、29)の作動を制御する制御部(60)とをさらに備える請求項1ないし3のいずれか1つに記載の車両用熱管理装置。
    A temperature detection section (66) for detecting the temperature of the heat medium heated by the heat source section (23);
    When the temperature of the heat medium detected by the temperature detection unit (66) becomes equal to or higher than the predetermined temperature (To), the heat medium heated by the heat source unit (23) is introduced into the device (24). The vehicle thermal management device according to any one of claims 1 to 3, further comprising a control unit (60) for controlling the operation of the switching unit (26, 27, 28, 29).
  5.  前記制御部(60)は、前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)に向かって上昇している場合、前記熱源部(23)で加熱された前記熱媒体が前記ヒータコア(25)に導入されるように前記切替部(26、27、28、29)の作動を制御する請求項4に記載の車両用熱管理装置。 When the temperature of the heat medium detected by the temperature detection unit (66) is rising toward the predetermined temperature (To), the control unit (60) is heated by the heat source unit (23). The vehicle thermal management device according to claim 4, wherein the operation of the switching unit (26, 27, 28, 29) is controlled such that the heat medium is introduced into the heater core (25).
  6.  前記ヒータコア(25)における前記空気の流量を調整する空気流量調整部(61)をさらに備え、
     前記切替部(26、27、28、29)は、前記ヒータコア(25)における前記熱媒体の流量を調整可能になっており、
     前記制御部(60)は、前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)に向かって上昇している場合、前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)以上である場合と比較して、前記ヒータコア(25)における前記空気の流量および前記熱媒体の流量のうち少なくとも一方が小さくなるように前記空気流量調整部(61)および前記切替部(26、27、28、29)の作動を制御する請求項5に記載の車両用熱管理装置。
    An air flow rate adjustment unit (61) for adjusting the flow rate of the air in the heater core (25);
    The switching unit (26, 27, 28, 29) can adjust the flow rate of the heat medium in the heater core (25),
    When the temperature of the heat medium detected by the temperature detection unit (66) increases toward the predetermined temperature (To), the control unit (60) is detected by the temperature detection unit (66). Compared with the case where the temperature of the heat medium is equal to or higher than the predetermined temperature (To), the air flow rate is such that at least one of the air flow rate and the heat medium flow rate in the heater core (25) is smaller. The vehicle thermal management device according to claim 5, wherein the operation of the adjustment unit (61) and the switching unit (26, 27, 28, 29) is controlled.
  7.  前記ヒータコア(25)に流入する前記空気と、前記ヒータコア(25)をバイパスして流れる前記空気との流量割合を調整する流量割合調整部(53)とをさらに備え、
     前記制御部(60)は、前記温度検出部(66)で検出された前記熱媒体の温度が目標温度(TAO)を上回っている場合、前記温度検出部(66)で検出された前記熱媒体の温度が前記目標温度(TAO)以下である場合と比較して、前記ヒータコア(25)に流入する前記空気の流量の割合が小さくなり、前記ヒータコア(25)をバイパスして流れる前記空気の流量の割合が大きくなるように前記流量割合調整部(53)の作動を制御する請求項5または6に記載の車両用熱管理装置。
    A flow rate adjustment unit (53) for adjusting a flow rate ratio between the air flowing into the heater core (25) and the air flowing by bypassing the heater core (25);
    When the temperature of the heat medium detected by the temperature detection unit (66) exceeds a target temperature (TAO), the control unit (60) detects the heat medium detected by the temperature detection unit (66). The ratio of the flow rate of the air flowing into the heater core (25) is smaller than the case where the temperature of the air is below the target temperature (TAO), and the flow rate of the air flowing bypassing the heater core (25) The thermal management apparatus for vehicles according to claim 5 or 6 which controls operation of said flow rate ratio adjustment part (53) so that the ratio of may become large.
  8.  前記制御部(60)は、前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)未満である場合、前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)以上である場合と比較して、前記熱源部(23)で加熱された前記熱媒体のうち前記ヒータコア(25)を流れる前記熱媒体の流量が少なくなるように前記切替部(26、27、28、29)の作動を制御する請求項4に記載の車両用熱管理装置。 When the temperature of the heat medium detected by the temperature detector (66) is lower than the predetermined temperature (To), the controller (60) detects the heat medium detected by the temperature detector (66). The flow rate of the heat medium flowing through the heater core (25) out of the heat medium heated by the heat source part (23) is reduced compared to the case where the temperature of the heat medium is equal to or higher than the predetermined temperature (To). The thermal management apparatus for vehicles of Claim 4 which controls the action | operation of the said switch part (26,27,28,29).
  9.  前記制御部(60)は、前記温度検出部(66)で検出された前記熱媒体の温度が前記所定温度(To)以上になった場合、前記熱源部(23)で加熱された前記熱媒体が前記機器(24)に導入されるとともに前記ヒータコア(25)にも導入されるように、前記切替部(26、27、28、29)の作動を制御する請求項4または8に記載の車両用熱管理装置。 When the temperature of the heat medium detected by the temperature detection unit (66) is equal to or higher than the predetermined temperature (To), the control unit (60) is heated by the heat source unit (23). The vehicle according to claim 4 or 8, wherein the operation of the switching unit (26, 27, 28, 29) is controlled such that the switching unit (26, 27, 28, 29) is introduced into the heater core (25) as well as into the device (24). Thermal management device.
  10.  前記機器(24)は、前記エンジン(21)の吸気側に戻される排気ガスと前記熱媒体とを熱交換して排気ガスを冷却するEGRクーラである、請求項1に記載の車両用熱管理装置。 The vehicle thermal management according to claim 1, wherein the device (24) is an EGR cooler that cools exhaust gas by exchanging heat between the exhaust gas returned to the intake side of the engine (21) and the heat medium. apparatus.
PCT/JP2016/074727 2015-09-04 2016-08-25 Vehicular heat management system WO2017038594A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/757,047 US10717341B2 (en) 2015-09-04 2016-08-25 Vehicular heat management system
DE112016004004.0T DE112016004004T5 (en) 2015-09-04 2016-08-25 Vehicle thermal management system
CN201680050808.8A CN107923304B (en) 2015-09-04 2016-08-25 Heat management device for vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-174348 2015-09-04
JP2015174348 2015-09-04
JP2016-146364 2016-07-26
JP2016146364A JP6361703B2 (en) 2015-09-04 2016-07-26 Vehicle thermal management device

