WO2017038545A1 - Automatic analysis device - Google Patents

Automatic analysis device Download PDF

Info

Publication number
WO2017038545A1
WO2017038545A1 PCT/JP2016/074461 JP2016074461W WO2017038545A1 WO 2017038545 A1 WO2017038545 A1 WO 2017038545A1 JP 2016074461 W JP2016074461 W JP 2016074461W WO 2017038545 A1 WO2017038545 A1 WO 2017038545A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
door
automatic analyzer
mounting unit
analyzer according
Prior art date
Application number
PCT/JP2016/074461
Other languages
French (fr)
Japanese (ja)
Inventor
高通 森
仁 時枝
昂平 野中
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201680048427.6A priority Critical patent/CN107923921B/en
Priority to JP2017537762A priority patent/JP6674470B2/en
Publication of WO2017038545A1 publication Critical patent/WO2017038545A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an automatic analyzer that analyzes a concentration of a predetermined component in a liquid sample such as blood and urine using a reagent, and more particularly to an automatic analyzer that automatically carries in and out a reagent used for analysis.
  • Patent Document 1 discloses a reagent disk.
  • Two reagent containers are installed in a line in the replenishment reagent storage, which is the second reagent storage means for replenishment, and a plurality of reagent containers can be mounted in the replenishment reagent storage,
  • a rail is disposed on the reagent storage, and the rail describes an automatic analyzer in which a rail, a reagent holding means movable in three axial directions, and a reagent cap opening means are installed.
  • an automatic analyzer such as a biochemical automatic analyzer or an immune automatic analyzer
  • the reagent bottle is installed in the reagent disk by an operator manually on the reagent disk.
  • ⁇ Reagent bottle replacement is usually performed when the device is on standby, when no measurement is being performed. For example, when the amount of reagent remaining in a certain measurement item is low, the number of measurements that can be performed with the remaining amount of reagent is known in advance before measuring a patient sample. For example, an additional bottle is placed on the reagent disk.
  • the automatic analyzer described in Patent Document 1 is provided with a reagent holding means for placing a reagent on which a plurality of reagent bottles can be placed in order to satisfy the requirement.
  • the reagent holding means is configured to move back and forth and right and left in the apparatus, the reagent bottle can be installed on the reagent disk in an automated continuous operation.
  • the second reagent storage for replenishment has a cold-retaining function.
  • Patent Document 1 how to ensure the cold-reserving function in the second reagent storage for replenishment and the function of the reagent holding means to carry out the reagent bottle from the second reagent storage. Is not listed.
  • Patent Document 1 when a mechanism for accessing the reagent holding unit is simply provided in the second reagent storage, in order to achieve both the function of keeping the reagent bottle cold and the mechanism accessed by the reagent holding unit, It is necessary to arrange a complicated mechanism such as providing a door opening / closing mechanism in the second reagent storage and a mechanism for moving the reagent bottle to the take-out position.
  • a complicated mechanism such as providing a door opening / closing mechanism in the second reagent storage and a mechanism for moving the reagent bottle to the take-out position.
  • an actuator for opening and closing the door is provided, the installation space is increased, and the number of parts is increased. That is, it is assumed that the device configuration becomes complicated and the risk of failure increases.
  • the present invention provides an automatic analyzer capable of reducing the installation space of the mechanism and reducing the number of components without providing an actuator for opening and closing the door, and reducing the risk of failure. To do.
  • the present invention includes a plurality of means for solving the above-mentioned problems.
  • an automatic analyzer that dispenses and reacts a sample and a reagent in a reaction vessel and measures the reacted liquid.
  • a reagent disk for storing a reagent bottle containing the reagent, a reagent mounting unit for installing a plurality of the reagent bottles when the reagent bottle is carried into the automatic analyzer, and the reagent mounting
  • a reagent cooler that cools the reagent bottle installed in the unit together with the reagent mounting part, and the reagent cooler opens and closes when the reagent mounting part goes in and out, so that the reagent mounting part enters and exits It is characterized by having an opening / closing door.
  • the installation space for the mechanism can be reduced and the number of components can be reduced without providing an actuator for opening and closing the door, and the risk of failure can be reduced.
  • FIG. 1 is a perspective view of the automatic analyzer according to the present embodiment.
  • an automatic analyzer is an apparatus for dispensing a sample and a reagent in a plurality of reaction vessels 2 and reacting them, and measuring the reacted liquid.
  • Reaction container 2 is arranged on the circumference of reaction disk 1.
  • a sample transport mechanism 17 for moving a rack 16 on which a sample container 15 is placed is installed near the reaction disk 1.
  • a sample dispensing mechanism 11 that can rotate and move up and down is installed, and includes a sample probe 11a.
  • a sample syringe 19 is connected to the sample probe 11a. The sample probe 11a moves while drawing an arc around the rotation axis, and dispenses the sample from the sample container 15 to the reaction container 2.
  • the reagent disk 9 is a storage in which a plurality of reagent bottles 10 containing the reagents therein can be placed on the circumference.
  • the reagent disk 9 is kept cold, and a reagent probe suction port 111 (see FIG. 2) and a reagent for accessing the reagent probes 7a and 8a of the reagent dispensing mechanisms 7 and 8 when dispensing the reagent into the reaction container 2 and the reagent.
  • the bottle 10 is covered with a cover having an opening / closing cover 113 (see FIG. 2) for carrying the bottle 10 into the reagent disk 9.
  • the open / close cover 113 is a cover for preventing the cool air inside the kept reagent disk 9 from escaping, and is normally closed. When a later-described reagent transport mechanism 101 accesses the reagent disk 9, the open / close cover 113 is opened and operates so that the reagent bottle 10 can be loaded into and unloaded from the reagent disk 9.
  • reagent dispensing mechanisms 7 and 8 that can be rotated and moved up and down are installed, and reagent probes 7a and 8a are provided, respectively.
  • a reagent syringe 18 is connected to the reagent probes 7a and 8a.
  • the reagent probes 7 a and 8 a move while drawing an arc around the rotation axis, access the reagent disk 9 from the reagent probe suction port 111, and dispense the reagent from the reagent bottle 10 to the reaction container 2.
  • a cleaning mechanism 3, a light source 4a, a spectrophotometer 4, and stirring mechanisms 5 and 6 are further arranged.
  • a cleaning pump 20 is connected to the cleaning mechanism 3.
  • Washing tanks 13, 30, 31, 32, and 33 are installed on the operation ranges of the reagent dispensing mechanisms 7 and 8, the sample dispensing mechanism 11, and the stirring mechanisms 5 and 6, respectively.
  • the sample container 15 contains a test sample (specimen) such as blood, and is placed on the rack 16 and carried by the sample transport mechanism 17. Each mechanism is connected to the controller 21.
  • the controller 21 is composed of a computer or the like, and controls the operation of each mechanism in the automatic analyzer and performs arithmetic processing for obtaining the concentration of a predetermined component in a liquid sample such as blood or urine.
  • the inspection sample analysis processing by the automatic analyzer as described above is generally executed in the following order.
  • the sample in the sample container 15 placed on the rack 16 transported near the reaction disk 1 by the sample transport mechanism 17 is transferred to the reaction container 2 on the reaction disk 1 by the sample probe 11 a of the sample dispensing mechanism 11.
  • the reagent used for the analysis is dispensed from the reagent bottle 10 on the reagent disk 9 to the reaction container 2 into which the sample has been dispensed by the reagent dispensing mechanisms 7 and 8.
  • the mixed solution of the sample and the reagent in the reaction vessel 2 is stirred by the stirring mechanism 5.
  • the light generated from the light source 4 a is transmitted through the reaction vessel 2 containing the mixed solution, and the luminous intensity of the transmitted light is measured by the spectrophotometer 4.
  • the luminous intensity measured by the spectrophotometer 4 is transmitted to the controller 21 via the A / D converter and the interface. Then, calculation is performed by the controller 21, the concentration of a predetermined component in a liquid sample such as blood or urine is obtained, and the result is displayed on a display unit (not shown) or the like.
  • FIG. 2 is a diagram showing an outline of the autoloader mechanism 100.
  • a lid 112 is attached to the reagent probe suction position of the reagent bottle 10 in order to seal the inside, and the lid 112 is generally removed and installed in the apparatus when set in the automatic analyzer.
  • a hole in the notch is formed in the lid 112, and the reagent probes 7a and 8a are inserted into the notch and the reagent in the reagent bottle 10 is sucked. Since the opening of the lid 112 is slightly cut in the reagent, the reagent has minimal contact with the outside air, and the deterioration of the reagent is improved as compared with the conventional case.
  • the autoloader mechanism 100 is a mechanism that automatically carries the reagent bottle 10 to and from the reagent disk 9 regardless of whether or not the lid 112 is removed or cut into the lid 112.
  • the autoloader mechanism 100 is arranged on the upper part of the reagent disk 9 and has a configuration as shown in FIG.
  • the autoloader mechanism 100 includes a reagent mounting unit 103, a reagent mounting mechanism 102, a reagent transport mechanism (reagent transport unit) 101, a second cool box (reagent cool box) 110, a needle cleaning tank 108, and a needle drying port 109.
  • a bottle direction detection sensor 114 and an RFID sensor 115 are provided.
  • the reagent loading unit 103 is a part for the operator to install the reagent bottle 10 when carrying the reagent bottle 10 into the automatic analyzer.
  • the reagent loading unit 103 is moved up and down on the FIGS. Operate in the direction.
  • the reagent mounting unit 103 has a structure in which a plurality of reagent bottles 10 can be installed on a straight line.
  • the reagent mounting unit 103 is configured to be able to cool a plurality of reagent bottles 10 installed in the space inside the second cool box 110.
  • the reagent loading unit 103 is a tray on which a plurality of reagent bottles 10 can be loaded. Details of the reagent loading unit 103 and the reagent loading mechanism 102 will be described later.
  • the second cool box 110 is a cool box for temporarily cooling the reagent bottle 10 installed in the reagent loading unit 103 together with the reagent loading unit 103 before carrying it into the reagent disk 9. Details of the structure of the second cool box 110 will be described later.
  • the reagent transport mechanism 101 is a mechanism for transporting the reagent bottle 10 installed in the reagent mounting unit 103 into the reagent disk 9, and includes a gripper mechanism (gripper unit) 106 that grips the reagent bottle 10, and a lid of the reagent bottle 10.
  • the reagent bottle lid opening mechanism 104 that opens a hole 112, a vertical drive motor (not shown) that moves the gripper mechanism 106 and the reagent bottle lid opening mechanism 104 up and down, and the gripper mechanism 106 and the reagent bottle lid opening mechanism 104 are shown in FIG.
  • a horizontal drive motor 131 that drives in the left-right direction is used as a component.
  • the reagent transport mechanism 101 operates in the left-right direction in FIG. 2 between the position of the reagent mounting unit 103 in FIG. That is, the reagent loading unit 103 moves up and down in FIG. 2, and the reagent transport mechanism 101 operates in the horizontal direction in FIG. 2, so that the operation directions are orthogonal to each other.
  • a position where the gripper mechanism 106 grips the reagent bottle 10 and a position where the reagent bottle 10 is carried into and out of the reagent disk 9 are linearly arranged.
  • the reagent bottle lid opening mechanism 104 is provided with a needle 105 for cutting into the lid 112 of the reagent bottle 10.
  • the needle 105 after being cut into the lid 112 is washed in the needle washing tank 108 arranged in parallel to the operation direction of the reagent transport mechanism 101.
  • the cleaning water is removed by the needle drying port 109 arranged in parallel with the operation direction of the reagent transport mechanism 101, and the reagent bottle lid 112 is cut so that the reagent is not diluted with the cleaning water. ing.
  • the gripper mechanism 106 has a hooking claw for holding the reagent bottle 10, and holds the reagent bottle 10 by hooking the hooking claw on the notch portion of the reagent bottle 10.
  • the bottle direction detection sensor 114 and the RFID sensor 115 are arranged on the operation of the reagent mounting unit 103.
  • the bottle orientation detection sensor 114 measures whether or not the reagent bottle 10 is installed and the installation direction.
  • the RFID sensor 115 obtains information on the reagent in the reagent bottle 10 recorded on the RFID tag 10 a provided in the reagent bottle 10.
  • FIG. 3 is a schematic view of the autoloader mechanism.
  • a plurality of reagent bottles 10 installed in the reagent mounting unit 103 are kept cool in the second cool box 110.
  • the second cooler 110 is configured to load and unload the reagent loading unit 103 by opening and closing the second door 201 and the first door 202 that open and close, and to seal the inside of the second cooler 110 when closed. It has become. Further, the second door 201 and the first door 202 have different door lengths.
  • a hook roller 205 is provided inside the second cool box 110 of the first door 202.
  • the link 208 has one end attached to the second door 201 and the other end attached to the first door 202. Since the second door 201 and the first door 202 are connected together by the link 208, the opening / closing operation is performed by an integrated operation.
  • a door spring 207 set to always pull the link 208 upward in FIG. 3 is attached between the link 208 and the fixed portion 110A of the second cold storage 110. That is, the second door 201 and the first door 202 are always pulled toward the second cold storage 110 via the link 208.
  • the door spring 207 extends so that the second door 201 and the first door 202 are opened, and contracts as the second door 201 and the first door 202 are closed.
  • the door spring 207 may be directly attached to the second door 201 or the first door 202 without using the link 208.
  • the second door 201 can be provided with a third door 209 that covers the first door 202 when the second door 201 and the first door 202 are closed.
  • the connecting portion between the door spring 207 and the link 208 is arranged closer to the connecting portion between the second door 201 and the link 208 than the connecting portion between the first door 202 and the link 208. Yes.
  • the tension of the door spring 207 is greater on the second door 201 side, which is longer than the first door 202. Accordingly, the door spring 207 operates to bring the second door 201 into close contact with the first door 202.
  • FIG. 4 is a schematic view of another example of the opening / closing door of the autoloader mechanism 100.
  • the link 208 is indicated by a dotted line for convenience of illustration.
  • the second cooler 110 when the second door 201 and the first door 202 are closed, it is desired to stably cool the reagent bottle 10 inside the second cooler 110, so the inside is completely sealed. It is desirable to do. This is because, by maintaining a completely sealed state, it is possible to suppress the generation of condensed water due to a temperature difference from the outside air and the time required for lowering the inside of the second cool box to a specified temperature. Therefore, by pulling the link 208 so that the second door 201 and the first door 202 are not opened by the door spring 207, the sealed state inside the second cold storage 110 can be maintained even if the apparatus power is turned off. Thus, the reagent bottle 10 can be more stably cooled.
  • the third door 209 can operate without interference even if both doors are opened simultaneously with the first door 202, but the size of the left and right doors Are the same, or when it is desired to provide the third door 209 on the first door 202, the arrangement of the links 208 may be considered.
  • FIG. 5 is a top view of the reagent mounting unit 103.
  • the reagent mounting unit 103 includes a main body 103 ⁇ / b> A having a space for installing the reagent bottle 10, a first roller 300, a second front roller 301 ⁇ / b> A, a second rear roller 301 ⁇ / b> B, and a third roller 302.
  • a door hook groove 303 is provided on the bottom surface side of the main body 103 ⁇ / b> A, and the hook roller 205 is inserted into the door hook groove 303.
  • the first roller 300 is a roller that rotates and contacts the upper surfaces of the reagent loading mechanism transport surface 182 and the transport surface 182A, and is arranged in a total of four, two on the right side and two on the left side of the main body 103A.
  • the first roller 300 allows the reagent mounting unit 103 to move smoothly.
  • a plurality of second front rollers 301A and second rear rollers 301B are arranged only on one side of the reagent mounting portion 103 in the moving direction, that is, on the side of the second door 201 having a long length, which is a contact target in FIG.
  • the protrusion 103B is partly protruded from 103A in the right direction in FIG.
  • Two third rollers 302 are arranged on the front side in the traveling direction of the reagent mounting unit 103.
  • the reagent loading mechanism 102 includes a reagent loading mechanism motor 180 that drives the reagent loading unit 103, a reagent loading mechanism belt 181 coupled to the reagent loading mechanism motor 180, pulleys 181 ⁇ / b> A and 181 ⁇ / b> B, and a reagent loading mechanism conveyance surface 182. And a linear guide 183 and a holding part 184 for connecting the reagent mounting mechanism belt 181 and the reagent mounting part 103.
  • the reagent mounting unit 103 is attached to the linear guide 183.
  • reagent loading mechanism transport surfaces 182 are arranged in parallel to the linear guide 183.
  • the linear guide 183 and the reagent mounting mechanism transport surface 182 function as a transport line for the reagent mounting unit 103 to move between the installation position where the reagent bottle 10 is installed in the reagent mounting unit 103 and the second cold storage 110. .
  • the reagent loading mechanism belt 181 is arranged in parallel with the linear guide 183 and the like, and the reagent loading mechanism belt 181 and the reagent loading portion 103 are connected via a holding portion 184.
  • This holding part 184 is sufficiently in contact with the packing provided on the door of the second cold storage 110 so that the portion that contacts the door of the second cold storage 110 is sufficiently kept so that the inside of the second cold storage 110 is kept at a low temperature. It has a thin structure (one metal plate, etc.).
  • the portion of the holding unit 184 that contacts the lid of the second cold storage 110 has a structure that is sandwiched between the door and the main body of the second cold storage 110. Therefore, by making this portion sufficiently thin, airtightness is achieved. This is because it can be secured.
  • Pulleys 181A and 181B and a reagent loading mechanism motor 180 are attached to both ends of the reagent loading mechanism belt 181.
  • the reagent loading mechanism motor 180 rotates, the reagent loading mechanism belt 181 rotates in conjunction with the rotation via the pulley 181A.
  • the reagent loading portion 103 connected to the reagent loading mechanism belt 181 via the holding portion 184 operates in the vertical direction in FIG.
  • a door lock roller 206 is attached to the holding unit 184 that connects the reagent mounting unit 103 and the reagent mounting mechanism belt 181.
  • the door lock roller 206 will be described later.
  • gaps 200A and 200B are provided on the left and right between the reagent loading mechanism transport surface 182 and the transport surface 182A of the second cold storage 110.
  • the gap 200A on the side close to the second door 201 is provided to ensure the opening / closing track of the second door 201, and the gap 200B on the side close to the first door 202 is to secure the opening / closing track of the first door 202. Is provided.
  • the reagent loading mechanism transport surface 182 is extended into the second cold storage 110 and the reagent loading portion 103 is stored in the second cold storage 110.
  • the second door 201 or the first door 202 is sealed at a portion where the reagent loading mechanism transport surface 182 interferes.
  • a new structure is needed to maintain In this case, the structure is further complicated and the number of parts is further increased.
  • by providing the gaps 200A and 200B between the reagent mounting mechanism transport surface 182 and the second cold storage 110 it is only necessary to maintain the sealing degree of only the holding unit 184. And further improving the reliability of the cooling capacity.
  • a door lock hole 203 is provided outside the second cold storage 110 of the second door 201.
  • an auxiliary conveyance surface 185 for filling a gap 200A between the reagent loading mechanism conveyance surface 182 and the conveyance surface 182A is provided inside the second cold storage 110 of the second door 201.
  • the auxiliary transport surface 185 is opened while being attached to the inside of the second door 201, and when the second door 201 is opened, a gap between the reagent loading mechanism transport surface 182 and the transport surface 182A is opened. Fill a lot of 200A. Thereby, the rail on the reagent loading mechanism conveyance surface 182 side on the right side in FIG. 3 is completed.
  • the first roller 300 is placed on the auxiliary conveyance surface 185 of the second door 201 that opens when the reagent mounting unit 103 comes out of the second cold storage 110, and the first roller 300 By providing a plurality, the back and forth operation of the reagent mounting unit 103 can be transported without any problem.
  • the first roller 300 of the reagent loading unit 103 moves beyond the gaps 200A and 200B, it is desirable that the first roller 300 is larger than the gap on the reagent loading mechanism conveyance surface 182 side on the right side in FIG.
  • the reagent loading unit 103 can operate smoothly even if there are gaps 200A, 200B.
  • a door lock hole 203 is attached to the second door 201.
  • a door lock mechanism 204 is disposed independently of the door lock hole 203.
  • the door lock mechanism 204 is fixed to the second cold storage 110, and an insertion rod 204A (see FIG. 6) of the door lock mechanism 204 is provided outside the second door 201 when the second door 201 is completely opened.
  • the second door 201 is prevented from being closed by the tension of the door spring 207.
  • the door lock hole 203, the door lock mechanism 204, and the door lock roller 206 prevent the second door 201 and the first door 202 from being closed when the reagent mounting portion 103 is outside the second cold storage 110.
  • a lock mechanism for locking the two doors 201 and the first door 202 is configured.
  • a spring 204B is incorporated in the door lock mechanism 204, and the insertion rod 204A is movable in the vertical direction.
  • a slope 204 ⁇ / b> C and a flat portion 204 ⁇ / b> D that receive the door lock roller 206 are provided below the door lock mechanism 204.
  • the lock mechanism is not limited to the combination of the door lock hole 203, the door lock mechanism 204, and the door lock roller 206.
  • the door is supported by a structure that supports the door that is opened to the maximum by a magnet, or a bellows provided in the reagent mounting portion 103.
  • a structure that locks so as not to close By connecting the reagent mounting part 103 and the inside of the second cold storage 110 with a bellows or the like, it is possible to lock and prevent the extended bellows or the like from closing the door.
  • the above is the configuration of the second cold storage 110 and the reagent loading mechanism 102.
  • the reagent mounting mechanism motor 180 rotates, and the reagent mounting mechanism belt 181 rotates together so that the reagent mounting unit 103 moves in the carrying-out direction. Start moving to.
  • the left and right third rollers 302 attached to the reagent mounting unit 103 come into contact with the inside of the second door 201 and the first door 202, and the front in the traveling direction.
  • the second rear roller 301B on the rear side in the traveling direction as shown in FIG. Open and close at right angles by touching.
  • the door 208 is opened and closed in synchronization with the second door 201 by the link 208, so the first door 202 opens at a right angle.
  • the reagent loading mechanism motor 180 rotates in the opposite direction, and the reagent loading mechanism belt 181 rotates in the opposite direction, whereby the reagent loading section 103 starts moving in the loading direction.
  • the insertion rod 204A of the door lock mechanism 204 is removed from the door lock hole 203, the locked state by the lock mechanism is released, and the second door 201 and the first door 202 are operated by the operation of the door spring 207. Works in a closed way.
  • the hook roller 205 enters the door hook groove 303 of the reagent mounting unit 103.
  • the reagent loading unit 103 further moves in the second cool box 110 in the loading direction with the hook roller 205 entering the door hook groove 303
  • the first door 202 is moved into the door hook groove 303 as shown in FIG. While being pulled by the hook roller 205 that has entered and in contact with the third roller 302, the hook roller 205 moves in the closing direction.
  • the second door 201 similarly moves in the closing direction while maintaining the state in contact with the third roller 302.
  • the reagent mounting unit 103 is completely carried into the second cold storage 110, and is in a sealed state as shown in FIG.
  • the door hook groove 303 and the hook roller 205 as described above, the closing direction operation of the second door 201 and the first door 202 can be supported, and the door closing direction operation can be performed more stably.
  • the door lock roller 206 attached to the holding unit 184 moves with the movement of the reagent mounting unit 103, the door lock roller 206 and the slope 204C are brought close to each other. If the movement continues, the door lock roller 206 advances while contacting the slope 204C, so that the spring 204B begins to shrink and the insertion rod 204A is lifted upward. As the movement further proceeds, the door lock roller 206 comes into contact with the flat portion 204D, and the insertion rod 204A is completely lifted upward. In this state, since each component is arranged so that the second door 201 as shown in FIG. 8 opens vertically, the door lock hole 203 is arranged immediately below the insertion rod 204A.
  • the reagent loading unit 103 continues to move, the door lock roller 206 and the slope 204C come into contact with each other, and the insertion rod 204A starts to move downward due to the action of the spring 204B. Thereafter, when the door lock roller 206 and the slope 204C are separated, the insertion rod 204A is inserted into the door lock hole 203 attached to the second door 201 as shown in FIG. For this reason, the second door 201 and the first door 202 are maintained in an open state even when the compression force by the door spring 207, that is, the force in the closing direction is applied. As shown in FIG. 9, the reagent mounting unit 103 can be further moved in the unloading direction with the second door 201 and the first door 202 opened.
  • the operation is the reverse of the previous one.
  • the door lock roller 206 and the slope 204C come into contact with each other, the spring 204B contracts and the insertion rod 204A is lifted upward.
  • the door lock roller 206 comes into contact with the flat portion 204D, and the insertion rod 204A is lifted upward, and the insertion state is released as shown in FIG.
  • the autoloader mechanism 100 is installed in the reagent mounting unit 103 and the reagent mounting unit 103 for installing a plurality of reagent bottles 10 when the reagent bottle 10 is carried into the automatic analyzer.
  • a second cold storage 110 that cools the reagent bottle 10 together with the reagent mounting portion 103, and the second cold storage 110 opens and closes as the reagent mounting portion 103 enters and exits, and opens and closes for the reagent mounting portion 103 to enter and exit. It has doors (second door 201 and first door 202).
  • the second front roller 301A, the second rear roller 301B, and the third roller 302 provided in the reagent mounting unit 103 come into contact with each other, so that the second door 201 and the first door 202 are accompanied by the movement of the reagent mounting unit 103. Since the door is opened and closed, each roller and the door come into contact with each other during the opening and closing operation. For this reason, it is possible to suppress the wear and tear of the components accompanying the opening / closing operation and to perform a stable opening / closing operation over a long period of time.
  • a lock mechanism for locking the second door 201 and the first door 202 so that the second door 201 and the first door 202 are not closed.
  • the lock mechanism the door lock hole 203 provided on the outer side of the second door 201 and the first door 202, the door lock mechanism 204 fixed to the second cool box 110, and the reagent mounting portion 103 are moved forward and backward.
  • the second cool box 110 has a door spring 207 that always pulls the second door 201 and the first door 202 toward the fixed portion 110A, so that even if the apparatus power is turned off, The sealed state can be maintained, and the reagent bottle 10 can be cooled more stably.
  • the configuration of opening and closing the door of the second cool box 110 becomes very easy and complicated.
  • the inside of the second cold storage 110 can be stably cooled without using a simple structure.
  • the auxiliary conveyance surface 185 for filling the gap 200A is provided inside the second door 201 and the first door 202, the operation of the reagent mounting unit 103 is smooth even if the gap 200A exists. Thus, more stable operation is possible.
  • the hermeticity of the second cool box 110 can be improved, and the reagent bottle 10 in the second cool box 110 can be improved.
  • the storage state can be further improved.
  • the second door 201 and the first door 202 have the link 208 that connects the two doors, so that the opening and closing operations of the second door 201 and the first door 202 do not have to be independent operations. Opening and closing operations can be performed with a simple configuration.
  • the second door 201 has a third door 209 that covers the first door 202 when it is closed, so that it is possible to further improve the degree of sealing in the second cool box 110.
  • the reagent mounting unit 103 is provided with a plurality of third rollers 302 on the front side and a plurality of rollers (second front roller 301A and second rear roller 301B) on the right side, so that a more stable second cool box. 110 can be opened and closed.
  • the gripper mechanism 106, the open / close cover 113 of the reagent disk 9, and the reagent probe suction port 111 are arranged on a straight line, but the reagent probe suction port 111 is within a range in which the reagent probes 7a and 8a can operate. If so, the arrangement is not limited to a linear form.
  • the needle 105 is described as one, but when there are two lids 112 as in the reagent bottle 10, two needles 105 are attached at intervals of the holes in the lid 112 of the reagent bottle 10.
  • the reagent bottle lid opening mechanism 104 is lowered to open holes in the two lids 112 simultaneously.
  • two needle cleaning tanks 108 and needle drying ports 109 are installed at intervals of the needle 105.
  • the operations of the gripper mechanism 106 and the reagent bottle lid opening mechanism 104 are described as the vertical movement by the vertical drive motor and the horizontal movement by the horizontal drive motor 131. If the operation in the direction is possible, the installable quantity of the reagent bottles 10 that can be installed in the reagent mounting unit 103 can be increased.
  • the length of the second door 201 and the first door 202 is longer than that of the second door 201, but the length of the door is such that parts are arranged in the range caused by the rotation of the door. What is necessary is just to set it as the optimal length and ratio according to a condition. Furthermore, although the door has been described as being divided into two parts, the same performance can be satisfied with a single door, and in this case, the parts of the link 208 are not necessary.
  • first rollers 300 of the reagent mounting unit 103 have been described.
  • the number of the first rollers 300 used is the total length and width of the reagent mounting unit 103, the second cold storage 110 and the reagent mounting.
  • the configuration should be such that optimum conditions are satisfied by the gaps 200A and 200B on the mechanism conveyance surface 182 and is not particularly limited.
  • the position of the 2nd cool box 110 is not limited upwards.
  • it may be provided on the side of the reagent disk.
  • further space reduction of the apparatus can be realized by providing it above.
  • Autoloader mechanism 101 ... Reagent transport mechanism (reagent transport section) DESCRIPTION OF SYMBOLS 102 ... Reagent mounting mechanism 103 ... Reagent mounting part 103A ... Main body 103B ... Projection part 104 ... Reagent bottle lid opening mechanism 105 ... Needle 106 ... Gripper mechanism (gripper part) 108 ... Needle washing tank 109 ... Needle drying port 110 ... Second cold storage (reagent cold storage) 110A ... fixing portion 111 ... reagent probe suction port 112 ... lid 113 ... opening / closing cover 114 ... bottle orientation detection sensor 115 ... RFID sensor 131 ... horizontal drive motor 180 ... reagent mounting mechanism motor 181 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

The present invention automatically opens/closes a second door 201 and a first door 202 of a second cooling box 110 in association with the movement of a reagent loading part 103. After the reagent loading part 103 has emerged from the second cooling box 110 and the second door 201 and the first door 202 have opened, the second door 201 and the first door 202 are automatically locked by a door lock hole 203, a door lock mechanism 204, and a door lock roller 206 so as not to close. When the reagent loading part 103 is to be stored inside the second cooler box 110, the second door 201 and the first door 202 are automatically unlocked, and the reagent loading part is stored inside the second cooler box 110. The present invention can thereby reduce the installation space of a mechanism, decrease the components of the mechanism, and reduce the risk of malfunctions, without being provided with an actuator for opening/closing the door(s) of a reagent cooler box.

Description

自動分析装置Automatic analyzer
 本発明は、試薬を用いて血液や尿等の液体試料中の所定成分の濃度等を分析する自動分析装置に係り、特に分析に用いる試薬の搬入・搬出を自動で行う自動分析装置に関する。 The present invention relates to an automatic analyzer that analyzes a concentration of a predetermined component in a liquid sample such as blood and urine using a reagent, and more particularly to an automatic analyzer that automatically carries in and out a reagent used for analysis.
 試薬登録、試薬交換等の作業によるオペレーターの負担を軽減すると共に、分析中に試薬不足を発生させず、分析中断を最小化する自動分析装置の一例として、特許文献1には、試薬ディスクの上に補充用の第2の試薬保管手段である補充用試薬保管庫に試薬容器が2個ずつ一列に設置され、補充用試薬保管庫には、複数個の試薬容器が搭載可能であり、補充用試薬保管庫の上にレールが配置され、レールにはレールと3軸方向に移動可能な試薬保持手段と試薬キャップ開栓手段が設置された自動分析装置が記載されている。 As an example of an automatic analyzer that reduces the burden on the operator due to operations such as reagent registration and reagent replacement, and that does not cause a shortage of reagents during analysis and minimizes interruption of analysis, Patent Document 1 discloses a reagent disk. Two reagent containers are installed in a line in the replenishment reagent storage, which is the second reagent storage means for replenishment, and a plurality of reagent containers can be mounted in the replenishment reagent storage, A rail is disposed on the reagent storage, and the rail describes an automatic analyzer in which a rail, a reagent holding means movable in three axial directions, and a reagent cap opening means are installed.
特開2005-37171号公報JP-A-2005-37171
 例えば、生化学自動分析装置や免疫自動分析装置などの自動分析装置では、患者検体の測定項目に応じた試薬を装置内に設置する必要がある。この試薬の装置内への試薬ボトルの設置は、一般的にオペレーターがマニュアルで試薬ディスクに設置している。 For example, in an automatic analyzer such as a biochemical automatic analyzer or an immune automatic analyzer, it is necessary to install a reagent corresponding to a measurement item of a patient sample in the apparatus. In general, the reagent bottle is installed in the reagent disk by an operator manually on the reagent disk.
 試薬ボトルの交換は基本的に装置が測定を実施していないスタンバイの時などに行うのが通常作業となっている。例えば、ある測定項目の試薬の残量が少ない時などは、患者検体を測定する前に予め試薬の残量で測定可能な回数を把握しておき、残量が少ない場合などは新品の同一試薬ボトルを追加で試薬ディスクに設置しておくなどの方法をとっている。 ∙ Reagent bottle replacement is usually performed when the device is on standby, when no measurement is being performed. For example, when the amount of reagent remaining in a certain measurement item is low, the number of measurements that can be performed with the remaining amount of reagent is known in advance before measuring a patient sample. For example, an additional bottle is placed on the reagent disk.
 その理由は、検体測定中は装置が動作しているため、試薬ボトルの追加や空になった試薬ボトルを取り除くことはできないためである。そのため、測定中に試薬の残量が少なくなってきた時に試薬ボトルを補充する場合などは、装置が測定完了しスタンバイの状態になるまで待つ必要があり、オペレーターの待ち時間が発生し、作業性が悪くなるとともに、測定時間のロスが発生するなどの欠点がある。 This is because the apparatus is operating during sample measurement, so that it is not possible to add a reagent bottle or remove an empty reagent bottle. Therefore, when refilling reagent bottles when the remaining amount of reagent is low during measurement, it is necessary to wait until the instrument has completed measurement and is in a standby state. However, there is a drawback that measurement time is lost.
 ここで、試薬ボトルの設置はオペレーターが1個ずつ装置にセットして試薬ディスクに搬入するのでは時間がかかるため、試薬ボトルはある程度まとめた個数を設置して連続で試薬ディスクに搬入させたい、との要求がある。 Here, since it takes time for the operator to set the reagent bottles one by one in the apparatus and carry them into the reagent disk, it is necessary to install a certain number of reagent bottles and continuously carry them into the reagent disk. There is a request.
 特許文献1に記載の自動分析装置は、その要求を満たすために、複数個試薬ボトルを設置可能な試薬を乗せる試薬保持手段を設けている。また、この試薬保持手段が装置内を前後左右に動作する構成とすることで、自動化した連続動作で試薬ボトルを試薬ディスクに設置可能な構造となっている。更に、補充用の第2の試薬保管庫は保冷機能を備えているものとなっている。 The automatic analyzer described in Patent Document 1 is provided with a reagent holding means for placing a reagent on which a plurality of reagent bottles can be placed in order to satisfy the requirement. In addition, since the reagent holding means is configured to move back and forth and right and left in the apparatus, the reagent bottle can be installed on the reagent disk in an automated continuous operation. Furthermore, the second reagent storage for replenishment has a cold-retaining function.
 しかし、特許文献1では、補充用の第2の試薬保管庫での保冷機能を担保するとともに試薬保持手段が第2の試薬保管庫から試薬ボトルを搬出する機能の両立をどのように図るのかについては記載されていない。 However, in Patent Document 1, how to ensure the cold-reserving function in the second reagent storage for replenishment and the function of the reagent holding means to carry out the reagent bottle from the second reagent storage. Is not listed.
 このような特許文献1において、単純に第2の試薬保管庫に試薬保持手段がアクセスする機構を設ける場合、試薬ボトルを保冷する機能と試薬保持手段がアクセスする機構とを両立させるためには、第2の試薬保管庫において扉の開閉機構を設け、また試薬ボトルを取り出し位置に移動させるための機構を設ける等、複雑な機構を配置することが必要となる。しかし、扉の開閉のためのアクチュエータを設けたり、設置スペースが大きくなったり、部品点数が多くなってしまう、との問題がある。すなわち、装置構成も複雑になり故障などのリスクも上がることが想定される。 In Patent Document 1, when a mechanism for accessing the reagent holding unit is simply provided in the second reagent storage, in order to achieve both the function of keeping the reagent bottle cold and the mechanism accessed by the reagent holding unit, It is necessary to arrange a complicated mechanism such as providing a door opening / closing mechanism in the second reagent storage and a mechanism for moving the reagent bottle to the take-out position. However, there are problems that an actuator for opening and closing the door is provided, the installation space is increased, and the number of parts is increased. That is, it is assumed that the device configuration becomes complicated and the risk of failure increases.
 本発明は、扉の開閉のためのアクチュエータを設けることなく、機構の設置スペースの小スペース化や構成部品の削減を図ることができ、故障のリスクを低減することが可能な自動分析装置を提供する。 The present invention provides an automatic analyzer capable of reducing the installation space of the mechanism and reducing the number of components without providing an actuator for opening and closing the door, and reducing the risk of failure. To do.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、反応容器に試料と試薬を各々分注して反応させ、この反応させた液体を測定する自動分析装置であって、前記試薬を収容した試薬ボトルを保管する試薬ディスクと、前記自動分析装置内に前記試薬ボトルを搬入する際に複数の前記試薬ボトルを設置するための試薬搭載部と、前記試薬搭載部に設置された前記試薬ボトルを前記試薬搭載部ごと保冷する試薬保冷庫とを備え、前記試薬保冷庫は、前記試薬搭載部の出入り動作に伴って開閉する、前記試薬搭載部が出入りするための開閉扉を有することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-mentioned problems. For example, an automatic analyzer that dispenses and reacts a sample and a reagent in a reaction vessel and measures the reacted liquid. A reagent disk for storing a reagent bottle containing the reagent, a reagent mounting unit for installing a plurality of the reagent bottles when the reagent bottle is carried into the automatic analyzer, and the reagent mounting A reagent cooler that cools the reagent bottle installed in the unit together with the reagent mounting part, and the reagent cooler opens and closes when the reagent mounting part goes in and out, so that the reagent mounting part enters and exits It is characterized by having an opening / closing door.
 本発明によれば、扉の開閉のためのアクチュエータを設けることなく、機構の設置スペースの小スペース化や構成部品の削減を図ることができ、故障のリスクを低減することができる。 According to the present invention, the installation space for the mechanism can be reduced and the number of components can be reduced without providing an actuator for opening and closing the door, and the risk of failure can be reduced.
一般的な自動分析装置の全体構成の概略を示した図である。It is the figure which showed the outline of the whole structure of a general automatic analyzer. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の一例を説明する概略図である。It is the schematic explaining an example of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態におけるオートローダー機構の開閉扉の他の一例を説明する概略図である。It is the schematic explaining other examples of the door of the autoloader mechanism in the embodiment of the present invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の試薬搭載部の構成の一例を説明する概略図である。It is the schematic explaining an example of a structure of the reagent mounting part of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態におけるオートローダー機構の扉ロック機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the door lock mechanism of the autoloader mechanism in embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態の自動分析装置に設けられたオートローダー機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the autoloader mechanism provided in the automatic analyzer of embodiment of this invention. 本発明の実施形態におけるオートローダー機構の扉ロック機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the door lock mechanism of the autoloader mechanism in embodiment of this invention. 本発明の実施形態におけるオートローダー機構の扉ロック機構の動作の一例を説明する概略図である。It is the schematic explaining an example of operation | movement of the door lock mechanism of the autoloader mechanism in embodiment of this invention.
 本発明の自動分析装置の実施形態を、図1乃至図14を用いて説明する。 Embodiments of the automatic analyzer according to the present invention will be described with reference to FIGS.
 図1は本実施形態の自動分析装置の斜視図である。 FIG. 1 is a perspective view of the automatic analyzer according to the present embodiment.
 図1において、自動分析装置は、複数の反応容器2に試料と試薬とを各々分注して反応させ、この反応させた液体を測定する装置であって、反応ディスク1、試薬ディスク9、試料搬送機構17、試薬分注機構7,8、試薬用シリンジ18、サンプル分注機構11、試料用シリンジ19、洗浄機構3、光源4a、分光光度計4、撹拌機構5,6、洗浄用ポンプ20、洗浄槽13,30,31,32,33、コントローラ21、オートローダー機構100(図2参照)を備えている。 In FIG. 1, an automatic analyzer is an apparatus for dispensing a sample and a reagent in a plurality of reaction vessels 2 and reacting them, and measuring the reacted liquid. The reaction disk 1, reagent disk 9, sample Transport mechanism 17, reagent dispensing mechanisms 7 and 8, reagent syringe 18, sample dispensing mechanism 11, sample syringe 19, cleaning mechanism 3, light source 4 a, spectrophotometer 4, stirring mechanisms 5 and 6, and cleaning pump 20 , Cleaning tanks 13, 30, 31, 32, 33, a controller 21, and an autoloader mechanism 100 (see FIG. 2).
 反応ディスク1には反応容器2が円周上に並んでいる。反応ディスク1の近くには試料容器15を載せたラック16を移動する試料搬送機構17が設置されている。 Reaction container 2 is arranged on the circumference of reaction disk 1. A sample transport mechanism 17 for moving a rack 16 on which a sample container 15 is placed is installed near the reaction disk 1.
 反応ディスク1と試料搬送機構17の間には、回転および上下動可能なサンプル分注機構11が設置されており、サンプルプローブ11aを備えている。サンプルプローブ11aには試料用シリンジ19が接続されている。サンプルプローブ11aは回転軸を中心に円弧を描きながら移動して試料容器15から反応容器2への試料の分注を行う。 Between the reaction disk 1 and the sample transport mechanism 17, a sample dispensing mechanism 11 that can rotate and move up and down is installed, and includes a sample probe 11a. A sample syringe 19 is connected to the sample probe 11a. The sample probe 11a moves while drawing an arc around the rotation axis, and dispenses the sample from the sample container 15 to the reaction container 2.
 試薬ディスク9は、その中に試薬を収容した試薬ボトル10を複数個円周上に載置可能となっている保管庫である。試薬ディスク9は保冷されており、反応容器2に試薬を分注する際に試薬分注機構7,8の試薬プローブ7a,8aがアクセスするための試薬プローブ吸引口111(図2参照)および試薬ボトル10を試薬ディスク9内に搬入するための開閉カバー113(図2参照)を有するカバーによって覆われている。 The reagent disk 9 is a storage in which a plurality of reagent bottles 10 containing the reagents therein can be placed on the circumference. The reagent disk 9 is kept cold, and a reagent probe suction port 111 (see FIG. 2) and a reagent for accessing the reagent probes 7a and 8a of the reagent dispensing mechanisms 7 and 8 when dispensing the reagent into the reaction container 2 and the reagent. The bottle 10 is covered with a cover having an opening / closing cover 113 (see FIG. 2) for carrying the bottle 10 into the reagent disk 9.
 開閉カバー113は、保冷された試薬ディスク9内部の冷気を逃がさないようにするためのカバーであり、通常は閉じた状態である。後述する試薬搬送機構101が試薬ディスク9にアクセスする際には開閉カバー113が開き、試薬ディスク9内への試薬ボトル10の搬入・搬出ができるように動作する。 The open / close cover 113 is a cover for preventing the cool air inside the kept reagent disk 9 from escaping, and is normally closed. When a later-described reagent transport mechanism 101 accesses the reagent disk 9, the open / close cover 113 is opened and operates so that the reagent bottle 10 can be loaded into and unloaded from the reagent disk 9.