Publications (1)

Publication Number Publication Date
WO2017038594A1 true WO2017038594A1 (en) 2017-03-09

Family

ID=58187295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074727 WO2017038594A1 (en) 2015-09-04 2016-08-25 Vehicular heat management system

Country Status (1)

Country Link
WO (1) WO2017038594A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763889A (en) * 2017-11-10 2019-05-17 通用汽车环球科技运作有限责任公司 Use the engine coolant control system and method for Model Predictive Control
CN111038210A (en) * 2018-10-11 2020-04-21 现代自动车株式会社 Heating, ventilating and air conditioning system for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507717A (en) * 2005-09-13 2009-02-26 ルノー・エス・アー・エス Method for controlling vehicle drive train with two cooling circuits
US20110023796A1 (en) * 2009-07-29 2011-02-03 International Engine Intellectual Property Company, Llc Adaptive EGR Cooling System
JP2011179454A (en) * 2010-03-03 2011-09-15 Toyota Motor Corp Control device of vehicle
JP2014009634A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Control device of cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507717A (en) * 2005-09-13 2009-02-26 ルノー・エス・アー・エス Method for controlling vehicle drive train with two cooling circuits
US20110023796A1 (en) * 2009-07-29 2011-02-03 International Engine Intellectual Property Company, Llc Adaptive EGR Cooling System
JP2011179454A (en) * 2010-03-03 2011-09-15 Toyota Motor Corp Control device of vehicle
JP2014009634A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Control device of cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763889A (en) * 2017-11-10 2019-05-17 通用汽车环球科技运作有限责任公司 Use the engine coolant control system and method for Model Predictive Control
CN109763889B (en) * 2017-11-10 2021-03-26 通用汽车环球科技运作有限责任公司 Engine coolant control system and method using model predictive control
CN111038210A (en) * 2018-10-11 2020-04-21 现代自动车株式会社 Heating, ventilating and air conditioning system for vehicle

Similar Documents

Publication Publication Date Title
JP6361703B2 (en) Vehicle thermal management device
CN108779942B (en) Refrigeration cycle device
CN110621525B (en) Air conditioner
JP6398764B2 (en) Thermal management system for vehicles
CN108369047B (en) Refrigeration cycle device
JP6197745B2 (en) Refrigeration cycle equipment for vehicles
JP6197657B2 (en) Thermal management system for vehicles
JP6663676B2 (en) Vehicle heat management device
CN109983287B (en) Refrigeration cycle device
JP2019055704A (en) Refrigeration cycle device
CN108291473B (en) Cooling system for vehicle
JP2017137044A (en) Heat management device for vehicle
JP2015140115A (en) Air conditioner
WO2015115050A1 (en) Vehicle heat management system
JP2018035951A (en) Refrigeration cycle device
WO2014174786A1 (en) Vehicle heat management device
JP2015163499A (en) Air conditioner for vehicle
CN108778798B (en) Air conditioner
WO2017038594A1 (en) Vehicular heat management system
WO2018070238A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757047

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004004

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841626

Country of ref document: EP

Kind code of ref document: A1