 反応ディスク1と試薬ディスク9の間には回転および上下動可能な試薬分注機構7,8が設置されており、それぞれ試薬プローブ7a,8aを備えている。試薬プローブ7a,8aには試薬用シリンジ18が接続されている。試薬プローブ7a,8aは回転軸を中心に円弧を描きながら移動して、試薬プローブ吸引口111から試薬ディスク9内にアクセスし、試薬ボトル10から反応容器2への試薬の分注を行う。 Between the reaction disk 1 and the reagent disk 9, reagent dispensing mechanisms 7 and 8 that can be rotated and moved up and down are installed, and reagent probes 7a and 8a are provided, respectively. A reagent syringe 18 is connected to the reagent probes 7a and 8a. The reagent probes 7 a and 8 a move while drawing an arc around the rotation axis, access the reagent disk 9 from the reagent probe suction port 111, and dispense the reagent from the reagent bottle 10 to the reaction container 2.
 反応ディスク1の周囲には、更に、洗浄機構3、光源4a、分光光度計4、撹拌機構5,6が配置されている。洗浄機構3には洗浄用ポンプ20が接続されている。試薬分注機構7,8、サンプル分注機構11、撹拌機構5,6の動作範囲上に洗浄槽13,30,31,32,33がそれぞれ設置されている。試料容器15には血液等の検査試料(検体)が含まれ、ラック16に載せられて試料搬送機構17によって運ばれる。また、各機構はコントローラ21に接続されている。 Around the reaction disk 1, a cleaning mechanism 3, a light source 4a, a spectrophotometer 4, and stirring mechanisms 5 and 6 are further arranged. A cleaning pump 20 is connected to the cleaning mechanism 3. Washing tanks 13, 30, 31, 32, and 33 are installed on the operation ranges of the reagent dispensing mechanisms 7 and 8, the sample dispensing mechanism 11, and the stirring mechanisms 5 and 6, respectively. The sample container 15 contains a test sample (specimen) such as blood, and is placed on the rack 16 and carried by the sample transport mechanism 17. Each mechanism is connected to the controller 21.
 コントローラ21は、コンピュータ等から構成され、自動分析装置内の各機構の動作を制御するとともに、血液や尿等の液体試料中の所定の成分の濃度を求める演算処理を行う。 The controller 21 is composed of a computer or the like, and controls the operation of each mechanism in the automatic analyzer and performs arithmetic processing for obtaining the concentration of a predetermined component in a liquid sample such as blood or urine.
 以上が自動分析装置の一般的な構成である。 The above is the general configuration of the automatic analyzer.
 上述のような自動分析装置による検査試料の分析処理は、一般的に以下の順に従い実行される。 The inspection sample analysis processing by the automatic analyzer as described above is generally executed in the following order.
 まず、試料搬送機構17によって反応ディスク1近くに搬送されたラック16の上に載置された試料容器15内の試料を、サンプル分注機構11のサンプルプローブ11aにより反応ディスク1上の反応容器2へと分注する。次に、分析に使用する試薬を、試薬ディスク9上の試薬ボトル10から試薬分注機構7,8により先に試料を分注した反応容器2に対して分注する。続いて、撹拌機構5で反応容器2内の試料と試薬との混合液の撹拌を行う。 First, the sample in the sample container 15 placed on the rack 16 transported near the reaction disk 1 by the sample transport mechanism 17 is transferred to the reaction container 2 on the reaction disk 1 by the sample probe 11 a of the sample dispensing mechanism 11. Dispense into Next, the reagent used for the analysis is dispensed from the reagent bottle 10 on the reagent disk 9 to the reaction container 2 into which the sample has been dispensed by the reagent dispensing mechanisms 7 and 8. Subsequently, the mixed solution of the sample and the reagent in the reaction vessel 2 is stirred by the stirring mechanism 5.
 その後、光源4aから発生させた光を混合液の入った反応容器2を透過させ、透過光の光度を分光光度計4により測定する。分光光度計4により測定された光度を、A/Dコンバータおよびインターフェイスを介してコントローラ21に送信する。そしてコントローラ21によって演算を行い、血液や尿等の液体試料中の所定の成分の濃度を求め、結果を表示部(不図示)等にて表示させる。 Thereafter, the light generated from the light source 4 a is transmitted through the reaction vessel 2 containing the mixed solution, and the luminous intensity of the transmitted light is measured by the spectrophotometer 4. The luminous intensity measured by the spectrophotometer 4 is transmitted to the controller 21 via the A / D converter and the interface. Then, calculation is performed by the controller 21, the concentration of a predetermined component in a liquid sample such as blood or urine is obtained, and the result is displayed on a display unit (not shown) or the like.
 次にオートローダー機構100の構成について図2以降を参照して説明する。図2はオートローダー機構100の概要を示す図である。 Next, the configuration of the autoloader mechanism 100 will be described with reference to FIG. FIG. 2 is a diagram showing an outline of the autoloader mechanism 100.
 試薬ボトル10の試薬プローブ吸引口位置には内部を密閉するために蓋112が取りつけられており、自動分析装置内にセットする時に蓋112を取り外して装置内に設置することが一般的である。しかし、近年、蓋112に切り込み上の穴を開けて、試薬プローブ7a,8aを切り込み部に挿入して試薬ボトル10内の試薬を吸引する方法がある。試薬は蓋112の開口部が僅かな切り込みとなるため、試薬は外気との接触が最小となり、試薬の劣化は従来と比較して改善される。このような場合に、オペレーターは未開封の新品の試薬ボトル10を自動分析装置内に設置すれば、試薬ボトル10の蓋112に穴を開けて自動で試薬ディスク9に設置まで行われる。蓋112の取り外しや蓋112への切り込みの実施の有無に限らず試薬ボトル10を試薬ディスク9まで自動で搬入搬出する機構がオートローダー機構100である。 A lid 112 is attached to the reagent probe suction position of the reagent bottle 10 in order to seal the inside, and the lid 112 is generally removed and installed in the apparatus when set in the automatic analyzer. However, in recent years, there is a method in which a hole in the notch is formed in the lid 112, and the reagent probes 7a and 8a are inserted into the notch and the reagent in the reagent bottle 10 is sucked. Since the opening of the lid 112 is slightly cut in the reagent, the reagent has minimal contact with the outside air, and the deterioration of the reagent is improved as compared with the conventional case. In such a case, if the operator installs an unopened new reagent bottle 10 in the automatic analyzer, a hole is made in the lid 112 of the reagent bottle 10 and the process is automatically performed on the reagent disk 9. The autoloader mechanism 100 is a mechanism that automatically carries the reagent bottle 10 to and from the reagent disk 9 regardless of whether or not the lid 112 is removed or cut into the lid 112.
 オートローダー機構100は、試薬ディスク9の上部に配置され、図2等に示すような構成となっている。図2において、オートローダー機構100は、試薬搭載部103、試薬搭載機構102、試薬搬送機構(試薬搬送部)101、第2保冷庫(試薬保冷庫)110、ニードル洗浄槽108、ニードル乾燥口109、ボトル向き検出センサ114、RFIDセンサ115を備えている。 The autoloader mechanism 100 is arranged on the upper part of the reagent disk 9 and has a configuration as shown in FIG. In FIG. 2, the autoloader mechanism 100 includes a reagent mounting unit 103, a reagent mounting mechanism 102, a reagent transport mechanism (reagent transport unit) 101, a second cool box (reagent cool box) 110, a needle cleaning tank 108, and a needle drying port 109. , A bottle direction detection sensor 114 and an RFID sensor 115 are provided.
 試薬搭載部103は、自動分析装置内に試薬ボトル10を搬入する際にオペレーターが試薬ボトル10を設置するための部分であり、試薬搭載機構102によって試薬搭載部103は図2,3上で上下方向に動作する。試薬搭載部103は、複数の試薬ボトル10を直線上に複数本設置可能な構造となっている。この試薬搭載部103は第2保冷庫110の内部の空間で設置された複数の試薬ボトル10を保冷することが可能な構成となっている。例えば、試薬搭載部103は試薬ボトル10を複数個搭載することが可能なトレーである。試薬搭載部103や試薬搭載機構102の詳細については後述する。 The reagent loading unit 103 is a part for the operator to install the reagent bottle 10 when carrying the reagent bottle 10 into the automatic analyzer. The reagent loading unit 103 is moved up and down on the FIGS. Operate in the direction. The reagent mounting unit 103 has a structure in which a plurality of reagent bottles 10 can be installed on a straight line. The reagent mounting unit 103 is configured to be able to cool a plurality of reagent bottles 10 installed in the space inside the second cool box 110. For example, the reagent loading unit 103 is a tray on which a plurality of reagent bottles 10 can be loaded. Details of the reagent loading unit 103 and the reagent loading mechanism 102 will be described later.
 第2保冷庫110は、試薬ディスク9に搬入する前に、試薬搭載部103に設置した試薬ボトル10を一時的に試薬搭載部103ごと保冷するための保冷庫である。第2保冷庫110の構造の詳細は後述する。 The second cool box 110 is a cool box for temporarily cooling the reagent bottle 10 installed in the reagent loading unit 103 together with the reagent loading unit 103 before carrying it into the reagent disk 9. Details of the structure of the second cool box 110 will be described later.
 試薬搬送機構101は、試薬搭載部103に設置された試薬ボトル10を試薬ディスク9内に搬送するための機構であり、試薬ボトル10を把持するグリッパー機構(グリッパー部)106、試薬ボトル10の蓋112に穴を開ける試薬ボトル蓋開栓機構104、グリッパー機構106や試薬ボトル蓋開栓機構104を上下動させる上下駆動モータ(不図示)、グリッパー機構106や試薬ボトル蓋開栓機構104を図2上で左右方向に駆動させる水平駆動モータ131を構成部品としている。 The reagent transport mechanism 101 is a mechanism for transporting the reagent bottle 10 installed in the reagent mounting unit 103 into the reagent disk 9, and includes a gripper mechanism (gripper unit) 106 that grips the reagent bottle 10, and a lid of the reagent bottle 10. The reagent bottle lid opening mechanism 104 that opens a hole 112, a vertical drive motor (not shown) that moves the gripper mechanism 106 and the reagent bottle lid opening mechanism 104 up and down, and the gripper mechanism 106 and the reagent bottle lid opening mechanism 104 are shown in FIG. A horizontal drive motor 131 that drives in the left-right direction is used as a component.
 試薬搬送機構101は、図2における試薬搭載部103の位置から開閉カバー113の位置の間を図2上で左右方向に動作する。すなわち、試薬搭載部103は図2上で上下方向に移動し、試薬搬送機構101は図2上で水平方向に動作するため、動作方向が直交するように構成されている。また、試薬搬送機構101は、グリッパー機構106によって試薬ボトル10を把持する位置と、試薬ボトル10を試薬ディスク9に搬入、搬出する位置とが直線状に配置されている。 The reagent transport mechanism 101 operates in the left-right direction in FIG. 2 between the position of the reagent mounting unit 103 in FIG. That is, the reagent loading unit 103 moves up and down in FIG. 2, and the reagent transport mechanism 101 operates in the horizontal direction in FIG. 2, so that the operation directions are orthogonal to each other. In the reagent transport mechanism 101, a position where the gripper mechanism 106 grips the reagent bottle 10 and a position where the reagent bottle 10 is carried into and out of the reagent disk 9 are linearly arranged.
 試薬ボトル蓋開栓機構104は、試薬ボトル10の蓋112に切り込みを入れるためのニードル105が取り付けられている。試薬ボトル蓋開栓機構104では、蓋112に切り込みを入れた後のニードル105の洗浄を試薬搬送機構101の動作方向に対して平行に配置されたニードル洗浄槽108で行い、次の工程で、試薬搬送機構101の動作方向に対して平行に配置されたニードル乾燥口109によって洗浄水の除去を行い、試薬ボトルの蓋112の切り込みを入れるときに、洗浄水で試薬を薄めないように構成されている。 The reagent bottle lid opening mechanism 104 is provided with a needle 105 for cutting into the lid 112 of the reagent bottle 10. In the reagent bottle lid opening mechanism 104, the needle 105 after being cut into the lid 112 is washed in the needle washing tank 108 arranged in parallel to the operation direction of the reagent transport mechanism 101. In the next step, The cleaning water is removed by the needle drying port 109 arranged in parallel with the operation direction of the reagent transport mechanism 101, and the reagent bottle lid 112 is cut so that the reagent is not diluted with the cleaning water. ing.
 グリッパー機構106は、試薬ボトル10を把持するための引っかけ爪を有しており、この引っかけ爪を試薬ボトル10の切欠き部に引っかけることで試薬ボトル10を把持する。 The gripper mechanism 106 has a hooking claw for holding the reagent bottle 10, and holds the reagent bottle 10 by hooking the hooking claw on the notch portion of the reagent bottle 10.
 図2に戻り、ボトル向き検出センサ114とRFIDセンサ115は、試薬搭載部103の動作上に配置されている。ボトル向き検出センサ114は、試薬ボトル10の設置有無および設置方向を測定する。RFIDセンサ115は、試薬ボトル10に設けられたRFIDタグ10aに記録された試薬ボトル10内の試薬の情報を入手する。 2, the bottle direction detection sensor 114 and the RFID sensor 115 are arranged on the operation of the reagent mounting unit 103. The bottle orientation detection sensor 114 measures whether or not the reagent bottle 10 is installed and the installation direction. The RFID sensor 115 obtains information on the reagent in the reagent bottle 10 recorded on the RFID tag 10 a provided in the reagent bottle 10.
 次に、試薬搭載部103を含めた試薬搭載機構102、第2保冷庫110の構成及び動作の詳細な説明を行う。まず、図3を用いて第2保冷庫110の構造の詳細を説明する。図3はオートローダー機構の概略図である。 Next, the configuration and operation of the reagent mounting mechanism 102 including the reagent mounting unit 103 and the second cold storage 110 will be described in detail. First, the structure of the 2nd cool box 110 is demonstrated using FIG. FIG. 3 is a schematic view of the autoloader mechanism.
 図3のように、第2保冷庫110内には、試薬搭載部103に設置した複数個の試薬ボトル10が保冷されている。第2保冷庫110は、観音開きする第2扉201と第1扉202とが開閉することで試薬搭載部103の搬入・搬出を行うとともに、閉じた際に第2保冷庫110内を密閉する構造となっている。また、第2扉201と第1扉202とでは扉の長さが異なっている。また、第1扉202の第2保冷庫110内側には、フックローラ205が設けられている。 As shown in FIG. 3, a plurality of reagent bottles 10 installed in the reagent mounting unit 103 are kept cool in the second cool box 110. The second cooler 110 is configured to load and unload the reagent loading unit 103 by opening and closing the second door 201 and the first door 202 that open and close, and to seal the inside of the second cooler 110 when closed. It has become. Further, the second door 201 and the first door 202 have different door lengths. A hook roller 205 is provided inside the second cool box 110 of the first door 202.
 リンク208は、その一端が第2扉201に取り付けられ、もう一端が第1扉202に取り付けられている。リンク208によって連結されているため、第2扉201と第1扉202とは連動して一体化した動作で開閉動作が行われる。 The link 208 has one end attached to the second door 201 and the other end attached to the first door 202. Since the second door 201 and the first door 202 are connected together by the link 208, the opening / closing operation is performed by an integrated operation.
 また、リンク208と第2保冷庫110の固定部110Aとの間には、リンク208を常に図3中上側へ引っ張るように設定された扉バネ207が取り付けられている。すなわち、第2扉201,第1扉202はリンク208を介して常に第2保冷庫110側へ引っ張られている状態となっている。扉バネ207は、第2扉201,第1扉202が開くに従い伸びて、第2扉201,第1扉202が閉まるに従い縮むように作用する。なお、この扉バネ207は、リンク208を介さずに第2扉201や第1扉202に直接取り付けられていてもよい。 Further, a door spring 207 set to always pull the link 208 upward in FIG. 3 is attached between the link 208 and the fixed portion 110A of the second cold storage 110. That is, the second door 201 and the first door 202 are always pulled toward the second cold storage 110 via the link 208. The door spring 207 extends so that the second door 201 and the first door 202 are opened, and contracts as the second door 201 and the first door 202 are closed. The door spring 207 may be directly attached to the second door 201 or the first door 202 without using the link 208.
 なお、図4の様に、第2扉201に、第2扉201および第1扉202が閉じた際に第1扉202に被せかかる第3扉209を設けることができる。このような第3扉を設けることによって更なる第2保冷庫110内の密閉度は向上できる。これは、図4の例では、扉バネ207とリンク208との連結箇所は、第1扉202とリンク208との連結箇所より第2扉201とリンク208との連結箇所の近くに配置されている。このため、扉バネ207の張力は第1扉202より扉の長い第2扉201側に大きくかかる。従って、扉バネ207は第2扉201を第1扉202に密着させるように動作する。なお、図4はオートローダー機構100の開閉扉の他の一例の概略図である。図4では、リンク208は図示の都合上点線で示している。 As shown in FIG. 4, the second door 201 can be provided with a third door 209 that covers the first door 202 when the second door 201 and the first door 202 are closed. By providing such a third door, the degree of sealing in the second cold storage 110 can be improved. In the example of FIG. 4, the connecting portion between the door spring 207 and the link 208 is arranged closer to the connecting portion between the second door 201 and the link 208 than the connecting portion between the first door 202 and the link 208. Yes. For this reason, the tension of the door spring 207 is greater on the second door 201 side, which is longer than the first door 202. Accordingly, the door spring 207 operates to bring the second door 201 into close contact with the first door 202. FIG. 4 is a schematic view of another example of the opening / closing door of the autoloader mechanism 100. In FIG. 4, the link 208 is indicated by a dotted line for convenience of illustration.
 第2保冷庫110では、第2扉201と第1扉202が閉まっている時は、第2保冷庫110内部の試薬ボトル10を安定して保冷することが望まれるため、内部を完全に密閉することが望まれる。完全な密閉状態を維持出来ることで、外気との温度差により結露水が発生することや、第2保冷庫内部を規定温度まで下げるまでに時間を要することを抑制することができるためである。そこで、扉バネ207によって第2扉201および第1扉202が開かないようにリンク208を引っ張っていることにより、装置電源がOFFになったとしても第2保冷庫110内部の密閉状態を維持可能となり、より安定した試薬ボトル10の保冷が可能となる。 In the second cooler 110, when the second door 201 and the first door 202 are closed, it is desired to stably cool the reagent bottle 10 inside the second cooler 110, so the inside is completely sealed. It is desirable to do. This is because, by maintaining a completely sealed state, it is possible to suppress the generation of condensed water due to a temperature difference from the outside air and the time required for lowering the inside of the second cool box to a specified temperature. Therefore, by pulling the link 208 so that the second door 201 and the first door 202 are not opened by the door spring 207, the sealed state inside the second cold storage 110 can be maintained even if the apparatus power is turned off. Thus, the reagent bottle 10 can be more stably cooled.
 また、図4の扉の配置では第2扉201の回転半径が大きくなるため、第1扉202と同時に両扉を開けても第3扉209は干渉なく動作出来るが、左右の扉の大きさが同じである場合や第1扉202に第3扉209を設けたい場合は、リンク208の配置を考慮すればよい。 In addition, since the rotation radius of the second door 201 increases in the door arrangement of FIG. 4, the third door 209 can operate without interference even if both doors are opened simultaneously with the first door 202, but the size of the left and right doors Are the same, or when it is desired to provide the third door 209 on the first door 202, the arrangement of the links 208 may be considered.
 次に、図5を用いて試薬搭載部103の詳細を説明する。図5は試薬搭載部103の上面図である。 Next, details of the reagent mounting unit 103 will be described with reference to FIG. FIG. 5 is a top view of the reagent mounting unit 103.
 図5において、試薬搭載部103は、試薬ボトル10を設置するためのスペースを有する本体103Aと、第1ローラ300と、第2前方ローラ301Aと、第2後方ローラ301Bと、第3ローラ302とを有する。本体103Aの底面側には扉フック溝303が設けられており、この扉フック溝303にフックローラ205が入り込む構造となっている。 In FIG. 5, the reagent mounting unit 103 includes a main body 103 </ b> A having a space for installing the reagent bottle 10, a first roller 300, a second front roller 301 </ b> A, a second rear roller 301 </ b> B, and a third roller 302. Have A door hook groove 303 is provided on the bottom surface side of the main body 103 </ b> A, and the hook roller 205 is inserted into the door hook groove 303.
 第1ローラ300は、試薬搭載機構搬送面182や搬送面182Aの上面に回転しながら接触するローラであり、本体103Aの右側に2個、左側に2個、計4個配置されている。この第1ローラ300によって、試薬搭載部103はスムーズに移動可能となっている。 The first roller 300 is a roller that rotates and contacts the upper surfaces of the reagent loading mechanism transport surface 182 and the transport surface 182A, and is arranged in a total of four, two on the right side and two on the left side of the main body 103A. The first roller 300 allows the reagent mounting unit 103 to move smoothly.
 第2前方ローラ301Aおよび第2後方ローラ301Bは、試薬搭載部103の移動方向の片側、図5では接触する対象となる、長さの長い第2扉201側にのみ複数配置されており、本体103Aから図5中右側方向に一部が突出した突出部103Bに配置されている。 A plurality of second front rollers 301A and second rear rollers 301B are arranged only on one side of the reagent mounting portion 103 in the moving direction, that is, on the side of the second door 201 having a long length, which is a contact target in FIG. The protrusion 103B is partly protruded from 103A in the right direction in FIG.
 第3ローラ302は、試薬搭載部103の進行方向前面側に計2個配置されている。 Two third rollers 302 are arranged on the front side in the traveling direction of the reagent mounting unit 103.
 図3に戻り、試薬搭載機構102は、試薬搭載部103を駆動する試薬搭載機構モータ180、試薬搭載機構モータ180に連結された試薬搭載機構ベルト181、プーリ181A,181B、試薬搭載機構搬送面182、リニアガイド183、および試薬搭載機構ベルト181と試薬搭載部103とを連結する保持部184を有する。 Returning to FIG. 3, the reagent loading mechanism 102 includes a reagent loading mechanism motor 180 that drives the reagent loading unit 103, a reagent loading mechanism belt 181 coupled to the reagent loading mechanism motor 180, pulleys 181 </ b> A and 181 </ b> B, and a reagent loading mechanism conveyance surface 182. And a linear guide 183 and a holding part 184 for connecting the reagent mounting mechanism belt 181 and the reagent mounting part 103.
 試薬搭載部103はリニアガイド183に取り付けられている。リニアガイド183の両側には、試薬搭載機構搬送面182がリニアガイド183に対して平行に配置されている。これらリニアガイド183および試薬搭載機構搬送面182は、試薬搭載部103に試薬ボトル10を設置する設置位置と第2保冷庫110との間を試薬搭載部103が移動するための搬送ラインとして機能する。 The reagent mounting unit 103 is attached to the linear guide 183. On both sides of the linear guide 183, reagent loading mechanism transport surfaces 182 are arranged in parallel to the linear guide 183. The linear guide 183 and the reagent mounting mechanism transport surface 182 function as a transport line for the reagent mounting unit 103 to move between the installation position where the reagent bottle 10 is installed in the reagent mounting unit 103 and the second cold storage 110. .
 試薬搭載機構ベルト181はリニアガイド183等と並列に配置されており、保持部184を介して試薬搭載機構ベルト181と試薬搭載部103とが連結されている。この保持部184は、第2保冷庫110内が低温に保たれるように、第2保冷庫110の扉に接触する部分が第2保冷庫110の扉に設けられたパッキンに対して十分に薄い構造(一枚の金属板等)となっている。この保持部184の第2保冷庫110の蓋に接触する部分は、扉と第2保冷庫110の本体とで挟まれる構造となるため、この部分を十分に薄い構造とすることで気密性が確保できるためである。試薬搭載機構ベルト181の両端にはプーリ181A,181B、試薬搭載機構モータ180が取り付けられており、試薬搭載機構モータ180が回転することでプーリ181Aを介して試薬搭載機構ベルト181が連動して回転し、この試薬搭載機構ベルト181の回転運動に伴って保持部184を介して試薬搭載機構ベルト181と連結された試薬搭載部103が図3中の上下方向に動作する構成となっている。 The reagent loading mechanism belt 181 is arranged in parallel with the linear guide 183 and the like, and the reagent loading mechanism belt 181 and the reagent loading portion 103 are connected via a holding portion 184. This holding part 184 is sufficiently in contact with the packing provided on the door of the second cold storage 110 so that the portion that contacts the door of the second cold storage 110 is sufficiently kept so that the inside of the second cold storage 110 is kept at a low temperature. It has a thin structure (one metal plate, etc.). The portion of the holding unit 184 that contacts the lid of the second cold storage 110 has a structure that is sandwiched between the door and the main body of the second cold storage 110. Therefore, by making this portion sufficiently thin, airtightness is achieved. This is because it can be secured. Pulleys 181A and 181B and a reagent loading mechanism motor 180 are attached to both ends of the reagent loading mechanism belt 181. When the reagent loading mechanism motor 180 rotates, the reagent loading mechanism belt 181 rotates in conjunction with the rotation via the pulley 181A. As the reagent loading mechanism belt 181 rotates, the reagent loading portion 103 connected to the reagent loading mechanism belt 181 via the holding portion 184 operates in the vertical direction in FIG.
 また、試薬搭載部103と試薬搭載機構ベルト181を接続する保持部184には、扉ロックローラ206が取り付いている。この扉ロックローラ206については後述する。 Also, a door lock roller 206 is attached to the holding unit 184 that connects the reagent mounting unit 103 and the reagent mounting mechanism belt 181. The door lock roller 206 will be described later.
 また、試薬搭載機構搬送面182と第2保冷庫110の搬送面182Aとの間には左右に隙間200A,200Bが設けられている。第2扉201に近い側の隙間200Aは第2扉201の開閉軌道を確保するために設けられており、第1扉202に近い側の隙間200Bは第1扉202の開閉軌道を確保するために設けられている。 Also, gaps 200A and 200B are provided on the left and right between the reagent loading mechanism transport surface 182 and the transport surface 182A of the second cold storage 110. The gap 200A on the side close to the second door 201 is provided to ensure the opening / closing track of the second door 201, and the gap 200B on the side close to the first door 202 is to secure the opening / closing track of the first door 202. Is provided.
 なお、試薬搭載機構搬送面182を第2保冷庫110の中まで伸ばして試薬搭載部103を第2保冷庫110に格納する構造を採用することも可能である。しかし、第2扉201や第1扉202が閉じた時に第2保冷庫110内の密閉を保つために、第2扉201や第1扉202が試薬搭載機構搬送面182と干渉する部分の密閉を保つための新たな構造が必要となる。この場合、構造が更に複雑になり、部品点数も更に多くなってしまう。しかし、試薬搭載機構搬送面182と第2保冷庫110の間に隙間200A,200Bを設けることで、保持部184のみの密閉度を保つような構成にするのみで良くなるので、更なる部品点数の削減や、保冷能力に関する更なる信頼性向上が図れる。 In addition, it is also possible to adopt a structure in which the reagent loading mechanism transport surface 182 is extended into the second cold storage 110 and the reagent loading portion 103 is stored in the second cold storage 110. However, in order to keep the inside of the second cool box 110 closed when the second door 201 or the first door 202 is closed, the second door 201 or the first door 202 is sealed at a portion where the reagent loading mechanism transport surface 182 interferes. A new structure is needed to maintain In this case, the structure is further complicated and the number of parts is further increased. However, by providing the gaps 200A and 200B between the reagent mounting mechanism transport surface 182 and the second cold storage 110, it is only necessary to maintain the sealing degree of only the holding unit 184. And further improving the reliability of the cooling capacity.
 また、第2扉201の第2保冷庫110外側には扉ロック穴203が設けられている。 Further, a door lock hole 203 is provided outside the second cold storage 110 of the second door 201.
 更に、第2扉201の第2保冷庫110内側には、試薬搭載機構搬送面182と搬送面182Aとの間の隙間200Aを埋めるための補助搬送面185が設けられている。この補助搬送面185は第2扉201が開いた時に第2扉201の内側に付いたままともに開き、第2扉201が開いた時に試薬搭載機構搬送面182と搬送面182Aとの間の隙間200Aの多くを埋める。これにより、図3中右側の試薬搭載機構搬送面182側のレールが完成する。隙間200Bは間隔が広くなっているが、試薬搭載部103が第2保冷庫110から出る際に開く第2扉201の補助搬送面185に第1ローラ300が乗ること、および第1ローラ300が複数設けられていることによって、試薬搭載部103の前後動作は問題なく搬送可能となっている。 Furthermore, an auxiliary conveyance surface 185 for filling a gap 200A between the reagent loading mechanism conveyance surface 182 and the conveyance surface 182A is provided inside the second cold storage 110 of the second door 201. When the second door 201 is opened, the auxiliary transport surface 185 is opened while being attached to the inside of the second door 201, and when the second door 201 is opened, a gap between the reagent loading mechanism transport surface 182 and the transport surface 182A is opened. Fill a lot of 200A. Thereby, the rail on the reagent loading mechanism conveyance surface 182 side on the right side in FIG. 3 is completed. Although the gap 200B is wide, the first roller 300 is placed on the auxiliary conveyance surface 185 of the second door 201 that opens when the reagent mounting unit 103 comes out of the second cold storage 110, and the first roller 300 By providing a plurality, the back and forth operation of the reagent mounting unit 103 can be transported without any problem.
 ここで、試薬搭載部103の第1ローラ300は、隙間200A,200Bを超えて移動することから、図3中右側の試薬搭載機構搬送面182側の隙間より大きいことが望ましい。 Here, since the first roller 300 of the reagent loading unit 103 moves beyond the gaps 200A and 200B, it is desirable that the first roller 300 is larger than the gap on the reagent loading mechanism conveyance surface 182 side on the right side in FIG.
 また、試薬搭載機構搬送面182と補助搬送面185と搬送面182Aの上面側の高さを揃えることで、隙間200A,200Bがあっても試薬搭載部103はスムーズに動作可能となる。 Also, by arranging the heights of the upper surfaces of the reagent loading mechanism conveying surface 182, the auxiliary conveying surface 185, and the conveying surface 182A, the reagent loading unit 103 can operate smoothly even if there are gaps 200A, 200B.
 更に、第2扉201には、扉ロック穴203が取り付けられている。またこの扉ロック穴203とは独立して扉ロック機構204が配置されている。扉ロック機構204は第2保冷庫110に対して固定されており、第2扉201が完全に開いた時に扉ロック機構204の挿入棒204A(図6参照)が第2扉201の外側に設けられた扉ロック穴203に挿入され、第2扉201が扉バネ207の張力によって閉まることを阻止するようになっている。扉ロック穴203と扉ロック機構204、扉ロックローラ206とで、試薬搭載部103が第2保冷庫110の外側に出ている時に、第2扉201,第1扉202が閉まらないように第2扉201,第1扉202をロックするロック機構が構成される。 Furthermore, a door lock hole 203 is attached to the second door 201. A door lock mechanism 204 is disposed independently of the door lock hole 203. The door lock mechanism 204 is fixed to the second cold storage 110, and an insertion rod 204A (see FIG. 6) of the door lock mechanism 204 is provided outside the second door 201 when the second door 201 is completely opened. The second door 201 is prevented from being closed by the tension of the door spring 207. The door lock hole 203, the door lock mechanism 204, and the door lock roller 206 prevent the second door 201 and the first door 202 from being closed when the reagent mounting portion 103 is outside the second cold storage 110. A lock mechanism for locking the two doors 201 and the first door 202 is configured.
 図6に示すように、扉ロック機構204の内部にはバネ204Bが組み込まれており、挿入棒204Aが上下方向に移動可能な構造となっている。扉ロック機構204の下部位には、扉ロックローラ206を受けるようなスロープ204Cおよび平坦部204Dが設けられている。 As shown in FIG. 6, a spring 204B is incorporated in the door lock mechanism 204, and the insertion rod 204A is movable in the vertical direction. A slope 204 </ b> C and a flat portion 204 </ b> D that receive the door lock roller 206 are provided below the door lock mechanism 204.
 なお、ロック機構は扉ロック穴203,扉ロック機構204,扉ロックローラ206の組み合わせに限られず、例えば磁石によって最大に開いた扉を支える構造や、試薬搭載部103に設けた蛇腹等で扉が閉まらないようにロックする構造などが挙げられる。試薬搭載部103と第2保冷庫110内部とを蛇腹等で繋げることで伸びた蛇腹等が扉が閉まるのをロックして防ぐことができる。 The lock mechanism is not limited to the combination of the door lock hole 203, the door lock mechanism 204, and the door lock roller 206. For example, the door is supported by a structure that supports the door that is opened to the maximum by a magnet, or a bellows provided in the reagent mounting portion 103. For example, a structure that locks so as not to close. By connecting the reagent mounting part 103 and the inside of the second cold storage 110 with a bellows or the like, it is possible to lock and prevent the extended bellows or the like from closing the door.
 以上が第2保冷庫110及び試薬搭載機構102の構成である。 The above is the configuration of the second cold storage 110 and the reagent loading mechanism 102.
 次に、第2保冷庫110から試薬搭載部103が第2扉201及び第1扉202を開けて搬出される際の動作について説明する。ここでは、図2中下向きの移動を搬出方向と、上向きの移動を搬入方向とする。 Next, the operation when the reagent mounting unit 103 is unloaded from the second cold storage box 110 by opening the second door 201 and the first door 202 will be described. Here, the downward movement in FIG. 2 is defined as the carry-out direction, and the upward movement is defined as the carry-in direction.
 まず、第2保冷庫110内に試薬搭載部103が入っている状態から搬出する場合、試薬搭載機構モータ180が回転し、共に試薬搭載機構ベルト181が回転することで試薬搭載部103は搬出方向に移動を開始する。 First, when carrying out from the state in which the reagent mounting unit 103 is contained in the second cool box 110, the reagent mounting mechanism motor 180 rotates, and the reagent mounting mechanism belt 181 rotates together so that the reagent mounting unit 103 moves in the carrying-out direction. Start moving to.
 試薬搭載部103が更に移動すると、図7に示すように、試薬搭載部103に取り付いている左右の第3ローラ302が第2扉201、第1扉202の内側に接触するとともに、進行方向前方側の第2前方ローラ301Aが第1扉202に接触する。 When the reagent mounting unit 103 further moves, as shown in FIG. 7, the left and right third rollers 302 attached to the reagent mounting unit 103 come into contact with the inside of the second door 201 and the first door 202, and the front in the traveling direction. The second front roller 301 </ b> A on the side contacts the first door 202.
 接触した状態からさらに第2扉201および第1扉202を広げるように試薬搭載部103を前面に移動させると、図8のように、第2扉201が進行方向後方側の第2後方ローラ301Bに接触することで直角に開閉する。第1扉202はローラの接触はないが、リンク208により第2扉201と同期した扉の開閉動作となるため、第1扉202は直角に開く。 When the reagent mounting portion 103 is moved to the front so as to further expand the second door 201 and the first door 202 from the contacted state, the second rear roller 301B on the rear side in the traveling direction as shown in FIG. Open and close at right angles by touching. Although the first door 202 is not in contact with the roller, the door 208 is opened and closed in synchronization with the second door 201 by the link 208, so the first door 202 opens at a right angle.
 図9のように、第2扉201および第1扉202が直角に開閉すると、扉ロック機構204の挿入棒204Aが扉ロック穴203に挿入されて第2扉201がロックされる。このため、扉バネ207で引っ張られても第2扉201および第1扉202が閉まることはない。 As shown in FIG. 9, when the second door 201 and the first door 202 are opened and closed at right angles, the insertion rod 204A of the door lock mechanism 204 is inserted into the door lock hole 203 and the second door 201 is locked. For this reason, even if it pulls with the door spring 207, the 2nd door 201 and the 1st door 202 do not close.
 次に試薬搭載部103が第2保冷庫110内に収納する時の動作を説明する。 Next, the operation when the reagent mounting unit 103 is stored in the second cold storage 110 will be described.
 まず、試薬搭載機構モータ180が先ほどとは逆方向に回転し、共に試薬搭載機構ベルト181が逆方向に回転することで試薬搭載部103は搬入方向に移動を開始する。 First, the reagent loading mechanism motor 180 rotates in the opposite direction, and the reagent loading mechanism belt 181 rotates in the opposite direction, whereby the reagent loading section 103 starts moving in the loading direction.
 試薬搭載部103が更に移動すると、扉ロック機構204の挿入棒204Aが扉ロック穴203から取り出され、ロック機構によるロック状態は解除され、扉バネ207の動作により第2扉201および第1扉202は閉まる方法に動作する。 When the reagent loading unit 103 further moves, the insertion rod 204A of the door lock mechanism 204 is removed from the door lock hole 203, the locked state by the lock mechanism is released, and the second door 201 and the first door 202 are operated by the operation of the door spring 207. Works in a closed way.
 また、図10のような状態となった時に、フックローラ205が試薬搭載部103の扉フック溝303に入り込む。そしてフックローラ205が扉フック溝303に入り込んだ状態で試薬搭載部103が第2保冷庫110内を搬入方向に更に移動すると、図11の状態のように、第1扉202は扉フック溝303に入り込んだフックローラ205に引っ張られるとともに第3ローラ302に接触した状態を維持しながら、閉じ方向に移動する。またリンク208を介して第1扉202に引っ張られることで第2扉201も同様に第3ローラ302に接触した状態を維持しながら閉じ方向に移動する。その後、試薬搭載部103が第2保冷庫110内に完全に搬入されることで、図12の様に密閉状態となる。このような扉フック溝303とフックローラ205を用いることで、第2扉201および第1扉202の閉じ方向動作をサポートすることができ、より安定した扉の閉じ方向動作が可能となる。 Further, when the state shown in FIG. 10 is reached, the hook roller 205 enters the door hook groove 303 of the reagent mounting unit 103. When the reagent loading unit 103 further moves in the second cool box 110 in the loading direction with the hook roller 205 entering the door hook groove 303, the first door 202 is moved into the door hook groove 303 as shown in FIG. While being pulled by the hook roller 205 that has entered and in contact with the third roller 302, the hook roller 205 moves in the closing direction. Further, by being pulled by the first door 202 via the link 208, the second door 201 similarly moves in the closing direction while maintaining the state in contact with the third roller 302. After that, the reagent mounting unit 103 is completely carried into the second cold storage 110, and is in a sealed state as shown in FIG. By using the door hook groove 303 and the hook roller 205 as described above, the closing direction operation of the second door 201 and the first door 202 can be supported, and the door closing direction operation can be performed more stably.
 次いで、図6や図13、図14を用いてロック機構の動作の詳細について説明する。 Next, details of the operation of the lock mechanism will be described with reference to FIGS. 6, 13, and 14.
 まず、試薬搭載部103が搬出方向に移動する場合を説明する。保持部184に取り付いている扉ロックローラ206が試薬搭載部103の移動と共に移動するため、扉ロックローラ206とスロープ204Cとが接近した状態となる。このまま移動が続くと、スロープ204Cと接触しながら扉ロックローラ206が進むため、バネ204Bが縮みはじめ、挿入棒204Aが上方側に持ちあがる。更に移動が進むと、扉ロックローラ206は平坦部204Dに接触し、挿入棒204Aが上方側に完全に持ちあがる。この状態の時に、図8に示すような第2扉201が垂直に開くように、各構成部品が配置されているため、挿入棒204Aの直下に扉ロック穴203が配置される。 First, the case where the reagent mounting unit 103 moves in the carry-out direction will be described. Since the door lock roller 206 attached to the holding unit 184 moves with the movement of the reagent mounting unit 103, the door lock roller 206 and the slope 204C are brought close to each other. If the movement continues, the door lock roller 206 advances while contacting the slope 204C, so that the spring 204B begins to shrink and the insertion rod 204A is lifted upward. As the movement further proceeds, the door lock roller 206 comes into contact with the flat portion 204D, and the insertion rod 204A is completely lifted upward. In this state, since each component is arranged so that the second door 201 as shown in FIG. 8 opens vertically, the door lock hole 203 is arranged immediately below the insertion rod 204A.
 更に試薬搭載部103の移動が続くと、扉ロックローラ206とスロープ204Cとが接触し、挿入棒204Aはバネ204Bの作用により下方向に移動しはじめる。その後、扉ロックローラ206とスロープ204Cが離れると、図14の様に、第2扉201に取り付いている扉ロック穴203に挿入棒204Aが挿入される。このため、第2扉201と第1扉202は扉バネ207による圧縮の力、すなわち閉じ方向の力が働いても、第2扉201と第1扉202とは開いた状態が維持され、図9のように第2扉201と第1扉202とが開いた状態で試薬搭載部103は更なる搬出方向への移動が可能となる。 Further, when the reagent loading unit 103 continues to move, the door lock roller 206 and the slope 204C come into contact with each other, and the insertion rod 204A starts to move downward due to the action of the spring 204B. Thereafter, when the door lock roller 206 and the slope 204C are separated, the insertion rod 204A is inserted into the door lock hole 203 attached to the second door 201 as shown in FIG. For this reason, the second door 201 and the first door 202 are maintained in an open state even when the compression force by the door spring 207, that is, the force in the closing direction is applied. As shown in FIG. 9, the reagent mounting unit 103 can be further moved in the unloading direction with the second door 201 and the first door 202 opened.
 試薬搭載部103が搬入方向に移動する場合は、先程とは逆の動作となり、まず扉ロックローラ206とスロープ204Cとが接触し、バネ204Bが縮んで挿入棒204Aが上方側に持ちあがる。更に進むと扉ロックローラ206は平坦部204Dに接触して、挿入棒204Aが上方側に持ちあがり、図13に示すように挿入状態が解除される。 When the reagent loading unit 103 moves in the carry-in direction, the operation is the reverse of the previous one. First, the door lock roller 206 and the slope 204C come into contact with each other, the spring 204B contracts and the insertion rod 204A is lifted upward. When further proceeding, the door lock roller 206 comes into contact with the flat portion 204D, and the insertion rod 204A is lifted upward, and the insertion state is released as shown in FIG.
 その後、扉ロックローラ206とスロープ204Cとが接触し、挿入棒204Aはバネ204Bの作用により下方向に移動しはじめ、扉ロックローラ206とスロープ204Cが離れると、図6の様な状態となり、ロック機構によるロック状態が完全に解除され、第2扉201および第1扉202を閉じることができる。 Thereafter, the door lock roller 206 and the slope 204C come into contact with each other, and the insertion rod 204A starts to move downward by the action of the spring 204B. When the door lock roller 206 and the slope 204C are separated, the state shown in FIG. The locked state by the mechanism is completely released, and the second door 201 and the first door 202 can be closed.
 以上がオートローダー機構100の構成及びその動作である。 The above is the configuration and operation of the autoloader mechanism 100.
 なお、ロック機構に磁石を用いて最大に開いた扉を支える構造とした場合には、試薬搭載部103が第2保冷庫110内に収納する時、扉と扉が磁力で密着する箇所の間に物理的に部材を割り込ませるようにすることで、磁力で引き付け合う力をバネの引っ張り張力以下に弱めロックを解除することができる。また、ロック機構に蛇腹等を用いて最大に開いた扉を支える構造とした場合には、試薬搭載部103が第2保冷庫110内に収納する時、蛇腹等が収納に伴う移動により縮むため、扉を支えることができなくなりロックを解除することができる。 In addition, when it is set as the structure which supports the door opened to the maximum using a magnet for a locking mechanism, when the reagent mounting part 103 accommodates in the 2nd cold storage 110, between the location where a door and a door closely_contact | adhere magnetically. When the member is physically interrupted, the force attracted by the magnetic force is reduced below the tension of the spring, and the lock can be released. In addition, when the lock mechanism is configured to support the door that is opened to the maximum by using a bellows or the like, the bellows or the like contracts due to the movement accompanying the storage when the reagent mounting portion 103 is stored in the second cold storage 110. The door can no longer be supported and the lock can be released.
 次に、本実施形態の効果について説明する。 Next, the effect of this embodiment will be described.
 上述した本実施形態では、オートローダー機構100として、自動分析装置内に試薬ボトル10を搬入する際に複数の試薬ボトル10を設置するための試薬搭載部103と、試薬搭載部103に設置された試薬ボトル10を試薬搭載部103ごと保冷する第2保冷庫110とを備え、第2保冷庫110は、試薬搭載部103の出入り動作に伴って開閉する、試薬搭載部103が出入りするための開閉扉(第2扉201および第1扉202)を有している。 In the present embodiment described above, the autoloader mechanism 100 is installed in the reagent mounting unit 103 and the reagent mounting unit 103 for installing a plurality of reagent bottles 10 when the reagent bottle 10 is carried into the automatic analyzer. A second cold storage 110 that cools the reagent bottle 10 together with the reagent mounting portion 103, and the second cold storage 110 opens and closes as the reagent mounting portion 103 enters and exits, and opens and closes for the reagent mounting portion 103 to enter and exit. It has doors (second door 201 and first door 202).
 試薬ボトル10を試薬搭載部103ごと保冷するためには、第2保冷庫110に扉を設け、必要に応じて扉の開閉を行うことが必要不可欠である。この扉の開閉動作を、アクチュエータを用いずに試薬搭載部103の出入り動作に合わせ行うことで、必要以上にアクチュエータを搭載する必要がなくなり、装置サイズを大きくすることなく構成部品の低減を図ることが可能となる。更には調整やメンテナンス性の向上、装置設置スペースの小スペース化を図ることが可能となる。 In order to cool the reagent bottle 10 together with the reagent mounting unit 103, it is indispensable to provide a door in the second cold storage 110 and open and close the door as necessary. By performing this door opening / closing operation in accordance with the entry / exit operation of the reagent loading unit 103 without using an actuator, it is not necessary to mount an actuator more than necessary, and the number of components can be reduced without increasing the apparatus size. Is possible. Furthermore, adjustment and maintenance can be improved, and the space for installing the apparatus can be reduced.
 また、試薬搭載部103に設けられた第2前方ローラ301Aや第2後方ローラ301Bおよび第3ローラ302が接触することで試薬搭載部103の出入り動作に伴って第2扉201,第1扉202は開閉されるようになっているため、開閉動作の際に各ローラと扉とが接触する。そのため、開閉動作に伴う構成部品の損耗を抑制して、長期間にわたって安定した開閉動作が可能となる。 In addition, the second front roller 301A, the second rear roller 301B, and the third roller 302 provided in the reagent mounting unit 103 come into contact with each other, so that the second door 201 and the first door 202 are accompanied by the movement of the reagent mounting unit 103. Since the door is opened and closed, each roller and the door come into contact with each other during the opening and closing operation. For this reason, it is possible to suppress the wear and tear of the components accompanying the opening / closing operation and to perform a stable opening / closing operation over a long period of time.
 更に、試薬搭載部103が第2保冷庫110の外側に出ている時に、第2扉201,第1扉202が閉まらないように第2扉201,第1扉202をロックするロック機構を更に備えた。特に、ロック機構として、第2扉201,第1扉202の外側に設けられた扉ロック穴203と、第2保冷庫110に対して固定された扉ロック機構204と、試薬搭載部103とともに前後移動する扉ロックローラ206とを有し、第2扉201が開いた際に、扉ロックローラ206によって扉ロック機構204の挿入棒204Aが扉ロック穴203に挿入されることで第2扉201,第1扉202が閉まることが防止されることで、試薬搭載部103が第2保冷庫110内に戻るまで第2扉201,第1扉202が開いた状態を保つことができる。そのため、試薬搭載部103が第2保冷庫110内に戻るときに第2扉201,第1扉202を改めて開くための構造が不要となり、構成部品の更なる低減を図るとともに、調整やメンテナンス性の更なる向上、装置設置スペースの更なる小スペース化を図ることが可能となる。 Furthermore, when the reagent mounting unit 103 is outside the second cold storage 110, there is further provided a lock mechanism for locking the second door 201 and the first door 202 so that the second door 201 and the first door 202 are not closed. Prepared. In particular, as the lock mechanism, the door lock hole 203 provided on the outer side of the second door 201 and the first door 202, the door lock mechanism 204 fixed to the second cool box 110, and the reagent mounting portion 103 are moved forward and backward. When the second door 201 is opened, an insertion rod 204A of the door lock mechanism 204 is inserted into the door lock hole 203 by the door lock roller 206, so that the second door 201, By preventing the first door 202 from being closed, the second door 201 and the first door 202 can be kept open until the reagent mounting unit 103 returns into the second cold storage 110. Therefore, a structure for opening the second door 201 and the first door 202 again when the reagent mounting unit 103 returns into the second cold storage 110 becomes unnecessary, and further reduction of components and adjustment and maintenance are possible. It is possible to further improve the system and further reduce the space for installing the apparatus.
 また、第2保冷庫110は、第2扉201,第1扉202を固定部110A側へ常時引っ張る扉バネ207を有することにより、装置電源がOFFになったとしても第2保冷庫110内部の密閉状態を維持可能となり、より安定した試薬ボトル10の保冷が可能となる。 In addition, the second cool box 110 has a door spring 207 that always pulls the second door 201 and the first door 202 toward the fixed portion 110A, so that even if the apparatus power is turned off, The sealed state can be maintained, and the reagent bottle 10 can be cooled more stably.
 更に、試薬搭載機構搬送面182と第2保冷庫110内の搬送面182Aとの間には隙間200Aが存在することにより、第2保冷庫110の扉の開閉の構成が非常に容易となり、複雑な構造とすることなく第2保冷庫110内を安定して保冷することが出来るようになる。 Furthermore, since there is a gap 200A between the reagent loading mechanism transfer surface 182 and the transfer surface 182A in the second cool box 110, the configuration of opening and closing the door of the second cool box 110 becomes very easy and complicated. The inside of the second cold storage 110 can be stably cooled without using a simple structure.
 また、第2扉201,第1扉202の内側には、隙間200Aを埋めるための補助搬送面185が設けられていることで、隙間200Aが存在していても試薬搭載部103の動作がスムーズになり、より安定した動作が可能となる。 In addition, since the auxiliary conveyance surface 185 for filling the gap 200A is provided inside the second door 201 and the first door 202, the operation of the reagent mounting unit 103 is smooth even if the gap 200A exists. Thus, more stable operation is possible.
 更に、第2扉201,第1扉202は観音開きする2枚の扉で構成されたことにより、第2保冷庫110の密閉性を向上させることができ、第2保冷庫110における試薬ボトル10の保管状態の更なる向上を図ることができる。 Further, since the second door 201 and the first door 202 are configured with two doors that open in a double-tone manner, the hermeticity of the second cool box 110 can be improved, and the reagent bottle 10 in the second cool box 110 can be improved. The storage state can be further improved.
 また、第2扉201,第1扉202は、2枚の扉を連結するリンク208を有することで、第2扉201および第1扉202の開閉動作が独立した動作とならずに済み、より簡易な構成での開閉動作が可能となる。 Further, the second door 201 and the first door 202 have the link 208 that connects the two doors, so that the opening and closing operations of the second door 201 and the first door 202 do not have to be independent operations. Opening and closing operations can be performed with a simple configuration.
 更に、第2扉201には、閉じた際に第1扉202に被る第3扉209を有することにより、更なる第2保冷庫110内の密閉度の向上を図ることができる。 Furthermore, the second door 201 has a third door 209 that covers the first door 202 when it is closed, so that it is possible to further improve the degree of sealing in the second cool box 110.
 また、試薬搭載部103には、前側に複数の第3ローラ302、右側に複数のローラ(第2前方ローラ301Aや第2後方ローラ301B)が取り付けられたことで、より安定した第2保冷庫110の開閉扉の開閉動作が可能となる。 Further, the reagent mounting unit 103 is provided with a plurality of third rollers 302 on the front side and a plurality of rollers (second front roller 301A and second rear roller 301B) on the right side, so that a more stable second cool box. 110 can be opened and closed.
 なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。 Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible. The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
 例えば、本実施形態においてグリッパー機構106と試薬ディスク9の開閉カバー113、および試薬プローブ吸引口111は直線上に配置してあるが、試薬プローブ吸引口111は試薬プローブ7a,8aが動作可能な範囲であれば配置は直線状の形態にとらわれない。 For example, in this embodiment, the gripper mechanism 106, the open / close cover 113 of the reagent disk 9, and the reagent probe suction port 111 are arranged on a straight line, but the reagent probe suction port 111 is within a range in which the reagent probes 7a and 8a can operate. If so, the arrangement is not limited to a linear form.
 また、本実施形態においてニードル105は1本として説明しているが、試薬ボトル10のように蓋112が2箇所有る場合は、ニードル105を試薬ボトル10の蓋112の穴の間隔で2本取り付け、最初の動作で試薬ボトル蓋開栓機構104の下降動作で2箇所の蓋112に同時に穴を開ける構成とする。また、ニードル洗浄槽108、ニードル乾燥口109をニードル105の間隔で2個設置する。これにより、各々一度の上下動作で洗浄から乾燥まで可能となるので、搬入時間の短縮を図ることも可能である。 Further, in this embodiment, the needle 105 is described as one, but when there are two lids 112 as in the reagent bottle 10, two needles 105 are attached at intervals of the holes in the lid 112 of the reagent bottle 10. In the first operation, the reagent bottle lid opening mechanism 104 is lowered to open holes in the two lids 112 simultaneously. Further, two needle cleaning tanks 108 and needle drying ports 109 are installed at intervals of the needle 105. Thereby, since it is possible to perform cleaning and drying in one up-and-down operation, it is possible to shorten the loading time.
 また、本実施形態においてグリッパー機構106や試薬ボトル蓋開栓機構104の動作は上下駆動モータによる上下方向、水平駆動モータ131による左右方向の動作と説明したが、前後方向のモータを追加して3方向の動作を可能とすれば、試薬搭載部103に設置できる試薬ボトル10の設置可能数量も増やすことが可能となる。 Further, in the present embodiment, the operations of the gripper mechanism 106 and the reagent bottle lid opening mechanism 104 are described as the vertical movement by the vertical drive motor and the horizontal movement by the horizontal drive motor 131. If the operation in the direction is possible, the installable quantity of the reagent bottles 10 that can be installed in the reagent mounting unit 103 can be increased.
 なお、第2扉201と第1扉202の長さは第2扉201の方が長い形状としてあるが、扉の長さは、扉の回転動作によって生じる範囲に部品が配置してあるなどの状況に応じて最適な長さ、割合とすればよい。更に、扉を2分割で説明したが、1枚の扉でも同様の性能は満たすことが可能で、その場合はリンク208の部品は不要となる。 The length of the second door 201 and the first door 202 is longer than that of the second door 201, but the length of the door is such that parts are arranged in the range caused by the rotation of the door. What is necessary is just to set it as the optimal length and ratio according to a condition. Furthermore, although the door has been described as being divided into two parts, the same performance can be satisfied with a single door, and in this case, the parts of the link 208 are not necessary.
 また、本説明において試薬搭載部103の第1ローラ300を4個使用した例で説明したが、第1ローラ300の使用数は試薬搭載部103の全長さや幅、第2保冷庫110と試薬搭載機構搬送面182の隙間200A,200Bによって最適な条件となるような構成とすべきであり、特に限定されるものではない。 Further, in this description, the example in which four first rollers 300 of the reagent mounting unit 103 are used has been described. However, the number of the first rollers 300 used is the total length and width of the reagent mounting unit 103, the second cold storage 110 and the reagent mounting. The configuration should be such that optimum conditions are satisfied by the gaps 200A and 200B on the mechanism conveyance surface 182 and is not particularly limited.
 なお、本実施形態において第2保冷庫110を試薬ディスク9の上方に設ける例を示したが、第2保冷庫110の位置は上方に限定されるものではない。例えば、試薬ディスクの横側に設けてもよい。但し、上方に設けることで装置の更なる小スペース化が実現できる。 In addition, although the example which provides the 2nd cool box 110 above the reagent disk 9 was shown in this embodiment, the position of the 2nd cool box 110 is not limited upwards. For example, it may be provided on the side of the reagent disk. However, further space reduction of the apparatus can be realized by providing it above.
1…反応ディスク
2…反応容器
3…洗浄機構
4…分光光度計
4a…光源
5,6…撹拌機構
7,8…試薬分注機構
7a,8a…試薬プローブ
9…試薬ディスク
10…試薬ボトル
10a…タグ
11…サンプル分注機構
11a…サンプルプローブ
13…洗浄槽
15…試料容器
16…ラック
17…試料搬送機構
18…試薬用シリンジ
19…試料用シリンジ
20…洗浄用ポンプ
21…コントローラ
30,31…撹拌機構用洗浄槽
32…サンプル分注機構用洗浄槽
33…試薬分注機構用洗浄槽
100…オートローダー機構
101…試薬搬送機構(試薬搬送部)
102…試薬搭載機構
103…試薬搭載部
103A…本体
103B…突出部
104…試薬ボトル蓋開栓機構
105…ニードル
106…グリッパー機構(グリッパー部)
108…ニードル洗浄槽
109…ニードル乾燥口
110…第2保冷庫(試薬保冷庫)
110A…固定部
111…試薬プローブ吸引口
112…蓋
113…開閉カバー
114…ボトル向き検出センサ
115…RFIDセンサ
131…水平駆動モータ
180…試薬搭載機構モータ
181…試薬搭載機構ベルト
181A,181B…プーリ
182…試薬搭載機構搬送面
182A…搬送面
183…リニアガイド
184…保持部
185…補助搬送面
200A,200B…隙間
201…第2扉
202…第1扉
203…扉ロック穴
204…扉ロック機構
204A…挿入棒
204B…バネ
204C…スロープ
204D…平坦部
205…フックローラ
206…扉ロックローラ
207…扉バネ
208…リンク(リンク機構)
209…第3扉
300…第1ローラ
301A…第2前方ローラ
301B…第2後方ローラ
302…第3ローラ
303…扉フック溝
DESCRIPTION OF SYMBOLS 1 ... Reaction disk 2 ... Reaction container 3 ... Cleaning mechanism 4 ... Spectrophotometer 4a ... Light source 5, 6 ... Stirring mechanism 7, 8 ... Reagent dispensing mechanism 7a, 8a ... Reagent probe 9 ... Reagent disk 10 ... Reagent bottle 10a ... Tag 11 ... Sample dispensing mechanism 11a ... Sample probe 13 ... Cleaning tank 15 ... Sample container 16 ... Rack 17 ... Sample transport mechanism 18 ... Reagent syringe 19 ... Sample syringe 20 ... Cleaning pump 21 ... Controllers 30, 31 ... Stirring Cleaning tank for mechanism 32 ... Cleaning tank for sample dispensing mechanism 33 ... Cleaning tank for reagent dispensing mechanism 100 ... Autoloader mechanism 101 ... Reagent transport mechanism (reagent transport section)
DESCRIPTION OF SYMBOLS 102 ... Reagent mounting mechanism 103 ... Reagent mounting part 103A ... Main body 103B ... Projection part 104 ... Reagent bottle lid opening mechanism 105 ... Needle 106 ... Gripper mechanism (gripper part)
108 ... Needle washing tank 109 ... Needle drying port 110 ... Second cold storage (reagent cold storage)
110A ... fixing portion 111 ... reagent probe suction port 112 ... lid 113 ... opening / closing cover 114 ... bottle orientation detection sensor 115 ... RFID sensor 131 ... horizontal drive motor 180 ... reagent mounting mechanism motor 181 ... reagent mounting mechanism belt 181A, 181B ... pulley 182 Reagent loading mechanism transport surface 182A ... Transport surface 183 ... Linear guide 184 ... Holding section 185 ... Auxiliary transport surfaces 200A, 200B ... Gap 201 ... Second door 202 ... First door 203 ... Door lock hole 204 ... Door lock mechanism 204A ... Insertion rod 204B ... Spring 204C ... Slope 204D ... Flat part 205 ... Hook roller 206 ... Door lock roller 207 ... Door spring 208 ... Link (link mechanism)
209 ... Third door 300 ... First roller 301A ... Second front roller 301B ... Second rear roller 302 ... Third roller 303 ... Door hook groove

Claims (12)

  1.  反応容器に試料と試薬を各々分注して反応させ、この反応させた液体を測定する自動分析装置であって、
     前記試薬を収容した試薬ボトルを保管する試薬ディスクと、
     前記自動分析装置内に前記試薬ボトルを搬入する際に複数の前記試薬ボトルを設置するための試薬搭載部と、
     前記試薬搭載部に設置された前記試薬ボトルを前記試薬搭載部ごと保冷する試薬保冷庫とを備え、
     前記試薬保冷庫は、前記試薬搭載部の出入り動作に伴って開閉する、前記試薬搭載部が出入りするための開閉扉を有する
     ことを特徴とする自動分析装置。
    An automatic analyzer that dispenses and reacts a sample and a reagent in a reaction vessel and measures the reacted liquid,
    A reagent disk for storing a reagent bottle containing the reagent;
    A reagent mounting unit for installing a plurality of the reagent bottles when the reagent bottles are carried into the automatic analyzer;
    A reagent cool box that cools the reagent bottles installed in the reagent loading unit together with the reagent loading unit;
    The automatic analyzer according to claim 1, wherein the reagent cooler has an opening / closing door for opening and closing of the reagent loading part that opens and closes in accordance with the movement of the reagent loading part.
  2.  請求項1に記載の自動分析装置において、
     前記開閉扉は、前記試薬搭載部に設けられたローラが接触することで前記試薬搭載部の出入り動作に伴って開閉される
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The automatic analyzer is characterized in that the opening / closing door is opened / closed in accordance with the movement of the reagent mounting portion when a roller provided in the reagent mounting portion comes into contact therewith.
  3.  請求項1に記載の自動分析装置において、
     前記試薬搭載部が前記試薬保冷庫の外側に出ている時に、前記開閉扉が閉まらないように前記開閉扉をロックするロック機構を更に備えた
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    An automatic analyzer further comprising: a lock mechanism that locks the open / close door so that the open / close door is not closed when the reagent mounting portion is outside the reagent cooler.
  4.  請求項3に記載の自動分析装置において、
     前記ロック機構は、前記開閉扉の外側に設けられた扉ロック穴と、前記試薬保冷庫に対して固定された扉ロック機構と、前記試薬搭載部とともに前後移動する扉ロックローラとを有し、
     前記開閉扉が開いた際に、前記扉ロックローラによって前記扉ロック機構が前記扉ロック穴に挿入されることで前記開閉扉が閉まることが防止される
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 3,
    The lock mechanism includes a door lock hole provided outside the open / close door, a door lock mechanism fixed to the reagent cooler, and a door lock roller that moves back and forth together with the reagent mounting portion.
    When the door is opened, the door lock roller prevents the door from being closed by inserting the door lock mechanism into the door lock hole.
  5.  請求項1に記載の自動分析装置において、
     前記試薬搭載部を駆動する駆動モータ、前記駆動モータに連結されたベルト、および前記ベルトと前記試薬搭載部とを連結する保持部材とを有する試薬搭載機構を更に備えた
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    An automatic analysis further comprising: a reagent mounting mechanism having a driving motor for driving the reagent mounting unit, a belt connected to the driving motor, and a holding member for connecting the belt and the reagent mounting unit. apparatus.
  6.  請求項1に記載の自動分析装置において、
     前記試薬保冷庫は、前記開閉扉を常時本体側へ引っ張るバネを有する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The reagent cold storage has a spring that always pulls the door to the main body side.
  7.  請求項1に記載の自動分析装置において、
     オペレーターが前記試薬搭載部に前記試薬ボトルを設置する設置位置と前記試薬保冷庫との間を前記試薬搭載部が移動するための搬送ラインを更に備え、
     前記搬送ラインと前記試薬保冷庫内の前記試薬搭載部の搬送面との間には隙間がある
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    Further comprising a transport line for the reagent mounting unit to move between an installation position where an operator installs the reagent bottle in the reagent mounting unit and the reagent cold storage;
    There is a gap between the transport line and the transport surface of the reagent mounting unit in the reagent cool box.
  8.  請求項7に記載の自動分析装置において、
     前記開閉扉の内側には、前記隙間を埋めるための補助搬送面が設けられている
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 7,
    The automatic analyzer is characterized in that an auxiliary conveyance surface for filling the gap is provided inside the open / close door.
  9.  請求項1に記載の自動分析装置において、
     前記開閉扉は観音開きする2枚の扉で構成された
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The automatic analyzer is characterized in that the open / close door is composed of two doors that open in double doors.
  10.  請求項9に記載の自動分析装置において、
     前記開閉扉は、2枚の扉を連結するリンク機構を有する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 9,
    The open / close door has a link mechanism for connecting two doors. An automatic analyzer.
  11.  請求項9に記載の自動分析装置において、
     前記開閉扉の2枚の扉のうち一方側には、閉じた際にもう一方の扉に被るカバー扉を有する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 9,
    One of the two doors of the opening / closing door has a cover door that covers the other door when the door is closed.
  12.  請求項2に記載の自動分析装置において、
     前記試薬搭載部には、前記ローラが複数取り付けられた
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 2,
    An automatic analyzer comprising a plurality of the rollers attached to the reagent mounting unit.
PCT/JP2016/074461 2015-08-28 2016-08-23 Automatic analysis device WO2017038545A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680048427.6A CN107923921B (en) 2015-08-28 2016-08-23 Automatic analyzer
JP2017537762A JP6674470B2 (en) 2015-08-28 2016-08-23 Automatic analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-168640 2015-08-28
JP2015168640 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038545A1 true WO2017038545A1 (en) 2017-03-09

Family

ID=58187323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074461 WO2017038545A1 (en) 2015-08-28 2016-08-23 Automatic analysis device

Country Status (3)

Country Link
JP (1) JP6674470B2 (en)
CN (1) CN107923921B (en)
WO (1) WO2017038545A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140054A (en) * 2017-03-17 2019-08-16 株式会社日立高新技术 Automatic analysing apparatus
CN111033267A (en) * 2017-08-09 2020-04-17 株式会社日立高新技术 Automatic analyzer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734394Y2 (en) * 1991-08-19 1995-08-02 リズム時計工業株式会社 Karakuri clock lighting device
JP2008203004A (en) * 2007-02-19 2008-09-04 Hitachi High-Technologies Corp Automatic analyzer
WO2011122562A1 (en) * 2010-03-30 2011-10-06 アークレイ株式会社 Analyzing device
JP2012021862A (en) * 2010-07-14 2012-02-02 Hitachi High-Technologies Corp Automatic analyzer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325051A (en) * 2003-04-30 2004-11-18 Sanyo Electric Co Ltd Door device for refrigerator
JP5340975B2 (en) * 2010-01-29 2013-11-13 株式会社日立ハイテクノロジーズ Automatic analyzer
CN104024861B (en) * 2012-01-05 2015-11-25 株式会社日立高新技术 Agent treated method in automatic analysing apparatus and automatic analysing apparatus
EP2730927B1 (en) * 2012-11-12 2019-06-26 Siemens Healthcare Diagnostics Products GmbH Reagent station for an automatic analyzer
CN105593687B (en) * 2013-08-20 2017-08-15 株式会社日立高新技术 Automatic analysing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734394Y2 (en) * 1991-08-19 1995-08-02 リズム時計工業株式会社 Karakuri clock lighting device
JP2008203004A (en) * 2007-02-19 2008-09-04 Hitachi High-Technologies Corp Automatic analyzer
WO2011122562A1 (en) * 2010-03-30 2011-10-06 アークレイ株式会社 Analyzing device
JP2012021862A (en) * 2010-07-14 2012-02-02 Hitachi High-Technologies Corp Automatic analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140054A (en) * 2017-03-17 2019-08-16 株式会社日立高新技术 Automatic analysing apparatus
CN111033267A (en) * 2017-08-09 2020-04-17 株式会社日立高新技术 Automatic analyzer
CN111033267B (en) * 2017-08-09 2023-10-27 株式会社日立高新技术 automatic analysis device

Also Published As

Publication number Publication date
CN107923921A (en) 2018-04-17
JP6674470B2 (en) 2020-04-01
JPWO2017038545A1 (en) 2018-06-14
CN107923921B (en) 2020-10-30

Similar Documents

Publication Publication Date Title
US11175301B2 (en) Automatic analyzer and reagent bottle loading method
JP6602367B2 (en) Automatic analyzer
JP6449158B2 (en) Automatic analyzer
US8007722B2 (en) Analyzer
JP4861762B2 (en) Automatic analyzer
US11169168B2 (en) Automated analyzer
JP7046072B2 (en) Automatic analyzer
JP6032672B2 (en) Automatic analyzer
JP2010085249A (en) Automatic analyzer, reagent replenishing apparatus and reagent auto-loading method
WO2017038545A1 (en) Automatic analysis device
US20180188275A1 (en) Automated analyzer
JP2008020360A (en) Autoanalyzer and reagent container
JP6348816B2 (en) Automatic analyzer
JP6774151B2 (en) Automatic analyzer
JP2018136225A (en) Automatic analyzer
JP6641212B2 (en) Sample container transport device and sample container holder
JP5452526B2 (en) Automatic analyzer
JP7433459B2 (en) automatic analyzer
US20240192244A1 (en) Automatic analyzer
JP5380383B2 (en) Automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841577

Country of ref document: EP

Kind code of ref document: A1